From Hyperinflation to Stable Prices: Argentina's evidence on menu cost models

Fernando Alvarez¹ Martin Beraja² Andy Neumeyer³ Martin Gonzalez-Rozada³

¹U of Chicago ²MIT ³UTDT

Overview

- Assess several *key robust* predictions of class of menu cost models.
- Model makes sharp predictions about differential response to changes in the average rate of inflation at π = 0 and at π = ∞.
- Evaluate predictions using variation of inflation in Argentina that includes periods of extremely low and high inflation.
 - Predictions of the menu cost model refer to:
 - (1) Frequency of price changes
 - (2) Dispersion of frequencies of price changes across products
 - (3) Intensive and extensive price increases/decreases.
 - (4) Relative price dispersion.

Outline for the talk

- 1. Briefly review the theoretical model
- 2. State the key predictions of the model
- 3. Describe the data
- 4. Describe the empirical results

Set up of Menu Cost Model

- ► $F(p \omega, z)$ per period real profit of monopolistic competitive firm,
 - p log nominal price,
 - ω log nominal wages: $d\omega = \pi dt$ so that π trend of nominal costs— i.e. inflation rate,
 - ► *z* shock to profits: $\mathbb{E}[dz] = a(z)dt$, and $\mathbb{E}[dz^2] = \sigma^2 b(z)^2 dt$.
- r real discount rate,
- $C = \zeta(z)$ fixed cost of changing prices.

Menu Cost Model, Firm's problem

- Optimal price setting behavior of firms subject to idiosyncratic shocks that affect its profits in an economy with deterministic inflation.
- Choose stopping times and size of price changes $\{\tau_i, \Delta p(\tau_i)\}$

$$V(\boldsymbol{p} - \boldsymbol{\omega}, \boldsymbol{z}) = \max_{\{\tau_i, \Delta p_i\}_{i=0}^{\infty}} \mathbb{E} \left[\int_0^\infty e^{-rt} F(\boldsymbol{p}(t) - \boldsymbol{\omega} - \pi t, \boldsymbol{z}(t)) dt - \sum_{i=0}^\infty e^{-r\tau_i} \zeta(\boldsymbol{z}(t)) \mid \boldsymbol{z}(0) = \boldsymbol{z} \right]$$

s.t. $\boldsymbol{p}(t) = \boldsymbol{p} + \sum_{i=0}^{\tau_i < t} \Delta \boldsymbol{p}(\tau_i)$ for all $t \ge 0$ and $d\boldsymbol{z}(t) = \boldsymbol{a}(\boldsymbol{z}(t)) dt + \sigma b(\boldsymbol{z}(t)) dW(t)$ where $\boldsymbol{z}(0) = \boldsymbol{z}$.

Menu cost model: optimal price policy

Firm (static) problem with flexible prices

$$p_j^*(t) = rg \max_p F\left(p - \omega - \pi t \;,\; z
ight)$$

- Price gaps $g_i(t) \equiv p_i(t) p_i^*(t)$ or markup deviations
- Optimal sS rule described by 3 numbers $g < g^* < \overline{g}$:
 - If $g \leq \underline{g}$ pay fixed cost & increase price so that $g \rightarrow g^*$, thus $\Delta_{\rho}^+ = g^* g$.
 - If g ≥ g pay fixed cost & decrease price so that g → g*, thus Δ[−]_p = g − g*.
- Aggregating decision across idiosy. shocks \implies invariant distribution:
 - Standard deviation of relative prices $\bar{\sigma}(\pi, \sigma^2)$
 - Expected number of adjustment per unit of time $\lambda_a(\pi, \sigma^2)$

Low inflaction case, no first order effect of inflation

- If the profit function graph and shocks z are symmetric: details
 - the frequency of price adjustments is symmetric around $\pi = 0$.
 - Intuition: frequency of price changes for 1% inflation vs. 1% deflation.
- If λ_a and $\bar{\sigma}$ are differentiable w.r.t. π , at $\pi = 0$, they react to $\pi = 0$ as

$$rac{\partial \lambda_a}{\partial \pi} = 0 \text{ and } rac{\partial \overline{\sigma}}{\partial \pi} = 0$$

 $rac{\partial \lambda_a^+}{\partial \pi} = -rac{\partial \lambda_a^-}{\partial \pi} \text{ and } rac{\partial \Delta_a^+}{\partial \pi} = -rac{\partial \Delta_a^-}{\partial \pi}$

.

Symmetry also implies that the *levels* at $\pi = 0$:

$$\lambda_a^+ = \lambda_a^-$$
 and $\Delta_a^+ = \Delta_a^-$

Low Inflation Case, comments

– Intuition: when $\pi = 0$ and $\sigma > 0$ price changes stem from idiosyncratic shocks so a change in inflation has no first order effects.

- Assumptions
 - Approximate symmetry is consequence of low adjustment cost C.
 - If cost *C* small, then *p* is close to $p^*(z)$.
 - > 2nd order approx. $F(\cdot, z)$ around $p^*(z)$.

– Example: quadratic profit function and $dz = -a z dt + \sigma b dW$

Elasticities for high inflation

- We want to characterize elasticities for high π keeping σ^2 constant.
- First to consider $\sigma^2 = 0$ and $\pi > 0$: Sheshinski-Weiss.
 - *sS*: when relative price hits $s < p^*$ adjust to $S > p^*$.
 - Time between adjustments $(S s)/\pi = 1/\lambda_a$.
 - Log of relative prices, uniform on S s, so $\bar{\sigma} = (S s)/\sqrt{12}$
 - Either as approximation for small fixec cost

$$\lim_{C\downarrow 0} \frac{\pi}{\lambda_a} \frac{\partial \lambda_a}{\partial \pi} = \frac{2}{3} \text{ and } \lim_{C\downarrow 0} \frac{\pi}{\bar{\sigma}} \frac{\partial \bar{\sigma}}{\partial \pi} = \frac{1}{3}.$$

• or exactly for all cost C if $F(\cdot)$ is quadratic around p^* and r = 0:

High Inflation Case, comments

Does $\sigma = 0$, $\pi > 0$ have the same elasticity as $\sigma > 0$, $\pi = \infty$? Yes, only ratio π/σ^2 matters!

- Multiply *r*, drift $a(\cdot)$, σ^2 , π by k > 0 change units of time.
- Thus λ_a is multiplied by k, i.e. measured time in months vs years.
- Set r = 0 : maximizes expected average profits, and
- Set $a(\cdot) = 0$, so shocks are permanent,
- Thus $\lambda_a(\pi, \sigma^2)$ is homogenous of degree one in (π, σ^2)

$$\lim_{\sigma^2 > 0, \pi \to \infty} \frac{\pi}{\lambda_a(\pi, \sigma^2)} \frac{\partial \lambda_a(\pi, \sigma^2)}{\partial \pi} = \lim_{\pi > 0, \sigma^2 \to 0} \frac{\pi}{\lambda_a(\pi, \sigma^2)} \frac{\partial \lambda_a(\pi, \sigma^2)}{\partial \pi}$$

• Intuition: As $\pi \to \infty$ effect of σ negligible

Martin Beraja (MIT)

Dispersion of the Frequency of Price Changes (λ) and Inflation (π)

- As inflation becomes large the dispersion of λ s across goods falls.
- Interpretation: the common aggregate shock swamps heterogeneity across goods.
 - As π/σ^2 becomes large the model with idiosyncratic converges to Sheshinski-Weiss
- Two models that differ on volatility $\sigma_1^2 > \sigma_1^2$.
 - At $\pi = 0$ then $\lambda_a(\pi, \sigma_1^2) > \lambda_a(\pi, \sigma_2^2)$
 - On the other extreme for verly large $\pi \to \infty$:

$$\lim_{\pi \to \infty} \frac{\lambda_a\left(\pi, \sigma_1^2\right)}{\lambda_a\left(\pi, \sigma_2^2\right)} \to 1$$

Decomposition of Changes on Inflation

General decomposition:

$$\pi = \Delta_p^+ \lambda_a^+ - \Delta_p^- \lambda_a^-$$

• Low Inflation, i.e. as $\pi \to 0$, differentiating w.r.t. π :

▶ High Inflation, i.e. as $\pi \to \infty$ (using $\lambda_a^- = 0$) elasticities w.r.t. log π :

Argentine Data Description

Underlying raw data for the Argentine CPI

- December 1988-September 1997
- ▶ 8,618,345 price quotes for *items*.
- item : good/service of a determined brand sold in a specific outlet in a specific period of time.
- Goods/services are divided into two groups:
 - ► *Homogeneous*: barley bread, chicken, lettuce, etc.
 - *Differentiated* : moccasin shoes, utilities, tourism, and professional services.
- 302 of prices collected every month (56% exp.)
- 233 of prices collected every two weeks (44% exp.)
- On average across the 9 years there are 166 outlets per good

Inflation and the Frequency of Price Adjustment

Estimator of the frequency of price changes

 $\lambda_t = -\ln(1 - \text{Fraction outlets change price between } t \text{ and } t - 1)$

- Results
 - The derivative of the frequency of price changes with respect to inflation are very for low inflation rates (but derivative of difference of increases minus decreases is large)
 - ► The elasticity of the frequency of price changes with respect to inflation are between ¹/₂, ²/₃ for high inflation rates.
- Relation to existing literature.
 - The level of the estimated frequency of price changes and its relation to inflation are consistent with other studies
 - Due to the range of inflation in our sample we span and extend existing international evidence.

Martin Beraja (MIT)

Figure: Estimated Frequency of Price Changes λ and Expected Inflation

Simple estimator $\hat{\lambda}_t = -\log(1 - f_t)$, where f_t fraction of outlets that changed price in period t.

Figure: Frequency of price changes λ and the inflation rate (pooled simple estimator)

Figure: Monthly Frequency of Price Changes & Inflation: Comparison to other Studies

we plot -log(1 - f), f = reported frequency of price changes in each study.

Martin Beraja (MIT)

Inflation vs Extensive/Intensive Margins of Price Increases/Decreases

Extensive Margin

- Fraction of Price Increases and Decreases is similar for low inflation rates
- Fraction of Price Increases converges to λ for high inflation rates
- Fraction of Price Decreases converges to 0 for high inflation rates
- Intensive Margin
 - Magnitude of Price Increases and Decreases is similar for low inflation rates
 - Magnitude of Price Increases is increasing in π for high inflation rates
 - Magnitude of Price Decreases is (weakly) increasing in π for high infl. rates

Figure: Frequency vs Inflation and Difference in frequencies vs inflation

Figure: Extensive Margin of Price Changes, frequency of price increases and decreases Homogeneous goods

Figure: Intensive Margin of Price Changes, avg. price increases and decreases

21/29

Dispersion across Frequency of Price Changes (λ 's) decreases with Inflation (π), asymptotic restult on ratio

Figure: Estimates of λ by product. Homogeneous goods sampled twice a month

Relative Price Dispersion and Inflation

- Comparative static results of model reviewed above imply:
 - Zero elasticity to inflation on dispersion at low inflation.
 - 1/3 elasticity of dispersion to inflation at high inflation (lower elasticity if shocks are persistent)
- Interpretation: model applies for pricing across outlets.
- Measure the dispersion of relative prices through the residual variance in a regression of prices at each time, store and good on a rich set of fixed effects.

${\sf Regressions} \implies$

residual variance of price levels per period

Models i:	# of	Adj- <i>R</i> ²	Elast at	Elast at	Elast at
indicate dummies	dummies		$\pi = 100\%$	$\pi = 500\%$	$\pi = 700\%$
1: time	212	0.751	0.03	0.21	0.31
2: time + good + store	4,978	0.982	0.06	0.26	0.34
3: time + good \times store	74,755	0.987	0.14	0.35	0.37
4: time + good × store × non-subs-spell	153,896	0.989	0.16	0.37	0.38
5: time \times store + time \times good	464,505	0.996	0.13	0.30	0.28
+ good \times store \times non-subs-spell					

Price observations in each regression 5,497,452 for 233 outlets w/prices collected twice a month, 212 periods.

Cost of inflation due to price dispersion \approx

Increase in variance \times elasticity of substitution / 2

Figure: Average Dispersion of Relative Prices and Inflation

Sensitivity Analysis (Skip)

- Missing data, substitutions and sales.
- Different aggregation methods.
- Contemporaneous versus expected inflation.
- Estimator (missing price changes at high inflation).
- Dynamics of Disinflation during convertibility
- Time aggregation at high inflation

Conclusions

- Empirical analysis of the effect of Inflation on price dynamics guided by the menu cost model of price setting.
- Unique data set that spans periods of sustained inflation rates ranging from 0 to over 5000% per year.
- Several key prediction of the model are consistent with the Argentine data.

No 1st order effect of inflation w/symmetry at $\pi = 0$ Let $Z = [-\overline{z}, \overline{z}]$, define $p^*(z) = \arg \max_x F(x, z)$ & normalize $p^*(0) = 0$.

Assume that $F(\cdot)$ and $a(\cdot), b(\cdot)$ are symmetric a

- ► $a(z) = -a(-z) \le 0$ and b(z) = b(-z) > 0 for all $z \in [0, \overline{z}]$
- ▶ $p^*(z) = -p^*(-z) \ge 0$ for all $z \in [0, \overline{z}]$ ♥ graph

► $F(\hat{\rho} + \rho^*(z), z) = F(-\hat{\rho} + \rho^*(-z), -z) + f(z)$ for all $z \in [0, \overline{z}]$ and all $\hat{\rho}$.

Then if λ_a and $\bar{\sigma}$ are differentiable w.r.t. π :

 $\frac{\partial \lambda_a}{\partial \pi} = 0$, $\frac{\partial \bar{\sigma}}{\partial \pi} = 0$ and $\frac{\partial \mathbb{E}[V]}{\partial \pi} = 0$ at $\pi = 0$.

Example: positive coefficients a_0, b_0, d_0, c_0, f_0 :

 $a(z) = -a_0 z$, $b(z) = b_0$, $F(p, z) = d_0 - c_0 (p - z)^2 - f_0 z$ so $p^*(z) = z$

Martin Beraja (MIT)