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Abstract

This Auxiliary Appendix contains detailed proofs for the results presented in the main part of the paper.



A Introduction

We repeat a number of definitions given in the main paper for ease of reference. We also attach the
appendix on implementation which is also part of the main paper for the same reason.

The two identifying restrictions are recalled first:

Condition 1 The sharp null hypothesis of no causal effects means that Ytl@' (d) = YZ@ (d), 7 > 0 for
all d,d" and for all possible policy functions 1,1’ € U,. In addition, under the no-effects null hypothesis,
V" (d) = Yiuy for all d, 1), t, j.

Condition 2 Selection on observables:

thl (d) ,Y;’g (d),...LDy|z, for all d and ¢ € U,.

)

Combining Conditions 1 and 2 produces the key testable conditional independence assumption, written

in terms of observable distributions as:
Y;j_t,_l,...,Y;H_j,... LDt‘Zt. (1)

Let U; = (ys, 2;) and choose a suitable test function ¢(.,.) : R¥ x R¥ — H where H is either H = RM x RM
or H = R. The corresponding unconditional moment restriction is E [¢ (U, v) (1 (D = i) — pi(z:))] = 0 for

i =1,..M. To move from population moment conditions to the sample, we start by defining the empirical

process
Vi (v) =n~ 1/ Z m(yt, Dt, 2, 003 v)
=1
with
m(ye, Dy, 2,05 v) = (U, v) [Dy — p(2,0)] .
Let

e = [ " (diag (p(u2)) — p(uz)p (ua)') dF, (u) 2)

—0oQ
with p(z) = (p1(2¢) ..., pm (2¢)) and p;(z) = Pr(Dy = i|z). Also, Fy,(u) is the cumulative marginal
distribution function of U;. Define the covariance kernel of the limiting process V (v) of V;, (v) as

T(v,7) = lim E [Vy(o)Vi(r)] = / 6w, v)dH (u) $(u, )’ (3)

n—oo

The statistic V,,(v) can be used to test the null hypothesis of conditional independence by comparing the

value of KS= sup,, ||V}, (v)]| or
VM = / Vo ()] dFu(w) (4)



Let Vn(v) denote the empirical process of interest where p(z, 6) is replaced by p(z, 9) and the estimator

0 is assumed to satisfy the following asymptotic linearity property:

w12 (9= 60) =n~2 301Dy, 21, 00) + 0p(1). (5)
t=1
Define the function m(v,8) = E [m(ys, Dy, 2, 6;v)] and let
i 8m v, 0
m(v,0) = 8<9’ )

The empirical process V,(v) converges to a limiting process V (v) with covariance function
L(v,7) =T (v,7) = 1i2(v, o) L(Bo)rin(7, 0o)', (6)

with L (6o) = E [ (Dy, 2¢,00) L (Dy, 2, 60)']-

Let {4} be a family of measurable subsets of [—00, 00]¥, indexed by A € [—o00, 00] such that A_, = @,
Ag = [-00,00]", A < N = Ay C Ay and Ay\Ay, — @ as X' | A\. Define the projection myf(v) =
1(ve Ay f(v) and my = 1— 7y such that 7y f(v) = 1 (v ¢ Ay) f(v). We then define the inner product
(f(),9()) = J f(u)'dH (u) g(u) and, for

l_(’Uy 9) = (diag (p(112>) _ p(UQ)p (v2)/)—1 M

00"
define the matrix

Or = (m31.0). 741(.0)) = / L, 0) dH (u)rT(u, 0).
Next, note that V(v) can be represented in terms of a vector of Gaussian processes b(v) with covariance
function H(v A7) as V(¢(.,v)) = V(v) = [ ¢(u,v)db(u), and similarly V(I (.,0¢)) = [I(u,B0)db(u) and
V() =V(()) - (f(),1(.,60)) 2,V (I(.,00)"). Define the transformation 7' as

W) =TV (v) =V (v) —/<¢(.,v)’,d(mz‘(.,e))>CA1V(W§Z(.,9)') (7)
and
Won(v) = TV, (v) =V, (v) —/ </ d(u, v)dHy, (w)d (72l (u, e))) CY WV (my (., 0)) (8)

with V;, (73 1(.,0)) = n= /23" 7hl(Us, 0 (DS — p(%s, @)) and the empirical distribution H,,(v) is defined
in Appendix C. Now specializing Ay to

]kfl

: 9)

leads to test statistics with simple closed form expressions. Denote the first element of y; by y1¢. Then (8)

Ay = [—00, A\] X [—00, 00

can be expressed more explicitly as

) = V) =2 o

(Ut, ) 8p;9t,’ ¢ e 18211{y15>3/1t}l(U5’6)< p(zsjé))] .



To describe the Rosenblatt transform let Uy = [Uy, ..., U] and define the transformation w = Tg (v)
component wise by w; = Fi(v1) = Pr(Up <wv1), we = Fy(ve|v1) = Pr(Up < vo|Uy = v1), ey wp, =
Fk (’Uk”l)k_l, ...,Ul) where Fk (’Uk|’Uk_1, ...,’Ul) = Pr (Utk < 'Uk|Utk—l = VUk—1y s Utl — ’1}1) . The inverse v =

Ty ! (w) of this transformation is obtained recursively as vy = F; ! (u1),
_ -1 ~1
vy = Fy 't (wol FyH (w1)) oo
Using the Rosenblatt transformation we define

mu (wr, Dy, 0]v) = d(we, w) [Dy — p ([T (wy)],0)]

where w = Tg(v) and 2 = [T ! (wt)]z denotes the components of 7' corresponding to z;. The test

statistic V;,(v) becomes the marked process
Vi (w) = n 230 my, (wy, Dy, 0lw).

We denote by V,, (w) the limit of Vi, (w) and by Vi, (w) the limit of Vw,n (w) which is the process
obtained by replacing # with @ in Vi (w) . Define the transform T,,V,,(w) as before by

Wy(w) = TV (w) = Vi (w) —/<¢(.,w)’,dmzw(.,9)>c;lvw(ﬁzw(.,e)’). (11)

Finally, to convert W,,(w) to a process which is asymptotically distribution free let

() = (ding (p([T5* O1,)) = p([T7" Q1w (77" ()1.))

and
Buy(w) = Wiy (6 w) () ™/2)

where B, (w) is a Gaussian process with covariance function fol - fol d(u, w)p(u, w') du.

For w > 2let Kj(z) = (2r) /2 > =1 |aj\_k exp (—1/2:U’x/aj2) with 3%, 0 = Land Y %_, 0, |aj|2£
Oandall £ =1,2,...,w—1. Let m,, = O(n_(l_“)/%) for some x with 0 < kK < 1 be a bandwidth sequence
and define

Fi(z) = Tlel{UﬂSUM}
=1

- 1 Yo WU < @1} K1 (2= — Up) /)
nt 30 K1 (k- — Un—) /mn)




where x5, = (23_1,...,71)" and Uy = (Usp_1,...,Us1) . An estimate w; of wy is then obtained from the

recursions

Wy = F1(Un)

W = EFp(Un|Usg—1, .., Un).

We define me (w) =T, w,an,n (w) where T, y, is the empirical version of the Khmaladze transform applied
to the vector wy. Let an (w) denote the process Wy, (w) where w; has been replaced with ;. For a

detailed formulation of this statistic see Appendix C. An estimate of h,(w) is defined as

ilw() = <diag (p(,@)) —p(.,@)p (,@)l) .

The empirical version of the transformed statistic is

~

me(w) = Wan (Cf)(-aw)hw(')_lﬂ)

~

= n /2 Z ¢ (g, w) h(z) /2 [Dt —p(z,0) — An,t} (12)
=1

where A, o =n~ 13" | 1 {1y > 1} 8p(£,’é) C“;Ufj(zt, 0 <Dt — p(z, @)) :

Bootstrap based critical values are obtained as follows: the wild bootstrap error distribution is con-

structed by sampling €} ; for s = 1,...,.S bootstrap replications according to
* kok kok 2
6t,s = 8t,s/\/§ + ((St,s) - 1) /2 (13)

where 7 ~ N (0, 1) is independent of the sample. Let the moment condition underlying the transformed

test statistic (12) be denoted by
mag (v,0) = 6 (i, w) h(z0) ™2 [ Dy = p(at,0) — An]

and write

B:B,n;s (w) =n~1/? Zn: €1 s <mT7t (v, 9) — My, <v, @)) (14)
t=1

to denote the test statistic in a bootstrap replication, with m,.r (v, 9) =n"! oy mry (v, 9) .

B Asymptotic Critical Values

This Section provides formal results on the distribution of the test statistics described above and forms
the basis for the construction of asymptotic critical values. The theorems and proofs use the additional

notation outlined below.



B.1 Additional Notation and Assumptions

We focus initially on the process V;,(v) and the associated transformation 7. Results for V,, ,(w) and the
transformed process T3, Vi (w) then follow as a special case.

Let x; = [y}, 2, D¢]' be the vector of observations. Assume that {Xx¢}i2, is strictly stationary with
values in the measurable space (RFt1, B*1) where B**! is the Borel o-field on R*™! and k is fixed with
2 <k < oo. Let A} =0 (X1, ..., x;) be the sigma field generated by x4, ..., x;- The sequence x; is f-mixing

or absolutely regular if

— 0 as m — oo.

B =sup E Pr (A\Aﬁ) —Pr (A)’

>1

sup
AeAY

Condition 3 Let x; be a stationary, absolutely reqular process such that for some 2 < p < oo and some
6 > 0 the B-mizing coefficient of x, satisfies m®P+9/(=2) (log m)Q(pfl)/(pfz) B — 0.

Condition 4 Let F,(u) be the marginal distribution of Up. Assume that F, (.) is absolutely continuous
with respect to Lebesque measure on R¥ and has a density f,(u) with f,(u) >0 for all u € R¥.

Condition 5 The matriz of functions ¢(.,.) belongs to a VC subgraph class of functions with envelope
M(x;) such that E||M(x,)|P*° < oo for the same p and § as in Condition 3.

We note that |m(ys, Dy, z¢, 0p|v)| < 2 for ¢(.,v) = 1{. < v} such that by Pollard (1984) Theorem I1.25,
my(Wi) = m(ye, Dy, 21, 0olv) (15)
is a VC subgraph class of functions indexed by v with envelope 2.

Condition 6 Let H(v) be as defined in (2). Assume that H(v) is absolutely continuous in v with respect
to Lebesgue measure and for all v,7 such that v < T with v; < T; for at least one element v; of v it
follows that H(v) < H(r). Let the M x M matriz of derivatives h(v) = 0*H (v)/0v;...0v, and assume
that det (h(v)) > 0 for all v € R¥.

Remark 1 A sufficient condition for Condition 6 is that 0 < p;(z¢,00) < 1 almost surely for all i =
0,1,..., M, together with Condition 4.

B.2 Limiting Distributions

Let © [—oo,oo]k be the space of functions that are continuous from the right with left limits (Cadlag)
mapping [—oo, oo]k — R. We consider weak convergence on ® [—o0, oo]k equipped with the sup norm.

Here [—o0, oo]k denotes the k-fold product space of the extended real line equipped with the metric ¢(v, 7) =



1/2
(Zle |®(v;) — @(Ti)|2> where ® is a fixed, bounded and strictly increasing function. It follows that

[—00, 00" is totally bounded. The function space F = {m(., v)|v € [—o0, oo]k} of functions m indexed by

v then is a subset of the space of all bounded functions on [—c0, 50]" denoted by 1°°([—o0, 0c]®).

Proposition 1 Assume that Conditions 1-6 are satisfied. Let v; € [—oo,oo]k fori=1,...;s be a finite
collection of points. Then, for all finite s, Vy, (v1) , ...., Vy, (vs) converges in distribution to a Gaussian limit
with mean zero and covariance function I'(v;, v;), defined in (3). Moreover, V, (v) converges in ® [—oo, ok
to a Gaussian process V (v) with covariance kernel T'(v,7) with v, 7 € [—00,00]" and V(—o0) = 0, H(v) is

positive definite with H(v) increasing in v.

Proof of Proposition 1.  As noted before, under Hy, my(x;), defined in (15) is a martingale
difference sequence such that E (m,(x;)|z:) = 0. Let A = (A1, ..., As)’ with [|A]| = 1 and \; € RM. For finite
dimensional convergence we apply Corollary 3.1 of Hall and Heyde (1980) to Y; x = Xjmy, (x;) +Aom0, (x4)+

o Aoy, (x¢)- Then, clearly Yy is also a martingale difference sequence. Consider Y, = Y; y/v/n. Then,
for all € > 0,

STE (Y21 (Yol 2 e} AT < 30 E (VAL (MG S 1M = Vie} 1A - 0 as
t t
because E || M (x,)||*™ is bounded for some & > 0. Also,
ZE w AT = ! ZE (YA

= Z Z [Xih (uz, i) (diag (p(2¢) — p(20)p (2¢)') @ (ue, v;)' )\j|Atfl]

t=1ij=1
s
= Z NPT
ij=1
where the last line is a consequence of Theorem 2.1 in Arcones and Yu (1994). By the Cramer-Wold theorem
this establishes finite dimensional convergence. The functional central limit theorem again follows from
Theorem 2.1 in Arcones and Yu (1994). =
The next proposition establishes a linear approximation to the process Vi, (v) evaluated at the estimated

parameter value 0. The fact that [ (Dy, 21, 6p) is a martingale difference sequence is critical to the develop-
ment of a distribution free test statistic. The next condition states that the propensity score p(z,6) is the
correct parametric model for the conditional expectation of D; and lists a number of additional regularity

conditions.



Condition 7 Let 0y € © where © C R? is a compact set and d < oo. Assume that E [Dy|z] = p(z|00)

and for all  # 0y it follows E[D¢|z] # p(z:]0). Assume that p(z|0) is differentiable a.s.

for 8 €

{0 € ©]|0 — 6| <} = Ns(0o) for some 6 > 0. Let N(6y) be a compact subset of the union of all neigh-
borhoods Ns (0o) where Op(z|0)/00, 9*p(2:|0)/00;00; exists and assume that N(0o) is not empty. Let
Opi(2]0)/00; be the i, j-th element of the matriz of partial derivatives Op(z0)/00" and let l; ;(z1,0) be the

i,j-th element of I (z,0). Assume that there exists a function B(x) and a constant oo > 0 such that

|0pi(]6)/90; — Ops(«0") /00, < B(x) |6 — ¢'||",
|0%py,(10)/00;00; — 0%py,(x]0)/00;00;| < B(z) |0 — ¢'||" and

015 (210) /061, — O (210" /06k| < B(w) |} - 0'||"

for all i, j,k and 0,6/ € int N (60), E [B(2)[*"*® < oo, E|0pi(=1/6) /00, < oo,

E [pi(zt,eo)—@p”)} < 00

and
2p+6
E [|api(zt|90)/aaj| 2 ] < 00

foralli=0,.... M, and j and some § > 0.

Remark 2 By Pakes and Pollard (1989, Lemma 2.13) the uniform Lipschitz condition for the derivatives

Opi(2¢|0)/00; guarantees that the functions Op(z|0)/06" indexed by 0 form a Euclidean class for the envelope

B(z) (2\/&supzv<eo> |6 — e'H)a + |0pi(2:]60)/00;] .

Remark 3 In Condition 7, po (2|0) is defined as po (2¢|0) =1 — Zi\il pi (2t,0) .

Condition 8 Let

1(Dy, 2, 0) = zglap/ézet’e)h (21,0) "1 (Dy — p(z1,0))
where
h(z,0) = (diag (p(2¢,6)) — (21, 0)p (24,6)")
and

Gp’ (Dt\zt, 9)
a0

Dt‘Zt,G)

10
ZQZE h(Zt,Q) ! p(ael

(17)

Assume that Yy is positive definite for all 6 in some meighborhood N C © such that 6y € int N and
0 < ||Zg]] < oo for all @ € N. Let l; (Dy, z,0) be the i-th element of 1(Dy,z,0). Assume that there
exists a function B(x1,x2) and a constant o > 0 such that H@li (x1,22,0) /00; — Ol; (xl,:cg,t?') /89]“ <
B(z1,22) |0 — 6'||” for alli,j and 6,0 € int N, E[B(Dy, )] < 0o and E [|l; (Dy, z,0)]] < oo for all i.



Remark 4 Note that for P (z,0) = diag (p(z,0)) it follows that

P(ad) pGO)p ) P o gy W g

(1P (06) P (1.0) " p (20.6) 1= X i s 0)

hi(z,0) ' =P (2,0 +

Simple algebra then shows that
(Dt — p(2t, 9))/ h (zt, 9)_1 Op (Di|2,0) /00" = ot (Dy, 24, 0) /69/

where € (Dy, z,0) = ij\i() Dj i logpi (2, 0) is the log likelihood of the multinomial distribution and Dj; =
1{D;=j}.

Proposition 2 Assume that Conditions 1-8 are satisfied. Then

Vi (v) = Vi (v) + 1i2(v, 00)n 2> " 1(Dy, 21, 00)
t=1

sup = 0p(1) (19)

ve[—00,00]"

and if 1 (Dy, z,600) is as defined in 16 and 17 then Vi, (v) converges weakly in D[ — oo, 00|* equipped
with the sup norm to a limiting Gaussian process with mean zero and covariance function f‘(v,T) =
I (v, 1) — m(v,00)L(0g)(T,0) where L(0y) = 26_,01 is defined in 17.

Proof of Proposition 2. Note that V, (v) — V,, (v) = n~1/2 Soro(U,v) [p(zt,eo) —p(zt,é)} such

that we can approximate

V(o) Vo (o) = % 3 < o) [ap(;télen) B 8p(§;,/90)D <n1/2 (9 B 90))

+71sz: (QZ)(Ut’U)ap(gtéeo)) (n2 (6 0))

where [|0,, — 0g| < H@ — HOH by the mean value theorem. Let m(0,v) = —FE {(Z)(Ut,v)%] and
m(Us, 0,v) = ¢(Us, v)%&,’g) —m (0,v). From Pakes and Pollard (1989, Lemmas 2.13 and 2.14) and Condi-

tion 7 it follows that 7m(., 6, v) is a matrix of functions in a Euclidean class indexed on N (6) X [—o0, c0]”
with envelope M (B(zt) (ZﬂsupN(eo) |6 — H'H)a + Zi\il \Bpi(zt\ﬁo)/(%j\) M (x;) for all the elements in
the j-th column of (U, 6, v). Note that the factor M can be replaced with the constant 1 if ¢(Uy,v) is
scalar valued. Then

1 & Op(2t,0n)  Op(zt,00)
o Zt:QS(Ut’U) [ 90 - 90 } H

n

1 Z [1(Ut, 0,v) — m(Uy, 0y, v)]

n
t

+ sup (6, v) — (0o, v)|| + 0p(1) = 0p(1)
[[60—60]|<d

< sup sup
l0—boll<é v




since supjjg_g, | <s SUP, |57 [i(U8,v) — mia(Uy, 0o, v)]|| = 0,(1) by applying Lemma 2.1 of Arcones and
Yu (1994) to each element supjg_g, <5 Sup, }% ot [ (U0, v) — i 5 (Us, o, v)]| This completes the proof
of 19 because 2 S°7 ( (Ut,v)%) —, —1i1 (B, v) and n'/? (é - 90) =n"123" 1(Dy, 2,00) +o0p (1)
by (5).

The second part of the result follows from the fact that the class of functions

F =m0 (6.0) 1, 00),

where [.], denotes the i-th element of a vector, is a Euclidean class by Lemma 2.14 of Pakes and Pollard
(1989). Since my(X¢)+1m (6, v) [(Dy, 2t,0p) is a martingale difference sequence with respect to the filtration
A’ifl, finite dimensional convergence to a Gaussian random vector with zero mean and covariance function
I'(v, 7) follows from the martingale CLT (Hall and Heyde, Corollary 3.1) and the fact that 0 < ||Zg, || < oo
by Condition 8. Convergence to a weak limit in ® [—o0, oo]k then follows again by Theorem 2.1 of Arcones
and Yu (1994) as well as van der Vaart and Wellner (1996, Corollary 1.4.5) together with Pakes and Pollard
(1989, Lemmas 2.13 and 2.15) to handle the vector case. m

We now establish that the process TV (v), defined in (7) is zero mean Gaussian with covariance function
(v, 7). This establishes that the process W (v) = TV (v) can be transformed to a distribution free process
via Lemma 3.5 and Theorem 3.9 of Khmaladze (1993).

In order to define the transform 7" we choose a grid —oo = Mg < A1 < ... < Ay = 00 on [—o0, 0], let
ATy,

;= T, — Ty, and set

41

N

= {$(,v), AmyI(,0)) LV (3, [0, 0)). (20)

i=1
This construction is the same as in Khmaladze (1993) except that we work on [—oo, oo] rather than [0, 1].
In Proposition (3) we show that cy (V') converges as N — oo and max; (®(Aj+1) — @ (A;)) — 0. Let the
limit of ¢ (V) be denoted as ¢(V) = [ (¢ (.,v)",dm)l(.,0)) C; ly (my1(.,9))

Condition 9 Let {Ay\} be a family of measurable subsets of [—o0, 00", indexed by A € [—00, 00| such that
A o =@, Ag = [—00,00]", A < XN = A\ C Ay and Ay\Ay — @ as X' | \. Assume that the sets
{Ax} form a V-C class (polynomial class) of sets as defined in Pollard (1984, p.17). Define the projection
mf(v) =1 (v € AA) f(v ) and 7rf\- = 1— my such that my f(v) = 1 (v & A)) f(v). We then define the inner
product (f( = [ flu )g(u) and the matriz

) = <w§z‘(.,9),7r§z‘(.,9)> _/ L, 0 dH (u)ri(u, 0).

Assume that (f(v), mag(v)) is absolutely continuous in X\ and C) is invertible for \ € [—o0, 00).



Proposition 3 Assume Conditions 1-8 hold. Define T, = {v € [—00, 00" [v = va} for some x < 0.
Let e (v) be defined as in 20. Then cy(v) converges with probability 1 to ¢(v) for allv € T,. Let TV (v)
be as defined in 7. Then TV(U) is a Gaussian process with zero mean and covariance function I'(v,T) for

allv,7 € Y,.

Proof of Proposition 3. The proof of this result follows closely Khmaladze (1993) with the
necessary adjustments pointed out. First, let V' (v) be a Gaussian process on [—oo, oo]k and taking values
in RM with zero mean and covariance function I'(v, 7) and V(—o0) = 0. See Kallenberg (1997, p. 201) for
the construction of such a process. Then, V(’R’i‘l_(., 0)) is a process with trajectories that are continuous
in \ by essentially the same argument as in Lemma 3.2 of Khmaladze. To see this fix a € RM such
that o/V(myl(.,0)) is a Wiener process on [—00,00] with mean zero, o’V (7Ll(.,0)) = 0 and variance
o'Cha with almost all trajectories continuous in A on [—o0,00]. To show that cy(v) — c(v) almost
surely we adapt the proof of Lemma 3.3 of Khmaladze (1993). As there, define p;(§) = [&1] + ... + |€;]
for any vector £ = (£y,...,&;) € RF and p (§) = max; |¢;]. Set &€ = (¢, Am,l(.,0)) and n(p,\) =
Clle(Wﬁf(.,G)) - O;lV(W*Z(.,Q)). By Condition 9 the matrix Cy is invertible on [—o00,00) and Cy ! is
continuous in A. Then, since V (71 1(.,0)) is continuous in A almost surely, we have

SUp oo (0 (1, A)) = 0

[@(N) =2 (p)]<d
A pUE[—00,x]

with probability 1 for any fixed < co. The remainder of the proof in Khmaladze (1993) then goes through
without change.

We first represent V(v) in terms of V(v). Let V(I (.,00)) = J U(u,8p)db(u) as before for any function
l(u,0) with (I (.,0),1(.,0)) < oo and b(u) a zero mean vector Gaussian process with covariance function
H(v A7) and note that V (v) = V(¢(.,v)) — m(v,0)2, 'V (I(.,00)"). In order to establish a corresponding
result to Lemma 3.4 of Khmaladze (1993) we first show that V (v) = V(¢(.,v)) — (v, 0) X5V (I(., 00)’) is
a valid representation of the limiting distribution of Vn(v) which was derived in Proposition 2. Clearly,

V (v) is zero mean Gaussian and the covariance function is

E V@V ()] - (v, 00)% /qs w, 7) H (du)i(u, 00) — </¢ w,v) H(dw)i(u, 90)> 5 Yrin(r, 0’

+1m(v,00)' S, </ I(w, 00)"H (du)l(u, 90)) 2, (T, 0p).

Note that dH (u) = (diag (p(u2)) — p(u2)p (u2)') dF, (u) such that

—1 Op(u2, )

[otunan@its) = [ 6 di) (ding (o) - plup ) o

= /¢ u2’00)dFu(u) = 1m(7,00)

10



and

I(u, 00)' dH (u)l(u,8))

/
/ Ip' (uz, 0)

12:0) (i (p(u2)) — plup (02)) ™ P20 g, ) = 3

a0’

such that E [V(U)V(T)’] = H(vAT)—m(v,00)'S, (T, 0p) as required.
We now verify that the transformation 71" has the required properties. Note that

() 00.0) = [ 6 0) A (diag (pua)) — plua)p (u2)) P20

= m(’U, 90)

such that V (v) = V(¢ (.,v)) — (¢ (1), 1(.,0)) C=Lv(i(v,0)).
In order to establish that TV (v) =V (v) — [ (¢ (., v),dmal(.,0)) CY'V(r(.,0)) has covariance func-
tion I'(v, 7) we first consider E [TV (v)TV (v)'] where

E[ vV (v)]
— T(v,0) /<¢ ! dml( <7r>\l( 9), ¢(.,u)/>
/< (o) i 9>C (dmaT(0),6 (. 0)')
/ / (6 (0)  dml(.. ( / T, 0 dH (u)m - (u, 9)>c (dr (., 0),6 (., v)')
— T(v,0) /<¢ ! dml( <7r/\l( 9), ¢(.,u)’>

_/< 6 (), 7L(.,6) >C’ (dml(.,6), ¢ (., v)")
4 [ [ (00 dmil.9) €5 Cri €y (dmal(.6), 0,0
Note that (¢ (.,v),dmal(.,0)) C5 CovuCyt (dm (., 0),6 (.,v)') is symmetric in A and p such that
//<¢ L dml(,8)) O tOnu Gy {dm (., 60), 6 (. v))
_ / (6 (v) dmyl(..0)) O / (dr, (. v)')
+//M (6 (), dmal(,0)) Ot (dmul(.,0), 6 (,v))
_ / (6 () dmal(.0)) G5 (hT(.6).6 ()
Jr/<¢)(.,v)',7r§1(.,9)>CA1 (dmal(0),6 (.,v)")

11



such that E [TV (v)TV (v)'] =T (v,v). By the same arguments it follows that E [TV (v)TV ()] =T (v, 7).
That the result then also holds for TV (v) follows from Khmaladze (1993, Theorem 3.9). m
Khmaladze (1993, Lemmas 3.2-3.4) shows that the argument need not be limited to all v such that

v € T,. As noted by Koul and Stute, however, once T is replaced by T}, convergence can only be shown on

the subset m,v of [—o0, oo}k for some finite x due to the instability of the estimated matrix Cy as A — oo.
The next step is to analyze the transform 7" when applied to the empirical processes V;,(v) and Vn(v)

and in particular to show convergence to the limiting counterpart, T V(’U)

Proposition 4 Assume Conditions 1-9 are satisfied. Fix x < oo arbitrary and define
T, = {v € [—00,00]" [u = wxv} .

Then,

sup ‘TVn(v) — TVn(v)‘ = 0p(1)
veEY,

and TV, (v) = TV (v) in D [Y,] where = denotes weak convergence.

Proof of Proposition 4. By Proposition 2 we have uniformly on [—oo, 0c]* that V, (v) — V;, (v) =
(v, 0o)n=2 31" 1(Dy, 2,60) + 0,(1). Thus consider the difference

TV, — TV, (21)
= —(v, Go)n_1/2 Z 1 (D¢, zt,00)
t=1

—/<¢(.,v)’,dm(.,90)>q1 (Vn (ﬁz’(.,eo)’) —v, (ﬁz’(.,eo)’)) +o,(1).

For ||6,, — 6o < H@ — 6| it follows by the mean value theorem that

v, (wﬂ(.,eo)') —v, (wﬁ(.,oo)')

V231U ¢ Ax}Ca00) (pla1,00) — pl21,6) )
t=1

- . 7 Ip(zt,0n)  Ip(zt,bo) )
— 1/2
= Y }t; 1{U, ¢ A} (=1, 00)' < o = S ) (60— 60)

12 Zn: 1{U, ¢ A} (2, 90)'879(;;’,90) (0~ 00)
t=1
= R (/\) + Ry ()\) .
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Let m(0) = E |:8péz@t/,0):| and m(z, 0) = % —m (0) . First consider

A~ L - 8 7911 a ?0
sup B )| < 0 [ — o | 3l 00)] H o) - e
t=1

< nl/f? He . eoH nl zn: 1721, 00) || 177222, 0n) — 1121, 00)|
t=1
/2 Ha - 90H n ! Z 1722, 00) | [1772 (62) — 12 (o)
tzl 1/2 n 1/2
< w0 6o <”‘1ZHl‘<zt,0o>H2) (n‘12||m<zt,en>—m<zt,eo>|2> +0p (1)
t=1 t=1

where the third inequality follows from Hoélder’s inequality and the fact that ||6, — 0y|| = o,(1) implies by
the continuous mapping theorem that |72 (6,,) — 1 (6o)|| = 0p(1). Together with E Hl_(zt,ﬂo)H < oo and
Lemma 2.1 of Arcones and Yu (1994) this implies that

n!/2 [0 = bo|| " 3 [zt 00) | i (6) = 1 (00) | = 0p(1)-
t=1
By Condition 7 it follows that
121, 0) = 1, 60) > < K1 B() P 162 = b0l

for some o > 0 such that
n=NY iz, 0n) — (2, 00) 1P < k10, — 60> 0™ [B(20)* = 0,(1).
t=1 t=1
This establishes sup,, ||R1 (A)|| = 0p(1) such that uniformly on Y,
|/ (@ samaiton) €52 )| < sup s ) supal™ [ 0 ool samiC o)) = 0 ().
Next consider R (A <f7r (ug, 0 ’Wdﬂt (u)) nl/2 (é — 90> . Note that

B (100 ¢ A3} 11,00 P | = [ kit o0y P ar, )

13



and

_ Op(z, 0
sup ‘1{Ut ¢ A,\}l(zt,eo)’p(;;,()) ‘

_ ap(z, 0
< l(zt,eo)'p(;;,“)‘

oy (zt,00) , ,. —1 0p(zt, 6o)
= |70 (diag (p(u2)) — p(uz)p (u2)") 50

oy (4,0 1722
< pO‘ | (ding (p(u2)) — pluz)p (2)) |

< (s;lzp (1'M (diag (p(u2)) — p(uz)p (u2 )) ZZ (apz e >

=1 j=1

where (supu2 (1’ (diag (p(u2)) — p(u2)p (u2)/)_1 1M)> is bounded by Condition 6 and E [(6’”%_’90))1

J
is bounded by Condition 7. This shows that (1 —1{(ys, z:) € Ax}) (2, 0)% is a Euclidean class

0 )% such that by Lemma 2.1 of Arcones and Yu it follows that

with integrable envelope Hl zt, 09

R ) = ( [ witun, 00 P80 ar, 1)) (- 00)

It then follows that uniformly on Y,
/<¢( v) ,dral(., 00)) C;t { 2 () —/niz‘(m,go)rap(weo)d& (1) /2 (9_90)} —0,(1).

Now note that [ 7y1(us, 00)’%;,’00)dFu (u) = C) such that

sup ‘ = 0,(1).
A

/<¢(.,v)',dm(.,00)>c;1/wﬁ(ﬁ,eo)'ap(gz;e())dpu (u) n'/? (é— 00)

= /<¢(.,v)/,d7r)\l_(.,90)>nl/2 (9—90>

= —1in(v, Bp)n/? (é—eo) = (v, fo)n 1/221 (D¢, 2, 00) + 0p (1) .
t=1

Substituting back in (21) then shows that sup,ev, ’Tvn (v) =TV, (v)’ = op(1).

For the second part of the proposition consider
TV, (v) = V; (v) — / (¢ (v) ,dmal(.,00)) Cy 'n 2> " 1{U; ¢ Ay} (2, 00) (Dy — plz,60)) -
t=1
Under Hy it follows that

E [1 {U; ¢ Ay} (2, 00) (Dy — p(2t,60)) \zt]
= E[1{Uy ¢ A} |2 1(2,00)E (Dt — p(21,60)) | 2] = 0

14



such that TV}, (v) is a martingale. The finite dimensional distributions can therefore be obtained from a

martingale difference CLT. Let
g(yta Zt, U) = / <¢ ('7 U), ) d7r)\l_<'7 90)> C)Tl]' {Ut §7_£ A)\} l_(zt7 90)/
such that TV,,(v) = n~ Y231 | (¢ (Ur,v) — g(yt, 2t,v)) (D — p(2t,00)) . Then let

Y (U) = ¢ (Ut, U) (Dt - P(Zt, 90)) >
Yor (v) = gy, z,v) (Dy — p(2t,00))

Y; (v) = Yy, (v) — Yar (v) and Yy (v) = n='/2Y; (v) . It follows that

E [Ylt (v) Y1t (v)’] =I'(v,v),

E [Ya (v) Yo (v )]

= / / {{o (., v) ,dmyl(.,00)) Ot
- [ [1{0 ¢ b 1{U: ¢ A} 12 2000 (g () — pangp () 220 00)

X C;l <d7ru_- 0);9 (-, U),>}
- //<¢(. ,dmAl(.,00)) Cx CuaC (6 (- v) y dmyl(-, 00)")

_ / (6 v) dmal( ) 5 {(mh1(.6), 6 (. 0))
+ [ (0 w0 057 (il 01,6 (o))

and

E Yy (v) Yo (v)] = /<<b (., v)  dmal(.,00)) Cy'E [E [1{U: & Ax} & (U, v) |2
= /<¢ dﬂ')\l <7rf\‘l_(.,(9),(b(Ut,U),>

which shows that E [Y; (v) Y; (v)'] = '(v,v). Also, E [Yi; (v) Y14 (7)'] =T (v, 7),

Opy (Zt, 90)
o0’

E[YQt(v)YQt(T)/] = /<¢( ) d7r)\l >C <7T§\_l_('79)7¢('>7—),>
+/<¢(.,u)’,w§z‘(.,9)>q1 (dmAl(,0),6 (., 7))

and

E [Ylt (v) Yo (T)/] = / <¢ (.,v)',wff(.,9)> C’;l <d7rJ(., 0), o (.,T)/>
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such that E [V; (v)Y; ()] =T (v,7). It also follows that E 17> < oo such that the conditional Lin-
deberg condition of the CLT is satisfied. We conclude that the finite dimensional distributions of T'V;,(v)
converge to a Gaussian limit with mean zero and covariance function I'(v, 7). For weak convergence in the

function space note that
lg(ye, 26, 0)|| < /H<¢(.,U),,d7‘r)\l(.,90)>C;ll(zt,eo)/H
< [l oo ol 80)) 5 s 00|

where [|[(¢ (,v)", dmAl(.,00)) C)TIH is uniformly bounded on Y and ||I(z, 90)H2 = Z]Ail Zle }l_i,j(zt, 90)‘2
such that by the Hoélder inequality

(3pl-(zt, 90)/60j
i (2t,00)

O 10pi(a,00)/00, 7

7 246
fsten 80 < (M )97 || 1S et
- j:lpj Zt,bo

By the Cauchy Schwartz inequality it then follows that
l?‘zzj(zt790)‘2+6
145/2 44261\ /2 —(4+25)]\ /2
< (M1 (B[ 10piz,00)/00,| ) (B [pi (21,00) 7] )

1/2 —(4+26)7\ /2
S M) (B [l 0006514 ) (B [[1 - St )

< o0

which is bounded for some ¢ by Condition 7. This shows that g(y, z:,v) is a Euclidean class of functions
and by Lemma 2.14 of Pakes and Pollard it follows that Y;(v) is a Euclidean class of functions. Lemma
2.1 of Arcones and Yu then can be used to establish weak convergence on © [T;]. ®

Our main formal result is established next.
Theorem 5 Assume Conditions 1-9 are satisfied. Fix x < oo arbitrary and define
T, = {’U € [—00,00]" v = va} .
Then, for T, defined in (8),

sup
veEY 2

T,V (v) — TVn(v)’ = 0,(1).
Proof of Theorem 5. We start by considering CA'A — C\\. Let
. Op(z, 0
C\(0)=E {1 (U, ¢ AA}l(zt,G)’pE%t,)]
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such that Cy = C) (6p) and

~

7, 7 /ap<2t70)

Ch—Ch = n 'S 1{U ¢ A} (24,0) g~ Ca6o)
t=1
= U g AT 2D o (0) s (0) — ca o).
t=1

Note that Cy (0) = [ (1 — 1 (u € A)))(u,0) H(du)l(u, ) such that for any A, 0 it follows that

(u, 0" dH (u)l(u,0")

ox @) -cv@] < | [aean-10ean

4 H / 1(u € Ay) ([(u, 0)dH (w)i(u, 0) — [(u, 0)' dH (w)I(u, 0)) H

where [L(u € Ay) —1(u€ A))| <1 (u € Amax(/\,)\')\Amin()\,)\’)> — 0as A’ — X by Condition 9. Continuity
of I(u,0)'l(u,0) and integrability of the envelope function ||i(x, 90)H2 then establish uniform continuity of
C\(0) on T, x N(6g) by use of the dominated convergence theorem. By continuity of C) (f) and the
continuous mapping theorem it now follows that HC)\ (@) —C, (OO)H = 0p(1) uniformly on Y, x N(fp).
Let v(6,A) = 0t S0 1{U ¢ Ax} (2, 0) 2862 — €y (6) . We note that

1001 ¢ A G0 P2 | < 2 e, )| et (1) o G| < 20 0

I

— « —
where [; j(2,60) has the integrable Envelope B(z) (2\/gsupN(90) |60 — 9'H> + |li,5(2¢,00)| on N (8g) by
Condition 7. By Condition 9 the functions 1 {(y:,2¢) € Ay} form a Euclidean class. It now follows from
Lemma 2.1 of Arcones and Yu (1994) that, because n'/?v, (6, \) converges weakly to a Gaussian limit, a

tightness condition must hold, i.e. for any €,7 > 0, 3 > 0 such that

lim sup Pr sup sup an(e’, N)=wa(0,0)] > <n. (22)
n MOET 2 x N (B0) X 6:d((\8), (N ,0')) <6

Property (22) together with the boundedness of the space Y, x N(fp) now implies by a conventional
approximation argument, that

sup o (6, M) = 0p(1).
MOET 2 x N (60)

It now follows that

re(Jes-ci(0)

‘ > 6) < Pr ( sup |on (0, N)]] > 6> + Pr <é ¢ N(90)> 20 (23)
AOET X N (0o)

such that supycy, Hé’A - C’)\H = op(1).
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Then

T Vn(v) — TVi(v) = —in(v,00)n 1/2Zz Dy, 2, 00) + 0p(1)
t=1

—/ </¢ w,v) dH, (u )mz‘(.,é)> Cy WV (my (-, 0))
/<¢ ), dmAl(.,00)) C Vu(mx (., 00)")

where the first line follows from Proposition 2. From before we have
Ja( [ st atmit.o)) & vumsic.oy)

— /d (/gb(u,v) df[n(u)w,\l_(.,é)> (é;l - 0;1) Vo(m31(.,0)")
+/d </¢(u,v) dﬁn(u)m(.,é)) C W (nxl(.,0))

where

H/d</¢> w,0) dET, ()AL, B > (6 -a) Vn(ﬁz‘(.,é))u

</ & (u, v) dH,( W(.,é))‘ Vn(ﬁz‘(.,é))H:opu)

< sup
AE[—00,z]

by (23). Next we consider

Va(mxl(,0)) = n7'/? > 1{U: ¢ AU, 0) (Dt — p(z, é))

t=1

— /2 Z 1{U; ¢ A\} Z(Ut, 90)/ (Dr — p(2t, 00))

t=1

o2 Z 1{U; ¢ A\} (Dt — p(21,00))' @ Im) aved(wl (9 _ 90>

+ o0

[ _1/221{Ut ¢ AnHi((y1s ), 002 (ae’e )] (9_00)
((0 00 ®IM>
(

= R +R () (0- 90>+R3(/\) 2 (b - 0)+n1/2<é—90),R4()\) (9 60)

*I/QZl{U ¢ Ar} <8p (2,0 )®IM) avecggt’e")

(o-0)
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where [|6,, — 0p]| < Hé - HH and we have used the mean value theorem. Note that By = [ my (1, 09)dV;,(u),

dvecl(Uy, 0p)
o0’

n 8 l_U,en, a l_U’Q '
+n 23 1{U, ¢ A ((Dt—p(zt,eo»’@w)( Veca(eft h- Veca(e't 0)>
t=1

= Ro1 (M) + Raa (A, 0,,)

Ry(\) = n "2 1{Us ¢ A} (D — pl21,600)) @ Tna)

satisfies ER2; (A) = 0 because

oo’
7 !
dvecl(Uy, 0o) \Zt} 0

E {1 [Un ¢ A3} (D — plat, 00)) @ In) ‘MW“)|]

= F [((Dt —p(zt, 90))/ X IM) |Zt] F|1 {Ut ¢ A)\} BYi
under Hy such that finite dimensional convergence follows by the martingale difference CLT and uniform
convergence follows from the fact that 1 {U; ¢ Ay} (D — p(2¢,60)) ® Im) W is a Euclidean class
of functions by Condition 9. It thus follows that supy Ra21(A) = Op(1) and Ra1(M) (9 - 90) = o0p(1)

uniformly in A. For the term Ras (A, 6,) we note that
dvecl(U;, 0)
B (1000 ¢ A3} (P = plae00))  100) 0 1 o
for any 6. By Lemma 2.1 of Arcones and Yu it thus follows that Rag (), 0) converges to a Gaussian limit
process uniformly in A and 6. Consequently, a tightness condition implied by this result can be used to show
that lim sup Pr [Supgzd(gﬂo)gtg || Ra2 (A, 0)| > 5] < n for all e, > 0 and some § > 0. Use root-n convergence
of 6, to conclude from this that Ras (X, 6,) = o0p(1). The terms involving 6,, in the remainder terms Rj
and R4 containing 6, can be handled in similar form and we therefore only consider the leading terms
where 6, is replaced by 0y. For Ry (\) where
_ op’ (zt 0,) dvecl(Uy, 0,)
1 ) s Un
Ry (A Zl{Ut¢A,\}< ® In —a
we note that n'/2 (R4 (\) — ER4 ()\)) satisfies the conditions of Lemma 2.1 of Arcones and Yu (1994)
such that it follows by similar arguments as before that supy R4 (A) = Op(1). Then conclude that
N / N
nl/? (0 - 00> Ry (M) (0 - 490> = 0p(1) uniformly in A.
For R3(\) note that

_ ,0p(z,0
Rz (A 12 1{U, ¢ A\YI(Uy, 6) (ate' 0)
uniformly converges to
_ op(z, 0
E[Rs(N)] =E [1 Ut ¢ Ax}l(Utﬁo)p(gte,o) = C).
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We have thus established that

sup
A

Vo (mt1(.,0)) — Vi (-1, 60)) — Crn/? (é - 90) H =0, (1).

Using this result we obtain

/ d < / 6 (u, v) dE ()AL (u, 9)) O (Valrs

- /d </¢(u,v) dHn(u)Tr,\l(u,@)> nt/? (é - 90) +o0,(1).
The leading term is then

vec / d( / 6 (u,v) dﬁn(u)w)\l_(u,é)> ~ vec / d( / 6 (u, v) dHy ()7L (1, oo)> (24)
+/d (/(;S(u,v) mavecap(g;; 9")/80/dﬁu(u)> (é—eo)

where F,(u) is defined in (27) in Appendix C.1 and

<
—~
o~
—
s
~—
~—
|
~
—~
o~
—
>
o
~—
~—
N—

H/ /¢ 8ve08p(8u02,,Hn)/89’dﬁu(u)H
< & (Un ) 8vec 8p(502,, n)/00'
< _12 1M ()l H(‘)vecap;;,%)/ae’
dvec dp(ug, 0,)/00 B dvec dp(ug, )00
o0’ o0’
< ‘1ZIIM 1 |l WO g, — gyt S e

t=1
= Op(l)

where C' is a finite constant, the third inequality uses Condition 7 and the last equality follows from a

standard law of large numbers for strong mixing sequences. The first term in 24 then is

/d </¢(u,v)dHn(u)mz‘(u,90)> :n—ltil¢(Ut7v) ap(;gﬁo)

where E [gzﬁ (Ut,v) %] = —m(v,0p) for v € T,. It thus follows again by a law or large numbers that
[d ([ ¢ (u,v) dHp(w)mAl(u,00)) = —1n(v, 6) + op (1) uniformly on Y.

Finally we need to show that
/ (d </q§(u,v) dH, (w)ml(u, (90)) — <¢(.,v)',d7r,\l(.,90)>> C;lvn(wi‘f(u, o)) = op(1). (25)
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Let g(z, A\, v) = ¢ (U, v) 1L{U; € Ay} %. We first note that uniformly in A on [—oo, z] and v € T,
[ 60 mad (0T 00) = (6 () mall0)) =S ars Ao0) = E (gl Ac) — 0 s,
t=1

Weak convergence of C; 'V, (m1(u, fp)) uniformly in A on [—o0, z] can be established by the same methods
as for TV, (v) = T'V(v) in the second part of the proof of Proposition 4. We can thus proceed in the same
way as Koul and Stute (1999, Lemma 4.2). Let Gp(A,v) = n 131 g(z, A, v), G\ v) = E(g(z1, A\, v))
and let ¢,,(A) = C5 'V, (my1(u, 6p)"). Then each component (,,;(\) of the dx 1 vector {,,()\) is asymptotically
tight by Prohorov’s Theorem. In other words there exists a compact set K CD [—o0, x] such that ¢,,;(A) € K
with probability no less than 1 — n for any 1 > 0. Following the proof of Lemma 3.1 of Chang (1990) we
choose step functions aj (A),az(N),...,ax (A) € D [—o0,z] such that for any ¢ € K, doy(a;,() < € for
all 7,1 <4 < d and dp(.,.) is the Skorohod metric. The right hand side of 25 can now be written as
[7 o € (V) (Gn(dA,v) — G(dA,v)) such that for any 6 > 0
' > 6)

’>77) < Pr sup
CeKweTy,

+Pr(¢, ¢K).

<H/ ¢ N (Gr(dX,v) — G(d,v)) w(dX\,v) — G(d\,v))

Since ¢ € K it follows that

/ C N (Gp(dX, v) — G(dN, v))

sup

CeERKweT, veEYy J —00 veEY L J—00

< sup [C (V)] <sup | e+ sw [ ||Gn<dx,v>||>

where [*_[|G(dX\,v)| = ||G(z,v)|| and [*_||G,(d\,v)|| = ||Gn(z,v)|. Since G(x,v) — 0 uniformly in v
as x — —oo and G, (A, v) converges uniformly to G(z,v) we can focus on a subset [z, x| C [—00, z] where
T, is such that

n(dX\,v) — G(dA\,v))|| < 0

sup
CeERKweT,

with probability tending to one. Now, for any component i, there exists a strictly increasing, con-
tinuous mapping s of [—oo,z] onto itself, depending on (; such that sup_, < <, [k (A) = A] < ¢ and
SUP_so<a<z |Ci (A) — ai(k(N))] < e. Then for any component 4, j of ¢ (A) (Gn(dX,v) — G(dA,v))

<

/ Ci (\) (Griy (4X, 0) — Ga(d, v))

[ (60 = i) G 7,0) = G v»]

Tu

+

[ asts0) i@, 0) ~ G, v>>\

(A) (G i (A, v) — Gy (dA, v))( < 3¢ uniformly on
K x T, by the arguments of Chang (1994, p.396) which establishes 25. This now implies that TV, (v) —
TV,(v) =0p(1). m

which implies that for some Ny and all n > Ny,
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Theorem 5 together with Propositions 4 and 3 implies that W, (v) — V,,(v) = 0,(1) uniformly in v € 1.
This in turn means that the limiting distribution of Wn(v) is a zero mean Gaussian process with covariance
function H (v, 7). This distribution is not nuisance parameter free but can be computed conditional on the
sample relatively easily as pointed out in Section 4.

Section 4.2 introduced the distribution free statistic By, ,(w), defined as By, ,(w) = W.p (o(., w)hw(.)_l/Q) .
By the arguments preceding Theorem 5, it follows that Bwﬁn(w) — By, (w) on Y0,1)- The only adjustments

necessary are a restriction of [—o00, 00" to [0,1]. What remains to be shown is that

sup By n(w) — By (w)| = 0p(1). (26)
’LUET[OJ]

This is done in the next Theorem. We impose the following assumptions on the kernel function and density.

Condition 10 The density f,(u) is continuously differentiable to some integral order w > max(2,k) on
R with sup,ege |D*f(z)| < 0o for all |u| < w where i = (y, ..., 1) is a vector of non-negative inte-
gers, |u| = 2521 pj, and DFf(z) = 8'“']‘(:0)/396‘1”....8%'?“ is the mized partial derivative of order |ul.
The kernel K(.) satisfies i) [ K(z)dz = 1, [ 2" K (z)dz = 0 for all 1 < |p| <w —1, [|zMK(z)|dz < oo
for all p with |u| < w, K(z) — 0 as ||z]| — oo and sup,. pr max (1, [|z]]) [D“K(x)| < oo for alli < k
and e; is the i-th elementary vector in RF. ii) K(x) is absolutely integrable and has Fourier transform
RA(r) = (2n)* [ exp(ir'z) K (z)dx that satisfies [ (14 ||r|) supysy [R(br)|dr < co where i = /—1.

Theorem 6 Assume Conditions 1-10 are satisfied. Fix x < 1 arbitrary and define
Y01 = {w € Te|lw = mw}

where Y¢ is a compact subset of the interior of [0, 1]k with volume 1 — € for some € > 0. Then,

By n(w) = By n(w)| = 0p(1).

sup
wGT[O,l]

Proof of Theorem 6:. Let fu,k,l (zp—) =n1 30 | Kk—1((wg— — Up—) /my,) and choose a sequence
of positive constants d,, = O (n‘“/ 3) . By Theorem 1(b) of Andrews (1995) it follows that

~sup )Fk(xﬂxk_l, vy 1) — Fr(zg|ag—1, ...,331)‘ = O0p(T~Y2m, %d; %) 4+ 0,(m¥) = 0, (1) .
T fi—1(Tp—)>dn

fu,k—l ($) - fu,k—l (-T) = Op (1) where fu,k—l (l')

is the marginal density of f, (u) associated with the frist £ — 1 dimensions. Then for any &, > 0 there is

Theorem 1(a) of Andrews (1995) implies that sup,cpr-1
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an n large enough such that

Pr sup ‘Fk(xk\:ck,l,...,xl) —Fk(mk‘l‘kfl,...,.%'l)‘ > €
I:TR(I)ET[OJ]

< Pr ( sup ‘Fk(ﬂsﬂxk_l, vy 1) — Fr(xp|ag—1, ...,xl)‘ > 8) + Pr < sup fu,k—l () < dn>
x:fu,k71(2k7)>dn iﬂlTR(CE)ET[O’l]

x:TR(ﬁ)GT[OJ]

< 6/241—-Pr sup
:E:TR(I)ET[OJ]

Fuko1 (T1-) = fuk1 (xkf)‘ + inf fuk—1 (xp—) > dn) <4

where the last inequality follows from the fact that inf,.7y ()evy ,; fuk—1 (xg—) > 0 by Condition 4.

By Pakes and Pollard (1989, Lemma 2.15) it follows that the composition of a function from a Euclidean
class with envelope M and a measurable map with envelope M7 forms another Euclidean class with envelope
M o M. Since Fy(zg|rg—1,...,x1) takes values in [0, 1] it clearly has an envelope Mj. It follows that me
is a sample average over functions that belong to a Euclidean class plus remainder terms that vanish by
similar arguments as before. It thus follows by the same arguments as before that for all £, > 0 there

exists an 1 > 0 such that

lim sup Pr sup Buy n(w) — Bwfl,n(w') >e | <9.
n wyw’ w1 ,w) €Yo, 1)
llw—w’ || <n, || w1 —w} || <n
It then follows that B,(s) = B(s). m
This result allows us to conduct inference using critical values that do not depend on nuisance para-
meters. Although these critical values must be calculated numerically, they are invariant to the sample
distribution for a given design.

The next result establishes the validity of the bootstrap procedure proposed in Section 4.3.
Theorem 7 Assume Conditions 1-10 are satisfied. Fix x < 1 arbitrary and define
Yo, = {w € Te|lw = mw} .

where Y. is a compact subset of the interior of [0, 1]k with volume 1 — € for some € > 0. For B;;n (w)

defined in (14) it follows that BZ‘U” (w) converges on Yo ) to a Gaussian process By (w).

Proof. Following Chen and Fan (1999) we note that conditional on the data, E;‘;n (w) is a Gaussian

process with covariance function given by

Iy (v,7) =n"1 Z (mT,t <v, 9) — M1 (v,@)) (mT7t <T, 9) — M7 (T, @))l

t=1
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By (26) and similar arguments as in the proof of Proposition 3 and Theorems 4 and 5 it follows that
Ty (v, 7) converges uniformly on Yg ) to the covariance function of B,, )s J ¢(u,v)p(u, 7)du. The result

then follows in the same way as Theorem 5.2 of Chen and Fan (1999). |

C Implementation Details

C.1 Detalils for the Khmaladze Transform

To construct the test statistic proposed in the theoretical discussion we must deal with the fact that the
transformation 7" is unknown and needs to be replaced by an estimator. In this section, we discuss the
details that lead to the formulation in (10). We also present results for general sets Ay. We start by

defining the empirical distribution

Fu,(v)=n""! znj {U; <}, (27)
and let o
Halo) = [ (ding (o, 00)) = plaa, B (. 60)) dFs (1)
'S (ding (p(er,00)) — plei, Bo)p (26, 00)) 1 (U < v}
as well as

fo(v) = / <diag (p(z.0)) ol D)o (zt,é)>dﬁ (u)

_ ::OZ (dwmg( (2, )) p(z, 0 Zt, > 1{U; < v}.

We now use the sets Ay and projections )y as defined in Section 4.1. Let

A~

Oy = / - i(v, Y AL (v) - 1(w, §)
_ flz 1—1{U, € A\}) [(U,, 0 (diag (p(z0,0)) = (a0, 0)p (ztﬁ))l(Ut,&)

such that

T,V (v) = Vp, (v) — / d < / d(u, v)dH,, (u)mrl(u, 9)) o Vo (mxl(u, 0))

where .
[ ottt i) - _121{Ut€Ax}¢(Uu 0 0
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Finally, write

A~ — ~

Tl 8) =0V Y (1= 1{U € A UTL Y (D1 ).

t=1
We now specialize the choice of sets Ay to Ay = [—00, \] x [-00,00]" ' . Denote the first element of g
by y1:. Then
—1 " 7 A . Py b ~\/ 7, AN/
=n Z 1{y1t > A} (%,0) <dlag (p(zt, 0)) — p(z,0)p (zt, 9) > [(z,0), (28)
t=1
V(w1 8)) = 072 301 (e > AU 0 (D2 = pl=1,0) ) (29)
t=1
and .
Op(zt, )
¢ (u, v)dH, (u)mal(u,0) = n~ Zl{y1t<)\}¢{Ut, T (30)
t=1

Combining 28, 29 and 30 then leads to the formulation 10.

C.2 Details for the Rosenblatt Transform
As before implementation requires replacement of § with an estimate. We therefore work with the process

Vo () =0~ Y2 320 my (wy, Dy, 0; w). Define

E [my(we, Dy, 0);w / / o(u, w) (u)}z,eo) —p([T5! (u)],,0)) du

such that m(w, #) evaluated at the true parameter value 6 is

mw(w,00) = E [¢(Us,w)0p(2t,60)/00']

— o(u,w) op( [Tgl (w)] 2:%)

d
[071]k 60I Y

It therefore follows that Vi, (v) can be approximated by Vi, (v) — 7 (w, 0p)'n =1/ Y i1 L(Dy, 2, 09).
This approximation converges to a limiting process Vi (v) with covariance function

Lyw(w,7) = Ty (w, 7) — 1y (w, 0g)" L(00) i, (1, 00)

where

Ly (w,7) = d(u, w)hy (u) ¢(u, 7) du.
[0.1*

where hy (., 0) = (diag (p([T5" (), 6],)) = p([T5" (), 0] )p([T7" ()].,6)) and hy () = hy(., 00).
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We represent V,, in terms of V,,. Let V(L (1,00)) = [lw(w, )by (dv) where by, (v) is a Gaussian

process on [0,1]" with covariance function I', (v,7) as before, for any function I, (w,8). Also, define

_ B L 0p([TR (w)],,0)
Lo (w, 0) = hy (w,0) " Rag,

such that Vi, (w) = Vi (w) — rive(w, 0) Vi (lw(w,0)) as before.

Let {A, 2} be a family of measurable subsets of [0, 1%, indexed by A € [0,1] such that A,o = @,
Ap1 =[0,1]", A< N = A, C A,y and A, v \Ayx — @ as X' | X. We then define the inner product
(F00:90)) = g £ B ) 0) where

Ho(w) = /u ()

and the matrix

Cup = (7x 1 (+0), 74 (,0)) = / 7T (w, 0) dH  (w) 3 Ty (w, 6).

w

and define the transform 7,,V,,(w) as before by

Wo(w) = TV (w) = Vi (w) —/<¢(.,w)’,dmzw(.,9)>cAlvw(ﬁzw(.,e)’).
Finally, to convert W, (w) to a process which is asymptotically distribution free we apply a modified version
of the final transformation proposed by Khmaladze (1988, p. 1512) to the process W (v). In particular,
using the notation Wy, (¢(.,w)) = Wy (w) to emphasize the dependence of W on ¢, it follows from the

previous discussion that

By (w) = Wiy (6 w) () ™/2)

where By, (w) is a Gaussian process on [0, 1] with covariance function fol e fol d(u, w)o(u, w')du.

The empirical version of W,,(w), denoted by Ww,n (w) = vamn(w), is obtained as before from

o A Op(20,0) Ay 1 . )
Win(w) = n~1/?2 Z My (Wi, Dy, Olw) — ¢ (wy, w) pgé,)C’win ! Z 1{ws > wy }1(zs,0) (Ds — p(zs, 0))]
s=1

t=1

where Cypy = n P S0 1 {wn > wa Y (2, 0)'h (zt, @) I(z,0).
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