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Abstract— We consider the problem of resource allocation in
a wireless network operated by a single service provider. The
motivating model is the downlink in a cellular network where
the provider sets the price of entry into the wireless network
and then allocates power levels (and transmission rates) to
the participating users as a function of the users’ channel
conditions according to a pre-specified policy. The provider’s
goal is to design the power allocation policy that maximizes its
revenue, recognizing the effects of his decisions on the choice of
users to join the network. We show that the power allocation
policy chosen by the service provider satisfies the following
marginal user principle: the network allocates power levels
such that the utility of the marginal user, who is indifferent to
joining the network or not, is maximized. While the motivation
is drawn from power allocation, the marginal user principle
also generalizes to other resource allocation problems.

I. I NTRODUCTION

Our purpose in this paper is to study the allocation of
power and transmission rates in a wireless network from
the service provider viewpoint.

A central issue for wireless networks is the allocation
of scarce radio resources. The traditional approach to this
resource allocation problem is based on a single control ob-
jective, such as minimizing total power or maximizing total
throughput. The past decade has witnessed the development
of a new approach to resource allocation in communication
networks. This new approach starts with the utility functions
of (potential) users in the network defined over transmission
rates, quality of service and potential delays, and develops
algorithms for maximizing the sum of utilities of the users.
Recent work using this approach include [1]-[10], [12]-
[14]. Despite the important insights they have generated,
the new utility-based approach does not motivate the system
objectives. Why should the objective of the network be
the maximization of the sum of users’ utilities? Although
this may appear as a natural objective from a social point
of view, in modern wireless networks resource allocation
decisions are made by for-profit service providers and most
networks are built and operated for potential profit. To
understand how resources are likely to be allocated both

The research of the third author was supported in part by NSF Grant
ANI-0312976

D. Acemoglu is with the Department of Economics, MIT;
daron@mit.edu

A. Ozdaglar is with the Department of Electrical Engineeringand
Computer Science and the Laboratory for Information and Decision
Systems, MIT; asuman@mit.edu

R. Srikant is with the Department of Electrical and Computer Engi-
neering and Coordinated Science Lab, University of Illinois at Urbana-
Champaign; rsrikant@uiuc.edu

in current and future networks, one needs to consider the
service provider viewpoint. This paper is an attempt in this
direction. We investigate how resources will be allocated in
a network operated by a for-profit service provider, and we
compare the equilibrium resource allocations to the natural
social objective of maximizing the sum of the utilities of
potential users.

In our model, a profit-maximizing service provider
chooses a rule for power (transmission rate) allocation
among multiple users in the downlink of a single cell.
The allocation rule specifies how the power resources of
the network will be shared among a set of potential users
with varying channel gains. The base station measures
the channel gains of (participating) users and implements
the pre-specified rule to allocate power and transmission
rates. In choosing the allocation rule, the service provider
recognizes the effect of its allocation rule on the willingness
of users to participate and to pay for the right to participate
in this network. Although the service provider does not
know the exact utility function of each user, it is assumed to
have a good understanding of the distribution of the utility
functions of potential users. Users, in turn, know their own
utility functions (e.g., their own service preferences) and
recognize that they will have to transmit under a variety of
channel conditions.

The main assumptions of this model are plausible. The
assumption of profit-maximizing service provider is natural
in this context. Even if in practice service providers may
have other objectives besides profit maximization, they must
take the profit consequences of their decisions into account,
so the profit-maximizing rule is a natural benchmark. It
is also plausible to presume that the service provider has
a good understanding of the distribution of the utility
functions. This could be because of past experience in
the same or related markets, or because it has conducted
customer surveys. Finally, it is also natural that potential
users care about the transmission rates in the network under
a variety of different channel gains, for example, because
when they join the network, they do not know what their
exact channel gains will be at the time of transmission. An
alternative interpretation of users’ preferences is that once
they sign up with the network, they will transmit at various
different points in the future under varying channel gains
circumstances.

Our investigation reveals some simple lessons about
power allocation. We find that profit-maximizing strategy
is to choose an allocation rule that maximizes theexpected



utility of the marginal user. Expected utility here refers to
the utility that the user perceives before knowing his and
other users’ channel gains. Following the economics litera-
ture, we assume that the user calculates this expected utility
according to the von Neumann-Morgenstern expected utility
theory, and using a probability distribution over channel
gains. Marginal user refers to the user that is indifferent
between participating and not participating in this network
given the optimal pricing and allocation strategies of the
service provider.

This result is intuitive: the service provider would like
to maximize participation and the willingness to pay of the
users. This basically amounts to choosing the best allocation
rule from the point of view of the users. Based on this
insight, a naive intuition would have been that the alloca-
tion rule would indeed maximize the sum of the utilities
of users. This is not the equilibrium allocation rule (or
optimal allocation rule from the service provider viewpoint),
however. Since the users are potentially heterogeneous,
it makes sense for the service provider to maximize the
expected utility of the user who is at the margin indifferent
between participating and not participating in the network.
Individuals who are not participating are irrelevant, while
those who are participating but are not marginal (i.e., who
are intra-marginal) are already participating, and the service
provider does not gain further by increasing their utility.1 In
contrast, by increasing the utility of the marginal user, the
service provider can increase the price that it can charge to
all users without reducing total demand for participation in
the network.

This allocation rule contrasts with some ad hoc rules
commonly used in the literature, including proportional
fairness rules which maximize the logarithm of the trans-
mission rates to users. Interestingly, our analysis shows that
the proportional fairness rule would result as the profit-
maximizing allocation rule when the marginal user has a
utility function that can be approximated by a logarithmic
utility function defined over the transmission rate.

The equilibrium allocation rule in the model is also differ-
ent from maximizing the sum of utilities of all users. In fact,
unless all users have exactly the same utility function, the
allocation rule chosen by the service provider will be differ-
ent from the socially optimal allocation rule. The difference
between the equilibrium and the social objective in this case
emerges because the service provider is trying to achieve
a private objective, profit maximization. Although this ob-
jective requires the network to be sufficiently attractive to
all users, the service provider ultimately caters to the needs
of the marginal user, since this ensures the largest possible
demand at a given price. This difference between the choice
of the service provider and the socially preferred allocation
rules suggests that there may be room for regulation of

1Expressed differently, intra-marginal users obtain a positive consumer
surplus, in the sense that they have a positive net utility ofparticipating in
the network. Increasing their utility further would only increase their con-
sumer surplus without providing additional profit to the service provider.

power and transmission control in communication networks.
Naturally, however, such government regulation introduces
other potential inefficiencies, and whether regulation would
be warranted once these inefficiencies are taken into account
is an area we leave for future research.

II. M ODEL

A. Preliminaries

We study pricing to allocate resources in a cellular wireless
network. We consider the downlink of a single cell, in which
there areN potential users (i.e., users which contemplate
using the service provided by this particular base station),
and denote the set of users byN = {1, . . . , N}. Let pi be
the transmission power allocated by the base station to user
i, and assume that the base station has a constraint on its
total transmission power given by

N
∑

i=1

pi ≤ PT . (1)

Let hi represent the channel gain of useri, i.e., hipi is the
received power by useri. Then the rate at which the base
station transmits to useri, denoted byxi, is given by

xi = log

{

1 +
hipi

σ2

}

, (2)

where σ2 is the background noise level. We assume that
the rate is measured in nats per unit time. Note that ifhi =
0, then irrespective of the assigned power, useri will not
transmit, i.e.,xi = 0. Therefore, we adopt the convention
that hi = 0 also stands for useri being inactive.

Combining (1) and (2), for a given set of channel
gains{hi}i∈N , we obtain the following constraint on the
transmission ratesx1, . . . , xN assigned to users:

∑

i∈N , hi>0

σ2

hi

(exi − 1) ≤ PT , (3)

andxi = 0 if hi = 0.
The distribution of the channel gainhi, conditional on

hi > 0, depends on the location of the user in the cell
and on random shadowing, while the probability ofhi >

0 is determined by the probability that a given user will
be active. We assume that the{hi} are chosen from some
probability distribution in the analysis that follows.

B. Allocation Rules

Our goal is to determine pricing strategies and power
allocation rules for profit maximization, i.e., how should
a service provider price resources to maximize revenue?
In the literature, resource allocation is done to achieve
a number of different fairness criteria. For example, the
well-known proportional-fairness allocation rule chooses
transmission rates which solve the maximization problem

max

N
∑

i=1

log(1 + xi)



subject to (3) above, for each realization of channel gains
across users. This proportional-fairness allocation rulecan
be viewed as a special case of a class of allocation rules that
maximizev(x) subject to (3) above, wherev : <N → < is
an arbitrary function capturing system objectives.

The question that we are interested in is which function
v(.) would be profit maximizing from the point of view
of the service provider. It is clear that the problem can be
studied either by thinking of the service provider choosing
the functionv(.), or directly the allocation vectorx ∈ <N

as a function of the realization of all users’ channel gains,
h ∈ <N , which turns out to be more convenient in our
analysis.

C. Technology, Preferences and Notation

We first formally define the power allocation rule, or equiv-
alently the rate allocation rule as a function of realizations
of the channel gain vector. We assume that the channel gains
of the participating users is characterized by a permutation
invariant cumulative distribution. This impliesanonymity,
whereby the service provider cannot discriminate among
users, except on the basis of their channel gains; so two
users with the same channel gain will receive the same
rate allocation, given the channel gains of other users. To
facilitate the analysis, we introduce the following notation.
Let M be the number of participating users and letHM

be a largest-cardinality set in<M such that ifh, h̃ ∈ HM ,
thenh and h̃ are not permutations of each other. For each
M ∈ N , let F (hM ,M) be the distribution function defined
over hM ∈ HM ; i.e., distribution function of the channel
gain vector ofM participating users.

We define the allocation rule when there areM partic-
ipating users as a functionxM : < × HM−1 7→ < that,
for each(h, ĥ), assigns a ratex(h, ĥ) to a user, when the
channel gain of that user is the scalarh, and the channel
gains of the remaining users are given by the(M − 1)-
dimensional vector̂h ∈ HM−1. This definition of the
allocation rule, in particular, the choice of< × HM−1 as
the domain of the mappingxM , imposes the anonymity
assumption motivated above: the identity of the user and
the ordering of the channel gains of the other users is
irrelevant; i.e., the individual user with a channel gainh

must be assigned the same rate regardless of its identity and
the ordering of channel gains among remaining users. This
type of restriction is also referred to as symmetry, and it
basically rules out allocation rules where users with some
characteristics (e.g., different demographics) are assigned
different transmission rates even when they have the same
channel gain.

We assume that useri has an increasing and concave
utility function ui(x) with ui(0) = 0, which specifies the
amount he is willing to pay if he is assigned the deter-
ministic rate of transmissionx. Since we have uncertainty
in the system regarding channel gains and transmission
rates, we use the expected utility theory, which states that
user preferences under uncertainty can be represented by

an expected utility function (also known as von-Neumann-
Morgenstern utility function)Ui, which forM participating
users and an allocation rulexM (·) is given by

Ui (xM (·),M) = EhM
[ui(xM (hM ))] . (4)

Two features are worth noting. First, the concavity of
ui(·) is essential in this formulation. In standard economic
applications, this corresponds to therisk aversion of the
user. In this case, we can interpret it either as risk aversion,
for example, because users dislike potential variability in
transmission rates and service quality, or as flexibility. With
the latter interpretation, a more concave utility function
implies that the user has little flexibility regarding when
he or she can transmit whereas a less concave (closer
to linear) utility function would capture greater flexibility.
Second, interpreted literally, this formulation corresponds
to a situation where each user transmits only once, under
a particular channel gain drawn from a distribution. An
alternative interpretation may be more appealing, whereby
users, after entering the network, will transmit a large
number of times under varying channel gains, and therefore
Ui (xM (·),M) is the “average” payoff they will obtain once
they are part of the network. Mathematically, these two
interpretations are equivalent. This alternative interpretation
would also be complementary to the interpretation of the
concavity of theui(·) function as capturing the degree of
flexibility of users.

Given a priceq, M participating users, and an allocation
rule xM (·), the net utility of useri, i = 1, . . . , N , can be
expressed as

ei (Ui (xM (·),M) − q) ,

where ei is a binary participation decision variable,ei ∈
{0, 1} for user i, such thatei = 1 if user i decides
to participate in the network, andUi (xM (·),M) is the
expected utility of useri, see Eq. (4). It is clear that the
user utility depends on the number of participating users.
Hence each user, when deciding whether to participate,
needs to form conjectures about the behavior of other users,
which they do according to the following user equilibrium
definition.

Given a priceq, and a class of allocation functions
{xM (·)}M∈N , we say that a vectore = {ei}i∈N ∈ {0, 1}N

is a user equilibrium ifei = 1 only if Ui (xM (·),M) ≥ q

and M =
∑N

i=1 ei. The optimality condition states that
user i will participate only if the expected utility from
transmission is greater than the cost of participating in the
network. Moreover, the set of optimal solutions should be
a fixed point of the best responses, which are functions of
M . Note that the user equilibrium notion is similar to the
Wardrop equilibirum of transportation networks, see [15],
where each user is treated small and does not anticipate the
effects of its actions.

The service provider’s profit maximization problem can



be written as

max
q≥0, {xM (·)}

q

N
∑

i=1

ei, (5)

subject to

gM (k) ≤ PT , ∀ M, ∀ k ∈ HM ,

where

gM (k) =
∑

i∈{1,...,M}, ki>0

σ2

ki

(

exM (h=ki,ĥ=k−i) − 1
)

,

and{ei}i∈N is the user equilibrium defined above.
The model we have outlined corresponds to a dynamic

game with the following timing of events:
• The service provider announces an admission priceq

and a family of allocation rules{xM (·)}M∈N .
• All potential users simultaneously decide whether or

not to enter the network.
• The channel gains of all participating users,hM is re-

alized, and the pre-specified allocation rule,xM (hM ),
is implemented.

Characterizing the optimal admission price and allocation
rule from the viewpoint of the service provider corresponds
to finding the subgame perfect equilibrium of this dynamic
game. Here, every different(q, {xM (·)}) defines a different
subgame. The subgame perfect equilibrium of this game
is given by the optimal solution of problem (5) and the
corresponding user equilibrium. For our purposes, we can
focus on the allocation rule along the equilibrium path
and represent the subgame perfect equilibrium as a tuple
(

q∗, x∗
M∗(·), {e∗i }i∈N ,M∗

)

that maximizes

max
q≥0, xM (·), {ei},M

q

N
∑

i=1

ei, (6)

subject to

gM (k) ≤ PT , ∀ k ∈ HM ,

ei = 1 only if Ui (xM (·),M) ≥ q,

N
∑

i=1

ei = M.

We refer to this problem as the service provider (SP)
problem. Also, with some abuse of notation, we refer to
(q∗, x∗

M∗(·),M∗) as an SP equilibrium. One can also view
the above game as a Stackelberg game [11], with the
service provider as the leader and the potential users as
the followers.

III. A NALYSIS

We now provide explicit analysis and characterization
of optimal prices and optimal allocation rules (from the
service provider viewpoint). For expositional convenience,
we start with a number of cases with special distribution
of utilities across users, such as proportional or ordered
utilities, building up to the analysis of the general case.

A. Users with Ordered Utilities

CASE 1: We assume that useri has a utility function

ui(x) = γiu(x), (7)

whereγi is the utility gain parameter of useri and u(x)
is an increasing concave function withu(0) = 0. Let us
assume without loss of generality that

γ1 ≥ γ2 ≥ · · · ≥ γN .

Let M denote the number of participating users. In view
of the permutation invariant assumption on the distribution
function F (hM ,M), the expected utility function for user
i, givenM participating users and an allocation rulexM (·)
can be expressed as

Ui (xM (·),M) = γiU (xM (·),M) ,

with
U (xM (·),M) =

∫

HM

[

1

M

M
∑

i=1

u
(

x(h = ki, ĥ = k−i)
)

]

dF (k,M), (8)

wherek = (ki,k−i) ∈ HM andk−i denotes the(M − 1)-
dimensional vector without theith component.

Proposition 1: Let each user have utility functionui(x)
given by Eq. (7). Let(q∗, x∗

M∗(·),M∗) be an SP equi-
librium. Then x∗

M∗(·) can be obtained pointwise, i.e., for
eachk ∈ HM∗ , the M∗ values,x∗

M∗(h = ki, ĥ = k−i),
i = 1, . . . ,M∗, are found by solving theM∗-dimensional
optimization problem

max
1

M∗

M∗

∑

i=1

u
(

xM∗(h = ki, ĥ = k−i)
)

subject to

xM∗(h = ki, ĥ = k−i) = 0, if ki = 0, (9)

gM∗(k) ≤ PT ,

where

gM∗(k) =
∑

i∈{1,...,M∗}, ki>0

σ2

ki

(

exM∗ (h=ki,ĥ=k−i) − 1
)

.

Moreover, we haveq∗ = γM∗U (x∗
M∗(·),M∗).

proof: In view of the relation between theγi’s, it can be
seen that(q∗, xM∗(·),M∗) is an optimal solution of

max
q,xM (·),M

qM

subject to

xM (h = ki, ĥ = k−i) = 0, ∀ k ∈ HMwith ki = 0,

gM (k) ≤ PT ∀ k ∈ HM ,

γM ≥
q

U (xM (·),M)
.



Since at the optimal solution, the second inequality con-
straint is satisfied as an equality, it follows thatx∗

M∗(·) is
also an optimal solution of the problem

max
xM∗ (·)

U (xM∗(·),M∗)

subject to

xM∗(h = ki, ĥ = k−i) = 0, ∀ k ∈ HM∗with ki = 0,

gM∗(k) ≤ PT ∀ k ∈ HM∗ .

By Eq. (8), this problem has a separable structure and the
optimal allocation rulex∗

M∗ can be obtained pointwise for
eachk ∈ HM∗ as stated in the proposition.Q.E.D.

The userM∗ is the marginal user, in the sense that all
users with index smaller thanM∗ will participate in the
networka fortiori whenM∗participates, while those above
M∗ choose not to participate. In other words, sinceq∗ =
γM∗U (x∗

M∗(·),M∗), userM∗is indifferent between joining
the network or not.

That the service provider maximizes the utility of the
marginal user is intuitive. If it is possible to increase the
utility of the marginal user,γM∗U (x∗

M∗(·),M∗), this will
allow the service provider to also increaseq∗ by the same
amount, while still ensuring thatq∗ ≤ γmU (x∗

M∗(·),M∗)
for all m < M∗. Therefore, it can increase the price without
reducing the number of participants and raise profits. In
the optimum, there should be no possibility to raise profits
further, and hence the expected utility of the marginal user
should be maximized.

A special case of this proposition is whenγi = γ for all
i. In this case, it can be shown that the SP equilibrium
has an identical allocation rule and identical number of
participating users to the social optimum (i.e., the allocation
and the participation decisions that would be chosen by a
planner that maximizes the sum of the expected utilities of
all potential users). However, when theγi’s are different,
the SP allocation rule and participation decisions will not
be optimal from a social point of view—some users that
a social planner would have admitted will typically be
excluded by the service provider. It is worth noting that
although the allocation rule chosen by the service provider
differs from the socially optimal allocation rule, itdoes
coincide with the restricted social optimal allocation rule
where the system is limited to accept onlyM∗ users. In
fact, the allocation rule maximizes the expected utility of
all participating users. Although in this case, the allocation
rule of the SP equilibrium is socially optimal, conditional
on acceptingM∗ users, we next see that this result is not
true in general.

CASE 2: In this case, we assume that useri has an
increasing concave utility functionui(x) that satisfies

u1(x) ≥ u2(x) ≥ · · · ≥ uN (x), ∀ x ∈ [0,∞). (10)

Compared to the assumption in Case 1, this is a fairly
weak restriction on the utility functions, requiring that the
utility functions do not cross. This essentially amounts to
stating that if a particular user values transmission more
than another user at some rate, he or she will value
transmission at all other rates also more than this user. This
assumption will allow us to rank users and define a clear
marginal user as in the previous case. The expected utility
function for userj, given M participating users and an
allocation rulexM (·), can be written as
Uj (xM (·),M) =

∫

HM

[

1

M

M
∑

i=1

uj

(

xM (h = ki, ĥ = k−i)
)

]

dF (k,M).

(11)

Proposition 2: Let the utility functionsui(x) satisfy Eq.
(10). Let (q∗, x∗

M∗(·),M∗) be an SP equilibrium. Then the
optimal allocation rulex∗

M∗(·) can be obtained pointwise,
i.e., for eachk ∈ HM∗ , the M∗ values, x∗

M∗(h =
ki, ĥ = k−i), i = 1, . . . ,M∗, are found by solving theM∗-
dimensional optimization problem

max
1

M∗

M∗

∑

i=1

uM∗

(

xM∗(h = ki, ĥ = k−i)
)

subject to Eq. (9) and

gM∗(k) ≤ PT .

proof: In view of the ordered structure of the utility func-
tions, the proof follows similar steps to those of Proposition
1, and is therefore omitted here.Q.E.D.

First, note that, with a similar interpretation to before, the
allocation rule maximizes user expected utility, but now, it
is not the expected utility of all users, but of the marginal
user,M∗.

The intuition for why the utility of the marginal users
should be maximized is the same as before. However, the
implications are different; the optimum from the point of
the service provider does not maximize the sum of utilities
of potential users (even conditional on the number of users
admitted). In all cases, it maximizes simply the utility of the
marginal user, which differs from the intra-marginal users.
Consequently, the allocation rule is also very different from
a socially optimal rule.

This result helps us clarify the previous results we
have obtained: in all cases, the service provider always
maximizes the expected utility of the marginal user. In the
previous cases, the allocation rule that maximized utilityof
the marginal user also happens to maximize the utility of
all users.

B. Arbitrary Utility Functions

In this case, we assume that each useri has an arbi-
trary, strictly concave utility functionui(x) (i.e., we allow



crossing utility functions). Similar to the previous case,the
expected utility function for userj is given by Eq. (11).

The SP problem in this case can be written as

max
M, S(M), q, xM (·)

qM (12)

subject to

xM (h = ki, ĥ = k−i) = 0, ∀ k ∈ HMwith ki = 0,

gM (k) ≤ PT , ∀ k ∈ HM ,

Ui (xM (·),M) ≥ q, ∀ i ∈ S(M),

where S(M) is a subset of users with cardinality equal
to M (i.e., the set of participating users, not necessarily
{1, . . . ,M} in this case). We have the following proposi-
tion. The proof is omitted due to lack of space.
Proposition 3: Let (M∗, S(M∗), q∗, x∗

M∗(·)) be an optimal
solution of problem (12). Then there exists anm∗ and a
possibly empty setRm∗ ⊂ S(M∗) such that,x∗

M∗(·) is an
optimal solution of

max
xM∗ (·)

Um∗ (xM∗(·))

subject to Eq. (9) and

Um (xM∗(·)) = Um∗ (xM∗(·)) , ∀ m ∈ Rm∗ ,

gM∗(k) ≤ PT , ∀ k ∈ HM∗ ,

and q∗ = Um (x∗
M∗(·)) for all m ∈ Rm∗ ∪ {m∗}. If

Rm∗ = ∅, then x∗
M∗(·) can be found pointwise, i.e., for

eachk ∈ HM∗ , the M∗ values,x∗
M∗(h = ki, ĥ = k−i),

i = 1, . . . ,M∗, are found by solving theM∗-dimensional
optimization problem

max
1

M∗

M∗

∑

i=1

um∗

(

xM∗(h = ki, ĥ = k−i)
)

subject to Eq. (9) and

gM∗(k) ≤ PT .

Since the utility functions may cross in this case, there
may be more than one marginal user class (i.e., users
with different utility functions), which is given by the set
Rm∗ ∪{m∗}. Rm∗ = ∅ corresponds to the case when there
is a single marginal user. Even whenRm∗ 6= ∅, the rate
allocation rule is determined using the utility functions of
marginal users, so the marginal user principle still applies.
For the special case whenHM∗ is a singleton2, the optimal
allocationsx∗

M∗(h = ki, ĥ = k−i), i = 1, . . . ,M∗, are
found by solving the problem

max
1

M∗

M∗

∑

i=1

um∗

(

xM∗(h = ki, ĥ = k−i)
)

2This would happen whenhi takes a finite number of values, and there
is a large number of users such that every channel gain realization of
admitted users is a permutation of the same vector

subject to Eq. (9) and

1
M∗

∑M∗

i=1 um

(

xM∗(h = ki, ĥ = k−i)
)

= 1
M∗

∑M∗

i=1 um∗

(

xM∗(h = ki, ĥ = k−i)
)

, ∀ m ∈ Rm∗ ,

gM∗(k) ≤ PT .

IV. CONCLUSIONS

In this paper, we have studied a power allocation problem
where a service provider sets an entry price and announces
a power allocation strategy and then users decide to join the
network or not. It is shown that the optimal power allocation
scheme maximizes the utility of the marginal user. This is in
contrast to the widely-studied social welfare maximization
and fairness criteria. The marginal user principle highlighted
by our analysis is not restricted to the power allocation
problem in wireless networks. Similar results hold in other
resource allocation problems in communication networks.
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