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Abstract—The problem of when to control for continuous or high-
dimensional discrete covariate vectors arises in both experimental and
observational studies. Large-cell asymptotic arguments suggest that full
control for covariates or stratification variables is always efficient, even if
treatment is assigned independently of covariates or strata. Here, we
approximate the behavior of different estimators using a panel-data-type
asymptotic sequence with fixed cell sizes and the number of cells increas-
ing to infinity. Exact calculations in simple examples and Monte Carlo
evidence suggest this generates a substantially improved approximation to
actual finite-sample distributions. Under this sequence, full control for
covariates is dominated by propensity-score matching when cell sizes are
small, the explanatory power of the covariates conditional on the propen-
sity score is low, and/or the probability of treatment is close to 0 or 1. Our
panel-asymptotic framework also provides an explanation for why
propensity-score matching can dominate covariate matching even when
there are no empty cells. Finally, we introduce a random-effects estimator
that provides finite-sample efficiency gains over both covariate matching
and propensity-score matching.

I. Introduction

EVALUATION research typically begins with treatment-
control comparisons. For example, estimates of the

effect of training programs on earnings compare the earn-
ings of those who receive training with a candidate control
sample of untrained people. Because trainees are not chosen
randomly, candidate control samples may not provide a very
accurate picture of what would have happened to the train-
ees had they not been trained. This motivates attempts to
reduce and perhaps even eliminate bias by controlling for
covariates. Examples of econometric training program eval-
uations in this spirit include Ashenfelter and Card (1985),
Card and Sullivan (1988), Dehejia and Wahba (1999), and
Heckman, Ichimura, and Todd (1997), all of which estimate
the effects of training programs on earnings or employment
after conditioning on an array of personal characteristics,
including earnings and/or employment histories. Similarly,
Angrist (1998) estimates the effect of voluntary service on
the earnings of military applicants by conditioning on the
personal characteristics used by military recruiters to select
soldiers.

A problem that often arises in studies of this type is how
to control for continuously distributed or high-dimensional
covariates. In many training evaluations, for example, the
sample sizes are small, there are many covariates, and some
of the covariates, such as past earnings, are continuous. This
leads to small or missing covariate cells. A number of
variations on exact covariate-matching schemes have been

developed to deal with situations like this. These typically
involve approximate matching or nonparametric smoothing
of some kind.1 A practical problem with strategies of this
type is that even though different estimators may have very
different properties, the existing theory provides little in the
way of specific guidelines as to how to choose between
them. Moreover, the (finite-sample) bias from approximate
matching can be substantial (Rosenbaum & Rubin, 1985a).

An alternative strategy to control for covariates begins
with Rosenbaum and Rubin’s (1983) observation that bias
can be eliminated by controlling for a scalar-valued function
of the covariates, the propensity score. For a formal state-
ment of this result, denote the covariate vector for personi
by Xi and the treatment status byDi, and define the condi-
tional probability of treatment, or propensity score, as
p(Xi) � Pr[Di � 1�Xi]. Let Y0i denote the potential or
counterfactual earnings of a trainee if he or she had not been
trained, and letY1i denote potential earnings as a trainee.
The assumption that motivates covariate matching is that
conditioning onXi eliminates selection bias, that is,

Y0i, Y1i �O Di�Xi. (1)

Rosenbaum and Rubin’s propensity-score theorem states
that if equation (1) is true, then it must also be true that
conditioning onp(Xi) eliminates selection bias, that is,

Y0i, Y1i �O Di�p�Xi�. (2)

The value of propensity-score matching is in the dimension
reduction generated by regions in the support ofX wherep(Xi)
is constant butE[Y1i�Xi] and E[Y0i�Xi] are not constant. In a
simple randomized trial, for example,p(Xi) is constant, so there
is no need to control for covariates to eliminate bias.

Propensity-score matching in empirical work is often
based on an estimated propensity score. In models with
discrete covariates and no parametric assumptions or re-
strictions on the score, matching with an estimated propen-
sity score is the same as covariate matching (Hirano, Im-
bens, & Ridder, 1999). A distinction between propensity-
score matching and covariate matching arises in practice,
however, because applied researchers have more informa-
tion or are willing to make stronger assumptions about
treatment assignment than about the relationship between
covariates and outcomes. A number of empirical examples
using the propensity score suggest that this approach works
reasonably well (see, for example, Rosenbaum & Rubin,
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1984, 1985b; Dehejia & Wahba, 1999; Imbens, Rubin, &
Sacerdote, 2001; Heckman, Ichimura, & Todd, 1998).

This evidence of practical utility notwithstanding, from a
theoretical point of view, propensity-score-based estimators
present a puzzle when sampling variance is a consideration
as well as bias. Hahn (1998) shows that the propensity score
is ancillary for estimates of average treatment effects, in the
sense that knowledge of the propensity score does not lower
the semiparametric efficiency bound for this parameter.
Moreover, covariate matching is asymptotically efficient,
that is, attains the semiparametric efficiency bound, whereas
propensity-score matching does not. Finally, these theoret-
ical results include the case where exact matching is not
feasible, as with continuously distributed covariates, and the
relevant conditional mean functions must be approximated.
In short, conventional asymptotic arguments would appear
to offer no justification for anything other than full control
for covariates in estimation of average treatment effects.2

The first purpose of this paper is to develop an analytical
framework and present some examples to substantiate the
intuition that, because covariate cells may be small or
empty, in finite samples there is a cost to covariate match-
ing, even if the covariates are discrete and exact matching is
feasible. Our framework suggests that exact covariate
matching with discrete covariates is, in many important
cases, less efficient than propensity-score matching. These
results come from an analogy to well-known finite-sample
results for random-effects panel data models with nonsto-
chastic regressors. In addition to providing some intuition
for the finite-sample behavior of alternative estimators, the
panel framework also provides an explanation for why
propensity-score matching can dominate covariate matching
even when there are no empty cells.

A second goal of our paper is to provide specific guide-
lines for the relative finite-sample performance of covariate
matching and propensity-score matching estimators. These
results are based on an alternative asymptotic approximation
where cell sizes are fixed but the number of cells becomes
infinitely large. Because this approximation is similar to the
large-cross-section, small-time-series asymptotic approxi-
mation commonly used for panel models, we call this panel
asymptotics. The panel-asymptotic sequence is similar to
sequences used by Bekker (1994), Bekker and van der Ploeg
(1996), and Angrist and Krueger (1995) to analyze the
finite-sample behavior of instrumental variables estimators.
Our panel-asymptotic analysis shows that propensity-score
matching is more efficient than covariate matching when
cell sizes are small, the explanatory value of the covariates
is low conditional on the propensity score, and/or the
probability of treatment is close to 0 or 1.

The paper is organized as follows. In the next section, we
outline the basic setup and compare the finite-sample be-
havior of two types of matching estimators in a simple

model. Section III develops the panel-data version of the
treatment effects problem, and introduces an alternative
asymptotic sequence based on increasing the number of
cells of fixed size. That section also discusses the possibility
of producing a more efficient random-effects estimator from
a linear combination of covariate-matching and propensity-
score-matching estimators. Section IV discusses the likely
generality of these results and presents some Monte Carlo
evidence which suggests that the new asymptotic sequence
does indeed provide an accurate description of the relative
finite-sample performance of matching and propensity-
score estimators. Finally, Section V concludes and suggests
some directions for further work. Technical derivations are
presented in an appendix.

II. Notation and Motivation

The setup is as follows. We first presume that condition-
ing on covariates eliminates selection bias:

ASSUMPTION 1: Treatment is independent of potential
outcomes (ignorable), that is, (Y0i, Y1i) �O Di�Xi.

Also, the distribution of regressors is characterized by:

ASSUMPTION 2: Xi is multinomial and takes K possible
values, say x(1), . . . , x(K), with probability 1

K
.

This is a modeling device that allows us to change the
number of cells. We believe this is not really restrictive, for
x(1), . . . , x(K) can be anything. In particular, the multino-
mial assumption allows for a discrete approximation to any
distribution for large K.3

The treatment-assignment mechanism is described next:

ASSUMPTION 3: The propensity score Pr[Di � 1�Xi] is
known to be fixed at �.

The motivation for this is that in models with discrete
covariates, differences between covariate matching and
propensity-score matching arise from the manner in
which the covariates are handled when the propensity
score is constant. A fixed propensity score allows us to
capture this idea very simply. Inasmuch as observations
are assumed to be independent across cells, the question
of efficiency in a setting with a variable propensity score
is also addressed by looking at a single score value.
Finally, the assumption of a fixed score reflects our view
that the imposition of restrictions on the propensity score
lies at the heart of the propensity-score–covariate-
matching distinction.4

The two most commonly discussed parameters in evalu-
ation studies are the effect of treatment on the treated

2 Robins and Ritov (1997) discuss a related problem.

3 Chamberlain (1987) used a similar strategy to analyze a semiparamet-
ric model.

4 As a practical matter, empirical work relies on an estimated propensity
score, which may lead to errors in propensity-score matching. See Abadie
and Imbens (2002) for an approach to correcting the bias induced by
imperfect matching.
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E[Y1i � Y0i�Di � 1], and the average treatment effect
E[Y1i � Y0i]. Because Pr[Di � 1�Xi] � � in our setup,
E[Y1i � Y0i�Di � 1] � E[Y1i � Y0i]. This equivalence
allows us to sidestep the fact that knowledge of the propen-
sity score can reduce the asymptotic variance bound for
E[Y1i � Y0i�Di � 1]. The propensity score weights covariate-
specific comparisons underlying the effect-on-the-treated
parameter, though the efficient estimator for this parameter
still involves covariate matching and not matching on the
propensity score (Hahn, 1998, Proposition 7). The fact that
the propensity score is used for more than matching in
estimates of effects on the treated affects the statistical
propensities of alternative estimators (see, for example,
Hirano, Imbens, & Ridder, 1999). We therefore leave the
more complicated question of efficient estimation of effects
on the treated for future work.

In most of the paper, we model cell size as fixed, so the
sampling framework stratifies on Xi:

ASSUMPTION 2�: Each cell size is equal to M. We adopt
the convention that the first n1k individuals are treated in
each cell, so that n1k � Binomial(M, �).

Stratified sampling is empirically relevant for some stud-
ies (for example, Card & Sullivan, 1988; Angrist, 1998), but
we adopt this assumption for technical reasons: it simplifies
the arguments and allows us to focus on the randomness in
treatment status and outcomes within covariate cells. It
should also be noted that the ignorability assumption makes
Xi ancillary, so little would seem to be lost from stratifica-
tion in this setting. Later, we substantiate this claim in a
Monte Carlo comparison using random sampling. Although
these assumptions are restrictive and highly stylized, we
show below that allowing the number of fixed-size cells to
approach infinity generates an accurate characterization of
the relative finite-sample properties of the estimators we
study.

For the next step, the following notation is useful:

Definition 1. Let y0ki and y1ki denote potential outcomes
under control and treatment for the ith individual in the kth

cell. Let y0k and y1k denote the expected potential outcomes
under control and under treatment in the kth cell. Also, let
	0k

2 and 	1k
2 denote the conditional variance of y0ki and y1ki

in the kth cell. Finally, let 
k � y0k and �k � y1k � y0k.
We now define the two estimators considered in this

paper. The covariate matching estimator is

bc �
1

¥k�1
K 1�1 � n1k � M � 1�

� �
k�1

K �1�1 � n1k � M � 1�

� � 1

n1k
�
i�1

n1k

y1ki �
1

n0k
�

i�n1k
1

M

y0ki��.

Because the propensity score is constant, matching on it is
equivalent to ignoring covariates. The propensity-score
matching estimator is therefore

bp � � 1

¥k�1
K 1�1 � n1k�n1k

� �
k�1

K �1�1 � n1k�n1k� 1

n1k
�
i�1

n1k

y1ki���
� � 1

¥k�1
K 1�n1k � M � 1�n0k

� �
k�1

K �1�n1k � M � 1�n0k� 1

n0k
�

i�n1k
1

M

y0ki���.

Note that both estimators are unbiased, and that there is
some probability that matching on covariates and/or the
propensity score cannot be implemented. For example, if all
cells consist of only treated individuals, then matching on
either covariates or the propensity score is infeasible.

A simple example can be used to illustrate important
differences in the finite-sample behavior of bc and bp.
Assume that:

1. K � 2.
2. The treatment effect is constant and equal to �0, that

is, y0ki � 
k 
 εki and y1ki � �0 
 
k 
 εki.
3. E[εki

2 ] � 1.

The analysis of this example is facilitated by distinguish-
ing three cases. First, both cells may contain treated and
control observations. Second, one of the two cells may
consist of treated or control observations only. Third, each
cell might consist of treated or control observations only, in
which case bc cannot be computed. We therefore focus on
variance comparisons conditional on the event that bc exists.
The efficiency of bp relative to bc is defined to be �Var(bc)/
�Var(bp), where Var(bc) and Var(bp) denote the condi-
tional variance of bc and bp given the event that both are
computable. It is also useful to define

Var�
k� �
1

2
�

k�1

2

�
k � 
� �2, where 
� �
1

2
�

k�1

2


k. (3)

Note that the R2 in the theoretical regression of the out-
comes on covariates (cell indicators) can be written Var(
k)/
[Var(
k) 
 1].

We tabulated the relative efficiency of bp for various (�,
M, R2) combinations. Tables 1 and 2 report the relative
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efficiency of bp measured by the ratio �Var(bc)/�Var(bp)
for � � 0.1 and 0.5. This is an exact finite-sample
calculation, the details of which are discussed in the
Appendix. The tables show that the relative efficiency of
bp increases as R2 falls, M falls, or � falls, and that bp is
actually more efficient than bc for some (�, M, R2)
combinations. These exact calculations suggest that con-
ventional (large-cell) asymptotic approximations may
provide a poor guide to the relative precision of these
estimators in some applications.

We can also ask whether the relative efficiency of bp for
some (�, M, R2) combinations is solely a consequence of
the fact that bp typically uses more observations than bc.
Consider the relative efficiency in case 1, where both
estimators use the same number of observations. Any dif-
ference in variance in this case can therefore be attributed to
the efficiency with which each estimator processes informa-
tion. When M � 2, bp � bc in case 1, so there is obviously
no efficiency difference. But with M � 3 and � � 0.5, bp

is moderately more efficient than bc for R2 � .16. Thus, the
relative finite-sample efficiency of bp arises—at least in this
example—for reasons beyond the fact that bp uses more
observations.

III. Panel Characterization of the
Treatment-Effects Model

The panel analog of the model in the previous section
allows us to draw on the econometric literature dealing with
problems of this type. Examples include Wallace and Hus-
sain (1969), Maddala (1971), Chamberlain and Griliches
(1975), Mundlak (1978), Hausman and Taylor (1981), and
Chamberlain (1984). We argue that covariate matching is a
type of “within” estimator, while propensity-score matching
is a “pooled” estimator. Standard results for random-effects
panel models with nonstochastic regressors suggest that
neither within estimators or pooled estimators are efficient,
and that their precision cannot be ranked unambiguously.

A. Random-Coefficients Notation

The panel equivalent of the evaluation problem looks like
this. Let Dki denote a binary treatment indicator, and write the
observed yki as

yki � Dkiy1ki � �1 � Dki�y0ki � y0ki � �y1ki � y0ki�Dki

� 
k � �kDki � ��y0ki � 
k� � �y1ki � y0ki � �k�Dki�.

TABLE 1.—ACTUAL RELATIVE PERFORMANCE [SE(bc)/SE(bp)] OF bp IN A TWO-CELL EXAMPLE (� � 0.1)

Cell Size
(M)

Covariate R2

.40 .35 .30 .25 .20 .15 .10 .05 .00

2 0.90 0.94 0.98 1.02 1.06 1.10 1.13 1.17 1.21
3 0.84 0.88 0.92 0.95 0.99 1.02 1.06 1.09 1.13
4 0.82 0.85 0.89 0.92 0.96 0.99 1.02 1.06 1.09
5 0.81 0.84 0.88 0.91 0.94 0.97 1.01 1.04 1.07
6 0.80 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.05
7 0.80 0.83 0.86 0.90 0.93 0.96 0.99 1.02 1.05
8 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
9 0.79 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04

10 0.79 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
11 0.79 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
12 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
13 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
14 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
15 0.80 0.83 0.86 0.89 0.93 0.95 0.98 1.01 1.04
16 0.80 0.83 0.87 0.90 0.93 0.96 0.98 1.01 1.04
17 0.80 0.83 0.87 0.90 0.93 0.96 0.99 1.01 1.04
18 0.80 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.04
19 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.05
20 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.05
21 0.81 0.84 0.87 0.91 0.94 0.97 0.99 1.02 1.05
22 0.81 0.84 0.88 0.91 0.94 0.97 1.00 1.02 1.05
23 0.81 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.05
24 0.81 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.06
25 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.06
26 0.82 0.85 0.88 0.91 0.95 0.97 1.00 1.03 1.06
27 0.82 0.85 0.88 0.92 0.95 0.98 1.01 1.03 1.06
28 0.82 0.85 0.89 0.92 0.95 0.98 1.01 1.04 1.06
29 0.82 0.85 0.89 0.92 0.95 0.98 1.01 1.04 1.06
30 0.82 0.86 0.89 0.92 0.95 0.98 1.01 1.04 1.07
80 0.80 0.84 0.87 0.90 0.93 0.96 0.98 1.01 1.04
90 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.03

100 0.80 0.83 0.86 0.89 0.92 0.95 0.97 1.00 1.03

Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a constant-treatment-effect homoskedastic model with two covariate cells. Cell size is fixed at M. The
standard errors are based on an exact calculation detailed in the Appendix. The probability of treatment in this case is 1/10.
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With εki defined as the residual in the above equation, we
can write

yki � 
k � �kDki � εki, k � 1, . . . , K,

i � 1, . . . , M,
(4)

where the parameter of interest is equal to E[�k]. This is the
random-coefficient panel model considered by Swamy
(1970) and Chamberlain (1992).5

Consider first the simple model where �k is fixed at �0

and εki is homoskedastic with variance 	ε
2. Observe that 
k

is independent of Dki because of assumption 1, so
Var(
k�Dki) � Var(
k) � 	


2 . Conditional on the realiza-
tions of Dki and assuming that both bp and bc can be
computed, it is easy to see that, under these assumptions,
equation (4) is the traditional random-effects panel model
with nonstochastic regressors

yki � 
k � �0Dki � εki. (5)

The efficient unbiased estimator for this model is a weighted
average of between and within estimators, or equivalently,
within and pooled estimators.6 Note that

bc �
1

K
�
k�1

K

b̂k,

where b̂k is the OLS estimator of �k for the kth cell. Because
bc is the sample average of estimators using only within-cell
variation, bc is also a within-type estimator, though it is not
equal to the traditional within estimator, which can be
written in this case as

bw � �
k�1

K

�̂k�1 � �̂k�b̂k	�
k�1

K

�̂k�1 � �̂k�,

where �̂k � 1
M

¥i�1
M Dki.7 Note also that bp is the OLS

coefficient from a regression of y on D, and is therefore the
traditional pooled estimator that ignores group structure.

5 Chamberlain and Imbens (1996) similarly treat unobserved covariate
effects as random in a high-dimension instrumental variables problem.

6 See, for example, Maddala (1971).
7 See, for example, Angrist (1998).

TABLE 2.—ACTUAL RELATIVE PERFORMANCE [SE(bc)/SE(bp)] OF bp IN A TWO-CELL EXAMPLE (� � 0.5)

Cell Size
(M)

Covariate R2

.40 .35 .30 .25 .20 .15 .10 .05 .00

2 0.91 0.95 0.98 1.02 1.05 1.08 1.11 1.14 1.17
3 0.87 0.90 0.94 0.97 1.01 1.04 1.07 1.10 1.14
4 0.84 0.88 0.91 0.95 0.98 1.01 1.05 1.08 1.11
5 0.83 0.86 0.90 0.93 0.96 1.00 1.03 1.06 1.09
6 0.82 0.85 0.89 0.92 0.95 0.98 1.02 1.05 1.08
7 0.81 0.85 0.88 0.91 0.94 0.98 1.01 1.04 1.06
8 0.81 0.84 0.87 0.91 0.94 0.97 1.00 1.03 1.06
9 0.80 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.05

10 0.80 0.83 0.86 0.90 0.93 0.96 0.99 1.01 1.04
11 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
12 0.79 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.03
13 0.79 0.82 0.86 0.89 0.92 0.95 0.97 1.00 1.03
14 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.03
15 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.02
16 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02
17 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02
18 0.78 0.82 0.85 0.88 0.91 0.94 0.96 0.99 1.02
19 0.78 0.82 0.85 0.88 0.91 0.94 0.96 0.99 1.02
20 0.78 0.82 0.85 0.88 0.91 0.93 0.96 0.99 1.02
21 0.78 0.81 0.85 0.88 0.91 0.93 0.96 0.99 1.02
22 0.78 0.81 0.85 0.88 0.90 0.93 0.96 0.99 1.01
23 0.78 0.81 0.84 0.88 0.90 0.93 0.96 0.99 1.01
24 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.01
25 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.01
26 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.01
27 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.98 1.01
28 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.98 1.01
29 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.98 1.01
30 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.98 1.01
80 0.78 0.81 0.84 0.87 0.90 0.92 0.95 0.98 1.00
90 0.78 0.81 0.84 0.87 0.90 0.92 0.95 0.98 1.00

100 0.78 0.81 0.84 0.87 0.90 0.92 0.95 0.98 1.00

Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a constant-treatment-effect homoskedastic model with two covariate cells. Cell size is fixed at M. The
standard errors are based on an exact calculation detailed in the Appendix. The probability of treatment in this case is 1/2.
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This suggests that bc and bp cannot be ranked unambigu-
ously, because neither within-type nor pooled estimators are
efficient for random-effects panel models.

To substantiate this conjecture, we calculated the finite-
sample variances of bc and bp, treating Dki as nonstochastic
(so n1k is fixed) and 
k as random, assuming constant
treatment effects and homoskedastic errors, and conditional
on bc and bp both being computable. This is the stochastic
environment typical of the panel-data literature. Because the
variance is conditional on n1k, there is no problem of
missing covariate cells for the matching estimator.

In this setting, it can be shown that

Var�bc� �
	ε

2

K2 �
k�1

K � 1

n1k
�

1

M � n1k
�,

and

Var�bp� � 	

2 �

k�1

K � n1k

¥k�1
K n1k

�
M � n1k

KM � ¥k�1
K n1k

�2


 	ε
2� 1

¥k�1
K n1k

�
1

KM � ¥k�1
K n1k

�.

For example, if K � 2, M � 3, n11 � 1, and n12 � 2, we
have

Var�bc� �
3

4
	ε

2 and Var�bp� �
2

9
	


2 �
2

3
	ε

2.

Hence, the difference between them is

Var�bc� � Var�bp� �
1

12
	ε

2 �
2

9
	


2 ,

which is of ambiguous sign.
How can this ambiguity be reconciled with the conven-

tional asymptotic result that bc is more efficient than bp?
Traditional asymptotic arguments fix the data-generating
process and let the number of observations grow to infinity.
In our setting, this asymptotic sequence would have K fixed
while M 3 �. The efficient random-effects panel estimator
converges to the fixed effects estimator under this asymp-
totic sequence. Fixed-effects estimation is also the effi-
ciently weighted matching estimator under constant treat-
ment effects, so there is no contradiction between finite-
sample results for the nonstochastic panel and the
asymptotic efficiency of covariate matching under a
large-M asymptotic sequence. On the other hand, for small
M a panel-type asymptotic sequence with M fixed while
K 3 � may be more appropriate.

B. Panel Asymptotics

To provide more general results on the relative efficiency
of covariate and propensity score matching, we use an
alternative asymptotic approximation where cell sizes are
fixed and the number of cells grows to infinity. As noted
above, this corresponds to a large-cross-section, small-time-
series asymptotic approximation for panel data. The analog
of the cross-section dimension in our case is K, and the
analog of the time-series dimension is M.

As a regularity condition, we assume that

ASSUMPTION 4: The sequence {(
k, �k, εk1, . . . , εkM);
k � 1, 2, . . .} is i.i.d. Furthermore, for given (
k, �k),
(Dk1, εk1), . . . , (DkM, εkM) are i.i.d.

Assumption 4 implies that we approximate sampling
distributions without assuming any prior information on 
k

and �k. This seems consistent with the nonparametric spirit
of matching procedures.

As before, our objective is to estimate the average treat-
ment effect, � � E[ y1ki � y0ki]. The main theoretical result
is given below:

Theorem 1. Under assumptions 1–5, we have


K �bc � �� 3 ��0, �c
2�,


K �bp � �� 3 ��0, �p
2�,

where

�c
2 �

g��, M� E�	1k
2 � � g�1 � �, M� E�	0k

2 �

�1 � �M � �1 � ��M�2



Var�y1k � y0k�

1 � �M � �1 � ��M ,

and

�p
2 �

1

M�
E�	1k

2 � �
1

M�1 � ��
E�	1k

2 � � Var�y1k � y0k�



1

M
Var�
1 � �

�
y1k � 
 �

1 � �
y0k�,

where

g��, M� � �
k�1

M�1 �M
k ��k�1 � ��M�k

1

k
.

Proof. See Angrist and Hahn (1999).
The implications of this result for the relative sampling

variance of bc and bp can be summarized using 
�c
2/�p

2.
This expression is complicated but can be tabulated, or
simplified for special cases. Tables 3 and 4 report the
relative efficiency of bp for two values of �, assuming a
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constant treatment effect and homoskedastic errors. As
before, we define the theoretical R2 as 	


2/(	

2 
 	ε

2). The
tables again show that the relative efficiency of bp typi-
cally increases as R2 falls, M falls, or � falls, and that bp

is actually more efficient than bc for some (�, M, R2)
combinations. Interestingly, the case for ignoring covari-
ates is even stronger in this set of tabulations than for the
two-cell example. On the other hand, it is also notewor-
thy that the many-cell panel-asymptotic approximation
captures important features of the actual finite-sample
distributions for a two-cell example. In section IV, we
turn to the question of whether theorem 1 captures the
actual finite-sample behavior of bc and bp in samples with
many cells and random cell sizes. First, however, we
compare the many-cell and large-cell approximations for
the model analyzed in the theorem.

C. Comparison with Large-Cell Asymptotics

How do panel-asymptotic results differ from conven-
tional asymptotic results, where the number of cells is fixed
and cell sizes are random and increasing? Let � � M*K
and M* denote the total sample size and average cell size in

a random sample. Using an M* 3 � conventional asymp-
totic sequence, where � grows to � as a consequence while
K is fixed, it is straightforward to show that


� �bc � ��

3 ��0,
E�	1k

2 �

�
�

E�	0k
2 �

1 � �
� Var�y1k � y0k��

and


� �bp � �� 3 ��0,
E�	1k

2 �

�
�

E�	0k
2 �

1 � �

� Var�y1k � y0k� � Var�
1 � �

�
y1k � 
 �

1 � �
y0k��.

So conventional asymptotics approximate finite sample
variances as

CVar�bc� �
1

�
�E�	1k

2 �

�
�

E�	0k
2 �

1 � �
� Var�y1k � y0k��, (6)

TABLE 3.—RELATIVE PERFORMANCE [SE(bc)/SE(bp)] OF bp USING PANEL ASYMPTOTICS (� � 0.1)

Cell Size
(M)

Covariate R2

.40 .35 .30 .25 .20 .15 .10 .05 .00

2 1.10 1.14 1.18 1.23 1.27 1.30 1.34 1.38 1.41
3 0.95 0.99 1.03 1.06 1.10 1.13 1.16 1.19 1.23
4 0.90 0.94 0.97 1.01 1.04 1.07 1.10 1.13 1.16
5 0.88 0.91 0.95 0.98 1.01 1.04 1.08 1.10 1.13
6 0.87 0.90 0.94 0.97 1.00 1.03 1.06 1.09 1.12
7 0.86 0.90 0.93 0.96 1.00 1.03 1.06 1.09 1.11
8 0.86 0.90 0.93 0.96 0.99 1.03 1.06 1.08 1.11
9 0.86 0.90 0.93 0.96 0.99 1.03 1.06 1.08 1.11

10 0.86 0.90 0.93 0.96 1.00 1.03 1.06 1.09 1.11
11 0.86 0.90 0.93 0.97 1.00 1.03 1.06 1.09 1.12
12 0.87 0.90 0.94 0.97 1.00 1.03 1.06 1.09 1.12
13 0.87 0.90 0.94 0.97 1.00 1.03 1.06 1.09 1.12
14 0.87 0.91 0.94 0.97 1.01 1.04 1.07 1.10 1.12
15 0.87 0.91 0.94 0.98 1.01 1.04 1.07 1.10 1.13
16 0.88 0.91 0.95 0.98 1.01 1.04 1.07 1.10 1.13
17 0.88 0.91 0.95 0.98 1.01 1.04 1.08 1.10 1.13
18 0.88 0.92 0.95 0.98 1.02 1.05 1.08 1.11 1.14
19 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
20 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
21 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
22 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
23 0.89 0.92 0.96 0.99 1.02 1.06 1.09 1.12 1.14
24 0.89 0.92 0.96 0.99 1.02 1.06 1.09 1.12 1.15
25 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
26 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
27 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
28 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
29 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
30 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04 1.07
90 0.82 0.85 0.89 0.92 0.95 0.98 1.00 1.03 1.06

100 0.81 0.85 0.88 0.91 0.94 0.97 1.00 1.02 1.05

Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a constant-treatment-effect homoskedastic model. Cell size is fixed at M. The standard errors are based
on the panel-asymptotic approximation in theorem 1. The probability of treatment in this case is 1/10.
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and

CVar�bp� �
1

�
�E�	1k

2 �

�
�

E�	0k
2 �

1 � �
� Var�y1k � y0k�

(7)


 Var�
1 � �

�
y1k � 
 �

1 � �
y0k��.

The last term in CVar(bp) can be interpreted as the
penalty for failure to control for covariates under con-
ventional asymptotics. Note that, with constant treatment
effects, this term equals 0 if the between cell variance
is 0.

Panel asymptotics approximate finite-sample variances as

PVar�bc� �
1

�
�Mg��, M�E�	1k

2 � � Mg�1 � �, M�E�	0k
2 �

�1 � �M � �1 � ��M�2

(8)



M Var�y1k � y0k�

1 � �M � �1 � ��M�

and

PVar�bp� �
1

�
�1

�
E�	1k

2 � �
1

1 � �
E�	1k

2 �


 M Var�y1k � y0k� (9)


 Var�
1 � �

�
y1k � 
 �

1 � �
y0k��,

where we have used the fact that � � KM in the panel-
asymptotic sequence. The penalty term in CVar(bp) remains
in PVar(bp), but now the terms

E�	1k
2 �

�
and

E�	0k
2 �

1 � �

in CVar(bc) become

Mg��, M�E�	1k
2 �

�1 � �M � �1 � ��M�2 and
Mg�1 � �, M�E�	0k

2 �

�1 � �M � �1 � ��M�2

TABLE 4.—RELATIVE PERFORMANCE [SE(bc)/SE(bp)] OF bp USING PANEL ASYMPTOTICS (� � 0.5)

Cell Size
(M)

Covariate R2

.40 .35 .30 .25 .20 .15 .10 .05 .00

2 1.10 1.14 1.18 1.23 1.27 1.30 1.34 1.38 1.41
3 0.95 0.99 1.03 1.06 1.10 1.13 1.16 1.19 1.23
4 0.90 0.94 0.98 1.01 1.04 1.08 1.11 1.14 1.17
5 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
6 0.87 0.90 0.94 0.97 1.00 1.03 1.06 1.09 1.12
7 0.86 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11
8 0.85 0.88 0.91 0.95 0.98 1.01 1.04 1.07 1.09
9 0.84 0.87 0.90 0.94 0.97 1.00 1.03 1.05 1.08

10 0.83 0.86 0.90 0.93 0.96 0.99 1.02 1.05 1.07
11 0.82 0.86 0.89 0.92 0.95 0.98 1.01 1.04 1.06
12 0.82 0.85 0.88 0.92 0.95 0.97 1.00 1.03 1.06
13 0.81 0.85 0.88 0.91 0.94 0.97 1.00 1.02 1.05
14 0.81 0.84 0.88 0.91 0.94 0.96 0.99 1.02 1.05
15 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.04
16 0.80 0.84 0.87 0.90 0.93 0.96 0.99 1.01 1.04
17 0.80 0.84 0.87 0.90 0.93 0.96 0.98 1.01 1.04
18 0.80 0.83 0.86 0.90 0.92 0.95 0.98 1.01 1.03
19 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.03
20 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.00 1.03
21 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.00 1.03
22 0.80 0.83 0.86 0.89 0.92 0.95 0.97 1.00 1.03
23 0.79 0.83 0.86 0.89 0.92 0.95 0.97 1.00 1.03
24 0.79 0.83 0.86 0.89 0.92 0.94 0.97 1.00 1.02
25 0.79 0.82 0.86 0.89 0.91 0.94 0.97 1.00 1.02
26 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.02
27 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02
28 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02
29 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02
30 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02
80 0.78 0.81 0.84 0.87 0.90 0.93 0.95 0.98 1.01
90 0.78 0.81 0.84 0.87 0.90 0.93 0.95 0.98 1.01

100 0.78 0.81 0.84 0.87 0.90 0.93 0.95 0.98 1.01

Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a constant-treatment-effect homoskedastic model. Cell size is fixed at M. The standard errors are based
on the panel-asymptotic approximation in theorem 1. The probability of treatment in this case is 1/2.
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under panel asymptotics in equation (8). This is because the
first two terms partly reflect the fact that some cells may
have to be dropped in the computation of bc. Note also that
the panel-asymptotic approximation inflates the third term
in CVar(bc) and CVar(bp), which is

Var�y1k � y0k�

in both expressions. This term becomes

M Var�y1k � y0k�

1 � �M � �1 � ��M and M Var�y1k � y0k�

in equations (8) and (9). The inflation factor M/[1 �
�M � (1 � �)M] in equation (8) is larger than M in
equation (9). This partly reflects the fact that the conven-
tional asymptotic approximation is more optimistic about
the precision with which realized cell differences are
actually estimated. Note also that the inflation factor is
larger for � close to 0 or 1.

To summarize the difference between the two approxi-
mations, we write

�PVar�bc� � PVar�bp�� � �CVar�bc� � CVar�bp��

�
1

�
� Mg��, M�

�1 � �M � �1 � ��M�2 �
1

�
�E�	1k

2 �]

�
1

�
� Mg�1 � �, M�

�1 � �M � �1 � ��M�2 �
1

1 � �
�E�	0k

2 �

�
1

�
� M

1 � �M � �1 � ��M � M�Var�y1k � y0k�.

The first two terms on the right can easily be shown to be
nonnegative (see Angrist and Hahn, 1999). Note that the
third term is 0 if and only if Var( y1k � y0k) � 0. We
therefore expect the finite-sample advantage of bp to be
larger with heterogeneous treatment effects.

D. Linear Combinations of bc and bp

Because neither bc nor bp is efficient, we now ask
whether it is possible to construct a treatment-effects esti-
mator that is more efficient than both under the panel
asymptotic sequence. We look at linear combinations of bc

and bp, because we know that the efficient estimator for
random-effects panel models has this form when the coef-
ficients (treatment effects) are constant. In principle it is
possible that estimators outside the linear-combination class
dominate; but we leave a more general exploration of this
question for future work.

Consider a minimum variance linear combination of bc

and bp of the form

b* � �bc � �1 � ��bp.

The asymptotic variance of b* is minimized by choosing

� �
PVara�bp� � PCova�bc, bp�

PVara�bc� � 2PCova�bc, bp� � PVara�bp�
,

where PVara and PCova denote asymptotic variance and
asymptotic covariance under the asymptotic sequence in
theorem 1. The variance terms are available from theorem 1.
The covariance term is

1

�M
E �	1k

2 � �
1

M�1 � ��
E�	0k

2 �



1 � �M�1

1 � �M � �1 � ��M Var�y1k�



1 � �1 � ��M�1

1 � �M � �1 � ��M Var�y0k�



�2 � �M�1 � �1 � ��M�1

1 � �M � �1 � ��M Cov�y1k, y0k�.

Note that, as in theorem 1, b* is derived for M fixed, as in
conventional panel models. It turns out that theorem 1
provides a good approximation to finite-sample behavior
even when cell sizes are not fixed, but we have not yet
derived an efficient estimator for this case.8

To develop intuition for the weighting formula, suppose
as before that (i) the treatment effect is constant and equal
to �0, that is, y0ki � 
k 
 εki and y1ki � �0 
 
k 
 εki;
(ii) εki has variance equal to 	ε

2; and (iii) 
k has mean �
,
and variance 	


2. After some algebra, we obtain the follow-
ing simplification:

PVara�bp� � PCova�bc, bp� �
1

M��1 � ��
	


2

and

PVara�bc� � 2 PCova�bc, bp� � PVara�bp�

� � g��, M�

�1 � �M � �1 � ��M�2 �
g�1 � �, M�

�1 � �M � �1 � ��M�2

�
1

�M
�

1

M�1 � ��
�	ε

2 �
1

M��1 � ��
	


2 .

Therefore, the optimal weight is equal to

�* �

1

��1 � ��
	


2

� Mg��, M�

�1 � �M � �1 � ��M�2 �
Mg�1 � �, M�

�1 � �M � �1 � ��M�2

�
1

�
�

1

�1 � ��
�	ε

2 �
1

��1 � ��
	


2

.

8 Chamberlain (1992, section 4) presents a bound for a traditional panel
model, but his bound does not impose independence of εki, i � 1, . . . ,
M.
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Without loss of generality, we may normalize 	ε
2 � 1.

Note that (i) �* 3 1 as M 3 � (b* � bc)9 and (ii) �* 3
0 as 	


2 3 0 (b* � bp). In other words, the linear-
combination estimator converges to the covariate match-
ing estimator as the cell size gets large and/or the between-
cell variance gets large (	


2 3 �). On the other hand, the
linear-combination estimator converges to the propensity-
score matching estimator as the random-effects variance
gets small (	


2 3 0). This is analogous to the behavior of
the random-effects GLS estimator for traditional panel
models with constant treatment effects: GLS converges to
the within estimator as the time series dimension gets
large and/or the variance of the random individual effects
gets small, whereas convergence to the pooled estimator
occurs in the opposite case.10

IV. Validity of the Approximation

The panel-asymptotic results in theorem 1 were derived
under stratified sampling, for covariate cells of fixed size.
Much of the discussion also relied on the simplifying
assumption of constant treatment effects. In this section, we
compare the finite-sample behavior predicted by theorem 1
with actual finite-sample behavior under random sampling.
We begin with constant treatment effects, because this
assumption allows an analytic derivation of the finite-
sample variance conditional on cell sizes. We then do a
Monte Carlo integration to allow for random cell sizes.
Finally, we report the results from Monte Carlo experiments
with heterogeneous treatment effects.

We again begin with a constant-treatment-effects model
where y0ki � 
k 
 εki and y1ki � �0 
 
k 
 εki, with
Var(εki) � 	ε

2 and Var(
k) � 	

2 . We assume that there are9 This uses the fact that

Mg��, M�

�1 � �M � �1 � ��M�2 �
1

�
3 0,

Mg�1 � �, M�

�1 � �M � �1 � ��M�2

�
1

�1 � ��
3 0.

Proof is available upon request.
10 Swamy (1970) derives the maximum likelihood estimator of � as-

suming normality of (
k, �k, εki), known error variances, and nonsto-

chastic regressors (Dki). This estimator is efficient under panel asymptot-
ics if the error variances are common across cells. Except under constant
treatment effects, the Swamy estimator does not appear to simplify to a
linear combination of bp and bc.

TABLE 5.—MONTE CARLO RELATIVE PERFORMANCE [SE(bc)/SE(bp)] OF bp (� � 0.1)

Avg. Cell
Size (M*)

Covariate R2

.40 .35 .30 .25 .20 .15 .10 .05 .00

2 1.06 1.10 1.14 1.18 1.22 1.26 1.29 1.33 1.36
3 0.97 1.01 1.04 1.08 1.12 1.15 1.18 1.22 1.25
4 0.93 0.96 1.00 1.04 1.07 1.10 1.14 1.17 1.20
5 0.90 0.94 0.98 1.01 1.04 1.08 1.11 1.14 1.17
6 0.89 0.93 0.97 1.00 1.03 1.06 1.09 1.12 1.15
7 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
8 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
9 0.88 0.92 0.95 0.98 1.02 1.05 1.08 1.11 1.13

10 0.88 0.92 0.95 0.98 1.01 1.04 1.07 1.10 1.13
11 0.88 0.91 0.95 0.98 1.01 1.05 1.08 1.10 1.13
12 0.88 0.91 0.95 0.98 1.01 1.04 1.07 1.10 1.13
13 0.88 0.91 0.95 0.98 1.01 1.05 1.08 1.10 1.13
14 0.88 0.91 0.95 0.98 1.01 1.05 1.08 1.10 1.13
15 0.88 0.92 0.95 0.98 1.02 1.05 1.08 1.11 1.13
16 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
17 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
18 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
19 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
20 0.88 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
21 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
22 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
23 0.89 0.92 0.96 0.99 1.02 1.06 1.09 1.11 1.14
24 0.88 0.92 0.96 0.99 1.02 1.05 1.09 1.12 1.15
25 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
26 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
27 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
28 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
29 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
30 0.88 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14

Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a constant-treatment-effect homoskedastic model. Cell size is random. The standard errors were calculated
by Monte Carlo integration of analytic formulas that condition on cell sizes and number treated. The probability of treatment is 1/10.
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K cells, with cell sizes equal to M1, . . . , MK. Let M*
denote the average cell size. Note that

bc � �0 �
1

¥k�1
K Mk1�1 � n1k � Mk � 1�

� �
k�1

K �Mk1�1 � n1k � Mk � 1�

� � 1

n1k
�
i�1

nk

εki �
1

Mk � n1k
�

i�nk
1

Mk

εki��,

with conditional variance given (M1, . . . , MK, n11, . . . ,
n1K) equal to

	ε
2 �

k�1

K �� Mk

¥k�1
K Mk1�1 � n1k � Mk � 1�

� 2

� � 1

n1k
�

1

Mk � n1k
�1�1 � n1k � Mk � 1�� .

(10)

Also, note that

bp � �0 � �
k�1

K � n1k

¥k�1
K n1k

�
Mk � n1k

¥k�1
K �Mk � n1k�

�
k



1

¥k�1
K n1k

�
k�1

K �
i�1

n1k

εki

�
1

¥k�1
K �Mk � n1k�

�
k�1

K �
i�n1k
1

Mk

εki,

with conditional variance equal to

	

2 �

k�1

K �� n1k

¥k�1
K n1k

�
Mk � n1k

¥k�1
K �Mk � n1k�

�� 2

� 	ε
2� 1

¥k�1
K n1k

�
1

¥k�1
K �Mk � n1k�

� . (11)

We set K � 100, and assume that (M1, . . . , MK) are
generated by a multinomial distribution with equal

TABLE 6.—MONTE CARLO RELATIVE PERFORMANCE [SE(bc)/SE(bp)] OF bp (� � 0.5)

Avg. Cell
Size (M*)

Covariate R2

.40 .35 .30 .25 .20 .15 .10 .05 .00

2 1.04 1.08 1.12 1.16 1.20 1.24 1.27 1.31 1.34
3 0.95 0.99 1.03 1.06 1.10 1.13 1.16 1.19 1.22
4 0.91 0.94 0.98 1.01 1.05 1.08 1.11 1.14 1.17
5 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.13
6 0.87 0.90 0.93 0.97 1.00 1.03 1.06 1.09 1.12
7 0.85 0.89 0.92 0.95 0.98 1.01 1.04 1.07 1.10
8 0.84 0.88 0.91 0.94 0.97 1.00 1.03 1.06 1.09
9 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.05 1.08

10 0.83 0.86 0.90 0.93 0.96 0.99 1.02 1.04 1.07
11 0.82 0.86 0.89 0.92 0.95 0.98 1.01 1.04 1.06
12 0.82 0.85 0.88 0.92 0.95 0.97 1.00 1.03 1.06
13 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.02 1.05
14 0.81 0.85 0.88 0.91 0.94 0.97 0.99 1.02 1.05
15 0.81 0.84 0.88 0.91 0.93 0.96 0.99 1.02 1.04
16 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.01 1.04
17 0.80 0.84 0.87 0.90 0.93 0.96 0.98 1.01 1.04
18 0.80 0.84 0.87 0.90 0.93 0.95 0.98 1.01 1.03
19 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.03
20 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.00 1.03
21 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.00 1.03
22 0.80 0.83 0.86 0.89 0.92 0.95 0.97 1.00 1.03
23 0.80 0.83 0.86 0.89 0.92 0.95 0.97 1.00 1.03
24 0.79 0.83 0.86 0.89 0.92 0.94 0.97 1.00 1.02
25 0.79 0.83 0.86 0.89 0.92 0.94 0.97 1.00 1.02
26 0.79 0.83 0.86 0.89 0.91 0.94 0.97 1.00 1.02
27 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.02
28 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02
29 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02
30 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02

Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a constant-treatment-effect homoskedastic model. Cell size is random. The standard errors were calculated
by Monte Carlo integration of analytic formulas that condition on cell sizes and number treated. The probability of treatment is 1/2.
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weights.11 Results using 300 replications of (M1, . . . , MK,
n11, . . . , n1K) to integrate equations (10) and (11) are
reported in Tables 5 and 6. As before, we observe that the
relative efficiency of bp, measured by �Var(bc)/�Var(bp),
typically increases as R2 falls, M* falls, or � falls, and that
bp is actually more efficient than bc for some (�, M*, R2)
combinations. The relative efficiency calculated allowing
for random cell sizes is remarkably close to the ratio in
tables 3 and 4, calculated using our panel-asymptotic se-
quence.

We also conducted a small Monte Carlo study of a
model with heterogeneous treatment effects. Figures 1
and 2 compare Monte Carlo sampling distributions under
random sampling with heterogeneous treatment effects
with the corresponding panel-asymptotic approxima-
tion. Again, we consider a model where y0ki � 
k 
 εki

and y1ki � �k 
 
k 
 εki, with Var(εki) � 	ε
2 and

Var(
k) � 	

2 . Both figures set K � 30, the covariate

R2 � .1, and the propensity score � 0.1. We used 500
Monte Carlo replications. Figure 1 shows results from a
model where �k � Binomial(1, 1

2
) independent of 
k and

εki. Figure 2 shows results from a model where 
k �
�(
, 	


2 ) and �k � 1(
k � 
). In this case, treatment
effects are negatively correlated with untreated out-

11 We fix the total sample size, then break the sample up into K
subsamples with expected size (¥k�1

K Mk)/K. This is equivalent to random
sampling from a multinomial distribution where Pr(Xi � x(k)) � p for all
j.

FIGURE 1.—PANEL-ASYMPTOTIC AND MONTE CARLO RATIO OF STANDARD ERRORS FOR ESTIMATORS WITH AND WITHOUT COVARIATES,
RANDOM TREATMENT EFFECT

Notes: The figure plots the standard error of bp divided by the standard error of bc as a function of average cell size. The Monte Carlo design used 500 replications and 30 cells. The covariate R2 was fixed at
.1, and the treatment probability was fixed at .1. The model incorporates a heterogeneous treatment effect equal to 0 or 1 with probability 1

2
.
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comes. The panel-asymptotic approximation predicts the
Monte Carlo efficiency ratio reasonably well in both
figures.

V. Summary and Conclusions

Asymptotic theory provides a powerful and flexible tool
for the analysis of the theoretical properties of alternative
estimators, but empirical researchers have become increas-
ingly aware that conventional asymptotic results can be
misleading. In this paper, we develop a framework that
improves on conventional asymptotic results about whether
to control for covariates in the estimation of treatment
effects. In cases that seem likely to be of practical impor-
tance, matching on the propensity score, which suffices to
eliminate bias, is also more efficient than full covariate

matching. Our panel data framework shows that there is
more to this result than the possibility of missing cells in
covariate matching schemes. The results presented here,
based on an analogy with random-effects models for panel
data, provide some general guidelines for when full covari-
ate matching is counterproductive. In future work we hope
to make these guidelines more specific, and to develop
sharper results on efficiency bounds for random-effects
estimators of the type introduced here.

As a caveat, it should be emphasized that our asymptotic
results were derived under the assumption of equal-sized
covariate cells. Although this assumption appears to be
harmless for comparing various point estimators, we have
not established that the asymptotic variance estimators de-
rived under this sequence are accurate for the construction

FIGURE 2.—PANEL-ASYMPTOTIC AND MONTE CARLO RATIO OF STANDARD ERRORS FOR ESTIMATORS WITH AND WITHOUT COVARIATES,
CORRELATED TREATMENT EFFECT

Notes: The figure plots the standard error of bp divided by the standard error of bc as a function of average cell size. The Monte Carlo design used 500 replications and 30 cells. The covariate R2 was fixed at
.1, and the treatment probability was fixed at .1. The model incorporates a heterogeneous treatment effect equal to 0 or 1, negatively correlated with y0k.
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of confidence intervals or hypothesis testing. Establishing
this is also a task we leave for future work.

REFERENCES

Abadie, A., and G. Imbens, “Simple and Bias-Corrected Matching Esti-
mators for Average Treatment Effects,” Kennedy School of Gov-
ernment mimeograph (2002).

Angrist, J. D., “Estimating the Labor Market Impact of Voluntary Military
Service Using Social Security Data on Military Applicants,”
Econometrica 66 (1998), 249–288.

Angrist, J. D., and J. Hahn, “When to Control for Covariates? Panel-
Asymptotic Results for Estimates of Treatment Effects,” NBER
technical working paper 241 (1999).

Angrist, J. D., and A. B. Krueger, “Split-Sample Instrumental Variables
Estimates of the Returns to Schooling,” Journal of Business and
Economic Statistics 13 (1995), 225–235.

Ashenfelter, O. A., and D. E. Card, “Using the Longitudinal Structure of
Earnings to Estimate the Effect of Training Programs,” this REVIEW,
67 (1985), 648–660.

Bekker, P. A., “Alternative Approximations to the Distributions of Instru-
mental Variables Estimators,” Econometrica 62 (1994), 657–681.

Bekker, P. A., and J. van der Ploeg, “ Instrumental Variables Estimation
Based on Grouped Data,” University of Groningen mimeograph
(1996).

Card, D. E., and D. Sullivan, “Measuring the Effect of Subsidized
Training on Movements In and Out of Employment,” Economet-
rica 56 (1988), 497–530.

Chamberlain, G., “Panel Data” in Z. Griliches and M. D. Intriligator (Eds.),
Handbook of Econometrics, vol. II (Amsterdam: Elsevier, 1984).

“Asymptotic Efficiency in Estimation with Conditional Moment
Restrictions,” Journal of Econometrics 34 (1987), 305–334.

“Efficiency Bounds for Semiparametric Regression,” Economet-
rica 60 (1992), 567–596.

Chamberlain, G., and Z. Griliches, “Unobservables with a Variance-
Components Structure: Ability, Schooling, and the Economic Suc-
cess of Brothers,” International Economic Review 16 (1975),
422–449.

Chamberlain, G., and G. Imbens, “Hierarchical Bayes Models with Many
Instrumental Variables,” National Bureau of Economic Research
technical working paper 204 (1996).

Cochran, W. G., “The Planning of Observational Studies of Human
Populations (with Discussion),” Journal of the Royal Statistical
Society, Series A 128 (1965), 234–266.

Dehejia, R. H., and S. Wahba, “Propensity Score Matching Methods for
Non-experimental Causal Studies,” Journal of the American Sta-
tistical Association 94 (1999), 1053–1062.

Hahn, J., “On the Role of the Propensity Score in the Efficient Estimation
of Average Treatment Effects,” Econometrica 66 (1998), 315–332.

Hausman, J. A., and W. E. Taylor, “Panel Data and Unobservable Indi-
vidual Effects,” Econometrica 49 (1981), 1377–1398.

Heckman, J. J., H. Ichimura, and P. E. Todd, “Matching as an Econometric
Evaluation Estimator: Evidence from Evaluating a Job Training
Programme,” Review of Economic Studies 64 (1997), 605–654.

“Matching as an Econometric Evaluation Estimator,” Review of
Economic Studies 65 (1998), 261–294.

Hirano, K., G. Imbens, and G. Ridder, “Efficient Estimation of Average
Treatment Effects Using the Estimated Propensity Score,” UCLA
mimeograph (1999).

Imbens, G. W., D. B. Rubin, and B. I. Sacerdote, “Estimating the Effect of
Unearned Income on Labor Supply, Earnings, Savings and Con-
sumption: Evidence from a Sample of Lottery Players,” American
Economic Review 91 (2001), 778–794.

Maddala, G. S., “The Use of Variance Components Models in Pooling Cross
Section and Time Series Data,” Econometrica 39 (1971), 341–358.

Mundlak, Y., “On the Pooling of Time Series and Cross Section Data,”
Econometrica 46 (1978), 69–85.

Robins, J., and Y. Ritov, “Toward a Curse of Dimensionality Appropriate
(CODA) Asymptotic Theory for Semi-parametric Models,” Statis-
tics in Medicine 16 (1997), 285–319.

Rosenbaum, P. R., Observational Studies (New York: Springer-Verlag, 1995).
Rosenbaum, P. R., and D. B. Rubin, “The Central Role of the Propensity

Score in Observational Studies for Causal Effects,” Biometrika 70
(1983), 41–55.

“Reducing Bias in Observational Studies Using Subclassification
on the Propensity Score,” Journal of the American Statistical
Association 79 (1984), 516–524.
“The Bias Due to Incomplete Matching,” Biometrics 41 (1985a),

103–116.
“Constructing a Control Group using Multi-variate Matching

Methods That Include the Propensity Score,” American Statistician
39 (1985b), 33–38.

Rubin, D. B., “Matching to Remove Bias in Observational Studies,”
Biometrics 29 (1973), 159–183.

“Using Multivariate Matched Sampling and Regression Adjust-
ment to Control Bias in Observational Studies,” Journal of the
American Statistical Association 74 (1979), 318–328.

Swamy, P. A. V. B., “Efficient Inference in a Random Coefficient Regres-
sion Model,” Econometrica 38 (1970), 311–323.

Wallace, T. D., and A. Hussain, “The Use of Error Components Models in
Combining Cross Section with Time Series Data,” Econometrica
37 (1969), 55–72.

APPENDIX

Finite-Sample Variance in the Two-Cell Example

This calculation begins with the bias and variance of the two estima-
tors, conditional on n11 and n12, for cases where both estimators are
defined. bp is conditionally biased, though bc is not.

1. bc

Case 1. In this case, both cells contain treated and control observations.
The conditional distribution of bc given (n11, n12) has bias 0 and
variance

1

4 � 1

n11
�

1

M � n11
�

1

n12
�

1

M � n12
� .

Therefore, the conditional mean squared error is

w1�n11, n12� �
1

4 � 1

n11
�

1

M � n11
�

1

n12
�

1

M � n12
� .

Case 2. In this case, one of the two cells consists of treated or controls
only. If the first cell is discarded but the second one is not, the
conditional distribution of bc is such that the bias is 0 and the
variance is equal to 1/n12 
 1/(M � n12). Therefore, the condi-
tional mean squared error is

w2�n12� �
1

n12
�

1

M � n12
.

Similar comments apply when the second cell is discarded.
Case 3. In this case, each cell consists of treated or controls only.

Because this happens in each cell with probability Pr(n1k � 0 or
M) � �M 
 (1 � �)M, with probability [�M 
 (1 � �)M]2 the
covariate-matching estimator is undefined.

Now, integrate over the distribution of n11 and n12, using the fact that
they are independent Binomial(M, �) random variables:

�
n11�1

M�1 �
n12�1

M�1

w1�n11, n12�� M
n11
��n11�1 � ��M�n11� M

n12
��n12�1 � ��M�n1212

� ��M � �1 � ��M� �
n12�1

M�1

w2�n12��M
n12
��n12�1 � ��M�n12

� ��M � �1 � ��M� �
n11�1

M�1

w2�n11��M
n11
��n11�1 � ��M�n11.
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Dividing the above expression by 1 � [�M 
 (1 � �)M]2, we obtain the
variance of interest.

2. bp

We consider the finite-sample distribution of bp for cases where bc can
be computed.12

Case 1. In this case,

bp �
1

¥k�1
2 n1k

�
k�1

2 �
i�1

n1k

�
k � � � εki�

�
1

2M � ¥k�1
2 n1k

�
k�1

2 �
i�n1k
1

M

�
k � εki�

with conditional bias [M(n11 � n12)/(n11 
 n12)(2M � n11 �
n12)](
1 � 
2), and variance 2M/(n11 
 n12)[2M � (n11 

n12)]. Therefore, the conditional mean squared error is given by

� M�n11 � n12�

�n11 � n12��2M � n11 � n12�
�
1 � 
2�� 2

�
2M

�n11 � n12��2M � �n11 � n12��
.

Case 2(i). Consider the case where the first cell consists of all treated,
but the second cell is not dropped by bc. We then have

bp �
1

M � n12
� �

i�1

M

�
1 � �0 � ε1i� � �
i�1

n12

�
2 � � � ε2i��
�

1

M � n12
�

i�n12
1

M

�
2 � ε2i�,

which has conditional bias [M/(M 
 n12)](
1 � 
2), and
variance 1/(M 
 n12) 
 1/(M � n12). Therefore, the conditional
mean squared error is given by

� M

M � n12
�
1 � 
2�� 2

�
1

M � n12
�

1

M � n12
.

Similar comments apply when the second cell consists of all
treated.

Case 2(ii). Consider the case where the first cell consists of all controls,
but the second cell is not dropped by the covariate estimator. We
then have

bp �
1

n12
�
i�1

n12

�
2 � �0 � ε2i�

�
1

2M � n12
� �

i�1

M

�
1 � ε1i� � �
i�n12
1

M

�
2 � ε2i�� ,

which has the conditional bias �[M/(2M � n12)](
1 � 
2), and
variance 1/(2M � n12) 
 1/n12. Therefore, the conditional mean
squared error is given by

��
M

2M � n12
�
1 � 
2�� 2

�
1

2M � n12
�

1

n12
.

Similar comments apply when the second cell consists of all
controls.

Again, the mean squared error of interest is computed by integrating
the mean squared error with respect to the distribution of (n11, n12) and
dividing by 1 � [�M 
 (1 � �)M]2.

12 We ignore the case where the first cell consists of all treated and the
second cell consists of all control observations.
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