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An influential thesis often associated with de Tocqueville views social mobility
as a bulwark of democracy: when members of a social group expect to join the ranks
of other social groups in the near future, they should have less reason to exclude
these other groups from the political process. In this article, we investigate this
hypothesis using a dynamic model of political economy. As well as formalizing
this argument, our model demonstrates its limits, elucidating a robust theoretical
force making democracy less stable in societies with high social mobility: when the
median voter expects to move up (respectively down), she would prefer to give less
voice to poorer (respectively richer) social groups. Our theoretical analysis shows
that in the presence of social mobility, the political preferences of an individual
depend on the potentially conflicting preferences of her “future selves,” and that the
evolution of institutions is determined through the implicit interaction between
occupants of the same social niche at different points in time. JEL Codes: D71,
D74.

I. INTRODUCTION

An idea going back at least to Alexis de Tocqueville (1835)
relates the emergence of a stable democratic system to an eco-
nomic structure with relatively high rates of social mobility. De
Tocqueville, for example, argued:

In the midst of the continual movement which agitates a democratic
community, the tie which unites one generation to another is relaxed
or broken; every man readily loses the tract of the ideas of his
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forefathers or takes no care about them. Nor can men living in this
state of society derive their belief from the opinions of the class to
which they belong, for, so to speak, there are no longer any classes,
or those which still exist are composed of such mobile elements, that
their body can never exercise a real control over its members. (De
Tocqueville, 1835–40, Book 2, p. 120–121)

Lipset (1992) summarizes and further elaborates de Toc-
queville’s hypothesis as follows:

In describing “The Social Conditions of the Anglo-Americans” in
Democracy in America Tocqueville concluded that the institutional-
ization of widespread individual social mobility, upward and down-
ward, has “political consequences”, the stabilization of the demo-
cratic order.

Many commentators have continued to view social mobility
as a vital factor for the health of U.S. democracy. While Lipset and
Bendix (1959) deem it to be “a critical, if not the most important,
ingredient of the American democracy,” Blau and Duncan’s (1967)
seminal study concluded “the stability of American democracy is
undoubtedly related to the superior chances of upward mobility in
this country” (similar ideas also appear in Sombart 1906; Pareto
1935; Moore 1966; Erikson and Goldthorpe 1992). This perspec-
tive suggests that greater social mobility—caused, for example, by
improvements in the educational system, the dismemberment of
barriers against occupational mobility, or technological changes—
may improve the prospects of democracy’s survival and flourish-
ing. Indeed, some of the most stable democracies of the twentieth
century are those that appear to have had relatively high rates
of social mobility, such as the United States and Scandinavian
countries.1 At the same time, however, social mobility appears to
have been high in Weimar Germany in the period preceding the

1. Though there is a debate about whether social mobility rates have been ris-
ing since the 1940s in the United States, intergenerational social mobility appears
to be relatively high in the 1940s. For example, Chetty et al. (2014) estimate that
the probability that the child of a father from the bottom quintile of the income
distribution would reach the top quintile is close to 10% in the 1980s and there-
after. Aaronson and Mazumder (2008) and Hilger (2015) estimate similar rates of
mobility in the 1940s. Estimates of the rates of intergenerational social mobility
in Norway in the second half of the 1930s in Pekkarinen, Salvanes, and Sarvimaki
(2016) are also similar to Chetty et al.’s numbers for the United States in the 1980s
(compare Figure 2 in the former paper to Figure 1 in the latter).
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rise of Hitler, perhaps the most spectacular collapse of a modern
democratic system in history (e.g., Mann 2004).2

Despite its ubiquity in modern debates on democracy and in
modern social theories, there has been little systematic formal-
ization or critical investigation of the link between social mobility
and the stability of democracy. The following example illustrates
the basic intuition behind de Tocqueville’s hypothesis.

EXAMPLE 1. Consider a society with n individuals, with 2
5 nor 40% of

them rich, 1
5 n or 20% middle class, and 2

5 n or 40% poor. There
are three possible political institutions: democracy, where de-
cisions are made by the median voter who is a member of the
middle class; left dictatorship, where all political decisions
are made by the poor; and elite dictatorship, where all politi-
cal decisions are made by the rich. Suppose that the economy
lasts for two periods, and in each period, society adopts a sin-
gle policy, pt. There is no discounting between the two periods.
All agents have stage payoffs given by −(pt − bi)2, where polit-
ical bliss points, bi, for the poor, middle-class, and rich social
groups are, respectively, −1, 0, and 1. Society starts out with
one of the three political institutions described above, and in
the first period, a member of the politically decisive (“pivotal”)
social group decides both the current policy and the political
institution for the second period. Then, in the second period,
the group in power chooses policy.

Suppose we start with elite dictatorship. Without social
mobility, the politically decisive rich prefer to keep their dic-
tatorship so as to be able to set the policy in the second period
as well.3 Suppose, instead, that there is very high social mo-
bility, involving complete reshuffling of all individuals across
the three social groups. (At the time decisions are made, what
will happen to a given individual is not known, so there is

2. Storer (2013), for example, points to significant progress in education, sci-
ences, and arts and gains in women’s labor force and political participation as
evidence of greater social mobility in the Weimar Republic. Social mobility may
have been high during the early Nazi years as well. Stachura (1993) writes: “In
promoting the growth of industrial society, the [Nazi] regime destroyed the tra-
ditional class system bequeathed by the Weimar republic and encouraged social
mobility on an unprecedented scale.”

3. Throughout the article, when all current members of a social group have
the same preferences, we interchangeably refer to a member of that social group
or the entire social group.
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no asymmetry of information or conflict of interest within
a group.) If so, a rich individual expects to be part of the
rich, the middle class, and the poor with probabilities 2

5 , 1
5 ,

and 2
5 , respectively. His second-period expected utility is then

− 2
5 (p2 + 1)2 − 1

5 p2
2 − 2

5 (p2 − 1)2 = −p2
2 − 4

5 . Thus, he prefers,
in expectation, p2 = 0. To achieve this, he would like next
period’s political institutions to be democratic.

However, the same theoretical example can also be used to
highlight the opposite political forces in play.

EXAMPLE 1 (CONTINUED). Consider now a different pattern of so-
cial mobility: r middle-class agents become rich and r rich
agents move down to the middle class between periods 1 and
2. Let α = 5r

n denote the share of the middle class that moves
upward. Suppose that the society starts out as a democracy.
Then, if sufficiently many members of the middle class move
upward (i.e., if α > 1

2 ), middle-class agents expect, on average,
to have the preferences closer to those of the rich tomorrow,
and hence prefer tomorrow’s policy to be determined in elite
dictatorship, making democracy unstable.
This example thus provides a simple (and as we will see, ro-
bust) reason that greater social mobility may undermine the
stability of democracy:4 if social mobility means that mem-
bers of the politically pivotal middle class expect to change
their preferences in a certain direction, they will have an in-
centive to change the political institutions in that direction
as well.

Differently from this example, our model considers an
infinite-horizon setting. This is for three reasons. First, in a two-
period model, if the current decision makers could set policies
for the next period (as in Bénabou and Ok’s 2001 analysis of
the relationship between social mobility and redistribution), then
there would be no need for institutional change. Second, such a
model also precludes any effect of future social mobility on current

4. The fact that the social mobility in this example makes middle class agents
more likely to move upward rather than downward is important—as we will see in
our analysis. If they expected to move upward or downward symmetrically, then
they would continue to prefer democracy to other political regimes because they
would lose in expectation even more from elite (or left) dictatorship than they
would gain.
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preferences. Third and relatedly, we will see that beyond the two-
period setting, what matters for the political equilibrium is not
simply mobility next period but the interplay of the evolution of
the preferences of an agent’s “future selves” (because of evolving
social mobility) and expectations about future institutions. This
last feature is illustrated in the next example.

EXAMPLE 2. Consider the same setting as in Example 1, but now
each agent maximizes her discounted utility over an infinite
number of periods, and we take the discount rate to be β = 4

5 .
In each period, the current decision maker determines next
period’s institution, and in between, r people move upward
from the middle class, and r rich agents move downward.
Let α = 5r

n again denote the share of the middle class moving
upward.

In left dictatorship, the poor, who are not upwardly mobile,
would maintain this political institution forever, and choose
pt = −1 (their political bliss point) at all t. In elite dictatorship,
the rich also have no incentive to change the political insti-
tutions. Middle-class preferences, on the other hand, depend
on their expectations of future institutions and of how fu-
ture middle-class agents will behave. Suppose that 1

4 < α < 1
2 .

Then a middle-class individual prefers her group to remain
in power in the next period, but the rich to be in power after a
few periods. (In the long run, the current middle-class expect
to be rich 2

3 of the time and remain in the middle class 1
3 of

the time.) Consequently, when today’s middle class expects a
transition to elite dictatorship tomorrow, it prefers to remain
in democracy, and when it expects the survival of democracy,
it prefers an immediate transition to dictatorship. This logic
not only illustrates the interplay between the preferences and
strategies of current and future “selves,” but also shows that
there is no pure-strategy Markovian equilibrium in this case
because of this same interplay.

Our baseline framework corresponds to a straightforward
generalization of the setup discussed in this example. Soci-
ety consists of a finite number of social groups, each of which
comprises a finite number of identical individuals. Individu-
als (and thus groups) are ordered with respect to their policy
preferences. Social mobility results from well-defined stationary
probabilities specifying how each individual transitions from one
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social group to another. There is a finite set of alternative polit-
ical institutions, which we refer to as states, and each state is
represented by a set of weights assigned to individuals within
each social group.5 These weights determine the distribution of
political power and the identity of the pivotal voter who chooses
the current policy as well as next period’s political state, which is
equivalent to choosing next period’s pivotal voter.

Our main results are of two sorts. First, we establish the
existence and certain basic properties of Markov perfect equilib-
ria in this economy. We focus on equilibria that are “monotone,”
which have the property that the equilibrium path starting from
a state is always further to the right in the sense of first-order
stochastic dominance relative to the equilibrium path starting
from another state to the left. Though, as Example 2 suggests,
pure-strategy equilibria may fail to exist, we demonstrate that
mixed-strategy equilibria always exist, and that mixing takes a
particularly simple form: (generically) there is mixing only be-
tween keeping the current institution and transiting to a uniquely
defined alternative. This property implies, in particular, that the
equilibrium direction of transition is always well defined. Simi-
larly, the interplay between different selves of the current pivotal
voter can lead to multiple equilibria. Nevertheless, we establish
the uniqueness of equilibrium under a simple (even if somewhat
demanding) within-person monotonicity condition, which imposes
that the preferences of the future selves of an individual evolve
monotonically. Specifically, this condition requires that as we con-
sider selves further away from the present, preferences will either
gradually shift to the left or to the right, and thus enable consis-
tent aggregation of the preferences of future selves.

Second, we provide a comprehensive analysis of the relation-
ship between social mobility and the stability of political institu-
tions. Though our analysis applies to the stability of any polit-
ical institution where a group or individual is pivotal, we focus
on its implications for the stability of democracy, which was the

5. Focusing on a finite set of political institutions simplifies the analysis. More
important than this is the feature that all political institutions we consider make
one group (or one individual) pivotal—thus ruling out arrangements in which there
are several groups or individuals with different preferences that share power and
have to agree on policy or political decisions. The restriction to this type of political
institutions implies that the current decision maker effectively chooses the identity
of next period’s decision maker, and this would continue to be true even if we had
a continuum of possible political institutions.
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motivating question for de Tocqueville and for the social science
literature following him. We quantify the stability of democracy
with the size of its basin of attraction along the equilibrium path.6

Hence, we say that democracy is more stable under social mobil-
ity process M than M′ if it is stable under M whenever it is sta-
ble under M′, and moreover, it is asymptotically stable under M
whenever it is asymptotically stable under M′.7 Example 1 pro-
vides an illustration of how social mobility may make democracy
unstable—even starting in democracy, society will not stay there.
Our main results, presented in Theorems 4 and 5, state that if the
preferences of the median voter in democracy in the very distant
future are close to her current preferences, then greater social
mobility makes democracy more stable; otherwise, greater social
mobility makes democracy less stable. When there is mobility
between all social groups (so that the unique irreducible compo-
nent of the social mobility process is the entire society), our main
results become even simpler and more intuitive: social mobility
increases the stability of democracy if the preferences of the me-
dian voter (i.e., median preferences) are close to the average of the
preferences of all voters, and not otherwise.8

Our article is most closely related to the small literature on
the interplay between social mobility and redistribution. The im-
portant article by Bénabou and Ok (2001), which has already been
mentioned, shows how greater social mobility discourages redis-
tributive taxation (see also Wright 1986 for a similar argument in
the context of unemployment benefits, and Piketty 1995 for a re-
lated point in a model in which agents learn from their dynasties’
experience about the extent of social mobility). The key economic
mechanism in Bénabou and Ok is also linked to de Tocqueville’s

6. Throughout the article, we treat social mobility as exogenous. Endogenous
social mobility, and how the new forces identified here affect preferences over social
mobility, is discussed in the working paper version (Acemoglu, Egorov, and Sonin
2016).

7. This notion of stability thus captures both the potential instability of democ-
racy resulting from the median voter preferring, in the future, other political insti-
tutions to democracy, and other neighboring social groups wishing to keep society
away from democracy (which would be relevant if society started in nondemocracy,
or if political power randomly shifted to these groups or enabled them to mount
actions against democracy).

8. More generally, our results highlight the following general criteria: (i) an
institution is stable if and only if the distant future selves of pivotal decision
makers under this institution prefer it to other institutions; (ii) under the same
condition, greater social mobility increases the stability of this institution.
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hypothesis—greater mobility makes the middle class less willing
to tax the rich because they themselves expect to become rich in
the future. They generate this effect in a two-period model by as-
suming that taxes are “sticky” (i.e., there is commitment to future
taxes).9 In Bénabou and Tirole (2006), beliefs about future social
mobility support different equilibria—for example, “the American
dream” equilibrium, in which a high level of effort stems from the
belief in high social mobility (see also Alesina and Glaeser 2004;
Alesina and Giuliano 2010). Nevertheless, this literature does not
consider the relationship between social mobility and support for
and stability of political institutions, which is our main focus. More
important, it neither incorporates the dynamic political trade-offs
that are at the heart of our article nor does it feature the poten-
tially destabilizing role of social mobility for democracy.

In an important precursor of our study, Leventoğlu (2005)
augments the two-class model of Acemoglu and Robinson (2001)
with social mobility; Leventoğlu (2014) introduces the middle
class as an additional player in this framework. The main result
of these two articles is consistent with de Tocqueville’s ideas—
greater social mobility softens the distributional conflict in society
and makes the transition to democracy and democratic consolida-
tion more likely. These articles do not, however, develop a general
framework similar to the one presented here and do not consider
the possibility of the median voter in democracy choosing a differ-
ent political regime, and as a consequence, they do not obtain our
main result—that greater social mobility may destabilize democ-
racy.

Our modeling approach overlaps with dynamic political econ-
omy models studying democratization, constitutional change,
disenfranchisement (repression), and the efficiency of long-run
institutional arrangements, including Besley and Coate (1998),
Bourguignon and Verdier (2000), Acemoglu and Robinson (2000,
2001), Lizzeri and Persico (2004), Gomes and Jehiel (2005), La-
gunoff (2006), Acemoglu, Egorov, and Sonin (2008, 2012, 2015),
and Roberts (2015), though again none of this literature studies
social mobility and the mechanisms that are at the heart of our
article.

9. In fact, our model and results would be identical to theirs if we restrict
ourselves to two periods, remove the choice over political institutions, and assume
that taxes for the second period are decided in the first period.
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Finally, the role of the implicit conflict between the current
self and the future selves of the pivotal voter relates to a handful of
papers considering time-inconsistency of collective or political de-
cisions, most notably Amador (2003), Gul and Pesendorfer (2004),
Strulovici (2010), Bisin, Lizzeri, and Yariv (2015), Jackson and
Yariv (2015), and Cao and Werning (2016). Though some of these
works also derive this time-inconsistency endogenously, none of
them do so from social mobility or note the conflict between cur-
rent and future selves resulting from social mobility.

The rest of the article is organized as follows. In Section II we
introduce our setup. Section III solves the model and establishes
existence of an equilibrium, provides conditions for uniqueness,
and studies its main properties. Section IV contains our main re-
sults linking the speed of social mobility to the stability of democ-
racy. Section V presents two sets of further results: first, we show
how social mobility changes the nature of slippery slopes in dy-
namic political economy (whereby political changes that are bene-
ficial in the short run are forsaken because of their medium-run or
long-run consequences); second, we generalize our main results to
alternative political decision-making rules that use weighted av-
erages of the preferences of different players (rather than impos-
ing weighted voting rules, which make one of the groups pivotal).
Section VI concludes. Appendix A contains a more detailed pre-
sentation of the extensive-form game we use and the proofs of
the main results presented in the text, while Online Appendix B
includes the remaining proofs, several additional examples, and
further results.

II. MODEL

In this section, we introduce our basic model and our notion
of equilibrium.

II.A. Society, Policies, and Preferences

Time is discrete and infinite, indexed by t � 1. Society consists
of n individuals split into g social groups, G = {1, . . . , g} with each
group k, 1 � k � g, comprising nk > 0 agents (so

∑g
k=1 nk = n).

The groups are ordered, and the order reflects their “economic”
preferences (e.g., higher-indexed groups could be those that are
richer). All individuals share a common discount factor β ∈ (0, 1).
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Preferences are defined over a policy space represented by the
real line, R (e.g., more left-wing policies could correspond to higher
taxes or more public goods). We assume that individuals in each
group have stage payoffs represented by the following quadratic
function of the distance between current policy and their bliss
point:

(1) uk (pt) = Ak − (bk − pt)2 ,

where pt is the policy at time t, bk is the (political) bliss point of
agents in group k, and Ak is an arbitrary constant, allowing for
the possibility that some groups are better off than others (e.g.,
because they are richer).10 In what follows, b = {bk} will denote
the column vector of political bliss points. We assume that each
bk is different from the others, and order the groups so that {bk}
is (strictly) increasing.

Decision-making power depends on the current political state;
in each period society makes decisions on the current policy pt ∈ R

and on the next period’s arrangement. We assume that there
are m (political) states s ∈ S = {1, . . . , m}, which encapsulate
the distribution of political power in society. In state s, individ-
uals in group k are given weights wk(s), and political decisions
are made by weighted majority voting as we specify below (this
could be a reduced form for a political process involving leg-
islative bargaining or explicit partial or full exclusion of some
groups from voting via legislation or repression). The main re-
striction this formulation imposes is that, as noted in footnote 5,
there are no political institutions that allow for several veto
players.

We also assume that
∑ j

k=1 wk (s) nk
n �= 1

2 for all s ∈ S and all
j ∈ G. This is a mild assumption adopted for technical conve-
nience and holds generically within the class of weights. It en-
sures the pivotal group in each state s—namely, the group ds
such that

∑ds
k=1 wk (s) nk

n � 1
2 and

∑g
k=ds

wk (s) nk
n � 1

2 —is uniquely
defined. Since, for our purposes, two states that have the same
pivotal group are equivalent, without loss of any generality we can
assume that each state has a different pivotal group, so {ds}s ∈ S

10. For example, if all Ak = 0, then members of the middle class might not
want to become rich when the political institution is democracy, because this
would decrease their payoff from the policy choice without any compensating direct
benefit from being richer.
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are all different. We can then order states such that the sequence
of pivotal groups, {ds}, is increasing.

II.B. Social Mobility

We model social mobility by assuming that individuals can
change their social group—corresponding to a change in their eco-
nomic or social conditions and thus their preferences. This can be
interpreted either as an individual becoming richer or poorer over
time, or as her offspring moving to a different social group than
herself (and the individual herself having dynastic preferences).

Throughout we assume that although there is social mobility,
the aggregate distribution of population across different social
groups is stationary. Since social mobility is treated as exogenous
here, this assumption amounts to supposing that there exists a
stationary aggregate distribution and that we start the analysis
once society has reached this stationary distribution.11

Formally, we represent social mobility using a g × g matrix
M = {μjk}, where μjk ∈ [0, 1] denotes the probability that an indi-
vidual from group j moves to group k, with the following natural
restrictions:

g∑
k=1

μ jk = 1 for all j, and(2)

g∑
j=1

njμ jk = nk for all k,(3)

where the latter condition imposes the stationarity assumption re-
quiring that the sizes of different groups remain constant. Since
there is no within-group heterogeneity, the stochastic process for
social mobility is the same for each individual within the same
social group. Throughout the article, we impose the following as-
sumption:

11. This assumption is both technical and substantive. Technically, it enables
Markovian strategies to be “stationary”: if the aggregate distribution of population
changed over time, it would have to be part of the payoff-relevant state variable,
and the restriction to Markovian strategies would have little bite. Substantively, it
enables us to focus on social mobility rather than the implications of changes in the
social structure of society, which would be continuously ongoing if the aggregate
distribution of population across social groups did not remain constant.
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ASSUMPTION 1. (Between-person monotonicity) For two groups
j1 and j2 with j1 < j2, the marginal probability distribution
{μ j1·} over G is first-order stochastically dominated by {μ j2·}.
Formally, for any l ∈ {1, . . . , g − 1},

(4)
l∑

k=1

μ j1k >

l∑
k=1

μ j2k.

This assumption, which is quite weak, imposes that the dis-
tribution of a richer individual’s future selves first-order stochas-
tically dominates the distribution of a poorer individual’s future
selves. In essence, it rules out “deterministic reversals of fortune,”
where poorer people become (in expectation) richer than the cur-
rently richer individuals. We impose Assumption 1 in all of our
analysis without explicitly stating it.12 We next provide an exam-
ple of a class of social mobility matrixes satisfying this assump-
tion.

EXAMPLE 3. Let I be the identity matrix, so that M = I corresponds
to a society with no social mobility. Let F be the matrix with
elements μ jk = nk

n ; it corresponds to full (and immediate) so-
cial mobility, as the probability of an individual becoming part
of group k is proportional to the size of this group and does not
depend on the identity of the original group j. Then for any λ

∈ (0, 1], λI + (1 − λ)F is a matrix of social mobility satisfying
Assumption 1.

Throughout the rest of the article, we use the standard nota-
tion Mτ to denote the τ th power of the social mobility matrix M.
The element μτ

jk of this matrix stands for the probability that an
individual currently in social group j will be in social group k in τ

periods time.

II.C. Timing of Events

We present the extensive-form game describing how pol-
icy and political decisions are made in Appendix A. Here we

12. This assumption can be further weakened to have a weak inequality in
equation (4), but the version with strict inequality simplifies our exposition and
proofs. In fact, Example 1 only satisfies this assumption with weak inequality,
but this is also just for simplicity, and having less than full reshuffling in that
example would restore strict inequality without any substantive effect on any of
its implications.
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simplify the exposition by providing a “reduced-form” political
decison-making rule.

In each period t, the society first makes a policy decision,
pt, and then a political decision over next period’s state, st + 1.
Both decisions are made by voting with the weighted majority
rule, and the weights are given by the current state as {wk(st)}.
These weights determine which one of the g groups is pivotal;
since preferences over policy in equation (1) are single-peaked and
satisfy single-crossing, this pivotal group is well defined for policy
choices, and because Assumption 1 ensures that preferences over
future states inherit these properties, this group is also pivotal for
political decisions.

In the text, we simply assume that a member of this pivotal
group is chosen at random and makes both the policy and political
decisions. In the extensive-form game in Appendix A, we explicitly
model the agenda-setting stage where proposals are made and
the voting stage where individuals vote in favor of or against
each proposal. The equilibrium outcomes of this extensive-form
game coincide with our reduced-form political decision-making
rule here.

In addition, in Section V.B, we consider an alternative polit-
ical decision rule and show that our qualitative results continue
to hold in this case.

II.D. Definition of Equilibrium

We focus on symmetric monotone Markov perfect equilib-
rium (MPE). Symmetry requires that equilibria involve the same
strategies for any individuals in the same social group. Monotonic-
ity rules out equilibria in which the direction of political transi-
tions is reversed.13 As shown in Example 2, pure-strategy equi-
libria may fail to exist, so we allow proposers or decision makers

13. Nonmonotone MPE exist for some parameter values (as we show in Ex-
ample B6 in Online Appendix B). But these are neither robust nor intuitive, and
we believe they are not of much economic interest. If we did not rule them out by
focusing on monotone equilibria, some of our results would be more complicated
without changing the main insights. For example, the conditions for equilibrium
uniqueness would become more cumbersome, but without major changes to the
rest of our main results (see Theorems B1 and B2 in Online Appendix B for ver-
sions of our main results which apply without uniqueness, and Theorem B4 for
sufficient conditions for all equilibria to be monotone).
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to mix between alternatives.14 Thus, a strategy for player i, who
is the decision maker after a certain history, is a mapping from
the history (which codifies her current group affiliation and the
current institution) into �(S) (i.e., mixed strategies over the set
S). We next define our equilibrium concept more formally.

DEFINITION 1. (Symmetric monotone MPE) A subgame perfect
equilibrium σ̂ is an MPE if the strategy of each player i,
σ̂i, is conditioned only on player i’s current social group and
the current political institutions (in addition to the history of
proposals and votes within the same stage).15

An MPE σ is symmetric if for any two individuals i and j in
the same social group k, σ i = σ j.

An MPE is monotone if for any two states x, y ∈ S such that
x � y, the distribution of states in period τ > t starting with
st = x is first-order stochastically dominated by the distribu-
tion of states starting with st = y, that is, for any l ∈ [1, m],

(5) Pr (sτ � l | st = x) � Pr (sτ � l | st = y) .

In what follows, we refer to symmetric monotone MPE simply
as equilibria. Moreover, although equilibria formally correspond
to a complete list of strategies, it will also be more convenient
to work with the policy choices and the equilibrium transitions
(across different political states) induced by an equilibrium and
not distinguish between equilibria that differ in terms of strate-
gies but have the same equilibrium transitions.

Finally, we say that a state (or political institution) s is sta-
ble if st = s implies that st + 1 = s. We say that a state s is
asymptotically stable if st ∈ {s − 1, s, s + 1} ∩ S implies that
limτ→∞ Pr (sτ = s) = 1, in other words if, starting from one of the
neighboring states of s, the sequence of states induced in equi-
librium converges to s with probability 1. This last definition is
the analogue in discrete state space of the usual notion of asymp-
totic stability: starting with a small enough deviation from an
asymptotically stable state, the equilibrium path will approach

14. With a slight abuse of notation, this definition applies both to the reduced-
form game in the text, where strategies refer just to the actions of the decision
maker from the pivotal group, and to the full extensive-form game in Appendix A,
where strategies specify proposals and votes over proposals.

15. Since ours is a complete information game, the definition of a subgame
perfect equilibrium is standard.
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the initial state arbitrarily closely with an arbitrarily high prob-
ability. For a monotone symmetric MPE, asymptotic stability of
a state implies stability. We also quantify the notion of stability
by saying that a state becomes more stable under a change in
parameters: if (i) it remains stable whenever it was stable before
the change of parameters, and (ii) it remains asymptotically sta-
ble whenever it was asymptotically stable before the change. The
notion of less stable is defined analogously.

III. ANALYSIS

In this section, we establish some basic properties of equilib-
ria, like existence and conditions for uniqueness. We also intro-
duce the notation that would be helpful for our main characteri-
zation results in Section IV.

III.A. Existence and Characterization

The next theorem establishes the existence of an equilibrium
(symmetric monotone MPE) and shows that an equilibrium can
be represented by a sequence of policies and transitions that take
a simple form, and the preferences of the current pivotal group
play a critical role. This is a general result that applies to any
pivotal-voter institution in the presence of social mobility. Using
the general framework, we then study stability of a particular
institution, democracy, which is defined as the political system
in which the median voter (the social group containing the me-
dian voter) has political power. This analysis would have been
impossible without having a general result first, as it allows us
to evaluate what happens in the subgames after the democracy
collapses (which, in turn, is a critical part of the agents’ decision
to abandon democracy in the first place).

THEOREM 1. (Existence and characterization) There exists an
equilibrium. Moreover, in every equilibrium:
i. The equilibrium policy coincides with the bliss policy of the

current pivotal group at each t. That is, if the current state
at time t is s, then the policy is pt = bds .

ii. The next state maximizes the expected continuation utility
of current members of the current pivotal group. That is,
if we define the transition correspondence Q = Q(σ ) by
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qsz = Pr (st+1 = z | st = s), then qsz > 0 implies

(6) z ∈ arg max
x∈S

∑
j∈G

μds j Vj (x) ,

where
{
Vj (x)

}x∈S
j∈G satisfies

(7) Vj (x) = uj
(
bdx

) + β
∑
y∈S

qxy

∑
k∈G

μ jkVk (y) .

iii. The transitions induced by the equilibrium are strongly
monotone: if x < y and qxa > 0, qyb > 0 (i.e., transitions from
x to a and from y to b may happen along the equilibrium
path), then a � b.

iv. Generically, mixing is only possible between two states,
one of which is the current one. Specifically, for almost all
parameter values, if qsx > 0 and qsy > 0 for x �= y, then s ∈
{x, y}.

The first two parts of this proposition imply that, starting in
the current state s, the political process induces a path of poli-
cies and transitions that maximizes the discounted utility of the
pivotal group, ds.16 Note that this maximization naturally takes
into account that the current pivotal group may not be pivotal in
the future. This feature of our (monotone) equilibria will greatly
simplify the rest of the analysis, and we will often work with the
preferences of the current pivotal group (or with a slight abuse of
terminology, the current decision maker).

Part iii establishes that (stochastic) equilibrium transitions
are strongly monotone, meaning that transitions that have posi-
tive probability starting from a higher state will never fall below
transitions that have positive probability starting from a lower
state. This property implies that if a transition from x to a is pos-
sible in equilibrium, then from y > x, only transitions to states
a, a + 1, . . . are possible. Notice that as the qualifier “strongly”
suggests, this result significantly strengthens the monotonicity re-
quirement of our symmetric monotone MPE, which only required
first-order stochastic dominance of the equilibrium path when

16. There is an analogous result in Roberts (2015) in a nonstrategic environ-
ment (and without social mobility), and in Acemoglu, Egorov, and Sonin (2015),
also in a setting without social mobility.

Downloaded from https://academic.oup.com/qje/article-abstract/133/2/1041/4597989
by MIT Libraries user
on 25 April 2018



SOCIAL MOBILITY AND STABILITY OF DEMOCRACY 1057

starting from a higher state. The result here instead establishes
that when we start in a higher state, the lowest state to which we
can transition is higher than the highest state to which we can
transition starting from a lower state.

Finally, part iv will greatly simplify our subsequent analysis.
It establishes that equilibria in mixed strategies take a simple and
intuitive form: they involve mixing only between the current state
and some other state. Mixed strategies arise as a way of slowing
down the transition from today’s state to some unique target state.
This is intuitive; as Example 2 illustrated, pure-strategy equilib-
ria may fail to exist because the current decision maker would like
to stay in the current state if he expects the next decision maker to
move away, and would like to move if he expects the next decision
maker to stay. This was a reflection of the fact that the current
decision maker prefers the current state but would like to be in
a different state because he expects his preferences to change in
the near future as a result of social mobility. Mixed strategies re-
solve this problem by slowing down transitions: when she expects
the next decision maker to slowly move away (i.e., move away
with some probability), the current decision maker is indifferent
between moving toward her target state and staying put. This in-
tuition also clarifies why, generically, there is only mixing between
two states: the current decision maker can be indifferent between
three states only with nongeneric preferences/probabilities.17 The
notion of genericity here is essentially that the set of param-
eter values for which the statement is not true is of measure
zero (because it requires the decision maker to be exactly in-
different between three states).18 Another implication of this

17. Mixing can take place between two non-neighboring states because the
continuation utility of the current decision makers may be maximized at two non-
neighboring states. Though this might at first appear to contradict the concavity
of utility functions, Example B4 in Online Appendix B demonstrates that it may
take place as a result of the conflict between near and distant future selves (in
particular, near selves prefer to stay in the current state, while distant ones prefer
to move to states farther away and rapidly, and at the same time, moving to a
neighboring state makes none of the selves happy).

18. More formally, the genericity notion requires the parameters, β, the μ’s
and the b’s, to be such that no subset of them are roots of a (nontrivial) polynomial
with rational coefficients (since the value functions will be shown to be polyno-
mial with rational coefficients in these parameters, see the proof of Theorem 1 in
Appendix A). As there is a countable set of such polynomials, each of which defines
a set of (Lebesgue) measure zero, the union of such points has measure zero as
well. This substantiates the claim that the statements that are true generically in
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characterization is that even though there may be mixed strate-
gies, this does not change the direction of transitions but will just
affect their speed.

It is worth noting that the equilibria of the game as char-
acterized in Theorem 1 are shaped by two kinds of conflicts of
interest in our framework. One is between agents from different
social groups, which results in all decisions being made by the
group that is currently pivotal. A different, more subtle conflict
is between today’s decision maker (an individual in the pivotal
group) and future decision makers who will occupy in the future
the same social group as the current decision maker. This latter
conflict arises from the fact that today’s decision maker antici-
pates being in a different social group in the future. This conflict
is not only essential for understanding the political implications
of social mobility, it also highlights a new trade-off in dynamic
political economy models: without social mobility, changing insti-
tutions entails delegating future political power to agents with
different preferences, whereas with social mobility, even with un-
changed institutions, future political power will be effectively del-
egated to agents with different preferences. It is also related to
the conflict between the different selves of an individual (or more
appropriately, of individuals who belong to the same social group
in future dates), and yet its origins are not in time-inconsistent
preferences, but in social mobility. It is this conflict of interest be-
tween the occupants of the same social group at different points
in time that leads to nonexistence of pure-strategy equilibria as
well as to multiplicity of equilibria.

III.B. Multiplicity and Uniqueness

Let us define the bliss point of an agent currently in group j
in τ periods from now as

b(τ )
j =

g∑
k=1

μτ
jkbk = (

Mτ b
)

j ;

consistent with this definition, we let b(0)
j = bj and b(∞)

j =
limτ→∞

(
Mτ b

)
j (this limit exists by standard properties of

this and subsequent propositions hold for all parameters except a subset that is of
measure zero.
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stochastic matrixes).19 The role of this notation is evident from
the following transformation of the expected stage utility of a
member of group j in τ periods if policy p were to be implemented
at that point:

g∑
k=1

μτ
jk

(
Ak − (bk − p)2

)
= −

( g∑
k=1

μτ
jkbk − p

)2

+
( g∑

k=1

μτ
jkbk

)2

+
g∑

k=1

μτ
jk

(
Ak − b2

k

)
,

where μτ
jk denotes the jkth element of Mτ , the τ th power of the

mobility matrix M. The last two terms in this expression are con-
stants (reflecting, after rearranging, the expectation of Ak and the
variance of bk), which implies that the effective preferences of the
τ th-future self of a member of group j are quadratic with the bliss
point b(τ )

j . Thus, the values
{
b(τ )

j

}
j∈G,τ�0

encode all the bliss points

of all (current and future) agents, whose preferences influence,
directly or indirectly, political decisions.

The next assumption is imposed in some of our results to
ensure uniqueness.

ASSUMPTION 2. (Within-person monotonicity) For any social
group k, the sequence b(0)

k , b(1)
k , b(2)

k , . . . is monotone, meaning
that either b(τ )

k � b(τ+1)
k for τ = 0, 1, . . . or b(τ )

k � b(τ+1)
k for τ = 0,

1, . . . .

19. This limit will play an important role in the characterization results in
Sections IV and V, and it is worth emphasizing that it is easy to compute. Intro-
duce the following notation: for every group j ∈ G, let LM(j) be the set of all groups
k such that μτ

jk > 0 for some τ � 1. In the language of Markov chains, LM(j) is a
component (communication class) of matrix M, and the set of components, {LM(j)},
is a partition of G (i.e., LM ( j1) ∩ LM ( j2) �= ∅ and LM(j1) ∪ LM(j2) ∪ . . . = G). Intu-
itively, LM(j) includes all groups which a current member of group j may eventually
reach. Condition (3) guarantees that a member of group j may (eventually) move
to group k if and only if members of group k can move to group j. Hence, these
two groups need to be part of the same component. Moreover, from Assumption 1,
each component is connected, that is, whenever k1 < k2 < k3 and k1, k3 ∈ LM(j),
we have k2 ∈ LM(j). This enables us to write the preferences of individuals from
group j in the very distant future as the average preferences of all agents within

the same component: b(∞)
j =

∑
k∈LM ( j) nkbk∑

k∈LM ( j) nk
.
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This within-person monotonicity assumption imposes that if
an individual’s preferences next period are moving to the right
(left), then they will (weakly) move further right (left) in future
periods. We show below that this is a sufficient condition for
uniqueness. Without this assumption, multiple equilibria are pos-
sible, as demonstrated in Example B2 in Online Appendix B (no-
tice that the multiplicity illustrated in this example is not just
a multiplicity of equilibrium strategies but of induced equilib-
rium paths). In that example, multiplicity is a consequence of fast
social mobility between the middle class and the rich and slow
social mobility between the middle class and the poor. This makes
the preferences of the middle class, which is pivotal, similar to
those of the rich in the near term and to those of the poor in the
longer term, thus highlighting the origins of multiplicity in the
conflict between near and distant future selves of the current piv-
otal group. Under Assumption 2, however, the interests of the near
and distant future selves are essentially aligned (as they agree on
the direction of change), and the following theorem shows this
ensures the uniqueness of equilibrium paths.20

20. Another way to view Assumption 2 is through median voter intuition. The
within-person monotonicity condition and its role in uniqueness can be understood
as an instance of aggregation of heterogeneous preferences—in particular, the
preferences of all future selves. Consider the problem of the current decision maker
comparing two states, x and y. This decision maker will be implicitly aggregating
the preferences of her future selves with weights given by the discount factor and
the social mobility process. Within-person monotonicity means that if self-t and
self-t′ prefer x to y, then the same is true for self-t′′, provided that t < t′′ < t′.
This order implies that each current agent acts as if she were a weighted median
of her future selves. This guarantees that the preferences of future selves can
be aggregated in a simple way and can be represented as the weighted median
future self of the current decision maker. Since current decisions are made by
the current (weighted) median voter, this implies that they will maximize the
preferences of the weighted median future self of the current weighted median
voter. This aggregation in turn further implies uniqueness of equilibrium—once
more because of the uniqueness of the weighted median voter in the presence
of such well-defined preferences. This argument also provides a complementary
intuition for why within-person monotonicity is not needed when β is sufficiently
low: in this case, tomorrow’s self receives almost all of the weight, and the problem
of aggregation of preferences of different future selves becomes moot. But at the
same time, this problem does not disappear as β approaches 1, and indeed Example
B2 in Online Appendix B shows that there are multiple equilibria for β arbitrarily
close to 1: even though the preferences of all future selves are closely aligned in
this case, the coordination problem that the different selves need to solve does not
vanish.

Downloaded from https://academic.oup.com/qje/article-abstract/133/2/1041/4597989
by MIT Libraries user
on 25 April 2018

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org


SOCIAL MOBILITY AND STABILITY OF DEMOCRACY 1061

THEOREM 2. (Uniqueness) The equilibrium is generically unique
(meaning that decisions on current policy and transitions
in each state are determined uniquely within the class of
symmetric monotone MPE, except for a set of parameters of
measure zero) if either (i) the discount factor β is sufficiently
low, or (ii) Assumption 2 (within-person monotonicity) is sat-
isfied.

That the equilibrium is generically unique when the players
are very myopic (have a very low discount factor) follows read-
ily from the fact that such myopic players will simply maximize
their next period utility, which generically has a unique solution.
It is also of limited interest, since we are more concerned with
situations in which the discount factor takes intermediate values
so that the current decision maker takes into account the pref-
erences of all of her future selves. For these cases, within-person
monotonicity provides a sufficient condition for uniqueness as an-
ticipated by our previous discussion.

III.C. Farsighted Stability

In this subsection, we characterize the conditions under
which democracy (or in fact any political institution) is stable
when β is arbitrarily close to 1. This will give us the farsighted
stability condition, which will play a critical role in how social mo-
bility impacts the stability of democracy for any discount factor.
Our result in this section necessitates an additional assumption,
which we state next.

ASSUMPTION 3. (Sufficiently rich set of states) For each group j
∈ G, if state sj ∈ arg mins∈S

∣∣bds − bj
∣∣, then μτ

jdsj
> 0 for some

τ > 0.

This assumption states that individuals in every social group
have a positive probability of moving to the social group that is
pivotal in their current ideal state (i.e., the state with induced
policy choice maximizing the stage payoff of this individual). This
assumption is not particularly restrictive as it holds automatically
either if for each group, there is a state in which it is pivotal (i.e.,
S = G), or if the social mobility matrix M is ergodic (meaning that
there is a positive probability that an individual from any social
group can eventually reach any other social group).
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For the next theorem, we impose Assumption 2 as well, and
also assume the uniqueness of equilibrium explicitly to simplify
the exposition. Under Assumption 2, Theorem 2 already ensures
generic uniqueness, but we impose it as an additional assumption
for emphasis and to avoid further reference to generic parameter
values.

THEOREM 3. (Farsighted stability of institutions) Suppose that
Assumptions 2 and 3 hold and the equilibrium is unique. Then
there exists β̃ < 1 such that for any β ∈ (β̃, 1), the following
is true:
i. Starting from state s1, the sequence of states along the

equilibrium path, s1, s2, . . . , converges, with probability 1,
to state z that minimizes

∣∣∣bdz − b(∞)
ds1

∣∣∣.
ii. State s ∈ S is stable (that is, qss = 1) if and only if

(8) s ∈ arg min
z∈S

∣∣∣bdz − b(∞)
ds

∣∣∣ .
iii. Denote democracy by x. Then democracy is stable if and

only if the farsighted stability condition,

(9)
bdx−1 + bdx

2
� b(∞)

dx
� bdx + bdx+1

2

holds.21

The first part of this theorem states that when players are suf-
ficiently patient (farsighted), the sequence of equilibrium states
converges to a state z that minimizes

∣∣∣bdz − b(∞)
ds1

∣∣∣. Put differently,
the equilibrium sequence will necessarily go to state z, the most
preferred state of the very distant selves of the current decision
maker (group ds1 ).

22

21. In this condition, to formally cover the cases in which the political insti-
tutions are the lowest and highest feasible ones, that is, 1 and m, respectively, we
set bd0 = −∞ and bdm+1 = +∞, which ensures that for these lowest and highest
political institutions, condition (9) is only relevant on one side.

22. Intuitively, if the equilibrium sequence did not take society to state z, then
the current decision maker would have an incentive to move there immediately,
because with a sufficiently large discount factor, she would be willing to sacrifice
the utilities of her selves in the near future for achieving the most preferred state
for her very distant selves. However, this does not imply that in equilibrium the
transition to state z will be immediate even when β is very close to 1, as she might
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More important for our focus are the second and the third
parts of this theorem. The second part, which is a direct corollary
of the first part, establishes that a state is stable if and only if it
guarantees a policy outcome closer to the (group-size weighted)
average of the political bliss points of groups to which the current
decision makers can move in the future (compared to the policy
outcome that will follow from other institutions).

The third part of the theorem applies this result to democracy
and derives the crucial farsighted stability condition (9). This con-
dition imposes that the preferences of the current median voter in
the very distant future are closer to his own current preferences
than those of the decision makers in either neighboring state.23

Single-peakedness and symmetry of preferences then imply that
this condition is sufficient to guarantee that the median voter’s
long-run future selves prefer democracy to any other political in-
stitution. Because β is arbitrarily close to 1, under this condition
the median voter also prefers democracy to the alternatives today,
ensuring the stability of democracy. Conversely, if this condition
did not hold, the current median voter would prefer to change the
prevailing political institution toward one that his long-run future
self prefers.

A complementary interpretation of condition (8) and its par-
ticular case, condition (9), further clarifies the intuition. Note that
b(∞)

dx
is the average bliss point within the component of the social

mobility matrix M to which group x belongs. In the special case
where this component corresponds to G (when there is possibly in-
direct social mobility from every group to every other group), b(∞)

dx

is simply the average bliss point in society. This implies that the
condition that x ∈ arg minz∈S

∣∣∣bdx − b(∞)
dx

∣∣∣ requires median prefer-
ences, bdx , which are those that will be implemented by democracy,
to be sufficiently close to these average preferences, b(∞)

dx
.

IV. SOCIAL MOBILITY AND THE STABILITY OF DEMOCRACY

In this section, we present our main results on how so-
cial mobility affects the stability of democracy. Once again we

still prefer to spend the next several periods in the current state or other states
that will still lead to state z in the long run.

23. This condition is equivalent to |bdx − b(∞)
dx

| � |bdx−1 − b(∞)
dx

| and |bdx −
b(∞)

dx
| � |bdx+1 − b(∞)

dx
|.
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simplify the exposition by assuming within-person monotonicity
and uniqueness, relegating the results that relax these features
to Appendix A. Moreover, given our focus in this section, we fix all
other parameters of the model and only vary the matrix of social
mobility.

DEFINITION 2. (Comparing the speed of social mobility) Sup-
pose we have two matrixes of social mobility M and M′ with
the same components (which implies that b(∞) = b′(∞)). Then,
we say that social mobility is faster under M′ than under M
if for each group j ∈ G and each t � 1, either bj � b(t)

j � b′(t)
j �

b′(∞)
j = b(∞)

j or bj � b(t)
j � b′(t)

j � b′(∞)
j = b(∞)

j , with the inequal-
ity between b(t)

j and b′(t)
j being strict at least for some j.

Thus two matrixes M and M′ are comparable in terms of the
speed of social mobility only if the preferences of very distant
future selves coincide, which is in turn guaranteed if they have
the same components. Under this condition, mobility under M′ is
faster if the preferences of future selves at any time t are weakly
closer to b(∞)

j (and weakly further from bj) than under M. This
definition makes it clear that faster social mobility implies that
the preferences of future selves will converge more rapidly to the
preferences of the very distant self, b(∞)

j , which is the feature that
will be responsible for the nature of the comparative statics we
present in this section.

EXAMPLE 4. The simplest example of a collection of matrixes that
can be ranked in terms of speed of mobility can be con-
structed as follows. Take some matrix M satisfying within-
person monotonicity. Consider a family of matrixes of social
mobility M(γ ) = γ M + (1 − γ )I, where I is the identity matrix
and γ ∈ (0, 1] is a parameter. Then social mobility for M(γ ′)
is faster than that in M(γ ) if and only if γ ′ > γ .

Another example is the following. Take some matrix Z that
satisfies within-person monotonicity. Assume that individ-
uals are reshuffled according to Z at random times deter-
mined according to a Poisson process with rate λ ∈ (0, ∞). If
so, the probabilities of transitions over an interval of time
of unit length, corresponding to the interval between the
two periods where political decisions are made, is given by
M (λ) = e−λ

(
I + ∑∞

k=1
λk

k! Zk
)
. In this case, social mobility for

M(λ′) is faster than M(λ) if and only if λ′ > λ.
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The next theorem shows that the relationship between social
mobility and the stability of democracy depends on the preferences
of the distant future selves of the current median voter.

THEOREM 4. (When social mobility increases the stability of
democracy) Suppose that within-person monotonicity (As-
sumption 2) holds and the equilibrium is unique. Suppose
also that social mobility under M′ is faster than under M,
and the farsighted stability condition (9) holds for either M or
M′ (these conditions are equivalent). Then democracy is more
stable for M′ than for M. More precisely, democracy is stable
under both M and M′, and furthermore, if it is asymptotically
stable under M, then it is also asymptotically stable under
M′.24

The theorem thus supports de Tocqueville’s hypothesis that
social mobility contributes to the stability of democracy, provided
that the farsighted stability condition (9) holds. The intuition for
this result is that faster social mobility makes time run faster,
making the preferences of all future selves closer to b(∞), and
we know that under b(∞), the very distant selves of the median
voter prefer democracy to other institutions. Put differently, with
faster social mobility, individuals put less weight on events in the
near future because the near future itself becomes more tran-
sient, and consequently, their preferences become more aligned
with those of their distant selves, who favor democracy under
condition (9). This implies that whenever democracy is stable un-
der M, it will also be stable under M′ (and the converse is not
true).

Why does asymptotic stability under M guarantee asymptotic
stability under M′? To understand this result, recall that faster
social mobility also implies that for any β, the preferences of all
future selves of all social groups approach the preferences of their
very distant selves, and because the preferences of the very distant
selves are the same for all groups (within the component), the

24. The following stronger version of this result is also proved at the end of the
proof of Theorem 4: let qsz be the probability of transitioning from state s to state z
under M, and q′

sz be the same probability under M′. Let us also denote democracy
by x. Then q′

x−1,x � qx−1,x (with strict inequality, unless q′
x−1,x = qx−1,x = 1) and

q′
x+1,x � qx+1,x (with strict inequality, unless q′

x+1,x = qx+1,x = 1), so that the speed
of reaching democracy from neighboring states is greater under M′ than under M.
A similar strengthening of Theorem 5 can also be proved, but is omitted to save
space.
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preferences of all social groups approach each other as well. Recall
from Theorem 3 that when condition (9) holds, the very distant
selves of the current decision maker prefer democracy to any other
political system; this is also true for any other group in the same
component as the current decision maker, and consequently, faster
social mobility makes neighboring groups (that are in the same
component) also prefer democracy to any other political system.
This ensures that asymptotic stability under M translates into
asymptotic stability under M′ (and once again, the converse not
being true).

What if the farsighted stability condition (9) does not hold?
In this case, the median voter would like to empower a group
other than the one containing the median voter, which implies a
deviation from democracy. This does not necessarily imply that
she would want to go to this state immediately, and democ-
racy may still be stable, because she may receive greater utility
from staying in democracy than the entire transition path fol-
lowing a deviation. Nevertheless, it does imply that faster social
mobility makes democracy less stable as we show in the next
theorem.

THEOREM 5. (When social mobility reduces the stability of
democracy) Suppose that Assumptions 2 and 3 hold and the
equilibrium is unique. Suppose also that social mobility under
M′ is faster than under M, farsighted stability condition (9)
does not hold (for M or, equivalently, for M′), and

(10)
bdx−2 + bdx−1

2
� b(∞)

dx−1
� b(∞)

dx+1
� bdx+1 + bdx+2

2
.

Then democracy is less stable for M′ than for M. More pre-
cisely, democracy is asymptotically stable at neither M nor
M′, and if it is not stable at M, then it is not stable at M′

either.

The substantive result of this theorem is that, when the far-
sighted stability condition (9) does not hold, faster social mobil-
ity has the opposite effect to that maintained by de Tocqueville’s
hypothesis: it makes democracy less stable. For social mobility
matrixes that characterize either sufficiently slow or sufficiently
fast mobilities (i.e., those that in matrix terms are sufficiently
close to the unit matrix I and the limit matrix M∞ respectively),
this results holds without additional conditions. If we impose the
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additional condition (10), then stability of democracy decreases
in the speed of social mobility monotonically (this would not hold
more generally because of slippery slope effects, see Section V.A).
The intuition for this result is closely related to that of Theo-
rem 4. When faster social mobility aligns the preferences of the
current median voter with her very distant selves who prefer an
alternative institution, this may destabilize an otherwise stable
democracy.25

Why does this theorem need condition (10)? The reason
is the slippery slope considerations which will be discussed in
greater detail in the next section: these considerations may
make individuals unwilling to move to an institution that is
more preferred in the short run because this transition might
pave the way to yet more transitions, which may be less desir-
able for them. In this instance, as the speed of social mobility
increases, institutions that lie between democracy and the in-
stitution most preferred by the very distant self may become
unstable as well, and this might in turn make democracy sta-
ble because, due to slippery slope concerns, the current decision
maker may not wish to move to these unstable institutions in
the next period. Condition (10), on the other hand, ensures stabil-
ity of the neighboring states, thus alleviating the slippery slope
effect.

Even when condition (10) does not hold, similar conclusions
to those of Theorem 5 hold, provided that social mobility under
M′ is sufficiently faster than social mobility under M, as shown in
the next corollary.

COROLLARY 1. Suppose that within-person monotonicity (Assump-
tion 2) holds and the equilibrium is unique. Suppose also
that the farsighted stability condition (9) does not hold. Then
there exist T1, T2, and ε such that if

∣∣∣b(T1)
dx

− bdx

∣∣∣ < ε and∣∣∣b′(T2)
dx

− b(∞)
dx

∣∣∣ < ε, that is, if social mobility under M is suf-
ficiently slow and social mobility under M′ is sufficiently fast,
then democracy is less stable for M′ than for M. Specifically,
democracy is stable but not asymptotically stable under M
and is neither stable nor asymptotically stable under M′.

25. Theorems B1 and B2 in Online Appendix B provide generalizations of
the previous two theorems for the case in which the within-group monotonicity
assumption, Assumption 2, is relaxed.
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V. FURTHER RESULTS AND EXTENSIONS

In this section we discuss slippery slope considerations and
extend our main results to an environment without the within-
person monotonicity assumption.

V.A. Slippery Slopes

We emphasized in the context of Theorem 5 how slippery slope
considerations, which discourage a transition to a preferred state
because of subsequent transitions that this would unleash, play
a role in shaping when democracy may remain stable even when
the preferences of future selves favor another state. More pre-
cisely, slippery slope considerations refer to the situation where in
some state s, a winning coalition (e.g., a weighted majority) would
obtain greater stage payoffs in some state x �= s than in s, but
in equilibrium stays in s because it anticipates further, less pre-
ferred transitions after the move to x (see Acemoglu, Egorov, and
Sonin 2012). In models without social mobility, slippery slope con-
siderations are more powerful when the discount factor is closer
to 1 because in this case agents care little about the outcomes in
the next period and a lot about future outcomes. Slippery slope
considerations continue to be important in models of social mobil-
ity, but they arise not when the discount factor is high but when
it is intermediate. The next theorem characterizes the extent of
slippery slope considerations. Like all remaining results in the
article, the proof of this theorem is in Online Appendix B.

THEOREM 6. (Slippery slopes) Suppose that Assumptions 2 and
3 hold. There exist 0 � β0 < β1 < 1 such that for any β ∈ (0,
1)\(β0, β1), if some state s ∈ S is stable, then for any x ∈ S, the
expected continuation utility of pivotal group ds from stay-
ing in x forever cannot exceed their equilibrium continuation
utility:

(11)
∞∑

t=1

∑
k∈G

βtμt
dskuk

(
bds

)
�

∞∑
t=1

∑
k∈G

βtμt
dskuk

(
bdx

)
.

Furthermore, if for any states s �= x, b(1)
ds

�= bds +bdx
2 , then one

can take β0 > 0.
If, on the other hand, β ∈ (β0, β1), condition (11) need not

hold, and slippery slope considerations can prevent certain
transitions.
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In other words, this result suggests that for both high and
low β, all stable states give higher expected utility to the current
decision maker than any other state (with the expectation taken
with respect to the social mobility process).26 When slippery slope
considerations are important, this need not be the case: there may
be a state providing a higher expected utility to the current deci-
sion maker than the current state, but moving to this state would
unleash another set of transitions that reduce the discounted con-
tinuation payoff of the current decision maker. Theorem 6 shows
that such slippery slope considerations arise only for intermediate
values of β. (See Example B1 in Online Appendix B for the second
part of the theorem.)

The intuition for why slippery slope considerations do not play
a role for myopic players (with low β) is straightforward: myopic
players care only about the next period’s state, so the subsequent
moves do not modify their rankings over states. That these con-
siderations do not arise for very farsighted players (with high β)
is more interesting and perhaps surprising. Suppose a situation
in which the current decision maker, who is pivotal in the cur-
rent state s, prefers a different state, x, where by definition he
will not belong to the pivotal group unless his preferences change
due to social mobility. Such preferences are possible only when
members of the current pivotal group have a positive probabil-
ity of joining the group that is pivotal in state x (and conversely,
those in the group pivotal in state x could move to the group that
is pivotal in state s). An implication is that even though the dis-
tribution of political power in states s and x have a conflict of
interest today, because of social mobility their preferences in the
distant future will be aligned. Therefore, with a sufficiently high
discount factor, the current decision maker will not be worried
about decision rights shifting to the group that is pivotal in state
x, averting slippery slope considerations. In contrast, with inter-
mediate discount factors, the loss of control in the near future can
trigger concerns about slippery slopes, encouraging the current
decision maker not to move in the direction of states that increase
their immediate payoffs. Notably, this result is very different from
that in Acemoglu, Egorov, and Sonin (2012), where slippery slope
considerations became more important as the discount factor be-
came larger. The difference is due to the fact that social mobility

26. The condition b(1)
ds

�= bds +bdx
2 in this theorem rules out situations where

tomorrow’s self is exactly indifferent between these two states.
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changes the nature of the slippery slope concerns (and as social
mobility limits to zero, we recover the result in Acemoglu, Egorov,
and Sonin 2012).

V.B. Alternative Decision-Making Rules

So far, we have focused on an extensive-form political game
(or its reduced-form version in the text) that generalizes the stan-
dard median voter theorem to our environment. As a result, in
each state a particular group emerges as the pivotal one that
makes the policy and political decisions. In many political set-
tings, including those with probabilistic voting and some lobbying
models, political decisions are made as if a well-defined weighted
social welfare function is being maximized (e.g., Lindbeck and
Weibull 1987; Coughlin 1992; Grossman and Helpman 1994). In
this subsection, we show that our main results generalize with
minor modifications to this type of alternative decision-making
rule.

We assume, as in our baseline model, that each state s is
associated with a vector of weights {wk(s)}, but now these are
not voting weights, but weights in the “social welfare function”
(itself presumably resulting from another political game, which
we are not explicitly describing). More specifically, let us assume
that the society, when in period t in state s = st, chooses policy pt
to maximize

(12) pt = arg max
p∈R

∑
k∈G

wk (s) uk (p) ,

and chooses state st+1 as

(13) st+1 ∈ arg max
x∈S

∑
k∈G

wk (s) nk

∑
j∈G

μds j Vj (x) ,

where
{
Vj (x)

}x∈S
j∈G are the value functions given in equation (7).

We can interpret these decisions as being made by a fictitious
decision maker, with policy preferences given by equation (12) and
political preferences given by equation (13).27 Different states lead

27. The use of the same weights in the two problems implies that different
social groups (or their organizations) are equally influential in policy and political
decisions.
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to different weights {wk(s)} and thus to different fictitious decision
makers.

Equilibrium policy in state s is the bliss point of the fictitious
decision maker, which is

b̂s =
∑g

k=1 wk (s) nkbk∑g
k=1 wk (s) bk

.

Generically, b̂s are different for different states, and then it is
without loss of generality to assume that states are ordered such
that {b̂s} is increasing in s.

Next, to determine political decisions, let us first define the
“currently preferred” state of group k as ŝk, given as

ŝk = arg max
s∈S

uk (p (s)) .

(Note that for this definition we are only considering stage payoffs
and hence the reference to “currently preferred”.) This state is
generically unique for each group k. Let us also define democracy
as state ŝd, where group d contains the median voter.

We can also define the ideal policies of future selves of the
fictitious decision makers. In particular, the ideal policy of the
τ -periods ahead future self of the fictitious decision maker in state
s is

b̂(τ )
s =

g∑
j=1

w j (s) nj

g∑
k=1

μτ
jkbk =

g∑
j=1

w j (s) nj
(
Mτ b

)
j .

With this notation, we can now introduce the analogue of
Assumption 2:

ASSUMPTION 2.′ (Modified within-person monotonicity) For
each s, b̂(τ )

s is monotone in τ .

The following two theorems are direct analogues of
Theorems 4 and 5, and their proofs follow closely those of these
two previous theorems and are thus omitted.

THEOREM 7. (Social mobility and the stability of democracy
under alternative decision-making rule) Suppose that
Assumption 2′ holds and the equilibrium is unique. Suppose
also that social mobility under M′ is faster than under M, and
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inequality

(14)
b̂x−1 + b̂x+1

2
� b̂(∞)

x � b̂x + b̂x+1

2

holds for either M or M′. Then democracy is more stable for M′

than for M. More precisely, democracy is stable under both M
and M′ and furthermore, if it is asymptotically stable under
M, then it is also asymptotically stable under M′.

THEOREM 8. (Social mobility and the instability of democ-
racy under alternative decision-making rule) Suppose
that Assumptions 2′ and 3 hold and the equilibrium is unique.
Suppose also that social mobility under M′ is faster than un-
der M, condition (14) does not hold (for M or, equivalently, for
M′), and

(15)
b̂x−2 + b̂x−1

2
� b̂(∞)

x−1 � b̂(∞)
x+1 � b̂x+1 + b̂x+2

2
.

Then democracy is less stable for M′ than for M. More pre-
cisely, democracy is asymptotically stable at neither M nor
M′, and if it is not stable at M, then it is not stable at M′

either.

In other words, if the distant future selves of the fictitious
decision maker in democracy prefer democracy to neighboring in-
stitutions, then greater social mobility makes democracy more
stable. Otherwise (and provided that the fictitious decision mak-
ers in neighboring states prefer those states in the long run),
greater social mobility makes democracy less stable.

VI. CONCLUSION

An influential thesis often associated with Alexis de Toc-
queville views social mobility as an important bulwark of democ-
racy: when members of a social group expect to transition to some
other social group in the near future, they should have less rea-
son to exclude these other social groups from the political pro-
cess. Despite the importance of this thesis for the evolution of
the modern theories of democracy and its continued relevance in
contemporary debates, it has received little attention in the mod-
ern political economy literature. This article has investigated the
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link between social mobility and the dynamics of political insti-
tutions. Our framework provides a natural formalization of de
Tocqueville’s hypothesis, showing that greater social mobility can
further enhance the stability of democracy for reasons anticipated
by de Tocqueville.

However, more importantly, it also demonstrates the limits of
this hypothesis. There is a robust reason greater social mobility
can undermine the stability of democracy: when the median voter
expects to move up (respectively, down), she would prefer to give
less voice to poorer (respectively, richer) social groups, because she
anticipates having different preferences than future agents who
will occupy the same social station as herself.

We provided a tight characterization of these two compet-
ing forces and demonstrated that the impact of social mobility
depends on whether the mean and the median of preferences
over policy are close. When they are, not only is democracy sta-
ble (meaning that the median voter would not wish to undermine
democracy), but it also becomes more stable as social mobility
increases. Conversely, when the mean and median are not close,
greater social mobility reduces the stability of democracy.

In addition to enabling a tight characterization of the rela-
tionship between social mobility and stability of democracy, our
theoretical analysis also shows that in the presence of social mo-
bility, the political preferences of an individual depend on the po-
tentially conflicting preferences of her future selves, under certain
conditions paving the way to multiple equilibria. When society is
mobile, the current political institution may be disliked by the
current decision makers not only because their future selves pre-
fer another institution (which was at the root of the instability of
democracy in the presence of high social mobility), but also be-
cause if the current institution were to continue, future decision
makers might choose transitions that are not favored by the future
selves of the current decision maker (which is a form of slippery
slope consideration).

Motivated by this reasoning, we further characterized the
conditions for general slippery slope considerations—which pre-
vent certain institutional choices because of the additional series
of changes that these choices would induce. But differently from
other dynamic political economy settings, slippery slope concerns
are more important when the discount factor takes intermedi-
ate values rather than when it is large. This is because in the
presence of social mobility, high discount factors make current
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decision makers not care about losing political power to another
social group (since, in the long run, they will have preferences
similar to the members of the group that will become pivotal in a
different state). But with intermediate discount factors, they still
care a lot about political developments in the next several periods,
making slippery slope considerations relevant again.

There are many fruitful areas of research related to the polit-
ical implications of social mobility. First, there is a clear need for
systematic empirical analyses of the impact of social mobility (and
perceptions thereof) on political attitudes and the resulting politi-
cal behavior. Second, social mobility itself is not just determined by
exogenous (technological or historical) factors but also determined
by political choices of the same players deciding other dimensions
of policy and future political institutions. The working paper ver-
sion of our work, Acemoglu, Egorov, and Sonin (2016), showed
how our results can be extended to an environment with endoge-
nous social mobility under a number of simplifying assumptions.
A more systematic analysis of endogenous social mobility is an
obvious area for future theoretical study. Third, our framework
can also be enriched to include individual decisions, such as on
the quantity or quality of education, which affect the mobility of
the members of a dynasty, while also shaping political attitudes.
Fourth, the framework we presented here can be generalized to
include political actions by different political coalitions (e.g., col-
lective action, social unrest, or coups), which will be affected by
social mobility as well. Finally, we also abstracted from structural
change and social change which often accompany periods of rapid
social mobility and impact the sizes of different social groups. An
extension in this direction would be particularly interesting as
it could improve our understanding of what types of structural
changes contribute to the emergence and consolidation of democ-
racy via both their direct effects and indirectly by changing the
level of social mobility.

APPENDIX A: PROOFS OF MAIN RESULTS

We start by presenting an alternative extensive-form game,
where agents from all groups can present proposals and vote. We
then prove the results of the article for both this game and the
one stated in Section II.
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A. Extensive-Form Game for Policy and Political Decisions

We describe in detail our extensive-form game which, as al-
ready noted, gives the same equilibrium outcomes as those im-
plied by the more reduced-form game presented in the text. In the
rest of this appendix, we use this full extensive-form game.

Take a fixed order of groups in each state, π s : {1, . . . , g} →
G, which determines the sequence in which (representatives of)
different groups make proposals, and in which group ds is included
among the proposers in state s (which is trivially satisfied if all
groups have the opportunity to make proposals in each state).

The first period’s state s1 is exogenously given, and so is
some default policy, p0, in the first period. Thereafter, denoting
the group that individual i belongs to at time t by gt

i , the timing
in each period t � 1 is as follows.

i. Policy decision:
a. In each state st, we start with j = 1 and the default

option of preserving the previous period’s policy, p0
t =

pt−1.
b. A random agent i from group πst ( j) is chosen as the

agenda setter and makes an amendment (policy pro-
posal) p̃j

t . (Since all members of social groups have the
same preferences, which agent is chosen to do this is
immaterial.)

c. All individuals vote, sequentially, with each agent i
casting vote v

p
i ( j) ∈ {Y, N}.

d. If
∑n

i=1 wgt
i
(st)1{vp

i ( j)=Y}∑n
i=1 wgt

i
(st)

> 1
2 , then the current proposal be-

comes the default policy (pj
t = p̃j

t ), otherwise the de-
fault policy stays the same (pj

t = pj−1
t ). The game re-

turns back to stage i(b) with j increased by 1, unless
j = g.

e. The policy decided in the last stage is implemented:
pt = pg

t .
ii. Political decision:

a. In each state st, the default option to preserve the cur-
rent institution, s0

t+1 = st, is on the table, and we start
with j = 1.

b. A random agent i from group πst ( j) is chosen as the
agenda setter and makes an amendment (proposal of
political transition), s̃ j

t+1.
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c. All individuals vote, sequentially, with each individual
i casting vote vs

i ( j) ∈ {Y, N}.
d. If

∑n
i=1 wgt

i
(st)1{vs

i ( j)=Y}∑n
i=1 wgt

i
(st)

> 1
2 , then the current proposal be-

comes the default transition (s j
t+1 = s̃ j

t+1), otherwise the
default transition stays the same (s j

t+1 = s j−1
t+1 ). The

game returns back to stage ii(b) with j increased by
1, unless j = g.

e. The transition decided in the last stage is implemented:
st+1 = sg

t+1.
iii. Payoffs: Each individual i receives time-t payoff of ugt

i
(pt),

given by (1).
iv. Social mobility: At the end of the period, there is social

mobility, so that individual i who belonged to group gt
i in

period t will start period t + 1 in group k with probability
μgt

i k.

This specific game form, where proposals (for policies or po-
litical transitions) within a period are accepted temporarily and
act as a status quo until the whole sequence of proposals is made,
is similar to the “amendments” games discussed in Austen-Smith
and Banks (2005).

In this game, we also focus on symmetric monotone MPE
(Definition 1). The only difference is the definition of strategies;
here, a strategy of player i is a mapping from history (which cod-
ifies her current group affiliation, the current institution, as well
as the entire sequence of moves within the period). This mapping
is into R when player i is making a policy proposal; into �(S) when
she is proposing political transition; and into {Y, N} when she is
at the voting stage.

The proofs presented next make it clear that the (subgame
perfect) equilibrium of this extensive-form game will make players
from a particular group pivotal in each state, and thus the results
that follow from this extensive-form game are entirely analogous
to those from our reduced-form modeling assumption in the text,
where a group was directly specified as pivotal in each state, and
policy and political decisions were made by a randomly chosen
member of that group.

B. Proofs of Main Results

We provide proofs of Theorems 1–5, for which we need a
number of lemmas. Proofs of Lemmas A4–A8 are relegated to
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Online Appendix B. To formulate intermediate results, which to-
gether establish that continuation utilities satisfy increasing dif-
ferences, we will need the following notation. First, define two
constants:

Ū = max
j∈G

∣∣Aj
∣∣ + max

j,k∈G

(
bk − bj

)2
,

ū = min
j,k∈G: j �=k

(
bk − bj

)2
.

In what follows, we say that a gm-dimensional vector v ={
v j (x)

}x∈S
j∈G ∈ Rgm satisfies increasing differences if for j1, j2 ∈ G

and x1, x2 ∈ S, j1 < j2 and x1 < x2 implies v j2 (x2) − v j2 (x1) >

v j1 (x2) − v j1 (x1). We call a subset X ⊂ S connected if X = [a, b]
∩ S for some integers a, b. We also use the strong set order: that
is, sets X, Y ⊂ S satisfy X � Y if min X � min Y and max X �
max Y, and moreover, for X ⊂ S and y ∈ S, X � y if X � {y}. Other
binary relations (<, �, >) are defined similarly. We will use �s to
denote the set of states to which the society can transition (in the
next period) starting from state s in equilibrium, or more formally
�s = {x ∈ S : qsx > 0}.

LEMMA A1. Suppose that vector
{
Vj (x)

}x∈S
j∈G ∈ Rgm satisfies increas-

ing differences. Let

(16) Wj (x) =
∑
k∈G

μ jkVk (x) .

Then vector
{
Wj (x)

}x∈S
j∈G ∈ Rgm also satisfies increasing differ-

ences.

Proof of Lemma A1. Take two states x, y ∈ S such that x < y
and consider the difference

Wj (y) − Wj (x) =
∑
k∈G

μ jkZk,

where Zk = Vk(y) − Vk(x) is a sequence that is increasing in k
by assumption. Let j, l ∈ G satisfy j < l. Since, by Assumption 1,
the probability distribution {μj·} is first-order stochastically dom-
inated by {μl·}, the expected values of a monotone sequence {Zk}
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satisfy the inequality

∑
k∈G

μ jkZk <
∑
k∈G

μlkZk.

This implies

Wj (y) − Wj (x) < Wl (y) − Wl (x) ,

which proves that
{
Wj (x)

}x∈S
j∈G satisfies increasing differences. �

LEMMA A2. Suppose that vector
{
Vj (x)

}x∈S
j∈G ∈ Rgm satisfies increas-

ing differences. Suppose that matrixes Q = {qsz}s,z ∈ S are
such that for x < y, the distribution qx· is (weakly) first-order
stochastically dominated by qy·. Then {V ′

j(x)}x∈S
j∈G, defined by

(17) V ′
j (x) = uj

(
bdx

) + β
∑
y∈S

qxy

∑
k∈G

μ jkVk (y) ,

satisfies increasing differences; moreover, if j, l ∈ G, x, y ∈ S
and j < l, x < y, then

(18)
(
V ′

l (y) − V ′
l (x)

) − (
V ′

j (y) − V ′
j (x)

)
� 2ū.

Proof of Lemma A2. Take two groups j, l ∈ G with j < l. For
each s ∈ S, consider the following difference:

V ′
l (s) − V ′

j (s) = (
ul

(
bds

) − uj
(
bds

)) + β
∑
z∈S

qsz
(
Wl (z) − Wj (z)

)
.

By Lemma A1, the term Wl(z) − Wj(z) is increasing in z. Take
x, y ∈ S such that x < y; then distribution qx· is (weakly) first-
order stochastically dominated by qy·, and thus the expectation of
Wl(z) − Wj(z) is weakly smaller when evaluated with the former
distribution than with the latter, that is,

∑
z∈S

qxz
(
Wl (z) − Wj (z)

)
�

∑
z∈S

qyz
(
Wl (z) − Wj (z)

)
.
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We thus have

(
V ′

l (y) − V ′
j (y)

) − (
V ′

l (x) − V ′
j (x)

)
= (

ul
(
bdy

) − uj
(
bdy

)) − (
ul

(
bdx

) − uj
(
bdx

))
+β

(∑
z∈S

qyz
(
Wl (z) − Wj (z)

) −
∑
z∈S

qxz
(
Wl (z) − Wj (z)

))

� 2
(
bl − bj

) (
bdy − bdx

)
� 2ū. �

LEMMA A3. Suppose that vector W = {
Wj (x)

}x∈S
j∈G ∈ Rgm satisfies

increasing differences. Suppose that X, Y are connected sub-
sets of S and X � Y. Suppose j, k ∈ G and j < k, and suppose
x ∈ arg maxz∈X Wj (z) and y ∈ arg maxz∈Y Wk (z). Then x � y.

Proof of Lemma A3. Suppose, to obtain a contradiction, that
x > y. Since X and Y are connected and X � Y, this implies that
x, y ∈ X ∩ Y. Now, x ∈ arg maxz∈X Wj (z) implies Wj(x) � Wj(y),
and since W satisfies increasing differences, x > y and k > j,
it must be that Wk(x) > Wk(y). However, this contradicts that
y ∈ arg maxz∈Y Wk (z) . �

In the following proofs, we slightly abuse notation
Wj(x, y, z, . . . ) to denote the continuation value of group j when
the sequence of states is x, y, z, . . .

Proof of Theorem 1. We first establish the existence of a mono-
tone symmetric MPE (existence of some MPE trivially follows
from Kakutani’s theorem). We instead prove existence of a sym-
metric monotone MPE in a more general class of games, where
some transitions are ruled out. This generality will be used in
later proofs. Specifically, we require that all proposals x made in
state s must satisfy x ∈ Fs, where Fs ⊂ S, and {Fs}s ∈ S satis-
fies the following two conditions: (i) for each s, s ∈ Fs and (ii) if
x < y < z or x > y > z, z ∈ Fx implies y ∈ Fx and z ∈ Fy. If we
do so, then the statement of Theorem 1 follows immediately as a
special case when all transitions are feasible (i.e., Fs = S for all
s ∈ S).

We prove this claim in two steps. First, we construct a
feasible monotone transition correspondence, that is, we con-
struct a matrix Q̂ such that q̂sx > 0 only if x ∈ Fs, and also q̂x·
weakly first-order stochastically dominates q̂y· whenever x > y.

Downloaded from https://academic.oup.com/qje/article-abstract/133/2/1041/4597989
by MIT Libraries user
on 25 April 2018



1080 QUARTERLY JOURNAL OF ECONOMICS

Second, we prove that there is an equilibrium σ such that
Q(σ ) = Q̂.

Define � ⊂ Rgm by the following constraints:
{
Vj (x)

}x∈S
j∈G ∈ �

if and only if (i) for all j ∈ G, x ∈ S,
∣∣Vj (x)

∣∣ � Ū
1−β

and (ii) for all j,
k ∈ G such that j < k and for all x, y ∈ S such that x < y,

(Vk (y) − Vk (x)) − (
Vj (y) − Vj (x)

)
� 2ū.

This implies, in particular, that any
{
Vj (x)

}x∈S
j∈G ∈ � satisfies strict

increasing differences, and that � is compact and convex.
Consider the following correspondence ϒ from � into it-

self. Take a vector of values V = {
Vj (x)

}x∈S
j∈G ∈ �, and let W ={

Wj (x)
}x∈S

j∈G be given by equation (16). For each state s ∈ S, let
ps be the ideal policy of pivotal group ds, that is, ps = bds , and
let �s be the expected utility of the members of pivotal group ds
from transitioning into state s, that is, �s = arg maxx∈Fs Wds (x).
Furthermore, let λs be any probability distribution over S, the
support of which is a subset of �s, and let �s be the set of such
distributions. We also define ϒ(V)⊂� to be such that V′ ∈ ϒ(V) if
and only if for each s ∈ S there is λs ∈ �s such that for each j ∈ G,

(19) V ′
j (s) = uj (ps) + β

∑
x∈S

λs (x) Wj (x) .

Let us prove that ϒ(V) is nonempty for any V ∈ �. For each
s, take any λs ∈ �s (which exists, because �s is nonempty), and
define V ′

j (s) as in equation (19). Then for all j ∈ G and s ∈ S,

∣∣V ′
j (s)

∣∣ �
∣∣uj (ps)

∣∣ + β
∣∣Wj (zx)

∣∣
�

∣∣uj (ps)
∣∣ + β

∑
k∈G

μ jk |Vk (zx)|

� Ū + β
Ū

1 − β
= Ū

1 − β
.

Furthermore, notice that since W satisfies increasing differences,
for any x, y ∈ S where x < y, any a ∈ �x and b ∈ �y must satisfy
a � b (by Lemma A3), and thus there is c ∈ S such that �x �
{c} � �y, which implies that any λx ∈ �x is (weakly) first-order
stochastically dominated by any λy ∈ �y. Lemma A2 now implies
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that V′ satisfies equation (18). Therefore, V′ ∈ �, which means
that ϒ(V) is nonempty for any V ∈ �.

We now prove that ϒ(V) is convex for all V. Suppose V′, V′′

∈ ϒ(V). Let the corresponding probability distributions in �s be
λ′

s and λ′′
s , respectively. For any α ∈ (0, 1), αλ′

s + (1 − α) λ′′
s is a

probability distribution in �s, and in particular its support is in
Fs, and moreover,

uj (ps) + β
∑
x∈S

(
αλ′

s + (1 − α) λ′′
s

)
Wj (x) = αV ′

j (s) + (1 − α) V ′′
j (s) .

Thus, for any α ∈ (0, 1), αV′ + (1 − α)V′′ ∈ ϒ(V), which implies
convexity of ϒ(V).

We next prove that ϒ(·) is an upper-hemicontinuous cor-
respondence. Notice that it is a composition of the following
mappings: (i) arg maxx∈Fs Wdx (x), which is a mapping from � to
2S \ {∅}, the set of nonempty subsets of S (and has a closed graph
when 2S \ {∅} is endowed with discrete topology); (ii) a mapping
from 2S \ {∅} to �(S), where each subset X ∈ 2S \ {∅} is mapped to
the set of probability distributions on S with support in X, which
also has a closed graph; and (iii) a mapping from �(S) to �, which
is linear and thus continuous. Because a composition of upper-
hemicontinuous correspondences is upper-hemicontinuous, ϒ(V)
also satisfies this property.

Since ϒ(·) is upper-hemicontinuous and ϒ(V) is nonempty
and convex-valued for all V ∈ �, and � is compact and convex,
Kakutani’s theorem implies that there is V ∈ � such that V ∈
ϒ(V). By definition of ϒ(V) there are {λs}s∈S that satisfy

Vj (s) = uj (ps) + β
∑
x∈S

λs (x) Wj (x) .

Define the matrix Q̂ by setting q̂sx = λs (x), then we have

(20) Vj (s) = uj
(
bds

) + β
∑
x∈S

q̂sx

∑
k∈G

μ jkVk (x) .

We now prove that this transition matrix Q̂ defines a feasible
monotone transition correspondence. It is feasible by construc-
tion, since q̂sx > 0 only if x ∈ �s, which is only possible if x ∈ Fs.
It is monotone, because we proved above that for any choice of
{λs}s∈S, x < y implies that λx is (weakly) first-order stochastically
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dominated by λy, which means this is also true for q̂x· and q̂y·. This
proves that both properties of Q̂ are satisfied.

We now construct an equilibrium σ that has transition matrix
Q(σ ) equal to Q̂. Consider the game �s, p that takes place in a
period where the current state is st = s and the default policy is
pt − 1 = p. Define utilities of player i who is currently in group j ∈
G by

U j (pt, st+1) = uj (pt) + βWj (st+1)

= uj (pt) + β
∑
k∈G

μ jkVk (st+1) ,

where
{
Vj (x)

}x∈S
j∈G are defined as the unique solution to

equation (20). We construct strategies of the players as follows.
Denote the stage where a representative from group ds makes a
proposal by J, so π s(J) = ds.

In what follows, we proceed by backward induction, and in
every stage we define strategies that are identical in isomorphic
subgames (thus ensuring that the strategy profile is Markovian)
and that are identical for different players that currently belong to
the same group (thus ensuring symmetry). Following the logic of
backward induction, we start with the political decision. In stages
l > J, we allow proposers and voters to choose any pure strategy
consistent with backward induction, with the only restriction be-
ing the following: if in stage l, the current status quo sl−1

t+1 ∈ �s,
then a weighted majority votes against the new proposal s̃l

t+1.
Specifically, if in the subgame that follows acceptance of alterna-
tive s̃l

t+1, the ultimate decision is st+1 = s̃, then individuals from
all groups j � ds vote N in case s̃ � sl−1

t+1, and individuals from all
groups j � ds vote N in case s̃ < sl−1

t+1; these voting strategies en-
sure that any proposal made in such situation is rejected. In stage
l = J, the represenative from ds chosen to make a proposal ran-
domizes over proposals in �s and proposes x ∈ �s with probability
q̂sx = λs (x) (and makes any other proposal with probability 0), and
any proposal s̃l

t+1 ∈ �s is then accepted by voters. Specifically, if
rejecting the current proposal would ultimately lead to decision s̃,
then individuals from all groups j � ds vote Y in case s̃l

t+1 � s̃, and
individuals from all groups j � ds vote Y in case s̃l

t+1 > s̃. If some
proposal s̃l

t+1 /∈ �s is made at this stage, then individuals make
any voting choices consistent with backward induction. Finally, in

Downloaded from https://academic.oup.com/qje/article-abstract/133/2/1041/4597989
by MIT Libraries user
on 25 April 2018



SOCIAL MOBILITY AND STABILITY OF DEMOCRACY 1083

stages l < J, individuals make any proposals and any votes con-
sistent with backward induction. It is easy to see that strategies
constructed in this way form an SPE in the subgame where the
political decision is made, and because they only depend on payoff-
relevant histories, they are Markovian. Indeed, if these strategies
are followed, then transition to state x ∈ S happens with proba-
bility q̂sx, and the decisions made in stages l < J are irrelevant
for the outcome; then at stage J, proposals in �s are made with
these respective probabilities and are accepted. Finally, in each of
the subsequent stages, no alternative from �s is ever voted down,
even by another alternative from �s.

To define strategies in the stage where the policy decision
is made, we again solve the game by backward induction. For
l > J, we choose any pure strategies (again, identical in isomor-
phic subgames and symmetric across players in the same group).
This ensures that if the current status quo is pl−1

t = bds , then any
alternative p̃l

t �= bds will not be accepted. For l = J, we require
that the representative from ds chooses bds , which is subsequently
accepted; if another proposal is chosen, then any pure strategies
consistent with backward induction are allowed. Finally, for l < J,
we allow any proposals and votes to be made. We thus get a sym-
metric MPE in the within-period game, where policy pt = bds is
chosen with probability 1, and a transition to alternative x takes
place with probability q̂sx.

Denote the resulting profile of strategies σ s (by construction,
it does not depend on t explicitly, as we were choosing Markovian
strategies). Taking these profiles for all values of s, we get strategy
profile σ , which prescribes strategies for all players in the original
game �. By construction, the corresponding transition mapping is
Q(σ ) = Q̂, and if profile σ is played, continuation utilities of each
player in each subgame are equal to the corresponding continua-
tion utility in the corresponding game �st,pt−1 . Furthermore, σ is
an SPE: by the one-shot deviation principle, if there is a devia-
tion, there must be a deviation in some period t where the current
state is st = s; but this contradicts that σ s is an SPE in the game
�st,pt−1 . Thus, σ is an MPE in �. Since in the construction of σ s,
the strategies were defined identically for different players in the
same group, the MPE is symmetric, and because Q̂ is feasible and
monotone, these properties are also retained by σ . Thus, σ is an
equilibrium with the desired properties. This completes the proof
of existence of a symmetric monotone MPE for any combination
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of feasible transitions {Fs}s ∈ S that we allow, and in particular for
Fs = S for all s ∈ S, as stated in the theorem.

We next prove the remaining claims in the theorem.
Proof of Part i. Take a symmetric MPE, σ . Consider period t

where the current state is st = s, and the previous period’s policy
is pt − 1 = p. Notice that the society’s decision on pt does not affect
equilibrium actions when choosing the transition, nor does it af-
fect any actions in subsequent periods, because strategies in σ are
Markovian. Thus, without loss of any generality, we can suppress
the policy decision and endow each group j with payoff uj(pt) at
time t.

As before, let J denote the stage where group ds makes a
proposal. Let us prove the following statement by backward in-
duction: if at some stage l � J the decision made (status quo for
the next stage) pl

t = bds , then the ultimate policy decision pt = bds .
The base is trivial: in the last stage, where l = g, the new status
quo automatically becomes the policy decision, so pt = pl

t = bds .
Step: take l < g, and suppose this statement is true for k > l; let
us prove it for stage l. Suppose that pl

t = bds and consider stage
l + 1. Suppose, to obtain a contradiction, that pt �= bds with a posi-
tive probability. By induction, this is only possible if pl+1

t �= bds with
positive probability. For this to be true, it must be that at stage
l + 1, the representative of group π s(l + 1) with positive probabil-
ity makes proposal x �= bds , which is subsequently accepted, and
after that pt �= bds with a positive probability. Let H be the dis-
tribution of pt conditional on x becoming the new status quo pl+1

t
after stage l + 1; notice that if pl+1

t = bds , then pt = bds by induc-
tion. Now, if EH < bds then all individuals in groups j � ds prefer
bds to H (because of quadratic utility); similarly, if EH > bds then
all individuals in groups j � ds prefer bds to H. Last, if EH = bds

then all individuals in all groups j � ds prefer bds to H, because, by
assumption, under H, pt �= bds with a positive probability, which
implies that H has positive variance, which makes the expecta-
tion bds preferable to H for all agents. In all cases, a weighted
majority strictly prefers bds to H, and hence in a sequential voting
x, leading to H, cannot be the outcome. This contradiction proves
the induction step.

Let us now prove that in the subgame starting with stage
J, pt = bds . To show this, it suffices to prove that pJ

t = bds with
probability 1. Notice that if p̃J

t = bds is proposed, then pt = bds ;
indeed, if this were not the case, then a weighted majority would
prefer to have pt = bds to any distribution H′ of pt conditional on
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the proposal being rejected (the argument is similar to the one in
the previous paragraph), and thus in the sequential voting, agents
will ensure that the new status quo is pJ

t = bds . Now suppose that
pt �= bds with a positive probability; this is only possible if group
ds proposes p̃J

t �= bds with a positive probability. However, in this
case it has a profitable deviation, which is proposing bds and thus
pt = bds . This contradiction proves that in the subgame starting
with stage J, pt = bds .

The last result holds regardless of the play in stages l < J.
Consequently, in equilibrium σ , pt = bds with probability 1, which
completes the proof. �

Proof of Part ii. Take an equilibrium σ , and consider pe-
riod t where the current state is st = s. Notice that by the time
the political decision is made, the policy is already decided (and
in equilibrium, it is pt = bds ) and the continuation utility of a
player from group j is given by Wj(st + 1). In what follows, let
W̄ = maxx∈S Wds (x); it equals Wds (y) for y ∈ �s.

Let us first prove that in any equilibrium, the vector of con-
tinuation utilities V = {

Vj (s)
}s∈S

j∈G satisfies increasing differences.
Indeed, if Q is the transition correspondence in equilibrium σ ,
then V is the unique solution to equation (20), and it may be
obtained through infinite iteration of mapping equation (17), be-
cause, given β < 1, this mapping is a contraction on Rgm in the
L1-metric. Since for any V that satisfies increasing differences, V′

also does by Lemma A2, the limit point V must satisfy increasing
differences.

By Lemma A1, the vector W = {
Wj (s)

}s∈S
j∈G also satisfies in-

creasing differences. As before, let �s = arg maxx∈S Wds (x) (the
maximum is taken over S because all transitions are feasible).
Also, as before, let J be the stage where group ds makes the pro-
posal.

Suppose first that J = g, so group ds is the last to propose.
In that case, ds can ensure that it gets the payoff W̄ . Indeed, if
the current status quo is sJ−1

t+1 ∈ �s then it can propose the same
alternative s̃J

t+1 = sJ−1
t+1 , in which case it will be implemented re-

gardless of how people vote. On the other hand, if sJ−1
t+1 /∈ �s, then

it can propose s̃J
t+1 ∈ �s; then in the voting subgame, this alterna-

tive s̃J
t+1 must be accepted, because a weighted majority (all groups

j � ds if s̃J
t+1 < sJ−1

t+1 and all groups j � ds if s̃J
t+1 > sJ−1

t+1 ) prefer it
to sJ−1

t+1 . Since group ds can ensure its maximum payoff W̄ in this
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subgame, it will do so; consequently, alternatives x�∈�s cannot be
implemented as st + 1.

Consider the other case, where J < g. Let π s(g) = j; suppose,
without loss of generality, that j < ds (the case j > ds is consid-
ered similarly). In this case, we first prove the following: in any
subgame that includes stage g (where j makes a proposal), the ulti-
mate political decision st + 1 satisfies st + 1 ∈ �s, where �s = �s∪{x
∈ S: x < min �s}. Indeed, consider possible values of the current
status quo sg−1

t+1 . If sg−1
t+1 ∈ �s, then no proposal s̃g

t+1 made by group
j may be accepted in equilibrium, unless s̃g

t+1 ∈ �s as well. There-
fore, in this case the statement is correct. If sg−1

t+1 /∈ �s, consider two
possibilities. Suppose that sg−1

t+1 > min �s. Then if group j instead
proposes s̃g

t+1 = min �s, with a similar argument to above, it will
be accepted. Moreover, since Wds (min �s) � Wds (y) for any y ∈ S,
including y > min �s, then j < ds implies Wj(min �s) > Wj(y) for
such y. Consequently, if sg−1

t+1 > min �s, then group j prefers to pro-
pose min �s as compared to proposing any alternative y > min �s.
If it proposes an alternative y < min �s that is subsequently re-
jected, then sg

t+1 = sg−1
t+1 and again group j is better off propos-

ing min �s. Thus, the only alternative action that group j may
(weakly) prefer to proposing min �s is proposing y < min �s that
is subsequently accepted. Consequently, if sg−1

t+1 > min �s, then in
equilibrium either group j proposes min �s, which is accepted, or
some y < min �s that is accepted; in either case sg

t+1 ∈ �s. Finally,
consider the possibility sg−1

t+1 < min �s. The statement may only
fail if group j proposes, with a positive probability, some alterna-
tive y > min �s, y �∈ �s, which is subsequently accepted. In that
case, however, group j has a profitable deviaton: it would do bet-
ter by proposing min �s, since this proposal will be accepted, and
Wds (min �s) > Wds (y) implies, since j < ds, that Wj(min �s) > Wj(y)
as well. This is impossible in equilibrium, which proves that in all
cases, sg

t+1 ∈ �s.
Since pg

t ∈ �s in all subgames, we can prove the following
statement by backward induction: if at some stage l, 0 � l �
g, sl

t+1 = max �s (which also equals max �s), then sg
t+1 ∈ �s. The

base (l = g) is trivial. To establish the inductive step, suppose
that this is true for stage l, and consider stage l − 1. We have
that the current status quo is sl−1

t+1 = max �s. Suppose, to obtain a
contradiction, that sg

t+1 /∈ �s with a positive probability. By induc-
tion, this is only possible if sl

t+1 �= max �s, which, in turn, is only
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possible if proposal s̃l
t+1 �= �s is made and is accepted. However,

we showed that a subsequent subgame will result in sg
t+1 having

some distribution with support in �s and, moreover, with some y
�∈ �s having a positive probability. Notice, however, that all y ∈
�s satisfy Wk(y) � Wk(max �s) for all k � ds, and the inequality is
strict if y ∈ �s\�s for all such k. Thus, in this case a weighted ma-
jority strictly prefers to reject proposal y, which is a contradiction
proving the induction step.

To complete the proof, notice that if group ds proposes in stage
J, then it can always guarantee utility W̄ : if preserving current
status quo sJ−1

t+1 (by proposing s̃J
t+1 = sJ−1

t+1 , so sJ
t+1 = sJ−1

t+1 ) results in
st + 1 �∈�s with a positive probability, group ds can propose max �s,
which will be accepted, since all groups k � ds strictly prefer sJ

t+1 =
max �s to sJ

t+1 = sJ−1
t+1 . Consequently, st + 1 ∈ �s with probability 1,

which completes the proof. �
Proof of Part iii. Take equilibrium σ , and take x, y ∈ S such

that x < y. Suppose that qx, a > 0 and qy, b > 0; by part ii, this im-
plies a ∈ �x = arg maxz∈S Wdx (z) and b ∈ �y = arg maxz∈S Wdy (z).

We proved already that in equilibrium,
{
Wj (x)

}x∈S
j∈G satisfy increas-

ing differences. Since x < y, dx < dy, and by Lemma A3 (where we
set X = Y = S), we have a � b. �

Proof of Part iv. To prove this part of the theorem, we show
that for every equilibrium in which there is a possible transition to
more than two states (i.e., s ∈ S, |�s\{s}| � 2), the model param-
eters ({bk}k ∈ G, {Ak}k ∈ G, {γ k}k ∈ G, {μjk}j, k ∈ G, β) satisfy a non-
trivial polynomial equation with rational coefficients (we achieve
this by showing that if this were not the case, some equilibrium
condition would be violated). Then because the set of nontrivial
polynomials with rational coefficients is countable, the set of such
parameters has measure 0. (In fact, we establish a stronger re-
sult, that the parameters must satisfy one of a finite subset of
such polynomials). In what follows, let F denote the smallest field
that contains Q and all the above-mentioned parameters (e.g.,
Hungerford 1974). Furthermore, let F̄ be the set of all solutions to
polynomial equations with coefficients in F. Then standard argu-
ments show that F̄ is an algebraically closed field.

Suppose, to obtain a contradiction, that for some parame-
ter values that do not satisfy a nontrivial polynomial equation
with coefficients in Q, the statement is nevertheless wrong. With-
out loss of generality, suppose that the set of states S contains
the fewest elements among any such examples. Then the groups
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{ds}s ∈ S belong to the same irreducible component of matrix M
(otherwise there are at least two groups of states without tran-
sition between them, and we can remove one such group), and
we can without loss of generality assume that there is no other
component (preferences of individuals in the other groups, if they
exist, are irrelevant).

Let Z be the (nonempty) set of states s such that |�s\{s}| �
2. Consider first the case where there is s such that �s ∩ [s + 1,
m] � 2. Then s = 1 (otherwise all states to the left of x could be
removed, thus violating the assumption that the number of states
in S is minimal). Furthermore, for every state x < m, there is
y > x with y ∈ �x (otherwise, monotonicity implies that for all
z � x, transitions to states greater than x are impossible, and then
those states may be removed). If so, for all x ∈ S, �x � x (otherwise,
if we take the smallest x for which this is violated, we would get a
contradiction with monotonicity). Consequently, for all x ∈ (1, m),
there is a unique y ∈ �x such that y > x (for x = 1 there are two
such y, and for x = m there is none). Now let A⊂S be defined by
A = {x ∈ S: |�x| � 2}. Now for each x ∈ A, let ρx = max �x and
let λx = max (�x\{ρx}); notice that for x > 1, λx = x, and for x = 1,
λx > 1. In what follows, for x ∈ A, let αx = qx�x , then for x ∈ A\{1},
qxλx = 1 − αx.

Let us prove by backward induction over the set of elements
in A that the following is true for every element x in A. First, the
equilibrium utility of group dx in state x, Wdx (�x), is not equal to its
utility if transitions correspondence was Q̃ such that q̃y· = qy· for y
�= x and q̃xλx = 1, while q̃xy = 0 for y �= x. Second, if x �= 1, then the
transition probability to �x, αx, satisfies a nontrivial polynomial
equation with coefficients being polynomials in the parameters
of the model. Third, if x �= 1, then for any group j ∈ G and any
state y < �x, let Hjx

(
bdy

) = 1
bdy

(
Wj (�x) − ∑∞

τ=1 βτ−1μ
(τ )
jdy

b2
dy

)
be a

function of bdy for all other parameters of the model fixed; then it
is a well-defined real analytic function in the neighborhood of the
true parameter bdy , and any analytic continuation of this function
is bounded at ∞ (more precisely, there is C, K > 0 such that

∣∣bdy

∣∣ >

K implies
∣∣Hjx

(
bdy

)∣∣ < C). Indeed, if we prove this for all x, then
the first property applied to x = 1 would imply that the equilibrium
utility of group d1 is not equal to its utility when the society
immediately transits to λ1 > 1, which would be a contradiction.

Base: If x = max A, then equating Wdx (�x) to Wdx (x, x, x, . . .)
results in a nontrivial polynomial equation (it is nontrivial,
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because Wdx (�x) − ∑∞
τ=1 βτ−1μ

(τ )
dxdx

b2
x is linear in bx, as the so-

ciety never gets to state x on a path starting from �x, and
the only terms that are quadratic in bx come from individu-
als from group dx being in this group in the future, whereas
Wdx (x, x, x, . . .) − ∑∞

τ=1 βτ−1μ
(τ )
dxdx

b2
x has quadratic terms in bx, and

the coefficient is nonzero because it is polynomial in other pa-
rameters, and it cannot be equal to 0 if the parameters are
generic). Now, continuation values

{
Vj (s)

}s�x
j∈G solve equation (20)

with q·· as linear functions of αx, which implies that
{
Vj (s)

}s�x
j∈G

can be expressed as ratios of polynomials of αx; then equating
Wdx (�x) to Wdx (x) results in a nontrivial polynomial of αx (it
is nontrivial, because it holds for some αx as there is such an
equilibrium, but not for some other, say αx = 0, as in that case
Wdx (x) = Wdx (x, x, x, . . .) �= Wdx (�x), as we just proved). Finally,
the function Hjx

(
bdy

)
does not depend on αx, and the result fol-

lows immediately by evaluating Wj(�x).
Step: suppose that the result is proven for z ∈ A such that

z > x, let us prove it for x. Notice that as before, equating Wdx (�x)
to Wdx (x, x, x, . . .) would give rise to a polynomial equation in all
parameters of the model and {αy}y ∈ A, y > x. As before, this equation
is nontrivial, because Hdx x

(
bdx

)
is bounded for bdx high enough by

induction (since x < �x), while Wdx (x, x, x, . . .) − ∑∞
τ=1 βτ−1μ

(τ )
dxdx

b2
x

has quadratic terms and thus is unbounded, even after dividing by
bdx . Now suppose x > 1; as before, we get that equating Wdx (�x) to
Wdx (x) gives rise to a polynomial equation in αx with coefficients
in all parameters of the model and also {αy}y ∈ A, y > x (which is
nontrivial for the same reasons as before). Since F̄ is algebraically
closed, αx must satisfy a polynomial equation with coefficients in
F. Moreover, since F consists of ratios of polynomials of the param-
eters of the model with coefficients in Q, we can multiply by the
common denominator to prove the second part of the statement.

Finally, we need to prove that if x > 1, then for any group
j ∈ G and any state y < �x, Hjx

(
bdy

)
is bounded for

∣∣bdy

∣∣ large
enough. Notice that Hjx

(
bdy

)
depends on bdy explicitly (and it is a

linear function), and also through {αy}y ∈ A, y > x, which can appear
in both the numerator and the denominator. It now suffices to
prove that the denominator does not tend to 0 as bdy tends to ∞.
Since each αy satisfies a polynomial equation with coefficients that
are polynomials in the parameters of the model, either αy does not
depend on bdy explicitly, or there is only a finite number of limit

Downloaded from https://academic.oup.com/qje/article-abstract/133/2/1041/4597989
by MIT Libraries user
on 25 April 2018



1090 QUARTERLY JOURNAL OF ECONOMICS

points (including ∞) of the solutions to this equation as bdy tends
to ∞. If for at least one of these limit points, the denominator
tends to 0, this yields a polynomial equation on αz for z being the
smallest element in A greater than x. This means that there are
two polynomial equations on αz that have a common root, which
is only possible if their resultant equals 0, which again gives a
polynomial condition on the parameters of the model. Since by
assumption such a condition cannot be satisfied, we have proved
the induction step.

This backward induction leads to a contradiction, as it means
that the society may not be indifferent between transitioning from
state 1 to λ1 and �1. This proves that there is no state s ∈ Z such
that �s ∩ [s + 1, m] � 2. We can similarly prove that there is
no state s ∈ Z such that �s ∩ [1, s − 1] � 2. Consequently, if
Z is nonempty, there must exist s ∈ Z and x, y ∈ �s such that
x < s < y. In this case, we can follow a very similar logic and
arrive at a similar contradiction. This implies that Z is empty,
which completes the proof. �

The following lemmas will be used in several proofs. (Proofs
of these and all subsequent lemmas are relegated to Online
Appendix B.)

LEMMA A4. Suppose that σ is an equilibrium with transition cor-
respondence Q in a game where the set of states is S and set
of feasible transitions is F. Suppose that S′⊂S is such that for
any x ∈ S′ and y ∈ S\S′, qxy = 0 (i.e., S′ is such that Q does
not include transitions out of it, which is true, for example,
if S′ = S), and suppose that the set of feasible transitions F′

on S′ is such that for x, y ∈ S′, qxy > 0 implies y ∈ F ′
x, and

y ∈ F ′
x implies y ∈ Fx (i.e., F′ is more restrictive than F, but

is nevertheless consistent with Q). Then there is an equilib-
rium σ ′ in a game where the set of states is S′ and the set of
feasible transitions is F′ (and other parameters are the same)
such that its transition correspondence Q′ satisfies q′

xy = qxy
for any x, y ∈ S′.

LEMMA A5. Let Q = {qx, y}x, y ∈ S be a monotone transition cor-
respondence, and suppose that for any a ∈ S and b ∈ �a,
Wda (b) = W̃da , which does not depend on b. Suppose that for
some x′, y′ ∈ S, we have Wdx′ (y′) > W̃dx′ . Then there also ex-
ist x, y ∈ S such that Wdx (y) > W̃dx and, in addition, the
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correspondence Q′ : S → S given by

(21) q′
sa =

⎧⎪⎨
⎪⎩

qsa if s �= x,

1 if s = x and a = y,

0 if s = x and a �= y

is monotone.

LEMMA A6. Suppose that for some j, the sequence b(t)
j is nonde-

creasing (respectively, nonincreasing). Then if in state s ∈ S,
j = ds, then �s � s (respectively, �s � s).

LEMMA A7. Suppose that for some j, the sequence b(t)
j is

nondecreasing (respectively, nonincreasing). Furthermore,
suppose that some state s ∈ S satisfies j = ds, and
arg minz∈S

∣∣∣b(∞)
j − bdz

∣∣∣ = {s}. Then �s = {s}.

LEMMA A8. Suppose that for some j, the sequence b(t)
j is non-

decreasing and, moreover, there is some τ � 1 such that
b(τ )

j �= b(τ+1)
j . Fix a state s where j = ds and consider any mono-

tone set of mappings Q = {qxy} for x �= s. Suppose that for
some x > s, �(x) � x. For any α, denote the continuation util-
ity of individuals from current group j from moving to state
x by W (τ )

j (x), and from staying in s and moving to x with
probability α in each period thereafter by W (τ )

j (s; α). Let

f (α) = Wj (s; α) − Wj (x) .

Then f satisfies the following strict single-crossing property:
if for some α, f(α) = 0, then f(α′) > 0 for α′ > α and f(α′) < 0
for α′ < α.

Proof of Theorem 2. Uniqueness when β is sufficiently small
follows from the following argument. Let us show that in equilib-
rium, from state s the society must transit to state z that mini-
mizes

∣∣∣bdz − b(1)
ds

∣∣∣. Let β0 be defined by β0 = ζ

ζ+2Ū
, where

ζ = min
s,y,z∈S,

∣∣∣bdy −b(1)
ds

∣∣∣>∣∣∣bdz−b(1)
ds

∣∣∣
((

bdy − b(1)
ds

)2
−

(
bdz − b(1)

ds

)2
)

.
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Suppose, to obtain a contradiction, that for some s ∈ S, a tran-
sition to a state z that does not minimize

∣∣∣bdz − b(1)
ds

∣∣∣ occurs. This

means that for some y ∈ S,
∣∣∣bdy − b(1)

ds

∣∣∣ <

∣∣∣bdz − b(1)
ds

∣∣∣. Now consider
the utility of individuals from group ds if they transitioned to y
instead. Their gain in utility (after factor β) would be

Wds (y) − Wds (z) =
∑
k∈G

μdsk (Vk (y) − Vk (z))

=
∑
k∈G

μdsk(Ak − (bk − bdy)
2 − Ak+(bk − bdz)

2)+β(. . .)

�
∑
k∈G

μdsk

((
bk − bdz

)2 − (
bk − bdy

)2
)

+ β

1 − β
2Ū

= (
bdy − bdz

) ∑
k∈G

μdsk
(
2bk − bdy − bdz

) + β

1 − β
2Ū

= (
bdy − bdz

) (
2b(1)

ds
− bdy − bdz

)
+ β

1 − β
2Ū

=
(
b(1)

ds
− bdz

)2
−

(
b(1)

ds
− bdy

)2
+ β

1 − β
2Ū > 0,

provided that β ∈ (0, β0). Therefore, a transition to z does not
maximize the continuation utility of the pivotal group ds (they
would be better off moving to y), which contradicts part ii of
Theorem 1. This shows that for any s, transition to state z that
minimizes

∣∣∣bdz − b(1)
ds

∣∣∣ must occur. Because this state is generically
unique (in the space of social mobility matrixes), the equilibrium
is generically unique for β < β0.

We now turn to generic uniqueness under Assumption 2,
which will be proved in several steps.

Step 1. Suppose that there are two equilibria σ 1 and σ 2, and
let Q1 and Q2 be the corresponding transition matrixes. Then, for
generic parameter values, if Q1 �= Q2, then there are at least two
states x, y ∈ S, x �= y, such that the distributions q1

x· �= q2
x· and q1

y· �=
q2

y·. In other words, it is impossible that transition probabilities
from only one state are different.

Proof. Suppose not, so there is a unique state s such that q1
s· �=

q2
s·. Let us first prove that generically for set � = (

�1
s ∪ �2

s

) \ {s},
|�| = 1. Indeed, if � is empty, �1

s = �2
s = {s}, hence q1

s· = q2
s·, which
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contradicts the choice of s. On the other hand, suppose that there
are x, y ∈ � such that x �= y; without loss of generality, x < y.
Without loss of generality, suppose x ∈ �1

s . Then by part iv of
Theorem 1, for generic parameter values, y /∈ �1

s , which means
that y ∈ �2

s , which, again by part iv of Theorem 1, implies x /∈ �2
s

for generic parameter values. Now consider three possibilities. If
x < s < y, then, from part iii of Theorem 1, x ∈ �1

s implies �1
z � x

for z < s; moreover, for such z, q2
z· = q1

z·. Therefore, if society moves
from state s to x, the continuation utilities of group ds should be
the same for both equilibria: W1

ds
(x) = W2

ds
(x). Similarly, y ∈ �2

s

implies �2
z � y for all z > s; moreover, for such z, q1

z· = q2
z·. Thus,

if the society moves from state s to y, the continuation utilities
again coincide: W1

ds
(y) = W2

ds
(y). But by part ii of Theorem 1, we

have W1
ds

(x) � W1
ds

(y) = W2
ds

(y) � W2
ds

(x) = W1
ds

(x), which implies
that both inequalities hold with equality, in particular, W1

ds
(x) =

W1
ds

(y). This means x, y ∈ �1
s , which, as shown in the proof of part

iv of Theorem 1, is impossible for generic parameter values. The
remaining possibilities are x < y < s and s < x < y; they are
considered similarly.

We have therefore proved that there is a unique x ∈
�. Suppose that x > s (the case of x < s is entirely
analogous). Notice that q1

sx �= q2
sx; otherwise, since �1

s ⊂ {s, x}
and �2

s ⊂ {s, x} we would have q1
ss = q2

ss, again meaning that
q1

s· = q2
s· and contradicting the choice of s. Without loss of

generality, assume q1
sx < q2

sx, so in equilibrium σ 1 the soci-
ety stays in s longer than in equilibrium σ 2, in expecta-
tion; this means, in particular, q1

sx < 1 and q2
sx > 0. It must

be that the sequence b(t)
ds

is nondecreasing and, moreover,
it is nonstationary, for otherwise q2

sx > 0 would contradict
Lemma A6.

Let j = ds. The continuation utilities from moving to x are
the same in both equilibria: W1

j (x) = W2
j (x), because the transi-

tion probabilities are identical thereafter. Moreover, in equilib-
rium σ 2, transiting to x is a best response, so W2

j (x) � W2
j (s),

and in equilibrium σ 1, staying is a best response, so W1
j (s) �

W1
j (x). We thus have W1

j (s) � W1
j (x) = W2

j (x) � W2
j (s), mean-

ing that the utility of individuals from group j from staying
is at least as high under σ 1 as under σ 2. Denote Wj(s; α)
the utility of staying in s if the subsequent equilibrium play
has probability α of moving to x; then Wj

(
s; q1

sx

) = W1
j (s) and
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Wj
(
s; q2

sx

) = W2
j (s). By Lemma A8, the function f (α) :

[
0, 1

] → R,
defined by f(α) = Wj(s; α) − Wj(x), satisfies the strict single-
crossing condition. Now, if f

(
q1

sx

) = 0, then f
(
q2

sx

)
> 0, meaning

that Wj
(
s; q2

sx

)
> Wj (x), which contradicts that moving to x is

a best response in σ 2. Similarly, if f
(
q2

sx

) = 0, then f
(
q1

sx

)
< 0,

meaning that Wj
(
s; q1

sx

)
< Wj (x), which contradicts that stay-

ing at s is a best response in σ 1. If f
(
q1

sx

) �= 0 and f
(
q2

sx

) �= 0,
then since staying in s is a best response in σ 1, we must
have f

(
q1

sx

)
> 0; similarly, we must have f

(
q2

sx

)
< 0. But then

by continuity there is α ∈ (
q1

sx, q2
sx

)
such that f(α) = 0. In that

case, it must be that f
(
q1

sx

)
< 0 < f

(
q2

sx

)
. But this would con-

tradict Lemma A8. This contradiction completes the proof of
Step 1.

Step 2. Let m be the minimal number of states for which there
are two equilibria, σ 1 and σ 2. Then m = 2.

Proof. Suppose not, then either m = 1 or m � 3. If m = 1,
there is only one possible transition mapping: Q with q11 = 1.
Suppose m > 3 and let Q1 and Q2 be the transition matrixes in
equilibria σ 1 and σ 2. Let Z ⊂ S be the set of z ∈ S such that
q1

z· and q2
z· are different distributions; from Step 1 it follows that

|Z| � 2. In what follows, let L = {
s ∈ S : �1

s � s,�2
s � s

}
and R ={

s ∈ S : �s � s,�2
s � s

}
. By Lemma A6, L∪R = S; let us denote

I = L ∩ R.
First, we show that if s ∈ S and 1 < s < m, then s �∈ I. Indeed,

otherwise, we would have �1
s = �2

s = {s}. Take x ∈ Z\{s}. If x < s,
then by Lemma A4 there exist two equilibria σ 1|[1, s] and σ 2|[1, s]
in the game with the set of states S′ = S ∩ [1, s]. Similarly, if
x > s, then there are two equilibria σ 1|[s, m] and σ 2|[s, m] in the
game with the set of states S′ = S ∩ [s, m]. In either case, we get a
contradiction with m the lowest number of states where multiple
equilibria are possible.

Second, let x = min (Z\{1}) and y = max (Z\{m}) (both are
well defined because |Z| � 2). We must have x ∈ L. Indeed, suppose
not, then x ∈ R. If x = m, then we have �1

x = �2
x = {x} by definition

of R, and then x �∈ Z, a contradiction. If, on the other hand, x ∈ R
and x < m, then, again using Lemma A4, we get that there exist
two different equilibria σ 1|[x, m] and σ 2|[x, m] in the game with the
set of states S′ = S ∩ [x, m], a contradiction. We can similarly
prove that y ∈ R.

There are two possibilities. If Z �= {1, m}, then
x = min (Z\{1}) = min (Z ∩ [2, m − 1]) � max (Z ∩ [2,
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m − 1]) = max (Z\{m}) = y. This means, again by Lemma A4
that σ 1|[x, y] and σ 2|[x, y] are two different equilibria on [x, y], which
again contradicts the choice of m. The remaining case to consider
is Z = {1, m}. Since m � 3, 2 �∈ {1, m}. Then if 2 ∈ L, then we
have two equilibria σ 1|[1, 2] and σ 2|[1, 2] on [1, 2] and if 2 ∈ R, we
have two different equilibria σ 1|[2, m] and σ 2|[2, m] on [2, m]. In ei-
ther case, we get a contradiction; this contradiction proves that
m = 2.

Completing the proof. We have shown that there is a game
with two states, S = {1, 2}, and two equilibria. Moreover, the set of
states Z where q1

z· and q2
z· are different is the whole set S. Without

loss of generality, suppose q1
11 > q2

11. Since q2
11 < 1, q2

12 > 0 and in a
monotone equilibrium we must have q2

22 = 1; this means q1
22 < 1,

and thus q1
21 > 0 and again by monotonicity q1

11 = 1. From Lemma
A6, this implies that the sequence b(t)

d1
is nondecreasing (because

equilibrium σ 2 exists) and b(t)
d2

is nonincreasing (because equilib-

rium σ 1 exists). Suppose b(∞)
d1

<
bd1 +bd2

2 , then Lemma A7 implies

that q1
11 = q2

11 = 1, which contradicts q1
11 > q2

11. If b(∞)
d2

>
bd1 +bd2

2 ,
then we get a similar contradiction. Since b(∞)

d1
� b(∞)

d2
by Assump-

tion 1, we must have b(∞)
d1

= b(∞)
d2

= bd1 +bd2
2 , which is nongeneric.

This proves that under Assumption 2, for generic parameter val-
ues, we have a unique equilibrium. �

Proof of Theorem 3. Part i. In this proof, let Zs =
arg minz∈S

∣∣∣bdz − b(∞)
ds

∣∣∣; this set is either a singleton or consists of
two adjacent states. The result follows from the following three
steps.

Step 1. Denote

ξ = min
s,y,z∈S,

∣∣∣bdy −b(∞)
ds

∣∣∣>∣∣∣bdz−b(∞)
ds

∣∣∣
((

bdy − b(∞)
ds

)2
−

(
bdz − b(∞)

ds

)2
)

,

� = bm − b1,

and take ε = ξ

4�
. For such ε there exists T � 1 such that for all s ∈ S

and t > T,
∣∣∣b(t)

ds
− b(∞)

ds

∣∣∣ < ε. Let β̃ = (
1 − ξ

4�2

) 1
T . Then for β ∈ (β̃, 1),

if for s ∈ S, some state z ∈ Zs is stable (satisfies �z = {z}), and
the equilibrium path starting from state x never reaches the set
Zs, then the decisive group in s, ds, strictly prefers moving to z to
moving to x: Wds (z) > Wds (x).

Downloaded from https://academic.oup.com/qje/article-abstract/133/2/1041/4597989
by MIT Libraries user
on 25 April 2018



1096 QUARTERLY JOURNAL OF ECONOMICS

Proof. Consider the following difference:

Wds (z) − Wds (x)

=
∑
k∈G

μdsk (Vk (z) − Vk (x))

=
∑
t�1

∑
k∈G

∑
y∈S

βt−1μ
(t)
dsk Pr (st = y)

(
Ak − (

bk − bdz

)2− Ak+
(
bk − bdy

)2
)

=
∑
t�1

∑
k∈G

∑
y∈S\Zs

βt−1μ
(t)
dsk Pr (st = y)

((
bk − bdy

)2 − (
bk − bdz

)2
)

=
∑
t�1

∑
k∈G

∑
y∈S\Zs

βt−1μ
(t)
dsk Pr (st = y)

(
bdz − bdy

) (
2bk − bdy − bdz

)

=
∑
t�1

∑
y∈S\Zs

βt−1 Pr (st = y)
(
bdz − bdy

) (
2b(t)

ds
− bdy − bdz

)

=
∑
t�1

∑
y∈S\Zs

βt−1 Pr (st = y)
((

bdz − bdy

) (
2b(∞)

ds
− bdy − bdz

)

+ 2
(
bdz − bdy

) (
b(t)

ds
− b(∞)

ds

))

=
∑
t�1

∑
y∈S\Zs

βt−1 Pr (st = y)
((

b(∞)
ds

− bdy

)2
−

(
b(∞)

ds
− bdz

)2

+ 2
(
bdz − bdy

) (
b(t)

ds
− b(∞)

ds

))

� β

1 − β
ξ − 2

β
(
1 − βT

)
1 − β

�2 − 2
βT +1

1 − β
�ε

>
β

1 − β

(
ξ − 2

(
1 − β̃T

)
�2 − 2�ε

)

= β

1 − β

(
ξ − 2

ξ

4�2 �2 − 2�
ξ

4�

)
= 0.

Thus, Wds (z) > Wds (x).
Step 2. Suppose that β is sufficiently close to 1, and in some

equilibrium, for state s ∈ S, at least one of the states z ∈ Zs is
stable. Then with probability 1 the society starting from s will
end up in one of these states (in some z ∈ Zs that is stable).

Proof. If s ∈ Zs and is stable, then the statement is trivial.
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Suppose s ∈ Zs and is not stable. Without loss of generality,
s < z (where z is the stable state from Zs). Then �s � z due to
monotonicity. On the other hand, from Step 1 it follows that �s �
s, as otherwise members of ds would be strictly better off moving
to z. Thus, starting from s, only s and z may be reached, and since
s is unstable, z is reached with a positive probability every period.
Thus, it is reached with probability 1.

Finally, suppose s �∈ Zs. Again, without loss of generality,
s < Zs. From Step 1 it follows that �s � s. If �s �= {s}, then y
∈ �s for some y > s, and then by monotonicity y � z for z ∈ Zs
that is stable. Moreover, the last inequality holds for all states
that may be reached from y. But such paths must reach Zs with
probability 1 (otherwise it would contradict the result in Step 1),
and once they do, they must reach a stable state in Zs. The only
remaining possibility is �s = {s}, so s is stable. But this is im-
possible from Step 1. This proves that a stable state from Zs is
reached with probability 1.

Step 3. For sufficiently high β, there exists an equilibrium
such that for each state s ∈ S, at least one of the states z ∈ Zs is
stable: �z = {z}.

Proof. First, notice that for all states z ∈ Zs, the corre-
sponding bliss point of the decision makers’ distant future selves
is the same, b(∞)

dz
= b(∞)

ds
, and thus Zz = Zs. This follows from

Assumption 1, which implies that each component is a connected
set (intersection of S with an interval), and, for each state x in this
component, b(∞)

dx
lies in the convex hull of the current selves’ bliss

points.
We now define the following set of feasible transitions, so as

to make use of the more general result established in the proof of
Theorem 1. Suppose first that Zs is a singleton {z}. Then define
the set of feasible transitions {Fx}x ∈ S in the following way: y ∈
Fx if either x < z and y � z, or x > z and y � z, or x = y = z
(in other words, we postulate that state z is stable, and allow
any transitions that do not lead from the left of z to the right
of z or vice versa). We established that this game has an equi-
librium, with a corresponding transition matrix Q̃; let �̃s be the
set {x ∈ S : q̃sx > 0}. By construction, q̃zz = 1, so �̃z = {z}. If there
exists a symmetric monotone MPE in the original game (without
restricted transitions) that also gives rise to transition matrix Q̃,
the result is proven. If not, then by Lemma A5 there must exist a
monotone deviation, namely, states x, y, a ∈ S such that q̃xa > 0,
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Wdx (y) > Wdx (a) and, in addition, the correspondence q′ : S → S
defined by equation (21) (replacing q with q̃) is monotone.

Notice that it must be that x = z. If not, then without loss of
generality assume x > z, and monotonicity implies y � z and a �
z (because z is stable under Q̃), but then Wdx (y) > Wdx (a) would
be equivalent to W̃dx (y) > W̃dx (a) as the paths would be identical
in the two games, with or without restriction on transitions. But
the last equation would contradict that Q̃ is a transition matrix
of a MPE. Thus, x = z, and then a = x = z (q̃za > 0 implies a = z).
Now, Wdx (y) > Wdx (a) implies Wdz (y) > Wdz (z), so y �= z. Without
loss of generality, assume y > z. But by monotonicity of this devi-
ation, we must have �̃ (y) � y, and therefore all paths that start
from y never reach z. But then Wdz (y) > Wdz (z) contradicts Step
1, because, as argued above, Zz = Zs = {z}. This contradiction
completes the proof in this case.

Now assume that Zs consists of two points, z < z′. Here, we
need an auxiliary step. Introduce the set of feasible transitions F′

in the following way: (x, y) ∈ F′ if either x < z and y � z′, or x > z′ and
y � z, or x, y ∈ Zs. As before, there is an equilibrium σ ′ that gives
rise to a transition mapping Q′. By feasibility, it is only possible
to transition from z and z′ onto this set, and monotonicity implies
that at least one of the states z and z′ is stable in this equilibrium.
Without loss of generality, suppose that state z is stable; then from
z′ it may only be possible to stay in z′ or transit to z. Now, let us
lift the restriction on transitions. If matrix Q′ corresponds to an
equilibrium in the original game, the result is proven. Otherwise,
as before, by Lemma A5 there must exist a monotone deviation.
For the tuple (x, y, a) that constitutes a deviation, it is impossible
that x < z or x > z′ (there is no monotone deviation that would
not be feasible under F′). Suppose instead that x ∈ Zs = {z, z′}.
A deviation within Zs (i.e., y ∈ Zs) cannot yield a higher utility
to ds, because it was feasible under F′. Thus, the remaining case
to consider is y �∈ Zs. If y < z, then this deviation leads to a path
that never reaches Zs, which contradicts Step 1. If y > z, then
monotonicity of deviation implies that from state y it is impossible
to move to any state b < y, and in particular to return to Zs, which
again contradicts Step 1. This contradiction proves Step 3 for the
case where Zs consists of two points. This completes the proof of
part i of the theorem.

Part ii. By part i, there exists an equilibrium with the desired
properties, and since the equilibrium is unique, the result follows.
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Part iii. This follows immediately from part ii. �
Proof of Theorem 4. Let us first prove that there is an equi-

librium with stable democracy under both M and M′; since we
consider only the cases of unique equilibria, it would imply that
democracy is stable under both M and M′. Let us do this in case
of M. Impose the following restrictions on transitions: transition
from y to z is infeasible if y � x < z or z < x � y and feasible
otherwise. In the proof of Theorem 1, we established that there
is an equilibrium in this case under some transition probability
matrix Q; since transitions from x were ruled out, qxx = 1. Let us
now lift the requirement on feasibility of transitions and assume
that all transitions are feasible. Lemma A5 implies that if matrix
Q does not correspond to an equilibrium, then there must be a de-
viation at state x. From the farsighted stability condition (9), we
have

bdx−1 +bdx

2 � b∞
dx

� bdx +bdx+1
2 , and

bdx−1 +bdx

2 � bdx � bdx +bdx+1
2 , so un-

der Assumption 2, we can conclude that
bdx−1 +bdx

2 � b(t)
dx

� bdx +bdx+1
2

for any t. Therefore, there is no deviation that would make group
dx better off. This implies that there is an equilibrium with transi-
tion matrix Q, that is, an equilibrium where democracy x is stable.
This proves that democracy is stable under M and, analogously,
under M′.

Suppose that democracy is asymptotically stable under M.
Consider equilibrium σ . Denote democracy by x and take y = x − 1;
if y ∈ G, then asymptotic stability implies that qyx > 0. This means
that b(t)

dy
is nondecreasing: otherwise, Assumption 2 would imply

that it is nonincreasing, and then by Lemma A6 applied to matrix
M, would imply that qyx > 0 is impossible.

Let us prove that q′
yx > 0. Suppose not; then since x is sta-

ble, this is only possible if �′
y � y. Now, applying Lemma A6 to

matrix M′, we have �′
y � y; consequently, the only possibility is

�′
y = {y}, so y is stable under M′. If �′

y = {y} in equilibrium, then
W ′

dy
(y) � W ′

dy
(x) by part ii of Theorem 1. Now for matrix M, taking

into account that b(t)
dy

� b′(t)
dy

for every t � 0, single-crossing implies
that Wdy (y, y, . . .) � Wdy (x), where the first term is the utility of
members of dy if the society stays in y forever. But this implies,
by Lemma A4, that if the set of states is restricted to {x, y}, then
under M there is an equilibrium where both x and y are stable.
On the other hand, the same Lemma A4 implies that there is also
an equilibrium σ |{x, y}, where x is stable, but y is not. However, ex-
istence of two such equilibria would contradict Lemma A8 (which
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is applicable because strict inequality b(t)
j < b′(t)

j for some t implies

that b(t)
j < b(∞)

j , thus b(τ )
j < b(τ+1)

j for some τ � t). This contradic-
tion implies that the hypothesis that q′

yx = 0 is wrong, and in fact
q′

yx > 0. Now, b(t)
dy

being nondecreasing implies that �y � y, and
since �x = {x}, we must have �y ⊂ {x, y}. Consequently, with
probability 1, starting from y there is convergence to x. The case
of y = x + 1 is considered similarly.

Finally, we prove that convergence to democracy is faster un-
der M′ than under M as claimed in note 24. Consider convergence
from y = x − 1 (the case of convergence from z = x + 1 is considered
similarly). We need to prove that q′

yx > qyx. Since x is asymptot-
ically stable, q(t)

xa > 0 and q(t)
ya > 0 are possible for a ∈ {x, y} only.

Therefore, we have (using the same calculus as in the proof of Step
1 in Theorem 3):

β
(
Wj (x) − Wj (y)

) =
∞∑

t=1

βt
((

q(t)
yx − q(t)

xx

) (
b(t)

j − bdx

)2

+ (
q(t)

yy − q(t)
xy

) (
b(t)

j − bdy

)2
)

.

Notice that q(t)
yx = 1 − (

1 − qyx
)t−1, q(t)

xx = 1, q(t)
yy = (

1 − qyx
)t−1, and

q(t)
xy = 0; this implies

Wj (x) − Wj (y) =
∞∑

t=1

(
β

(
1 − qyx

))t−1
((

b(t)
j − bdy

)2
−

(
b(t)

j − bdx

)2
)

=
∞∑

t=1

(
β

(
1 − qyx

))t−1
(
2b(t)

j − bdx − bdy

) (
bdx − bdy

)

= (
bdx − bdy

) ∞∑
t=1

(
β

(
1 − qyx

))t−1
(
2b(t)

j − bdx − bdy

)
.

Let us denote α = qyx. In terms of notation of Lemma A8 we
have

f (α) = Wj (y) − Wj (x) = − (
bdx − bdy

) ∞∑
t=1

(β (1 − α))t−1

×
(
2b(t)

j − bdx − bdy

)
.
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If, instead of transition matrix M we used matrix M′, but with the
same probability α of transition from y to x equal, we would obtain
(similarly)

f ′ (α) = − (
bdx − bdy

) ∞∑
t=1

(β (1 − α))t−1
(
2b′(t)

j − bdx − bdy

)
.

Since we have b′(t)
j � b(t)

j for all t with at least one strict inequality,
we have f′(α) < f(α).

Notice that if q′
yx = 1, the result is proven (either qyx = q′

yx = 1
or qyx < 1 = q′

yx), so assume q′
yx < 1 from now on. Consider two

cases. If qyx < 1, then since qyx > 0 (as x is asymptotically stable
under M), α = qyx must satisfy f(α) = 0. This implies f′(a) < 0.
Now, since q′

yx ∈ (0, 1), it must satisfy f ′ (q′
yx

) = 0, and then by
Lemma A8 we must have qyx = α < q′

yx. Now consider the second
case, where qyx = 1. By part ii of Theorem 1, we must have f(α) �
0, in which case f′(1) = f′(α) < 0. By Lemma A8 and continuity of
f′(·), we must have f′(ξ ) < 0 for all ξ ∈ [0, 1], and thus f ′ (q′

yx

)
< 0.

Again by Theorem 1 this is only possible if q′
yx = 1. �

Proof of Theorem 5. Suppose that b(∞)
dx

� bdx (the opposite case
is analogous). Since condition (9) does not hold, we have that
bdx−2 +bdx−1

2 � b(∞)
dx−1

� b(∞)
dx

<
bdx−1 +bdx

2 . In this case,
bdx−2 +bdx−1

2 � b(∞)
dx−1

<
bdx−1 +bdx

2 implies, using the existence of equilibrium with restricted
transitions (similarly to the proof of Theorem 4 and using As-
sumption 3) and then Lemma A5, that under both M and M′ there
are equilibria where state x − 1 is stable. If so, democracy x is not
asymptotically stable under either M or M′.

Suppose, to obtain a contradiction, that democracy is not sta-
ble under M, but is stable under M′. Denoting y = x − 1, Lemma
A6 and the fact that y is stable implies that �x ∈ {x, y}. Then since
x is not stable under M, qxy > 0, furthermore, since x is stable un-
der M′, q′

xx = 1. Since b(∞)
dx

< bdx , the fact that mobility under M′

is faster than under M implies that b(t)
dx

� b′(t)
dx

for all t � 1, with
at least one strict inequality. If so, taking the equilibrium under
M and changing transition probabilities so that x is stable would
give another equilibrium under M (with the set of states restricted
to {x, y}), similarly to the proof of Theorem 4. However existence
of two such equilibria contradicts Lemma A8; thus if democracy
is not stable under M, then it is not stable under M′ either. �
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Proof of Corollary 1. Without loss of generality, assume that
the sequence b(t)

dx
is nondecreasing. We first show that state

x is not asymptotically stable. If it is not stable, this follows
immediately, so suppose it is stable. Consider the state x + 1. If
b(t)

dx+1
is also nondecreasing, then �x + 1 � x + 1 by Lemma A6, and

thus starting from x + 1 the society cannot reach x. If b(t)
dx+1

is nonin-
creasing, then either �x + 1 = {x + 1} or x ∈ �x + 1, because x is sta-
ble. In the former case, the result is proved, so suppose x ∈ �x + 1.
But then, since condition (9) is violated, b(∞)

dx+1
= b(∞)

dx
>

bdx +bdx+1
2 ,

therefore, b(t)
dx+1

>
bdx +bdx+1

2 for all t. By Lemma A7 we then have
�x + 1 = {x + 1}, a contradiction. This contradiction shows that x
is not asymptotically stable.

Let us show that there exist ε1 and T1 such that
∣∣∣b(T1)

dx
− bdx

∣∣∣ <

ε1 implies that x is stable. Take ε1 = bdx+1 −bdx

4 and T1 satisfying

T1 > −
log

(
1+ �2

8ε2
1

)
log β

, where again � = bm − b1. Consider the set of
transitions F such that b ∈ Fa if and only if either a > x or b �
x. Then by Theorem 1 there exists equilibrium σ under this set
of transitions. Furthermore, Lemma A6 implies that x is stable
in this equilibrium. To verify that there is equilibrium σ ′ where x
is stable, by Lemma A5 it suffices to verify that individuals from
group dx would not benefit from deviating to any z > x. Indeed,
we have, similar to the proof of Theorem 3, that

Wdx (x) − Wdx (z) =
∑
k∈G

μdsk (Vk (x) − Vk (z))

=
∑
t�1

∑
y�z

βt−1 Pr (st = y)
((

bdy − b(t)
dx

)2

−
(
bdx − b(t)

dx

)2
)

� 1 − βT1

1 − β

(
(3ε1)2 − (ε1)2

)
− βT1

1 − β
�2

= 1
1 − β

(
8ε2

1 − βT1

(
8ε2

1 + �2
))

> 0,

where the probability is over the distribution of states following
transition to z. This implies that a deviation to z is not profitable
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from group dx. Consequently, there is an equilibrium in the orig-
inal game where x is stable, and given uniqueness, this must be
true in this unique equilibrium.

Let us now show that there exist ε2 and T2 such that∣∣∣b′(T2)
dx

− b(∞)
dx

∣∣∣ < ε2, which implies that x is unstable. Let state

s ∈ arg miny∈S

∣∣∣bdy − b(∞)
dx

∣∣∣ (or the leftmost one if the maximum is

attained at two states); this implies, in particular, that b(∞)
ds

= b(∞)
dx

.
This means that there is an equilibrium where s is stable, so
qs, s = 1. Now take ε2 = min

(
bds −bds−1

2

)
and T2 = 1. Suppose, to

obtain a contradiction, that x is stable. Since under matrix M′

all future selves of individuals from group dx prefer state s to x
and s is stable, they would have a profitable deviation in the form
of transiting to s. This cannot be the case in equilibrium, which
proves that x is unstable. Setting ε = min (ε1, ε2), we see that ε,
T1, T2 satisfy the required properties, which completes the proof.
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