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Instrumental Variables (IV) methods identify internally valid causal effects for individuals
whose treatment status is manipulable by the instrument at hand. Inference for other popu-
lations requires homogeneity assumptions. This paper outlines a theoretical framework that
nests causal homogeneity assumptions. These ideas are illustrated using sibling-sex composi-
tion to estimate the effect of childbearing on economic and marital outcomes. The application
is motivated by American welfare reform. The empirical results generally support the notion of
reduced labour supply and increased poverty as a consequence of childbearing but evidence on
the impact of childbearing on marital stability and welfare use is more tenuous.

Empirical research often focuses on causal inference for the purpose of predic-
tion, yet it seems fair to say that most prediction involves a fair amount of guess-
work. The relevance or ‘external validity’ of a particular set of empirical results is
always an open question. As Karl Pearson (1911, p. 157) observed in an early
discussion of the use of correlation for prediction, ‘Everything in the universe
occurs but once, there is no absolute sameness of repetition.’ This practical dif-
ficulty notwithstanding, empirical research is almost always motivated by a belief
that estimates for a particular context provide useful information about the likely
effects of similar programmes or events in the future. Our investment of time and
energy in often-discouraging empirical work reveals that empiricists like me are
willing to extrapolate.

The basis for extrapolation is a set of assumptions about the cross-sectional
homogeneity or temporal stability of causal effects. As a graduate student, I
learned about parameter stability as ‘the Lucas critique’, while my own teaching
and research focuses on the identification possibilities for average causal effects in
models with heterogeneous potential outcomes. Applied micro-econometricians
devote considerable attention to the question of whether homogeneity and sta-
bility assumptions can be justified and to the implications of heterogeneity for
alternative parameter estimates. Regrettably, this sort of analysis sometimes comes
at the expense of a rigorous examination of the internal validity of estimates, i.e.,
whether the estimates have a causal interpretation for the population under study.
Clearly, however, even internally valid estimates are less interesting if they are
completely local, i.e., have no predictive value for populations other than the
directly affected group.
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In this paper, I discuss the nature and consequences of homogeneity assump-
tions that facilitate the use of instrumental variables (IV) estimates for extrapola-
tion.1 To be precise, I am interested in the assumptions that link a Local Average
Treatment Effect (LATE) tied to a particular instrument with the population
Average Treatment Effect (ATE), which is not instrument-dependent. Implicitly,
I have in mind prediction for populations defined by covariates. I focus on ATE
because it answers the question: ‘If we were to treat individuals with characteristics
X, what would the likely change in outcomes be’? This allows me to sidestep
variability due to changes in the process determining treatment status. For
example, causal research often focuses on average treatment effects in the treated
population. Overall average treatment effects are theoretically more stable than
average effects on the treated, since the latter depend on who gets treated as well
as on the distribution of potential outcomes.

The external validity of IV estimates is of special interest both because of the
growing importance of IV methods in empirical work (see, e.g., Moffit, 1999), and
because the ex ante generality of IV estimates is limited in a precise way by a
number of well-known theoretical results. Except in special cases like constant
treatment effects and certain types of randomised trials, the standard IV assump-
tions of exclusion and independence – analogous to the notion that the instru-
ment induces a good experiment for the effect of interest – are not sufficient to
capture the expected causal effect on a randomly selected individual or even in the
population subject to treatment. Rather, basic IV assumptions identify causal ef-
fects on ‘compliers’, defined as the subpopulation of treated individuals whose
treatment status can be influenced by the instrument. Although this limitation is
unsurprising and the compliers are often of interest in themselves, the nature and
plausibility of assumptions under which IV estimates have broader predictive
power are worth exploring.

The next two Sections develop a theoretical framework linking alternative causal
parameters to population subgroups defined by their response to an instrument.
That is, I consider formal links between parameters like LATE and ATE. My
agenda is to make this link using a range of assumptions, progressing from
stronger (no selection bias) to weaker (a proportionality assumption). These
theoretical ideas are then applied to the same sex instrument, used by Angrist and
Evans (1998) to estimate the effects of childbearing on labour supply. This
instrument arises from the fact that some parents prefer a mixed sibling sex
composition. In particular, among parents who have at least two children, those
with two boys or two girls are much more likely to go on to have a third child.
Because child sex is virtually randomly assigned, a dummy for same sex sibling
pairs provides an instrumental variable that can be used to identify the effect of
childbearing on a range of economic and family outcomes.

My earlier work with Evans using the same sex instrument focused on the effects
of childbearing on labour supply. While labour supply outcomes also appear
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1 Denis Sargan noted the difficulty of the core instrumental variables identification problem, i.e.,
identification in models with constant effects, in his seminal 1958 paper: ‘It is not easy to justify the basic
assumptions concerning these errors, namely that they are independent of the instrumental variables.’
(p. 396; quoted in Arellano (2002)).
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in this paper, the empirical work features an investigation of the effects of
childbearing on marital stability. An inquiry into the effects of family size on marital
stability can be motivated by American welfare reform, which penalises further
childbearing by women receiving public assistance on the grounds that increases in
family size make continued poverty and welfare receipt more likely. I therefore look
at effects on marital status, poverty status, and welfare use, as well as labour supply.
Estimates of ATE for the effects of childbearing are generally smaller than estimates
of LATE. For example, while estimates of LATE for the effect of childbearing on
welfare use and marital stability are mostly significantly different from zero, most
(though not all) of the estimates of ATE for effects of childbearing on marital status
and welfare use are small and insignificant. One tantalising result is that for teen
mothers, LATE is identical to the population average treatment effect when the
latter is imputed under two of the assumptions considered below.

The empirical results suggest a pattern of modest effects but the variability in
parameter estimates across model specifications and samples, as well as the usual
problem of more imprecise estimates under weaker identifying assumptions,
reduces the predictive value of any findings. On balance it seems fair to say that the
attempt to go from LATE to ATE weakens the evidence for an adverse effect of
childbearing on marital stability and welfare use, but the estimates of ATE do not
provide a sharp alternative to LATE. This is perhaps not surprising, given the
difficulty of the underlying identification problem. As in the experimental sci-
ences, the best evidence for predictive value is likely to come from new data sets
and new experiments, which in the case of applied econometrics usually means
new instruments.

1. Causality and Potential Outcomes in Research on Childbearing

The effects of children on marital stability have long been of interest to social
scientists and are of course of more than academic interest to many married
couples. Previous research (Becker et al., 1977; Cherlin, 1977; Heaton, 1990 and
Waite and Lillard, 1991) suggests the presence of young children increases marital
stability, although many authors acknowledge serious selection problems that may
bias results. A related issue is the connection between childbearing and women’s
standard of living. A large literature looks at the effect of teen childbearing on
mothers’ schooling, earnings, and welfare status, sometimes using instrumental
variables (Bronars and Grogger, 1994). Interest in this question can be motivated
by welfare reform, which includes ‘family caps’ in many US states. Family caps
reduce or eliminate benefits paid for children born to welfare recipients, on the
theory that further childbearing by welfare mothers increases the likelihood they
will stay poor and therefore continue to receive benefits.2

Are children the glue that holds couples together or a burden that accelerates a
fragile family’s collapse? Does childbearing further impoverish poor women?

2 See Maynard et al. (1998) for more on the motivation for family caps. The possibility of a link
between childbearing and poverty notwithstanding, there is little evidence that family caps actually
affect fertility. See, e.g., Grogger and Bronars (2001), Blank (2002) or Kearney (2002).
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Implicit in these questions is the notion of potential outcomes, i.e., a contrast in
circumstances with and without childbearing, for a given family. To represent this
idea formally, let Di be an indicator for women with more than two children in a
sample of women with at least two children. Because Di is binary, I will refer to it as
a ‘treatment’, even though family size is not determined directly by a programme
or policy. Let Y1i be a woman’s circumstances if Di ¼ 1, and let Y0i be her cir-
cumstances otherwise. We imagine both of these potential outcomes are well-
defined for everyone, though only one is ever observed for each woman. Formally,
this can be expressed by writing the observed outcome, Yi, as

Yi ¼ Y0ið1 � DiÞ þ Y1iDi :

For both practical and substantive reasons, I focus here on fertility consequences
defined with reference to the transition from two to more than two children. On
the practical side, instruments based on sibling sex composition are available for
this fertility increment. Angrist and Evans (1998) used parents’ preferences for a
mixed sibling sex composition to estimate the labour supply consequences of
childbearing. On the substantive side, post-war reductions in marital fertility have
been concentrated in the 2–3 child range (Westhoff et al., 1963). While almost all
couples want at least one child, the decision to have a third child may be due in
part to a sense of whether this is good for long-term marital stability or, more
generally, the economic welfare of the family. Finally, interest in the 2-to-3 child
increment is supported by the fact that the population of welfare mothers in 1990
had an average of about 2.3 children and a median of 2 children.

Since Y1i and Y0i are never both observed for the same woman, research on
causal effects tries to capture the average difference in potential outcomes for
different subpopulations. For example, we may be interested in
E(Y1i ) Y0i|Di ¼ 1), which is the effect on women who have a third child. Note that
E(Y1i|Di ¼ 1) is an observable quantity, so estimating E(Y1i ) Y0i|Di ¼ 1) is equiv-
alent to estimating the counter-factual average, E(Y0i|Di ¼ 1). Alternately, we may
be interested in the unconditional average treatment effect (ATE), E(Y1i ) Y0i),
which can be used to make predictive statements about the impact of childbearing
on a randomly chosen woman (or a woman with a particular set of characteristics if
the analysis conditions on covariates). Estimation of ATE is equivalent to estima-
tion of both counterfactual averages, E(Y0i|Di ¼ 1)and E(Y1i|Di ¼ 0).

Causal parameters are easy to describe but hard to measure. The observed dif-
ference in outcomes between those with Di ¼ 1 and Di ¼ 0 equals
E(Y1i ) Y0i|Di ¼ 1) plus a bias term:

EðYi jDi ¼ 1Þ � EðYi jDi ¼ 0Þ ¼ EðY1i jDi ¼ 1Þ � EðY0i jDi ¼ 0Þ
¼ EðY1i � Y0i jDi ¼ 1Þ
þ ½EðY0i jDi ¼ 1Þ � EðY0i jDi ¼ 0Þ�: ð1Þ

The bias term disappears when childbearing is determined in a manner independ-
ent of a woman’s potential outcomes. But this independence assumption seems
unrealistic since childbearing decisions are made in light of information about
family circumstances and earnings potential.

2004] C55T R E A T M E N T E F F E C T H E T E R O G E N E I T Y

� Royal Economic Society 2004



Two sorts of strategies are typically used to estimate causal effects in the pres-
ence of possible omitted variables bias. One assumes that conditional on covari-
ates, Xi, the regressor of interest, Di, is independent of potential outcomes. Then
any causal effect of interest can be estimated from weighted conditional-on-X
comparisons. This is a strong assumption that seems most plausible when
researchers have considerable prior information about the process determining Di.
Alternately, we might try to find an instrumental variable which, perhaps after
conditioning on covariates, is related to Di but independent of potential outcomes.
The instrument used here is a dummy variable indicating same-sex sibling pairs.

2. IV in Context

IV estimates capture the effect of treatment on the treated for those whose treatment
status can be changed by the instrument at hand. This idea is easiest to formalise
using a notation for potential treatment assignments that parallels the notation
for potential outcomes. In particular, let D0i and D1i denote potential treatment
assignments defined relative to a binary instrument. Suppose, for example, Di is
determined by a latent-index assignment mechanism,

Di ¼ 1ðc0 þ c1Zi > giÞ; ð2Þ

where Zi is a binary instrument, and gi is a random error independent of the
instrument. Then the potential treatment assignments are D0i ¼ 1(c0 > gi) and
D1i ¼ 1(c0 + c1 > gi), both of which are independent of Zi.

The constant-effects latent-index assignment model is restrictive since it implies
D1i > D0i for all i, or vice versa. We can relax this restriction by allowing a random c1i

for each i, in which case the latent index model is just an alternative notation for
D0i and D1i. Whether linked to an index model or not, D0i tells us what treatment i
would receive if Zi ¼ 0, and D1i tells us what treatment i would receive if Zi ¼ 1.
The observed assignment variable, Di, can therefore be written:

Di ¼ D0ið1 � ZiÞ þ D1iZi :

This notation makes it clear that, paralleling potential outcomes, only one poten-
tial assignment is ever observed for a particular individual.

The key assumptions supporting IV estimation are given below (for a model
without covariates):

Independence. {Y0i, Y1i, D0i, D1i} ?? Zi.
First stage. P(Di ¼ 1|Zi ¼ 1) „ P(Di ¼ 1|Zi ¼ 0).
Monotonicity. Either D1i ‡ D0i "i or vice versa; without loss of generality, assume
the former.

These assumptions capture the notion that the instrument is ‘as good as randomly
assigned’ (independence), affects the probability of treatment (first-stage), and
affects everyone the same way if at all (monotonicity). Imbens and Angrist (1994)
show that together they imply:

EðYi jZi ¼ 1Þ � EðYi jZi ¼ 0Þ
EðDi jZi ¼ 1Þ � EðDi jZi ¼ 0Þ ¼ EðY1i � Y0i jD1i > D0iÞ:
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The left-hand side of this expression is the population analog of Wald’s (1940)
estimator for regression models with measurement error. The Local Average
Treatment Effect (LATE) on the right hand side, E(Y1i ) Y0i|D1i > D0i), is the
effect of treatment on those whose treatment status is changed by the instrument,
i.e., the population for which D1i ¼ 1 and D0i ¼ 0.3

A standard assumption invoked in most empirical studies is constant causal
effects, i.e.,

Y1i ¼ Y0i þ a;

for some constant a. In the empirical study, below, this implies that IV
consistently estimates the common effect of childbearing on all women, since,
given constant effects, E(Y1i ) Y0i|D1i > D0i) ¼ a. The LATE result highlights the
fact that in a more realistic world where this effect varies (and indeed it must
vary if, for example, Yi is a binary outcome or other variable with limited
support), then we can be sure only that IV captures the effect on individuals
whose treatment status can be changed by manipulating Zi. These are people
with D1i ¼ 1 and D0i ¼ 0, or D1i ) D0i ¼ 1. Note also that since D1i and D0i are
defined with reference to a particular instrument, we should expect different
instruments to uncover different average causal effects. We might, for example,
expect an IV strategy based on the same sex instrument to identify a different
average effect from an instrument based on twin births. In fact, Angrist and
Evans (1998) report IV estimates using twin birth instruments that are much
lower than those using same sex instruments.

Angrist et al. (1996) refer to people with D1i ) D0i ¼ 1 as the population of
compliers. This terminology is motivated by an analogy to randomised trials where Zi

is a randomised offer of treatment and Di is actual treatment status. Since
D1i ) D0i ¼ 1 implies Di ¼ Zi, compliers are those who comply with an experi-
menter’s intended treatment status (though not all those with Di ¼ Zi are com-
pliers, as explained below). For compliers, the averages of Yi1 and Y0i as well as the
average difference are also identified. In particular, Abadie (2002) shows that

EðYiDi jZi ¼ 1Þ � EðYiDi jZi ¼ 0Þ
EðDi jZi ¼ 1Þ � EðDi jZi ¼ 0Þ ¼ EðY1i jD1i > D0iÞ ð3aÞ

E½Yið1 � DiÞjZi ¼ 1� � E½Yið1 � DiÞjZi ¼ 0�
E½ð1 � DiÞjZi ¼ 1� � E½ð1 � DiÞjZi ¼ 0� ¼ EðY0i jD1i > D0iÞ: ð3bÞ

The entire (marginal) distributions of Y1i and Y0i are similarly identified, a fact
used by Abadie et al. (2002) to estimate the causal effect of treatment on the
quantiles of potential outcomes for compliers.

An important econometric result in the theory of causal effects is that when
treatment is assigned by a mechanism like (2), population average treatment

3 Proof of the LATE result: E(Yi|Zi ¼ 1) ¼ E[Y0i + (Y1i ) Y0i)Di|Zi ¼ 1], which equals
E[Y0i + (Y1i ) Y0i)D1i] by independence. Likewise E(Yi|Zi ¼ 0) ¼ E[Y0i + (Y1i ) Y0i)D0i], so the Wald
numerator is E[(Y1i ) Y0i)(D1i ) D0i)]. Monotonicity means D1i ) D0i equals one or zero, so
E[(Y1i ) Y0i)(D1i ) D0i)] ¼ E(Y1i ) Y0i|D1i > D0i)P(D1i > D0i). A similar argument shows E(Di|Zi ¼ 1) )
E(Di|Zi ¼ 0) ¼ E(D1i ) D0i) ¼ P(D1i > D0i).
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effects and the effect on the treated are not identified without assumptions such
as constant effects or some other assumption beyond the three given above. This
result or theorem appears in various forms; see, for example, Chamberlain
(1986), Heckman (1990) and Angrist and Imbens (1991). The next Section
develops a framework that highlights the limits to identification and the role
played by alternative homogeneity assumptions in efforts to go beyond LATE.
The same sex instrument offers an especially challenging proving ground for
these ideas since at most 7% of American women had an additional child as a
result of sex preferences. Causal effects on same sex compliers can therefore be
quite far from overall average effects if the impact of childbearing on these
women is not typical. Before turning to a general discussion of treatment effect
heterogeneity, however, I briefly explore the relationship between LATE, ATE,
and effects on the treated in a parametric model that mimics the same sex setup.

2.1. A Parametric Example

Following Heckman et al. (2001), I calculated average causal effects using a triva-
riate Normal model for the joint distribution of potential outcomes and the error
term in the latent-index assignment mechanism given by (2). Assuming the dis-
tribution of (Y1i Y0i gi)¢ is joint standard Normal, ATE is zero by construction.
Assume also that c1 > 0 so monotonicity is satisfied with D1i ‡ D0i and let q10 be the
correlation between Y1i ) Y0i and gi. In this parametric model, LATE can be
written:

EðY1i � Y0i jD1i > D0iÞ ¼ EðY1i � Y0i jc0 þ c1 > gi > c0Þ

¼ q10 ½uðc0Þ � uðc0 þ c1Þ�½Uðc0 þ c1Þ � Uðc0Þ��1
n o

; ð4Þ

where u(Æ) and U(Æ) are the Normal density and distribution functions. Similarly,
we can use Normality to write the effect on the treated as:

EðY1i � Y0i jDi ¼ 1Þ ¼ E½EðY1i � Y0i jc0 þ ciZi > gi ;ZiÞjDi ¼ 1�
¼ �q10fkðc0 þ c1ÞEðZi jDi ¼ 1Þ
þ kðc0Þ½1 � EðZi jDi ¼ 1Þ�g: ð5Þ

where k(Æ) is the inverse Mill’s ratio, u(Æ)/U(Æ). This formula is useful for
calculation, but the following expression better clarifies the difference between
LATE and the effect on the treated:

EðY1i � Y0i jDi ¼ 1Þ ¼ EðY1i � Y0i jc0 þ c1 > gi > c0Þx þ EðY1i � Y0i jc0 > giÞð1 � xÞ;
ð6Þ

where x¼ [U(c0 + c1))U(c0)][P(Zi ¼ 1)/P(Di ¼ 1)] and 1 ) x ¼ U(c0)/P(Di ¼ 1).
Equation (6) shows the effect on the treated to be a weighted average of LATE and
the average effect on those with c0 > gi, with weights that depend on the first stage
and the distribution of Zi.
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2.1.1. LATE vs. the effect on the treated
LATE and the effect on the treated both depend on the correlation between
potential outcomes and the latent first-stage error, and on the first-stage coeffi-
cients. The effect on the treated also depends on the distribution of the instru-
ment. The relationship between alternative causal parameters in the parametric
model is sketched in Figure 1, which plots ATE (a constant equal to zero), LATE
and the effect on the treated against U(c0) for a fixed first stage of 0.07 and an
instrument that is Bernoulli (0.5). In other words, as with the same sex instrument
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Fig. 1. The Relationship Between LATE, ATE and the Effect on the Treated (TT ) for Alternate
First-stage Baseline Values. The first-stage effect is fixed at 0.07 and ATE ¼ 0. The top
panel calculation sets the correlation between gains and the treatment index to )0.1,

while the bottom panel sets this correlation to )0.5
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in Angrist and Evans (1998), the simulated instrument is a dummy that equals one
with probability 1

2 and increases the probability that Di equals 1 by 7 percentage
points. The calculation used for the top panel of Figure 1 sets q10 ¼ )0.1, so that
the probability of treatment increases with the gains from treatment, as in a Roy
(1951) model, while the bottom panel calculation sets q10 ¼ )0.5 for stronger
selection on gains. With positive q10, the Figure would be reflected through the
horizontal axis.

The leftmost point in the Figure shows that LATE equals the effect on the
treated when U(c0) ¼ E(Di|Zi ¼ 0) ¼ 0. This is incompatible with the Normal la-
tent-index model since it requires c0 ¼ )¥, but E(Di|Zi ¼ 0) ¼ 0 is an important
special case in practice, most commonly in randomised trials with partial compli-
ance only in the treated group (Bloom, 1984; Angrist and Imbens, 1991).4 At the
other end of the Figure, the effect on the treated approaches the overall average
effect when almost everyone gets treated. Finally, Figure 2 shows that increasing
the size of the first stage effect from 0.07 to 0.30 pulls both LATE and the effect on
the treated closer to the overall average effect.

The effect of treatment on the treated is above LATE for all first-stage baseline
values, a consequence of the fact that selection on gains makes E(Y1i ) Y0i|c0 > gi)
bigger than LATE. Moreover, LATE provides a better measure of the effect of
treatment on a randomly chosen individual (ATE) than does the effect on the
treated for most parameter values. A final important feature of the Figure (also
apparent from (4)) is that LATE ¼ ATE when c1 ¼ )2c0 since u(c0) ¼ u()c0) by
symmetry of the Normal density. Thus, as noted by Heckman and Vytlacil (2000), a
‘symmetric first stage’ that changes the probability of treatment from p to 1 ) p
implies LATE equals ATE in the Normal model, or in any latent variable model
with jointly symmetric errors.5

3. Identification Problems and Prospects

Angrist et al. (1996) show that the potential-outcomes framework for IV divides a
population into three groups, which I refer to below as ‘potential-assignment
subpopulations’. The first are compliers, i.e., those for whom D1i ¼ 1 and D0i ¼ 0.
In the latent index model, compliers have c0 + c1 > gi > c0. The other two groups
include individuals whose treatment status is unaffected by the instrument. One
consists of never-takers, with D1i ¼ D0i ¼ 0. Never-takers are never treated regardless

4 A leading example is the randomised trial used to evaluate subsidised training programmes offered
through the Job Training Partnership Act, one of America’s largest Federally-sponsored training pro-
grammes. Subsidised training was offered but not compulsory in the randomly selected treatment
group. About 60% of those offered treatment took up the offer, so E(Di|Zi ¼ 1) ¼ 0.6, where Zi is the
randomised offer of treatment and Di is actual training status. On the other hand, (virtually) no one in
the control group received treatment, so E(Di|Zi ¼ 0) � 0. In this case, LATE is the effect on the treated
because the set of always-takers is virtually empty. See Orr et al. (1996) for an IV analysis of the JTPA.

5 Joint symmetry means that if f(yji, gi) is the joint density of yji ¼ Yji ) E(Yji) and gi, then
f()yji, )gi) ¼ f(yji, gi). A weaker parametric restriction with the same result (a symmetric first stage
ranging from p to 1 ) p gives LATE ¼ ATE) is that E(yji|gi) is an odd function (as for a linear model)
and that gi has a symmetric distribution. Angrist (1991) somewhat more loosely noted that IV estimates
should be close to ATE when the first stage changes the probability of treatment at values centered on
one-half, as is required for the first stage to be symmetric.
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of the value of Zi to which they might be exposed. In the latent index model,
never-takers have gi > c0 + c1. The second unaffected group consists of always-
takers, with D1i ¼ D0i ¼ 1. Always-takers are always treated regardless of the value of
Zi to which they might be exposed. In the latent-index model, always-takers have
c0 > gi. A possible fourth group with D0i ¼ 1 and D1i ¼ 0 is empty by virtue of the
monotonicity assumption.

The set of the treated is the union of the disjoint sets of always-takers and
compliers with Zi ¼ 1. This provides an interpretation for the following identity:

(a) Moderate selection on gains 

–0.25

–0.20

–0.15

–0.10

–0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.4 0.5 0.6 0.7

T
re

at
m

en
t 

ef
fe

ct
s

TT LATE

(b) Strong selection on gains

–1.50

–1.00

–0.50

0.00

0.50

1.00

1.50

T
re

at
m

en
t 

ef
fe

ct
s

TT LATE

0.3

0.0 0.1 0.2 0.4 0.5 0.6 0.70.3

P(D = 1|Z = 0)

P(D = 1|Z = 0)

Fig. 2. The Relationship Between LATE, ATE and the Effect on the Treated (TT ) for Alternate
First-stage Baseline Values. The first-stage effect is fixed at 0.30 and ATE ¼ 0. The top
panel calculation sets the correlation between gains and the treatment index to )0.1,

while the bottom panel sets this correlation to )0.5
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Di ¼ D0i þ ðD1i � D0iÞZi ;

since D0i ¼ 1 indicates always-takers and (D1i ) D0i)Zi, indicates compliers with
Zi ¼ 1. Because Zi is independent of complier status, compliers with Zi ¼ 1 are
representative of all compliers. Causal effects on the treated can therefore be
decomposed as:

EðY1i � Y0i jDi ¼ 1Þ ¼ EðY1i � Y0i jD0i > D1iÞ½1 � PðD0i ¼ D1i ¼ 1jDi ¼ 1Þ�
þ EðY1i � Y0i jD0i ¼ D1i ¼ 1Þ PðD0i ¼ D1i ¼ 1jDi ¼ 1Þ: ð7Þ

Equation (7) generalises (6), which gives the same decomposition for the Normal
model. Because an instrumental variable provides no information about average
treatment effects in the set of always-takers, LATE is identified while
E(Y1i ) Y0i|Di ¼ 1) is not.

To pinpoint the identification challenge in this context further, note that
E(Y1i|D0i ¼ D1i ¼ 1) and E(Y0i|D0i ¼ D1i ¼ 0) can be estimated using the following
relations:

EðY1i jD0i ¼ D1i ¼ 1Þ ¼ EðY1i jD0i ¼ 1Þ ¼ EðYi jDi ¼ 1; Zi ¼ 0Þ ð8aÞ

EðY0i jD0i ¼ D1i ¼ 0Þ ¼ EðY0i jD1i ¼ 0Þ ¼ EðYi jDi ¼ 0; Zi ¼ 1Þ: ð8bÞ

The missing pieces of the identification puzzle are therefore the fully counter-
factual averages, E(Y1i|D0i ¼ D1i ¼ 0) and E(Y0i|D0i ¼ D1i ¼ 1).

3.1. Restricting Potential-Assignment Subpopulations

The conditional expectation functions (CEFs) of Y1i and Y0i given potential
assignments provide a framework for the discussion of alternative identification
strategies. These CEFs can be written:

EðY1i jD0i ;D1iÞ ¼ a1 þ b10D0i þ b11D1i ð9aÞ

EðY0i jD0i ;D1iÞ ¼ a0 þ b00D0i þ b01D1i : ð9bÞ

Equations (9a) and (9b) impose no restrictions since there are three potential-
assignment subpopulations and three parameters in each CEF. The 6 conditional
means, E(Yji|D0i, D1i), are uniquely determined by (9a,b) as follows:

Group Definition Indicator CEF for Y0i CEF for Y1i

Compliers D1i ¼ 1, D0i ¼ 0 D1i ) D0i a0 + b01 a1 + b11

Always-takers D1i ¼ D0i ¼ 1 D0i a0 + b00 + b01 a1 + b10 + b11

Never-takers D1i ¼ D0i ¼ 0 1 ) D1i a0 a1

The CEF for observed outcomes, E(Yi|Di, Zi), has a distribution with 4 points of
support, while the CEFs of Y0i and Y1i given D0i and D1i depend on 6 parameters.
This suggests the latter are not identified from the former without additional
restrictions, a result implied by the theorem below.
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Theorem. Suppose the Independence, First-Stage, and Monotonicity assumptions hold
and that Y0i and Y1i have multinomial distributions. Let f0(y|D1i, D0i) and f1(y|D1i, D0i)
denote the conditional distribution functions for potential outcomes given potential assign-
ments and let fYDZ(y, d, z) denote the joint distribution of Yi, Di, and Zi. Then f0(y|D1i, D0i)
and f1(y|D1i, D0i) are not identified from fYDZ(y, d, z).

Proof. Factor the d.f. using fYDZ(y, d, z) ¼ fY|DZ(y|d, z)gDZ(d, z). The second
term is unrestricted. Let

fjðyjD1i ;D0iÞ ¼ ajðyÞ þ bj0ðyÞD0i þ bj1ðyÞD1i ;

substitute into fY|DZ(y, d, z), and iterate expectations to obtain the multinomial
likelihood solely as a function of the parameters determining f0(y|D1i,D0i) and
f1(y|D1i, D0i). Finally, substitute for f0(y|D1i, D0i) and f1(y|D1i, D0i) to show the
likelihood is invariant to the choice of b00(y) and b11(y) as long as a1(y) + b11(y) is
constant. Non-identification of b00(y) implies non-identification of the marginal
distribution of Y0i while non-identification of b11(y) implies non-identification of
the marginal distribution of Y1i.

The multinomial distributional assumption raises the question of how general
the theorem is. It seems general enough for practical purposes since, as noted by
Chamberlain (1987), any distribution can be approximated arbitrarily well by a
multinomial. Moreover, I would like to rule out identification based on
continuity or support conditions to avoid paradoxes such as ‘identification at
infinity’.6

3.2. A Menu of Restrictions

A variety of restrictions on (9a,b) are sufficient to identify ATE. I briefly discuss
four cases that strike me as being of special interest. The simplest is ignorable
treatment assignment or ‘no selection bias.’

Restriction 1 (No Selection Bias).

b00 ¼ b01 ¼ b10 ¼ b11 ¼ 0:

This implies LATE ¼ a1 ) a0 ¼ ATE. Under Restriction 1, ATE can be estimated
from simple treatment-control comparisons.

Because the assumption of no selection bias involves four restrictions while two
would be sufficient, ATE is over-identified in this case.7 A standard Hausman
(1978) test for endogeneity exploits over-identification by comparing IV and OLS
estimates, equivalent here to a comparison of Wald estimates with simple

6 See Chamberlain (1986). The multinomial assumption has some content since it implies that
potential outcomes have bounded support, so that ATE and effects on the treated are bounded. See
Manski (1990) or Heckman and Vytlacil (2000).

7 A weaker version of Restriction 1 with b11 ¼ b00 ¼ 0 is also sufficient to identify ATE since this
equates never-takers with compliers for the CEF of Y1i and always-takers with compliers for the CEF of
Y0i. This seems no easier to motivate than Restriction 1, so I limit the discussion to the over-identified
case.
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treatment-control differences. A modified and potentially more powerful test can
be based on the fact that under Restriction 1, E(Y1i|D0i ¼ 1) ¼ a1 and
E(Y0i|D1i ¼ 0) ¼ a0. Using (8a,b), this suggests the following specification test:

Test for Selection Bias.

EðYi jZi ¼ 1Þ � EðYi jZi ¼ 0Þ
EðDi jZi ¼ 1Þ � EðDi jZi ¼ 0Þ ¼ ½EðYi jDi ¼ 1;Zi ¼ 0Þ � EðYi jDi ¼ 0;Zi ¼ 1Þ�: ðT1Þ

In the Appendix, I show how a test statistic based on T1 can be computed using
regression software.

The Hausman test for selection bias replaces E(Yi|Di ¼ 1, Zi ¼ 0) ) E(Yi|Di ¼ 0,
Zi ¼ 1) on the right hand side of T1 with E(Yi|Di ¼ 1) ) E(Yi|Di ¼ 0). The
Hausman test will also work in the causal framework outlined here since under
Restriction 1 both OLS and IV estimate ATE. The difference between T1 and a
Hausman test arises from the fact that the Hausman test implicitly compares
E(Yji|D1i > D0i) with E(Yji|Di ¼ j) for j ¼ 0,1, while T1 implicitly compares
E(Yji|D1i > D0i) with E(Yji|D1i ¼ D0i ¼ j) for j ¼ 0,1. These two pairs of compari-
sons are the same under monotonicity but not in general. The empirical results
below suggest that T1, which uses monotonicity, indeed provides a more powerful
specification test.8

While pivotal for specification testing, the assumption of no selection bias is an
unattractive basis for causal inference here, since the use of IV is motivated by the
possibility of selection bias. An alternative assumption that allows for selection bias
amounts to the claim that the difference between Y1i and Y0i is mean-independent
of potential treatment assignments. I refer to this as ‘conditional constant effects’.
Formally, this means:

Restriction 2 (Conditional Constant Effects).

b00 ¼ b10; b01 ¼ b11:

This pair of restrictions is just sufficient to identify ATE. In particular, we again
have LATE ¼ a1 ) a0 ¼ ATE, or, equivalently, E(Y1i ) Y0i|D1i, D0i) ¼ E(Y1i ) Y0i).
While Restriction 2 allows for selection bias in the sense that Y1i and Y0i are
correlated with potential treatment assignments, the correlation is restricted to be
the same for both potential outcomes, so that the difference between Y1i and Y0i is
orthogonal to potential treatment assignments.

In the same sex example, Restriction 2 amounts to saying that average treatment
effects, while not constant, are nevertheless the same regardless of a woman’s
likelihood of having children. Restriction 2 rules out Roy (1951) type selection,
where treatment status is determined at least in part by the gains from treatment.
In the case of childbearing, for example, a woman’s childbearing decision must be
independent of individual-level variation in the labour-supply consequences of
childbearing. On the plus side, Restriction 2 is weaker than the usual constant-

8 Abadie (2002) develops a number of related bootstrap specification tests.
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effects assumption in that it does not require a deterministic link between Y1i and
Y0i.

9

A third restriction, which I call ‘linearity’, is appealing because it is not funda-
mentally inconsistent with a benchmark Roy-type selection model. The linearity
condition is:

Restriction 3 (Linearity).

b00 ¼ b01; b10 ¼ b11:

In this case, the potential-outcomes CEFs can be written:

EðY1i jD0i ;D1iÞ ¼ a1 þ b11ðD0i þ D1iÞ ð10aÞ

EðY0i jD0i ;D1iÞ ¼ a0 þ b01ðD0i þ D1iÞ: ð10bÞ

Restriction 3 requires the potential-outcomes CEF to be linear in D
i � D0i þ D1i ,

where D
i is a summary measure of the desire or suitability of an individual for

treatment. If the restriction is false, we can nevertheless think of (10a) and (10b) as
providing a minimum mean-squared error approximation to the unrestricted
model, (9a) and (9b).

To see how average causal effects are identified under Restriction 3, write the
probabilities of being an always-taker and never-taker as

PðD0i ¼ D1i ¼ 1Þ ¼ EðD0iÞ ¼ pa

PðD0i ¼ D1i ¼ 0Þ ¼ Eð1 � D1iÞ ¼ pn

and note that
EðD0i þ D1iÞ ¼ 1 þ ðpa � pnÞ:

Substitute into (10a) and (10b) and difference to obtain

EðY1i � Y0iÞ ¼ ½ða1 þ b11Þ � ða0 þ b01Þ� þ ðb11 � b01Þðpa � pnÞ
¼ EðY1i � Y0i jD1i > D0iÞ þ ½EðY1i jD0i ¼ 1Þ � EðY1i jD1i > D0iÞ�f
�½EðY0i jD1i > D0iÞ � EðY0i jD1i ¼ 0Þ�gðpa � pnÞ: ð11Þ

The components on the right hand side of (11) are easily estimated; details are
given in the Appendix.

A calculation similar to that used to derive (11) shows that the effect of treat-
ment on the treated can be constructed using

EðY1i � Y0i jDi ¼ 1Þ ¼ ða1 þ b11Þ � ða0 þ b01Þ½ � þ ðb11 � b01Þðpa=pdÞ
¼ EðY1i � Y0i jD1i > D0iÞ
þ f½EðY1i jD0i ¼ 1Þ � EðY1i jD1i > D0iÞ�
� ½EðY0i jD1i > D0iÞ � EðY0i jD1i ¼ 0Þ�gðpa=pdÞ; ð12Þ

9 Note that the first part of Restriction 2 is sufficient to identify the effect of treatment on the treated,
while the second part is sufficient to identify the effect of treatment on the non-treated. Although
conditional constant effects is the basis of much empirical work and may be a reasonable approximation
for practical purposes, as a theoretical matter this is typically implausible unless treatment is exogenous;
see, e.g., Wooldridge (1997, 2003).
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where pd is the probability of treatment. From (12), we can immediately derive the
Bloom (1984) result that if there are no always-takers, the Wald estimator is the
effect on the treated.10

3.3. Symmetry Revisited

Restriction 3 is closely related to the symmetry property discussed in the para-
metric example. To see this, note that as a consequence of linearity we can
interpolate the CEF for compliers by averaging as follows:

EðYji jD1i > D0iÞ ¼ ½EðYji jD0i ¼ 1Þ þ EðYji jD1i ¼ 0Þ�=2: ð13Þ

This means that expected outcomes for compliers can be obtained as the average
of expected outcomes for always and never-takers. What distributional assumptions
support a relation like (13)? Suppose treatment is determined by a latent-index
assignment mechanism, as in (2). Then,

EðYji jD1i ¼ D0i ¼ 0Þ ¼ EðYji jgi > c0 þ c1Þ

EðYji jD1i ¼ D0i ¼ 1Þ ¼ EðYji jgi < c0Þ;

and

EðYji jD1i > D0iÞ ¼ EðYji jc0 þ c1 > gi > c0Þ:

If in addition, c1 ¼ )2c0, then (13) holds as long as (Yji, gi) is jointly symmetric,
as in the Normal model. The restriction c1 ¼ )2c0 implies

PðDi ¼ 1jZi ¼ 0Þ ¼ Pðgi < c0Þ ¼ 1 � p ð14Þ

PðDi ¼ 1jZi ¼ 1Þ ¼ Pðgi < �c0Þ ¼ p

for some p 2 (0,1) so the first stage is also symmetric (e.g, a first stage effect of 0.1
that shifts the probability of treatment from 1 ) p ¼ 0.45 to p ¼ 0.55).

The upshot of the previous discussion is that a symmetric latent error distribu-
tion and a symmetric first stage imply the interpolating property, (13), or, equiv-
alently, Restriction 3. Moreover, we again have LATE equals ATE since pa ¼ pn

given the first stage described in (14).11 Intuitively, a symmetric first-stage with
symmetrically distributed latent errors equates LATE with ATE because average
treatment effects for individuals with characteristics that place them in the middle
of the gi distribution (compliers) are representative of average treatment effects
for individuals over the entire distribution of gi.

A first-stage relationship may be fortuitously symmetric, as for the 1990 Census
sample of teen mothers using the same sex instrument. In such cases, it seems

10 With no always-takers, we have D0i ” 0, so Restriction 3 is not binding.
11 To see this, note that P(Di ¼ 1|Zi ¼ 0) ¼ 1 ) p implies pa ¼ 1 ) p. Since pa + pn + [P(Di ¼ 1|Zi ¼

1) ) P(Di ¼ 1|Zi ¼ 0)] ¼ (1 ) p) + pn + (2p ) 1) ¼ 1, this implies pn ¼ 1 ) p. As noted in the discus-
sion of the parametric model, LATE ¼ ATE given (14) also results when E(Yji|gi) is an odd function and
the marginal distribution of gi is symmetric. This makes it possible to have a relation like (13) with, say, a
binary or otherwise limited dependent variable for which a symmetric distribution is implausible.
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reasonable to invoke Restriction 3 and proceed under the assumption that LATE
equals ATE. But what if, as seems more typical, the first stage shifts the probability
of treatment asymmetrically? In the empirical Section, I describe a simple scheme
for using covariates to construct a subsample with a symmetric first stage. IV should
estimate average treatment effects in this specially constructed sample. This ap-
proach naturally raises the question of how to use average treatment effects for one
sample to make inferences about average effects in another. For a recent attack on
this question, see Hotz et al. (2000), who outline a procedure designed to extra-
polate the results from randomised trials across sites with different populations.
Here I rely on the fact that if effects differ little between two samples with and
without a symmetric first-stage, then given Restriction 3, the extrapolation problem
is solved under the maintained assumption that average treatment effects would be
similar in the symmetric sample and its complement.

3.4. Weakening Restriction 3

Suppose again that treatment assignment can be modelled using (2) and that
the potential-outcomes CEFs are linear in gi (as would be the case under joint
Normality). Then we can write,

EðY1i jD0i ;D1iÞ ¼ a1 þ q1Eðgi jD0i ;D1iÞ ð15aÞ

EðY0i jD0i ;D1iÞ ¼ a0 þ q0Eðgi jD0i ;D1iÞ ð15bÞ

where

Eðgi jD0i ;D1iÞ ¼ Eðgi jD1i ¼ 0Þ þ ½Eðgi jD0i ¼ 1Þ � Eðgi jD1i ¼ 1;D0i ¼ 0Þ�D0i

þ ½Eðgi jD1i ¼ 1;D0i ¼ 0Þ � Eðgi jD1i ¼ 0Þ�D1i : ð16Þ

Substituting (16) into (15a) and (15b) generates an expression for the coefficients
in (9a), (9b). This leads to the following generalisation of Restriction 3:

Restriction 4 (Proportionality).

b00 ¼ hb01; b10 ¼ hb11; for h > 0:

The first part of the proportionality restriction comes from (15 a,b) alone. Using
(16), we have

h ¼ ½Eðgi jD0i ¼ 1Þ � Eðgi jD1i ¼ 1;D1i ¼ 0Þ�
½Eðgi jD1i ¼ 1;D0i ¼ 0Þ � Eðgi jD1i ¼ 0Þ� ; ð17Þ

which shows why h is positive.
Restriction 4 leads to a generalisation of the interpolation formula for average

potential outcomes. In particular, we now have

EðYji jD1i > D0iÞ ¼ ½1=ð1 þ hÞ�EðYji jD0i ¼ 1Þ þ ½h=ð1 þ hÞ�EðYji jD1i ¼ 0Þ; ð18Þ

so that if h ¼ 0, compliers have the same expected potential outcomes as always-
takers, while as h approaches infinity, compliers have the same expected potential
outcomes as never-takers.
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The linearity assumption used to motivate Restriction 4 seems most plausible in
the context of a model for continuous outcomes. It may be more of stretch,
however, for binary outcomes such as marital status. On the other hand, without
covariates the distribution of gi is arbitrary. We can therefore define gi as the latent
error term in an assignment mechanism like (2), after transformation to a uniform
distribution on the unit interval.12 This guarantees that (15a,b) can generate fitted
values for outcome CEFs that also fall in the unit interval. Alternately, the weighted
average in (18) can be motivated directly as a natural generalisation of equally-
weighted interpolation using (13).

To develop an estimator using (18), substitute Restriction 4 into (9a) and (9b) to
obtain:

EðY1i jD0i ;D1iÞ ¼ a1 þ b11ðhD0i þ D1iÞ

EðY0i jD0i ;D1iÞ ¼ a0 þ b01ðhD0i þ D1iÞ:

Differencing and averaging, we have

EðY1i � Y0iÞ ¼ ½ða1 þ b11Þ � ða0 þ b01Þ� þ ðb11 � b01Þðhpa � pnÞ
¼ EðY1i � Y0i jD1i > D0iÞ þ fh�1½EðY1i jD0i ¼ 1Þ
� EðY1i jD1i > D0iÞ� � ½EðY0i jD1i > D0iÞ � EðY0i jD1i ¼ 0Þ�g
� ðhpa � pnÞ: ð19Þ

We can map out the values of ATE consistent with the data by evaluating (19) for
alternative choices of h. This sensitivity analysis is subject to the caveat that at the
extremes where h equals zero or infinity, ATE is not identified, a fact apparent
from (18).13

An alternative to sensitivity analysis is to try to estimate h using (17). Although h
is not identified without further assumptions, it clearly depends in large part on
the first stage coefficients, c0 and c1. This suggests a strategy for estimating h using
information on these coefficients only. Suppose that (15a,b) holds for a latent
error transformed to Uniform as discussed above, or that the CDF of gi can be
approximated by a uniform distribution on the unit interval. Then a straight-
forward calculation gives

h ¼ ðc0 þ c1Þ=ð1 � c0Þ ¼ PðDi ¼ 1jZi ¼ 1Þ=½1 � PðDi ¼ 1jZi ¼ 0Þ�: ð20Þ

This has the property that h ¼ 1 when P(Di ¼ 1|Zi ¼ 1) ¼ 1 ) P(Di ¼ 1|Zi ¼ 0),
while capturing deviations from symmetry in a straightforward manner. The value
of h calculated using (20) in the 1990 Census sample analysed here is 0.61, close to
the value calculated using Normality (0.58).

3.4.1. Specification tests for homogeneity restrictions
Because ATE is – by definition – invariant to the particular instrument used to
estimate it, Restrictions 2, 3, and 4 can be partly checked by comparing alternative

12 This requires that the underlying error have a continuous distribution.
13 To compute the effect of treatment on the treated under Restriction 4, replace hpa ) pn with hpa/pd

in (19).
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estimates using different instruments. In the case of Restriction 2, this amounts to
a Sargan (1958) over-identification test comparing alternative IV estimates of the
same structural coefficient. Under Restrictions 3 and 4, the relevant comparison
should use (19) to convert estimates of LATE into estimates of ATE. A final set of
specification tests is suggested by the fact that under Restrictions 3 or 4,

EðY1i � Y0i jD1i ;D0iÞ ¼ ða1 � a0Þ þ ðb11 � b01ÞðhD0i þ D1iÞ:

A test of whether b11 ) b01 equals zero is therefore a test of conditional constant
effects, while a test of whether b11 ) b01 is positive is a test for Roy-type selection on
the gains from treatment.

4. Childbearing, Marital Status, and Economic Welfare

The same sex instrument is a dummy for having two boys or two girls at first and
second birth. Angrist and Evans (1998) showed this instrument increases the
likelihood mothers with at least two children go on to have a third child by about
6–7 percentage points but is otherwise uncorrelated with mothers’ demographic
characteristics. The data set used here is the 1990 Census extract used in the
Angrist and Evans paper. This sample includes mothers aged 21–35 with two or
more children, the oldest of whom was less than 18 at the time of the Census.

Descriptive statistics are reported in Table 1 for the full sample, for a subsample
of ever-married women and for four subsamples defined by mothers’ education
and age at first birth. The division into subsamples was motivated by earlier results
showing markedly different effects of childbearing by maternal education and
because of the policy interest in teen mothers. The probability of having a third
child ranges from a low of 0.33 in the sample of women with some college, to a
high of 0.5 in the sample of teen mothers. The probability of having a same-sex
sibling pair is more or less constant at 0.505. Some of the estimates control for the
demographic covariates listed in Table 1 using linear models.14 Means for the
outcome variables of interest appear at the bottom of Table 1.

4.1. OLS, IV, and 2SLS Estimates

The effect of same sex on the probability of having a third child varies from a low of
5.9 percentage points in the some-college sample to a high of 6.5 percentages
points in the no-college sample. This can be seen in the first row of Table 2,
which reports first-stage estimates. The first-stage effect without covariates,
E(Di|Zi ¼ 1) ) E(Di|Zi ¼ 0) ¼ E(D1i ) D0i), is also an estimate of the proportion
of the population in the compliers group.15 As a benchmark, the next two rows of

14 See Abadie (2003) and Frolich (2002) for nonlinear causal models with covariates.
15 Although we cannot identify individual compliers in any sample and tabulate their characteristics

directly, it is possible to describe the distribution of complier characteristics and to compare this to the
unconditional distribution. In particular, the difference in first-stage estimates across samples defined
by covariates characterises the distribution of covariates among compliers. To see this, note that for a
binary covariate,xi, E(xi|D1i > D0i)/E(xi) ¼ E(D1i ) D0i|xi ¼ 1)/E(D1i ) D0i). Table 2 therefore also
shows same sex compliers to be less educated and more likely to have been married than the overall
average.
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Table 1

Descriptive Statistics, women aged 21–35 with 2 or more children

Variable

Means and Standard Deviations

All
women

Ever
married

No
college

Some
college or +

Teen
mothers

Adult
mothers

Children ever born 2.50 2.49 2.55 2.41 2.72 2.41
(0.76) (0.75) (0.81) (0.68) (0.90) (0.68)

More than 2 children
(¼ 1 if mother had
more than 2 children)

0.375 0.370 0.405 0.328 0.500 0.324
(0.484) (0.483) (0.491) (0.470) (0.500) (0.468)

Boy 1st (¼ 1 if 1st child
was a boy)

0.512 0.512 0.510 0.514 0.509 0.513
(0.500) (0.500) (0.500) (0.500) (0.500) (0.500)

Boy 2nd (¼ 1 if 2nd child
was a boy)

0.511 0.511 0.509 0.512 0.508 0.511
(0.500) (0.500) (0.500) (0.500) (0.500) (0.500)

Two boys (¼ 1 if first two
children were boys)

0.264 0.264 0.262 0.266 0.262 0.264
(0.441) (0.441) (0.440) (0.442) (0.440) (0.441)

Two girls (¼ 1 if first two
children were girls)

0.241 0.241 0.242 0.240 0.245 0.240
(0.428) (0.427) (0.428) (0.427) (0.430) (0.427)

Same sex (¼ 1 if first two
children were the same sex)

0.505 0.505 0.504 0.506 0.507 0.504
(0.500) (0.500) (0.500) (0.500) (0.500) (0.500)

Age 30.4 30.6 29.92 31.3 28.8 31.1
(3.5) (3.4) (3.60) (3.0) (3.89) (3.0)

Age at first birth (mother’s age
when first child was born)

21.8 22.0 20.85 23.4 17.9 23.5
(3.5) (3.5) (3.16) (3.50) (1.13) (2.8)

Black Mother 0.131 0.092 0.141 0.115 0.237 0.088
(0.337) (0.289) (0.348) (0.319) (0.425) (0.283)

Hispanic Mother 0.113 0.112 0.144 0.065 0.156 0.096
(0.317) (0.315) (0.351) (0.246) (0.363) (0.294)

Never Married 0.068 – 0.089 0.036 0.144 0.037
(0.252) – (0.285) (0.186) (0.351) (0.190)

Married Now 0.798 0.857 0.768 0.846 0.649 0.859
(0.401) (0.350) (0.422) (0.361) (0.477) (0.348)

Divorced 0.081 0.087 0.083 0.079 0.122 0.065
(0.273) (0.282) (0.276) (0.270) (0.327) (0.246)

Divorced or Separated 0.127 0.137 0.136 0.114 0.197 0.099
(0.333) (0.344) (0.343) (0.317) (0.398) (0.299)

High School Graduate
(¼ 1 if high school diploma
and no further education)

0.420 0.423 0.685 – 0.426 0.417
(0.494) (0.494) (0.465) – (0.495) (0.493)

Some College (¼ 1 if some
college, but no degree)

0.264 0.269 – 0.682 0.174 0.301
(0.441) (0.444) – (0.466) (0.379) (0.458)

College Graduate (¼ 1 if
bachelor’s degree or higher)

0.123 0.131 – 0.318 0.018 0.166
(0.329) (0.338) – (0.466) (0.131) (0.372)

In Poverty (¼ 1 if family income
below the poverty line)

0.197 0.158 0.256 0.103 0.347 0.136
(0.398) (0.364) (0.437) (0.303) (0.476) (0.343)

Welfare Recipient (¼ 1 if public
assistance income > 0)

0.098 0.065 0.130 0.047 0.187 0.062
(0.297) (0.247) (0.336) (0.212) (0.390) (0.241)

Worked for pay (¼ 1 if worked
for pay in 1989)

0.662 0.674 0.623 0.723 0.650 0.667
(0.473) (0.469) (0.485) (0.447) (0.477) (0.471)

Weeks worked (weeks worked
in 1989)

26.2 26.9 24.27 29.3 25.0 26.7
(22.9) (22.9) (23.00) (22.4) (22.81) (22.9)

Number of observations 380,007 357,063 236,418 143,589 110,156 269,851

Notes: Data are from the 1990 PUMS. The sample includes women with 2 or more children whose 2nd
child was at least age 1 and who had their first birth at age 15 or later. The no-college sample includes
women with no college or with an associate occupational degree. The some-college sample includes
women with an associate academic degree, some college but no degree, or a college degree. Teen
mothers are those who had their first birth at age 19 or younger. Standard deviations are reported in
parentheses. All calculations use sample weights.
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Table 2 show estimates of the effect of childbearing on two of the labour supply
variables studied by Angrist and Evans (1998). These are IV and OLS estimates
from models without covariates, i.e., Wald estimates and simple treatment-control
contrasts.

The Wald (IV) estimates of the effect of a third child on employment status and
weeks worked suggest mothers reduced their labour supply as a consequence of
childbearing, though not by as much as indicated by the OLS estimates. For
example, women who had a third child were about 13 percentage points less likely
to work, but the corresponding IV estimate suggests a causal effect of only 8 per-
centage points. The OLS and IV estimates for weeks worked are about )7 and )5.
The IV estimates of labour supply effects are larger for less-educated women than
for those with some college; in fact, the labour supply estimates are not significant in
the some-college sample. In contrast, the IV estimates are smaller for women who
had their first birth as teenager than for women who had their first birth as an adult.

The last two rows in Table 2 show first-stage, OLS and two-stage least squares
(2SLS) estimates after adding controls for age, age at first birth, dummies to
indicate first-born and second-born boys, race dummies, and dummies for three
schooling groups. Since same sex is uncorrelated with these covariates, including
them has little effect on the 2SLS estimates. Moreover, in spite of the fact that
some of the covariates are good predictors of outcomes, estimates with covariates
are only slightly more precise than those without. Perhaps more surprisingly, the
OLS estimates of labour supply effects also change little in response to the addi-
tion of covariates.

Estimates of the effect of having a third child on marital status, poverty status,
and welfare use are reported in Table 3 for models with and without covariates. In
the sample of all women, those with more children are less likely to be married.
But this is at least in part due to uncontrolled demographic factors such as age at
first birth, since OLS estimates with controls show that additional childbearing is
associated with an increase in the likelihood of being married. In contrast to the
OLS estimates, IV estimates with or without covariates suggest that the causal effect
of childbearing is a reduced probability of being married. Thus, an important
finding is that when the effect of childbearing is estimated in models with
demographic controls, IV and OLS estimates have opposite signs.

The most important change in marital status caused by childbearing appears to
be an increase in the likelihood of being divorced or separated. The estimated
effects of childbearing on the probability of being ever-married or divorced (but
not separated) are not significantly different from zero. Consistent with an in-
crease in marital breakup, the birth of a third child also appears to lead to a
marked increase in the likelihood a woman lives in a family with total family
income below the poverty line. Here we should expect at least a mechanical effect
since the poverty threshold falls as family size increases. Although OLS estimates
are larger than IV estimates in models without covariates, OLS and IV estimates in
models with covariates both indicate that a third child increases the likelihood a
woman is poor by 9–10 percentage points.

Given the elevated rates of marital breakup and the increase in poverty rates that
appear to be caused by childbearing, it seems reasonable to expect that the birth of
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a third child also increases the likelihood a woman is on welfare. Both the IV and
OLS estimates tend to support this, though the IV estimates are imprecise. The
OLS estimate of the effect on welfare use range from 6.7 percentage points
without covariates to 3.9 percentage points with covariates. The IV estimate is a
marginally significant 3.3% with or without covariates. While small in levels, an
effect of this magnitude represents a roughly one-third increase in the number of
women on welfare.

The IV estimates show no relationship between childbearing and the probability
a woman has ever been married, so estimates limited to the sample of ever-married
women are unlikely to be affected by selection bias. Not surprisingly, therefore, the
IV estimates in the sample of ever-married women are almost identical to those in
the full sample. On the other hand, while the IV estimate of the reduction in
marriage rates is a significant 8 percentage points (s.e. ¼ 0.028) for women with
no college, it is close to zero and insignificant for women with some college. The
effects of childbearing on poverty are also larger in the no-college sample, though
the difference in effects on welfare use by college status is reversed and much
smaller than the difference in effects on poverty rates.

The difference in estimates by mothers’ age at first birth also suggest a pattern of
larger effects with decreasing socioeconomic status, though the contrast is not as
clear cut as the differences by schooling group. While the increases in marital
dissolution and welfare receipt are larger for teen mothers than for adult mothers,
the estimates are significant only in the latter group. Estimates of effects on di-
vorce/separation are similar in the two groups, though again much more precise
for the sample of adult mothers. This difference in precision undoubtedly reflects
the smaller sample of teen mothers. One clear contrast, however, is the higher
likelihood that a third birth pushes a teen mother into poverty. The impact on
poverty status is significant regardless of mothers’ age at first birth but it is roughly
three times larger for teen mothers.

4.2. Heterogeneity across Potential-assignment Subpopulations

The first-stage estimates imply that 6–7% of each sample consists of compliers, i.e.,
mothers who had a child in response to a homogenous sibling-sex mix. Because
the overall probability of treatment ranges upwards from about 0.32, the over-
whelming majority of treated individuals are always-takers. This can be seen in
Table 4, which gives the distribution of potential-assignment subpopulations. In
the sample of all women, for example, 6.3% are compliers, 34% are always-takers
(i.e., have a third child without regard to sibling-sex composition) and 59% are
never-takers (i.e., would never have a third child regardless of sibling-sex compo-
sition). The proportion of treated who are compliers is 1 ) (pa/pd), or about 8%.
Given the relatively small proportion of compliers, the scope for differences in
average causal effects across potential-assignment subpopulation is substantial.

Table 4 also reports the estimate of (pa ) pn), the multiplier that determines
how far LATE is from ATE when the latter is calculated using Restriction 3 and
(11), or in models with covariates as described in the Appendix. The estimate of
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(pa ) pn) is )0.25 in the full sample, and ranges from 0 for teen mothers to )0.352
in the sample of adult mothers.

4.2.1. Symmetric subpopulations
The value of zero for (pa ) pn) in the teen mother sample is noteworthy because it
means that LATE is the same as ATE under Restriction 3. This is a consequence of
the fact that the first stage for teen mothers is almost perfectly symmetric: the same
sex instrument shifts the probability of further childbearing from about 0.47 to
0.53. Moreover, because h for teen mothers is about 1 when estimated using (20),
estimates of ATE for teen mothers under Restriction 4 are also close to LATE.

The first two columns of Table 5 focus on the comparison between estimates for
all women and teen mothers only, repeating earlier estimates for these samples
from Table 3 without covariates, including the first-stage coefficient and intercept.
For the most part, IV estimates for teen mothers are similar to those for the sample
of all women. While the estimated effect on employment is considerably lower at
)0.026 (s.e. ¼ 0.051) versus )0.084 (s.e. ¼ 0.027) in the full sample, the effect of
childbearing on weeks worked is )5.2 (s.e. ¼ 1.3) in the full sample and )4.8
(s.e. ¼ 2.4) for teen mothers. Similarly, the effect on marital status is )0.062
(s.e. ¼ 0.024) in the full sample and )0.066 for teen mothers (0.051). Note that we
can view the parameters estimated in the full sample as estimates of
E(Y1i ) Y0i|D1i > D0i, X ¼ all women), while the estimates in column 2, for teen
mothers, can be interpreted as measuring E(Y1i ) Y0i|X ¼ teen mothers) under
Restriction 3 or 4. A test of equality across columns 1 and 2 is therefore a joint test
of the invariance of average treatment effects to conditioning both on X and on
the compliers potential-outcomes subpopulation. The fact that these are similar is

Table 4

Potential-Assignment Subpopulations

Sample

No Covariates With Covariates

PðD ¼ 1Þ pc pa pn pa � pn h pc pa � pn

(1) (2) (3) (4) (5) (6) (7) (8)

All Women 0.375 0.063 0.344 0.594 �0.250 0.619 0.062 �0.250
(0.0018) (0.0018) (0.0017) (0.0018)

Ever Married 0.370 0.066 0.337 0.597 �0.261 0.607 0.066 �0.260
(0.0018) (0.0018) (0.0017) (0.0018)

No College 0.405 0.065 0.372 0.563 �0.191 0.696 0.064 �0.191
(0.0023) (0.0023) (0.0022) (0.0023)

Some College 0.328 0.059 0.298 0.642 �0.344 0.510 0.059 �0.344
(0.0027) (0.0027) (0.0027) (0.0027)

Teen Mothers 0.500 0.064 0.468 0.468 �0.0006 0.999 0.063 �0.0005
(0.0034) (0.0034) (0.0033) (0.0034)

Adult Mothers 0.324 0.062 0.293 0.645 �0.352 0.502 0.062 �0.351
(0.0020) (0.0020) (0.0019) (0.0020)

Notes: The first column reports the proportion treated. The second column shows the proportion of
compliers in the sample, which is given by the first-stage effect of same sex. The estimates of the
proportion of always-takers and never-takers and the parameter h were calculated as described in the
text. Estimates with covariates were calculated as described in the Appendix. Standard errors are
reported in parentheses. All calculations use sample weights.
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evidence against substantial treatment effect heterogeneity in both dimensions,
though of course there are scenarios where this test has no power.16

There is some evidence for a difference in effects on poverty status between the
teen mother and all-women samples. For all women, the IV estimate of the effect of
childbearing on poverty status is 0.095 (s.e. ¼ 0.023), while the corresponding
estimate is 0.143 (s.e. ¼ 0.05) in the teen mother sample. The comparison across
samples is weakened, however, by the fact the estimates in the teen mother sample
are much less precise than in the full sample. This raises the question of whether
we can construct a larger sample with a symmetric first stage. I attempted to
construct such a sample by estimating a Probit first-stage allowing interactions with
covariates and then selecting the sample based on covariate-specific fitted values.17

Table 5

Symmetric First Stage Samples

Variables

All
Women

Teen
Mothers

Symmetric sample I Symmetric sample II

p0ðX Þ � 0:4
& p0ðX Þ � 0:6

p0ðX Þ < 0:4
or p0ðX Þ > 0:6 p0ðX Þ � 0:35 p0ðX Þ < 0:35

(1) (2) (3) (4) (5) (6)

First Stage
(OLS estimates)

Coefficient 0.063 0.064 0.071 0.059 0.068 0.058
(0.002) (0.003) (0.003) (0.002) (0.003) (0.002)

Constant 0.344 0.468 0.471 0.296 0.465 0.253
(0.001) (0.002) (0.002) (0.001) (0.002) (0.001)

Outcomes
(IV Estimates)

Worked for pay �0.084 �0.026 �0.038 �0.109 �0.080 �0.092
(0.027) (0.051) (0.045) (0.034) (0.038) (0.039)

Weeks worked �5.15 �4.76 �3.72 �6.03 �5.90 �4.71
(1.30) (2.40) (2.21) (1.62) (1.83) (1.86)

Ever Married �0.010 �0.0098 �0.016 �0.0031 �0.0051 �0.0092
(0.015) (0.0391) (0.032) (0.0170) (0.0267) (0.0162)

Married Now �0.062 �0.066 �0.033 �0.066 �0.075 �0.039
(0.024) (0.051) (0.045) (0.027) (0.038) (0.028)

Divorced 0.011 �0.010 �0.029 0.025 0.012 0.0057
(0.016) (0.035) (0.031) (0.018) (0.026) (0.0189)

Divorced or Separated 0.053 0.048 0.020 0.063 0.068 0.033
(0.019) (0.043) (0.038) (0.022) (0.0032) (0.023)

In Poverty 0.095 0.143 0.095 0.087 0.136 0.048
(0.023) (0.050) (0.044) (0.027) (0.036) (0.028)

Welfare Recipient 0.033 0.018 0.021 0.034 0.027 0.032
(0.018) (0.042) (0.035) (0.020) (0.029) (0.020)

Number
of Observations

380,007 110,156 103,803 276,204 162,264 217,743

Notes: Columns 1 and 2 repeat estimates from Tables 2 and 3, for models without covariates. Estimates
using samples with a symmetric first stage are reported in columns 3 and 5. Estimates for com-
plementary samples are reported in columns 4 and 6. Standard errors are shown in parentheses. All
calculations use sample weights.

16 As with an over-identification test, the power of the test turns on maintaining the validity of a
benchmark. Here, we maintain E(Y1i ) Y0i|X ¼ teen mothers) ¼ E(Y1i ) Y0i).

17 A maintained assumption here is that the distribution of Yji and gi is jointly symmetric conditional
on the covariates used to select the sample with a symmetric first stage.
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The details of the symmetric sample selection are as follows. The idea is to use a
parametric model to capture the variation in the first-stage effect of same sex on
childbearing with demographic covariates. The model allows for a large set of
interaction terms with covariates. I then look for covariate values where the pre-
dicted first-stage effect is symmetric in the sense required by Restriction 3. I began
with a Probit first-stage equation:

PðDi ¼ 1jZi ;XiÞ ¼ U½j0
0Xi þ ðj0

1XiÞZi �; ð21Þ
where Xi is a vector of covariates that includes age, age at first birth, Black and
Hispanic dummies, and dummies indicating women with some college and college
graduates. The main effects, j0

0Xi , and interaction terms, j0
1Xi , use the same

parameterisation of covariate effects (in particular, they both allow for linear terms
in the age variables plus main effects for the dummies). In practice, j0

0Xi takes on
about 1,700 distinct values. For each of these values, I calculated

p̂0ðXiÞ � Uðĵ0
0XiÞ;

the distribution of which is plotted in Figure 3. This gives the distribution of the
probability of childbearing for women with different X-characteristics and Zi equal
to zero, i.e. the probability of being an always-taker. The distribution of p̂0ðXiÞ is
concentrated around the overall average of about 0.34, though there is
considerable spread.

By definition, a symmetric first stage shifts the probability of treatment across
the value of one-half. To identify a sample where this is most likely, I initially
selected women with p̂0ðXiÞ between 0.4 and 0.6. Column 3 of Table 5 reports
estimates for this sample, which has about 104,000 observations. The estimated
first-stage in this sample shifts the probability of treatment from 0.47 to 0.54, i.e.,
approximately from p to 1 ) p, as required by symmetry. For most outcomes, the IV
estimates in this symmetric sample are smaller in absolute value than in the full
sample and smaller than in the sample complementary to the symmetric sample,
for which results are reported in column 4. For example, the estimated effect on
weeks worked in the symmetric sample is )3.7 (s.e. ¼ 2.2), while the corres-
ponding estimate in the complementary sample is )6 (s.e. ¼ 1.6). Again, however,
the comparison is handicapped by a lack of precision.

The long right tail of the distribution of first-stage base values plotted in
Figure 3 suggests that an even larger symmetric sample can be constructed simply
by dropping values of p̂0ðXiÞ beginning from the left and working up. As it turns
out, limiting the sample to individuals with values of p̂0ðXiÞ greater than or equal
to 0.35 leads to a first stage that shifts the probability of treatment from 0.465 to
0.533, virtually perfectly symmetric. This can be seen in column 5 of Table 5, which
reports first-stage and IV estimates for the resulting sample of 162,264 observa-
tions. Most of the estimates in this symmetric sample are close to those in the full
sample. For example, the effect on weeks worked is )5.9 (s.e. ¼ 1.8) and the effect
on divorce or separation is 0.068 (s.e. ¼ 0.032). Perhaps surprisingly, the estima-
ted effect on poverty status differs markedly between this sample and its comple-
ment (0.136 versus 0.048) but the estimated effect is still significantly different
from zero in the complementary sample.
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4.2.2. Imputation of ATE
The results in Table 5 reflect an attempt to identify or construct samples where
LATE ¼ ATE. Alternately, we can use (11) or (19) to impute a value of ATE for the
various subsamples analysed in Table 3. The results of this effort are presented in
Table 6 for four outcomes; this Table also reports the no-selection alternative used
to construct the specification test discussed at the beginning of Section 3.2. The
estimates of the no-selection alternative are all slightly farther from the estimates
of LATE than the corresponding OLS estimates. For example, the OLS estimate of
the effect on weeks worked in the full sample is )7.34 (s.e. ¼ 0.08), while the no-
selection alternative is )7.56 (s.e. ¼ 0.12). This suggests, as noted earlier, that the
contrast between IV and the no-selection alternative provides a more powerful
specification test than a conventional IV/OLS comparison.

Estimates of ATE constructed using (11) for the effect of childbearing on weeks
worked are similar to the estimates of LATE, even in samples where the first-stage
is not symmetric. For example, the estimate of ATE for the sample of non-teen
(i.e., adult) mothers is )4.1 (s.e. ¼ 1.5), in comparison with an estimate of LATE
of )5.3 (s.e. ¼ 1.6). Using the estimates of h shown in Table 4 and (19) generates
somewhat smaller estimates for the effect on weeks worked other than in the teen
mother sample, though again mostly still significant.

Estimates of ATE for outcomes other than weeks worked are mostly insignifi-
cantly different from zero. This contrasts with the mostly significant estimates of
LATE. Again, this is partly a problem of precision. But the estimates of ATE
outside the teen mother sample move substantially closer to zero than the esti-
mates of LATE. For example, while LATE suggests the probability of divorce or
separation increases by 0.053 (s.e. ¼ 0.019), the corresponding estimates of ATE
are 0.028 (s.e. ¼ 0.019) when h equals one and 0.009 (s.e. ¼ 0.021) when h is
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Fig. 3. Distribution of First-stage Base Probability as a Function of Covariates.
The covariates are age, age at first birth, Black and Hispanic dummies for some

college and college graduates. There are about 1,700 values in the histogram
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Table 6

Imputation of ATE

Outcome Sample
OLS
(1)

No Selection
Alternative

(2)
LATE

(3)
h ¼ 1

(4)

ATE
Estimated h

(5)

Weeks Worked All Women �7.34 �7.56 �5.15 �4.31 �3.19
(0.08) (0.12) (1.30) (1.27) (1.45)

Ever Married �7.12 �7.33 �5.09 �4.41 �3.45
(0.09) (0.13) (1.27) (1.23) (1.43)

No College �7.22 �7.33 �6.52 �5.73 �4.94
(0.11) (0.16) (1.60) (1.57) (1.70)

Some College or + �6.59 �6.90 �3.21 �2.38 �0.60
(0.14) (0.21) (2.18) (2.08) (2.69)

Teen Mothers �7.47 �7.66 �4.76 �4.76 �4.76
(0.15) (0.22) (2.40) (2.40) (2.40)

Adult Mothers �7.19 �7.43 �5.26 �4.06 �2.19
(0.10) (0.15) (1.57) (1.48) (1.91)

Divorced
or Separated

All Women 0.0023 0.0005 0.053 0.028 0.0092
(0.0013) (0.0019) (0.019) (0.019) (0.0216)

Ever Married 0.0056 0.0043 0.055 0.024 �0.0002
(0.0014) (0.0020) (0.020) (0.019) (0.0221)

No College 0.0070 0.0053 0.057 0.032 0.011
(0.0016) (0.0024) (0.024) (0.024) (0.026)

Some College or + �0.011 �0.014 0.046 0.034 0.034
(0.002) (0.003) (0.032) (0.029) (0.037)

Teen Mothers �0.0030 �0.0063 0.048 0.048 0.048
(0.0027) (0.0040) (0.043) (0.043) (0.043)

Adult Mothers �0.018 �0.021 0.049 0.017 �0.0024
(0.001) (0.002) (0.021) (0.019) (0.024)

In Poverty All Women 0.143 0.150 0.095 0.049 �0.0023
(0.002) (0.002) (0.023) (0.024) (0.029)

Ever Married 0.124 0.129 0.082 0.054 0.020
(0.002) (0.002) (0.020) (0.021) (0.026)

No College 0.167 0.175 0.107 0.061 0.014
(0.002) (0.003) (0.031) (0.032) (0.036)

Some College or + 0.070 0.071 0.088 0.059 0.031
(0.002) (0.003) (0.030) (0.031) (0.042)

Teen Mothers 0.178 0.181 0.143 0.143 0.143
(0.003) (0.005) (0.050) (0.051) (0.051)

Adult Mothers 0.083 0.088 0.062 0.017 �0.039
(0.002) (0.003) (0.024) (0.025) (0.033)

Welfare
Recipient

All Women 0.067 0.072 0.033 0.0058 �0.026
(0.001) (0.002) (0.018) (0.0185) (0.022)

Ever Married 0.050 0.052 0.032 0.015 �0.0051
(0.001) (0.002) (0.014) (0.015) (0.0182)

No College 0.079 0.085 0.028 �0.001 �0.031
(0.002) (0.003) (0.024) (0.025) (0.029)

Some College or + 0.030 0.030 0.049 0.037 0.029
(0.002) (0.002) (0.022) (0.022) (0.030)

Teen Mothers 0.091 0.096 0.018 0.018 0.018
(0.003) (0.004) (0.042) (0.043) (0.043)

Adult Mothers 0.030 0.032 0.032 0.006 �0.024
(0.001) (0.002) (0.017) (0.017) (0.023)

Notes: Columns 1 and 3 repeat estimates from Tables 2 and 3. Column 2 shows the no-selection alter-
native under Restriction 1 and for the selection-bias test. Column 4 reportes estimates of ATE under
Restriction 3 and column 5 reports estimates of ATE under Restriction 4.
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estimated using (20). The evidence that further childbearing increases divorce or
separation for the typical woman with two children is therefore weaker than the
estimates of LATE would suggest. Except for the sample of teen mothers, the
estimates of ATE for effects on poverty status are also smaller than the corres-
ponding estimates of LATE.

5. Summary and Conclusions

The framework outlined here provides a strategy for modelling treatment effect
heterogeneity across potential-assignment subpopulations. I focused initially on
restrictions that make IV estimates of causal effects on compliers representative of
the overall population average treatment effect. This framework also leads to
procedures that can be used to impute average treatment effects from information
on average outcomes for compliers, always-takers, and never-takers. An illustration
of these ideas using same sex instruments suggests this approach may be useful in
applied work.

On the empirical side, estimates of LATE for teen mothers are close to the
corresponding average treatment effects for this population, when the latter are
inferred using linearity or proportionality assumptions. While estimates of the
overall average effect of childbearing are smaller than the corresponding IV esti-
mates, most of the estimated effects on labour supply and poverty status remain
substantial and significant. On the other hand, most (though not all) of the esti-
mated average effects on marital status and welfare use are small and insignificant.

Estimates of the effects of childbearing on marital stability and welfare partici-
pation using the same sex instrument suggest the outline of a coherent picture but
many features remain unresolved. In this application, the theory of parameter
heterogeneity runs quickly into the sandpile of sampling variance and specifica-
tion uncertainty. On balance, I think extrapolation efforts of the sort implemented
here are more likely to weaken the case for the predictive value of a particular
causal estimate than to provide a concrete and precise alternative to traditional IV.
For example, the evidence for an adverse effect of childbearing on marital stability
and welfare use is clearly weakened by the attempt to go from LATE to ATE. This
sort of destructive evidence seems to me to be a prominent feature of life in the
empirical world. The external validity of IV estimates is ultimately established less
by new econometric methods than by replication in new data sets and, of course,
by new instruments.

Massachusetts Institute of Technology and NBER

Appendix: Computation

1. The Test for Selection Bias

Drop individual subscripts from the notation. Consider the following two-equation system:

Y ¼ D0 þ D1D þ l ðA1Þ
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Y ¼ d0 þ d1½1ðD ¼ ZÞ� þ d2½ðD � ZÞ=2� þ v: ðA2Þ

The test for selection bias is a test of whether D1 ¼ d2 when (A1) is estimated by IV using Z
as an instrument and (A2) is estimated by OLS. The two coefficients and the asymptotic
standard error for their difference can be estimated by stacking (A1) and (A2) and allowing
for heteroscedastic and correlated residuals. In practice, for sample sizes on the order of
that used here, it seems reasonable to treat the estimate of d2 as non-stochastic and use the
standard error of the estimate of D1 to construct a t-test.

2. Estimates under Restriction 3

Use (A2) to write:

EðY1jD ¼ 1; Z ¼ 0Þ ¼ EðY1jD1 ¼ D0 ¼ 1Þ ¼ d0 þ d2=2

EðY0jD ¼ 0;Z ¼ 1Þ ¼ EðY1jD1 ¼ D0 ¼ 0Þ ¼ d0 � d2=2:

Estimates of E(Y0|D1 > D0) and E(Y1|D1 > D0) can be obtained as IV estimates of the
coefficients D01 and D11 in (A3) and (A4), below:

DY ¼ D10 þ D11D þ l1 ðA3Þ

ð1 � DÞY ¼ D00 þ D01ð1 � DÞ þ l0: ðA4Þ

Estimates of ATE under Restriction 3 are a linear combination of d0, d2, D01, and D11 . These
coefficients and the standard error for any linear combination of them can be estimated by
stacking (A2), (A3), and (A4).

To further simplify, rewrite (11) in terms of the parameters in (A2)–(A4) as

EðY1 � Y0Þ ¼ D11½1 � ðpa � pnÞ� � D01½1 þ ðpa � pnÞ� þ 2d0ðpa � pnÞ: ðA5Þ

To accommodate models with covariates, it is convenient to use a regression set-up to estimate
pa ) pn. Define a dependent variable d* ¼ D(2Z ) 1) ) Z. Regress d* on Z; the coefficient on Z
is an estimate of pa ) pn. Note that (without covariates) the standard error for the estimated
pa ) pn is the same as the standard error for the first-stage coefficient since the latter can be
written 1 ) pn ) pa. To estimate E(Y1 ) Y0|D ¼ 1), replace pa ) pn with pa/pd in (A5).

Models with covariates were estimated by adding covariates to the relevant first-stage
equations, and to (A1)–(A4). As a shortcut for inference for estimates of ATE using (A5), it
seems reasonable to treat (pa ) pn) and d0 as known since these are estimated much more
precisely than D11 and D01, which are themselves instrumental variables estimates. Note also
that IV estimates of D11 and D01 are independent.

3. Estimates under Restriction 4

Substitute parameters from (A1)–(A4) into (19) and simplify to obtain

EðY1 � Y0Þ ¼ D11½1 � ðpa � h�1pnÞ� � D01½1 þ ðhpa � pnÞ�
þ ½d0ð1 þ h�1Þ þ ðd2=2Þðh�1 � 1Þ�ðhpa � pnÞ:

ðA6Þ

Standard errors were calculated treating pa, pn, d0, d2, and h as known.
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