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Introduction

Overview

I Assess several key robust predictions of class of menu cost models.

I Model makes sharp predictions about differential response to changes in
the average rate of inflation at π = 0 and at π =∞.

I Evaluate predictions using variation of inflation in Argentina that includes
periods of extremely low and high inflation.

I Predictions of the menu cost model refer to:

(1) Frequency of price changes

(2) Dispersion of frequencies of price changes across products

(3) Intensive and extensive price increases/decreases.

(4) Relative price dispersion.
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Introduction

Outline for the talk

1. Briefly review the theoretical model

2. State the key predictions of the model

3. Describe the data

4. Describe the empirical results
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Theory General Results

Set up of Menu Cost Model

I F (p − ω, z) per period real profit of monopolistic competitive firm,

I p log nominal price,

I ω log nominal wages: dω = πdt so that π trend of nominal costs— i.e.
inflation rate,

I z shock to profits: E[dz] = a(z)dt , and E[dz2] = σ2b(z)2dt .

I r real discount rate,

I C = ζ(z) fixed cost of changing prices.
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Theory General Results

Menu Cost Model, Firm’s problem

I Optimal price setting behavior of firms subject to idiosyncratic shocks that
affect its profits in an economy with deterministic inflation.

I Choose stopping times and size of price changes {τi ,∆p(τi )}

V (p − ω, z) = max
{τi ,∆pi}∞i=0

E
[∫ ∞

0
e−rtF ( p (t)− ω − πt , z (t) ) dt

−
∞∑
i=0

e−rτi ζ (z(t))
∣∣ z(0) = z

]

s.t. p(t) = p +

τi<t∑
i=0

∆p(τi ) for all t ≥ 0 and

dz(t) = a (z(t)) dt + σ b (z(t)) dW (t) where z(0) = z.
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Theory General Results

Menu cost model: optimal price policy

I Firm (static) problem with flexible prices

p∗j (t) = arg max
p

F (p − ω − πt , z)

I Price gaps gj (t) ≡ pj (t)− p∗j (t) or markup deviations

I Optimal sS rule described by 3 numbers g < g∗ < ḡ:

I If g ≤ g pay fixed cost & increase price so that g → g∗, thus ∆+
p = g∗ − g.

I If g ≥ g pay fixed cost & decrease price so that g → g∗, thus ∆−p = g − g∗.

I Aggregating decision across idiosy. shocks =⇒ invariant distribution:

I Standard deviation of relative prices σ̄(π, σ2)

I Expected number of adjustment per unit of time λa(π, σ2)
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Theory General Results

Low inflaction case, no first order effect of inflation

I If the profit function graph and shocks z are symmetric: details

I the frequency of price adjustments is symmetric around π = 0.

I Intuition: frequency of price changes for 1% inflation vs. 1% deflation.

I If λa and σ̄ are differentiable w.r.t. π, at π = 0, they react to π = 0 as

∂λa
∂π

= 0 and ∂σ̄
∂π

= 0

∂λ+
a

∂π
= −∂λ

−
a

∂π
and ∂∆+

a
∂π

= −∂∆−a
∂π

.

I Symmetry also implies that the levels at π = 0:

λ+
a = λ−a and ∆+

a = ∆−a
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Theory General Results

Low Inflation Case, comments

– Intuition: when π = 0 and σ > 0 price changes stem from idiosyncratic
shocks so a change in inflation has no first order effects.

– Assumptions

I Approximate symmetry is consequence of low adjustment cost C.

I If cost C small, then p is close to p∗(z).

I 2nd order approx. F (·, z) around p∗(z).

– Example: quadratic profit function and dz = −a z dt + σ b dW

Martin Beraja (MIT) 8 / 29



Theory General Results

Elasticities for high inflation

I We want to characterize elasticities for high π keeping σ2 constant.

I First to consider σ2 = 0 and π > 0: Sheshinski-Weiss.

I sS: when relative price hits s < p∗ adjust to S > p∗.

I Time between adjustments (S − s)/π = 1/λa.

I Log of relative prices, uniform on S − s, so σ̄ = (S − s)/
√

12

I Either as approximation for small fixec cost

limC↓0
π
λa

∂λa
∂π

= 2
3 and limC↓0

π
σ̄
∂σ̄
∂π

= 1
3 .

I or exactly for all cost C if F (·) is quadratic around p∗ and r = 0:
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Theory General Results

High Inflation Case, comments
Does σ = 0, π > 0 have the same elasticity as σ > 0, π =∞?
Yes, only ratio π/σ2 matters!

I Multiply r , drift a(·), σ2, π by k > 0 change units of time.

I Thus λa is multiplied by k , i.e. measured time in months vs years.

I Set r = 0 : maximizes expected average profits, and

I Set a(·) = 0, so shocks are permanent,

I Thus λa(π, σ2) is homogenous of degree one in (π, σ2)

lim
σ2>0,π→∞

π

λa(π, σ2)

∂λa(π, σ2)

∂π
= lim
π>0,σ2→0

π

λa(π, σ2)

∂λa(π, σ2)

∂π

I Intuition: As π →∞ effect of σ negligible
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Theory General Results

Dispersion of the Frequency of Price Changes (λ)
and Inflation (π)

I As inflation becomes large the dispersion of λs across goods falls.

I Interpretation: the common aggregate shock swamps heterogeneity
across goods.

I As π/σ2 becomes large the model with idiosyncratic converges to
Sheshinski-Weiss

I Two models that differ on volatility σ2
1 > σ2

1 .

I At π = 0 then λa
(
π, σ2

1
)
> λa

(
π, σ2

2
)

I On the other extreme for verly large π →∞:

lim
π→∞

λa
(
π, σ2

1
)

λa
(
π, σ2

2

) → 1
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Theory Decomposition of Inflation

Decomposition of Changes on Inflation
I General decomposition:

π = ∆+
p λ

+
a −∆−p λ

−
a

I Low Inflation, i.e. as π → 0, differentiating w.r.t. π:

1 =

1
10︷ ︸︸ ︷

∂∆+
p

∂π
λ+

a −
∂∆−p
∂π

λ−a︸ ︷︷ ︸
Change in inflation due to size

+

9
10︷ ︸︸ ︷

∂λ+
a

∂π
∆+

p −
∂λ−a
∂π

∆−p︸ ︷︷ ︸
Change in inflation due to frequency

I High Inflation, i.e. as π →∞ (using λ−a = 0) elasticities w.r.t. log π:

1 =

1
3︷ ︸︸ ︷

∂ log ∆+
p

∂ log π︸ ︷︷ ︸
Elasticity inflation due to size

+

2
3︷ ︸︸ ︷

∂ log λ+
a

∂ log π
,︸ ︷︷ ︸

Elasticity inflation due to frequency
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Argentine Data Description

Underlying raw data for the Argentine CPI

I December 1988-September 1997

I 8,618,345 price quotes for items.

I item : good/service of a determined brand sold in a
specific outlet in a specific period of time.

I Goods/services are divided into two groups:

I Homogeneous: barley bread, chicken, lettuce, etc.

I Differentiated : moccasin shoes, utilities, tourism, and professional services.

I 302 of prices collected every month (56% exp.)

I 233 of prices collected every two weeks (44% exp.)

I On average across the 9 years there are 166 outlets per good
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Estimating Frequency of Price Changes Frequency of Price Changes and Inflation

Inflation and the Frequency of Price Adjustment
I Estimator of the frequency of price changes

λt = − ln
(
1− Fraction outlets change price between t and t − 1

)
I Results

I The derivative of the frequency of price changes with respect to inflation are
very for low inflation rates
(but derivative of difference of increases minus decreases is large)

I The elasticity of the frequency of price changes with respect to inflation are
between

[ 1
2 ,

2
3

]
for high inflation rates.

I Relation to existing literature.

I The level of the estimated frequency of price changes and its relation to
inflation are consistent with other studies

I Due to the range of inflation in our sample we span and extend existing
international evidence.
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Estimating Frequency of Price Changes Frequency of Price Changes and Inflation

Figure: Estimated Frequency of Price Changes λ and Expected Inflation
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Simple estimator λ̂t = − log(1− ft ), where ft fraction of outlets that changed price in period t .
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Estimating Frequency of Price Changes Frequency of Price Changes and Inflation

Figure: Frequency of price changes λ and the inflation rate (pooled simple estimator)
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Estimating Frequency of Price Changes Frequency of Price Changes and Inflation

Figure: Monthly Frequency of Price Changes & Inflation: Comparison to other Studies
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we plot −log(1− f ), f = reported frequency of price changes in each study.
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Estimating Frequency of Price Changes Intensive and Extensive Margins of Price Increases and Decreases and Inflation

Inflation vs Extensive/Intensive Margins of
Price Increases/Decreases

I Extensive Margin

I Fraction of Price Increases and Decreases is similar for low inflation rates

I Fraction of Price Increases converges to λ for high inflation rates

I Fraction of Price Decreases converges to 0 for high inflation rates

I Intensive Margin

I Magnitude of Price Increases and Decreases is similar for low inflation rates

I Magnitude of Price Increases is increasing in π for high inflation rates

I Magnitude of Price Decreases is (weakly) increasing in π for high infl. rates
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Estimating Frequency of Price Changes Intensive and Extensive Margins of Price Increases and Decreases and Inflation

Figure: Frequency vs Inflation and Difference in frequencies vs inflation
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Estimating Frequency of Price Changes Intensive and Extensive Margins of Price Increases and Decreases and Inflation

Figure: Extensive Margin of Price Changes, frequency of price increases and
decreases
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Estimating Frequency of Price Changes Intensive and Extensive Margins of Price Increases and Decreases and Inflation

Figure: Intensive Margin of Price Changes, avg. price increases and decreases
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Estimating Frequency of Price Changes Dispersion of the Frequency of Price Changes and Inflation

Dispersion across Frequency of Price Changes (λ’s)
decreases with Inflation (π), asymptotic restult on ratio

Figure: Estimates of λ by product. Homogeneous goods sampled twice a month
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Estimating Frequency of Price Changes Relative Price Dispersion and Inflation

Relative Price Dispersion and Inflation

I Comparative static results of model reviewed above imply:

I Zero elasticity to inflation on dispersion at low inflation.

I 1/3 elasticity of dispersion to inflation at high inflation

(lower elasticity if shocks are persistent)

I Interpretation: model applies for pricing across outlets.

I Measure the dispersion of relative prices through the residual variance in
a regression of prices at each time, store and good on a rich set of fixed
effects.
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Estimating Frequency of Price Changes Relative Price Dispersion and Inflation

Regressions =⇒
residual variance of price levels per period

Models i : # of Adj-R2 Elast at Elast at Elast at
indicate dummies dummies π = 100% π = 500% π = 700%
1: time 212 0.751 0.03 0.21 0.31
2: time + good + store 4,978 0.982 0.06 0.26 0.34
3: time + good × store 74,755 0.987 0.14 0.35 0.37
4: time + good × store × non-subs-spell 153,896 0.989 0.16 0.37 0.38
5: time × store + time × good 464,505 0.996 0.13 0.30 0.28

+ good × store × non-subs-spell

Price observations in each regression 5,497,452 for 233 outlets w/prices
collected twice a month, 212 periods.

Cost of inflation due to price dispersion ≈
Increase in variance × elasticity of substitution / 2
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Estimating Frequency of Price Changes Relative Price Dispersion and Inflation

Figure: Average Dispersion of Relative Prices and Inflation
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Estimating Frequency of Price Changes Relative Price Dispersion and Inflation

Sensitivity Analysis (Skip)

I Missing data, substitutions and sales.

I Different aggregation methods.

I Contemporaneous versus expected inflation.

I Estimator (missing price changes at high inflation).

I Dynamics of Disinflation during convertibility

I Time aggregation at high inflation
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Estimating Frequency of Price Changes Relative Price Dispersion and Inflation

Conclusions

I Empirical analysis of the effect of Inflation on price dynamics guided by
the menu cost model of price setting.

I Unique data set that spans periods of sustained inflation rates ranging
from 0 to over 5000% per year.

I Several key prediction of the model are consistent with the Argentine
data.
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Estimating Frequency of Price Changes Relative Price Dispersion and Inflation

Figure: Symmetry assumption on profit Function F (p − ω, z) back main

back to details
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Estimating Frequency of Price Changes Relative Price Dispersion and Inflation

No 1st order effect of inflation w/symmetry at π = 0
Let Z = [−z̄, z̄], define p∗(z) = arg maxx F (x , z) & normalize p∗(0) = 0.

Assume that F (·) and a(·),b(·) are symmetric a

I a(z) = −a(−z) ≤ 0 and b(z) = b(−z) > 0 for all z ∈ [0, z̄]

I p∗(z) = −p∗(−z) ≥ 0 for all z ∈ [0, z̄] graph

I F (p̂ + p∗(z), z) = F (−p̂ + p∗(−z),−z) + f (z) for all z ∈ [0, z̄] and all p̂.
graph

Then if λa and σ̄ are differentiable w.r.t. π:
∂λa
∂π = 0, ∂σ̄∂π = 0 and ∂E[V ]

∂π = 0 at π = 0.

Example: positive coefficients a0,b0,d0, c0, f0:

a(z) = −a0z , b(z) = b0, F (p, z) = d0 − c0 (p − z)2 − f0z so p∗(z) = z

back
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