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1. Introduction Let M be a subset of Rn and F : M 7→ Rn be a function. The variational inequality
problem is to find a vector x ∈ M such that

(y − x)T F (x) ≥ 0, ∀ y ∈ M. (1)

When M is convex, x is a solution to the variational inequality problem iff −F (x) belongs to the normal
cone of M at x, which we denote by NM (x). We say that a solution is nondegenerate if −F (x) belongs to
the relative interior of NM (x); and degenerate otherwise. The variational inequality problem provides a
general framework for the study of optimization and equilibrium problems. Variational inequalities have
therefore become an important tool for a range of problems in operations research, economics, finance,
and engineering (see Facchinei-Pang [4] or Harker-Pang [8]).

The indices of solutions to the variational inequalities are integer values with useful mathematical
properties defined using the axiomatic degree theory or related index theories. Calculating the indices of
solutions is important for a number of problems, including the analysis of the uniqueness and stability
of solutions.1 The indices are typically calculated for non-degenerate solutions, yet non-degeneracy is

1A classic reference for axiomatic degree theory is Ortega-Rheinboldt [12]. See Facchinei-Pang [4], Chapters 2 and 5,

Cottle-Pang-Stone [3], Chapters 6 and 7 for a treatment of degree theory and its use in analyzing the stability of solutions.

See Cottle-Pang-Stone [3], Chapter 6, Kojima-Saigal [9, 10], Gowda [5], Saigal-Simon [13], Kolstad-Mathiesen [11], Simsek-

Ozdaglar-Acemoglu [14] for its application on analyzing the solution set and establishing sufficient conditions for global

uniqueness of solutions.
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a difficult property to verify. Our main purpose in this paper is to introduce the injective normal map
(INM) property, which is weaker than existing similar conditions in the literature, and enables calculation
of local indices for non-degenerate and degenerate solutions. We then illustrate the use of this approach
by deriving a uniqueness result for variational inequalities with possibly degenerate solutions, which
generalizes the uniqueness result in our earlier work (cf. Proposition 5.1 in [14]).

In particular, we provide an index formula for the solutions to the variational inequality problem under
the conditions that the convex set M is defined by a set of inequalities that satisfy the linear independent
constraint qualification, the function F is continuously differentiable, and the solution is non-singular2

and satisfies the INM property. The INM property essentially requires the normal map to be locally
injective. This property is weaker than non-degeneracy, is relatively easy to check, and is implied by the
strong stability of the solution. Moreover, there is a class of problems in which the solutions satisfy the
INM property but not strong stability [see part (d) of Theorem 4.1 and Example 4.1].3

Our main result shows that the index formula we provide for a degenerate solution of a variational
inequality problem is equal to the index of a non-degenerate solution to a modified variational inequality
problem in which the function F is slightly perturbed in a neighborhood of the solution. In other words,
as long as the solution satisfies the INM property, the degeneracy in the solution can be removed by
locally perturbing the function F . Using our main result, we also show that our notion of index for a
(possibly degenerate) solution to the variational inequality problem is equivalent to the topological index
of the normal map at the zero corresponding to the solution, reconciling the concept of index we introduce
with the usual notion of index. Existing results then imply that the sum of indices over all solutions is
equal to 1, which allows us to establish sufficient conditions for the uniqueness of solutions.

In related works, degree theory has been used to study existence and local stability of solutions to
degenerate variational inequality problems. Ha [7] used degree theory to establish sufficient conditions
for the stability of solutions to the nonlinear complementarity problem. Stewart [15] derived an index
formula for the degenerate solutions of a linear complementarity problem, which has been used by Gowda
[5] to generalize earlier stability results and to analyze the solution set of a linear complementarity prob-
lem. Gowda-Pang [6] provided an index formula for the solutions of a mixed nonlinear complementarity
problem, and, using the equivalence of the variational inequality problem with a mixed nonlinear comple-
mentarity problem, studied the stability of the solutions to degenerate variational inequality problems.
Our notion of the index (cf. Definition 3.3) coincides with the MLCP-degree of a solution defined in [6]
when the solution is non-singular and strongly stable, but otherwise applies more generally since the INM
property is weaker than strong stability (see Example 4.1).

The rest of the paper is organized as follows. Section 3 defines our index formula for a solution which
satisfies the INM property and proves our main result. It also shows the equivalence of our index with the
topological index of the normal map. Section 4 establishes the relationships between the INM property
and strong solution stability. In particular, it shows that the INM property is implied by strong stability.
It also provides a class of problems in which the solution satisfies the INM property but is not necessarily
strongly stable. Section 5 applies our index formula and main result to provide a global index theorem
for variational inequalities with possibly degenerate solutions.

2. Notation and Preliminaries In this paper, all vectors are viewed as column vectors, and xT y
denotes the inner product of the vectors x and y. We denote the 2-norm as ‖x‖ = (xT x)1/2. For a given
finite set X, we use |X| to denote its cardinality. Given x ∈ Rn and δ > 0, B(x, δ) denotes the open ball
with radius δ centered at x. For a given differentiable function f , ∇f(x) denotes the gradient of f . If f
is twice differentiable at x, then Hf (x) denotes the Hessian of f at x. Given k ≤ n and an n× k matrix
G with full column rank, we let V(G) denote the set of all n × n − k matrices V with full column rank
such that GT V = 0 and V T V = I, i.e. the columns of any V ∈ V(G) is an orthonormal basis for the null
space of G.

2Here non-singularity is equivalent to the solution having a non-singular bordered Jacobian. In our earlier paper, [14],

we referred to such non-singular solutions as “non-degenerate” and used the term complementary critical point to describe

a non-degenerate solution defined above, which is the common usage in the VI literature. Here we make our terminology

more congruent with that in the VI literature (compare Definition 2 in [14] with Definition 3.1 in this paper).
3Strong stability requires the solutions to change in a Lipschitz continuous way in the exogenous parameters and is often

assumed in local sensitivity analysis (see Definition 4.1 and Facchinei-Pang [4], Chapter 5).
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We consider a compact region, M , defined by finitely many inequality constraints, i.e.,

M = {x ∈ Rn | gi(x) ≤ 0, i ∈ I = {1, 2, ..., |I|}} , (2)

where the gi : Rn 7→ R, i ∈ I, are convex and twice continuously differentiable. For some x ∈ M , let
I(x) = {i ∈ I | gi(x) = 0} denote the set of active constraints. We will adopt the following assumption
throughout the paper.

Assumption 2.1 The set M is non-empty and every x ∈ M satisfies the linear independence constraint
qualification, i.e., for every x ∈ M , the vectors {∇gi(x) | i ∈ I(x)} are linearly independent (see Bertsekas-
Nedic-Ozdaglar [1], Section 5.4).

We define the normal space at x as the subspace of Rn spanned by the vectors {∇gi(x) | i ∈ I(x)}.
For x ∈ M , we denote the n× |I(x)| change-of-coordinates matrix from normal coordinates to standard
coordinates as

G(x) = [∇gi(x)|i∈I(x)],

where columns ∇gi are ordered in increasing order of i. We define the tangent space at x as the null
space of G(x). Note that the columns of any V ∈ V(G(x)) constitute a basis for the tangent space.4

We next recall the notion of a normal cone which will be used in our analysis (see Clarke [2]):

Definition 2.1 Let M be a region given by (2). Let x ∈ M with I(x) 6= ∅. The normal cone of M at
x, NM (x), is defined by

NM (x) = {v ∈ Rn | v = G(x)λ, λ ∈ R|I(x)|, λ ≥ 0}.
We define the boundary of the normal cone of M at x, bd(NM (x)), by

bd(NM (x)) = NM (x)− ri(NM (x)),

where ri(NM (x)) is the relative interior of the convex set NM (x), i.e.,

ri(NM (x)) = {v ∈ Rn | v = G(v)λ, λ ∈ R|I(x)|, λ > 0}.
If I(x) = ∅, we define NM (x) = {0} and bd(NM (x)) = ∅.

3. An Index Formula for Degenerate Variational Inequalities We first define the variational
inequality problem for the region M , and introduce the notions of non-degeneracy and non-singularity.

Definition 3.1 Let M ⊂ Rn be a region given by (2), U be an open set containing M and F : U 7→ Rn

be a function.

(a) We say that x ∈ M is a solution to the variational inequality problem of F over M if Eq. (1) holds.
Since M is convex, equivalently, x is a solution iff −F (x) ∈ NM (x). We denote the set of solutions to the
variational inequality problem by VI(F, M).

(b) For x ∈ VI(F, M), we define λ(x) ≥ 0 to be the unique vector in R|I(x)| that satisfies

F (x) + G(x)λ(x) = 0. (3)

We say that x ∈ VI(F, M) is non-degenerate if −F (x) ∈ ri(NM (x)) and degenerate otherwise. In other
words, x ∈ VI(F, M) is non-degenerate iff λ(x) > 0.

(c) Let F be continuously differentiable at x ∈ VI(F, M). We define L : U 7→ Rn with

L(x) = F (x) +
∑

i∈I(x)

λi(x)∇gi(x) (4)

and
Γ(x, V ) = V T∇L(x)V (5)

4For notational convenience, when the normal space (resp. the tangent space) is zero dimensional, G(x) [resp. V ∈
V(G(x))] denotes the n× 0 dimensional empty matrix.
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M x∗

∇g1(x
∗)

∇g2(x
∗)

z∗

−F (x∗)

g1(x) ≤ 0

g2(x) ≤ 0

Figure 1: A vector x∗ is in VI(F,M) iff there exists a vector z∗ which satisfies πM (z∗) = x∗ and
F nor

M (z∗) = 0. It can be seen that z∗ is unique and is given by z∗ = x∗ − F (x∗).

where V ∈ V(G(x)) is some basis matrix for the tangent space. We say that x is non-singular iff Γ(x, V )
is a non-singular matrix for some V ∈ V(G(x)).

We next define the Euclidean projection and the normal map corresponding to a variational inequality
problem, which we need to define the INM property.

Definition 3.2 Let M ⊂ Rn be a closed convex region and F : M 7→ Rn be a function.

(a) The projection function πM : Rn 7→ M is given by

πM (y) = arg min
x∈M

‖y − x‖ (6)

(b) The normal map associated with VI(F,M), F nor
M : Rn 7→ Rn, is given by

F nor
M (z) = F (πM (z)) + z − πM (z).

Since M is closed and convex, the convex optimization problem in (6) has a unique solution, hence
the projection function is well defined. Moreover, the projection function is continuous, and hence F nor

M

is also continuous (see parts [a] and [c] of the Projection Theorem in [1]).

We need the following lemma in subsequent analysis, which shows that there is a one-to-one cor-
respondence between solutions of VI(F,M) and zeros of F nor

M (see Proposition 1.5.9 in Facchinei-Pang
[4]).

Lemma 3.1 Let M ⊂ Rn be a closed convex region and F : M 7→ Rn be a function. Then, a vector x
belongs to VI(F, M) iff there exists a vector z such that x = πM (z) and F nor

M (z) = 0. In particular, if
x ∈ VI(F,M), then z = x− F (x) satisfies πM (z) = x and F nor

M (z) = 0 (see Figure 1).

We next introduce the INM property for a solution and define the index for solutions which are
non-singular and which satisfy the INM property.

Definition 3.3 Let M be a region given by (2). Let U be an open set containing M and F : U 7→ Rn

be a function. Let x ∈ VI(F, M) and z = x− F (x) be the corresponding zero of F nor
M (cf. Lemma 3.1).

(a) The vector x has the injective normal map (INM) property iff F nor
M is injective in an open neighborhood

of z.

(b) Let x be non-singular with the INM property. We define the index of F at x as

indF (x) = sign(det(Γ(x, V )))

for some V ∈ V(G(x)), where Γ(x, V ) is defined in Eq. (5).5

5This definition is independent of the choice of V ∈ V(G(x)). Let V1, V2 ∈ V(G(x)). Since columns of both V1
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We show later in Theorem 4.1 that non-degeneracy and non-singularity imply the INM property, hence
the index formula in Definition 3.3 generalizes the one we provide for non-degenerate solutions in Simsek-
Ozdaglar-Acemoglu [14]. To state our main result, we need the following lemma, which shows that a
solution with the INM property is locally unique. The proof follows from Lemma 3.1.

Lemma 3.2 Let M be a region given by (2), U be an open set containing M , and F : U 7→ Rn be a
continuous function. Assume that x∗ ∈ VI(F, M) has the INM property. Then, there exists an open set
S containing x∗ such that S ∩ VI(F,M) = {x∗}, i.e. x∗ is a locally unique solution to the variational
inequality problem.

The following theorem is our main result, which shows that the index of a degenerate solution is equal
to the index of a non-degenerate solution of a locally perturbed variational inequality, i.e. we can remove
the degeneracy in a solution x∗ by slightly perturbing the function F in a neighborhood of x∗, provided
that x∗ has the INM property.

Theorem 3.1 Let M be a region given by (2), U be an open set containing M , and F : U 7→ Rn be a
continuous function. Let x∗ ∈ VI(F,M) be a degenerate solution which has the INM property. Let S
be an open set which contains x∗ and does not contain any other solution (cf. Lemma 3.2). Then, there
exists a function F̃ : U 7→ Rn which agrees with F except possibly on S and satisfies the following:

(a) The solution set to the variational inequality problem is unchanged, i.e., VI(F̃ , M) = VI(F,M).

(b) The vector x∗ is a non-degenerate solution of VI(F̃ , M). If x∗ is a non-singular solution of VI(F, M),
then it is also a non-singular solution of VI(F̃ , M) and satisfies the INM property; moreover, indF (x∗) =
indF̃ (x∗).

Proof. Let z∗ = x∗ − F (x∗). Since x∗ has the INM property, there exists ε > 0 small enough such
that F nor

M is injective over B(z∗, 2ε). Let Sx ⊂ S such that

x− F (x) ∈ B(z∗, ε), ∀ x ∈ Sx. (7)

In view of Assumption 2.1 and the fact that x∗ is degenerate, i.e., I(x∗) 6= ∅, it follows that the vector

v =
∑

i∈I(x∗)

∇gi(x∗)

is non-zero. Let v = v/‖v‖. Then, v ∈ ri(NM (x∗)). Let r : U 7→ R be a continuously differentiable
function which satisfies 




r(x∗) = 1,

r(u) ∈ [0, 1], if u ∈ Sx

r(u) = 0, if u /∈ Sx.

Fix some γ ∈ (0, ε] and let F̃ : U 7→ Rn be a function given by

F̃ (u) = F (u)− γr(u)v,

(see Figure 2).

We claim that the function F̃ satisfies the claims of the lemma. First note that x∗ ∈ VI(F̃ ,M),
i.e. x∗ is also a solution to the perturbed variational inequality. Assume, to get a contradiction, that
(a) does not hold. Since F̃ and F differ only on Sx and since VI(F,M) ∩ Sx = {x∗}, there exists
x′ ∈ VI(F̃ , M) ∩ Sx − {x∗}. Let

z′ = x′ − F̃ (x′) = x′ − F (x′) + γr(x′)v. (8)

By (7), we have
x′ − F (x′) ∈ B(z∗, ε). (9)

Moreover, by the definition of r(·) and the fact that ‖v‖ = 1, we have

‖γr(x′)v‖ ≤ ε, (10)

and V2 are bases for the tangent space, there exist a change of coordinates matrix C12 such that V1C12 = V2. Since

V T
1 V1 = V T

2 V2 = I, we have CT
12C12 = I, hence C12 is orthonormal and det(C12) = 1. Then, Γ(x, V1) = CT

12Γ(x, V2)C12

implies det(Γ(x, V1)) = det(Γ(x, V2)), showing that the index is well defined.
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M x∗

∇g1(x
∗)

∇g2(x
∗)

u

−F̃ (x∗)

−F (x∗)
g1(x) ≤ 0

g2(x) ≤ 0

S
x

γr(u)v

γr(x∗)v

Figure 2: Functions F and F̃ agree everywhere except the open set Sx, over which F̃ (x) = F (x)−γr(x)v.
Note that x∗ is a degenerate solution of VI(F, M) but a non-degenerate solution of VI(F̃ , M).

hence z′ ∈ B(z∗, 2ε) by Eqs. (8)-(10) and the triangle inequality. Using Lemma 3.1, we have F̃ nor
M (z′) = 0

and πM (z′) = x′, which yields

F nor
M (z′) = F̃ nor

M (z′) + γr(πM (z′))v
= γr(x′)v. (11)

Let z = z∗ + γr(x′)v. Since ‖γr(x′)v‖ ≤ ε, we have z ∈ B(z∗, 2ε). Moreover, since γr(x′)v ∈ NM (x∗)
and z∗ − x∗ = −F (x∗) ∈ NM (x∗), we have

z − x∗ = z∗ − x∗ + γr(x′)v ∈ NM (x∗)

and hence πM (z) = x∗. Then,

F nor
M (z) = F (πM (z)) + z − πM (z)

= F (x∗) + z∗ + γr(x′)v − x∗

= γr(x′)v, (12)

where the last equality follows since z∗ = x∗ − F (x∗).

Since z′, z ∈ B(z∗, 2ε) and F nor
M is injective over B(z∗, 2ε), Eqs. (11) and (12) imply that z′ = z. But

then,
x′ = πM (z′) = πM (z) = x∗,

yielding a contradiction, proving part (a).

To prove part (b), note that −F (x∗) ∈ NM (x∗) and γr(x∗)v ∈ ri(NM (x∗)). Then we have

−F̃ (x∗) = γr(x∗)v − F (x∗) ∈ ri(NM (x∗)),

hence, x∗ is a non-degenerate solution in VI(F̃ , M). We further have, V T v = 0 since v ∈ NM (x∗). Then,
using ∇F̃ (x∗) = ∇F (x∗) + γv∇r(x∗)T , we have

ΓF̃ (x∗, V ) = V T


∇F̃ (x∗) +

∑

i∈I(x∗)

λi(x∗)Hgi(x
∗)


V

= V T


∇F (x∗) +

∑

i∈I(x∗)

λi(x∗)Hgi(x
∗)


V + γV T v∇r(x∗)T V

= ΓF (x∗, V ).

Hence, if x∗ is non-singular as a solution of VI(F,M), then it is non-singular as a solution of VI(F̃ , M)
and thus also satisfies the INM property by Theorem 4.1. Moreover,

indF̃ (x∗) = sign(det(ΓF̃ (x∗))) = sign(det(ΓF (x∗))) = indF (x∗)

completing the proof of part (b). Q.E.D.
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We next show that our notion of the index of a solution of a variational inequality problem is equivalent
to the topological index of the normal map at the corresponding zero. For a given set S, let bd(S)
denote the boundary of S and cl(S) denote the closure of S. Let S ⊂ Rn be a bounded open set and
f : cl(S) 7→ Rn be a continuous function. For a vector p /∈ f(bd(S)), the topological degree of f at
p relative to S is an axiomatically defined integer, which we denote by deg(f, S, p) (see Section 2.1 of
Facchinei-Pang [4] or Chapter 6 of Ortega-Rheinboldt [24]). The degree provides information regarding
the solutions of the equation f(x) = p over the set S. Consider a vector x ∈ S that is an isolated solution
to the equation f(x) = 0, which we call an isolated zero of f . It is well known that for all sufficiently
small neighborhoods Sx of x, deg(f, Sx, 0) is the same. This common degree is called the topological index
of f at x, which we denote by index(f, x). The following theorem establishes that our definition of the
index of a solution to the variational inequality problem is equal to the topological index of the normal
map at the corresponding zero.6

Theorem 3.2 Let M be a region given by (2), U be an open set containing M , and F : U 7→ Rn be a
continuous function. Let x∗ ∈ VI(F,M) be a solution which is non-singular and has the INM property.
Let z∗ = x∗ − F (x∗). Then,

indF (x∗) = index(F nor
M , z∗).

Proof. Let ε > 0 be the constant and Sx be the neighborhood of x∗ defined in the proof of Theorem
3.1. Let ε′ ∈ (0, ε) be sufficiently small that π(z) ∈ Sx for all z ∈ cl(B(z∗, ε′)). Let Sz = B(z∗, ε′). We
index the perturbed function used in the proof by γ, i.e. F̃γ(u) = F (u) − γr(u)v for γ ∈ [0, ε] and we
define F̃ = F̃ε′/2. Let z∗γ = z∗ + γr(x∗)v and z̃∗ = z∗ε′/2. Note that F̃0 = F and z∗0 = z∗.

We claim that, for γ ∈ [0, ε′/2], z∗γ is the only zero of (F̃γ)nor
M over cl(Sz). The vector z∗γ is a zero of

(F̃γ)nor
M by construction. Suppose (F̃γ)nor

M (z′) = 0 where z′ ∈ cl(Sz). Since π(z′) ∈ Sx and since, by the
proof of Theorem 3.1, x∗ is the only solution of VI(F̃γ ,M) over Sx, it must be the case that π(z′) = x∗.
But then, z′ = x∗ − F̃γ(x∗) = z∗γ , hence z∗γ is the only zero over cl(Sz). Then,

index
(
(F̃γ)nor

M , z∗γ
)

= deg
(
(F̃γ)nor

M , Sz, 0
)

, (13)

by definition of the topological index. Since for any γ ∈ [0, ε′/2], (F̃γ)nor
M does not have a zero on the

boundary of cl(Sz) and since (F̃γ)nor
M defines a homotopy between F nor

M and F̃ nor
M , it follows by a standard

property of the topological degree (cf. Proposition 2.1.3 in Facchinei-Pang [4]) that

deg(F nor
M , Sz, 0) = deg(F̃ nor

M , Sz, 0),

which, by Eq. (13) implies that

index(F nor
M , z∗) = index(F̃ nor

M , z̃∗). (14)

By Theorem 3.1, x∗ is a non-degenerate solution of F̃ . Then, Theorem 4.1 in Simsek-Ozdaglar-Acemoglu
[14] implies that F̃ nor

M is continuously differentiable at z̃∗ and the sign of the determinant of the Jacobian
satisfies, in the notation of this paper,

sign(det(∇F̃ nor
M (z̃∗))) = sign(det(ΓF̃ (x∗, V ))) = indF̃ (x∗) = indF (x∗), (15)

where the last equality follows by Theorem 3.1. Moreover, since F̃ nor
M is continuously differentiable at z∗,

the topological index satisfies

index(F̃ nor
M , z̃∗) = sign(det(∇F̃ nor

M (z̃∗))). (16)

The result follows by Eqs. (14)-(16). Q.E.D.

4. The INM Property and the Strong Solution Stability for the Variational Inequality
Problem In this section, we investigate the relationship of the INM property with similar conditions
studied in the literature, in particular, strong stability. For a given function F : U 7→ Rn, a given set S,
and a scalar ε, let B(F, ε, S) denote the set of continuous functions G : U 7→ Rn such that

sup
y∈S

‖G(y)− F (y)‖ ≤ ε.

The stability of the solution to a variational inequality is defined as follows (cf. Facchinei-Pang [4],
Definition 5.3.1).

6We thank an anonymous referee for pointing out this result.
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Definition 4.1 Let M be a region given by (2), U be an open set containing M and F : U 7→ Rn be
a function. Let x be a solution vector in VI(F,M). The solution x is strongly stable if for every open
neighborhood N of x such that N ⊆ U and VI(F, M) ∩N = {x}, there exists two positive scalars c and
ε such that, for any two functions G,H ∈ B(F, ε, M ∩ clN ),

VI(G,M) ∩N 6= ∅, VI(H, M) ∩N 6= ∅ (17)

and for every x′ ∈ VI(G,M) ∩N and x′′ ∈ VI(H, M) ∩N ,

‖x′ − x′′‖ ≤ c ‖eG(x′)− eH(x′′)‖ , (18)

where eG(x) = F (x)−G(x) and eH(x) = F (x)−H(x) respectively denote the error functions for G and
H. In other words, a solution is strongly stable if there exists nearby solutions for slightly perturbed
variational inequalities [cf. Eq. (17)] and the nearby solutions satisfy a Lipschitzian property with respect
to the amount of perturbation [cf. Eq. (18)].

The following theorem provides conditions which imply the INM property. In particular, parts (a)
and (b) show that strongly stable solutions satisfy the INM property and characterize strong stability
with a condition on the Jacobian of F which is easier to check. Part (c) shows that non-degeneracy
and non-singularity imply strong stability (and hence the INM property), thus our index notion in this
paper generalizes the definition of index in Simsek-Ozdaglar-Acemoglu [14]. Part (d) provides a set of
conditions which imply the INM property but not necessarily strong stability, demonstrating that the
INM property holds in a class of problems in which solutions are not strongly stable.

We need the following notation to state the theorem. For some x ∈ M , let the index sets α(x) and
β(x) be given by

α(x) = {i ∈ I | λi(x) > 0 = gi(x)}, (19)
β(x) = {i ∈ I | λi(x) = 0 = gi(x)}, (20)

where λ(x) is defined in Eq. (3). Let B(x) be the set of matrices defined by

B(x) =
{

B | B = [∇gi(x)]i∈J , α(x) ⊆ J ⊆ α(x) ∪ β(x)
}

.

Theorem 4.1 Let M be a region given by (2), U be an open set containing M , and F : U 7→ Rn be a
continuous function. Let x∗ ∈ VI(F, M) and F be continuously differentiable at x∗.

(a) If x∗ is strongly stable, then it satisfies the INM property.

(b) The solution x∗ is strongly stable iff all matrices of the form

V T
B ∇L(x)VB (21)

have the same non-zero determinantal sign for B ∈ B(x) and VB ∈ V(B), where L(x) is defined in Eq.
(4).

(c) If x∗ is non-degenerate and non-singular, then it is strongly stable.

(d) Let S be a neighborhood of x∗ such that F is continuously differentiable at every x ∈ S ∩ M and
∇F (x) is positive definite for every x ∈ S ∩M − {x∗}. Then x∗ satisfies the INM property.

Proof. Let x∗ be a strongly stable solution and let z∗ = x∗−F (x∗). By Theorem 5.3.24 in Facchinei-
Pang [4], F nor

M is a locally Lipschitz homeomorphism at z∗. In particular, it is locally injective and x∗

satisfies the INM property, proving part (a).

To prove part (b), we will show that, given B ∈ B(x) and VB ∈ V(B), the matrix V T
B ∇L(x)VB has

the same determinantal sign as

∇L(x)
(
I −B(BT B)−1BT

)
+ B(BT B)−1BT . (22)

The result then follows from Theorem 5.3.24 and Proposition 4.2.7 in [4]. Let B(BT B)−1BT = PB for
ease of notation. Note that [VB B] is a non-singular n× n matrix by choice of VB . Then, the matrix in
(22) has the same determinantal sign as

[VB B]T [∇L(x)(I − PB) + PB ] [VB B].
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Since V T
B B = 0, we have V T

B PB = 0 and PBVB = 0. Using these equations and BT (I − PB) = 0, the
previous expression simplifies to [

V T
B ∇L(x)VB 0

S BT B

]

for some matrix S. Since B ∈ B(x), B has full rank and det(BT B) > 0. Therefore, the sign of the
determinant of the previous matrix is equal to the sign of the determinant of V T

B ∇L(x)VB , completing
the proof of part (b).

To prove part (c), note that β(x∗) = ∅ since x∗ is non-degenerate. Hence, B(x∗) has a unique element,
i.e. B(x∗) = {G(x∗)}. Since x∗ is non-singular, V T∇L(x∗)V has the same non-zero determinantal sign
for all V ∈ V(G(x∗)) (which is equal to indF (x∗)). The result follows from part (b).

To prove part (d), let S′ ⊂ S be a convex neighborhood of x∗. Let z∗ = x∗ − F (x∗) and let Sz be
a neighborhood of z∗ such that π(z) ∈ S′ for all z ∈ Sz. Suppose x∗ does not have the INM property.
Then, there exists z1, z2 ∈ Sz such that z1 6= z2 and

F nor
M (z1) = F nor

M (z2). (23)

Since F nor
M (z) = F (π(z)) + z−π(z), Eq. (23) implies π(z1) 6= π(z2). Let v = π(z2)−π(z1). Note that by

convexity of the region M , v (resp. −v) is an interior direction at π(z1) (resp. π(z2)), hence

(z1 − π(z1))T v ≤ 0, and (z2 − π(z2))T v ≥ 0. (24)

For t ∈ [0, 1], let l(t) = π(z1) + tv parameterize the line segment connecting π(z1) and π(z2). Consider
the real valued function Fv(x) = F (x)T v. Since S′ ∩M is convex, l(t) lies in S′ ∩M ⊂ S ∩M for all
t ∈ [0, 1], hence Fv(l(t)) is continuously differentiable at each t ∈ [0, 1], which implies

F (π(z2))T v = Fv(π(z2)) = F (π(z1))T v +
∫ 1

0

vT∇F (l(t))T vdt

> F (π(z1))T v

= F (π(z2))T v + (z2 − π(z2))T v − (z1 − π(z1))T v

≥ F (π(z2))T v,

where the first inequality follows from the fact that ∇F (l(t)) is positive definite for every t ∈ [0, 1] (except
possibly one point if x∗ = l(t′) for some t′), the last equality follows by Eq. (23) and the last inequality
follows from Eq. (24). This yields a contradiction, hence x∗ satisfies the INM property, proving part (d).
Q.E.D.

The following example illustrates that a solution x∗ which satisfies the assumptions of part (d) of
Theorem 4.1 is not necessarily strongly stable. It also demonstrates that the INM property can be useful
in establishing the index of a solution that is degenerate and not strongly stable.

Example 4.1 Let M be a region given by (2) and U be an open set containing M . Let x∗ ∈ M be
such that I(x∗) 6= 0, i.e. at least one constraint is binding at x∗. Let E : U 7→ Rn be a continuously
differentiable function such that E(x∗) = 0 and ∇E(x∗) is positive definite. Consider the function
F : U 7→ Rn given by

F (x) = ‖E(x)‖2E(x).

Then, x∗ ∈ VI(F, M) is a degenerate solution. Moreover, there exists a sufficiently small neighborhood
S of x∗ such that E is a homeomorphism on S and hence E(x) 6= 0 for x ∈ S − {x∗}. Then, ∇F (x) =
2E(x)E(x)T + ‖E(x)‖2∇E(x) is positive definite for x ∈ S − {x∗}. Hence, F satisfies the assumptions
of part (d) of Theorem 4.1 and x∗ has the INM property. Since F (x∗) = 0 and M satisfies the LICQ
property, we have λ(x∗) = 0 (cf. Definition 3.1), which implies that α(x∗) = ∅ [cf. Eq. (19)] and that
the empty matrix [ ] is in B(x∗). Moreover, ∇L(x∗) = ∇F (x∗) = 0, hence Eq. (21) fails for B = [ ]
and VB = I. Thus, x∗ is not strongly stable. Finally, if I(x∗) = n, i.e. the tangent space at x∗ is zero
dimensional, then x∗ is non-singular and has index 1, i.e. our index formula applies despite the fact that
x∗ is degenerate and not strongly stable.
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5. A Global Index Theorem for Variational Inequalities In this section, we provide a global
index theorem which is a generalization of Theorem 3.1 in [14] to variational inequalities with possibly
degenerate solutions.

Theorem 5.1 Let M be a region given by (2). Let U be an open set containing M and F : U 7→ Rn be
a continuous function which is continuously differentiable at every x ∈ VI(F, M). If every x ∈ VI(F,M)
is non-singular and has the INM property, then VI(F, M) has a finite number of elements. Moreover:

∑

x∈VI(F,M)

indF (x) = 1. (25)

Proof of Theorem 5.1. Using continuity of F and π, it can be seen that VI(F, M) is a compact set.
This further implies that VI(F, M) has a finite number of elements since each x ∈ VI(F,M) is an isolated
solution by Lemma 3.2. Let D(F,M) ⊂ VI(F, M) denote the set of degenerate solutions. Let F 0 = F

and, for any j ≥ 0 such that D(F j ,M) 6= ∅, define F j+1 = F̃ j where F̃ j is the perturbed function which
satisfies the claims of Theorem 3.1 for the function F j and an arbitrary x∗ ∈ D(F j , M). By Theorem
3.1,

|D(F j+1, M)| = |D(F j , M)| − 1.

Since VI(F, M) has finitely many elements, D(F, M) has finitely many elements, which implies that there
exists an integer m ≥ 0 such that D(Fm,M) = ∅. We let G = Fm. Then every vector x in VI(G,M)
is non-degenerate and non-singular, moreover, indG(x) = indF (x). Hence Theorem 3.1 in [14] applies to
(G,M) and we have

∑
x∈VI(G,M) indG(x) = 1, which further implies Eq. (25). Q.E.D.

Remark 5.1 Combining Theorem 5.1 and part (b) of Theorem 4.1 provides conditions on the Jacobian
of F which are easy to check and which guarantee uniqueness of solutions to the variational inequality
problem. In particular, assume that for every x ∈ VI(F, M),

det(V T
B ∇L(x)VB) > 0, (26)

for all B ∈ B(x) and VB ∈ V(B). Then, every x ∈ VI(F, M) is non-singular, satisfies the INM property,
and has index equal to 1. Hence Theorem 5.1 implies that VI(F,M) has a unique solution. For the
(bounded) mixed complementarity problem, which is the variational inequality problem in which the re-
gion M is a bounded rectangle, the sufficient condition in Eq. (26) is equivalent to checking that certain
principal minors of the Jacobian of F are positive at each solution. For the nonlinear complementarity
problem which is the variational inequality problem in which the region M is the non-negative orthant,
an appropriate boundary condition (which allows us to cast the problem as a bounded mixed comple-
mentarity problem) and the condition that certain principal minors of the Jacobian F are positive at
each solution imply uniqueness. For the linear complementarity problem, which is a special case of the
nonlinear complementarity problem in which F (x) = Ax for some matrix A, a sufficient condition for
uniqueness is that the matrix A has positive principal minors (i.e. A is a P-matrix).

Acknowledgments. The authors thank Jong-Shi Pang and an anonymous referee for valuable com-
ments.

References

[1] D. Bertsekas, A. Nedic, and A. Ozdaglar, Convex analysis and optimization, Athena Scientific, 2003.

[2] F. H. Clarke, Optimization and nonsmooth analysis, Wiley, New York, 2003.

[3] R. W. Cottle, J.-S. Pang, and R. E. Stone, The linear complementarity problem, Academic Press,
Boston, 1992.

[4] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and complementarity prob-
lems, vol. 1, Springer-Verlag.

[5] M. S. Gowda, Applications of degree theory to linear complementarity problems, Mathematics of
Operations Research 18 (1993), no. 4, 868–879.



Simsek, Ozdaglar, Acemoglu: Local Indices for Degenerate Variational Inequalities
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS 11

[6] M. S. Gowda and J.-S. Pang, Stability analysis of variational inequalities and nonlinear complemen-
tarity problems, via the mixed linear complementarity problem and degree theory, Mathematics of
Operations Research 19 (1994), no. 4, 831–879.

[7] C. D. Ha, Application of degree theory in stability of the complementarity problem, Mathematics of
Operations Research 12 (1987), no. 2, 368–376.

[8] P. T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear complementarity
problems: A survey of theory, algorithms, and applications, Mathematical Programming 48 (1990),
161–220.

[9] M. Kojima and R. Saigal, On the number of solutions to a class of linear complementarity problems,
Mathematical Programming 17 (1979), 136–139.

[10] , On the number of solutions to a class of complementarity problems, Mathematical Program-
ming 21 (1981), 190–203.

[11] C. D. Kolstad and L. Mathiesen, Necessary and sufficient conditions for uniqueness of a cournot
equilibrium, Review of Economic Studies 24 (1987), no. 4, 681–690.

[12] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables,
Academic Press, 1970.

[13] R. Saigal and C. Simon, Generic properties of the complementarity problem, Mathematical Program-
ming 4 (1973), 324–335.

[14] A. Simsek, A. Ozdaglar, and D. Acemoglu, Application of degree theory in stability of the comple-
mentarity problem, Mathematics of Operations Research 12 (1987), no. 2, 368–376.

[15] D. E. Stewart, An index formula for degenerate lcps, Linear Algebra and Its Applications 191 (1993),
41–51.


