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Abstract—We study the efficiency properties of Huang, Ozdaglar and Acemoglu [15] extend this result
oligopoly equilibria in congested networks. Our measure to a general network topology. Acemoglu and Ozdaglar
of efficiency is the difference between users’ willingness to [1] show that in a parallel-link network with inelastic
pay and delay costs. Previous work has demonstrated that 5, homogeneous users, the efficiency metric with an
in networks consisting of parallel links, efficiency losses arbitrary number of competing network providers is

from competition are bounded. In contrast, in this paper | ter th | to 5/6. M f
we show that in the presence of serial links, the efficiency always greater than or equal to - More recently,

loss relative to the social optimum can be arbitrarily large  Hayrapetyan, Tardos, and Wexler [13] studied pricing
because of the double marginalization problem, whereby in @ parallel-link network with elastic and homogeneous
each serial provider charges high prices not taking into users, and provided bounds on the efficiency metric.

account the effect of this strategy on the profits of other  This paper shows that the efficiency loss with com-
providers along the same path. Nevertheless, when therepeting service providers is considerably higher when we
are no delay costs without transmission (i.e., latencies at consider more general network topologies, suggesting
zero are equal to zero), irrespective of the number of serial that unregulated consumption in general networks may

and parallel providers, the efficiency of strong oligopoly oo ignificant costs in terms of resource allocation.
equilibria can be bounded by 1/2, where strong oligopoly To illustrate the potential inefficiencies of price

equilibria are equilibria in which each provider plays a oRe e
strict best response and all of the traffic is transmitted. COMPEtition in congested communication networks, we

However, even with strong oligopoly equilibria, inefficiency consider a parallel-serial topology where an origin-
can be arbitrarily large when the assumption of no delay destination pair is linked by multiple parallel paths, each
costs without transmission is relaxed. potentially consisting of an arbitrary number of serial
links. Congestion costs are captured by link-specific non-
decreasing convex latency functions, denoted; Iy for
I. INTRODUCTION link 7. Each link is owned by a different service provider.
There has been growing interest in pricing as a methédl users are inelastic and homogeneous.
of allocating scarce network resources (see, e.g., [17],This environment induces the following two-stage
[19], [25]). Although prices may be set to satisfy somgame: each service provider simultaneously sets the price
network objectives, in practice many prices are cofer transmission of bandwidth on its link, denoted by
trolled by for-profit service providers that charge priceg;. Observing all the prices, in the second stage users
at least in part, to increase their revenues and profitsroute their information through the path with the lowest
Research to date suggests that profit-maximizing prieffective cost, where effective cost consists of the sum
ing may improve the allocation of resources in conof prices and latencies of the links along a path [i.e.,
munication networks. Let the metric of efficiency beum of p; + [; (-)’s over the links comprising a path].
the difference between users’ willingness to pay art@ur objective is to study the efficieny properties of the
delay costs in the equilibrium relative to that in theubgame perfect equilibria of this game.
social optimum (which would be chosen by a a network The main novel aspect of this model compared to the
planner with full information and full control over users)parallel-link case is the pricing decisions of different
Acemoglu and Ozdaglar [2] show that with inelastic an(erial) service providers along a single path. When a
homogeneous users, pricing by a monopolist controllig@rticular provider charges a higher price, it creates a
all links in a parallel-link network always achievesiegative externality on other providers along the same
efficiency (i.e., the efficiency metric is equal to onepath, because this higher price reduces the transmission



they receive. This is the equivalent of tdeuble mar- h () B

ginalization problem in economic models with multiple X
monopolies, and leads to significant degradation of the 1/)('
equilibrium performance of the network. d units — - ——

In its most extreme form, the double marginalizazeservation utility : R
tion problem leads to a type of “coordination failure”, Xs\\ ‘\/
whereby all providers, expecting others to charge high
prices, also charge prohibitively high prices, effectively Fig. 1.
killing all data transmission on a given path, and leading
to arbitrarily low efficiency. This type of pathological
behavior can happen in subgame perfect equilibria (what
we refer to as oligopoly equilibria, OE), but we shoy? @n area left for future work.
that it cannot happen in strict subgame perfect equilibria, WOrk related to our paper includes studies quantifying
strict OE, which follows the notion of strict equilibrium €fficiency losses of selfish routing without prices (e.g.,
introduced in Harsanyi [12]. In strict OE, each servickoutsoupias and Papadimitriou [18], Roughgarden and
provider must play a strict best response to the pricid@dos [22], Correa, Schulz, and Stier-Moses [7], Perakis
strategies of other service providers, which is sufficiehtl], and Friedman [10]); of resource allocation by
to rule out the pathological coordination failures merlifferent market mechanisms (e.g., Johari and Tsitsiklis
tioned above. [16], Sanghavi and Hajek [23]); and of network design

Nevertheless, we show that strict OE can also ha(@d- Anshelevich et. al. [4]). More closely related
arbitrarily large efficiency losses because the double m&f¢ the works of Basar and Srikant [5], who analyze
ginalization problem can again prevent any transmissif}Pnopoly pricing in a network context under specific
on a particular path, even when such transmission 8§sumptions on the utility and latency functions; He
socially optimal. and Walrand, [14], who study competition cooperation

Instead, we define an even stronger notion of eq@mongd Internet service providers under specific demand
librium, strong OE as a strict OE in which all traffic Models; as well as Acemoglu, Ozdaglar, and Srikant
is transmitted. We show that when latency without anyi3]: Who study resource allocation in a wireless network
traffic is equal to zero [i.el; (0) = 0], there is a tight undgr fixed pricing. None of these papers, except our
bound of 1/2 on the efficiency of strong OE irrespectivrevious work, Acemoglu and Ozdaglar [1] and the
of the number of paths and service providers in tH€CENt work, Hayrapetyan, Tardos, and Wexler [13],
network. This bound is reached by simple examples. §@nsider the performance of a network with competing
strong OE, the double marginalization problem is stiffoviders. No other paper, to the best of our knowledge,
present, and this is the reason why the bound of 1/2N&s investigated price competition in the presence of
lower than the 5/6 bound in our previous work, [1]. S€ral providers or more general topologies.

Furthermore, we show that even with strong OE, when
the assumption thdf (0) = 0 is relaxed, the efficiency
loss optimum can be arbitrarily large. We consider a network withl parallel paths that

These results shed doubt on the conjecture that @ennect two nodes. Each patltonsists ofi; links. Let
regulated competition among service providers might= {1,...,I} denote the set of paths auvd; denote
achieve satisfactory network performance in gener#te set of links on path Let z; denote the flow on path
Nevertheless, it has to be borne in mind that the example@ndz = [z1, ..., z;] denote the vector of path flows.
that have very poor performance relative to the socighch link in the network has a flow-dependent latency
optimum are somewhat pathological, and this begs tfnction /;(x;), which measures the delay as a function
question of whether much better performance resufié the total flow on linki (see Figure 1). We denote
could be obtained in more realistic topologies, whictie price per unit flow (bandwidth) of link by p;. Let

p = [pjljen; icz denote the vector of prices.
'Models of selfish routing without prices, e.g., [22] or [7], assume We are interested in the problem of routidgunits

that all traffic is always transmitted. Our model incorporates 8f flow across thel paths. We assume that this is the
reservation utility for users, so that this is not necessarily the case. )

Al traffic will be transmitted in equilibrium when this reservation@dgregate flow O_f many “small” users and th_U$ adopt
utility is sufficiently large. the Wardrop’s principle (see [24]) in characterizing the

A network with serial and parallel links.

Il. MODEL



flow distribution in the network; i.e., the flows are routed u(x)
along paths with minimum effective cost, defined as the

sum of the latencies and prices of the links along that

path (see the definition below). Wardrop’s principle is Rdl
used extensively in modelling traffic behavior in trans- |
portation networks ([6], [8], [20]) and communication
networks ([22], [7]). We also assume that users have a
reservation utility R and decide not to send their flow

if the effective cost exceeds the reservation utility. This d X
implies that user preferences can be represented by the

piecewise linear aggregate utility functian(-) depicted Fig. 2. Aggregate utility function.
in Figure 22

Definition 1: For a given price vectop > 0, a vector
zWE e RL is aWardrop equilibrium(WE) if

max (- Y nin- [ Y 4(:4)@)

Z (lj(UC}/VE) +pj) = Iglelg{ Z (lj(JCE/E) +pj)} = ieT JEN; JEN;
JEN; JEN, s.t. Z:CZ <d.
Vi with zVE >0, (1) o=
3 ((l"P) +pj) < R Viwitha"P>0,  Qgp.
JEN
Z 2 < 4, _ For a given price vectagy, thg WE need not be unique
e in general. Under further restrictions on thewe obtain:

. . . Proposition 2: (Uniqueness)Let Assumption 1 hold.
with Ziezfrva = d if mmkef{zje/\/’k Li(zVP) + . ,
p;} < R. We denote the set of WE at a givenby Assume furthe_r thal_t for.alzl eI,_ there exists somg &
W(p). N, such that; is strictly increasing. For any price vector
p > 0, the set of WE,W (p), is a singleton. Moreover,

. . i iy I ; H
We adopt the following assumption on the latendj'® functioni: R — R is continuous.

functions throughout the paper except in Section IV_FProof: Under the given assumptions, for apy> 0, the

objective function of problem (2) is strictly convex, and
therefore has a unique optimal solution. This shows the
uniqueness of the WE at a given Since the correspon-
dencelV is upper semicontinuous from Proposition 1

Proposition 1: (Existence and Continuity) Let As- and single-valued, it is continuou.E.D.
sumption 1 hold. For any price vectpr> 0, the set of

WE, W (p), is nonempty. Moreover, the correspondence We next g_efrl]ng thﬁ SOC""_" prc;lblem I?nd j[he sc;mal
W:R{L :3R£L is upper semicontinuous. optimum, which is the routing (flow allocation) that

would be chosen by a central network planner that has

Proof sketch:Given anyp > 0, the proof is based full control and information about the network.
on using Assumption 1 (in particular the nondecreasing .. .. . g : . .
assumption on the latency functions) to show that the.Defm'tlon 2: A flow vector ™ is asocial optimurif

set of WE is given by the set of optimal solutions of thg is an optimal solution of th&ocial problem

following optimization problem maximize, Z (R _ Z lj(-%'i))xi 3)

i€T JEN;
This simplifying assumption implies that all users are “homoge- . '
neous” in the sense that they have the same reservation uflity/e subject to Z i < d.
discuss potential issues in extending this work to users with elastic i€l
and heterogeneous requirements in the concluding section.

Assumption 1:For eachi € Z, the latency function
l; : [0,00) — [0,00) is convex, continuously differen-
tiable, nondecreasing, and satisfig®) = 0.



By Assumption 1, the social problem has a continuousProposition 3: Let Assumption 1 hold and assume
objective function and a compact constraint set, guarahat the latency functions are linear. Then the price
teeing the existence of a social optimunt, Moreover, competition game has a pure strategy OE.
using the optimality conditions for a convex program, _
we see that a vectar’ € RZ is a social optimum if and Proof: Let ;(z) = a;z for someq; > 0. Define the set
ogly ifIZZ.eI z? < d and there exist; A% > 0 such that To—{icT| Z a; = 0,

NS (Si_, 2z —d) =0 and for each € Z,

JEN;
R— Z Li(zf) — o Z l}(xf) <A% if ¥ =0,  (or equivalently,Z, is the set ofi € Z such thata; = 0
JEN; JEN; for all j € N;). Let I, denote the cardinality of séf.
=)\ if mf > 0. There are two cases to consider:
4) |- To>2:Thenitcan be seen that avecfpt'”, z0F)

with p9% = 0 for all i € 7y, j € N; and 29F ¢
For a given vector: € R, we define the value of the W(pOé) is an OE.

objective function in the social problem, , OF
Il. Iy < 1: For somej € N, let Bj(p_j ) be the set

S(x) =) (R - (xi))xia (5) of p9% such that
i€l JEN;
OE _OF
as thesocial surplus i.e., the difference between the (py™, 277 € arg g}%ﬁiw Pjti (7)
users’ willingness to pay and the total latency. TEW g =i
I1l. OLIGOPOLY PRICING AND EQUILIBRIUM Let B(p©*) = [B;(pZ})]. In view of the linearity of

. : . the latency functions, it follows thaB(p©F) is an up-
We assume that there are multiple service providers, eac . .

. . . er semicontinuous and convex-valued correspondence.
of which owns one of the links on the paths in th

network. Service providef charges a price; per unit ence, we can use Kakutani's fixed point theorem to
o ) ) AN assert the existence off®% such thatB(p©~f) = p@~.
bandwidth on linkj € ;. Given the vector of prices of & (P7") =p

X . . To complete the proof, it remains to show that there
links owned by other service providers, ; = [p]i-;, ¥ oo

: : o : existsz9F € W (p®¥) such that (6) holds.
the profit of service providej with j € N is If Z, — 0, we have by Proposition 2 th&t (p°F) is
)

)
IL(pj, p—j, @) = pjxi, a singleton, and therefore (6) holds ap&”, W (p°F)

h Wins p. is an OE.
wherex € .(pj’p‘J)' . . .. Assume finally thatly = 1, and that without loss of

The objective of each service provider is to maximize . - OFE

: : : : eneralityl € Z,. We show that for all;, z € W (p“*),
profits. Because their profits depend on the prices geé o ,
. . . . we havez; = z;, for all i £ 1. Let

by other service providers, each service provider forms
conjectures about the actions of other service providers,  EC(x,p®") = min { Z Li(zy) + pP )
as well as the behavior of users, which they do according keI - N
to the notion of subgame perfect Nash equilibrium. We
refer to the game among service providers asptiee

competition game EC(%,p°F) <R, or  EC(zp°")<R

If at least one of

Definition 3: A vector (p°F,20F) > 0 is a holds, then one can show th&t!_, #; = >1_, 7; = d.

(pure strategy)Oligopoly Equilibrium (OE) if 29 € Substitutingzy = d — >~,.7 ,,; =; in problem (2), we

w ijEypf_?jE) and for alli € Z, j € N;, see that the objective function of problem (2) is strictly
convex inxz_; = [x;];+1, thus showing that = z. If
IL; (p§ %, p2F  29F) > 1;(p;, p°F , 2), both EC(&,p°F) = R and EC(z,p°F) = R, then
Vpj >0, VaeWp,p?F).  (6) S y) =Y (@),

JEN; JEN;

which, by the assumption thaf is strictly increasing
The next proposition shows that for linear latencior somej € A, implies thatz; = #; for all i # 1,
functions, there exists a pure strategy OE. establishing our claim.

We refer top®F as theOE price



For somez € W (p®F), consider the vectox©F = IV. EFFICIENCY ANALYSIS
(d—>_; 41 ®ix—1) . Sincex_y is uniquely defined and p_ Inefficiency of OE
x1 is chosen such that the providers on link 1 have
incentive to deviate, it follows thap®?, z9F) is an OE.
Q.E.D.

0, . . - .
rfn this section, we study the efficiency properties of OE,

and strict and strong OE (defined below). We take as our
measure of efficiency the ratio of the social surplus at the

The existence result cannot be generalized to genegglHilibrium flow allocation to the social surplus at the

convex latency functions as shown in the followingocial optimum,S(z©¥)/S(z%) [cf. (5)]. We consider
example. price competition games that have OE or strict OE
(this set includes, but is larger than, games with linear
Example 1:Consider a two link network. Let the totallatency functions, see Section Ill). Given a parallel-link
flow be d = 1. Assume that the latency functions ar@etwork with I paths,n; links on pathi, and latency
given by functions{l;} jen; icz), let @({lj}) denote the set of
0 fo<z<s flow allocationsz®® = [z9F],cr at an OE (or strict
li(z) =0, la(x) = { =8 > OE depending on the context). We define the efficiency
€ - metric at somer®Z € OE({l;}) as
for somee > 0 andé > 1/2, with the convention that OF
whene = 0, lx(x) = oo for z > 4. It can be easily ri{li}277) =
verified that there exists no pure strategy OE for small OE OB\ OFE
e (see [1] for details). RYier®’” — Yies (ZJEM (s )>x"

_ _ RS 45 _ 3~ (2528
Nevertheless, a mixed strategy OE always exists. We Lier®7 = Liet (ZJEN" (@ ))x’
define a mixed strategy OE as a mixed strategy subgajiifere.S is a social optimum given the latency functions
perfect equilibrium of the price competition game (Sef;} and R is the reservation utility. Following the

Dasgupta and Maskin, [9]). LeB be the space of all jiterature on the “price of anarchy,” (see [18]), we are
(Borel) probability measures df, k. Let T denote the jnterested in the worst performance of an oligopoly

: . : I A
total number of links in the network, i.€l; = >";_; ni. equilibrium, so we look for a lower bound on
Let u; € B be a probability measure, and denote the

vector of these probability measures fyand the vector ?lfﬂ; % ri({l;} 29F).
of these probability measures excludipdpy p_;. 7 eoreOE({L,})

We first show that the performance of an OE can be
arbitrarily bad.

, (8)

Definition 4: (p*,z*(p)) is a mixed strategy
Oligopoly  Equilibrium (OE) if the function
z*(p) € W (p) for everyp € [0, R]T and Example 2:Consider a two path network, which has

3 links on path 1 with identically O latency functions
/ (pj,p—j 2" (pjsp—3))d (15 (p;) x 1”5 (P—;))  and one link on path 2 with latency functidis) =

[0.5] kxo, wherek > 0. Let the total flow bed = 1 and the
reservation utility beR = 1.

The unique social optimum for this exampleai§ =
(1,0). Now consider the following strategy combination.
Each of the three service providers on path 1, denoted
byi = 1,2, and3, charge price®} = 1, while the service

A mixed strategy OE thus requires that there is fyovider on path 2 charggs = 1/2. It can be verified
profitable deviation to a different probability measure fdfat thereé is no deviation that is profitable for any of
each oligopolist. The existence of a mixed strategy GR€ Service providers. First, consider the serial providers
can be established along the lines of the analysis in [§]} Path 1; given the prices of two of the serial service

which leads to the following result (proof omitted): ~ Providers, there will always be zero traffic on path 1, so
the remaining service provider is playing a best response

Proposition 4: Let Assumption 1 hold. Then the(since any price for this provider would lead to zero
price competition game has a mixed strategy O#Rrofits). Moreover, it can be verified that these strategies
(uOF, 2OF (p)). are not weakly dominated, sinceiif= 1,2 were to play

for all j andp; € B, wherell;(p, z*(p)) is the profit of
service providerj at price vectop andx*(p) € W (p).



pt = 0 and the provider on path 2 were to set a higB. Strict OE and Price Characterization

enoughps, i = 3 would choose to play} = 1. (Thisalso | this paper, rather than allowing coalitions to form,
establishes that the OE will be trembling hand perfecfe study a stronger concept of equilibrium, Harsanyi's
see [11], pp. 351-356 for a definition). Finally, let ugtrict equilibrium (see [12], or [11], pp. 11-12), which
consider the provider on path 2. Given the strategies @fyuires each player’'s best response to be unique. Re-
the serial providers on path 1 and a fixed> 0, it can gl that the standard Nash equilibrium and our OE
be verified that the optimal strategy of this provider is teoncept only require each player, in particular each
_setpg = 1/2. The resulting equilibrium flow allocation ggryice provider, to play a weak best response. We now
IS strengthen this condition.

1
o)
2OF = [07 ﬁ}, Definition 5: A vector (p©F, 29F) > 0 is astrict OE
(Oligopoly Equilibrium) if z0F € W (ijE, p?f) and
which involves routing all the admitted traffic on pathor all ; € 7, j € N,
2 (though not all of the traffic is necessarily admitted). OFE OF OF OF
Therefore, the efficiency metric for this example is 30702y a7) > (g, p=j s @),
Vp; >0, pj #p0F, Vo e W(p;,pF). (9)

= 1 Lt = 1+ We refer top®F as thestrict OE price

ra({l;},29F) =

In the remainder of this paper, we focus on strict OE
and we use the notatio@({lj}) to denote the set of

Example 2 establishes that pure strategy OE with tfW allocationsz©® = [z0¥];c7 at a strict OE for a
parallel-serial link topology can be arbitrarily inefficient"€twork with latency functiongl; } ey, ier). _
This result is at some level pathological, however. The e difference between Definitions 3 and 5 is obvious.
reason why there is so much inefficiency is becaudd€ latter requires service providers to play a strict
service providers on path 1 charge unreasonably hifSt response, while the former does not. Notice that
prices. It is a best response (even weakly undominatdd)°oth equilibria, we have not changed the behavior of
strategy for them to do so, because other providdR€ USers given by the WE (as in Definition 1). Notice
also charge unreasonably high prices, so there is zﬁ_lgo that we have removed the qualifier “pure strategy,”

transmission on this path and they suffer no adverS$iice as is well known, strict equilibria always have to
consequences from charging unreasonable prices. be pure strategy (because mixed strategy equilibria, by

We may expect this pathological situation not to aris%eﬁnition’ involve players being indifferent among the

for a number of reasons. First, firms may not coordina?gategieS over which they are mixing). Therefore, there

on such an equilibrium (especially when other equilibrl‘ar? situations in which a mixed strategy OE exists, but

exist). In this case, for example, we may expect them %rlct OE does not. Moreover, it can be verified that there

realize that if they all reduced their prices, they WouIEre also_sngaEtuzins in which a pure strategy OE exists,
all make higher profits and would still be playing equi—Ut a strict oes not.

librium actions. Second, we may even expect providersV\ée do r;Oth'egV this t?s a jenous shortc?mzng, SCI)nEC(ZI’
on a path to form a “coalition” and coordinate theift> =Xampie 1 above showed, even pure strategy 0

pricing decisions. It can be verified that a special form ?gt always exist. Moreover, we have the following result

coalition-proof subgame perfect Nash equilibrium, whe r Il?e?rplatenc_);_ fungtlonz. t:]—he ]|coroof IS S'.'E'Izr to the
only providers along a given path can form coalition® 00" Of Froposition s, and theretore 1s omitted.

would lead to the results of our previous work, [1], in proposition 5: Let Assumption 1 hold. Assume fur-
particular to the tight bound on efficiency 6f6. This  ther that the latency functions are linear and for all
is because, once serial providers along a path form; & 7, there exists somg € A; such thatl; is strictly

subcoalition, their optimal strategy would be to behaygcreasing. Then the price competition game has a strict
as a single provider along that path, thus removing tiag=

double marginalization problem. In this case, the analysis
in our previous work [1] applies and leads to a bound We next provide an explicit characterization of the
of 5/6. strict OE prices, which will be essential for the subse-

which goes to 0 ag — oo.



quent efficiency analysis. The following lemma estal9E prices are given by
lishes that all path flows are positive at a strict OE.

. @) o o) o
Lemma 1:Let (p°F,z0F) be a strict OF. Let As-  py° =al® | Y L@PP)+ ) h(«5")
sumption 1 hold. Thep§*+?* > 0 for all i € 7 and ke keN:
j € Ni. The price characterization in Proposition 6 is a gen-

Proof Assume to arrive at a contradiction tha?rallzatlon of the price characterization in [1], and as

pPE2OE —  for somei € T andj € N;. Then, at In that paper, it will _be useful in providing bounds on
J the inefficiency of price competition. However, the next

. _ . _ OE
any pricep; with p; > p;*, we have example shows that even with strict OE, efficiency losses
I, (pj,p(_)f,x) =11 (pOE png’$OE)’ can be arbitrarily large.

9

contradicting the definition of the strict OE (cf. Defini-C. Inefficiency of Strict OE

tion 9). Q.E.D. Example 3:Consider a one path network, which has
As shown in Example 2, the result of the precedin&”nkS with identical latency functiong(z) — x/n..'Let
lemma does not extend to non-strict OE prices, i.e., the ¢ total flow bed = 1 and the reservation utiity be

may be OE in which some of the providers make zero

profit while others are making positive profits. We have #5 — 1/2, with a corresponding social surplus

shown in [1] that for parallel-link topology, if at an . . o . .
OE one 01E J[he providgrs makes pogitivegyprofit aIIy (%) :..1/4' Using the price characterlza}tlon given In
the providers make positive profits (see [1] Len,”nma 4 _roposmon 6 and the definition of a WE, it follows that

: ere exists a unique strict OE, in which all providers
Example 2 shows that this result no longer holds for O i
. ) charge the pricg“* = 1/(n + 1), and the equilibrium
non-strict OE for the parallel-serial topology. Lemma Jﬂ8W is 20F — 1/(n + 1). The efficiency metric for this

on the other hand, ensures that it holds for strict OE an :
) L xample is therefore
allows us to write the optimization problems for eacﬁ

For anyn, the unique social optimum for this example

provider in terms of equality and inequality constraints. <1 _ L) 1 A
We can then use the first order optimality conditions to  r; ({1;},2°F) = nl )t n -,
obtain an explicit characterization of the strict OE prices. <1 — %)% (n+1)

Proposition 6: Let Assumption 1 hold. Then, for all which goes to 0 as — .

i€Z,jeN; we have _ _ _ _ _
(a) This example establishes that even with strict OE, which

0B OF ok rules out the pathological coordination failures discussed
p$F = 2P > 1 (PP, above, efficiency losses can be arbitrarily large. The rea-
keN: son for this is again the double marginalization problem,
(b) which increases the cost of transmission so much that
there is no transmission in equilibrium along certain
Py = paths (e.g., along the single path in the example as
OF /. OE e OF n — oo). This type of behavior is also pathological at
€T ZkeN- lk(xi )7 if lk(ws ): 07 | | iall h hink of k h
; fork # j. s 41 some level, especially when Wet_ln 0 networks w ere
B ’ the reservation utility,R, of users is high enough. This
min ni [R — Y enr lk(xiOE)}’ leads us to define an even stronger notion of equilibrium,
' strong OE

xiOE[EkeNi U, (29F) + p——1 } ., Definition 6: A vector (p°F,29F) > 0 is a strong
T kens GEH OE (Oligopoly Equilibrium) if it is a strict OE, and
otherwise Sier29F = d. In this case, we refer tp@% as the
(10) strong OE priceand denote the set of strong OE flow
In particular, for two links, when the minimum effec-2llocations in a network with latency functions KY; }
tive cost is less than R, far= 1,2, j € N;, the strict by O.Ed({lj}).




The only difference between Definition 5 and Definifor some social optimum z,. Then every
tion 6 is that in the latter we require all of the potentiat®” ¢ @({lj}) is a social optimum, implying
flow, d, to be transmitted. This will be the case when thidatr;({/;},29F) = 1.
reservation utility,R, of users is large enough.

Proof: Assume that )", ; <ZjeM Q(mf)) ¥ =
D. Efficiency of Strong OE with Two Paths RY .25, Sincex’ is a social optimum and every
We now characterize the efficiency properties of strond’” € OE({l;}) is a feasible solution to the social
OE. We start with a two path network, with links on problem [problem (3)], we have
pathi = 1,2, where each link is owned by a different
provider. First, consider the following example, which — Z (R_ Z lj(wf))wis
illustrates that even with strong OE the efficiency loss
can be worse than that in parallel link networks (which > (R - lj(x?E)>x?E, v 2°F € OE({1;}).
was shown to be bounded below by 5/6 in [1]). i€T JEN;

i€T JEN;

Example 4:Consider a two path network, which ha8y the defig]i;[ion of a WE,O\]/Eve havef” > OOqEnc_iR -
n links on path 1 with identically 0 latency functions and_jen: b (¥ ) 2 2 jen; Py~ 2 0 (wherepi™ is the
one link on path 2 with latency functiokizs) = z,/2. Price of linkj € A; at the OE) for alk. TQJ'S_ combined
Let the total flow bel = 1 and the reservation utility be With the preceding relation shows that” is a social
R—1. optimum. Q.E.D.

The unique social optimum for this examplezi$ =
(1,0). Using Proposition 6 and the definition of a WE

OE flows z9F must satisfy

The following lemma provides a relation between the
total flow admitted at an OE and at a social optimum.

Lemma 3:For a set of latency functions
> 1(9F) +$?E[ PR l}(l’gE)} {1;}jen.. ic), let Assumption 1 hold. Lefp©”, z0F)

JEN €N JEN: be an OE and:® be a social optimum. Then
OE s
ICORE S DO RSO D e’ <) al.
JEN2 JEM JEN: ez =

Substituting for the latency functions and solving thBroof: Assume to arrive at a contradiction that
above together withrQ” + 29 = 1 shows that unique >,.7 29F > Y, 7 2?. This implies thatz@% > z?
strong OE involves for somei. Hence,

LOE ( 2 n ) 1;(a9F) > 1;(af), VjeN.

“\n2nt2
ne We also havel;(z9F) > [;(z¥) for somej € M.

which goes to(0,1) asn — oo. The social surplus at [Otherwise, we would havéj(:cf) = l;(a:f) =0 for all
the social optimum is 1, while the social surplus at the c Aj;, which yields a contradiction by the optimality
strong OE goes td/2 asn — oo. conditions (4) and the fact thaf,_; z{ < d.] Using the

. ) _definition of the WE and the optimality conditions (4),
We next present two lemmas, which will be useful ie obtain

providing a bound on the efficiency metric for strong

OE. Note that these lemmas are valid for all OE as weR— » (lj('fl?iOE)—p?E) >R-) (lj(xf)—xfl;-(xf)).
The first lemma allows us to assume without loss of jen: JEN;

generality thatR > 25 — 1 1;(25)2% > 0 in the

subsequent analysis. Combining the preceding withy(zPF) > 1;(x?) for all

j € N;, with strict inequality for somg, and
Lemma 2:Given a set of latency functions ijE > H}Z-OEl;-(miOE) > x;gl;(xf),
{lj}jen;, icz, @assume that
[using Proposition 6(a) and the fact thdt(z) is nonde-
> ( > zj(xf));gf =R a7, creasing, cf. Assumption 1], we obtain a contradiction.
i€l jEN; ieZ Q.E.D.



The next theorem provides a tight lower bound on ( > lij) + yf( > (7)) <R, (16)
ro({l;}, z9F) [cf. (8)] for a strong OE. In the following, JEM JEMN
we assume without loss of generality thb& 1.

2
S _
Theorem 1:Consider a two path network, with; ;yi =1 (17)
links on pathi = 1,2, where each link is owned by Z;
a different provider, and linkj € A; has a latency i + 1,08 — ") <1f,,  VjieMN, (18)
function /;. Suppose that Assumption 1 holds and the OE . .
A T A = -
price competition game has a strong OE. Then lig <yl =12 jeN, (19)
2
1
nliha%%) 2 5, va©P e OE' (L)), () >ouF =1,
i=1

Moreover, the bound is tight, i.e., there exigls} and

d i : + Strict OE Constraints
20F ¢ OE"({l;}) that attains the lower bound in (11).

Problem (E) can be viewed as a finite dimensional
Proof: The proof follows a number of steps: problem that captures the equilibrium and social opti-

. ) o mum characteristics of the infinite dimensional problem
Step 1:We are interested in finding a lower bound fo@iven in (12). This implies that instead of optimizing

the problem over the entire functiori; for somej € N, i € Z, we
inf inf ra({1;},29F). (12) optimize over the possible valuesigf-) andl}(-) at the
Wt o cOE (1) equilibrium and the social optimum, which we denote by

lij, i ;15 (I7;)'. The constraints of the problem guar-

Z?] ) 17-] )

Given {l;}, let 297 € OE({l;}) and let z° bEe a antee that these values satisfy the necessary optimality
social optimum. By Lemma 3 and the fact thet” € conditions for a social optimum and a strict OE (which

d . o
OE"({l;}) (i.e., it is a strong OE), we have are the same as the conditions for a strong OE). In
9 9 particular, conditions (14) and (19) capture the convexity
le_OE — fo -1 assumption ori;(-) by relating the valueg, ;,; ; and
P = 175, (17,)" [note that the assumptidn(0) = 0 is essential

here]. Condition (15) is the optimality condition for the

This implies that there exists somsuch that:9F < z?. . . o .

. . . v t ° social optimum. Condition (18) uses the nondecreasing
Since the problem is symmetric, we can restrict ourselvgﬁd the convexity assumption on the latency functions:
to {I;} for which 2{F < 2¥. We claim that y P y ’

since we are focusing ofi;(-)} such thatz{¥ < a7,

inf inf ro({l;},29F) > rQF  (13) we must have
€L 10ecOE (1) /(S OBy ;S
hg+0 00—y ) <135
where . .
on o for all ; € N;. Finally, the last set of constraints are the
Ty = MINIMIZE.s s yr>0 necessary conditions for a pure strategy OE. In particular,
ls”oi;iz for a two path network, using Proposition 6, the Strict

OE Constraints are given by

E) nly?E[ Z I+ Z 1/2,31 + Z l1,j

R—=y98 (e 1) = 9% (S jens los)

R — yig(ZjeNl lf,j) - yg(ZjGNz lg,j) JEN: JEN: JEN:
subject to = n2y20E[ Z I+ Z 5/2,]} + Z l2,5,
. . JEN: JEN2 JEN:

[and thereforen, andn, are also decision variables in
problem (E)]. Note that given any feasible solution of
s s s
( Z l2u‘> T % ( Z U?J)/) problem (12), we have a feasible solution for problem
JEN? JEN? (E) with the same objective function value. Therefore,
= ( > 1fj> +yf( > (zfj)’>, (15) the optimum value of problem (E) is indeed a lower
JeN ’ JeN: ’ bound on the optimum value of problem (12).



Step 2:Consider the following change of variables for Next, using the transformatiom; = n;yP¥ and

problem (E) may = nay$ ¥ to write:
S _ S S _ S 1oy OF
Iy = Z i1 ly = Z 3, ’f'g)E = min 1 2% (22)
JEN: JEN: 12,1} R

yPE, y§E>0

li = Z le, Iy = Z l2,j, mi, mg>0

v P subjectto I <y,
lo + maolhy = mylh,
) =D 05, 05y =35, 2 mal =
JEM JEN: mllz S R.
2
I _ / ! /
=2 by h=) by S yOF =1,
JEM JEN: i—1
and rewrite problem (E) as though we also have to ensure that the solution to this
o R — 11yOF — [, QF program ensures that; andny are integers.
OE _ 1Y1 2Y9 . - 22
T2 = m'n'm'zelflv‘ulf;’zo R— 155 — 1548 (E') Now it can verified thai(ly, I, 597, 59, iy, ma) =
. Lor e (2,2 0,1,2,1) is an optimal solution to the program
subject to (22), apd moreover, it satisfies, no 2 1, thgs it is also '
S N ) a solution to (20). The corresponding optimum value is
<y (7, i=12, r9F = 1/2. By (13), this implies that
lS—|— SZS/:lS+ SlSI7 1
2 ?/;( 2)5 Sl/ yr (17) inf inf rg({lj},xOE) > 5
I +yi (1) <R, W} porcOE (1))

Finally, Example 4 shows that this bound is tight, i.e.,

2
> =1
i=1

L+ 1y —yPF) <1f,

min min T2({lj}7xOE) — 9
{4} one@({l_j})

N —

Q.E.D.
L <P, i=1,2,

9 Therefore, when we focus on strong OE, there exists
Z%OE =1, a tight bound of 1/2. In contrast to the case in Example
=1 3, strong OE ensures that all of the traffic is transmitted

+ Strict OE Constraints in equilibrium, which is the key to the existence of a

Note that thi bl h imilar struct tbound on the inefficiency of equilibrium.
ote that this problem has a very similar StUcture 10 pq - j5nd - with strong OE is nonetheless worse

the finite-dimensional problem con;idered in the pro%an the efficiency bound in the parallel-link topology
O;S Tfljse(/)r@}/ %soto%] Lor paralrllel-llnk_ neltwolrkg. I‘(_‘\;considered in [1]. This is again because of the double
(L 7b(li ), ié,i’?t’v’ yih ) eﬂote the ()1pt|r}711q SS utlc;n " marginalization problem: each provider along path 1 has
pr_o em (E'). We have shown in [1] thdf' = 0 for a greater incentive to increase its price (relative to the
i=12 benchmark where all these links are owned by the same
Step 3:Using ¥ = 0 for i = 1,2, andl; = 0, I, = 0, provider), because it does not internalize the reduction

we see that in the profits of the 'other link owners along'the same
Ly OF path. Consequently, in Example 4, there are higher prices
r9F = min 1-— 2}% (20) along path 1, and this induces greater fraction of users to
y?Efg;fé%Ezo choose path 2, increasing inefficiency. To see the role of

e ezt serial links more clearly, consider a modified version of

subject to Iy < y5"l5, Example 4, where al links along path 1 are owned by

Iy + noyS Pl = niy©Fl, the same service provider. This would make the example

nyOPl < R. equivalent to a parallel-link topology. In this case the

9 unique strict OE flows are given by?® = 2/3 and
Z%OE <1 +9F = 1/3, and this example reaches the 5/6 bound of
1 B [1] rather thanl/2 bound of Example 4.



E. Efficiency of Strong OE with Multiple Paths social optimum isz® = (1,0). The flows at the unique

We next consider ari path network, withn; links strict (strong) OE are given by

on path i, where each link is owned by a different o [ 2¢+b en—10
provider. The following example illustrates the efficiency T e(n+2) e(n+2)

roperties of a strong OE in ahpath network.
prop g P Let e = b/\/ﬁ Then, asb — 1 andn — oo, we

Example 5:Consider an | path network, which has have thatx — (0,1), and the efficiency metric
links on path 1 with identically O latency functions andz2({/;}, 2OF) — 0.
one link on each of the path, ..., I with the same
latency functioni(z) = z(I — 1)/2. Let the total flow
be d = 1 and the reservation utility b& = 1.

CIearIy, the unique social optimum for this example i

This example shows that the efficiency loss could
be arbitrarily high even at a strong OE for a network
that involves parallel and serial links if the assumption
:(0) = 0 is relaxed. This establishes:

=[1,0,...,0]. Using Proposition 6 and the definition”
of a WE, _it can be seen _that the flow allocation at the Proposition 7:In the presence of positive latency
unique strict (strong) OE is at zero congestion, strong OE with the parallel-serial
or _ 2/n 1 topology can be arbitrarily inefficient.
1+2/n" (I =1)(1+2/n) It is useful to note that in the same example with
1 the parallel-link topology (i.e., alh links along path 1
TEDE 2/n)] owned by the same provider), we would have
b+2¢ e—b
.. . . . OFE _ (36,36), |f€2b,
Hence the efficiency metric for this example is x { (1,0), otherwise
2
rl({lj}vaE) =1-— 1 <1) Consequentlyp — 1 ande — 0, we have that:°F —
2\1+2/n (1,0), and ro({l;},29F) — 1. Therefore, the highly
which goes to 1/2 as — oo. inefficient equilibrium is a result of the parallel-serial

topology, not of the assumption that there is positive

The next theorem generalizes Theorem 1. The prdafency at 0 congestion. In fact, [1] shows that with

is similar to that of Theorem 1 and is omitted. parallel topology, but positive latency at O congestion,
there is again a tight bound @W/2 — 2 on efficiency,

Theorem 2:Consider a general path network, with \hich is quite close to, but slightly lower than 5/6.
n; links on path: € Z, where each link is owned by

a different provider, and linki, ; € N;, has a latency V. CONCLUSIONS
function /;. Suppose that Assumption 1 holds and th@ this paper, we presented an analysis of price com-
price competition game has a strong OE. Then petition in communication networks with congestion.

1 J The focus has been the efficiency implications of price

ri({l;},29F) > 3 v 2% € OE({1;}). (22) competition in networks with the serial-parallel topology.
Our major result is that contrary to the case of pure

Moreover, the bound s tight, i.e., there exi¢ls} and parallel-link topology studied in [1], the parallel-serial
z9F ¢ O_If ({{;}) that attains the lower bound in (22). topology leads to significant efficiency losses relative
to the social optimal. In particular, OE can now be

F. Positive Latency at 0 Congestion arbitrarily inefficient. This is partly due to an extreme

Unfortunately, the bound on the efficiency loss of strori@athological) form of double marginalization, whereby

OE does not generalize once we relax the assumptfh Serial providers on a particular path charge pro-
that 7;(0) = 0. hibitively high prices expecting others on that path to

do so as well.

Example 6:Consider a two path network, which has We showed that the concept of strict OE, which
n links on path 1 with identically 0 latency functions andequires all service providers to play strict best responses,
one link on path 2 with latency functidlixz2) = exo+b removes this pathological behavior, but the efficiency
for some scalarg > 0 andb > 0. Again the unique loss of strict OE is also unbounded because of the related



double marginalization problem. In particular, the totaf9]
cost of transmission on a path consisting of many serial
providers can be sufficiently high that most of the users,
do not transmit in equilibrium.

Yet, when users value transmission sufficiently, we
may expect them to transmit even with high cost&1]
Motivated by this, we defined a stronger notion qfiy
equilibrium, strong OE, which is a strict OE with all

of the traffic transmitted in equilibrium. For strong OE

we

[13]

showed that as long as there is zero latency

zero congestion, there is a tight bound of 1/2 on the

inefficiency resulting from price competition.
Once the zero latency at zero congestion assumpt@gl
n

[14]

is removed, however, there is no such tight bound ev
with strong OE, and the equilibrium can once again be
arbitrarily inefficient.

In all the examples of extreme inefficiency, there id6]
a flavor of pathological results, however. Therefore, wez

suspect that these worst-case results are not informative

as to whether for realistic network structures such high
levels of inefficiency can emerge. This is an area for fltlIS
ture research and methods similar to those in Friedman’s
analysis of genericity of inefficiency of selfish routin%

P, 19]
may be useful in this context as well (see [10]).
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