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Abstract

This Auxiliary Appendix contains detailed proofs for the results presented in the main part of the paper.



A Introduction

We repeat a number of definitions given in the main paper for ease of reference. We also attach the

appendix on implementation which is also part of the main paper for the same reason.

The two identifying restrictions are recalled first:

Condition 1 The sharp null hypothesis of no causal effects means that Y ψ′
t,j (d′) = Y ψ

t,j (d) , j > 0 for

all d, d′ and for all possible policy functions ψ,ψ′ ∈ Ψt. In addition, under the no-effects null hypothesis,

Y ψ
t,j (d) = Yt+j for all d, ψ, t, j.

Condition 2 Selection on observables:

Y ψ
t,1 (d) , Y ψ

t,2 (d) , ...⊥Dt|zt, for all d and ψ ∈ Ψt.

Combining Conditions 1 and 2 produces the key testable conditional independence assumption, written

in terms of observable distributions as:

Yt+1, ..., Yt+j , ... ⊥ Dt|zt. (1)

Let Ut = (yt, zt) and choose a suitable test function φ(., .) : Rk×Rk → H where H is either H = RM×RM

or H = R. The corresponding unconditional moment restriction is E [φ (Ut, v) (1 (Dt = i)− pi(zt))] = 0 for

i = 1, ...M. To move from population moment conditions to the sample, we start by defining the empirical

process

Vn (v) = n−1/2
n∑
t=1

m(yt, Dt, zt, θ0; v)

with

m(yt, Dt, zt, θ; v) = φ(Ut, v) [Dt − p(zt, θ)] .

Let

H(v) =

∫ v

−∞

(
diag (p(u2))− p(u2)p (u2)′

)
dFu (u) (2)

with p(zt) = (p1 (zt) , ..., pM (zt))
′ and pi(zt) = Pr(Dt = i|zt). Also, Fu(u) is the cumulative marginal

distribution function of Ut. Define the covariance kernel of the limiting process V (v) of Vn (v) as

Γ(v, τ) = lim
n→∞

E
[
Vn(v)Vn(τ)′

]
=

∫
φ(u, v)dH (u)φ(u, τ)′. (3)

The statistic Vn(v) can be used to test the null hypothesis of conditional independence by comparing the

value of KS= supv ‖Vn (v)‖ or
VM =

∫
‖Vn (v)‖2 dFu(v) (4)
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Let V̂n(v) denote the empirical process of interest where p(zt, θ) is replaced by p(zt, θ̂) and the estimator

θ̂ is assumed to satisfy the following asymptotic linearity property:

n1/2
(
θ̂ − θ0

)
= n−1/2

n∑
t=1

l (Dt, zt, θ0) + op(1). (5)

Define the function m̄(v, θ) = E [m(yt, Dt, zt, θ; v)] and let

ṁ(v, θ) = −∂m̄(v, θ)

∂θ′
.

The empirical process V̂n(v) converges to a limiting process V̂ (v) with covariance function

Γ̂(v, τ) = Γ (v, τ)− ṁ(v, θ0)L(θ0)ṁ(τ , θ0)′, (6)

with L (θ0) = E
[
l (Dt, zt, θ0) l (Dt, zt, θ0)′

]
.

Let {Aλ} be a family of measurable subsets of [−∞,∞]k, indexed by λ ∈ [−∞,∞] such that A−∞ = ∅,
A∞ = [−∞,∞]k, λ ≤ λ′ =⇒ Aλ ⊂ Aλ′ and Aλ′\Aλ → ∅ as λ′ ↓ λ. Define the projection πλf(v) =

1 (v ∈ Aλ) f(v) and π⊥λ = 1− πλ such that π⊥λ f(v) = 1 (v /∈ Aλ) f(v). We then define the inner product

〈f(.), g (.)〉 ≡
∫
f(u)′dH (u) g(u) and, for

l̄(v, θ) =
(
diag (p(v2))− p(v2)p (v2)′

)−1 ∂p(v2, θ)

∂θ′
,

define the matrix

Cλ =
〈
π⊥λ l̄(., θ), π

⊥
λ l̄(., θ)

〉
=

∫
π⊥λ l̄(u, θ)

′dH(u)π⊥λ l̄(u, θ).

Next, note that V (v) can be represented in terms of a vector of Gaussian processes b(v) with covariance

function H(v ∧ τ) as V (φ(., v)) = V (v) =
∫
φ(u, v)db(u), and similarly V (l (., θ0)) =

∫
l(u, θ0)db(u) and

V̂ (f) = V (f(.))−
〈
f(.), l̄(., θ0)

〉
Σ−1
θ V (l̄(., θ0)′). Define the transformation T as

W (v) ≡ T V̂ (v) = V̂ (v)−
∫ 〈

φ (., v)′ , d
(
πλ l̄(., θ)

)〉
C−1
λ V̂ (π⊥λ l̄(., θ)

′) (7)

and

Ŵn(v) ≡ TnVn (v) = V̂n (v)−
∫ (∫

φ(u, v)dĤn(u)d
(
πλ l̄(u, θ)

))
Ĉ−1
λ V̂n(π⊥λ l̄(., θ̂)

′) (8)

with V̂n(π⊥λ l̄(., θ̂)
′) = n−1/2

∑n
s=1 π

⊥
λ l̄(Us, θ̂)

′
(
Ds − p(zs, θ̂)

)
and the empirical distribution Ĥn(v) is defined

in Appendix C. Now specializing Aλ to

Aλ = [−∞, λ]× [−∞,∞]k−1 , (9)

leads to test statistics with simple closed form expressions. Denote the first element of yt by y1t. Then (8)

can be expressed more explicitly as

Ŵn(v) = V̂n(v)− n−1/2
n∑
t=1

[
φ (Ut, v)

∂p(zt, θ̂)

∂θ′
Ĉ−1
y1tn

−1
n∑
s=1

1 {y1s > y1t} l̄(Us, θ̂)′
(
Ds − p(zs, θ̂)

)]
(10)
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To describe the Rosenblatt transform let Ut = [Ut1, ..., Utk] and define the transformation w = TR (v)

component wise by w1 = F1(v1) = Pr (Ut1 ≤ v1) , w2 = F2 (v2|v1) = Pr(Ut2 ≤ v2|U1t = v1), ..., wk =

Fk (vk|vk−1, ..., v1) where Fk (vk|vk−1, ..., v1) = Pr (Utk ≤ vk|Utk−1 = vk−1, ..., Ut1 = v1) . The inverse v =

T−1
R (w) of this transformation is obtained recursively as v1 = F−1

1 (u1) ,

v2 = F−1
2

(
w2|F−1

1 (w1)
)
, ....

Using the Rosenblatt transformation we define

mw(wt, Dt, θ|v) = φ(wt, w)
[
Dt − p

([
T−1
R (wt)

]
z
, θ
)]

where w = TR(v) and zt =
[
T−1
R (wt)

]
z
denotes the components of T−1

R corresponding to zt. The test

statistic Vn(v) becomes the marked process

Vw,n(w) = n−1/2∑n
t=1mw(wt, Dt, θ|w).

We denote by Vw (w) the limit of Vw,n (w) and by V̂w (w) the limit of V̂w,n (w) which is the process

obtained by replacing θ with θ̂ in Vw,n (w) . Define the transform TwV̂w(w) as before by

Ww(w) ≡ TwV̂w (w) = V̂w (w)−
∫ 〈

φ (., w)′ , dπλ l̄w(., θ)
〉
C−1
λ V̂w(π⊥λ l̄w(., θ)′). (11)

Finally, to convert Ww(w) to a process which is asymptotically distribution free let

hw(.) =
(

diag
(
p(
[
T−1
R (.)

]
z
)
)
− p(

[
T−1
R (.)

]
z
)p
([
T−1
R (.)

]
z

)′)
and

Bw(w) = Ww

(
φ(., w)(hw(.))−1/2

)
where Bw(w) is a Gaussian process with covariance function

∫ 1
0 · · ·

∫ 1
0 φ(u,w)φ(u,w′)′du.

For ω ≥ 2 letKk(x) = (2π)−k/2
∑ω

j=1 θj |σj |
−k exp

(
−1/2x′x/σ2

j

)
with

∑ω
j=1 θj = 1 and

∑ω
j=1 θj |σj |

2` =

0 and all ` = 1, 2, ..., ω − 1. Let mn = O(n−(1−κ)/2k) for some κ with 0 < κ < 1 be a bandwidth sequence

and define

F̂1(x1) = n−1
n∑
t=1

1 {Ut1 ≤ x1}

...

F̂k(xk|xk−1, ..., x1) =
n−1

∑n
t=1 1 {Utk ≤ xk}Kk−1((xk− − Utk−) /mn)

n−1
∑n

t=1Kk−1((xk− − Utk−) /mn)
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where xk− = (xk−1, ..., x1)′ and Utk− = (Utk−1, ..., Ut1)′ . An estimate ŵt of wt is then obtained from the

recursions

ŵt1 = F̂1(Ut1)

...

ŵtk = F̂k(Utk|Utk−1, ..., Ut1).

We define Ŵw,n (w) = Tw,nV̂w,n (w) where Tw,n is the empirical version of the Khmaladze transform applied

to the vector wt. Let Ŵŵ,n (w) denote the process Ŵw,n(w) where wt has been replaced with ŵt. For a

detailed formulation of this statistic see Appendix C. An estimate of hw(w) is defined as

ĥw(.) =

(
diag

(
p(., θ̂)

)
− p(., θ̂)p

(
., θ̂
)′)

.

The empirical version of the transformed statistic is

B̂ŵ,n (w) = Ŵŵ,n

(
φ(., w)ĥw(.)−1/2

)
= n−1/2

n∑
t=1

φ (ŵt, w) ĥ(zt)
−1/2

[
Dt − p(zt, θ̂)− Ân,t

]
(12)

where Ân,s = n−1
∑n

t=1 1 {ŵt1 > ŵs1} ∂p(zs,θ̂)∂θ′
Ĉ−1
ŵ1s

l̄(zt, θ̂)
′
(
Dt − p(zt, θ̂)

)
.

Bootstrap based critical values are obtained as follows: the wild bootstrap error distribution is con-

structed by sampling ε∗t,s for s = 1, ..., S bootstrap replications according to

ε∗t,s = ε∗∗t,s/
√

2 +
((
ε∗∗t,s
)2 − 1

)
/2 (13)

where ε∗∗t,s ∼ N (0, 1) is independent of the sample. Let the moment condition underlying the transformed

test statistic (12) be denoted by

mT,t

(
v, θ̂
)

= φ (ŵt, w) ĥ(zt)
−1/2

[
Dt − p(zt, θ̂)− Ân,t

]
and write

B̂∗ŵ,n;s (w) = n−1/2
n∑
t=1

ε∗t,s

(
mT,t

(
v, θ̂
)
− m̄n;T

(
v, θ̂
))

(14)

to denote the test statistic in a bootstrap replication, with m̄n;T

(
v, θ̂
)

= n−1
∑n

t=1mT,t

(
v, θ̂
)
.

B Asymptotic Critical Values

This Section provides formal results on the distribution of the test statistics described above and forms

the basis for the construction of asymptotic critical values. The theorems and proofs use the additional

notation outlined below.
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B.1 Additional Notation and Assumptions

We focus initially on the process Vn(v) and the associated transformation T. Results for Vw,n(w) and the

transformed process TwVw,n(w) then follow as a special case.

Let χt = [y′t, z
′
t, Dt]

′ be the vector of observations. Assume that {χt}∞t=1 is strictly stationary with

values in the measurable space
(
Rk+1,Bk+1

)
where Bk+1 is the Borel σ-field on Rk+1 and k is fixed with

2 ≤ k <∞. Let Al1 = σ (χ1, ..., χl) be the sigma field generated by χ1, ..., χl. The sequence χt is β-mixing

or absolutely regular if

βm = sup
l≥1

E

[
sup

A∈A∞l+m

∣∣∣Pr
(
A|Al1

)
− Pr (A)

∣∣∣]→ 0 as m→∞.

Condition 3 Let χt be a stationary, absolutely regular process such that for some 2 < p < ∞ and some

δ > 0 the β-mixing coeffi cient of χt satisfies m
(p+δ)/(p−2) (logm)2(p−1)/(p−2) βm → 0.

Condition 4 Let Fu(u) be the marginal distribution of Ut. Assume that Fu (.) is absolutely continuous

with respect to Lebesgue measure on Rk and has a density fu(u) with fu(u) > 0 for all u ∈ Rk.

Condition 5 The matrix of functions φ(., .) belongs to a VC subgraph class of functions with envelope

M(χt) such that E ‖M(χt)‖p+δ <∞ for the same p and δ as in Condition 3.

We note that |m(yt, Dt, zt, θ0|v)| ≤ 2 for φ(., v) = 1 {. ≤ v} such that by Pollard (1984) Theorem II.25,

mv(Wt) = m(yt, Dt, zt, θ0|v) (15)

is a VC subgraph class of functions indexed by v with envelope 2.

Condition 6 Let H(v) be as defined in (2) . Assume that H(v) is absolutely continuous in v with respect

to Lebesgue measure and for all v, τ such that v ≤ τ with vi < τ i for at least one element vi of v it

follows that H(v) < H(τ). Let the M×M matrix of derivatives h(v) = ∂kH(v)/∂v1...∂vk and assume

that det (h(v)) > 0 for all v ∈ Rk.

Remark 1 A suffi cient condition for Condition 6 is that 0 < pi(zt, θ0) < 1 almost surely for all i =

0, 1, ...,M, together with Condition 4.

B.2 Limiting Distributions

Let D [−∞,∞]k be the space of functions that are continuous from the right with left limits (Cadlag)

mapping [−∞,∞]k → R. We consider weak convergence on D [−∞,∞]k equipped with the sup norm.

Here [−∞,∞]k denotes the k-fold product space of the extended real line equipped with the metric q(v, τ) =
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(∑k
i=1 |Φ(vi)− Φ(τ i)|2

)1/2
where Φ is a fixed, bounded and strictly increasing function. It follows that

[−∞,∞]k is totally bounded. The function space F =
{
m(., v)|v ∈ [−∞,∞]k

}
of functions m indexed by

v then is a subset of the space of all bounded functions on [−∞,∞]k denoted by l∞([−∞,∞]k).

Proposition 1 Assume that Conditions 1-6 are satisfied. Let vi ∈ [−∞,∞]k for i = 1, ..., s be a finite

collection of points. Then, for all finite s, Vn (v1) , ...., Vn (vs) converges in distribution to a Gaussian limit

with mean zero and covariance function Γ(vi, vj), defined in (3). Moreover, Vn (v) converges in D [−∞,∞]k

to a Gaussian process V (v) with covariance kernel Γ(v, τ) with v, τ ∈ [−∞,∞]k and V (−∞) = 0, H(v) is

positive definite with H(v) increasing in v.

Proof of Proposition 1. As noted before, under H0, mv(χt), defined in (15) is a martingale

difference sequence such that E (mv(χt)|zt) = 0. Let λ = (λ1, ..., λs)
′ with ‖λ‖ = 1 and λi ∈ RM. For finite

dimensional convergence we apply Corollary 3.1 of Hall and Heyde (1980) to Yt,λ = λ′1mv1(χt)+λ
′
2mv2(χt)+

...+λ′smvs(χt). Then, clearly Yt,λ is also a martingale difference sequence. Consider Ynt = Yt,λ/
√
n. Then,

for all ε > 0,∑
t

E
(
Y 2
nt1 {|Ynt| ≥ ε} |At−1

1

)
≤
∑
t

E
(
Y 2
nt1
{
‖M(χt)‖

∑
i ‖λi‖ ≥

√
nε
}
|At−1

1

)
→ 0 a.s.

because E ‖M(χt)‖2+δ is bounded for some δ > 0. Also,

∑
t

E
[
Y 2
nt|At−1

1

]
= n−1

n∑
t=1

E
[
Y 2
t |At−1

1

]
= n−1

n∑
t=1

s∑
i,j=1

E
[
λ′iφ (ut, vi)

(
diag (p(zt))− p(zt)p (zt)

′)φ (ut, vj)
′ λj |At−1

1

]
p→

s∑
i,j=1

λ′iΓ(vi, vj)λj

where the last line is a consequence of Theorem 2.1 in Arcones and Yu (1994). By the Cramer-Wold theorem

this establishes finite dimensional convergence. The functional central limit theorem again follows from

Theorem 2.1 in Arcones and Yu (1994).

The next proposition establishes a linear approximation to the process V̂n (v) evaluated at the estimated

parameter value θ̂. The fact that l (Dt, zt, θ0) is a martingale difference sequence is critical to the develop-

ment of a distribution free test statistic. The next condition states that the propensity score p(zt, θ) is the

correct parametric model for the conditional expectation of Dt and lists a number of additional regularity

conditions.
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Condition 7 Let θ0 ∈ Θ where Θ ⊂ Rd is a compact set and d < ∞. Assume that E [Dt|zt] = p(zt|θ0)

and for all θ 6= θ0 it follows E [Dt|zt] 6= p(zt|θ). Assume that p(zt|θ) is differentiable a.s. for θ ∈
{θ ∈ Θ| ‖θ − θ0‖ ≤ δ} ≡ Nδ(θ0) for some δ > 0. Let N(θ0) be a compact subset of the union of all neigh-

borhoods Nδ (θ0) where ∂p(zt|θ)/∂θ, ∂2p(zt|θ)/∂θi∂θj exists and assume that N(θ0) is not empty. Let

∂pi(zt|θ)/∂θj be the i, j-th element of the matrix of partial derivatives ∂p(zt|θ)/∂θ′ and let l̄i,j(zt, θ) be the
i, j-th element of l̄ (zt, θ) . Assume that there exists a function B(x) and a constant α > 0 such that∣∣∂pi(x|θ)/∂θj − ∂pi(x|θ′)/∂θj∣∣ ≤ B(x)

∥∥θ − θ′∥∥α ,∣∣∂2pk(x|θ)/∂θi∂θj − ∂2pk(x|θ)/∂θi∂θj
∣∣ ≤ B(x)

∥∥θ − θ′∥∥α and∣∣∂l̄i,j(x|θ)/∂θk − ∂l̄i,j(x|θ′)/∂θk∣∣ ≤ B(x)
∥∥θ − θ′∥∥α

for all i, j, k and θ, θ′ ∈ intN (θ0), E |B(zt)|2p+δ <∞, E |∂pi(zt|θ0)/∂θj |2p+δ <∞,

E
[
pi(zt, θ0)−(2p+δ)

]
<∞

and

E
[
|∂pi(zt|θ0)/∂θj |

2p+δ
2

]
<∞

for all i = 0, ...,M, and j and some δ > 0.

Remark 2 By Pakes and Pollard (1989, Lemma 2.13) the uniform Lipschitz condition for the derivatives

∂pi(zt|θ)/∂θj guarantees that the functions ∂p(zt|θ)/∂θ′ indexed by θ form a Euclidean class for the envelope
B(zt)

(
2
√
d supN(θ0)

∥∥θ − θ′∥∥)α + |∂pi(zt|θ0)/∂θj | .

Remark 3 In Condition 7, p0 (zt|θ) is defined as p0 (zt|θ) = 1−
∑M

i=1 pi (zt, θ) .

Condition 8 Let

l (Dt, zt, θ) = Σ−1
θ

∂p′ (zt, θ)

∂θ
h (zt, θ)

−1 (Dt − p(zt, θ)) (16)

where

h(zt, θ) =
(
diag (p(zt, θ))− p(zt, θ)p (zt, θ)

′)
and

Σθ = E

[
∂p′ (Dt|zt, θ)

∂θ
h (zt, θ)

−1 ∂p (Dt|zt, θ)
∂θ′

]
. (17)

Assume that Σθ is positive definite for all θ in some neighborhood N ⊂ Θ such that θ0 ∈ intN and

0 < ‖Σθ‖ < ∞ for all θ ∈ N. Let li (Dt, zt, θ) be the i-th element of l (Dt, zt, θ) . Assume that there

exists a function B(x1, x2) and a constant α > 0 such that
∥∥∂li (x1, x2, θ) /∂θj − ∂li

(
x1, x2, θ

′) /∂θj∥∥ ≤
B(x1, x2)

∥∥θ − θ′∥∥α for all i, j and θ, θ′ ∈ intN , E [B(Dt, zt)] <∞ and E [|li (Dt, zt, θ)|] <∞ for all i.
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Remark 4 Note that for P (zt, θ) = diag (p(zt, θ)) it follows that

h (zt, θ)
−1 = P (zt, θ)

−1 +
P (zt, θ)

−1 p (zt, θ) p (zt, θ)
′ P (zt, θ)

−1(
1− p (zt, θ)

′ P (zt, θ)
−1 p (zt, θ)

) = P (zt, θ)
−1 +

11′

1−
∑M

i=1 pi (zt, θ)
. (18)

Simple algebra then shows that

(Dt − p(zt, θ))′ h (zt, θ)
−1 ∂p (Dt|zt, θ) /∂θ′ = ∂` (Dt, zt, θ) /∂θ′

where ` (Dt, zt, θ) =
∑M

j=0Dj,t log pi (zt, θ) is the log likelihood of the multinomial distribution and Dj,t =

1 {Dt = j} .

Proposition 2 Assume that Conditions 1-8 are satisfied. Then

sup
v∈[−∞,∞]k

∥∥∥∥∥V̂n (v)− Vn (v) + ṁ(v, θ0)n−1/2
n∑
t=1

l (Dt, zt, θ0)

∥∥∥∥∥ = op(1) (19)

and if l (Dt, zt, θ0) is as defined in 16 and 17 then V̂n (v) converges weakly in D[ − ∞,∞]k equipped

with the sup norm to a limiting Gaussian process with mean zero and covariance function Γ̂(v, τ) =

Γ (v, τ)− ṁ(v, θ0)L(θ0)ṁ(τ , θ0)′ where L(θ0) = Σ−1
θ0
is defined in 17.

Proof of Proposition 2. Note that V̂n (v) − Vn (v) = n−1/2
∑n

t φ(Ut, v)
[
p(zt, θ0)− p(zt, θ̂)

]
such

that we can approximate

V̂n (v)− Vn (v) =
1

n

n∑
t

(
φ(Ut, v)

[
∂p(zt, θn)

∂θ′
− ∂p(zt, θ0)

∂θ′

])(
n1/2

(
θ̂ − θ0

))
+

1

n

n∑
t

(
φ(Ut, v)

∂p(zt, θ0)

∂θ

)(
n1/2

(
θ̂ − θ0

))
where ‖θn − θ0‖ ≤

∥∥∥θ̂ − θ0

∥∥∥ by the mean value theorem. Let ṁ (θ, v) = −E
[
φ(Ut, v)∂p(zt,θ)

∂θ′

]
and

ṁ(Ut, θ, v) = φ(Ut, v)∂p(zt,θ)
∂θ′

−ṁ (θ, v) . From Pakes and Pollard (1989, Lemmas 2.13 and 2.14) and Condi-

tion 7 it follows that ṁ(., θ, v) is a matrix of functions in a Euclidean class indexed on N(θ0)× [−∞,∞]k

with envelopeM
(
B(zt)

(
2
√
d supN(θ0)

∥∥θ − θ′∥∥)α +
∑M

i=1 |∂pi(zt|θ0)/∂θj |
)
M(χt) for all the elements in

the j-th column of ṁ(Ut, θ, v). Note that the factorM can be replaced with the constant 1 if φ(Ut, v) is

scalar valued. Then∥∥∥∥∥ 1

n

n∑
t

φ(Ut, v)

[
∂p(zt, θn)

∂θ
− ∂p(zt, θ0)

∂θ

]∥∥∥∥∥
≤ sup

‖θ−θ0‖≤δ
sup
v

∥∥∥∥∥ 1

n

n∑
t

[ṁ(Ut, θ, v)− ṁ(Ut, θ0, v)]

∥∥∥∥∥+ sup
‖θ−θ0‖≤δ

‖ṁ(θ, v)− ṁ(θ0, v)‖+ op(1) = op(1)
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since sup‖θ−θ0‖≤δ supv
∥∥ 1
n

∑n
t [ṁ(Utθ, v)− ṁ(Ut, θ0, v)]

∥∥ = op(1) by applying Lemma 2.1 of Arcones and

Yu (1994) to each element sup‖θ−θ0‖≤δ supv
∣∣ 1
n

∑n
t [ṁi,j(Utθ, v)− ṁi,j(Ut, θ0, v)]

∣∣. This completes the proof
of 19 because 1

n

∑n
t

(
φ(Ut, v)∂p(zt,θ0)

∂θ

)
→p −ṁ (θ0, v) and n1/2

(
θ̂ − θ0

)
= n−1/2

∑n
t=1 l (Dt, zt, θ0) + op (1)

by (5).

The second part of the result follows from the fact that the class of functions

F = [mv(.)]i + [ṁ (θ, v) l(., ., θ0)]i

where [.]i denotes the i-th element of a vector, is a Euclidean class by Lemma 2.14 of Pakes and Pollard

(1989). Sincemv(Xt)+ṁ (θ, v) l(Dt, zt, θ0) is a martingale difference sequence with respect to the filtration

At−1
1 , finite dimensional convergence to a Gaussian random vector with zero mean and covariance function

Γ̂(v, τ) follows from the martingale CLT (Hall and Heyde, Corollary 3.1) and the fact that 0 < ‖Σθ0‖ <∞
by Condition 8. Convergence to a weak limit in D [−∞,∞]k then follows again by Theorem 2.1 of Arcones

and Yu (1994) as well as van der Vaart and Wellner (1996, Corollary 1.4.5) together with Pakes and Pollard

(1989, Lemmas 2.13 and 2.15) to handle the vector case.

We now establish that the process T V̂ (v), defined in (7) is zero mean Gaussian with covariance function

Γ(v, τ). This establishes that the process W (v) ≡ T V̂ (v) can be transformed to a distribution free process

via Lemma 3.5 and Theorem 3.9 of Khmaladze (1993).

In order to define the transform T we choose a grid −∞ = λ0 < λ1 < ... < λN = ∞ on [−∞,∞] , let

∆πλi = πλi+1 − πλi and set

cN (V ) =
N∑
i=1

〈
φ (., v)′ ,∆πλi l̄(., θ)

〉
C−1
λi
V (π⊥λi l̄(ϑ, θ)). (20)

This construction is the same as in Khmaladze (1993) except that we work on [−∞,∞] rather than [0, 1] .

In Proposition (3) we show that cN (V ) converges as N → ∞ and maxi (Φ(λi+1)− Φ (λi)) → 0. Let the

limit of cN (V ) be denoted as c(V ) =
∫ 〈

φ (., v)′ , dπλ l̄(., θ)
〉
C−1
λ V

(
π⊥λ l̄(., θ)

)
Condition 9 Let {Aλ} be a family of measurable subsets of [−∞,∞]k, indexed by λ ∈ [−∞,∞] such that

A−∞ = ∅, A∞ = [−∞,∞]k, λ ≤ λ′ =⇒ Aλ ⊂ Aλ′ and Aλ′\Aλ → ∅ as λ′ ↓ λ. Assume that the sets
{Aλ} form a V-C class (polynomial class) of sets as defined in Pollard (1984, p.17). Define the projection

πλf(v) = 1 (v ∈ Aλ) f(v) and π⊥λ = 1− πλ such that π⊥λ f(v) = 1 (v /∈ Aλ) f(v). We then define the inner

product 〈f(.), g(.)〉 ≡
∫
f(u)′dH(u)g(u) and the matrix

Cλ =
〈
π⊥λ l̄(., θ), π

⊥
λ l̄(., θ)

〉
=

∫
π⊥λ l̄(u, θ)

′dH(u)π⊥λ l̄(u, θ).

Assume that 〈f(v), πλg(v)〉 is absolutely continuous in λ and Cλ is invertible for λ ∈ [−∞,∞).

9



Proposition 3 Assume Conditions 1-8 hold. Define Υx =
{
v ∈ [−∞,∞]k |v = πxv

}
for some x < ∞.

Let cN (v) be defined as in 20. Then cN (v) converges with probability 1 to c(v) for all v ∈ Υx. Let T V̂ (v)

be as defined in 7. Then T V̂ (v) is a Gaussian process with zero mean and covariance function Γ(v, τ) for

all v, τ ∈ Υx.

Proof of Proposition 3. The proof of this result follows closely Khmaladze (1993) with the

necessary adjustments pointed out. First, let V (v) be a Gaussian process on [−∞,∞]k and taking values

in RM with zero mean and covariance function Γ(v, τ) and V (−∞) = 0. See Kallenberg (1997, p. 201) for

the construction of such a process. Then, V (π⊥λ l̄(., θ)) is a process with trajectories that are continuous

in λ by essentially the same argument as in Lemma 3.2 of Khmaladze. To see this fix α ∈ RM such

that α′V (π⊥λ l̄(., θ)) is a Wiener process on [−∞,∞] with mean zero, α′V (π⊥∞ l̄(., θ)) = 0 and variance

α′Cλα with almost all trajectories continuous in λ on [−∞,∞]. To show that cN (v) → c(v) almost

surely we adapt the proof of Lemma 3.3 of Khmaladze (1993). As there, define ρ1(ξ) = |ξ1| + ... + |ξk|
for any vector ξ = (ξ1, ..., ξk) ∈ Rk and ρ∞ (ξ) = maxi |ξi| . Set ξ =

〈
φ,∆πµ l̄(., θ)

〉
and η (µ, λ) =

C−1
µ V (π⊥µ l̄(., θ)) − C−1

λ V (π⊥λ l̄(., θ)). By Condition 9 the matrix Cλ is invertible on [−∞,∞) and C−1
λ is

continuous in λ. Then, since V (π⊥λ l̄(., θ)) is continuous in λ almost surely, we have

sup
|Φ(λ)−Φ(µ)|<δ
λ,µ∈[−∞,x]

ρ∞ (η (µ, λ))→ 0

with probability 1 for any fixed x <∞. The remainder of the proof in Khmaladze (1993) then goes through
without change.

We first represent V̂ (v) in terms of V (v). Let V (l (., θ0)) =
∫
l(u, θ0)db(u) as before for any function

l(u, θ) with 〈l (., θ) , l (., θ)〉 < ∞ and b(u) a zero mean vector Gaussian process with covariance function

H(v ∧ τ) and note that V̂ (v) = V (φ(.,v)) − ṁ(v, θ)Σ−1
θ V (l̄(., θ0)′). In order to establish a corresponding

result to Lemma 3.4 of Khmaladze (1993) we first show that V̂ (v) = V (φ(.,v))− ṁ(v, θ)Σ−1
θ V (l̄(., θ0)′) is

a valid representation of the limiting distribution of V̂n(v) which was derived in Proposition 2. Clearly,

V̂ (v) is zero mean Gaussian and the covariance function is

E
[
V (v)V (τ)′

]
− ṁ(v, θ0)Σ−1

θ

∫
φ (u, τ)H(du)l̄(u, θ0)−

(∫
φ (u, v)H(du)l̄(u, θ0)

)
Σ−1
θ ṁ(τ , θ0)′

+ṁ(v, θ0)′Σ−1
θ

(∫
l̄(u, θ0)′H(du)l̄(u, θ0)

)
Σ−1
θ ṁ(τ , θ0).

Note that dH(u) =
(
diag (p(u2))− p(u2)p (u2)′

)
dFu (u) such that∫

φ (u, τ) dH(u)l̄(u, θ0) =

∫
φ (u, τ) dH(u)

(
diag (p(u2))− p(u2)p (u2)′

)−1 ∂p(u2, θ)

∂θ′

=

∫
φ (u, τ)

∂p(u2, θ0)

∂θ
dFu(u) = ṁ(τ , θ0)
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and ∫
l̄(u, θ0)′dH(u)l̄(u, θ0)

=

∫
∂p′(u2, θ)

∂θ

(
diag (p(u2))− p(u2)p (u2)′

)−1 ∂p(u2, θ)

∂θ′
dFu(u) = Σθ

such that E
[
V̂ (v)V̂ (τ)′

]
= H(v ∧ τ)− ṁ(v, θ0)′Σ−1

θ ṁ(τ , θ0) as required.

We now verify that the transformation T has the required properties. Note that

〈
φ(.,v)′, l̄(., θ)

〉
=

∫
φ (u, v) dH(u)

(
diag (p(u2))− p(u2)p (u2)′

)−1 ∂p(u2, θ)

∂θ′

= ṁ(v, θ0)

such that V̂ (v) = V (φ (., v))−
〈
φ (., τ)′ , l̄(., θ)

〉
C−1
−∞V (l̄(v, θ)).

In order to establish that T V̂ (v) = V̂ (v)−
∫ 〈

φ (., v)′ , dπλ l̄(., θ)
〉
C−1
λ V̂ (π⊥λ l̄(., θ)) has covariance func-

tion Γ(v, τ) we first consider E
[
TV (v)TV (v)′

]
where

E
[
TV (v)TV (v)′

]
= Γ(v, v)−

∫ 〈
φ (., v)′ , dπλ l̄(., θ)

〉
C−1
λ

〈
π⊥λ l̄(., θ), φ (., v)′

〉
−
∫ 〈

φ (., v)′ , π⊥λ l̄(., θ)
〉
C−1
λ

〈
dπλ l̄(., θ), φ (., v)′

〉
+

∫ ∫ 〈
φ (., v)′ , dπλ l̄(., θ)

〉
C−1
λ

(∫
π⊥λ l̄(u, θ)

′dH(u)π⊥µ l̄(u, θ)

)
C−1
µ

〈
dπµ l̄(., θ), φ (., v)′

〉
= Γ(v, v)−

∫ 〈
φ (., v)′ , dπλ l̄(., θ)

〉
C−1
λ

〈
π⊥λ l̄(., θ), φ (., v)′

〉
−
∫ 〈

φ (., v)′ , π⊥λ l̄(., θ)
〉
C−1
λ

〈
dπλ l̄(., θ), φ (., v)′

〉
+

∫ ∫ 〈
φ (., v)′ , dπλ l̄(., θ)

〉
C−1
λ Cλ∨µC

−1
µ

〈
dπµ l̄(., θ), φ (., v)′

〉
.

Note that
〈
φ (., v) , dπλ l̄(., θ)

〉
C−1
λ Cλ∨µC

−1
µ

〈
dπµ l̄(., θ), φ (., v)′

〉
is symmetric in λ and µ such that∫ ∫ 〈

φ (., v)′ , dπλ l̄(., θ)
〉
C−1
λ Cλ∨µC

−1
µ

〈
dπµ l̄(., θ), φ (., v)′

〉
=

∫ 〈
φ (., v)′ , dπλ l̄(., θ)

〉
C−1
λ

∫ ∞
λ

〈
dπµ l̄(., θ), φ (., v)′

〉
+

∫ ∫ ∞
µ

〈
φ (., v)′ , dπλ l̄(., θ)

〉
C−1
λ

〈
dπµ l̄(., θ), φ (., v)′

〉
=

∫ 〈
φ (., v)′ , dπλ l̄(., θ)

〉
C−1
λ

〈
π⊥λ l̄(., θ), φ (., v)′

〉
+

∫ 〈
φ (., v)′ , π⊥λ l̄(., θ)

〉
C−1
λ

〈
dπλ l̄(., θ), φ (., v)′

〉
11



such that E
[
TV (v)TV (v)′

]
= Γ (v, v) . By the same arguments it follows that E [TV (v)TV (τ)′] = Γ (v, τ) .

That the result then also holds for T V̂ (v) follows from Khmaladze (1993, Theorem 3.9).

Khmaladze (1993, Lemmas 3.2-3.4) shows that the argument need not be limited to all v such that

v ∈ Υx. As noted by Koul and Stute, however, once T is replaced by Tn convergence can only be shown on

the subset πxv of [−∞,∞]k for some finite x due to the instability of the estimated matrix Cλ as λ→∞.
The next step is to analyze the transform T when applied to the empirical processes Vn(v) and V̂n(v)

and in particular to show convergence to the limiting counterpart, T V̂ (v).

Proposition 4 Assume Conditions 1-9 are satisfied. Fix x <∞ arbitrary and define

Υx =
{
v ∈ [−∞,∞]k |v = πxv

}
.

Then,

sup
v∈Υx

∣∣∣T V̂n(v)− TVn(v)
∣∣∣ = op(1)

and TVn(v)⇒ TV (v) in D [Υx] where ⇒ denotes weak convergence.

Proof of Proposition 4. By Proposition 2 we have uniformly on [−∞,∞]k that V̂n (v) − Vn (v) =

ṁ(v, θ0)n−1/2
∑n

t=1 l (Dt, zt, θ0) + op(1). Thus consider the difference

T V̂n − TVn (21)

= −ṁ(v, θ0)n−1/2
n∑
t=1

l (Dt, zt, θ0)

−
∫ 〈

φ (., v)′ , dπλ l̄(., θ0)
〉
C−1
λ

(
V̂n

(
π⊥λ l̄(., θ0)′

)
− Vn

(
π⊥λ l̄(., θ0)′

))
+ op (1) .

For ‖θn − θ0‖ ≤
∥∥∥θ̂ − θ0

∥∥∥ it follows by the mean value theorem that

V̂n

(
π⊥λ l̄(., θ0)′

)
− Vn

(
π⊥λ l̄(., θ0)′

)
= n−1/2

n∑
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0)′
(
p(zt, θ0)− p(zt, θ̂)

)
= n−1/2

n∑
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0)′
(
∂p(zt, θn)

∂θ′
− ∂p(zt, θ0)

∂θ′

)(
θ̂ − θ0

)
+n−1/2

n∑
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0)′
∂p(zt, θ0)

∂θ′

(
θ̂ − θ0

)
≡ R1 (λ) +R2 (λ) .
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Let ṁ (θ) = E
[
∂p(zt,θ)
∂θ′

]
and ṁ(zt, θ) = ∂p(zt,θ)

∂θ − ṁ (θ) . First consider

sup
λ
‖R1 (λ)‖ ≤ n1/2

∥∥∥θ̂ − θ0

∥∥∥n−1
n∑
t=1

∥∥l̄(zt, θ0)
∥∥∥∥∥∥∂p(zt, θn)

∂θ′
− ∂p(zt, θ0)

∂θ′

∥∥∥∥
≤ n1/2

∥∥∥θ̂ − θ0

∥∥∥n−1
n∑
t=1

∥∥l̄(zt, θ0)
∥∥ ‖ṁ(zt, θn)− ṁ(zt, θ0)‖

+n1/2
∥∥∥θ̂ − θ0

∥∥∥n−1
n∑
t=1

∥∥l̄(zt, θ0)
∥∥ ‖ṁ (θn)− ṁ (θ0)‖

≤ n1/2
∥∥∥θ̂ − θ0

∥∥∥(n−1
n∑
t=1

∥∥l̄(zt, θ0)
∥∥2

)1/2(
n−1

n∑
t=1

‖ṁ(zt, θn)− ṁ(zt, θ0)‖2
)1/2

+ op (1)

where the third inequality follows from Hölder’s inequality and the fact that ‖θn − θ0‖ = op(1) implies by

the continuous mapping theorem that ‖ṁ (θn)− ṁ (θ0)‖ = op(1). Together with E
∥∥l̄(zt, θ0)

∥∥ < ∞ and

Lemma 2.1 of Arcones and Yu (1994) this implies that

n1/2
∥∥∥θ̂ − θ0

∥∥∥n−1
n∑
t=1

∥∥l̄(zt, θ0)
∥∥ ‖ṁ (θn)− ṁ (θ0)‖ = op(1).

By Condition 7 it follows that

‖ṁ(zt, θn)− ṁ(zt, θ0)‖2 ≤ k |B(zt)|2 ‖θn − θ0‖2α

for some α > 0 such that

n−1
n∑
t=1

‖ṁ(zt, θn)− ṁ(zt, θ0)‖2 ≤ k ‖θn − θ0‖2α n−1
n∑
t=1

|B(zt)|2 = op(1).

This establishes supλ ‖R1 (λ)‖ = op(1) such that uniformly on Υx∥∥∥∥∫ 〈φ (., v)′ , dπλ l̄(., θ0)
〉
C−1
λ R1 (λ)

∥∥∥∥ ≤ sup
λ
‖R1 (λ)‖ sup

λ:πλ∈Υx

‖Cλ‖−1
∫ ∥∥〈φ (., v)′ , dπλ l̄(., θ0)

〉∥∥ = op (1) .

Next consider R2 (λ)−
(∫

π⊥λ l̄(u2, θ0)′ ∂p(u2,θ0)
∂θ′

dFu (u)
)
n1/2

(
θ̂ − θ0

)
. Note that

E

[
1 {Ut /∈ Aλ} l̄(zt, θ0)

∂p(zt, θ0)

∂θ′

]
=

∫
π⊥λ l̄(u2, θ0)′

∂p(u2, θ0)

∂θ′
dFu (u)
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and

sup
λ

∥∥∥∥1 {Ut /∈ Aλ} l̄(zt, θ0)′
∂p(zt, θ0)

∂θ′

∥∥∥∥
≤

∥∥∥∥l̄(zt, θ0)′
∂p(zt, θ0)

∂θ′

∥∥∥∥
=

∥∥∥∥∂p′(zt, θ0)

∂θ

(
diag (p(u2))− p(u2)p (u2)′

)−1 ∂p(zt, θ0)

∂θ′

∥∥∥∥
≤

∥∥∥∥∂p′(zt, θ0)

∂θ

∥∥∥∥2 ∥∥∥(diag (p(u2))− p(u2)p (u2)′
)−1/2

∥∥∥2

≤
(

sup
u2

(
1′M

(
diag (p(u2))− p(u2)p (u2)′

)−1
1M
)) M∑

i=1

d∑
j=1

(
∂pi(zt, θ0)

∂θj

)2

where
(

supu2

(
1′M

(
diag (p(u2))− p(u2)p (u2)′

)−1
1M
))

is bounded by Condition 6 and E
[(

∂pi(zt,θ0)
∂θj

)2
]

is bounded by Condition 7. This shows that (1− 1 {(yt, zt) ∈ Aλ}) l̄(zt, θ0)∂p(zt,θ0)
∂θ′

is a Euclidean class

with integrable envelope
∥∥∥l̄(zt, θ0)∂p(zt,θ0)

∂θ′

∥∥∥ such that by Lemma 2.1 of Arcones and Yu it follows that
sup
λ

∥∥∥∥R2 (λ)−
(∫

π⊥λ l̄(u2, θ0)′
∂p(u2, θ0)

∂θ′
dFu (u)

)
n1/2

(
θ̂ − θ0

)∥∥∥∥ = op(1).

It then follows that uniformly on Υx∫ 〈
φ (., v)′ , dπλ l̄(., θ0)

〉
C−1
λ

[
R2 (λ)−

∫
π⊥λ l̄(u2, θ0)′

∂p(u2, θ0)

∂θ′
dFu (u)n1/2

(
θ̂ − θ0

)]
= op (1) .

Now note that
∫
π⊥λ l̄(u2, θ0)′ ∂p(u2,θ0)

∂θ′
dFu (u) = Cλ such that∫ 〈

φ (., v)′ , dπλ l̄(., θ0)
〉
C−1
λ

∫
π⊥λ l̄(ϑ, θ0)′

∂p(u2, θ0)

∂θ′
dFu (u)n1/2

(
θ̂ − θ0

)
=

∫ 〈
φ (., v)′ , dπλ l̄(., θ0)

〉
n1/2

(
θ̂ − θ0

)
= −ṁ(v, θ0)n1/2

(
θ̂ − θ0

)
= −ṁ(v, θ0)n−1/2

n∑
t=1

l (Dt, zt, θ0) + op (1) .

Substituting back in (21) then shows that supv∈Υx

∣∣∣T V̂n (v)− TVn (v)
∣∣∣ = op(1).

For the second part of the proposition consider

TVn (v) = Vn (v)−
∫ 〈

φ (., v)′ , dπλ l̄(., θ0)
〉
C−1
λ n−1/2

n∑
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0)′ (Dt − p(zt, θ0)) .

Under H0 it follows that

E
[
1 {Ut /∈ Aλ} l̄(zt, θ0) (Dt − p(zt, θ0)) |zt

]
= E [1 {Ut /∈ Aλ} |zt] l̄(zt, θ0)E [(Dt − p(zt, θ0)) |zt] = 0
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such that TVn (v) is a martingale. The finite dimensional distributions can therefore be obtained from a

martingale difference CLT. Let

g(yt, zt, v) =

∫ 〈
φ (., v)′ , dπλ l̄(., θ0)

〉
C−1
λ 1 {Ut /∈ Aλ} l̄(zt, θ0)′

such that TVn(v) = n−1/2
∑n

t=1 (φ (Ut, v)− g(yt, zt, v)) (Dt − p(zt, θ0)) . Then let

Y1t (v) = φ (Ut, v) (Dt − p(zt, θ0)) ,

Y2t (v) = g(yt, zt, v) (Dt − p(zt, θ0)) ,

Yt (v) = Y1t (v)− Y2t (v) and Ynt (v) = n−1/2Yt (v) . It follows that

E
[
Y1t (v)Y1t (v)′

]
= Γ(v, v),

E
[
Y2t (v)Y2t (v)′

]
=

∫ ∫ {〈
φ (., v)′ , dπλ l̄(., θ0)

〉
C−1
λ

×E
[
E [1 {Ut /∈ Aλ}1 {Ut /∈ Aµ} |zt]

∂pt (zt, θ0)

∂θ′
(
diag (p(zt))− p(zt)p (zt)

′)−1 ∂pt (zt, θ0)

∂θ

]
× C−1

µ

〈
dπµ l̄(., θ0), φ (., v)′

〉}
=

∫ ∫ 〈
φ (., v)′ , dπλ l̄(., θ0)

〉
C−1
λ Cµ∨λC

−1
µ

〈
φ (., v) , dπµ l̄(., θ0)′

〉
=

∫ 〈
φ (., v)′ , dπλ l̄(., θ)

〉
C−1
λ

〈
π⊥λ l̄(., θ), φ (., v)′

〉
+

∫ 〈
φ (., v)′ , π⊥λ l̄(., θ)

〉
C−1
λ

〈
dπλ l̄(., θ), φ (., v)′

〉
and

E
[
Y1t (v)Y2t (v)′

]
=

∫ 〈
φ (., v)′ , dπλ l̄(., θ0)

〉
C−1
λ E

[
E [1 {Ut /∈ Aλ}φ (Ut, v) |zt]

∂pt (zt, θ0)

∂θ′

]
=

∫ 〈
φ (., v)′ , dπλ l̄(., θ)

〉
C−1
λ

〈
π⊥λ l̄(., θ), φ (Ut, v)′

〉
which shows that E

[
Yt (v)Yt (v)′

]
= Γ(v, v). Also, E

[
Y1t (v)Y1t (τ)′

]
= Γ (v, τ) ,

E
[
Y2t (v)Y2t (τ)′

]
=

∫ 〈
φ (., v)′ , dπλ l̄(., θ)

〉
C−1
λ

〈
π⊥λ l̄(., θ), φ (., τ)′

〉
+

∫ 〈
φ (., v)′ , π⊥λ l̄(., θ)

〉
C−1
λ

〈
dπλ l̄(., θ), φ (., τ)′

〉
and

E
[
Y1t (v)Y2t (τ)′

]
=

∫ 〈
φ (., v)′ , π⊥λ l̄(., θ)

〉
C−1
λ

〈
dπλ l̄(., θ), φ (., τ)′

〉
15



such that E
[
Yt (v)Yt (τ)′

]
= Γ (v, τ) . It also follows that E ‖Yt‖2+δ < ∞ such that the conditional Lin-

deberg condition of the CLT is satisfied. We conclude that the finite dimensional distributions of TVn(v)

converge to a Gaussian limit with mean zero and covariance function Γ(v, τ). For weak convergence in the

function space note that

‖g(yt, zt, v)‖ ≤
∫ ∥∥〈φ (., v)′ , dπλ l̄(., θ0)

〉
C−1
λ l̄(zt, θ0)′

∥∥
≤

∫ ∥∥〈φ (., v)′ , dπλ l̄(., θ0)
〉
C−1
λ

∥∥∥∥l̄(zt, θ0)
∥∥

where
∫ ∥∥〈φ (., v)′ , dπλ l̄(., θ0)

〉
C−1
λ

∥∥ is uniformly bounded onΥx and
∥∥l̄(zt, θ0)

∥∥2
=
∑M

j=1

∑d
i=1

∣∣l̄i,j(zt, θ0)
∣∣2

such that by the Hölder inequality

∣∣l̄i,j(zt, θ0)
∣∣2+δ ≤ (M+ 1)1+δ/2

∣∣∣∣∂pi(zt, θ0)/∂θj
pi (zt, θ0)

∣∣∣∣2+δ

+

∑M
i=1 |∂pi(zt, θ0)/∂θj |2+δ∣∣∣1−∑Mj=1 pj(zt, θ0)

∣∣∣2+δ

 .

By the Cauchy Schwartz inequality it then follows that

E
∣∣l̄i,j(zt, θ0)

∣∣2+δ

≤ (M+ 1)1+δ/2
(
E
[
|∂pi(zt, θ0)/∂θj |4+2δ

])1/2 (
E
[
pi (zt, θ0)−(4+2δ)

])1/2

+ (M+ 1)1+δ/2∑M
j=1

(
E
[
|∂pj(zt, θ0)/∂θj |4+2δ

])1/2
(
E

[∣∣∣1−∑Mj=1 pj(zt, θ0)
∣∣∣−(4+2δ)

])1/2

< ∞

which is bounded for some δ by Condition 7. This shows that g(yt, zt, v) is a Euclidean class of functions

and by Lemma 2.14 of Pakes and Pollard it follows that Yt(v) is a Euclidean class of functions. Lemma

2.1 of Arcones and Yu then can be used to establish weak convergence on D [Υx] .

Our main formal result is established next.

Theorem 5 Assume Conditions 1-9 are satisfied. Fix x <∞ arbitrary and define

Υx =
{
v ∈ [−∞,∞]k |v = πxv

}
.

Then, for Tn defined in (8),

sup
v∈Υx

∣∣∣TnV̂n(v)− TVn(v)
∣∣∣ = op(1).

Proof of Theorem 5. We start by considering Ĉλ − Cλ. Let

Cλ (θ) = E

[
1 {Ut /∈ Aλ} l̄(zt, θ)′

∂p(zt, θ)

∂θ′

]
16



such that Cλ = Cλ (θ0) and

Ĉλ − Cλ = n−1
n∑
t=1

1 {Ut /∈ Aλ} l̄(zt, θ̂)′
∂p(zt, θ̂)

∂θ′
− Cλ (θ0)

= n−1
n∑
t=1

1 {Ut /∈ Aλ} l̄(zt, θ̂)′
∂p(zt, θ̂)

∂θ′
− Cλ

(
θ̂
)

+ Cλ

(
θ̂
)
− Cλ (θ0) .

Note that Cλ (θ) =
∫

(1− 1 (u ∈ Aλ)) l̄(u, θ)′H(du)l̄(u, θ) such that for any λ, θ it follows that

∥∥Cλ′ (θ′)− Cλ (θ)
∥∥ ≤

∥∥∥∥∫ (1 (u ∈ Aλ′)− 1 (u ∈ Aλ)) l̄(u, θ′)′dH(u)l̄(u, θ′)

∥∥∥∥
+

∥∥∥∥∫ 1 (u ∈ Aλ)
(
l̄(u, θ′)′dH(u)l̄(u, θ′)− l̄(u, θ)′dH(u)l̄(u, θ)

)∥∥∥∥
where |1 (u ∈ Aλ′)− 1 (u ∈ Aλ)| ≤ 1

(
u ∈ Amax(λ,λ′)\Amin(λ,λ′)

)
→ 0 as λ′ → λ by Condition 9. Continuity

of l̄(u, θ)′ l̄(u, θ) and integrability of the envelope function
∥∥l̄(u, θ0)

∥∥2 then establish uniform continuity of

Cλ(θ) on Υx × N(θ0) by use of the dominated convergence theorem. By continuity of Cλ (θ) and the

continuous mapping theorem it now follows that
∥∥∥Cλ (θ̂)− Cλ (θ0)

∥∥∥ = op(1) uniformly on Υx × N(θ0).

Let vn(θ, λ) = n−1
∑n

t=1 1 {Ut /∈ Aλ} l̄(zt, θ)′
∂p(zt,θ)
∂θ′

− Cλ (θ) . We note that∥∥∥∥1 {Ut /∈ Aλ} l̄(zt, θ)′∂p(zt, θ)∂θ′

∥∥∥∥ ≤ 2
∥∥l̄(zt, θ)∥∥2 ∥∥diag (p(zt))− p(zt)p (zt)

′∥∥ ≤ 2M
∥∥l̄(zt, θ)∥∥2

where l̄i,j(zt, θ) has the integrable Envelope B(zt)
(

2
√
d supN(θ0)

∥∥θ − θ′∥∥)α +
∣∣l̄i,j(zt, θ0)

∣∣ on N (θ0) by

Condition 7. By Condition 9 the functions 1 {(yt, zt) ∈ Aλ} form a Euclidean class. It now follows from

Lemma 2.1 of Arcones and Yu (1994) that, because n1/2vn(θ, λ) converges weakly to a Gaussian limit, a

tightness condition must hold, i.e. for any ε, η > 0, ∃δ > 0 such that

lim sup
n

Pr

(
sup

λ,θ∈Υx×N(θ0)
sup

λ′,θ′:d((λ,θ),(λ′,θ′))<δ

∥∥vn(θ′, λ′)− vn(θ, λ)
∥∥ > ε

)
< η. (22)

Property (22) together with the boundedness of the space Υx × N(θ0) now implies by a conventional

approximation argument, that

sup
λ,θ∈Υx×N(θ0)

‖vn (θ, λ)‖ = op(1).

It now follows that

Pr
(∥∥∥Ĉλ − Cλ (θ̂)∥∥∥ > ε

)
≤ Pr

(
sup

λ,θ∈Υx×N(θ0)
‖vn (θ, λ)‖ > ε

)
+ Pr

(
θ̂ /∈ N(θ0)

)
p→ 0 (23)

such that supλ∈Υx

∥∥∥Ĉλ − Cλ∥∥∥ = op(1).
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Then

TnV̂n(v)− TVn(v) = −ṁ(v, θ0)n−1/2
n∑
t=1

l (Dt, zt, θ0) + op(1)

−
∫
d

(∫
φ (u, v) dĤn(u)πλ l̄(., θ̂)

)
Ĉ−1
λ V̂n(π⊥λ l̄(., θ̂)

′)

+

∫ 〈
φ (., v) , dπλ l̄(., θ0)

〉
C−1
λ Vn(π⊥λ l̄(., θ0)′)

where the first line follows from Proposition 2. From before we have∫
d

(∫
φ (u, v) dĤn(u)πλ l̄(., θ̂)

)
Ĉ−1
λ V̂n(π⊥λ l̄(., θ̂)

′)

=

∫
d

(∫
φ (u, v) dĤn(u)πλ l̄(., θ̂)

)(
Ĉ−1
λ − C

−1
λ

)
V̂n(π⊥λ l̄(., θ̂)

′)

+

∫
d

(∫
φ (u, v) dĤn(u)πλ l̄(., θ̂)

)
C−1
λ V̂n(π⊥λ l̄(., θ̂)

′)

where ∥∥∥∥∫ d

(∫
φ (u, v) dĤn(u)πλ l̄(., θ̂)

)(
Ĉ−1
λ − C

−1
λ

)
V̂n(π⊥λ l̄(., θ̂))

∥∥∥∥
≤ sup

λ∈[−∞,x]

∥∥∥Ĉ−1
λ − C

−1
λ

∥∥∥∫ ∥∥∥∥d(∫ φ (u, v) dĤn(u)πλ l̄(., θ̂)

)∥∥∥∥∥∥∥V̂n(π⊥λ l̄(., θ̂))
∥∥∥ = op(1)

by (23). Next we consider

V̂n(π⊥λ l̄(., θ̂)
′) = n−1/2

n∑
t=1

1 {Ut /∈ Aλ} l̄(Ut, θ̂)′
(
Dt − p(zt, θ̂)

)
= n−1/2

n∑
t=1

1 {Ut /∈ Aλ} l̄(Ut, θ0)′ (Dt − p(zt, θ0))

+

[
n−1/2

n∑
t=1

1 {Ut /∈ Aλ}
(
(Dt − p(zt, θ0))′ ⊗ IM

) ∂ vec l̄(Ut, θn)′

∂θ′

](
θ̂ − θ0

)
−
[
n−1/2

n∑
t=1

1 {Ut /∈ Aλ} l̄((yt, zt) , θ0)′
∂p(zt, θn)

∂θ′

](
θ̂ − θ0

)
−
((

θ̂ − θ0

)′
⊗ IM

)[
n−1/2

n∑
t=1

1 {Ut /∈ Aλ}
(
∂p′(zt, θn)

∂θ
⊗ IM

)
∂ vec l̄(Ut, θn)

∂θ′

](
θ̂ − θ0

)
≡ R1 (λ) +R2 (λ)

(
θ̂ − θ0

)
+R3 (λ)n1/2

(
θ̂ − θ0

)
+ n1/2

(
θ̂ − θ0

)′
R4 (λ)

(
θ̂ − θ0

)

18



where ‖θn − θ0‖ ≤
∥∥∥θ̂ − θ∥∥∥ and we have used the mean value theorem. Note that R1 =

∫
π⊥λ l̄(ϑ, θ0)dVn(u),

R2 (λ) = n−1/2
n∑
t=1

1 {Ut /∈ Aλ}
(
(Dt − p(zt, θ0))′ ⊗ IM

) ∂ vec l̄(Ut, θ0)′

∂θ′

+n−1/2
n∑
t=1

1 {Ut /∈ Aλ}
(
(Dt − p(zt, θ0))′ ⊗ IM

)(∂ vec l̄(Ut, θn)′

∂θ′
− ∂ vec l̄(Ut, θ0)′

∂θ′

)
≡ R21 (λ) +R22 (λ, θn)

satisfies ER21 (λ) = 0 because

E

[
1 {Ut /∈ Aλ}

(
(Dt − p(zt, θ0))′ ⊗ IM

) ∂ vec l̄(Ut, θ0)′

∂θ′
|zt
]

= E
[(

(Dt − p(zt, θ0))′ ⊗ IM
)
|zt
]
E

[
1 {Ut /∈ Aλ}

∂ vec l̄(Ut, θ0)′

∂θ′
|zt
]

= 0

under H0 such that finite dimensional convergence follows by the martingale difference CLT and uniform

convergence follows from the fact that 1 {Ut /∈ Aλ}
(
(Dt − p(zt, θ0))′ ⊗ IM

) ∂ vec l̄(Ut,θ0)′

∂θ′
is a Euclidean class

of functions by Condition 9. It thus follows that supλR21(λ) = Op(1) and R21(λ)
(
θ̂ − θ0

)
= op(1)

uniformly in λ. For the term R22 (λ, θn) we note that

E

[
1 {Ut /∈ Aλ}

(
(Dt − p(zt, θ0))′ ⊗ IM

) ∂ vec l̄(Ut, θ)
′

∂θ′
|zt
]

= 0

for any θ. By Lemma 2.1 of Arcones and Yu it thus follows that R22 (λ, θ) converges to a Gaussian limit

process uniformly in λ and θ. Consequently, a tightness condition implied by this result can be used to show

that lim sup Pr
[
supθ:d(θ,θ0)≤δ ‖R22 (λ, θ)‖ > ε

]
< η for all ε, η > 0 and some δ > 0. Use root-n convergence

of θn to conclude from this that R22 (λ, θn) = op(1). The terms involving θn in the remainder terms R3

and R4 containing θn can be handled in similar form and we therefore only consider the leading terms

where θn is replaced by θ0. For R4 (λ) where

R4 (λ) = n−1
n∑
t=1

1 {Ut /∈ Aλ}
(
∂p′(zt, θn)

∂θ
⊗ IM

)
∂ vec l̄(Ut, θn)

∂θ′

we note that n1/2 (R4 (λ)− ER4 (λ)) satisfies the conditions of Lemma 2.1 of Arcones and Yu (1994)

such that it follows by similar arguments as before that supλR4 (λ) = Op(1). Then conclude that

n1/2
(
θ̂ − θ0

)′
R4 (λ)

(
θ̂ − θ0

)
= op(1) uniformly in λ.

For R3 (λ) note that

R3 (λ) = n−1
n∑
t=1

1 {Ut /∈ Aλ} l̄(Ut, θ0)′
∂p(zt, θ0)

∂θ′

uniformly converges to

E [R3 (λ)] = E

[
1 {Ut /∈ Aλ} l̄(Ut, θ0)

∂p(zt, θ0)

∂θ′

]
= Cλ.
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We have thus established that

sup
λ

∥∥∥V̂n(π⊥λ l̄(., θ̂))− Vn(π⊥λ l̄(., θ0))− Cλn1/2
(
θ̂ − θ0

)∥∥∥ = op (1) .

Using this result we obtain∫
d

(∫
φ (u, v) dĤn(u)πλ l̄(u, θ̂)

)
C−1
λ

(
V̂n(π⊥λ l̄(., θ̂))− Vn(π⊥λ l̄(., θ0))

)
=

∫
d

(∫
φ (u, v) dĤn(u)πλ l̄(u, θ̂)

)
n1/2

(
θ̂ − θ0

)
+ op(1).

The leading term is then

vec

∫
d

(∫
φ (u, v) dĤn(u)πλ l̄(u, θ̂)

)
= vec

∫
d

(∫
φ (u, v) dHn(u)πλ l̄(u, θ0)

)
(24)

+

∫
d

(∫
φ (u, v)πλ

∂ vec ∂p(u2, θn)/∂θ′

∂θ′
dF̂u(u)

)(
θ̂ − θ0

)
where F̂u(u) is defined in (27) in Appendix C.1 and∥∥∥∥∫ d

∫
φ (u, v)πλ

∂ vec ∂p(u2, θn)/∂θ′

∂θ′
dF̂u(u)

∥∥∥∥
≤ n−1

n∑
t=1

∥∥∥∥φ (Ut, v)
∂ vec ∂p(u2, θn)/∂θ′

∂θ′

∥∥∥∥
≤ n−1

n∑
t=1

‖M (χt)‖
∥∥∥∥∂ vec ∂p(u2, θ0)/∂θ′

∂θ′

∥∥∥∥
+n−1

n∑
t=1

∥∥∥∥∂ vec ∂p(u2, θn)/∂θ′

∂θ′
− ∂ vec ∂p(u2, θ0)/∂θ′

∂θ′

∥∥∥∥
≤ n−1

n∑
t=1

‖M (χt)‖
∥∥∥∥∂ vec ∂p(u2, θ0)/∂θ′

∂θ′

∥∥∥∥+ C ‖θn − θ0‖α n−1
n∑
t=1

B(zt)

= Op(1)

where C is a finite constant, the third inequality uses Condition 7 and the last equality follows from a

standard law of large numbers for strong mixing sequences. The first term in 24 then is∫
d

(∫
φ (u, v) dHn(u)πλ l̄(u, θ0)

)
= n−1

n∑
t=1

φ (Ut, v)
∂p(zt, θ0)

∂θ′

where E
[
φ (Ut, v) ∂p(zt,θ0)

∂θ

]
= −ṁ(v, θ0) for v ∈ Υx. It thus follows again by a law or large numbers that∫

d
(∫
φ (u, v) dHn(u)πλ l̄(u, θ0)

)
= −ṁ(v, θ0) + op (1) uniformly on Υx.

Finally we need to show that∫ (
d

(∫
φ (u, v) dHn(u)πλ l̄(u, θ0)

)
−
〈
φ (., v)′ , dπλ l̄(., θ0)

〉)
C−1
λ Vn(π⊥λ l̄(u, θ0)) = op(1). (25)
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Let g(zt, λ, v) = φ (Ut, v)1 {Ut ∈ Aλ} ∂p(zt,θ0)
∂θ . We first note that uniformly in λ on [−∞, x] and v ∈ Υx,∫

φ (., v)πλdHn(v)l̄(., θ0)−
〈
φ (., v)′ , πλ l̄(., θ0)

〉
= n−1

n∑
t=1

g(zt, λ, v)− E (g(zt, λ, v))→ 0 a.s.

Weak convergence of C−1
λ Vn(π⊥λ l̄(u, θ0)) uniformly in λ on [−∞, x] can be established by the same methods

as for TVn(v)⇒ TV (v) in the second part of the proof of Proposition 4. We can thus proceed in the same

way as Koul and Stute (1999, Lemma 4.2). Let Gn(λ, v) = n−1
∑n

t=1 g(zt, λ, v), G(λ, v) = E (g(zt, λ, v))

and let ζn(λ) = C−1
λ Vn(π⊥λ l̄(u, θ0)′). Then each component ζni(λ) of the d×1 vector ζn(λ) is asymptotically

tight by Prohorov’s Theorem. In other words there exists a compact set K ⊂D [−∞, x] such that ζni(λ) ∈ K
with probability no less than 1 − η for any η > 0. Following the proof of Lemma 3.1 of Chang (1990) we

choose step functions a1 (λ) , a2 (λ) , ..., ak (λ) ∈ D [−∞, x] such that for any ζ ∈ K, d0 (ai, ζ) < ε for

all i, 1 ≤ i ≤ d and d0 (., .) is the Skorohod metric. The right hand side of 25 can now be written as∫ x
−∞ ζn (λ)′ (Gn(dλ, v)−G(dλ, v)) such that for any δ > 0

Pr

(∥∥∥∥∫ x

−∞
ζn (λ)′ (Gn(dλ, v)−G(dλ, v))

∥∥∥∥ > η

)
≤ Pr

(
sup

ζ∈K,v∈Υx

∥∥∥∥∫ x

−∞
ζ (λ)′ (Gn(dλ, v)−G(dλ, v))

∥∥∥∥ > δ

)
+ Pr (ζn /∈ K) .

Since ζ ∈ K it follows that

sup
ζ∈K,v∈Υx

∣∣∣∣∫ x

−∞
ζ (λ)′ (Gn(dλ, v)−G(dλ, v))

∣∣∣∣ ≤ sup
ζ∈K
‖ζ (λ)‖

(
sup
v∈Υx

∫ x

−∞
‖G(dλ, v)‖+ sup

v∈Υx

∫ x

−∞
‖Gn(dλ, v)‖

)
where

∫ x
−∞ ‖G(dλ, v)‖ = ‖G(x, v)‖ and

∫ x
−∞ ‖Gn(dλ, v)‖ = ‖Gn(x, v)‖ . Since G(x, v) → 0 uniformly in v

as x→ −∞ and Gn(λ, v) converges uniformly to G(x, v) we can focus on a subset [xu, x] ⊂ [−∞, x] where

xu is such that

sup
ζ∈K,v∈Υx

∥∥∥∥∫ xu

−∞
ζ (λ)′ (Gn(dλ, v)−G(dλ, v))

∥∥∥∥ < δ

with probability tending to one. Now, for any component i, there exists a strictly increasing, con-

tinuous mapping κ of [−∞, x] onto itself, depending on ζi such that sup−∞≤λ≤x |κ (λ)− λ| < ε and

sup−∞≤λ≤x |ζi (λ)− ai(κ(λ))| < ε. Then for any component i, j of ζ (λ)′ (Gn(dλ, v)−G(dλ, v))∣∣∣∣∫ x

xu

ζi (λ) (Gni,j(dλ, v)−Gi(dλ, v))

∣∣∣∣ ≤ ∣∣∣∣∫ x

xu

(ζi (λ)− ai(κ(λ))) (Gni,j(dλ, v)−Gi,j(dλ, v))

∣∣∣∣
+

∣∣∣∣∫ x

xu

ai(κ(λ)) (Gni,j(dλ, v)−Gi,j(dλ, v))

∣∣∣∣
which implies that for some N0 and all n > N0,

∣∣∣∫ x−∞ ζi (λ) (Gni,j(dλ, v)−Gi,j(dλ, v))
∣∣∣ < 3ε uniformly on

K×Υx by the arguments of Chang (1994, p.396) which establishes 25. This now implies that TnV̂n(v)−
TVn(v) = op(1).
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Theorem 5 together with Propositions 4 and 3 implies that Ŵn(v)−Vn(v) = op(1) uniformly in v ∈ Υx.

This in turn means that the limiting distribution of Ŵn(v) is a zero mean Gaussian process with covariance

function H(v, τ). This distribution is not nuisance parameter free but can be computed conditional on the

sample relatively easily as pointed out in Section 4.

Section 4.2 introduced the distribution free statistic B̂w,n(w), defined as B̂w,n(w) = Ŵw,n

(
φ(., w)hw(.)−1/2

)
.

By the arguments preceding Theorem 5, it follows that B̂w,n(w) =⇒ Bw(w) on Υ[0,1]. The only adjustments

necessary are a restriction of [−∞,∞]k to [0, 1]k. What remains to be shown is that

sup
w∈Υ[0,1]

∣∣∣B̂ŵ,n(w)− B̂w,n(w)
∣∣∣ = op(1). (26)

This is done in the next Theorem. We impose the following assumptions on the kernel function and density.

Condition 10 The density fu(u) is continuously differentiable to some integral order ω ≥ max(2, k) on

Rk with supx∈Rk |Dµf(x)| < ∞ for all |µ| ≤ ω where µ = (µ1, ..., µk) is a vector of non-negative inte-

gers, |µ| =
∑k

j=1 µj , and D
µf(x) = ∂|µ|f(x)/∂x

µ1
1 ....∂x

µk
k is the mixed partial derivative of order |µ| .

The kernel K(.) satisfies i)
∫
K(x)dx = 1,

∫
xµK(x)dx = 0 for all 1 ≤ |µ| ≤ ω − 1,

∫
|xµK(x)| dx < ∞

for all µ with |µ| ≤ ω, K(x) → 0 as ‖x‖ → ∞ and supx∈ Rk max (1, ‖x‖) |DeiK(x)| < ∞ for all i ≤ k

and ei is the i-th elementary vector in Rk. ii) K(x) is absolutely integrable and has Fourier transform

K(r) = (2π)k
∫

exp(ir′x)K(x)dx that satisfies
∫

(1 + ‖r‖) supb≥1 |K(br)| dr <∞ where i =
√
−1.

Theorem 6 Assume Conditions 1-10 are satisfied. Fix x < 1 arbitrary and define

Υ[0,1] = {w ∈ Υε|w = πxw}

where Υε is a compact subset of the interior of [0, 1]k with volume 1− ε for some ε > 0. Then,

sup
w∈Υ[0,1]

∣∣∣B̂ŵ,n(w)− B̂w,n(w)
∣∣∣ = op(1).

Proof of Theorem 6:. Let f̂u,k−1 (xk−) = n−1
∑n

t=1Kk−1((xk− − Utk−) /mn) and choose a sequence

of positive constants dn = O
(
n−κ/3

)
. By Theorem 1(b) of Andrews (1995) it follows that

sup
x:f̂k−1(xk−)>dn

∣∣∣F̂k(xk|xk−1, ..., x1)− Fk(xk|xk−1, ..., x1)
∣∣∣ = Op(T

−1/2m−kn d−2
n ) +Op(m

ω
n) = op (1) .

Theorem 1(a) of Andrews (1995) implies that supx∈Rk−1
∣∣∣f̂u,k−1 (x)− fu,k−1 (x)

∣∣∣ = op (1) where fu,k−1 (x)

is the marginal density of fu (u) associated with the frist k − 1 dimensions. Then for any ε, δ > 0 there is
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an n large enough such that

Pr

(
sup

x:TR(x)∈Υ[0,1]

∣∣∣F̂k(xk|xk−1, ..., x1)− Fk(xk|xk−1, ..., x1)
∣∣∣ > ε

)

≤ Pr

(
sup

x:f̂u,k−1(xk−)>dn

∣∣∣F̂k(xk|xk−1, ..., x1)− Fk(xk|xk−1, ..., x1)
∣∣∣ > ε

)
+ Pr

(
sup

x:TR(x)∈Υ[0,1]

f̂u,k−1 (xk−) ≤ dn

)

≤ δ/2 + 1− Pr

(
sup

x:TR(x)∈Υ[0,1]

∣∣∣f̂u,k−1 (xk−)− fu,k−1 (xk−)
∣∣∣+ inf

x:TR(x)∈Υ[0,1]

fu,k−1 (xk−) > dn

)
≤ δ

where the last inequality follows from the fact that infx:TR(x)∈Υ[0,1]
fu,k−1 (xk−) > 0 by Condition 4.

By Pakes and Pollard (1989, Lemma 2.15) it follows that the composition of a function from a Euclidean

class with envelopeM and a measurable map with envelopeM1 forms another Euclidean class with envelope

M ◦M1. Since Fk(xk|xk−1, ..., x1) takes values in [0, 1] it clearly has an envelope M1. It follows that Ŵw,n

is a sample average over functions that belong to a Euclidean class plus remainder terms that vanish by

similar arguments as before. It thus follows by the same arguments as before that for all ε, δ > 0 there

exists an η > 0 such that

lim sup
n

Pr

 sup
w,w′,w1,w′1∈Υ[0,1]

‖w−w′‖<η,‖w1−w′1‖<η

∣∣∣B̂w1,n(w)− B̂w′1,n(w′)
∣∣∣ > ε

 < δ.

It then follows that B̂n(s)⇒ B(s).

This result allows us to conduct inference using critical values that do not depend on nuisance para-

meters. Although these critical values must be calculated numerically, they are invariant to the sample

distribution for a given design.

The next result establishes the validity of the bootstrap procedure proposed in Section 4.3.

Theorem 7 Assume Conditions 1-10 are satisfied. Fix x < 1 arbitrary and define

Υ[0,1] = {w ∈ Υε|w = πxw} .

where Υε is a compact subset of the interior of [0, 1]k with volume 1 − ε for some ε > 0. For B̂∗ŵ,n (w)

defined in (14) it follows that B̂∗ŵ,n (w) converges on Υ[0,1] to a Gaussian process Bw(w).

Proof. Following Chen and Fan (1999) we note that conditional on the data, B̂∗ŵ,n (w) is a Gaussian

process with covariance function given by

Γ̂w (v, τ) = n−1
n∑
t=1

(
mT,t

(
v, θ̂
)
− m̄n;T

(
v, θ̂
))(

mT,t

(
τ , θ̂
)
− m̄n;T

(
τ , θ̂
))′

.
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By (26) and similar arguments as in the proof of Proposition 3 and Theorems 4 and 5 it follows that

Γ̂w (v, τ) converges uniformly on Υ[0,1] to the covariance function of Bw (w) ,
∫
φ(u, v)φ(u, τ)du. The result

then follows in the same way as Theorem 5.2 of Chen and Fan (1999).

C Implementation Details

C.1 Details for the Khmaladze Transform

To construct the test statistic proposed in the theoretical discussion we must deal with the fact that the

transformation T is unknown and needs to be replaced by an estimator. In this section, we discuss the

details that lead to the formulation in (10). We also present results for general sets Aλ. We start by

defining the empirical distribution

F̂u(v) = n−1
n∑
t=1

{Ut ≤ v} , (27)

and let

Hn(v) =

∫ v

−∞

(
diag (p(u2, θ0))− p(u2, θ0)p (u2, θ0)′

)
dF̂u (u)

= n−1
n∑
t=1

(
diag (p(zt, θ0))− p(zt, θ0)p (zt, θ0)′

)
1 {Ut ≤ v}

as well as

Ĥn(v) =

∫ v

−∞

(
diag

(
p(zt, θ̂)

)
− p(zt, θ̂)p

(
zt, θ̂

)′)
dF̂u (u)

= n−1
n∑
t=1

(
diag

(
p(zt, θ̂)

)
− p(zt, θ̂)p

(
zt, θ̂

)′)
1 {Ut ≤ v} .

We now use the sets Aλ and projections πλ as defined in Section 4.1. Let

Ĉλ =

∫
π⊥λ l̄(v, θ̂)

′dĤn(v)π⊥λ l̄(v, θ̂)

= n−1
n∑
t=1

(1− 1 {Ut ∈ Aλ}) l̄(Ut, θ̂)′
(

diag
(
p(zt, θ̂)

)
− p(zt, θ̂)p

(
zt, θ̂

)′)
l̄(Ut, θ̂)

such that

TnV̂n (v) = V̂n (v)−
∫
d

(∫
φ(u, v)dĤn(u)πλ l̄(u, θ)

)
Ĉ−1
λ V̂n(π⊥λ l̄(u, θ̂))

where ∫
φ (u, v) dĤn(u)πλ l̄(., θ̂) = n−1

n∑
t=1

1 {Ut ∈ Aλ}φ(Ut, v)
∂p(zt, θ̂)

∂θ′
.
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Finally, write

V̂n(π⊥λ l̄(u, θ̂)) = n−1/2
n∑
t=1

(1− 1 {Ut ∈ Aλ}) l̄(Ut, θ̂)′
(
Dt − p(zt, θ̂)

)
.

We now specialize the choice of sets Aλ to Aλ = [−∞, λ]× [−∞,∞]k−1 . Denote the first element of yt

by y1t. Then

Ĉλ = n−1
n∑
t=1

1 {y1t > λ} l̄(zt, θ̂)
(

diag
(
p(zt, θ̂)

)
− p(zt, θ̂)p

(
zt, θ̂

)′)
l̄(zt, θ̂)

′, (28)

V̂n(π⊥λ l̄(u, θ̂)) = n−1/2
n∑
t=1

1 {y1t > λ} l̄(Ut, θ̂)′
(
Dt − p(zt, θ̂)

)
(29)

and ∫
φ(u, v)dĤn(u)πλ l̄(u, θ̂) = n−1

n∑
t=1

1 {y1t ≤ λ}φ {Ut, v}
∂p(zt, θ̂)

∂θ′
(30)

Combining 28, 29 and 30 then leads to the formulation 10.

C.2 Details for the Rosenblatt Transform

As before implementation requires replacement of θ with an estimate. We therefore work with the process

V̂w,n (v) = n−1/2
∑n

t=1mw(wt,Dt, θ̂;w). Define

E [mw(wt, Dt, θ);w)] =

∫ 1

0
· · ·
∫ 1

0
φ(u,w)

(
p
([
T−1
R (u)

]
z
, θ0

)
− p(

[
T−1
R (u)

]
z
, θ)
)
du

such that ṁ(w, θ) evaluated at the true parameter value θ0 is

ṁw(w, θ0) = E
[
φ(Ut, w)∂p(zt, θ0)/∂θ′

]
=

∫
[0,1]k

φ(u,w)
∂p(
[
T−1
R (u)

]
z
, θ0)

∂θ′
du

It therefore follows that V̂w,n (v) can be approximated by Vw,n (v) − ṁw(w, θ0)′n−1/2
∑n

t=1 l (Dt, zt, θ0).

This approximation converges to a limiting process V̂w (v) with covariance function

Γ̂w(w, τ) = Γw (w, τ)− ṁw(w, θ0)′L(θ0)ṁw(τ , θ0)

where

Γw (w, τ) =

∫
[0,1]k

φ(u,w)hw (u)φ(u, τ)′du.

where hw(., θ) =
(
diag

(
p(
[
T−1
R (.) , θ

]
z
)
)
− p(

[
T−1
R (.) , θ

]
z
)p(
[
T−1
R (.)

]
z
, θ)′

)
and hw (.) ≡ hw(., θ0).
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We represent V̂w in terms of Vw. Let Vw(lw (., θ0)) =
∫
lw(w, θ0)bw(dv) where bw(v) is a Gaussian

process on [0, 1]k with covariance function Γw (v, τ) as before, for any function lw(w, θ). Also, define

l̄w(w, θ) = hw (w, θ)−1 ∂p(
[
T−1
R (w)

]
z
, θ)

∂θ′

such that V̂w(w) = Vw(w)− ṁw(w, θ0)Vw
(
l̄w(w, θ)

)
as before.

Let {Aw,λ} be a family of measurable subsets of [0, 1]k, indexed by λ ∈ [0, 1] such that Aw,0 = ∅,
Aw,1 = [0, 1]k, λ ≤ λ′ =⇒ Aw,λ ⊂ Aw,λ′ and Aw,λ′\Aw,λ → ∅ as λ′ ↓ λ. We then define the inner product
〈f(.), g(.)〉w ≡

∫
[0,1]k f(w)′dHw(w)g(w) where

Hw(w) =

∫
u≤w

hw (u) du

and the matrix

Cw,λ =
〈
π⊥λ l̄w(., θ), π⊥λ l̄w(., θ)

〉
w

=

∫
π⊥λ l̄w(w, θ)′dHw(w)π⊥λ l̄w(w, θ).

and define the transform TwVw(w) as before by

Ww(w) ≡ TwV̂w (w) = V̂w (w)−
∫ 〈

φ (., w)′ , dπλ l̄w(., θ)
〉
C−1
λ V̂w(π⊥λ l̄w(., θ)′).

Finally, to convertWw(w) to a process which is asymptotically distribution free we apply a modified version

of the final transformation proposed by Khmaladze (1988, p. 1512) to the process W (v). In particular,

using the notation Ww(φ(., w)) = Ww(w) to emphasize the dependence of W on φ, it follows from the

previous discussion that

Bw(w) = Ww

(
φ(., w)(hw(.))−1/2

)
where Bw(w) is a Gaussian process on [0, 1]k with covariance function

∫ 1
0 · · ·

∫ 1
0 φ(u,w)φ(u,w′)du.

The empirical version of Ww(w), denoted by Ŵw,n(w) = T̂wV̂w,n(w), is obtained as before from

Ŵw,n(w) = n−1/2
n∑
t=1

[
mw(wt, Dt, θ̂|w)− φ (wt, w)

∂p(zt, θ̂)

∂θ′
Ĉ−1
wt1n

−1
n∑
s=1

1 {ws1 > wt1} l̄(zs, θ̂)′
(
Ds − p(zs, θ̂)

)]

where Ĉws1 = n−1
∑n

t=1 1 {wt1 > ws1} l̄(zt, θ̂)′h
(
zt, θ̂

)
l̄(zt, θ̂).
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