
Price Competition in Communication Networks

Daron Acemoglu
Department of Economics

Massachusetts Institute of Technology
Cambridge, MA 02142
Email: daron@mit.edu

Asuman Ozdaglar
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02142
Email: asuman@mit.edu

Abstract— We study the efficiency properties of
oligopoly equilibria in congested networks. Our measure
of efficiency is the difference between users’ willingness to
pay and delay costs. Previous work has demonstrated that
in networks consisting of parallel links, efficiency losses
from competition are bounded. In contrast, in this paper
we show that in the presence of serial links, the efficiency
loss relative to the social optimum can be arbitrarily large
because of the double marginalization problem, whereby
each serial provider charges high prices not taking into
account the effect of this strategy on the profits of other
providers along the same path. Nevertheless, when there
are no delay costs without transmission (i.e., latencies at
zero are equal to zero), irrespective of the number of serial
and parallel providers, the efficiency of strong oligopoly
equilibria can be bounded by 1/2, where strong oligopoly
equilibria are equilibria in which each provider plays a
strict best response and all of the traffic is transmitted.
However, even with strong oligopoly equilibria, inefficiency
can be arbitrarily large when the assumption of no delay
costs without transmission is relaxed.

I. INTRODUCTION

There has been growing interest in pricing as a method
of allocating scarce network resources (see, e.g., [17],
[19], [25]). Although prices may be set to satisfy some
network objectives, in practice many prices are con-
trolled by for-profit service providers that charge prices,
at least in part, to increase their revenues and profits.

Research to date suggests that profit-maximizing pric-
ing may improve the allocation of resources in com-
munication networks. Let the metric of efficiency be
the difference between users’ willingness to pay and
delay costs in the equilibrium relative to that in the
social optimum (which would be chosen by a a network
planner with full information and full control over users).
Acemoglu and Ozdaglar [2] show that with inelastic and
homogeneous users, pricing by a monopolist controlling
all links in a parallel-link network always achieves
efficiency (i.e., the efficiency metric is equal to one).

Huang, Ozdaglar and Acemoglu [15] extend this result
to a general network topology. Acemoglu and Ozdaglar
[1] show that in a parallel-link network with inelastic
and homogeneous users, the efficiency metric with an
arbitrary number of competing network providers is
always greater than or equal to 5/6. More recently,
Hayrapetyan, Tardos, and Wexler [13] studied pricing
in a parallel-link network with elastic and homogeneous
users, and provided bounds on the efficiency metric.

This paper shows that the efficiency loss with com-
peting service providers is considerably higher when we
consider more general network topologies, suggesting
that unregulated consumption in general networks may
have significant costs in terms of resource allocation.

To illustrate the potential inefficiencies of price
competition in congested communication networks, we
consider a parallel-serial topology where an origin-
destination pair is linked by multiple parallel paths, each
potentially consisting of an arbitrary number of serial
links. Congestion costs are captured by link-specific non-
decreasing convex latency functions, denoted byli (·) for
link i. Each link is owned by a different service provider.
All users are inelastic and homogeneous.

This environment induces the following two-stage
game: each service provider simultaneously sets the price
for transmission of bandwidth on its link, denoted by
pi. Observing all the prices, in the second stage users
route their information through the path with the lowest
effective cost, where effective cost consists of the sum
of prices and latencies of the links along a path [i.e.,
sum of pi + li (·)’s over the links comprising a path].
Our objective is to study the efficieny properties of the
subgame perfect equilibria of this game.

The main novel aspect of this model compared to the
parallel-link case is the pricing decisions of different
(serial) service providers along a single path. When a
particular provider charges a higher price, it creates a
negative externality on other providers along the same
path, because this higher price reduces the transmission



they receive. This is the equivalent of thedouble mar-
ginalizationproblem in economic models with multiple
monopolies, and leads to significant degradation of the
equilibrium performance of the network.

In its most extreme form, the double marginaliza-
tion problem leads to a type of “coordination failure”,
whereby all providers, expecting others to charge high
prices, also charge prohibitively high prices, effectively
killing all data transmission on a given path, and leading
to arbitrarily low efficiency. This type of pathological
behavior can happen in subgame perfect equilibria (what
we refer to as oligopoly equilibria, OE), but we show
that it cannot happen in strict subgame perfect equilibria,
strict OE, which follows the notion of strict equilibrium
introduced in Harsanyi [12]. In strict OE, each service
provider must play a strict best response to the pricing
strategies of other service providers, which is sufficient
to rule out the pathological coordination failures men-
tioned above.

Nevertheless, we show that strict OE can also have
arbitrarily large efficiency losses because the double mar-
ginalization problem can again prevent any transmission
on a particular path, even when such transmission is
socially optimal.

Instead, we define an even stronger notion of equi-
librium, strong OE, as a strict OE in which all traffic
is transmitted.1 We show that when latency without any
traffic is equal to zero [i.e.,li (0) = 0], there is a tight
bound of 1/2 on the efficiency of strong OE irrespective
of the number of paths and service providers in the
network. This bound is reached by simple examples. In
strong OE, the double marginalization problem is still
present, and this is the reason why the bound of 1/2 is
lower than the 5/6 bound in our previous work, [1].

Furthermore, we show that even with strong OE, when
the assumption thatli (0) = 0 is relaxed, the efficiency
loss optimum can be arbitrarily large.

These results shed doubt on the conjecture that un-
regulated competition among service providers might
achieve satisfactory network performance in general.
Nevertheless, it has to be borne in mind that the examples
that have very poor performance relative to the social
optimum are somewhat pathological, and this begs the
question of whether much better performance results
could be obtained in more realistic topologies, which

1Models of selfish routing without prices, e.g., [22] or [7], assume
that all traffic is always transmitted. Our model incorporates a
reservation utility for users, so that this is not necessarily the case.
All traffic will be transmitted in equilibrium when this reservation
utility is sufficiently large.
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Fig. 1. A network with serial and parallel links.

is an area left for future work.
Work related to our paper includes studies quantifying

efficiency losses of selfish routing without prices (e.g.,
Koutsoupias and Papadimitriou [18], Roughgarden and
Tardos [22], Correa, Schulz, and Stier-Moses [7], Perakis
[21], and Friedman [10]); of resource allocation by
different market mechanisms (e.g., Johari and Tsitsiklis
[16], Sanghavi and Hajek [23]); and of network design
(e.g., Anshelevich et. al. [4]). More closely related
are the works of Basar and Srikant [5], who analyze
monopoly pricing in a network context under specific
assumptions on the utility and latency functions; He
and Walrand, [14], who study competition cooperation
among Internet service providers under specific demand
models; as well as Acemoglu, Ozdaglar, and Srikant
[3], who study resource allocation in a wireless network
under fixed pricing. None of these papers, except our
previous work, Acemoglu and Ozdaglar [1] and the
recent work, Hayrapetyan, Tardos, and Wexler [13],
consider the performance of a network with competing
providers. No other paper, to the best of our knowledge,
has investigated price competition in the presence of
serial providers or more general topologies.

II. M ODEL

We consider a network withI parallel paths that
connect two nodes. Each pathi consists ofni links. Let
I = {1, . . . , I} denote the set of paths andNi denote
the set of links on pathi. Let xi denote the flow on path
i, andx = [x1, . . . , xI ] denote the vector of path flows.
Each link in the network has a flow-dependent latency
function li(xi), which measures the delay as a function
of the total flow on link i (see Figure 1). We denote
the price per unit flow (bandwidth) of linkj by pj . Let
p = [pj ]j∈Ni,i∈I denote the vector of prices.

We are interested in the problem of routingd units
of flow across theI paths. We assume that this is the
aggregate flow of many “small” users and thus adopt
the Wardrop’s principle (see [24]) in characterizing the



flow distribution in the network; i.e., the flows are routed
along paths with minimum effective cost, defined as the
sum of the latencies and prices of the links along that
path (see the definition below). Wardrop’s principle is
used extensively in modelling traffic behavior in trans-
portation networks ([6], [8], [20]) and communication
networks ([22], [7]). We also assume that users have a
reservation utilityR and decide not to send their flow
if the effective cost exceeds the reservation utility. This
implies that user preferences can be represented by the
piecewise linear aggregate utility functionu (·) depicted
in Figure 2.2

Definition 1: For a given price vectorp ≥ 0, a vector
xWE ∈ RI

+ is a Wardrop equilibrium(WE) if

∑

j∈Ni

(
lj(xWE

i ) + pj

)
= min

k∈I

{ ∑

j∈Nk

(
lj(xWE

k ) + pj

)}

∀ i with xWE
i > 0, (1)∑

j∈Ni

(lj(xWE
i ) + pj

)
≤ R, ∀ i with xWE

i > 0,

∑

i∈I
xWE

i ≤ d,

with
∑

i∈I xWE
i = d if mink∈I {

∑
j∈Nk

lj(xWE
k ) +

pj} < R. We denote the set of WE at a givenp by
W (p).

We adopt the following assumption on the latency
functions throughout the paper except in Section IV-F.

Assumption 1:For eachi ∈ I, the latency function
li : [0,∞) 7→ [0,∞) is convex, continuously differen-
tiable, nondecreasing, and satisfiesli(0) = 0.

Proposition 1: (Existence and Continuity) Let As-
sumption 1 hold. For any price vectorp ≥ 0, the set of
WE, W (p), is nonempty. Moreover, the correspondence
W : RI

+ ⇒ RI
+ is upper semicontinuous.

Proof sketch:Given any p ≥ 0, the proof is based
on using Assumption 1 (in particular the nondecreasing
assumption on the latency functions) to show that the
set of WE is given by the set of optimal solutions of the
following optimization problem

2This simplifying assumption implies that all users are “homoge-
neous” in the sense that they have the same reservation utility,R. We
discuss potential issues in extending this work to users with elastic
and heterogeneous requirements in the concluding section.
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Fig. 2. Aggregate utility function.

max
x≥0

∑

i∈I
((R−

∑

j∈Ni

pi)xi −
∫ xi

0

∑

j∈Ni

lj(z)dz)(2)

s.t.
∑

i∈I
xi ≤ d.

Q.E.D.

For a given price vectorp, the WE need not be unique
in general. Under further restrictions on theli, we obtain:

Proposition 2: (Uniqueness)Let Assumption 1 hold.
Assume further that for alli ∈ I, there exists somej ∈
Ni, such thatlj is strictly increasing. For any price vector
p ≥ 0, the set of WE,W (p), is a singleton. Moreover,
the functionW : RI

+ 7→ RI
+ is continuous.

Proof: Under the given assumptions, for anyp ≥ 0, the
objective function of problem (2) is strictly convex, and
therefore has a unique optimal solution. This shows the
uniqueness of the WE at a givenp. Since the correspon-
denceW is upper semicontinuous from Proposition 1
and single-valued, it is continuous.Q.E.D.

We next define the social problem and the social
optimum, which is the routing (flow allocation) that
would be chosen by a central network planner that has
full control and information about the network.

Definition 2: A flow vectorxS is a social optimumif
it is an optimal solution of thesocial problem

maximizex≥0

∑

i∈I

(
R−

∑

j∈Ni

lj(xi)
)
xi (3)

subject to
∑

i∈I
xi ≤ d.



By Assumption 1, the social problem has a continuous
objective function and a compact constraint set, guaran-
teeing the existence of a social optimum,xS . Moreover,
using the optimality conditions for a convex program,
we see that a vectorxS ∈ RI

+ is a social optimum if and
only if

∑
i∈I xS

i ≤ d and there exists aλS ≥ 0 such that
λS(

∑I
i=1 xS

i − d) = 0 and for eachi ∈ I,

R−
∑

j∈Ni

lj(xS
i )− xS

i

∑

j∈Ni

l′j(x
S
i ) ≤ λS if xS

i = 0,

= λS if xS
i > 0.

(4)

For a given vectorx ∈ RI
+, we define the value of the

objective function in the social problem,

S(x) =
∑

i∈I

(
R−

∑

j∈Ni

lj(xi)
)
xi, (5)

as thesocial surplus, i.e., the difference between the
users’ willingness to pay and the total latency.

III. O LIGOPOLY PRICING AND EQUILIBRIUM

We assume that there are multiple service providers, each
of which owns one of the links on the paths in the
network. Service providerj charges a pricepj per unit
bandwidth on linkj ∈ Ni. Given the vector of prices of
links owned by other service providers,p−j = [pk]k 6=j ,
the profit of service providerj with j ∈ Ni is

Πj(pj , p−j , x) = pjxi,

wherex ∈ W (pj , p−j).
The objective of each service provider is to maximize

profits. Because their profits depend on the prices set
by other service providers, each service provider forms
conjectures about the actions of other service providers,
as well as the behavior of users, which they do according
to the notion of subgame perfect Nash equilibrium. We
refer to the game among service providers as theprice
competition game.

Definition 3: A vector (pOE , xOE) ≥ 0 is a
(pure strategy)Oligopoly Equilibrium (OE) if xOE ∈
W

(
pOE

j , pOE
−j

)
and for all i ∈ I, j ∈ Ni,

Πj(pOE
j , pOE

−j , xOE) ≥ Πj(pj , p
OE
−j , x),

∀ pj ≥ 0, ∀ x ∈ W (pj , p
OE
−j ). (6)

We refer topOE as theOE price.

The next proposition shows that for linear latency
functions, there exists a pure strategy OE.

Proposition 3: Let Assumption 1 hold and assume
that the latency functions are linear. Then the price
competition game has a pure strategy OE.

Proof: Let lj(x) = ajx for someaj ≥ 0. Define the set

I0 = {i ∈ I |
∑

j∈Ni

aj = 0},

(or equivalently,I0 is the set ofi ∈ I such thataj = 0
for all j ∈ Ni). Let I0 denote the cardinality of setI0.
There are two cases to consider:

I. I0 ≥ 2: Then it can be seen that a vector(pOE , xOE)
with pOE

j = 0 for all i ∈ I0, j ∈ Ni and xOE ∈
W (pOE) is an OE.

II. I0 ≤ 1: For somej ∈ Ni, let Bj(pOE
−j ) be the set

of pOE
j such that

(pOE
j , xOE) ∈ arg max

pj≥0

x∈W (pj,pOE
−j

)

pjxi. (7)

Let B(pOE) = [Bj(pOE
−j )]. In view of the linearity of

the latency functions, it follows thatB(pOE) is an up-
per semicontinuous and convex-valued correspondence.
Hence, we can use Kakutani’s fixed point theorem to
assert the existence of apOE such thatB(pOE) = pOE .
To complete the proof, it remains to show that there
existsxOE ∈ W (pOE) such that (6) holds.

If I0 = ∅, we have by Proposition 2 thatW (pOE) is
a singleton, and therefore (6) holds and(pOE ,W (pOE))
is an OE.

Assume finally thatI0 = 1, and that without loss of
generality1 ∈ I0. We show that for all̄x, x̃ ∈ W (pOE),
we havex̄i = x̃i, for all i 6= 1. Let

EC(x, pOE) = min
k∈I

{
∑

j∈Nk

lj(xk) + pOE
j }.

If at least one of

EC(x̃, pOE) < R, or EC(x̄, pOE) < R

holds, then one can show that
∑I

i=1 x̃i =
∑I

i=1 x̄i = d.
Substitutingx1 = d −∑

i∈I, i 6=1 xi in problem (2), we
see that the objective function of problem (2) is strictly
convex inx−1 = [xi]i 6=1, thus showing that̃x = x̄. If
both EC(x̃, pOE) = R andEC(x̄, pOE) = R, then

∑

j∈Ni

lj(x̄i) =
∑

j∈Ni

lj(x̃i),

which, by the assumption thatlj is strictly increasing
for somej ∈ Ni, implies thatx̄i = x̃i for all i 6= 1,
establishing our claim.



For somex ∈ W (pOE), consider the vectorxOE =
(d−∑

i 6=1 xi, x−1) . Sincex−1 is uniquely defined and
x1 is chosen such that the providers on link 1 have no
incentive to deviate, it follows that(pOE , xOE) is an OE.
Q.E.D.

The existence result cannot be generalized to general
convex latency functions as shown in the following
example.

Example 1:Consider a two link network. Let the total
flow be d = 1. Assume that the latency functions are
given by

l1(x) = 0, l2(x) =
{

0 if 0 ≤ x ≤ δ
x−δ

ε x ≥ δ,

for someε > 0 and δ > 1/2, with the convention that
when ε = 0, l2(x) = ∞ for x > δ. It can be easily
verified that there exists no pure strategy OE for small
ε (see [1] for details).

Nevertheless, a mixed strategy OE always exists. We
define a mixed strategy OE as a mixed strategy subgame
perfect equilibrium of the price competition game (see
Dasgupta and Maskin, [9]). LetB be the space of all
(Borel) probability measures on[0, R]. Let T denote the
total number of links in the network, i.e.,T =

∑I
i=1 ni.

Let µj ∈ B be a probability measure, and denote the
vector of these probability measures byµ and the vector
of these probability measures excludingj by µ−j .

Definition 4: (µ∗, x∗(p)) is a mixed strategy
Oligopoly Equilibrium (OE) if the function
x∗(p) ∈ W (p) for everyp ∈ [0, R]T and
∫

[0,R]T
Πj(pj , p−j , x

∗ (pj , p−j))d
(
µ∗j (pj)× µ∗−j (p−j)

)

≥
∫

[0,R]T
Πj(pj , p−j , x

∗ (pj , p−j))d
(
µj (pj)× µ∗−j (p−j)

)

for all j andµj ∈ B, whereΠj(p, x∗(p)) is the profit of
service providerj at price vectorp andx∗(p) ∈ W (p).

A mixed strategy OE thus requires that there is no
profitable deviation to a different probability measure for
each oligopolist. The existence of a mixed strategy OE
can be established along the lines of the analysis in [1],
which leads to the following result (proof omitted):

Proposition 4: Let Assumption 1 hold. Then the
price competition game has a mixed strategy OE,
(µOE , xOE(p)).

IV. EFFICIENCY ANALYSIS

A. Inefficiency of OE

In this section, we study the efficiency properties of OE,
and strict and strong OE (defined below). We take as our
measure of efficiency the ratio of the social surplus at the
equilibrium flow allocation to the social surplus at the
social optimum,S(xOE)/S(xS) [cf. (5)]. We consider
price competition games that have OE or strict OE
(this set includes, but is larger than, games with linear
latency functions, see Section III). Given a parallel-link
network with I paths,ni links on pathi, and latency
functions{lj}(j∈Ni,i∈I), let

−−→
OE({lj}) denote the set of

flow allocationsxOE = [xOE
i ]i∈I at an OE (or strict

OE depending on the context). We define the efficiency
metric at somexOE ∈ −−→OE({lj}) as

rI({lj}, xOE) =

R
∑

i∈I xOE
i −∑

i∈I
(∑

j∈Ni
lj(xOE

i )
)
xOE

i

R
∑

i∈I xS
i −

∑
i∈I

(∑
j∈Ni

lj(xS
i )

)
xS

i

, (8)

wherexS is a social optimum given the latency functions
{lj} and R is the reservation utility. Following the
literature on the “price of anarchy,” (see [18]), we are
interested in the worst performance of an oligopoly
equilibrium, so we look for a lower bound on

inf
{lj}

inf
xOE∈−−→OE({lj})

rI({lj}, xOE).

We first show that the performance of an OE can be
arbitrarily bad.

Example 2:Consider a two path network, which has
3 links on path 1 with identically 0 latency functions
and one link on path 2 with latency functionl(x2) =
kx2, wherek ≥ 0. Let the total flow bed = 1 and the
reservation utility beR = 1.

The unique social optimum for this example isxS =
(1, 0). Now consider the following strategy combination.
Each of the three service providers on path 1, denoted
by i = 1, 2, and3, charge pricepi

1 = 1, while the service
provider on path 2 chargesp2 = 1/2. It can be verified
that there is no deviation that is profitable for any of
the service providers. First, consider the serial providers
on path 1; given the prices of two of the serial service
providers, there will always be zero traffic on path 1, so
the remaining service provider is playing a best response
(since any price for this provider would lead to zero
profits). Moreover, it can be verified that these strategies
are not weakly dominated, since ifi = 1, 2 were to play



pi
1 = 0 and the provider on path 2 were to set a high

enoughp2, i = 3 would choose to playp3
1 = 1. (This also

establishes that the OE will be trembling hand perfect,
see [11], pp. 351-356 for a definition). Finally, let us
consider the provider on path 2. Given the strategies of
the serial providers on path 1 and a fixedk > 0, it can
be verified that the optimal strategy of this provider is to
set p2 = 1/2. The resulting equilibrium flow allocation
is

xOE =
[
0,

1
2k

]
,

which involves routing all the admitted traffic on path
2 (though not all of the traffic is necessarily admitted).
Therefore, the efficiency metric for this example is

r2({lj}, xOE) =
∑2

i=1 xOE
i − l2(xOE

2 )xOE
2

1
=

1/4k

1
,

which goes to 0 ask →∞.

Example 2 establishes that pure strategy OE with the
parallel-serial link topology can be arbitrarily inefficient.
This result is at some level pathological, however. The
reason why there is so much inefficiency is because
service providers on path 1 charge unreasonably high
prices. It is a best response (even weakly undominated)
strategy for them to do so, because other providers
also charge unreasonably high prices, so there is no
transmission on this path and they suffer no adverse
consequences from charging unreasonable prices.

We may expect this pathological situation not to arise
for a number of reasons. First, firms may not coordinate
on such an equilibrium (especially when other equilibria
exist). In this case, for example, we may expect them to
realize that if they all reduced their prices, they would
all make higher profits and would still be playing equi-
librium actions. Second, we may even expect providers
on a path to form a “coalition” and coordinate their
pricing decisions. It can be verified that a special form of
coalition-proof subgame perfect Nash equilibrium, where
only providers along a given path can form coalitions,
would lead to the results of our previous work, [1], in
particular to the tight bound on efficiency of5/6. This
is because, once serial providers along a path form a
subcoalition, their optimal strategy would be to behave
as a single provider along that path, thus removing the
double marginalization problem. In this case, the analysis
in our previous work [1] applies and leads to a bound
of 5/6.

B. Strict OE and Price Characterization

In this paper, rather than allowing coalitions to form,
we study a stronger concept of equilibrium, Harsanyi’s
strict equilibrium (see [12], or [11], pp. 11-12), which
requires each player’s best response to be unique. Re-
call that the standard Nash equilibrium and our OE
concept only require each player, in particular each
service provider, to play a weak best response. We now
strengthen this condition.

Definition 5: A vector (pOE , xOE) ≥ 0 is a strict OE

(Oligopoly Equilibrium) if xOE ∈ W
(
pOE

j , pOE
−j

)
and

for all i ∈ I, j ∈ Ni,

Πj(pOE
j , pOE

−j , xOE) > Πj(pj , p
OE
−j , x),

∀ pj ≥ 0, pj 6= pOE
j , ∀ x ∈ W (pj , p

OE
−j ). (9)

We refer topOE as thestrict OE price.

In the remainder of this paper, we focus on strict OE
and we use the notation

−−→
OE({lj}) to denote the set of

flow allocationsxOE = [xOE
i ]i∈I at a strict OE for a

network with latency functions{lj}(j∈Ni, i∈I).
The difference between Definitions 3 and 5 is obvious.

The latter requires service providers to play a strict
best response, while the former does not. Notice that
in both equilibria, we have not changed the behavior of
the users given by the WE (as in Definition 1). Notice
also that we have removed the qualifier “pure strategy,”
since as is well known, strict equilibria always have to
be pure strategy (because mixed strategy equilibria, by
definition, involve players being indifferent among the
strategies over which they are mixing). Therefore, there
are situations in which a mixed strategy OE exists, but
strict OE does not. Moreover, it can be verified that there
are also situations in which a pure strategy OE exists,
but a strict OE does not.

We do not view this as a serious shortcoming, since,
as Example 1 above showed, even pure strategy OE do
not always exist. Moreover, we have the following result
for linear latency functions. The proof is similar to the
proof of Proposition 3, and therefore is omitted.

Proposition 5: Let Assumption 1 hold. Assume fur-
ther that the latency functions are linear and for all
i ∈ I, there exists somej ∈ Ni such thatlj is strictly
increasing. Then the price competition game has a strict
OE.

We next provide an explicit characterization of the
strict OE prices, which will be essential for the subse-



quent efficiency analysis. The following lemma estab-
lishes that all path flows are positive at a strict OE.

Lemma 1:Let (pOE , xOE) be a strict OE. Let As-
sumption 1 hold. ThenpOE

j xOE
i > 0 for all i ∈ I and

j ∈ Ni.

Proof: Assume to arrive at a contradiction that
pOE

j xOE
i = 0 for some i ∈ I and j ∈ Ni. Then, at

any pricep̄j with p̄j > pOE
j , we have

Πj(p̄j , p
OE
−j , x) = Πj(pOE

j , pOE
−j , xOE),

contradicting the definition of the strict OE (cf. Defini-
tion 9). Q.E.D.

As shown in Example 2, the result of the preceding
lemma does not extend to non-strict OE prices, i.e., there
may be OE in which some of the providers make zero
profit while others are making positive profits. We have
shown in [1] that for parallel-link topology, if at any
OE one of the providers makes positive profit, all of
the providers make positive profits (see [1], Lemma 4).
Example 2 shows that this result no longer holds for
non-strict OE for the parallel-serial topology. Lemma 1,
on the other hand, ensures that it holds for strict OE and
allows us to write the optimization problems for each
provider in terms of equality and inequality constraints.
We can then use the first order optimality conditions to
obtain an explicit characterization of the strict OE prices.

Proposition 6: Let Assumption 1 hold. Then, for all
i ∈ I, j ∈ Ni, we have
(a)

pOE
j ≥ xOE

i

∑

k∈Ni

l′k(x
OE
i ).

(b)

pOE
j =





xOE
i

∑
k∈Ni

l′k(x
OE
i ), if l′k(x

OE
s ) = 0,

for k 6= j, s 6= i,

min

{
1
ni

[
R−∑

k∈Ni
lk(xOE

i )
]
,

xOE
i

[ ∑
k∈Ni

l′k(x
OE
i ) + 1P

s 6=i
1P

k∈Ns
l′
k
(xOE

s )

]}
,

otherwise.
(10)

In particular, for two links, when the minimum effec-
tive cost is less than R, fori = 1, 2, j ∈ Ni, the strict

OE prices are given by

pOE
j = xOE

i


 ∑

k∈N1

l′k(x
OE
1 ) +

∑

k∈N2

l′k(x
OE
2 )


 .

The price characterization in Proposition 6 is a gen-
eralization of the price characterization in [1], and as
in that paper, it will be useful in providing bounds on
the inefficiency of price competition. However, the next
example shows that even with strict OE, efficiency losses
can be arbitrarily large.

C. Inefficiency of Strict OE

Example 3:Consider a one path network, which has
n links with identical latency functionsl(x) = x/n. Let
the total flow bed = 1 and the reservation utility be
R = 1.

For anyn, the unique social optimum for this example
is xS = 1/2, with a corresponding social surplus
S(xS) = 1/4. Using the price characterization given in
Proposition 6 and the definition of a WE, it follows that
there exists a unique strict OE, in which all providers
charge the pricepOE = 1/(n + 1), and the equilibrium
flow is xOE = 1/(n + 1). The efficiency metric for this
example is therefore

r1({lj}, xOE) =

(
1− 1

n+1

)
1

n+1(
1− 1

2

)
1
2

=
4n

(n + 1)2
,

which goes to 0 asn →∞.

This example establishes that even with strict OE, which
rules out the pathological coordination failures discussed
above, efficiency losses can be arbitrarily large. The rea-
son for this is again the double marginalization problem,
which increases the cost of transmission so much that
there is no transmission in equilibrium along certain
paths (e.g., along the single path in the example as
n → ∞). This type of behavior is also pathological at
some level, especially when we think of networks where
the reservation utility,R, of users is high enough. This
leads us to define an even stronger notion of equilibrium,
strong OE.

Definition 6: A vector (pOE , xOE) ≥ 0 is a strong
OE (Oligopoly Equilibrium) if it is a strict OE, and∑

i∈I xOE
i = d. In this case, we refer topOE as the

strong OE priceand denote the set of strong OE flow
allocations in a network with latency functions by{lj}
by
−−→
OE

d
({lj}).



The only difference between Definition 5 and Defini-
tion 6 is that in the latter we require all of the potential
flow, d, to be transmitted. This will be the case when the
reservation utility,R, of users is large enough.

D. Efficiency of Strong OE with Two Paths

We now characterize the efficiency properties of strong
OE. We start with a two path network, withni links on
path i = 1, 2, where each link is owned by a different
provider. First, consider the following example, which
illustrates that even with strong OE the efficiency loss
can be worse than that in parallel link networks (which
was shown to be bounded below by 5/6 in [1]).

Example 4:Consider a two path network, which has
n links on path 1 with identically 0 latency functions and
one link on path 2 with latency functionl(x2) = x2/2.
Let the total flow bed = 1 and the reservation utility be
R = 1.

The unique social optimum for this example isxS =
(1, 0). Using Proposition 6 and the definition of a WE,
OE flowsxOE must satisfy

∑

j∈N1

lj(xOE
1 ) + xOE

1

[ ∑

j∈N1

l′j(x
OE
1 ) +

∑

j∈N2

l′j(x
OE
2 )

]

=
∑

j∈N2

lj(xOE
2 ) + xOE

2

[ ∑

j∈N1

l′j(x
OE
1 ) +

∑

j∈N2

l′j(x
OE
2 )

]
.

Substituting for the latency functions and solving the
above together withxOE

1 + xOE
2 = 1 shows that unique

strong OE involves

xOE =
( 2

n + 2
,

n

n + 2

)
,

which goes to(0, 1) as n → ∞. The social surplus at
the social optimum is 1, while the social surplus at the
strong OE goes to1/2 asn →∞.

We next present two lemmas, which will be useful in
providing a bound on the efficiency metric for strong
OE. Note that these lemmas are valid for all OE as well.
The first lemma allows us to assume without loss of
generality thatR

∑I
i=1 xS

i −
∑I

i=1 li(xS
i )xS

i > 0 in the
subsequent analysis.

Lemma 2:Given a set of latency functions
{lj}j∈Ni, i∈I , assume that

∑

i∈I

( ∑

j∈Ni

lj(xS
i )

)
xS

i = R
∑

i∈I
xS

i ,

for some social optimum xs. Then every
xOE ∈ −−→

OE({lj}) is a social optimum, implying
that rI({lj}, xOE) = 1.

Proof: Assume that
∑

i∈I
(∑

j∈Ni
lj(xS

i )
)

xS
i =

R
∑

i∈I xS
i . Since xS is a social optimum and every

xOE ∈ −−→
OE({lj}) is a feasible solution to the social

problem [problem (3)], we have

0 =
∑

i∈I

(
R−

∑

j∈Ni

lj(xS
i )

)
xS

i

≥
∑

i∈I

(
R−

∑

j∈Ni

lj(xOE
i )

)
xOE

i , ∀ xOE ∈ −−→OE({lj}).

By the definition of a WE, we havexOE
i ≥ 0 andR −∑

j∈Ni
lj(xOE

i ) ≥ ∑
j∈Ni

pOE
j ≥ 0 (wherepOE

j is the
price of link j ∈ Ni at the OE) for alli. This combined
with the preceding relation shows thatxOE is a social
optimum. Q.E.D.

The following lemma provides a relation between the
total flow admitted at an OE and at a social optimum.

Lemma 3:For a set of latency functions
{lj}(j∈Ni, i∈I), let Assumption 1 hold. Let(pOE , xOE)
be an OE andxS be a social optimum. Then

∑

i∈I
xOE

i ≤
∑

i∈I
xS

i .

Proof: Assume to arrive at a contradiction that∑
i∈I xOE

i >
∑

i∈I xS
i . This implies thatxOE

i > xS
i

for somei. Hence,

lj(xOE
i ) ≥ lj(xS

i ), ∀ j ∈ Ni.

We also havelj(xOE
i ) > lj(xS

i ) for some j ∈ Ni.
[Otherwise, we would havelj(xS

i ) = l′j(x
S
i ) = 0 for all

j ∈ Ni, which yields a contradiction by the optimality
conditions (4) and the fact that

∑
i∈I xS

i < d.] Using the
definition of the WE and the optimality conditions (4),
we obtain

R−
∑

j∈Ni

(
lj(xOE

i )−pOE
j

)
≥ R−

∑

j∈Ni

(
lj(xS

i )−xS
i l′j(x

S
i )

)
.

Combining the preceding withlj(xOE
i ) ≥ lj(xS

i ) for all
j ∈ Ni, with strict inequality for somej, and

pOE
j ≥ xOE

i l′j(x
OE
i ) ≥ xS

i l′j(x
S
i ),

[using Proposition 6(a) and the fact thatxl′(x) is nonde-
creasing, cf. Assumption 1], we obtain a contradiction.
Q.E.D.



The next theorem provides a tight lower bound on
r2({lj}, xOE) [cf. (8)] for a strong OE. In the following,
we assume without loss of generality thatd = 1.

Theorem 1:Consider a two path network, withni

links on pathi = 1, 2, where each link is owned by
a different provider, and linkj ∈ Ni has a latency
function lj . Suppose that Assumption 1 holds and the
price competition game has a strong OE. Then

r2({lj}, xOE) ≥ 1
2
, ∀ xOE ∈ −−→OE

d
({lj}). (11)

Moreover, the bound is tight, i.e., there exists{lj} and

xOE ∈ −−→OE
d
({lj}) that attains the lower bound in (11).

Proof: The proof follows a number of steps:

Step 1:We are interested in finding a lower bound for
the problem

inf
{lj}

inf
xOE∈−−→OE

d

({lj})
r2({lj}, xOE). (12)

Given {lj}, let xOE ∈ −−→
OE({lj}) and let xS be a

social optimum. By Lemma 3 and the fact thatxOE ∈−−→
OE

d
({lj}) (i.e., it is a strong OE), we have

2∑

i=1

xOE
i =

2∑

i=1

xS
i = 1.

This implies that there exists somei such thatxOE
i < xS

i .
Since the problem is symmetric, we can restrict ourselves
to {lj} for which xOE

1 < xS
1 . We claim that

inf
{li}∈L2

inf
xOE∈−−→OE

d

({li})
r2({li}, xOE) ≥ rOE

2 , (13)

where

rOE
2 = minimizelS

i,j
,(lS

i,j
)′≥0

li,j ,l′
i,j
≥0

yS
i

,yOE
i

≥0

R− yOE
1

(∑
j∈N1

l1,j

)
− yOE

2

(∑
j∈N2

l2,j

)

R− yS
1

(∑
j∈N1

lS1,j

)
− yS

2

(∑
j∈N2

lS2,j

) (E)

subject to

lSi,j ≤ yS
i (lSi,j)

′, i = 1, 2, j ∈ Ni, (14)

( ∑

j∈N2

lS2,j

)
+ yS

2

( ∑

j∈N2

(lS2,j)
′
)

=
( ∑

j∈N1

lS1,j

)
+ yS

1

( ∑

j∈N1

(lS1,j)
′
)
, (15)

( ∑

j∈N1

lS1,j

)
+ yS

1

( ∑

j∈N1

(lS1,j)
′) ≤ R, (16)

2∑

i=1

yS
i = 1, (17)

l1,j + l′1,j(y
S
1 − yOE

1 ) ≤ lS1,j , ∀ j ∈ N1, (18)

li,j ≤ yOE
i l′i,j , i = 1, 2, j ∈ Ni, (19)

2∑

i=1

yOE
i = 1,

+ Strict OE Constraints.

Problem (E) can be viewed as a finite dimensional
problem that captures the equilibrium and social opti-
mum characteristics of the infinite dimensional problem
given in (12). This implies that instead of optimizing
over the entire functionlj for somej ∈ Ni, i ∈ I, we
optimize over the possible values oflj(·) andl′j(·) at the
equilibrium and the social optimum, which we denote by
li,j , l

′
i,j , l

S
i,j , (l

S
i,j)

′. The constraints of the problem guar-
antee that these values satisfy the necessary optimality
conditions for a social optimum and a strict OE (which
are the same as the conditions for a strong OE). In
particular, conditions (14) and (19) capture the convexity
assumption onlj(·) by relating the valuesli,j , l′i,j and
lSi,j , (l

S
i,j)

′ [note that the assumptionlj(0) = 0 is essential
here]. Condition (15) is the optimality condition for the
social optimum. Condition (18) uses the nondecreasing
and the convexity assumption on the latency functions;
since we are focusing on{lj(·)} such thatxOE

1 ≤ xS
1 ,

we must have

l1,j + l′1,j(y
S
1 − yOE

1 ) ≤ lS1,j ,

for all j ∈ N1. Finally, the last set of constraints are the
necessary conditions for a pure strategy OE. In particular,
for a two path network, using Proposition 6, the Strict
OE Constraints are given by

n1y
OE
1

[ ∑

j∈N1

l′1,j +
∑

j∈N2

l′2,j

]
+

∑

j∈N1

l1,j

= n2y
OE
2

[ ∑

j∈N1

l′1,j +
∑

j∈N2

l′2,j

]
+

∑

j∈N2

l2,j ,

[and thereforen1 and n2 are also decision variables in
problem (E)]. Note that given any feasible solution of
problem (12), we have a feasible solution for problem
(E) with the same objective function value. Therefore,
the optimum value of problem (E) is indeed a lower
bound on the optimum value of problem (12).



Step 2:Consider the following change of variables for
problem (E)

lS1 =
∑

j∈N1

lS1,j , lS2 =
∑

j∈N2

lS2,j

l1 =
∑

j∈N1

l1,j , l2 =
∑

j∈N2

l2,j ,

(lS1 )′ =
∑

j∈N1

(lS1,j)
′, (lS2 )′ =

∑

j∈N2

(lS2,j)
′,

l′1 =
∑

j∈N1

l′1,j , l′2 =
∑

j∈N2

l′2,j ,

and rewrite problem (E) as

rOE
2 = minimizelS

i
,(lS

i
)′≥0

li,l′
i
≥0

yS
i

,yOE
i

≥0

R− l1y
OE
1 − l2y

OE
2

R− lS1 yS
1 − lS2 yS

2

(E′)

subject to

lSi ≤ yS
i (lSi )′, i = 1, 2,

lS2 + yS
2 (lS2 )′ = lS1 + yS

1 (lS1 )′,

lS1 + yS
1 (lS1 )′ ≤ R,

2∑

i=1

yS
i = 1,

l1 + l′1(y
S
1 − yOE

1 ) ≤ lS1 ,

li ≤ yOE
i l′i, i = 1, 2,

2∑

i=1

yOE
i = 1,

+ Strict OE Constraints.

Note that this problem has a very similar structure to
the finite-dimensional problem considered in the proof
of Theorem 1 of [1] for parallel-link networks. Let
(l̄Si , (l̄Si )′, l̄i, l̄′i, ȳ

S
i , ȳOE

i ) denote the optimal solution of
problem (E’). We have shown in [1] that̄lSi = 0 for
i = 1, 2.

Step 3:Using l̄Si = 0 for i = 1, 2, and l̄1 = 0, l̄′1 = 0,
we see that

rOE
2 = min

l2,l′2
yOE
1 , yOE

2 ≥0
n1, n2≥1

1− l2y
OE
2

R
(20)

subject to l2 ≤ yOE
2 l′2,

l2 + n2y
OE
2 l′2 = n1y

OE
1 l′2,

n1y
OE
1 l′2 ≤ R.

2∑

i=1

yOE
i ≤ 1.

Next, using the transformationm1 = n1y
OE
1 and

m2 = n2y
OE
2 to write:

rOE
2 = min

l2,l′2
yOE
1 , yOE

2 ≥0
m1, m2≥0

1− l2y
OE
2

R
(21)

subject to l2 ≤ yOE
2 l′2,

l2 + m2l
′
2 = m1l

′
2,

m1l
′
2 ≤ R.

2∑

i=1

yOE
i = 1,

though we also have to ensure that the solution to this
program ensures thatn1 andn2 are integers.

Now it can verified that(l̄2, l̄′2, ȳ
OE
1 , ȳOE

2 , m̄1, m̄2) =
(R

2 , R
2 , 0, 1, 2, 1) is an optimal solution to the program

(21), and moreover, it satisfiesn1, n2 ≥ 1, thus it is also
a solution to (20). The corresponding optimum value is
rOE
2 = 1/2. By (13), this implies that

inf
{lj}

inf
xOE∈−−→OE({lj})

r2({lj}, xOE) ≥ 1
2
.

Finally, Example 4 shows that this bound is tight, i.e.,

min
{lj}

min
xOE∈−−→OE({lj})

r2({lj}, xOE) =
1
2
.

Q.E.D.

Therefore, when we focus on strong OE, there exists
a tight bound of 1/2. In contrast to the case in Example
3, strong OE ensures that all of the traffic is transmitted
in equilibrium, which is the key to the existence of a
bound on the inefficiency of equilibrium.

The bound with strong OE is nonetheless worse
than the efficiency bound in the parallel-link topology
considered in [1]. This is again because of the double
marginalization problem: each provider along path 1 has
a greater incentive to increase its price (relative to the
benchmark where all these links are owned by the same
provider), because it does not internalize the reduction
in the profits of the other link owners along the same
path. Consequently, in Example 4, there are higher prices
along path 1, and this induces greater fraction of users to
choose path 2, increasing inefficiency. To see the role of
serial links more clearly, consider a modified version of
Example 4, where alln links along path 1 are owned by
the same service provider. This would make the example
equivalent to a parallel-link topology. In this case the
unique strict OE flows are given byxOE

1 = 2/3 and
xOE

2 = 1/3, and this example reaches the 5/6 bound of
[1] rather than1/2 bound of Example 4.



E. Efficiency of Strong OE with Multiple Paths

We next consider anI path network, withni links
on path i, where each link is owned by a different
provider. The following example illustrates the efficiency
properties of a strong OE in anI path network.

Example 5:Consider an I path network, which hasn
links on path 1 with identically 0 latency functions and
one link on each of the paths2, . . . , I with the same
latency functionl(x) = x(I − 1)/2. Let the total flow
be d = 1 and the reservation utility beR = 1.

Clearly, the unique social optimum for this example is
xS = [1, 0, . . . , 0]. Using Proposition 6 and the definition
of a WE, it can be seen that the flow allocation at the
unique strict (strong) OE is

xOE =
[ 2/n

1 + 2/n
,

1
(I − 1)(1 + 2/n)

, . . . ,

1
(I − 1)(1 + 2/n)

]
.

Hence the efficiency metric for this example is

rI({lj}, xOE) = 1− 1
2

(
1

1 + 2/n

)2

,

which goes to 1/2 asn →∞.

The next theorem generalizes Theorem 1. The proof
is similar to that of Theorem 1 and is omitted.

Theorem 2:Consider a generalI path network, with
ni links on pathi ∈ I, where each link is owned by
a different provider, and linkj, j ∈ Ni, has a latency
function lj . Suppose that Assumption 1 holds and the
price competition game has a strong OE. Then

rI({lj}, xOE) ≥ 1
2
, ∀ xOE ∈ −−→OE

d
({lj}). (22)

Moreover, the bound s tight, i.e., there exists{lj} and

xOE ∈ −−→OE
d
({lj}) that attains the lower bound in (22).

F. Positive Latency at 0 Congestion

Unfortunately, the bound on the efficiency loss of strong
OE does not generalize once we relax the assumption
that li(0) = 0.

Example 6:Consider a two path network, which has
n links on path 1 with identically 0 latency functions and
one link on path 2 with latency functionl(x2) = εx2 + b
for some scalarsε > 0 and b > 0. Again the unique

social optimum isx̄S = (1, 0). The flows at the unique
strict (strong) OE are given by

x̄OE =
(

2ε + b

ε(n + 2)
,

εn− b

ε(n + 2)

)
.

Let ε = b/
√

n. Then, asb → 1 and n → ∞, we
have that x̄OE → (0, 1), and the efficiency metric
r2({lj}, xOE) → 0.

This example shows that the efficiency loss could
be arbitrarily high even at a strong OE for a network
that involves parallel and serial links if the assumption
li(0) = 0 is relaxed. This establishes:

Proposition 7: In the presence of positive latency
at zero congestion, strong OE with the parallel-serial
topology can be arbitrarily inefficient.

It is useful to note that in the same example with
the parallel-link topology (i.e., alln links along path 1
owned by the same provider), we would have

xOE =
{ (

b+2ε
3ε , ε−b

3ε

)
, if ε ≥ b,

(1, 0), otherwise.

Consequently,b → 1 and ε → 0, we have thatxOE →
(1, 0), and r2({lj}, xOE) → 1. Therefore, the highly
inefficient equilibrium is a result of the parallel-serial
topology, not of the assumption that there is positive
latency at 0 congestion. In fact, [1] shows that with
parallel topology, but positive latency at 0 congestion,
there is again a tight bound of2

√
2 − 2 on efficiency,

which is quite close to, but slightly lower than 5/6.

V. CONCLUSIONS

In this paper, we presented an analysis of price com-
petition in communication networks with congestion.
The focus has been the efficiency implications of price
competition in networks with the serial-parallel topology.

Our major result is that contrary to the case of pure
parallel-link topology studied in [1], the parallel-serial
topology leads to significant efficiency losses relative
to the social optimal. In particular, OE can now be
arbitrarily inefficient. This is partly due to an extreme
(pathological) form of double marginalization, whereby
all serial providers on a particular path charge pro-
hibitively high prices expecting others on that path to
do so as well.

We showed that the concept of strict OE, which
requires all service providers to play strict best responses,
removes this pathological behavior, but the efficiency
loss of strict OE is also unbounded because of the related



double marginalization problem. In particular, the total
cost of transmission on a path consisting of many serial
providers can be sufficiently high that most of the users
do not transmit in equilibrium.

Yet, when users value transmission sufficiently, we
may expect them to transmit even with high costs.
Motivated by this, we defined a stronger notion of
equilibrium, strong OE, which is a strict OE with all
of the traffic transmitted in equilibrium. For strong OE,
we showed that as long as there is zero latency at
zero congestion, there is a tight bound of 1/2 on the
inefficiency resulting from price competition.

Once the zero latency at zero congestion assumption
is removed, however, there is no such tight bound even
with strong OE, and the equilibrium can once again be
arbitrarily inefficient.

In all the examples of extreme inefficiency, there is
a flavor of pathological results, however. Therefore, we
suspect that these worst-case results are not informative
as to whether for realistic network structures such high
levels of inefficiency can emerge. This is an area for fu-
ture research and methods similar to those in Friedman’s
analysis of genericity of inefficiency of selfish routing
may be useful in this context as well (see [10]).

Acknowledgments: We thank Attila Ambrus,
Muhamet Yildiz and various seminar participants for
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REFERENCES

[1] Acemoglu, D., and Ozdaglar, A.,“Competition and efficiency in
congested markets,” submitted for publication, January 2005.

[2] Acemoglu, D., and Ozdaglar, A.,“Flow control, routing, and
performance from service provider viewpoint,”LIDS report,
WP1696, May 2004.

[3] Acemoglu, D., Ozdaglar, A., and Srikant, R., “The marginal
user principle for resource allocation in wireless networks,”
Proceedings of the 43rd IEEE Conference on Decision and
Control, 2004.

[4] Anshelevich E., Dasgupta A., Kleinberg J., Tardos E., Wexler
T., and Roughgarden T., “The price of stability for network
design with selfish agents,”IEEE Symposium on Foundations
of Computer Science,pp. 295-304, 2004.

[5] Basar, T. and Srikant R., “Revenue-maximizing pricing and
capacity expansion in a many-users regime,”Proceedings of
INFOCOM, 2002.

[6] Beckmann, M., Mcguire, C. B., and Winsten, C. B., Studies in
the Economics of Transportation. Yale University Press, 1956.

[7] Correa, J. R., Schulz, A. S., and Stier Moses, N., “Selfish
routing in capacitated networks,”Mathematics of Operations
Research, 29:4, pp. 961-976, Nov. 2004.

[8] Dafermos, S. and Sparrow F. T., “The traffic assignment prob-
lem for a general network,”Journal of Research of the National
Bureau of Standards-B. Mathematical Sciences,vol. 73(2), pp.
91-118, 1969.

[9] Dasgupta, P. and Maskin E., “The existence of equilibrium in
discontinuous economic games. 2: Theory,”Review of Economic
Studies, vol. 53, pp. 1-26, 1986.

[10] Friedman, E., “A Generic Analysis of Selfish Rout-
ing,”Proceedings of the 43rd IEEE Conference on Decision and
Control, 2004.

[11] Fudenberg, D. and Tirole J., Game Theory. The MIT Press,
1991.

[12] Harsanyi, J., “Games with Randomly Distributed Payoffs: a
New Rationale for Mixed Strategy Equilibrium Points”Inter-
national Journal of Game Theory, vol. 1, pp. 1-23.

[13] Hayrapetyan, A., Tardos, E., and Wexler T., “A network pricing
game for selfish traffic,”Journal of Distributed Computing,
2005.

[14] He, L. and Walrand, J., “Pricing internet services with multiple
providers,”Proceedings of Allerton Conference, 2003.

[15] Huang, X., Ozdaglar, A., and Acemoglu, D., “Efficiency and
Braess’ paradox under pricing in general networks,” forth-
coming JSAC Special issue: Price-Based Access Control and
Economics for Communication Networks.

[16] Johari, R. and Tsitsiklis, J., “Network resource allocation and a
congestion game,”Mathematics of Operations Research, 2004.

[17] Kelly, F. P., Maulloo A. K., and Tan D. K.,“Rate control for
communication networks: shadow prices, proportional fairness,
and stability,” Jour. of the Operational Research Society, vol.
49, pp. 237-252, 1998.

[18] Koutsoupias, E. and Papadimitriou, C.,“Worst-case Equilibria,”
Proceedings of the 16th Annual Symposium on Theoretical
Aspects of Computer Science,pp. 404-413, 1999.

[19] Low, S. and Lapsley, D. E., “Optimization flow control, I:
Basic algorithm and convergence,”IEEE/ACM Transactions on
Networking, vol. 7(6), pp. 861-874, 1999.

[20] Patriksson, M., The Traffic Assignment Problem: Models and
Methods, VSP BV, Netherlands, 1994.

[21] Perakis, G., “The Price of anarchy when costs are non-separable
and asymmetric”, manuscript.

[22] Roughgarden, T. and Tardos, E., “How bad is selfish routing?”
Journal of the ACM, vol. 49(2), pp. 236-259, 2002.

[23] Sanghavi S. and Hajek B., “Optimal allocation of a divisible
good to strategic buyers,” 43rd IEEE Conference on Decision
and Control - CDC 2004.

[24] Wardrop, J. G., “Some theoretical aspects of road traffic re-
search,”Proceedings of the Institute of Civil Engineers, Pt. II,
vol. 1, pp. 325-378, 1952.
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