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S1 Lemmas for sums involving projection matrix.

Lemma S1.1 Assume that P = (Pij, i, j = 1, ..., N) satisfy Assumption 1, then

(i) |Pij| ≤ 1 and |Mij| ≤ 1 for any i, j;

(ii)
∑N

i′=1 |Pii′Pi′j| ≤ 1 for any i, j;

(iii)
∑

j 6=i P
2
ij ≤

∑N
j=1 P

2
ij = Pii < 1 for any i;

(iv)
∑

i P
2
ii ≤

∑
i Pii = K;

(v)
∑N

i=1 Pii |Pij| ≤
∑N

i=1

√
Pii |Pij| ≤

√
K · Pjj <

√
K for any j.

Proof of Lemma S1.1. M2
ij = P 2

ij ≤
∑N

i′=1 P
2
ii′ = Pii ≤ 1. Both M and P are non-

negative definite, thus, Pii ≥ 0, thus Mii = 1− Pii ≤ 1.

N∑
i′=1

|Pii′Pi′j| ≤

√√√√ N∑
i′=1

P 2
ii′

√√√√ N∑
i′=1

P 2
i′j ≤

√
PiiPjj ≤ 1,

N∑
i=1

√
Pii |Pij| ≤

√√√√ N∑
i=1

Pii

√√√√ N∑
i=1

P 2
ij ≤

√
K · Pjj.
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Lemma S1.2 Denote I4 to be the set of all combinations of four indexes (i, j, i′, j′) where

no two indexes coincide. Let Assumption 1 hold for matrix P , then:

(a) 1
K2

∑
I4
P 2
ijP

2
i′j′P

2
ii′P

2
jj′ → 0;

(b) 1
K2

∑
I4
P 2
ijP

2
i′j′|Pii′Pjj′Pij′Pi′j| → 0;

(c) 1
K2

∑
I4
P 2
ijP

2
i′j′|MiiMi′i′|P 2

jj′ → 0;

(d) 1
K2

∑
I4
P 2
ijP

2
i′j′|MiiPjj′Pi′j′Pi′j| → 0;

(e) 1
K2

∑
I4
|P 3
ijP

3
i′j′Pi′jPij′ | → 0.

Proof of Lemma S1.2. Statements (a) and (c) are proved similarly. We bound the

corresponding sums by first noticing that P 2
ii′ < 1 and |MiiMi′i′ | < 1, and then apply

Lemma S1.1 (iii) and (iv):

1

K2

∑
I4

P 2
ijP

2
i′j′P

2
jj′ ≤

1

K2

∑
i,j,j′

P 2
ijPj′j′P

2
jj′ ≤

≤ 1

K2

∑
i,j,j′

P 2
ijP

2
jj′ ≤

1

K2

∑
i,j

P 2
ijPjj ≤

1

K2

∑
j

P 2
jj ≤

1

K2

∑
j

Pjj =
1

K
→ 0.

Statement (b) is proved by applying Lemma S1.1 (i) and then (ii) twice:

1

K2

∑
I4

P 2
ijP

2
i′j′ |Pii′Pjj′Pij′Pi′j| ≤

1

K2

∑
i,j

P 2
ij

∑
i′

|Pii′Pi′j|
∑
j′

|Pjj′Pij′ | ≤
1

K2

∑
i,j

P 2
ij =

1

K
→ 0.

Statement (d) is proved by applying Lemma S1.1 (ii) and then (iii):

1

K2

∑
I4

P 2
ijP

2
i′j′ |MiiPjj′Pi′j′Pi′j| ≤

1

K2

∑
i′,j,j′

(
∑
i

P 2
ij)P

2
i′j′|Pjj′Pi′j| ≤

1

K2

∑
i′,j,j′

P 2
i′j′ |Pjj′Pi′jPjj| ≤

≤ 1

K2

∑
i′,j′

P 2
i′j′

∑
j

|Pjj′Pi′j| ≤
1

K2

∑
i′,j′

P 2
i′j′ =

1

K
→ 0.
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Statement (e) is proved by applying Lemma S1.1 (i) and lastly (v):

1

K2

∑
I4

|P 3
ijP

3
i′j′Pi′jPij′ | ≤

1

K2

∑
i′,j,j′

(
∑
i

P 2
ij)P

2
i′j′|Pi′j| =

1

K2

∑
i′,j,j′

PjjP
2
i′j′|Pi′j| =

=
1

K2

∑
i′,j

PjjPi′i′|Pi′j| ≤
1

K2

∑
j

Pjj

√∑
i′

P 2
i′i′

√∑
i′

P 2
i′j ≤

1

K2

∑
j

Pjj
√
K · 1 =

1√
K
→ 0.

Lemma S1.3 Let Assumption 1 hold for matrix P , then for any vectors a, b, c and d:

(a)
∑

i

∑
j P

2
ij|ai| ≤

√
Ka′a;

(b)
∑

i

∑
j P

2
ij|ai||bj| ≤

√
a′ab′b;

(c)
∑

i

∑
j P

2
ij|ai||bi||cj| ≤

√
a′ab′bc′c;

(d)
∑

i

∑
j P

2
ij|ai||bi||cj||dj| ≤

√
a′ab′bc′cd′d;

(e)
∑

j P
2
ij|aj| ≤

√
Piia′a.

Proof of Lemma S1.3

∑
i

∑
j

P 2
ij|ai| ≤

∑
i

Pii|ai| ≤
√∑

i

P 2
ii

√∑
i

a2
i ≤
√
Ka′a,

∑
i

∑
j

P 2
ij|ai||bj| ≤

√∑
i

∑
j

P 2
ija

2
i

√∑
i

∑
j

P 2
ijb

2
j ≤

√∑
i

Piia2
i

√∑
j

Pjjb2
j ≤
√
a′ab′b,

∑
i

∑
j

P 2
ij|ai||bi||cj| ≤

√∑
i

∑
j

P 2
ija

2
i

√∑
i

∑
j

P 2
ijb

2
i c

2
j ≤
√
a′ab′bc′c,

∑
i

∑
j

P 2
ij|ai||bi||cj||dj| ≤

√∑
i

∑
j

P 2
ija

2
i c

2
j

√∑
i

∑
j

P 2
ijd

2
i d

2
j ≤
√
a′ab′bc′cd′d,

∑
j

P 2
ij|aj| ≤

√∑
j

P 4
ij

√∑
j

a2
j ≤

√∑
j

P 2
ij

√
a′a =

√
Piia′a.

Lemma S1.4 Let Assumption 1 holds for matrix P . Let Ui be independent random

variables with E[U2
i ] < C. Define wi =

∑
j 6=i PijΠj, where Π = (Πi) is a N × 1 non-

random vector. Then we have

(a) maxi |wi|2 ≤ Π′Π,
∑

iw
2
i ≤ 4Π′Π, and

∑
iw

4
i ≤ 4(Π′Π)2;
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(b) If Π′Π
K
→ 0 as N →∞, then 1

K

∑
iw

2
iUi →p 0.

Proof of Lemma S1.4. By the Cauchy-Schwarz inequality and Lemma S1.1:

|wi|2 ≤
∑
j

P 2
ij

∑
j

Π2
j ≤ PiiΠ

′Π ≤ Π′Π,

w2
i = (PiΠ− PiiΠi)

2 ≤ 2(PiΠ)2 + 2P 2
iiΠ

2
i ,∑

i

w2
i ≤ 2Π′P 2Π + 2

∑
i

P 2
iiΠ

2
i ≤ 4Π′Π,

∑
i

w4
i ≤ max

i
|wi|2

∑
i

w2
i ≤ 4(Π′Π)2,

E

(
1

K

∑
i

w2
iUi

)2

≤ C

K2

∑
i

w4
i ≤

CΠ′Π

K2
→ 0.

S2 Proof for consistency of the variance estimator

Lemma S2.1 Let assumptions of Lemma 3 hold, then ∆2A2 →p 0, where

A2 =
1

K

∑
i

∑
j 6=i

P̃ 2
ijλiλjξiξj +

1

K

∑
i

∑
j 6=i

P̃ 2
ijλiξiΠjMjξ+

+
1

K

∑
i

∑
j 6=i

P̃ 2
ijλiΠiξjMjξ +

1

K

∑
i

∑
j 6=i

P̃ 2
ijΠiΠjMiξMjξ.

Proof of Lemma S2.1. Notice that the first term is mean zero, and the three last

sums have non-trivial means:

E[A2] =
1

K

∑
i

∑
j 6=i

P̃ 2
ij

(
λiΠjMijσ

2
i + λiΠiMjjσ

2
j + ΠiΠj

∑
k

MikMjkσ
2
k

)
,

where we denote σ2
i = Eξ2

i . These means are negligible asymptotically:

∆2 |EA2| ≤
C∆2

K

∑
i

∑
j 6=i

P 2
ij (|λi||Πj|+ |λi||Πi|+ |Πi||Πj|) ≤

C∆2Π′Π

K
→ 0.

Here we apply Assumption 2, Lemma S1.1 and Lemma S1.3 (b). Consider the variance

of each sum in A2. Due to Assumption 2, the variance of the first sum in ∆2A2 is:
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V ar

(
∆2

K

∑
i

∑
j 6=i

P̃ 2
ijλiλjξiξj

)
≤ ∆4

K2

∑
i,j

P 4
ijλ

2
iλ

2
j ≤

∆4λ′λ

K2
→ 0.

The second sum in ∆2A2 is ∆2

K

∑
i,k

(∑
j 6=i P̃

2
ijλiΠjMjk

)
ξiξk. It has correlated summands

whenever the set of indexes (i, k) coincides. Thus the variance of this sum is bounded by

C∆4

K2

∑
i,k

(∑
j

P 2
ij|λiΠjMjk|

)2

+
C∆4

K2

∑
i,k

(∑
j

P 2
ij|λiΠjMjk|

)(∑
j′

P 2
kj′|λkΠj′Mj′i|

)
≤

≤ C∆4

K2

(∑
i,j,j′

∑
k

P 2
ijP

2
ij′|ΠjΠj′λ

2
i ||MjkMj′k|+

∑
j,j′

|Πj||Πj′ |
∑
i,k

P 2
ijP

2
kj′|λi||λk|

)
≤

≤ C∆4

K2

∑
i

λ2
i

(∑
j

P 2
ij|Πj|

)2

+
∑
j,j′

|Πj||Πj′ |PjjPj′j′λ′λ

 ≤
≤ C∆4

K2

∑
i

λ2
i

(∑
j

P 2
ij

)
Π′Π + λ′λ

(∑
j

Pjj|Πj|

)2
 ≤ C∆4

K2
KΠ′Πλ′λ→ 0.

Here we apply Lemma S1.1 (ii) and the Cauchy-Schwarz inequality multiple times. The

third sum in ∆2A2 is ∆2

K

∑
j,k

∑
i 6=j P̃

2
ijλiΠiMjkξjξk. Its variance is bounded by

C∆4

K2

∑
j,k

(∑
i

P 2
ij|λiΠiMjk|

)2

+

(∑
i

P 2
ij|λiΠiMjk|

)(∑
i

P 2
ik|λiΠiMjk|

)
≤

≤ C∆4

K2

∑
j,k

(∑
i

|λiΠiMjk|

)2

≤ C∆4

K2

∑
j,k

M2
jk

(∑
i

|λiΠi|

)2

≤ C∆4

K2
KΠ′Πλ′λ→ 0.

The last sum in ∆2A2 is ∆2

K

∑
k,l

(∑
i

∑
j 6=i P̃

2
ijΠiΠjMikMjl

)
ξkξl. Its variance has bound

C∆4

K2

∑
k,l

(∑
i,j

P 2
ij|ΠiΠj|(|MikMjl|+ |MjkMil|)

)2

≤

≤ C∆4

K2

∑
i,j,i′,j′

P 2
ijP

2
i′j′ |ΠiΠjΠi′Πj′|

∑
k,l

|MikMi′k||MjlMj′l| ≤
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≤ C∆4

K2

(∑
ij

P 2
ij|ΠiΠj|

)2

≤ C∆4

K2
(Π′Π)2 → 0.

Lemma S2.2 Let assumptions of Lemma 3 hold, then ∆A1 →p 0, where

A1 =
1

K

∑
i

∑
j 6=i

P̃ 2
ijλiξiMjξξj +

1

K

∑
i

∑
j 6=i

P̃ 2
ijΠiMiξξjMjξ.

Proof of Lemma S2.2. A1 has a non-trivial mean: EA1 = 4
K

∑
i

∑
j 6=i P̃

2
ijΠiMijMjjE[ξ3

j ].

Applying Lemma S1.3 (a), we note this mean vanishes under the assumptions of Lemma

3 from the paper:

|∆EA1| ≤
C|∆|
K

∑
i

∑
j 6=i

P 2
ij|Πi| ≤

C|∆|
√

Π′Π√
K

→ 0.

Next, we re-write the demeaned expression as seven distinct terms:

∆(A1 − EA1) =
∆

K

∑
i

∑
j 6=i

P̃ 2
ijλiMijξ

2
i ξj +

∆

K

∑
i

∑
j 6=i

P̃ 2
ijλiMjjξiξ

2
j +

∆

K

∑
I3

P̃ 2
ijλiMjkξiξjξk+

+
∆

K

∑
j,k

∑
i 6=j

P̃ 2
ijΠi(MikMjj +MijMjk)ξ

2
j ξk +

∆

K

∑
j

∑
i 6=j

P̃ 2
ijΠiMijMjj(ξ

3
j − Eξ3

j )+

+
∆

K

∑
j,k

(∑
i 6=j

P̃ 2
ijΠiMikMjk

)
ξjξ

2
k +

∆

K

∑
(j,k,l)∈I3

(∑
i 6=j

P̃ 2
ijΠiMikMjl

)
ξjξkξl.

The variances of the first two terms have the same bound (we use Lemma S1.1 (i)):

C∆2

K2

∑
i,j

P 4
ij

(
λ2
i + |λi||λj|

)
≤ C∆2

K2

(∑
i

(
∑
j

P 2
ij)λ

2
i +

∑
ij

P 2
ij|λi||λj|

)
≤ C

K2
λ′λ→ 0.

For the third term, we notice that the two summands with indexes (i, j, k) and (i′, j′, k′)

are correlated iff {i, j, k} = {i′, j′, k′}. There are six permutations of the three indexes,

for all of them except those with {i, j} = {i′, j′} we use Lemma S1.1 (i) to drop terms
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containing elements of matrix M .The variance of the third term is bounded by

C∆2

K2

∑
I3

[
P 4
ij(λ

2
iM

2
jk + |λi||λj||MikMjk|) + P 2

ijP
2
ik(λ

2
i + |λi||λk|) + P 2

ijP
2
jk(|λi||λj|+ |λi||λk|)

]
≤

≤ C∆2

K2

{∑
i,j

P 4
ij(λ

2
i + |λi||λj|) +

∑
i,j

P 2
ijλ

2
i +

∑
i,k

P 2
ik|λi||λk|+

+
∑
i,j

P 2
ij|λi||λj|+

∑
j

(∑
i

P 2
ij|λi|

)2
 ≤ C∆2

K2
Kλ′λ→ 0.

For the last inequality we use Lemma S1.3 (a) and (e). The variance of the fourth term

is bounded by

C∆2

K2

∑
j,k

(∑
i 6=j

P̃ 2
ijΠi(MikMjj +MijMjk)

)2

≤

≤C∆2

K2

∑
j,k

∑
i,i′

P 2
ijP

2
i′j|ΠiΠi′|(|Mik|+ |Mjk|)(|Mi′k|+ |Mjk|) ≤

≤C∆2

K2

∑
j

∑
i,i′

P 2
ijP

2
i′j|ΠiΠi′| =

C∆2

K2

∑
j

(∑
i

P 2
ij|Πi|

)2

≤ C∆2Π′Π

K
→ 0,

where in the first inequality we apply Lemma S1.1 (i) to drop terms that do not index

over k such as Mjj and |Mij|. In the second inequality we apply Lemma S1.1 (ii) The

variance of the fifth term is bounded by

C∆2

K2

∑
j

(∑
i

P 2
ij|Πi|

)2

≤ C∆2Π′Π

K
→ 0.

The variance of the sixth term is bounded by

C∆2

K2

∑
j,k

(∑
i

P 2
ij|ΠiMikMjk|

)2

+

(∑
i

P 2
ij|ΠiMikMjk|

)(∑
i

P 2
ik|ΠiMijMjk|

)
≤

≤ C∆2

K2

∑
j,k

M2
jk

(∑
i

|Πi|

)2

≤ C∆2Π′Π

K
→ 0.
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Consider the seventh term that has summation over I3. Denote o to be a permutation

over indexes (j, k, l), and summation over o is the summation over all permutations. A

bound on the variance of the seventh term is:

C∆2

K2

∑
(j,k,l)∈I3

∑
o

∑
i,i′

P 2
ijP

2
i′o(j)|Πi||Πi′ ||MikMjlMi′o(k)Mo(j)o(l)|.

Consider those permutations for which o(j) = j, then the term is

C∆2

K2

∑
j

(∑
i

P 2
ij|Πi|

)2∑
k,l

|MikMjlMi′o(k)Mjo(l)| ≤
C∆2

K2

∑
j

(∑
i

P 2
ij|Πi|

)2

≤ C∆2Π′Π

K
→ 0.

In the expression above, when o(k) = l the summation over k and l is bounded by 1 due

to Lemma S1.1 (ii). When o(k) = k the summation over k is bounded by 1 due to Lemma

S1.1 (ii), and the summation over l is bounded by 1 due to Lemma S1.1 (iii). Then we

use Lemma S1.3 (e). Consider those permutations for which o(j) = k, then the term is

C∆2

K2

∑
j,k,l

∑
i,i′

P 2
ijP

2
i′k|Πi||Πi′||MikMjlMi′o(k)Mko(l)| ≤

C∆2

K2

(∑
i,j

P 2
ij|Πi|

)2

≤ C∆2

K
Π′Π→ 0.

For either o(l) = l or o(k) = l, we apply Lemma S1.1 (ii) to the summation over l, which

is bounded by 1. Then we drop all remaining M ’s such as |Mik| as they are bounded by

1 by Lemma S1.1 (i). Finally we use Lemma S1.3 (a). Consider those permutations for

which o(j) = l we repeat the last argument but to the index over k. To sum up, we show

that all seven terms in ∆(A1 − EA1) converge in probability to zero. �

S3 Statements used in Proof of Theorem 5

Lemma S3.1 Let errors (ei, vi) satisfy Assumption 2, Assumption 1 hold and Πi be such

that Π′MΠ ≤ CΠ′Π
K

and Π′Π
K2/3 → 0 as N →∞. Then the following statements hold:

(a) 1
K

∑N
i=1

(∑
j 6=i PijXj

)2
eiMie
Mii

+ 1
K

∑N
i=1

∑
j 6=i P̃

2
ijMiXeiMjXej −Ψ→p 0,

(b) 1
K

∑N
i=1

(∑
j 6=i PijXj

)2 (
eiMiX
2Mii

+ XiMie
2Mii

)
+ 1

K

∑N
i=1

∑
j 6=i P̃

2
ijMiXeiMjXXj−τ →p 0,
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(c) 1
K

∑N
i=1

(∑
j 6=i PijXj

)2
XiMiX
Mii

+ 1
K

∑N
i=1

∑
j 6=i P̃

2
ijMiXXiMjXXj −Υ→p 0,

where

Ψ =
1

K

N∑
i=1

(
∑
j 6=i

PijΠj)
2σ2

i +
1

K

N∑
i=1

∑
j 6=i

P 2
ijγiγj +

1

K

N∑
i=1

∑
j 6=i

P 2
ijσ

2
i ς

2
j ,

τ =
2

K

N∑
i=1

(
∑
j 6=i

PijΠj)
2γi +

2

K

N∑
i=1

∑
j 6=i

P 2
ijς

2
i γj,

Υ =
4

K

N∑
i=1

(
∑
j 6=i

PijΠj)
2ς2
i +

2

K

N∑
i=1

∑
j 6=i

P 2
ijς

2
i ς

2
j .

Proof of Lemma S3.1. Applying Lemmas 2 and 3 to different combinations of ξi

variables containing Xi = Πi + vi and ei gives that:

1

K

N∑
i=1

∑
j 6=i

P̃ 2
ijMiXeiMjXej →

1

K

N∑
i=1

∑
j 6=i

P 2
ijγiγj,

1

K

N∑
i=1

∑
j 6=i

P̃ 2
ijMiXeiMjXXj →

1

K

N∑
i=1

∑
j 6=i

P 2
ijγiς

2
j ,

1

K

N∑
i=1

∑
j 6=i

P̃ 2
ijMiXXiMjXXj →

1

K

N∑
i=1

∑
j 6=i

P 2
ijς

2
i ς

2
j .

Thus, all that remains to prove is the convergences of the first terms in statements (a)-

(c). We use
∑

j 6=i PijXj = wi +
∑

j 6=i Pijvj, where wi =
∑

j 6=i PijΠj, Xi = Πi + vi, and
Mie
Mii

= ei − 1
Mii

∑
j 6=i Pijej. Furthermore, denote λi = MiΠ.

Consider the first term in statement (a):

1

K

N∑
i=1

(∑
j 6=i

PijXj

)2
eiMie

Mii

=
1

K

N∑
i=1

(∑
j 6=i

PijXj

)2

ei

(
ei −

1

Mii

∑
k 6=i

Pikek

)
=

=
1

K

N∑
i=1

(∑
j 6=i

PijXj

)2

e2
i −

1

K

N∑
i=1

(∑
j 6=i

PijXj

)2
ei
Mii

∑
k 6=i

Pikek.

We apply Lemma S3.2 (a) and (b) to the above, this finishes the proof of statement (a).

Consider the first term in statement (b):
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1

K

N∑
i=1

(∑
j 6=i

PijXj

)2(
eiMiX

Mii

+
XiMie

Mii

)
=

=
1

K

N∑
i=1

(∑
j 6=i

PijXj

)2(
ei

[
λi
Mii

+ vi −
1

Mii

∑
k 6=i

Pikvk

]
+ (Πi + vi)

[
ei −

1

Mii

∑
k 6=i

Pikek

])
=

=2
1

K

N∑
i=1

(∑
j 6=i

PijXj

)2

eivi −
1

K

N∑
i=1

(∑
j 6=i

PijXj

)2{
ei
Mii

∑
k 6=i

Pikvk +
vi
Mii

∑
k 6=i

Pikek

}
+

+
1

K

N∑
i=1

(∑
j 6=i

PijXj

)2

ei

{
λi
Mii

+ Πi

}
− 1

K

N∑
i=1

(∑
j 6=i

PijXj

)2
Πi

Mii

∑
k 6=i

Pikek.

We apply Lemma S3.2 (a)-(d) to all four terms respectively. Only the first and the last

terms have non-trivial limits. The first one has limit 2
K

∑N
i=1w

2
i γi +

2
K

∑
i,j 6=i P

2
ijγiς

2
j . The

last one has the limit not showing up in the expression for τ : − 1
K

∑N
i=1wi

Πi

Mii

∑
j 6=i P

2
ijγk.

However, this limit is negligible as it is bounded by C
K

∑N
i=1 |wiΠi|

∑
j 6=i P

2
ij ≤ Π′Π

K
→ 0. Fi-

nally, comparing the limit with the expression for τ , we note the difference 1
K

∑N
i=1w

2
i γi ≤

C
K

∑
iw

2
i ≤ Π′Π

K
→ 0 vanishes by Lemma S1.4 (a). This finishes the proof of (b).

Finally, we consider the first term in statement (c):

1

K

N∑
i=1

(∑
j 6=i

PijXj

)2

(Πi + vi)

(
λi
Mii

+ vi −
1

Mii

∑
k 6=i

Pikvk

)
=

=
1

K

N∑
i=1

(∑
j 6=i

PijXj

)2

v2
i −

1

K

N∑
i=1

(∑
j 6=i

PijXj

)2
vi
Mii

∑
k 6=i

Pikvk+

+
1

K

N∑
i=1

(∑
j 6=i

PijXj

)2

vi(Πi +
λi
Mii

)− 1

K

N∑
i=1

(∑
j 6=i

PijXj

)2
Πi

Mii

∑
k 6=i

Pikvk+

+
1

K

N∑
i=1

(∑
j 6=i

PijXj

)2

Πi
λi
Mii

.

We apply Lemma S3.2 (a)-(e) to all five terms respectively. Only the first and the fourth

terms have non-trivial limits. The first term has limit 1
K

∑N
i=1w

2
i ς

2
i + 1

K

∑N
i=1

∑
j 6=i P

2
ijς

2
i ς

2
j .

The fourth term has limit 1
K

∑N
i=1

∑
j 6=i P

2
ijς

2
j
λi
Mii

Πi, which does not show up in the ex-

pression for Υ, but is negligible as it is bounded by 1
K

√
Π′Πλ′λ ≤ Π′Π

K
→ 0. Finally,

10



comparing the limit with the expression for Υ, we note the difference 3
K

∑N
i=1 w

2
i ς

2
i ≤

C
K

∑
iw

2
i ≤ Π′Π

K
→ 0 vanishes by Lemma S1.4 (a). This finishes the proof of Lemma S3.1.

Lemma S3.2 Suppose assumptions of Lemma S3.1 hold. Let wi =
∑

j 6=i PijΠj. Let

random variables ξ1,i, ξ2,i stay for either ei or vi, random variables Ui stay for e2
i , eivi or

v2
i , and constants ai stay for either Πi or λi

Mii
. Then the following statements hold:

(a) 1
K

∑N
i=1

(
wi +

∑
j 6=i Pijvj

)2

Ui −
(

1
K

∑N
i=1 w

2
iE[Ui] + 1

K

∑
i,j 6=i P

2
ijE[Ui]ς

2
j

)
→p 0,

(b) 1
K

∑N
i=1

(
wi +

∑
j 6=i Pijvj

)2
ξ1,i
Mii

∑
k 6=i Pikξ2,k →p 0,

(c) 1
K

∑N
i=1

(
wi +

∑
j 6=i Pijvj

)2

aiξ1,i →p 0,

(d) 1
K

∑N
i=1

(
wi +

∑
j 6=i Pijvj

)2
ai
Mii

∑
k 6=i Pikξ1,k − 2

K

∑N
i=1

∑
j 6=i P

2
ijwi

ai
Mii

E[vjξ1,j]→p 0,

(e) 1
K

∑N
i=1

(
wi +

∑
j 6=i Pijvj

)2

Πi
λi
Mii
→p 0.

Proof of Lemma S3.2 For statement (a) notice that

1

K

N∑
i=1

(
wi +

∑
j 6=i

Pijvj

)2

Ui =
1

K

N∑
i=1

w2
iUi +

1

K

N∑
i=1

∑
j 6=i

P 2
ijv

2
jUi+

+
1

K

∑
I3

PijPikUivjvk +
2

K

N∑
i=1

∑
j 6=i

PijwivjUi.

We apply Lemma S1.4 (b) to the first term. For the second term we notice that

1

K

N∑
i=1

∑
j 6=i

P 2
ij(v

2
jUi − E[Ui]ς

2
j ) =

1

K

N∑
i=1

∑
j 6=i

P 2
ijς

2
j (Ui − EUi) +

1

K

N∑
i=1

∑
j 6=i

P 2
ij(v

2
j − ς2

j )(Ui − EUi).

The summands in both sums are uncorrelated unless indexes (i in the first and i, j in the

second) coincide as sets. Thus, the variance is bounded by

C

K2

 N∑
i=1

(∑
j 6=i

P 2
ij

)2

+
N∑
i=1

∑
j 6=i

P 4
ij

 ≤ C

K
→ 0.
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The third term is

1

K

∑
I3

PijPikUivjvk =
1

K

∑
I3

PijPikE[Ui]vjvk +
1

K

∑
I3

PijPik(Ui − EUi)vjvk.

Again the summands in both sums are uncorrelated unless indexes coincide. Thus, the

variance is bounded by

C

K2

∑
j,k

(∑
i

PijPikE[Ui]

)2

+
∑
I3

(P 2
ijP

2
ik + P 2

ij|PikPjk|)

 ≤
≤ C

K2

(∑
i,i′

(∑
j,k

PijPikPi′jPi′k

)
E[Ui]E[Ui′ ] +

∑
i

P 2
ii +

∑
i,j

P 2
ij

)
≤ C

K
→ 0.

The last term is negligible as it has zero mean, and by Lemma S1.3 (b) and Lemma S1.4

(a), its variance is bounded by C
K

∑N
i=1

∑
j 6=i P

2
ij(w

2
i + |wi||wj|) ≤ Cw′w

K
≤ CΠ′Π

K
→ 0.

To prove statement (b) notice that the expression expands to:

1

K

N∑
i=1

∑
k 6=i

Pikw
2
i

ξ1,i

Mii

ξ2,k +
2

K

N∑
i=1

∑
j 6=i

P 2
ijwivj

ξ1,i

Mii

ξ2,j+

+
2

K

∑
I3

PijPikwivj
ξ1,i

Mii

ξ2,k +
1

K

N∑
i=1

(∑
j 6=i

Pijvj

)2
ξ1,i

Mii

∑
k 6=i

Pikξ2,k.

All terms are mean zero. The variances of the first two are bounded by:

C

K2

N∑
i=1

∑
k 6=i

(
P 2
ikw

4
i + P 2

ikw
2
iw

2
k + P 4

ikw
2
i + P 4

ik|wiwk|
)
≤

≤ C

K2

(
max
i
w2
iw
′w + w′w

)
≤ C(Π′Π)2

K2
→ 0.

Above we applied Lemma S1.3 (b). The variance of the third term is bounded by

C

K2

∑
I3

(
P 2
ijP

2
ikw

2
i + |PijPikwiPijPjkwj|

)
≤ C

K2

(∑
i

w2
i +

∑
i,j

P 2
ij|wiwj|

)
≤ Cw′w

K2
→ 0.

Here we used Lemma S1.4 (a) and Lemma S1.3 (b).
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The fourth term contains summation over i as well as summations over j, k, l where

these three indexes are different from i and appear as indexes in the random variables

vj, vl and ξ2,k. We re-write this term as sums when all three indexes j, k, l coincide,

when two of them coincide, and when all three are different. When all three indexes

j, k, l coincide, the variance of that sum is bounded by C
K2

∑N
i=1

∑
j 6=i P

6
ij ≤ C

K
. When

two of indexes j, k, l coincide (call the two distinct indexes as j, k), the variance of that

sum is bounded by C
K2

∑
I3

∑
o P

2
ij|Pik|P 2

o(i)o(j)|Po(i)o(k)| where the summation over o is the

summation over all permutations of i, j, k. Consider those permutations for which o(i) = i,

then the term is bounded by C
K2

∑
I3
P 2
ijP

2
ik → 0. Consider those permutations for which

o(i) 6= i, then the term is bounded by C
K2

∑
I3
P 2
ij|Pik||Pjk| ≤ C

K2

∑N
i=1

∑
j 6=i P

2
ij → 0.

Finally, when all three indexes j, k, l are distinct, the variance of that sum is bounded

by C
K2

∑
I4

∑
o |Pij||Pik||Pil||Po(i)o(j)||Po(i)o(k)||Po(i)o(l)| where the summation over o is the

summation over all permutations. Consider those permutations for which o(i) = i, then

the term is bounded by C
K2

∑
I4
P 2
ijP

2
ikP

2
il → 0. Consider those permutations for which

o(i) 6= i, then it is bounded by C
K2

∑
I4
P 2
ij|Pik||Pjk||Pil||Pjl| ≤ C

K2

∑N
i=1

∑
j 6=i P

2
ij → 0.

For proof of statement (c) we re-write this mean-zero term:

1

K

N∑
i=1

(
wi +

∑
j 6=i

Pijvj

)2

aiξ1,i =
1

K

N∑
i=1

w2
i aiξ1,i +

1

K

N∑
i=1

∑
j 6=i

P 2
ijv

2
jaiξ1,i+

+
1

K

∑
I3

PijPikaiξ1,ivjvk +
2

K

N∑
i=1

∑
j 6=i

Pijwivjaiξ1,i.

The variance of the third sum is bounded by

C

K2

∑
I3

(
P 2
ijP

2
ika

2
i + P 2

ij|PikPjkaiaj|
)
≤ C

K2

(∑
i

P 2
iia

2
i +

∑
i,j

P 2
ij|aiaj|

)
≤ Ca′a

K2
→ 0.

The variance of the remaining three terms is bounded by

C

K2

{
N∑
i=1

w4
i a

2
i +

N∑
i=1

∑
j 6=i

P 4
ij(a

2
i + |ai||aj|) +

N∑
i=1

∑
j 6=i

P 2
ij(w

2
i a

2
i + |wiai||wjaj|)

}
≤

≤ C

K2

(
(Π′Π)2a′a+ a′a+ (Π′Π)a′a

)
.
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We used Lemma S1.4 to derive the bound by setting ai equal to either Πi or λi
Mii

. In either

case the last variance is bounded by C(Π′Π)3

K2 → 0.

For proof of statement (d) we expand the expression of interest to:

1

K

N∑
j=1

(∑
i 6=j

w2
i

ai
Mii

Pij

)
ξ1,j +

2

K

N∑
j=1

(∑
i 6=j

P 2
ijwi

ai
Mii

)
(vjξ1,j − E[vjξ1,j])+

+
2

K

N∑
j=1

∑
k 6=j

 ∑
i/∈{k,j}

PijPikwi
ai
Mii

 vjξ1,k +
1

K

N∑
i=1

ai
Mii

(∑
j 6=i

Pijvj

)2∑
k 6=i

Pikξ1,k.

The first three terms are mean zero. The variances of the first two are bounded by

C

K2

N∑
j=1

∑
i,i′

(
w2
iw

2
i′ |aiai′PijPi′j|+ P 2

ijP
2
i′j|wiwi′aiai′ |

)
≤

≤ C

K2

(∑
i

w2
i |ai|

)2

+

(∑
i

|wiai|

)2
 ≤ C(Π′Π)3

K2
→ 0.

Above we first summed up over j using Lemma S1.1 (i) and (ii), then Lemma S1.3 and

finally the definition of ai. Variance of the third term is bounded by

C

K2

∑
j,k

∑
i,i′

|PijPikwiaiPi′jPi′kwi′ai′| ≤
C

K2

(∑
i

|wiai|

)2

≤ C(Π′Π)2

K2
→ 0.

The fourth term has mean 1
K

∑
i

∑
j 6=i P

3
ij

ai
Mii

E[v2
j ξ1,j], which is bounded by

C

K

∑
i

Pii|ai| ≤
C

K

√
Ka′a ≤ C

√
Π′Π

K
→ 0.

The de-meaned fourth term contains summation over i as well as summations over j, j′, k

where these three indexes appear as indexes in the random variables vj, vj′ and ξ1,k. we

re-write this de-meaned term as sums when all three indexes j, j′, k coincide, when two of

them coincide and when they all three are different. The sum of variances of these three

terms are bounded by
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C

K2

∑
j

(∑
i

|Pij|3|ai|

)2

+
∑
j,k

(∑
i

|aiPik|P 2
ij

)2

+
∑

j,j′,k∈I3

(∑
i

|aiPijPij′Pik|

)2
 .

For all three sums we derive the bound as follows: we write the square of the sum over i

as the product of a sum over i and a sum over i′, change the order of summation (moving

the summation over i and i′ outside). We then apply Lemma S1.1 (ii) to the summation

over j, or (j, k) or I3. Then we conclude that the expression above is bounded by

C

K2

(∑
i

Pii|ai|

)2

≤ C

K2

∑
i

P 2
iia
′a ≤ CΠ′Π

K
→ 0.

For proof of statement (e) notice:

1

K

N∑
i=1

(
wi +

∑
j 6=i

Pijvj

)2

Πi
λi
Mii

=
1

K

N∑
i=1

w2
iΠi

λi
Mii

+
2

K

∑
j

(∑
i 6=j

PijwiΠi
λi
Mii

)
vj+

+
1

K

∑
j

(∑
i 6=j

P 2
ijΠi

λi
Mii

)
v2
j +

1

K

∑
j

∑
k 6=j

(∑
i 6=j,k

PijPikΠi
λi
Mii

)
vjvk.

The first term is deterministic and negligible:∣∣∣∣∣ 1

K

N∑
i=1

w2
iΠi

λi
Mii

∣∣∣∣∣ ≤ C

K
max
i
w2
i

√
Π′Πλ′λ ≤ C(Π′Π)3/2(λ′λ)1/2

K
≤ C(Π′Π)2

K3/2
→ 0.

The variances of the second and third term are bounded in similar fashion:

C

K2

∑
j

(∑
i 6=j

PijwiΠi
λi
Mii

)2

≤ C

K2

∑
i,i′

(∑
j

|PijPi′j|

)
|wiwi′ΠiΠi′λiλi′| ≤

≤ max
i
w2
i

C

K2

∑
i,i′

Π2
iλ

2
i′ ≤

C(Π′Π)2λ′λ

K2
≤ C(Π′Π)3

K3
→ 0,

C

K2

∑
j

(∑
i 6=j

P 2
ijΠi

λi
Mii

)2

≤ C

K2

∑
i,i′

(
∑
j

P 2
ijP

2
i′j)|ΠiΠi′λiλi′| ≤

CΠ′Πλ′λ

K2
→ 0.

Thus, the second term is negligible, while the third term converges to its mean, which
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happens to be negligible and is bounded by: C
K

∑
j

∑
i 6=j P

2
ij

∣∣∣Πi
λi
Mii

∣∣∣ ≤ C
K

√
Π′Πλ′λ → 0.

Finally, the last term is mean zero with variance bounded by:

C

K2

∑
j

∑
k 6=j

(∑
i 6=j,k

PijPikΠi
λi
Mii

)2

≤ C

K2

∑
i,i′

(∑
j,k

|PijPikPi′jPi′k|

)
|ΠiΠi′λiλi′ | ≤

CΠ′Πλ′λ

K2
→ 0.

S4 Quadratic CLT for small K

Lemma S4.1 Assume K is fixed, errors ηi are independently drawn with E[ηi] = 0,E[η2
i ] =

σ2 and maxi Eη4
i < C. Assume also that as N →∞ the K × 1-dimensional instruments

Zi satisfy the following convergence 1
N

∑N
i=1 ZiZ

′
i → Q, where Q is a full rank K × K

matrix, and 1
N

∑N
i=1 ‖Zi‖4 < C. Then as N →∞

1√
K
√

Φ

N∑
i=1

∑
j 6=i

Pijηiηj ⇒
χ2
K −K√

2K
.

Proof of Lemma S4.1. Under homoscedasticity we have ΦN = 2σ4 · (1−
∑N

i=1 P
2
ii

K
), but

we show later
∑N

i=1 P
2
ii → 0, thus Φ = 2σ4. Below we use

∑N
i=1 Pii = K.

1√
2Kσ2

N∑
i=1

∑
j 6=i

Pijηiηj =
1√

2Kσ2

{
η′Z(Z ′Z)−1Z ′η −Kσ2

}
− 1√

2K

N∑
i=1

Pii

(
η2
i

σ2
− 1

)
.

By the standard argument we have 1√
N
Z ′η ⇒ N(0, σ2Q), and thus,

1

σ2
η′Z(Z ′Z)−1Z ′η ⇒ χ2

K .

Noticing that 1
N

∑N
i=1 ZiZ

′
i → Q, where Q is a full rank, we have

Pii =Z ′i(Z
′Z)−1Zi ≤

‖Zi‖2

N
tr

[(
Z ′Z

N

)−1
]
≤ C‖Zi‖2

N
,

N∑
i=1

P 2
ii ≤

C

N2

N∑
i=1

‖Zi‖4 ≤ C

N
→ 0.

Thus, by Chebyshev’s inequality we have 1√
2K

∑N
i=1 Pii

(
η2i
σ2 − 1

)
→p 0 as N →∞. �
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Figure 1: Power curves for leave-one-out AR tests with cross-fit (blue line) and naive (red dash) variance
estimators under sparse vs. dense first stage. The instruments are K = 40 balanced group indicators.
Sample size is N = 200. Number of simulation draws is 1,000. Details of the simulation design can be
found in the Appendix.

S5 Additional Simulations

Here we report additional simulations to the ones reported in Section 4.2 about the effect

of naive vs cross-fit variance estimator on the power of the AR test. We consider the

following simulation design. The DGP is given by a homoscedastic linear IV model with

a linear first stage:  Yi = βXi + ei,

Xi = Π′Zi + vi.

The instruments are K = 40 group indicators, where the sample is divided into equal

groups. The sample size is N = 200. The error terms are generated i.i.d. as ei

vi

 ∼ N
 0

0

 ,

 1 ρ

ρ 1


with ρ = 0.2. We simulate a sparse first stage by setting one large coefficient πK = 2 and

πk = 0.001 for all k < K. The dense first stage has homogeneous first stage coefficients

πk = 0.316 for all k = 1, . . . , K. Identification strength is held the same at µ2√
K

= 2.5 for

both settings. The results are reported in Figure 1.

As we discuss in the main text, the power difference between tests with the cross-fit and
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Figure 2: Power curves for leave-one-out AR tests with cross-fit (blue line) and naive (red dash) variance
estimators under sparse first stage. The instruments are K = 40 balanced group indicators. Sample size
is N = 200. Number of simulation draws is 1000.
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(a) sparse, µ
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= 2.5,ρ = 0.5
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Figure 3: Power curves for leave-one-out AR tests with cross-fit (blue line) and naive (red dash) variance
estimators under sparse first stage. The instruments are K = 40 balanced group indicators. Sample size
is N = 200. Number of simulation draws is 1000.

the naive variance estimators is less pronounced when identification is strong. Figure 2

illustrates this by considering the same sparse design as in Figure 1, but with πK = 3 in

plot (a) and πK = 3.6 in plot (b). These settings correspond to stronger identification as

measured by µ2√
K
.

Interestingly enough, the level of endogeneity changes the shape of the power curves,

but not the power comparison between the two tests. Figure 3 reports results for the

same sparse setting as in Figure 1, but with moderate (ρ = 0.5) and strong (ρ = 0.9)

endogeneity environments.
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