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 treatment effects 

 

The term ‘treatment effect’ refers to the causal effect of a binary (0–1) variable on an 

outcome variable of scientific or policy interest.  Economics examples include the effects 

of government programmes and policies, such as those that subsidize training for 

disadvantaged workers, and the effects of individual choices like college attendance. The 

principal econometric problem in the estimation of treatment effects is selection bias, 

which arises from the fact that treated individuals differ from the non-treated for reasons 

other than treatment status per se.   Treatment effects can be estimated using social 

experiments, regression models, matching estimators, and instrumental variables. 

 

 

A ‘treatment effect’ is the average causal effect of a binary (0–1) variable on an outcome 

variable of scientific or policy interest.  The term ‘treatment effect’ originates in a medical 

literature concerned with the causal effects of binary, yes-or-no ‘treatments’, such as an 

experimental drug or a new surgical procedure.  But the term is now used much more generally. 

The causal effect of a subsidized training programme is probably the mostly widely analysed 

treatment effect in economics (see, for example, Ashenfelter, 1978, for one of the first examples, 

or Heckman and Robb, 1985 for an early survey).  Given a data-set describing the labour market 

circumstances of trainees and a non-trainee comparison group, we can compare the earnings of 

those who did participate in the programme and those who did not.  Any empirical study of 

treatment effects would typically start with such simple comparisons.  We might also use 

regression methods or matching to control for demographic or background characteristics. 

In practice, simple comparisons or even regression-adjusted comparisons may provide 

misleading estimates of causal effects.  For example, participants in subsidized training 

programmes are often observed to earn less than ostensibly comparable controls, even after 

adjusting for observed differences (see, for example, Ashenfelter and Card, 1985).  This may 

reflect some sort of omitted variables bias, that is, a bias arising from unobserved and 

uncontrolled differences in earnings potential between the two groups being compared.  In 
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general, omitted variables bias (also known as selection bias) is the most serious econometric 

concern that arises in the estimation of treatment effects.  The link between omitted variables 

bias, causality, and treatment effects can be seen most clearly using the potential-outcomes 

framework. 

 

Causality and potential outcomes 

The notion of a causal effect can be made more precise using a conceptual framework that 

postulates a set of potential outcomes that could be observed in alternative states of the world. 

Originally introduced by statisticians in the 1920s as a way to discuss treatment effects in 

randomized experiments, the potential outcomes framework has become the conceptual 

workhouse for non-experimental as well as experimental studies in many fields (see Holland, 

1986, for a survey and Rubin, 1974; 1977, for influential early contributions).  Potential 

outcomes models are essentially the same as the econometric switching regressions model 

(Quandt, 1958), though the latter is usually tied to a linear regression framework.  Heckman 

(1976; 1979) developed simple two-step estimators for this model.   

 

Average causal effects 

Except in the realm of science fiction, where parallel universes are sometimes imagined to be 

observable, it is impossible to measure causal effects at the individual level.  Researchers 

therefore focus on average causal effects.  To make the idea of an average causal effect concrete, 

suppose again that we are interested in the effects of a training programme on the post-training 

earnings of trainees.  Let Y1i denote the potential earnings of individual i if he were to receive 

training and let Y0i denote the potential earnings of individual i if not.  Denote training status by 

a dummy variable, Di. For each individual, we observe Yi = Y0i + Di(Y1i − Y0i), that is, we observe 

Y1i for trainees and Y0i for everyone else.   

Let E[·] denote the mathematical expectation operator, i.e., the population average of a 

random variable.  For continuous random variables, E[Yi] = ∫yf(y)dy, where f(y) is the density of 

Yi.  By the law of large numbers, sample averages converge to population averages so we can 

think of E[·] as giving the sample average in very large samples.  The two most widely studied 
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average causal effects in the treatment effects context are the average treatment effect (ATE), 

E[Y1i − Y0i], and the average treatment effect on the treated (ATET), E[Y1i − Y0i| Di = 1]. Note that 

the ATET can be rewritten 

   i i i i i iEY Y D EY D EY D1 0 i 1 0[ - | =1]= [ | =1]- [ | =1].

 

This expression highlights the counter-factual nature of a causal effect.  The first term is the 

average earnings in the population of trainees, a potentially observable quantity.  The second 

term is the average earnings of trainees had they not been trained.  This cannot be observed, 

though we may have a control group or econometric modelling strategy that provides a 

consistent estimate. 

 

Selection bias and social experiments  

As noted above, simply comparing those who are and are not treated may provide a misleading 

estimate of a treatment effect.  Since the omitted variables problem is unrelated to sampling 

variance or statistical inference, but rather concerned with population quantities, it too can be 

efficiently described by using mathematical expectation notation to denote population averages. 

The contrast in average outcomes by observed treatment status is 
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Thus, the naive contrast can be written as the sum of two components, ATET, plus selection bias 

due to the fact that the average earnings of non-trainees, E[Y0i|Di = 0], need not be a good stand-

in for the earnings of trainees had they not been trained, E[Y0i|Di = 1]. 

The problem of selection bias motivates the use of random assignment to estimate treatment 

effects in social experiments.  Random assignment ensures that the potential earnings of trainees 

had they not been trained – an unobservable quantity – are well-represented by the randomly 

selected control group.  Formally, when Di is randomly assigned, E[Yi|Di = 1]−E[Yi|Di = 0] = 

E[Y1i−Y0i|Di = 1] = E[Y1i−Y0i]. Replacing E[Yi|Di = 1] and E[Yi|Di = 0] with the corresponding 

sample analog provides a consistent estimate of ATE. 
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Regression and matching 

Although it is increasingly common for randomized trials to be used to estimate treatment 

effects, most economic research still uses observational data.  In the absence of an experiment, 

researchers rely on a variety of statistical control strategies and/or natural experiments to reduce 

omitted variables bias. The most commonly used statistical techniques in this context are 

regression, matching, and instrumental variables.  

Regression estimates of causal effects can be motivated most easily by postulating a 

constant-effects model, where Y1i − Y0i = α (a constant).  The constant-effects assumption is not 

strictly necessary for regression to estimate an average causal effect, but it simplifies things to 

postpone a discussion of this point.  More importantly, the only source of omitted-variables bias 

is assumed to come from a vector of observed covariates, Xi, that may be correlated with Di. The 

key assumption that facilitates causal inference (sometimes called an identifying assumption), is 

that  

 0[ | , ]i i i iE Y X D X β= ′  (1) 
where β is a vector of regression coefficients.  This assumption has two parts.  First, Y0i (and 

hence Y1i, given the constant-effects assumption) is mean-independent of Di conditional on Xi. 

Second, the conditional mean function for Y0i given Xi is linear.  Given eq. (1), it is 

straightforward to show that 

 { ( [ | ])}/ { ( [ | ])} .i i i i i i i iE Y D E D X E D D E D X α− − =  (2) 
This is the coefficient on Di from the population regression of Yi on Di and Xi (that is, the 

regression coefficient in an infinite sample).  Again, the law of large numbers ensures that 

sample regression coefficients estimate this population regression coefficient consistently. 

Matching is similar to regression in that it is motivated by the assumption that the only 

source of omitted variables or selection bias is the set of observed covariates, Xi. Unlike 

regression, however, treatment effects are constructed by matching individuals with the same 

covariates instead of through a linear model for the effect of covariates.  The key identifying 

assumption is also weaker, in that the effect of covariates on Y0i need not be linear.  Instead of 

(1), the conditional independence assumption becomes 
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and, likewise, 

  (4b) 0 0[ ] { [ | , 1] [ | ,i i i i iE Y Y E E Y X D Y X D− = = − =i i1 1

 

In other words, we can construct ATET or ATE by averaging X-specific treatment-control 

contrasts, and then reweighting these X-specific contrasts using the distribution of Xi for the 

treated (for ATET) or using the marginal distribution of Xi (for ATE).  Since these expressions 

involve observable quantities, it is straightforward to construct consistent estimators from their 

sample analogs.   

The conditional independence assumption that motivates the use of regression and matching 

is most plausible when researchers have extensive knowledge of the process determining 

treatment status. An example in this spirit is the Angrist (1998) study of the effect of voluntary 

military service on the civilian earnings of soldiers after discharge, discussed further below.  

 

Regression and matching details 

In practice, regression estimates can be understood as a type of weighted matching estimator.  If, 

for example, E[Di|Xi] is a linear function of Xi (as it might be if the covariates are all discrete), 

then it is possible to show that eq. (2) is equivalent to a matching estimator that weights cell-by-

cell treatment-control contrasts by the conditional variance of treatment in each cell (Angrist, 

1998).  This equivalence highlights the fact that the most important econometric issue in a study 

that relies on conditional independence assumptions to identify causal effects is the validity of 

these conditional independence assumptions, not whether regression or matching is used to 

implement them.  

A computational difficulty that sometimes arises in matching models is how to find good 

matches for each possible value of the covariates when the covariates take on many values.  For 
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example, beginning with Ashenfelter (1978), many studies of the effect of training programmes 

have shown that trainees typically experience a period of declining earnings before they go into 

training.  Because lagged earnings is both continuous and multidimensional (since more than one 

period’s earnings seem to matter), it may be hard to match trainees and controls with exactly the 

same pattern of lagged earnings. A possible solution in this case is to match trainees and controls 

on the propensity score, the conditional probability of treatment given covariates.  Propensity-

score matching relies on the fact that, if conditioning on Xi eliminates selection bias, then so 

does conditioning on P[Di = 1|Xi], as first noted by Rosenbaum and Rubin (1983).  Use of the 

propensity score reduces the dimensionality of the matching problem since the propensity score 

is a scalar, though in practice it must still be estimated.  See Dehejia and Wahba (1999) for an 

illustration. 

 

Regression and matching example 

Between 1989 and 1992, the size of the military declined sharply because of increasing 

enlistment standards.  Policymakers would like to know whether the people – many of them 

black men – who would have served under the old rules but were unable to enlist under the new 

rules were hurt by the lost opportunity for service.  The Angrist (1998) study was meant to 

answer this question. The conditional independence assumptions seems plausible in this context 

because soldiers are selected on the basis of a few well-documented criteria related to age, 

schooling, and test scores and because the control group also applied to enter the military. 

Naive comparisons clearly overestimate the benefit of military service.  This can be seen in 

Table 1, which reports differences-in-means, matching, and regression estimates of the effect 

voluntary military service on the 1988–91 Social Security-taxable earnings of men who applied 

to join the military between 1979 and 1982.  The matching estimates were constructed from the 

sample analog of (4a), that is, from covariate-value-specific differences in earnings, weighted to 

form a single estimate using the distribution of covariates among veterans.  The covariates in this 

case were the age, schooling, and test-score variables used to select soldiers from the pool of 

applicants.  Although white veterans earn $1,233 more than non-veterans, this difference 

becomes negative once the adjustment for differences in covariates is made. Similarly, while 
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non-white veterans earn $2,449 more than non-veterans, controlling for covariates reduces this to 

$840. 

 

Table 1     Matching and regression estimates of the effects of voluntary military service in  
       the United States 
 
 
Race 

Average 
earnings in 
1988–91 

Differences in 
means 

Matching 
estimates 

Regression 
estimates 

Regression 
minus 
matching 

 (1) (2) (3) (4) (5) 
Whites 14,537 1,233.4  

(60.3) 
– 197.2 
(70.5) 

– 88.8 
(62.5) 

108.4 
(28.5) 

Non-whites 11,664 2,449.1 
(47.4) 

839.7 
(62.7) 

1,074.4 
(50.7) 

234.7 
(32.5) 

Notes: Figures are in nominal US dollars. The table shows estimates of the effect of voluntary military service on 
the 1988–91 Social Security-taxable earnings of men who applied to enter the armed forces during 1979–82.  The 
matching and regression estimates control for applicants’ year of birth, education at the time of application, and 
Armed Forces Qualification Test (AFQT) score.  There are 128,968 whites and 175,262 non-whites in the sample.  
Standard errors are reported in parentheses.   
 
Source:  Adapted from Angrist (1998, Tables II and V). 

 

Table 1 also shows regression estimates of the effect of voluntary service, with the same 

covariates used in the matching estimates controlled for.  These are estimates of αr in the 

equation  

 ,i XX
Y β= +∑ iX r i id αD e+   

 

where βX is a regression-effect for Xi = X and αr is the regression parameter.  This corresponds to 

a saturated model for discrete Xi. The regression estimates are larger than (and significantly 

different from) the matching estimates.  But the regression and matching estimates are not very 

different economically, both pointing to a small earnings loss for White veterans and a modest 

gain for non-whites.   

 

Instrumental variables estimates of treatment effects 

The conditional independence assumption required for regression or matching to identify a 

treatment effect is often implausible.  Many of the necessary control variables are typically 

unmeasured or simply unknown.  Instrumental variables (IV) methods solve the problem of 



 

 8

missing or unknown controls, much as a randomized trial also obviates the need for regression or 

matching.  To see how this is possible, begin again with a constant effects model without 

covariates, so Y1i−Y0i = α. Also, let Y0i = β + εi, where β ≡ E[Y0i].  The potential outcomes model 

can now be written 

 ,iY β= + +i iαD ε  (5) 
 

where α is the treatment effect of interest.  Because Di is likely to be correlated with εi, 

regression estimates of eq. (5) do not estimate α consistently.  

Now suppose that in addition to Yi and Di there is a third variable, Zi, that is correlated with 

Di, but unrelated to Yi for any other reason.  In a constant-effects world, this is equivalent to 

saying Y0i and Zi are independent.  It therefore follows that 

  (6) [ | ],iE Ziε

a conditional independence restriction on the relation between Zi and Y0i, instead of between Di 

and Y0i as required for regression or matching strategies. The variable Zi is said to be an IV or 

just ‘an instrument’ for the causal effect of Di on Yi. 

Suppose that Zi is also a 0–1 variable.  Taking expectations of (5) with Zi switched off and 

on, we immediately obtain a simple formula for the treatment effect of interest: 

 { [ | 1] [ | 0]}/{ [ | 1] [ | 0]}i i i i i i i iE Y Z E Y Z E D Z E D Z α= − = = − = = .  (7) 
The sample analog of this equation is sometimes called the Wald estimator, since it first appear 

in a paper by Wald (1940) on errors-in-variables problems.   There are other more complicated 

IV estimators involving continuous, multi-valued, or multiple instruments.  For example, with a 

multi-valued instrument, we might use the sample analog of Cov(Zi, Yi)/ Cov(Di, Yi). This 

simplifies to the Wald estimator when Zi is 0–1.  The Wald estimator captures the main idea 

behind most IV estimation strategies since more complicated estimators can usually be written as 

a linear combination of Wald estimators (Angrist, 1991). 

 

IV example 

To see how IV works in practice, it helps to use an example, in this case the effect of Vietnam-

era military service on the earnings of veterans later in life (Angrist, 1990).  In the 1960s and 
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early 1970s, young men were at risk of being drafted for military service.  Concerns about 

fairness also led to the institution of a draft lottery in 1970 that was used to determine priority for 

conscription in cohorts of 19-year-olds.  A natural instrumental variable for the Vietnam veteran 

treatment effect is draft-eligibility status, since this was determined by a lottery over birthdays.  

In particular, in each year from 1970 to 1972, random sequence numbers (RSNs) were randomly 

assigned to each birth date in cohorts of 19-year-olds.  Men with lottery numbers below an 

eligibility ceiling were eligible for the draft, while men with numbers above the ceiling could not 

be drafted.  In practice, many draft-eligible men were still exempted from service for health or 

other reasons, while many men who were draft-exempt nevertheless volunteered for service.  So 

veteran status was not completely determined by randomized draft eligibility; eligibility and 

veteran status are merely correlated. 

 

Table 2   IV estimates of the effects of military service on US white men born 1950 
Earnings year Earnings  Veteran status  
 Mean Eligibility 

effect 
 Mean Eligibility 

effect 
 

Wald estimate of 
veteran effect 

 (1) (2)  (3) (4)  (5) 
1981 16,461 – 435.8 

(210.5) 
 0.267 0.159 

(.040) 
 – 2,741  

(1,324) 
1970 2,758 – 233.8 

(39.7) 
    – 1,470 

(250) 
1969 2,299 – 2.0 

(34.5) 
     

Notes:  Figures are in nominal US dollars.  There are about 13,500 observations with earnings in each cohort. 
Standard errors are shown in parentheses. 
 
Sources: Adapted from Angrist (1990, Tables 2 and 3), and unpublished author tabulations. Earnings data are from 
Social Security administrative records. Veteran status data are from the Survey of Program Participation. 
 

For white men who were at risk of being drafted in the 1970–71 draft lotteries, draft-

eligibility is clearly associated with lower earnings in years after the lottery.  This can be seen in 

Table 2, which reports the effect of randomized draft-eligibility status on average Social 

Security-taxable earnings in column (3).  Column (1) shows average annual earnings for 

purposes of comparison.  For men born in 1950, there are significant negative effects of 

eligibility status on earnings in 1970, when these men were being drafted, and in 1981, ten years 
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later.  In contrast, there is no evidence of an association between eligibility status and earnings in 

1969, the year the lottery drawing for men born in 1950 was held but before anyone born in 1950 

was actually drafted.   

Because eligibility status was randomly assigned, the claim that the estimates in column (3) 

represent the effect of draft eligibility on earnings seems uncontroversial.  The only information 

required to go from draft-eligibility effects to veteran-status effects is the denominator of the 

Wald estimator, which is the effect of draft-eligibility on the probability of serving in the 

military.  This information is reported in column (4) of Table 2, which shows that draft-eligible 

men were 0.16 more likely to have served in the Vietnam era.  For earnings in 1981, long after 

most Vietnam-era servicemen were discharged from the military, the Wald estimates of the 

effect of military service amount to about 15 percent of earnings.  Effects were even larger in 

1970, when affected soldiers were still in the army.  

   

IV with heterogeneous treatment effects 

The constant-effects assumption is clearly unrealistic.  We’d like to allow for the fact that some 

men may have benefited from military service while others were undoubtedly hurt by it.  In 

general, however, IV methods fail to capture either ATE or ATET in a model with 

heterogeneous treatment effects.  Intuitively, this is because only a subset of the population is 

affected by any particular instrumental variable.  In the draft lottery example, many men with 

high lottery numbers volunteered for service anyway (indeed, most Vietnam veterans were 

volunteers), while many draft-eligible men nevertheless avoided service.  The draft lottery 

instrument is not informative about the effects of military service on men who were unaffected 

by their draft-eligibility status.  On the other hand, there is a sub-population who served solely 

because they were draft-eligible, but would not have served otherwise.  Angrist, Imbens and 

Rubin (1996) call the population of men whose treatment status can be manipulated by an 

instrumental variable the set of compliers.  This term comes from an analogy to a medical trial 

with imperfect compliance.  The set of compliers are those who ‘take their medicine’, that is, 

they serve in the military when draft-eligible but they do not serve otherwise.   

Under reasonably general assumptions, IV methods can be relied on to capture the effect of 
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treatment on compliers.  The average effect for this group is called a local average treatment 

effect (LATE), and was first discussed by Imbens and Angrist (1994).  A formal description of 

LATE requires one more bit of notation.  Define potential treatment assignments D0i and D1i to 

be individual i’s treatment status when Zi equals 0 or 1. One of D0i or D1i is counterfactual since 

observed treatment status is  

 0(i iD D Z D D= + −i i0 1   
The key identifying assumptions in this setup are (a) conditional independence, that is, that the 

joint distribution of {Y1i, Y0i, D1i, D0i} is independent of Zi; and (b) monotonicity, which requires 

that either D1i ≥ D0i for all i or vice versa.  Monotonicity requires that, while the instrument might 

have no effect on some individuals, all of those who are affected should be affected in the same 

way (for example, draft eligibility can only make military service more likely, not less).  Assume 

without loss of generality that monotonicity holds with D1i ≥ D0i.  Given these two assumptions, 

the Wald estimator consistently estimates LATE, written formally as E[Y1i − Y0i|D1i > D0i].  In the 

draft lottery example, this is the effect of military service on those veterans who served because 

they were draft eligible but would not have served otherwise.  In general, LATE compliers are a 

subset of the treated.  An important special case where LATE = ATET is when D0i equals zero 

for everyone.  This happens in a social experiment with imperfect compliance in the treated 

group and no one treated in the control group. 

 

IV Details 

Typically, covariates play a role in IV models, either because the IV identification assumptions 

are more plausible conditional on covariates or because of statistical efficiency gains. Linear IV 

models with covariates can be estimated most easily by two-stage least squares (2SLS), which 

can also be used to estimate models with multi-valued, continuous, or multiple instruments.  See 

Angrist and Imbens (1995) or Angrist and Krueger (2001) for details and additional references.  

 

Joshua D. Angrist  

 

See also instrumental variables with weak instruments; matching estimators; regression-
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discontinuity analysis; Rubin causal model; selection bias and self-selection; two-stage least 

squares and the k-class estimator 
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