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Abstract We provide an overview of recent research on belief and opinion dynamics in
social networks. We discuss both Bayesian and non-Bayesian models of social learning and
focus on the implications of the form of learning (e.g., Bayesian vs. non-Bayesian), the
sources of information (e.g., observation vs. communication), and the structure of social
networks in which individuals are situated on three key questions: (1) whether social learn-
ing will lead to consensus, i.e., to agreement among individuals starting with different views;
(2) whether social learning will effectively aggregate dispersed information and thus weed
out incorrect beliefs; (3) whether media sources, prominent agents, politicians and the state
will be able to manipulate beliefs and spread misinformation in a society.

Keywords Bayesian updating · Consensus · Disagreement · Learning · Misinformation ·
Non-Bayesian models · Rule of thumb behavior · Social networks

1 Introduction

Almost all social interactions are, at least in part, shaped by beliefs and opinions. Most of
this we take for granted. To start with the most mundane example, few of us would have
sampled all the different types of food or entertainment on offer around the world, but most
of us have formed beliefs and opinions about which ones we would like, and every day
we make decisions on the basis of these beliefs. More important and more interesting from
the viewpoint of social science, most of us also have a set of (often complex and nuanced)
beliefs about how others will act in different social situations, which guide our behavior in
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social contexts ranging from business meetings to competitive sports. These beliefs are in-
timately intertwined with “social norms,” such as what we deem as acceptable behavior (to
help somebody who has fallen down in the street and to not be part of activities that would
harm others and so on). They also shape our political participation and attitudes. Political
participation is certainly a “learned” attribute: those of us lucky enough to live in democ-
racies learn about and believe in the need for and the virtues of political participation and
often take part in elections and other political activities. And when we go to the polls, which
candidate we support is again shaped by our beliefs and opinions about what is a just soci-
ety, which candidates are more reliable and so on. Many who are born in repressive societies
instead form beliefs about the dangers of such types of political participation, though some
of them are also encouraged as much by their beliefs as by their friends and family, to take
part in protests against regimes they deem as unjust or illegitimate. The importance of the
beliefs we hold for how our daily lives and society in general function cannot be overstated.

Where do these beliefs and opinions come from? While, as evolutionary biology has
taught us, certain phenotypic characteristics have biological and genetic bases, it is unlikely
that any of our beliefs are imprinted on us by our genes. Instead, we acquire our beliefs and
opinions through various types of learning experiences. Some of this learning takes place
within families, when parents teach certain basic principles and beliefs to their children
(e.g., [15, 16, 19, 20, 77]). Much of it, however, takes place through a process of “social
learning,” whereby individuals obtain information and update their beliefs and opinions as
a result of their own experiences, their observations of others’ actions and experiences, the
communication with others about their beliefs and behavior, news from media sources, and
propaganda and indoctrination from political leaders and the state. While the process of
learning by an individual from his or her experience can be viewed as an “individual” learn-
ing problem, it also has an explicitly “social” character. This is in three related but distinct
senses:

1. Learning is social because any given individual observes the behavior of or receives
information through communication with a small subset of society—those we may want
refer to as her social network, consisting of her friends, her coworkers and peers, her
distant and close family members, and a certain group of leaders that she listens to and
respects (e.g., village leaders, trusted politicians, trusted media sources and so on). We
can thus not separate the process of learning and opinion formation from the specific
social network in which an individual is situated.

2. Learning is also social because an individual will need to interpret the information that
she obtains in a social context. She will inevitably trust some information more than
others and she will have to form conjectures about the sources of the experiences and the
intentions of members of her social network in communicating certain information to her
(below, we will refer to this as her conjectures about the strategies of others).

3. Learning is also social because these interactions will lead to dynamics in learning and
opinion formation. Once an individual obtains a piece of information from a specific
peer in her social network, then she may pass on this information or some version of it
to other members of her social network. The latter will typically have their own social
networks that do not overlap with hers, so that this information, regardless of whether it
is accurate or not, may spread both within and beyond the initial social network in which
it originated.1

1Another related social aspect, which has received less attention, is that the social network of the individual
might change dynamically and endogenously as a result of the information that she receives. For example,



Dyn Games Appl (2011) 1: 3–49 5

The social aspect of belief and opinion formation—social learning for short—will be
our central focus in this paper. We will investigate how the structure of social relation-
ships in society, the (potentially selective) trust that individuals have toward others and their
conjectures about others’ behavior and intentions impact the formation of their beliefs and
opinions. We will refer to these influences as the impact of the social network on opinion
formation. For concreteness, we will study the impact of the social network in the context of
three specific questions, which have received the bulk of the attention from the literature:

a. Will social learning lead different individuals to hold beliefs that are in agreement, even
though they might start with different views (priors) and observe the actions of and en-
gage in communication with different subsets of the society? Put differently, will a con-
sensus form among different individuals?

b. Will social learning effectively aggregate dispersed information about an underlying state
that represents some social or economic situation? Will there be asymptotic learning
(learning in the long run) of the underlying state which is the source of uncertainty?
For example, in many situations there will be sufficient information in society to settle a
question such as whether a particular economic, social or political action is desirable, but
different parts of this information will be held by different agents rather than by a single
entity. In this situation, whether social learning through observation and communication
will be able to aggregate those dispersed parts becomes central. A corollary to this ques-
tion is the following: will social learning guarantee that incorrect beliefs (which can be
refuted on the basis of the available evidence) disappear?

c. Will media sources, “prominent agents,” politicians and officers of the state be able to
manipulate the beliefs of individuals, indoctrinate them and convince them of views that
may not be justifiable by the data and evidence? Put differently, how much room is there
for belief manipulation and misinformation?

While most of these questions are asked as simple “yes or no” questions, the answers
we will present, on the basis of a large body of research over the past several decades, will
often provide additional conditions and insights under which the answer will be yes. We will
also attempt, whenever we can, to relate these conditions to the impact of the social network
(in particular to structural properties of the social network) in which agents are situated. In
some cases, these mathematical conditions will be straightforward to map to reality, though
in many instances more work is necessary to either sharpen these conditions or to create
a better bridge between the mathematical results and the reality that they are supposed to
represent.2

The issue of whether a group of agents who hold dispersed information will be able to
aggregate this information and reach a consensus, and in fact, a correct consensus, has been
the focus of a large body of mathematical and philosophical work throughout the last sev-
eral centuries. The seminal work by Marquis de Condorcet, which is the basis of what is
now referred to as the Condorcet’s Jury Theorem, is particularly noteworthy. de Condorcet

because of some new information that she obtains, she may decide to no longer trust some of her friends or
previously trusted information sources.
2Like almost all of the literature in this area, in investigating this question, we will focus on the behavior of
opinions and beliefs in a society in the “long run,” meaning after a sufficiently long time has elapsed. This
will enable us to develop sharper mathematical insights, though it should be borne in mind throughout that
the relevant “long run” might be longer than the lifespan of a single individual and might arrive so slowly that
non-long-run behavior might be of greater interest. We view the development of more powerful mathematical
models and more insightful analysis of short-run opinion and belief dynamics as an exciting and important
area for future work.
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[24] observed that truthful reporting of information by a large group of individuals with
each holding a belief or piece of information correlated with some underlying state θ is
sufficient for aggregation of information. A similar perspective, but based both on theoreti-
cal reasoning and empirical backing, was developed a century later by the British scientist
(and arguably one of the founders of modern statistics), Francis Galton. In a famous Nature
article published in 1907, Galton espoused the view that a group of relatively uninformed
individuals would collectively have much more knowledge than any single one of them.
Galton visited an agricultural fair in Plymouth in 1906 to investigate a specific application
of this idea. Participants at the fair were asked to guess the weight of an ox (after the ani-
mal was slaughtered and dressed, meaning the head and other parts were removed). Eight
hundred people apparently took part in this contest. Galton was well aware that these were
no experts and in fact, in the Nature article that he wrote in the following year, he stated:
“[. . . most of the contestants were. . .] as well fitted for making a just estimate of the dressed
weight of an ox, as an average voter is judging the merits of most political issues on which
he votes.” The remarkable thing reported in the Nature article was that, when Galton looked
at the 787 valid entries, he found that the median estimate was extremely close to the actual
weight of the ox. This estimate was 1197 pounds, while the actual weight was 1198. Galton
concluded [42]:

“The result seems more creditable to the trustworthiness of a democratic judgment
than might have been expected.”

Despite these famous arguments, it is now generally believed that this type of aggregation
of dispersed information is neither a theoretical nor an empirical necessity. Instead, in some
situations this type of aggregation may take place (at least approximately), while in many
others it will not. In fact, disagreement on many economic, social and political phenomena,
such as the scientific standing of evolution, the likelihood that US health care reforms will
increase overall spending, whether Iranian elections in 2009 did produce a majority for
Ahmadinejad, whether the current trend of emissions will lead to significant climate change,
whether a particular government or politician is competent, and so on, is ubiquitous, despite
the availability of a reasonable amount of data bearing on these questions. This suggests
that useful models of learning should not always predict consensus, and certainly not the
weeding out of incorrect beliefs. Instead, these should merely be possible outcomes among
others, depending on the nature of disagreement (e.g., whether some people are likely to
support an incompetent government because of a specific subset of the policies they adopt),
the informativeness of the information agents possess and receive (e.g., whether there is new
and relatively precise information arriving on an issue, or whether social learning is mostly
a question of aggregating already existing priors and information), and the structure of the
social network leading to the exchange of information (e.g., whether there are relatively
isolated clusters of individuals not communicating with those outside their clusters).

When consensus and the weeding out of incorrect beliefs are not guaranteed, there will
also be room for systematic indoctrination and spread of misinformation by certain “promi-
nent” agents, media sources, politicians and the state. The ability of authoritarian regimes
such as those in China and Iran to indoctrinate significant subsets of their populations with
nationalistic or religious propaganda underscores this possibility (but the fact that these gov-
ernments place great emphasis on controlling all news sources, and especially the Internet
and foreign news, also highlights that such indoctrination is not easy or automatic).

More specific evidence that this type of influence on beliefs exists and can be important
comes from DellaVigna and Kaplan [29], who provide an illustration of this by studying the
expansion of the Fox News cable channel across US towns. As is well-documented and ac-
cepted, the coverage in Fox News is more right-wing and pro-Republican than that of other
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TV stations and most other media sources. If media sources can indeed have a significant in-
fluence on opinions and beliefs, for example, by spreading misinformation, or more benignly
by providing information that others would not and blocking some information that others
would provide, then we might expect that exposure to Fox News may increase the support
for the Republican Party. DellaVigna and Kaplan exploit the fact that the Fox News channel
was introduced in October 1996, and then spread across different towns slowly, reaching
several towns before 2000, and many after 2000, depending on its agreements and the deci-
sions of local cable companies. DellaVigna and Kaplan then compare the change in the vote
share of the Republican candidate between the 1996 and the 2000 elections. The 1996 elec-
tions were before the introduction of Fox News, so differential change between towns with
and without access to this channel can be interpreted as the impact of Fox News. They find
that the Republican candidate gained between 0.4 to 0.7 percentage points in towns where
the population had access to the Fox News cable channel compared to similar towns without
such access. The available evidence also suggests that there are certain marked differences
in opinions (often very strongly held) between individuals consistently watching the Fox
News vs. those obtaining their news from CNN or CNBC.

This discussion highlights the need for developing models in which certain subset of
agents can have a major influence on the opinions of others (possibly by spreading mis-
information) and also models in which even in the very long run, consensus may not arise.
These models, though generally in their infancy, provide a potential framework for the study
of persistent disagreements and indoctrination, and might also generate insights about what
types of societies (partly based on their social networks) might be able to develop some
“robustness” to indoctrination and misinformation.

We next provide a brief outline of the rest of this paper. In Sect. 2, we start by discussing
two alternative approaches to social learning and opinion formation, one based on Bayesian
updating of beliefs, and the other one based on non-Bayesian reasonable “rules of thumb” on
how people form their opinions on the basis of evidence and social influences. The Bayesian
learning approaches assume that individuals update their beliefs optimally (from a statisti-
cal point of view) given an underlying model of the world. We emphasize in this section
that Bayesian approaches make several demanding requirements from the agents. For ex-
ample, they require that the agents have a reliable “model of the world” enabling them to
assign priors to all possible events and that they can update their beliefs by forming com-
plex conjectures on the behavior of others in society. They also put considerable structure
on the updating problem by ruling out many states as “zero probability events”. These fea-
tures also imply that Bayesian approaches might end up putting too much structure, making
issues such as indoctrination and spread of misinformation more difficult, almost impos-
sible, to model. Finally, the inference problem facing Bayesian agents, particularly when
they are situated in social networks in which information travels in complex ways, is quite
challenging. While non-Bayesian rule-of-thumb learning models avoid some of these diffi-
culties and might provide better approximations to the behavior of most agents, we do not
currently have sufficient empirical evidence to distinguish between several different types of
non-Bayesian models. This suggests that Bayesian approaches might be a useful benchmark
for understanding the implications of several different types of deviations from Bayesian up-
dating and different rules-of-thumb behaviors. In the end, both Bayesian and non-Bayesian
approaches provide useful insights and contrasting them is often instructive. Ultimately,
which class of models is most appropriate should depend on the specific question and social
context. For example, questions related to belief manipulation and misinformation appear to
be more naturally treated in a non-Bayesian context.

In Sect. 3, we present two models of Bayesian social learning by a set of agents observ-
ing others’ actions or communicating with each other over a social network. We also briefly
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discuss the role of markets in the formation of opinions. We emphasize several important
themes in this section. First, we illustrate why the Bayesian models are a natural benchmark,
but also why they involve a high degree of sophisticated and complex reasoning on the part
of the agents. Second, we show that, even though agents are assumed to be highly rational
and have the correct model of the world on which they base their belief updates, strategic
interactions that inevitably exist in such Bayesian environments place endogenous limits
on the aggregation of dispersed information. We will illustrate this by showing the emer-
gence of a phenomenon often referred to as “herding,” in which Bayesian rational agents
follow others’ actions or opinions even when these are only imperfectly informative (and
in the process, prevent the aggregation of information from which others would have also
benefited). Third, we also show that even when aggregation of information breaks down
and social learning leads to incorrect beliefs, there are strong forces toward consensus in
Bayesian models. They thus do not present a natural framework for understanding persis-
tent disagreements. Finally, there will also be natural limits on the spread of misinformation
in Bayesian models. While herding is possible, herding will never happen on an action that
is likely to be a “bad action”.

In Sect. 4, we present several non-Bayesian models of learning. We start with a simple
and widely used model, the so-called DeGroot model of belief updating. We emphasize why
this is a simple and tractable model, but also why it illustrates some of the shortcomings of
non-Bayesian models. We then present a variant of this model which avoids some of these
shortcomings and also enables a first attempt at modeling the possible spread of misinfor-
mation (propagated by a set of “prominent agents” which may include community leaders
as well as media outlets). However, in this benchmark model, even though misinformation
might spread, persistent disagreement is not possible and opinions will converge to a consen-
sus (though this consensus is stochastic and cannot be known in advance). We then present
an extended model in which both misinformation and persistent disagreement can coexist,
and highlight possible research directions in this area.

Section 5 concludes with a brief discussion of future research. Throughout, we have
tried to ground the discussion sufficiently by presenting baseline models and some relevant
details of the analysis that will be useful in future work, but we have economized on space
by referring the reader to the original papers for the proofs and more involved results.

2 Bayesian and Non-Bayesian Perspectives

Opinion formation is directly or indirectly about learning. An individual starts with some
views (priors) about a subject, which will affect her economic, political or social decisions,
and then updates them according to some process. Thus overall, opinion formation has three
key components:

1. Priors. Any model of opinion formation has to start with some type of prior opinions
for an individual or group of individuals. For example, an individual might start with
“diffuse priors” meaning that she can be easily swayed by the information she receives.
Or an individual might have such strong views that her posterior opinion will not be very
different from her prior opinion even after she receives a substantial amount of new data
and communications.

2. Sources of information. An individual will update her prior based on new information that
she receives. This might come from her own experiences, from observing others’ actions
and experiences, or from communication with others. Any model of opinion formation
will implicitly or explicitly specify the sources of information, which will in general be
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at least partly affected by an individual’s “social network”. For example, both when it
comes to observing others’ experiences and to communication, an individual is much
more likely to learn from and communicate with some people than others—typically,
family members, friends, coworkers and other peers are much more likely to influence
an individual by communicating with her or by providing her information on the basis of
their experiences.

3. Method of information processing. The third and key part of the process of opinion for-
mation is how the individual will combine her priors and the information she receives.
By Bayesian models, we refer to those in which individuals use the Bayes rule to form
the “best” mathematical estimate of the relevant unknowns given their priors and un-
derstanding of the world. Non-Bayesian models are defined as all those that are not
Bayesian. They include information updating processes that similarly combine priors
and information to yield a posterior, but they could also include various approaches that
appear “non-informational” at first sight, for example, those in which an individual might
change her opinion in a manner similar to being “infected” by a disease.

In this section, we first discuss the basic approach of Bayesian models and why they
might be a useful starting point. We then discuss several cognitive difficulties that Bayesian
models face and discuss some alternatives. Finally, we conclude with an analysis demon-
strating how Bayesian updating does not always lead to consensus and information aggre-
gation as is sometimes presumed.

2.1 Bayesian Approaches

The Bayes rule is familiar and simple in its abstract form. It states that for two probabilistic
events A and B , the probability that A is true conditional on B being true, P(A | B), is given
by

P(A | B) = P(A ∩ B)

P(B)
= P(B | A) · P(A)

P(B)
, (1)

i.e., by the ratio of the probability of the event that both A and B are true, P(A∩B), and the
unconditional probability of event B , P(B). Since a similar relationship holds for P(B | A)

(i.e., P(B | A) = P(A ∩ B)/P(A)), the second expression follows. This formula is very
powerful when we apply it to the issue of social (and for that matter individual) learning.

Consider a situation in which an individual is trying to form an opinion about some
underlying state θ ∈ �. The state could correspond to some economic variable, such as
potential earnings in an occupation or profitability of a line of business, or to a social or
political variable, such as whether a politician is to be trusted or a certain ideology is useful
or beneficial. As we noted in the previous subsection, he would first have to start with some
“priors”. We can capture this by a function P(θ), which gives the prior belief of the indi-
vidual about the likelihood of each possible value of θ in �. The second key ingredient of
learning is the information that the individual will receive. Let us represent this information
by some signal s ∈ S. This could correspond to some observation concerning θ (e.g., how
much do others in this occupation earn? How much profit do they make from this line of
business? Is there any evidence that the politician in question is corrupt?).

The Bayesian approach then posits that the individual will update her prior after observ-
ing s according to a version of (1), in particular:

P(θ | s) = P(s | θ) · P(θ)

P(s)
. (2)
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This equation implies that, provided that the individual knows P(s | θ), P(s) and P(θ), she
can compute the probability that the true state is θ given the signal s, P(θ | s). That the
individual knows P(θ) implies that she has priors on each possible value of θ . That she
knows P(s | θ) implies that she has an understanding of what types of signals to expect
when the true value is θ .

These are not innocuous requirements. We can think of these two requirements together
as positing that the individual has a reliable model of the world, meaning that her views about
the likelihood of different underlying states and the distribution of the signals conditional
on the states are accurate or at the very least, “reliable”. As we will see, such models of the
world play a central role in Bayesian approaches.

More specifically, the first requirement implies that the individual has a complete set of
priors. When θ takes on a few values, this may be a reasonable requirement. But when the
set of possible values of θ , �, is large, this requirement becomes quite demanding. From
a practical point of view, it implies that the individual needs to have a fairly complex view
of the world, assigning priors (probabilities) to each possible event. From a mathematical
point of view, this also requires some care, since if � is uncountable, one would have to
define priors (and of course probabilities) only for measurable subsets of �, and this implies
that many possible states must receive zero probability according to any well-defined prior
or not even have well-defined priors (see, e.g., [14, 82]). We will see in Sect. 2.3 that the
presence of “zero probability” events plays a crucial (and sometimes subtle) role in Bayesian
updating.

The second requirement, that the individual should know, or should have well formed
opinions about, P(s | θ), is equally stringent. This quantity captures the conditional proba-
bility law of the signal s for each possible value of θ . Even in the simplest situations, this
might be too much information for an individual to process or to have reliable knowledge
about. And again, if she does not have reliable knowledge about P(s | θ), (2) will not im-
ply accurate posteriors and learning that follows from Bayesian updating may be unreliable.
However, the real challenging implication of the requirement that the individual should have
reliable knowledge about P(s | θ) arises in social, rather than individual, learning situations.
Suppose, for example, that s is (or includes) information that an individual obtains from the
actions of others. This might be the choice of somebody with experience, or information
about their performance, or something that they directly communicate to the individual. In
all of these cases, there would be no unique function P(s | θ) describing the relationship
between s and θ independent of the behavioral rule or strategy of the other players.

Let us consider a specific example to elaborate on this point. Consider the problem of
an individual, “the observer,” learning about some underlying state θ , which, for example,
corresponds to how profitable a certain line of business is. In doing so, she will observe
the success y of some other agent. Let us posit that there is a relationship between success
denoted by y and the underlying state θ , but this relationship also depends on the effort
that an agent exerts, e. Thus we can write this relationship as P(y | θ, e). Suppose, putting
aside the previous difficulties we have raised, that the observer fully understands and has
reliable knowledge on this relationship. But this would be useless to her unless she also
knows e. This means that beyond understanding the relevant “physical” or “ technological”
relationships between the underlying state, effort and success, the observer must also have a
good understanding of the “strategic” relationships and form the right conjectures about e.
This problem becomes much more complex when e itself is chosen by each agent as a
function of their own beliefs about θ and their own observations. These issues will be central
in our analysis in the next section when we study Bayesian models of observational learning.
For now, our purpose has been to highlight the complexities that this might involve.
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Where do the reliable models of the world for Bayesian agents come from? There is no
good answer to this question, and in most Bayesian models, it is assumed, as we will see,
that individuals have beliefs about P(θ) and P(s | θ) that coincide with the true data gen-
erating process and with each other’s beliefs, and in fact, there is common knowledge that
they all share the same priors. The only uncertainty is about the specific value of θ ; there
is no uncertainty or doubt about the underlying model of the world, and this plays a central
role in the implications of Bayesian models. While mathematically tractable and powerful,
this approach raises further questions. Part of our interest in opinion and belief dynamics is
motivated by our desire to understand where a complex set of beliefs that individuals hold
come from. But assuming that they already start with common beliefs on certain key parts
of the model that correspond to the true data generating process and that there is common
knowledge on this, is potentially quite restrictive. Some, following a view, forcefully artic-
ulated by LJ Savage in the Foundations of Statistics [81] and the statement that Bayesian
individuals receiving informative signals about some underlying state θ should eventually
learn and agree on θ , maintain that common priors and common knowledge are justified or
at the very least are good approximations to reality. However, we will see in Sect. 2.3 below
that the Bayesian foundations of such common priors are not necessarily very strong. This
argument raises further challenges for the Bayesian approach, at least in the case that starts
with a model of the world that is the same for all agents and is common knowledge.

Overall, the requirements of the Bayesian approach may be quite challenging for most
individuals when it comes to complex issues. For this reason, some, like Gilboa and Schmei-
dler [45], Gilboa, Postlewaite and Schmeidler [43] and Gintis [46], argue that a Bayesian
perspective is often too restrictive. Gilboa and Schmeidler [45], for example, suggest that
an approach for prior formulation based on “empirical frequency” would be much more re-
alistic and fruitful. Even if we can specify such priors for individuals, posteriors implied by
(2) would only be reliable if these priors are reliable. This, at least in part, shifts the burden
to another requirement: individual should have “reliable” priors, which as we will see in
Sect. 2.3, is not a trivial requirement either.3

Despite all of these complexities and somewhat unrealistic assumptions about what indi-
viduals need to know and what they should form conjectures on, we believe that the Bayesian
approach is a useful benchmark. This is not because the Bayesian approach will necessar-
ily make good predictions. Indeed, if the degree of complexity necessary for informing
Bayesian posteriors, for forming conjectures about what the underlying model of the world
is and how others behave, is too high, the predictions of the Bayesian approach are un-
likely to be realistic. Nevertheless, how agents learn and form their opinions when they are
acting in the Bayesian manner gives us an obvious reference point to which non-Bayesian
models can be compared. This is particularly important when there are several alternative
non-Bayesian models for which one wishes to understand where certain predictions come
from and how plausible they may be.

2.2 Non-Bayesian Approaches

Non-Bayesian approaches start by specifying simple rules of thumb, which are either mo-
tivated by how people behave or appear to behave in simple situations, including in labo-
ratory experiments, or are justified because they are both simple and lead to a process of

3As is well appreciated, trying to replace such priors by something akin to Laplace’s “principle of insufficient
reason” is hopeless. In some situations, priors will not matter much because they will be overwhelmed by
data. We will discuss below how Bayesian updating and abundant data may not be sufficient for this, however,
and priors may not be overwhelmed by data in many relevant situations.
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opinion formation that has desirable properties. The desirable properties might be “norma-
tive,” meaning that they lead to the formation of accurate opinions or enable agents to learn
the underlying state, or they may be “positive,” meaning that opinion dynamics might match
some data we have available.

The literature has considered several non-Bayesian approaches. The simplest ones, used
both in economics and in other fields, involve some type of imitation. For instance, each
individual could, with some probability, adopt the behavior or beliefs of some others she
knows or has observed, or alternatively, she may use a combination of their behavior or
beliefs to fashion her own. A specific example of this type of learning is the DeGroot model
which we discuss in Sect. 4.1, where each individual updates her beliefs as a weighted
average of the beliefs of her social neighbors, with weights given by the “trust” she has for
those neighbors (see also [30–32]). Another example will be one in which individuals meet
one person at a time from their social neighborhood (friends, coworkers or peers) and update
their opinion to a weighted average of their initial opinion and the opinion of the person they
have just met (see Sect. 4.2).

In economics, game theory and biology, several other alternatives are also used, although
for space reasons, we will not be able to discuss them in great detail in the current paper.
The most important idea in many of these alternatives is that individuals should change their
views in the direction of beliefs and actions that have been more successful. Put in terms
of the discussion of imitation above, these models still involve some amount of imitation,
but observations are accompanied by some information about the performance of different
alternatives. Then the alternatives that have exhibited a better performance are more likely
to be imitated or receive greater weight. A particularly simple version is the so-called repli-
cator dynamics inspired by evolutionary biology. In replicator dynamics, just as in genetic
evolution, particular actions or beliefs that have performed better in the past are more likely
to replicate and their fraction in the population increases (e.g., [79, 80, 92]). Suppose, for
example, that an individual is updating her beliefs about some variable θ corresponding to
whether a certain line of business is profitable. She observes the entry behavior of some
past agents and also receives some information about how successful they have been. Sim-
ple imitation would involve a behavior based on the fraction of agents, among those he has
observed, that have chosen to enter into this line of business. Replicator dynamics type up-
dates, on the other hand, would involve the individual imitating one of the past agents that
has been “successful”. Other ideas have been used, particularly in the context of learning in
games where agents learn not only an underlying state but also the actions of other players in
the game. These include fictitious play (e.g., [38, 78]) where individuals form beliefs about
future play based on past patterns and regret-based update rules (e.g., [36, 37, 56]), where
individuals choose actions that perform well in the sense of minimizing regret, relative to
the history of play.

A more general and flexible approach is adopted in the case-based decision theory de-
veloped by Gilboa and Schmeidler [44, 45] (see also [74, 84]). In this approach, beliefs are
formed according to empirical similarity, meaning that individuals form beliefs about a sit-
uation (decision problem) based on their experiences in similar situations in the past, where
similarities are defined by means of an exogenously specified similarity function. The em-
pirical similarity approach, as well as the ideas based on replicator dynamics, fictitious play
and regret matching, are more flexible than the simple imitation-based rules of thumbs we
will discuss below, but they have similar implications (though also important differences).
In particular, the tendency toward consensus and the possibility that dispersed information
may not aggregate despite consensus are common features of these approaches.
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In sociology and physics, several other forms of rule-of-thumb behavior are also used.
Most work in this area relies on classical models of interacting particle systems whose mo-
tivation comes from statistical mechanics (see [65] and references therein). In these models,
opinions are represented by either finitely many discrete values (as in the Ising model, intro-
duced by Glauber [48] and the voter model, introduced independently by Clifford and Sud-
bury [23] and by Holley and Liggett [60]), or continuous values (as in the DeGroot model
[28] and the bounded confidence models of Krause [63] (further developed by Hegselmann
and Krause [59], Deffuant, Neau, Amblard and Weisbuch [27] and Weisbuch, Kirman and
Herreiner [93])). The opinions of the agent evolve dynamically over time as a function of
their neighbors’ opinions. A number of recent papers use these models to study various
social phenomena, including opinion formation, information transmission, and effects of
opinion leaders, using an analysis that is largely based on simulations (see [9, 35, 69, 96]).

This array of choices illustrates the limits of our knowledge in this area. Each of these
rules leads to different types of behavior (and often, at least some of the implications also
depend on the specific parameters one chooses within a general class of rules). It is con-
ceivable that future work will bring additional information from empirical studies in order
to eliminate some possibilities and put more structure on remaining ones. However, until
this happens, there is a high degree of arbitrariness. This often motivates researchers to use
either the Bayesian models or a benchmark where all of the relevant information is learned
or aggregated at least in the limit (“asymptotically”) as a way of evaluating non-Bayesian
models. We believe that both Bayesian and non-Bayesian approaches are useful and gen-
erate instructive insights. Which type of approach is appropriate is likely to depend on the
specific question being investigated. For example, we will argue below that issues of persis-
tent disagreements, misinformation and belief manipulation might be better analyzed using
non-Bayesian approaches. In fact, it would be difficult to understand the spread of misinfor-
mation and persistent disagreements among individuals with access to similar information
if we insist that all “reasonable” learning models should be strictly Bayesian and/or lead to
the efficient aggregation of information.

One might still conjecture that non-Bayesian updating rules that lead to opinions that
are very different from Bayesian benchmarks or do not aggregate the available information
should not arise or survive. While comparison to these benchmarks is useful, deviations
from either the Bayesian benchmark or the benchmark in which relevant information is
aggregated effectively should not be viewed as potential shortcomings of a model (since
there is no reason to expect that reality is either Bayesian or “efficient”). In fact, as we will
see in the next section, aggregation of dispersed information is not even a feature of most
Bayesian models (even though individuals are highly sophisticated and are assumed to have
the correct model of the world).

2.3 Learning and Disagreement By Bayesian Agents

In this subsection, we first present the benchmark situation in which, in line with Savage’s
arguments, Bayesian updating leads to learning in a single agent problem and to consen-
sus when several agents learn from the same or similar information, provided that some
standard assumptions on priors and informativeness of signals are adopted. However, the
main message of this subsection will be more nuanced. We will illustrate why the standard
assumptions on priors and informativeness of signals are less innocuous than commonly
presumed. We will in fact show that under reasonable assumptions, Bayesian updating will
imply lack of learning and lack of consensus (even before we bring in social learning as-
pects). The material in this section borrows heavily from [6].
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2.3.1 Bayesian Learning and Agreement

Consider two individuals, denoted by i = 1 and i = 2, who observe a sequence of signals
{st }n

t=0 where st ∈ {a, b}. Throughout this section, we assume that both agents are Bayesian.
The underlying state is θ ∈ {A,B}, and agent i assigns ex ante probability πi ∈ (0,1)

to θ = A (the generalization of the ideas presented here to more agents and more states
is straightforward). The individuals believe that, given θ , the signals are exchangeable,
i.e., they are independently and identically distributed with an unknown distribution. More
specifically, the probability of st = a given θ = A is an unknown number pA; likewise, the
probability of st = b given θ = B is an unknown number pB—as shown in the following
table:

A B

a pA 1 − pB

b 1 − pA pB

Standard models, for example as in [81] can be thought of as special cases of this model
in which pA and pB are given and known. Here we will relax this assumption and assume
that there is potentially some uncertainty about pθ (where θ ∈ {A,B}), and we will capture
this uncertainty facing individual i by his subjective probability distribution denoted by F

i
θ .

Savage’s standard model is then the special case where F
i
θ is degenerate and puts probability

1 on some p̂i
θ .

Consider any infinite sequence s ≡ {st }∞
t=1 of signals and write S for the set of all such

sequences. The posterior belief of individual i about θ after observing the first n signals
{st }n

t=1 is given by Bayes’s rule as

φi
n(s) ≡ P

i (θ = A | {st }n
t=1),

where P
i (θ = A | {st }n

t=1) denotes the posterior probability that θ = A given a sequence of
signals {st }n

t=1 under prior πi and subjective probability distribution F
i
θ . Since the sequence

of signals, s, is generated by an exchangeable process, the order of the signals does not
matter for the posterior. The latter only depends on

rn(s) ≡ #{t ≤ n|st = a},
i.e., on the number of times st = a out of the first n signals. By the strong law of large num-
bers, rn(s)/n converges to some ρ(s) ∈ [0,1] almost surely, for both individuals. Defining
the set

S̄ ≡ {s ∈ S : limn→∞ rn(s)/n exists}, (3)

this observation implies that P
i (s ∈ S̄) = 1 for i = 1,2. We will often state our results for all

sample paths s in S̄, which equivalently implies that these statements are true almost surely
or with probability 1. Now, a straightforward application of the Bayes rule gives

φi
n(s) = 1

1 + 1−πi

πi

Pi (rn|θ=B)

Pi (rn|θ=A)

, (4)

where P
i (rn|θ) is the probability of observing the signal st = a exactly rn times out of n

signals with respect to the distribution F
i
θ .

The following theorem presents a slight generalization of the standard result, for exam-
ple, as formulated by Savage [81].



Dyn Games Appl (2011) 1: 3–49 15

Theorem 1 Assume that each F
i
θ puts probability 1 on p̂θ for some p̂θ > 1/2, i.e., F

i
θ (p̂θ ) =

1 and F
i
θ (p) = 0 for each p < p̂θ . Then, for each i = 1,2:

1. There is asymptotic learning of the underlying state, in the sense that P
i (limn→∞ φi

n(s) =
1|θ = A) = 1.

2. There is asymptotic agreement between the two agents, in the sense that
P

i (limn→∞ |φ1
n(s) − φ2

n(s)| = 0) = 1.

This standard result states that when the individuals know the conditional distributions
of the signals (and hence they agree what those distributions are), they will learn the truth
from experience and observation (almost surely as n → ∞) and two individuals observing
the same sequence will necessarily come to agree what the underlying state, θ , is. A simple
intuition for this result is that the underlying state θ is fully identified from the limiting
frequencies, so that both individuals can infer the underlying state from the observation of
the limiting frequencies of signals.

However, there is more to this theorem than this simple intuition. Each individual is
sure that they will be confronted either with a limiting frequency of a signals equal to p̂A,
in which case they will conclude that θ = A, or they will observe a limiting frequency of
1− p̂B , and they will conclude that θ = B; and they attach zero probability to the events that
they will observe a different asymptotic frequency. What happens if an individual observes
a frequency ρ of signals different from p̂A and 1 − p̂B in a large sample of size n? The
answer to this question will provide the intuition for some of the results that we will present
next. Observe that this event has zero probability under the individual’s beliefs at the limit
n = ∞. However, for n < ∞ he will assign a strictly positive (but small) probability to such
a frequency of signals resulting from sampling variation. Moreover, it is straightforward to
see that there exists a unique ρ̂(p̂A, p̂B) ∈ (1 − p̂B, p̂A) such that when ρ > ρ̂(p̂A, p̂B), the
required sampling variation that leads to ρ under θ = B is infinitely greater (as n → ∞)
than the one under θ = A. This cutoff value ρ̂(pA,pB) is clearly the solution to the equation
p

ρ

A(1 − pA)1−ρ = p
1−ρ

B (1 − pB)ρ , given by

ρ̂(pA,pB) ≡ log(pB/(1 − pA))

log(pB/(1 − pA)) + log(pA/(1 − pB))
∈ (1 − pB,pA). (5)

Consequently, when ρ > ρ̂(p̂A, p̂B), the individual will asymptotically assign probability 1
to the event that θ = A. Conversely, when ρ < ρ̂(p̂A, p̂B), he will assign probability 1 to
θ = B .

2.3.2 Lack of Learning and Disagreement

It is clear that this theorem relies on the feature that F
i
θ (1/2) = 0 for each i = 1,2 and each θ .

This implies that both individuals attach zero probability to a range of possible models of
the world—i.e., they are certain that pθ cannot be less than 1/2. There are two reasons for
considering situations in which this is not the case. First, the preceding discussion illustrates
why assigning zero probability to certain models of the world is important; it enables indi-
viduals to ascribe any frequency of signals that are unlikely under these models to sampling
variability. This kind of inference may be viewed as somewhat unreasonable, since indi-
viduals are reaching very strong conclusions based on events that have vanishingly small
probabilities (since sampling variability vanishes as n → ∞). Second, once we take into ac-
count uncertainty about the underlying models that individuals have, it may also be natural
to allow them to attach positive (albeit small) probabilities to all possible values of pθ . This
latter feature will lead to very different consequences as shown by the next theorem.
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Theorem 2 Suppose that for each i and θ , F
i
θ has a continuous, non-zero and finite density

f i
θ over [0,1]. Then,

1. There is no asymptotic learning, i.e., P
i (limn→∞ φi

n(s) �= 1|θ = A) = 1 for i = 1,2.
2. There is no asymptotic agreement between the two agents, i.e., P

i (limn→∞ |φ1
n(s) −

φ2
n(s)| �= 0) = 1 whenever π1 �= π2 and F 1

θ = F 2
θ for each θ ∈ {A,B}.

The proof of this theorem is given in Acemoglu, Chernozhukov, and Yildiz [6].
Let us also provide a brief sketch of the arguments leading to the main results of no

learning and asymptotic agreement. When F
i
θ has a continuous, non-zero and finite density

f i
θ over [0,1], it can be shown that for s ∈ S̄,

φi
∞(ρ(s)) ≡ lim

n→∞φi
n(s) = 1

1 + 1−πi

πi Ri(ρ(s))
, (6)

where ρ(s) = limn→∞ rn(s)/n, and for all ρ ∈ [0,1],

Ri(ρ) ≡ f i
B(1 − ρ)

f i
A(ρ)

(7)

is the asymptotic likelihood ratio. From this result, one can prove Theorem 2 readily, as
Ri(ρ) does not vanish or diverge to infinity: any asymptotic frequency of different signals
can be generated both under θ = A and under θ = B . This implies that some residual uncer-
tainty will remain, and priors will be important in shaping asymptotic beliefs.

In fact, in the presence of learning under this type of uncertainty, two Bayesian agents
may end up disagreeing more after receiving exactly the same infinite sequence of signals—
again a feature that it is never possible in the standard model (without uncertainty). We state
this result in the following theorem.

Theorem 3 Suppose that for each i and θ , F
i
θ has a continuous, non-zero and finite density

f i
θ over [0,1] and that there exists ε > 0 such that |R1(ρ) − R2(ρ)| > ε for each ρ ∈ [0,1].

Then, there exists an open set of priors π1 and π2, such that for all s ∈ S̄,

lim
n→∞|φ1

n(s) − φ2
n(s)| > |π1 − π2|;

in particular,

P
i
(

lim
n→∞|φ1

n(s) − φ2
n(s)| > |π1 − π2|

)
= 1.

Intuitively, even a small difference in priors ensures that individuals will interpret signals
differently, and if the original disagreement is relatively small, after almost all sequences of
signals, the disagreement between the two individuals grows. Consequently, the observation
of a common sequence of signals causes an initial difference of opinion between individu-
als to widen (instead of the standard merging of opinions under certainty). Theorem 3 also
shows that both individuals are certain ex ante that their posteriors will diverge after ob-
serving the same sequence of signals, because they understand that they will interpret the
signals differently. This result strengthens the general message that under rich enough pri-
ors, Bayesian updating does not guarantee learning or consensus. Instead, for some priors
individuals will “agree to eventually disagree even more”.
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Acemoglu, Chernozhukov, and Yildiz [6] in fact establish a much stronger result: agree-
ment by two Bayesian agents is fragile in the sense that if we take the limit in the above
model such that F

i
θ ’s become Dirac (concentrated around single points), then even though

this limit is arbitrarily close to the standard case where asymptotic agreement is guaran-
teed, Bayesian updating does not necessarily lead to agreement. In fact, there necessarily
exist some priors such that the limiting sequence of beliefs (as F

i
θ ’s become Dirac) differs

from limiting beliefs (which do involve consensus). These results, therefore, strengthen the
points already highlighted in this section that Bayesian updating gets a lot of mileage by
restricting priors. When these types of restrictions on priors are reasonable and the cogni-
tive requirements of Bayesian updating are not excessive in terms of complex computations
and reasoning, Bayesian approaches to learning may be a natural starting point. Else, it may
have more limited relevance for real world learning problems.4

3 Bayesian Social Learning In Networks

In the previous section we saw how both Bayesian and non-Bayesian approaches to opinion
formation have strengths and shortcomings. We therefore think that there is much to learn
from both types of approaches and from their contrast. In this and the next section, we will
outline several mathematical models of opinion formation and dynamics. In this section,
we focus on Bayesian models. We start with Bayesian models of observational learning,
meaning models in which individuals learn from the observation of others’ actions. We then
turn to models of communication learning, where individuals learn through communication.
In both cases our focus will be on interactions in the context of relatively general social
networks and on understanding what classes of learning problems and what types of social
networks will lead to “good outcomes,” that is, to an equilibrium in which the social group
will be able to aggregate the available dispersed information. In the next section, we turn to
non-Bayesian models.

We will summarize the relevant literature in the context of the models we present below.
But a high-level summary of the general lessons from these models is useful. We will find
that even in very simple environments, Bayesian learning need not lead to the formation of
accurate opinions and beliefs that aggregate all of the dispersed information, though it does
typically lead to consensus or “quasi-consensus” (meaning only small differences in opinion
remaining among the agents). The structure of the network—which encodes information on
such things as who observes whose actions and who communicates with whom—influences
opinion dynamics, though some of the effects of network structure are on the speed of learn-
ing rather than on asymptotic outcomes, and the analysis of speed of learning is much more
challenging and is generally an open question for future research.

3.1 Bayesian Observational Learning

We start with models of Bayesian learning from observations of past actions.

4See also [26] on how common knowledge might fail to arise from Bayesian observations (our discussion
here emphasizes lack of common priors), and [54] for another critique of the common priors.
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3.1.1 Problem

Consider the following problem first studied by Banerjee [11] and Bikhchandani, Hirsh-
leifer, and Welch [13]. A countably infinite number of agents (individuals), indexed by
n ∈ N, sequentially make a single decision each. The payoff of agent n depends on an un-
derlying, payoff-relevant state of the world, θ, and on her decision. Learning and opinion
formation in this society will be about θ .

Suppose, for simplicity, that both the underlying state and decisions are binary. In partic-
ular, the decision of agent n is denoted by xn ∈ {0,1} and the underlying state is taken to be
θ ∈ {0,1}. The payoff of agent n is

un(xn, θ) =
{

1 if xn = θ,

0 if xn �= θ.
(8)

To simplify notation, we assume that both values of the underlying state are equally likely,
so that P(θ = 0) = P(θ = 1) = 1/2.

As a specific example, θ = 1 might denote whether a particular product is high quality
or whether a certain line of business is profitable (but may also correspond to more abstract
issues such as whether a particular ideology provides the right perspective on political, social
or economic events). The variable x would then correspond to purchasing or entry decisions
(or to whether an individual subscribes to a certain ideology).

Assume also that each individual receives an independent binary signal s ∈ {0,1} such
that s = θ has probability q > 1/2. The signals are private information and are thus referred
to as private signals. In addition, each individual observes all past actions (i.e., individual n

observes all of x1, . . . , xn−1 in addition to sn). Since this is a dynamic game of incomplete
information, we focus on the standard equilibrium concept (weak) Perfect Bayesian Equi-
librium, PBE, which simply requires that each individual chooses the action that maximizes
their utility given their beliefs and beliefs are formed by Bayesian updating which correctly
conditions on the equilibrium strategies of all other agents (e.g., [39]). There are two im-
portant features of this equilibrium concept, which are entirely standard in game theory:
first, there will be Bayesian updating (this is similar to the example of Bayesian updating
we have already discussed in the previous section). Second, again as we emphasized in the
previous section, each individual will understand and correctly condition on the equilib-
rium strategies of other agents. The second feature, though simple, is quite important and
subtle: individuals will not simply look at what actions others choose, but will try to infer
what their signals must have been from their actions (based on their understanding or views
about others’ strategies). This clearly requires more complex reasoning than just Bayesian
updating.

The key result in [13] and in [11] is the following striking herding result. Focus on an
equilibrium in which the first two individuals choose the action in line with their signal (i.e.,
for n = 1,2, xn = 1 if and only if sn = 1). First observe that this behavior is in fact a PBE.
Indeed, it is a strict best response for the first agent to choose xn = sn given that the signals
are informative (q > 1/2) and the prior is that the two states are equally likely to start with.
What about the second agent? Suppose that she observes x1 = 1. Given the behavior of
the first agent (and here conditioning on the strategies of others is crucial), she can infer
perfectly that the first agent must have received a signal of s1 = 1. If in addition she also
receives a signal of s2 = 1, it is again a strict best response for her to choose x2 = 1. What
if she receives a signal of s2 = 0. Now given that she knows that s1 = 1 and since s = θ has
probability q > 1/2 regardless of the underlying state θ , the posterior of this agent, defined
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as the probability that θ is equal to 1 given his information, will be exactly the same as the
initial prior, i.e., 1/2. Therefore, it is a weak best response for her to choose x2 = 0 if s2 = 0.
Thus we have verified that there exists a PBE in which both of the first two agents follow
their signals.

What about agent n = 3? She has observed x1 = x2 = 1 and suppose that she receives a
signal of s3 = 0. Conditioning on the equilibrium in which both agents 1 and 2 make choices
in line with their signals, she knows (i.e., she can infer from their behavior) that s1 = s2 = 1.
She has effectively access to three signals s1 = s2 = 1 (from the behavior of the first two
agents) and her private signal, s3 = 0. But then, given the signal structure, her posterior will
be strictly less than the initial prior, 1/2, for any q > 1/2. This means that even if s3 = 0,
she will choose x3 = 1. Of course, if s3 = 1, she will choose x3 = 1 a fortiori. Hence we
have obtained the result that it is a strict best response for her to herd on the behavior of the
first two agents, entirely ignoring her own information.5

What about agent n = 4? Again, conditioning correctly on others’ strategies, he will
infer from x1 = x2 = 1 that s1 = s2 = 1, and also understand that agent 3 has ignored her
information. But this means that he is in exactly the same situation as agent 3, and in the
same way as it was a strict best response for n = 3 to herd, it is a strict best response for n = 4
to do so. By induction, the same conclusion applies to any n ≥ 4. We have thus obtained the
result that following x1 = x2 = 1, all agents will ignore their private signals and they will
all choose the same action, x = 1. Clearly, x1 = x2 = 1 is entirely consistent with θ = 0.
In particular, it can happen with probability (1 − q)2 when θ = 0, which can be quite close
to 1/2. This implies that a mistaken herd, in which all agents choose the incorrect action
and there is almost no aggregation of the dispersed private information, can happen with
reasonably high probability (and it is straightforward to see that a similar herd also arises if
three of the first four agents, or five of the first eight agents and so on, choose x = 1). This
example therefore sharply illustrates how dispersed information will fail to be aggregated
even though all agents would like to know this information and are all acting in a fairly
sophisticated Bayesian (and in fact game theoretic) manner. It is also important to emphasize
another feature here: it is no coincidence that a mistaken herd cannot happen with probability
greater than 1/2. Since agents are Bayesian and have the correct model of the world, their
beliefs at any point in time are “accurate,” meaning that if they believed the true state to be
θ = 1 with probability p, then this is indeed the probability that an outside observer with
access to exactly the same data would assign to the event that θ = 1. But since individuals
will only choose action x = 1 if they believe θ = 1 is more likely than θ = 0, they can never
be more likely to make a mistake than taking the correct action. This fact, though simple,
has important implications, particularly concerning the possibility of misinformation and
indoctrination. There will be limits to how much misinformation and belief manipulation
there can be in a Bayesian world, at least unless we relax the assumption that individuals
start with a reliable model of the world (e.g., with accurate priors). Motivated by this feature,
in the next section we will use non-Bayesian approaches to develop our benchmark models
of spread of misinformation and belief manipulation.

3.1.2 Related Literature

There is now a sizable literature building on the insights we have just discussed charac-
terizing the conditions under which there is aggregation of dispersed information through

5The same argument also shows that herding would occur even if agent 2 mixed between x2 = 0 and x2 = 1
conditional on s2 = 0 and x1 = 1. Thus our specific selection of equilibrium does not affect the conclusion.
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a process of social learning. Most relevant for this subsection are the works focusing on
Bayesian updating, game theoretic analysis and observational learning. This literature is
also voluminous and includes, among others, the important work by Smith and Sørensen
[86], who generalize the environment we have just outlined to include a richer set of private
signals. They define the notion of unbounded private signals, which will be introduced be-
low, and show that with unbounded private signals, which make it possible for individuals
to receive highly informative signals, the type of herding we just identified does not happen.
However, with bounded private signals, it is a robust phenomenon which necessarily occurs.

Welch [94], Lee [64], Chamley and Gale [21], and Vives [90] consider various other
extensions. These papers maintain the assumption that all past actions are observed. Using
language from the analysis of networks, we can say that they focus on the full observation
network topology. Two papers that have gone beyond this “full observation network topol-
ogy” are [12, 85]. Both of these papers study social learning with random sampling of past
actions.

Thus much of the literature has not tackled the issue of learning taking place in the con-
text of a social network, where each individual only observes the actions of a subset of the
other agents (those with whom he is more connected through friendship, work or other social
engagements). We will next present the model and the analysis from [5], which introduces
a network structure to capture these interactions (as well as allowing more general signal
structures). Allowing for a network structure leads to several challenges. The first one is
that, in contrast to models with full observation network topology, one cannot use martin-
gale properties, which imply that the expectation of future beliefs conditional on publicly
available information is equal to current beliefs. The second is that the inference problem
that individuals face is much more complex, because a given action might be driven not by
the private signals that an individual observes, but by the actions that they have observed
from the past (and we may be uncertain as to what these actions are or about whether or not
the individual in question has indeed observed others).

In the analysis that follows, we will maintain three assumptions that are worth highlight-
ing. First, agents will be assumed to be Bayesian and understand the structure of the game
and the strategies of others. Relaxing this assumption is important and some ways of doing
so will be considered in the next section when we discuss non-Bayesian models. Second,
we will assume that there is no heterogeneity in the preferences of the agents in this so-
cial network, i.e., they all have preferences given by (8). Acemoglu, Dahleh, Lobel, and
Ozdaglar [4] extend this analysis to incorporate heterogeneity in the preferences toward dif-
ferent types of actions. Finally, we will maintain the assumption that each individual takes
only a single decision. Repeated decisions introduce additional challenges. The most im-
portant one of those is that agents will no longer choose the action that maximizes their
static payoff, but may choose to strategically experiment in order to induce others to choose
actions that will be more informative in the future. The analysis of strategic experimenta-
tion is unfortunately very challenging. Bala and Goyal [10] and Gale and Kariv [40] study
models of social learning with repeated interactions, but both of these of papers ignore the
strategic experimentation issue ([10] in fact use a non-Bayesian model of learning, though
their approach has many parallels with Bayesian models).

3.1.3 Learning in Social Networks

We now outline the model and the results from [5]. We continue to assume that the unknown
state θ is binary, {0,1} (and that P(θ = 0) = P(θ = 1) = 1/2). Each agent n ∈ N still has
utility given by (8) and forms beliefs about this state from a private signal sn ∈ S (where S
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is a metric space or simply a Euclidean space) and from his observation of the actions of
other agents. Conditional on the state of the world θ , the signals are independently generated
according to a probability measure Fθ . We refer to the pair of measures (F0,F1) as the signal
structure of the model. We assume that F0 and F1 are absolutely continuous with respect to
each other, which immediately implies that no signal is fully revealing about the underlying
state. We also assume that F0 and F1 are not identical, so that some signals are informative.

As already indicated, in contrast to the rest of the literature on social learning discussed
above, we assume that agents do not necessarily observe all previous actions. Instead, they
observe the actions of other agents according to the structure of a social network. To in-
troduce the notion of a social network, let us first define a neighborhood. Each agent n

observes the decisions of the agents in his (stochastically-generated) neighborhood, denoted
by B(n). Since agents can only observe actions taken previously, B(n) ⊆ {1,2, . . . , n − 1}.
Each neighborhood B(n) is generated according to an arbitrary probability distribution Qn

over the set of all subsets of {1,2, . . . , n − 1}. We impose no special assumptions on the
sequence of distributions {Qn}n∈N except that the draws from each Qn are independent from
each other for all n and from the realizations of private signals. The sequence {Qn}n∈N is
the network topology of the social network formed by the agents. The network topology is
common knowledge, whereas the realized neighborhood B(n) and the private signal sn are
the private information of agent n. We say that {Qn}n∈N is a deterministic network topology
if the probability distribution Qn is a degenerate (Dirac) distribution for all n. Otherwise,
{Qn}n∈N is a stochastic network topology. A social network consists of a network topology
{Qn}n∈N and a signal structure (F0,F1).

Notice that our framework is general enough to nest the majority of social network mod-
els studied in the literature, including the popular preferential attachment and small-world
network structures. For example, the preferential attachment model can be nested by choos-
ing a stochastic network topology {Qn}n∈N with a collection of subsets S1, . . . , Sk of agents
such that agents in S1 have a very high probability of being in each B(n), those in S2 also
have a high probability, but lower than the corresponding probability for those in S1, of be-
ing in each B(n), and so on. The small-world network structure can be nested by choosing
a partition {Sj } of N such that for each n ∈ Sj , the probability that any agent m in Sj with
m < n is also in B(n) is very high, while the probability that an agent m who is not in Sj

is in B(n) is low but positive. More generally, any network structure can be represented by
a judicious choice of {Qn}n∈N provided that we keep the assumption that the realizations
of {Qn}n∈N are independent, which is adopted to simplify the analysis. The independence
assumption on the neighborhoods does not impose a restriction on the degree distribution
(cardinality) of the agents nor on their degree of clustering.

We next introduce the definitions of equilibrium and asymptotic learning, and we provide
a characterization of equilibrium strategies. In particular, we show that equilibrium decision
rules of individuals can be decomposed into two parts: one that only depends on an indi-
vidual’s private signal, and the other that is a function of the observations of past actions.
We also show why a full characterization of individual decisions is non-trivial and moti-
vate an alternative proof technique, relying on developing bounds on improvements in the
probability of the correct decisions, that will be used in the rest of our analysis.

Given the description above, it is evident that the information set In of agent n is given
by her signal sn, her neighborhood B(n), and all decisions of agents in B(n), that is,

In = {sn,B(n), xk for all k ∈ B(n)}. (9)

The set of all possible information sets of agent n is denoted by In. A strategy for individual
n is a mapping σn : In → {0,1} that selects a decision for each possible information set.
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A strategy profile is a sequence of strategies σ = {σn}n∈N. We use the standard notation
σ−n = {σ1, . . . , σn−1, σn+1, . . .} to denote the strategies of all agents other than n and also
(σn, σ−n) for any n to denote the strategy profile σ . Given a strategy profile σ , the sequence
of decisions {xn}n∈N is a stochastic process and we denote the measure generated by this
stochastic process by Pσ .

Definition 1 A strategy profile σ ∗ is a pure-strategy Perfect Bayesian Equilibrium of this
game of social learning if for each n ∈ N, σ ∗

n maximizes the expected payoff of agent n

given the strategies of other agents σ ∗−n.

Given a strategy profile σ , the expected payoff of agent n from action xn = σn(In) is
simply Pσ (xn = θ | In). Therefore, for any equilibrium σ ∗, we have

σ ∗
n (In) ∈ argmax

y∈{0,1}
P(y,σ∗−n)(y = θ | In). (10)

We denote the set of equilibria of the game by 	∗. It is clear that 	∗ is nonempty. Given
the sequence of strategies {σ ∗

1 , . . . , σ ∗
n−1}, the maximization problem in (10) has a solution

for each agent n and each In ∈ In. Proceeding inductively, and choosing either one of the
actions in case of indifference determines an equilibrium.

Our main focus is whether equilibrium behavior will lead to information aggregation.
This is captured by the notion of asymptotic learning, which is introduced next.

Definition 2 Given a signal structure (F0,F1) and a network topology {Qn}n∈N, we say that
asymptotic learning occurs in equilibrium σ if xn converges to θ in probability (according
to measure Pσ ), that is,

lim
n→∞ Pσ (xn = θ) = 1.

Notice that asymptotic learning requires that the probability of taking the correct ac-
tion converges to 1.6 Therefore, asymptotic learning will fail when, as the network becomes
large, the limit inferior of the probability of all individuals taking the correct action is strictly
less than 1. The following proposition characterizes optimal decisions by (Bayesian) indi-
viduals as a function of their observations and signal. The proof of this proposition, like the
other ones in this subsection, is omitted and can be found in [5].

Proposition 1 Let σ ∈ 	∗ be an equilibrium of the game. Let In ∈ In be an information set
of agent n. Then, the decision of agent n, xn = σ(In), satisfies

xn =
{

1, if Pσ (θ = 1 | sn) + Pσ (θ = 1 | B(n), xk, k ∈ B(n)) > 1,

0, if Pσ (θ = 1 | sn) + Pσ (θ = 1 | B(n), xk, k ∈ B(n)) < 1,

and xn ∈ {0,1} otherwise.

This proposition establishes an additive decomposition in the equilibrium decision rule
between the information obtained from the private signal of the individual and from the

6It is also clear that asymptotic learning is equivalent to the posterior beliefs converging to a distribution
putting probability 1 on the true state.
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observations of others’ actions (in his neighborhood). The next definition formally distin-
guishes between the two components of an individual’s information.

Definition 3 We refer to the probability Pσ (θ = 1 | sn) as the private belief of agent n, and
the probability

Pσ (θ = 1 | B(n), xk for all k ∈ B(n)),

as the social belief of agent n.

Proposition 1 and Definition 3 imply that the equilibrium decision rule for agent n ∈ N

is equivalent to choosing xn = 1 when the sum of his private and social beliefs is greater
than 1. Consequently, the properties of private and social beliefs will shape equilibrium
learning behavior.

The private belief of an individual is a function of his private signal s ∈ S and is not a
function of the strategy profile σ since it does not depend on the decisions of other agents.
We represent probabilities that do not depend on the strategy profile by P. We use the nota-
tion pn to represent the private belief of agent n, i.e.,

pn = P(θ = 1 | sn).

A straightforward application of Bayes’ rule implies that for any n and any signal sn ∈ S,
the private belief pn of agent n is given by

pn =
(

1 + dF0

dF1
(sn)

)−1

. (11)

We next define the support of a private belief. The support of private beliefs plays a
key role in asymptotic learning behavior. Since the pn are identically distributed for all n

(which follows by the assumption that the private signals sn are identically distributed), in
the following we will use agent 1’s private belief p1 to define the support and the conditional
distributions of private beliefs,

Definition 4 The support of the private beliefs is the interval [β,β], where the end points
of the interval are given by

β = inf{r ∈ [0,1] | P(p1 ≤ r) > 0}, and

β = sup{r ∈ [0,1] | P(p1 ≤ r) < 1}.
The signal structure has bounded private beliefs if β > 0 and β < 1 and unbounded private

beliefs if β = 1 − β = 1.

When private beliefs are bounded, there is a maximum informativeness to any signal.
When they are unbounded, agents may receive arbitrarily strong signals favoring either state
(this follows from the assumption that (F0,F1) are absolutely continuous with respect to
each other).

The conditional distribution of private beliefs given the underlying state j ∈ {0,1} can be
directly computed as

Gj (r) = P(p1 ≤ r | θ = j). (12)
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The signal structure (F0,F1) can be equivalently represented by the corresponding private
belief distributions (G0,G1), and in what follows, it will typically be more convenient to
work with (G0,G1) rather than (F0,F1). It is straightforward to verify that G0(r)/G1(r) is
non-increasing in r and G0(r)/G1(r) > 1 for all r ∈ (β,β).

We also introduce a key property of network topologies and signal structures that impacts
asymptotic learning. Intuitively, for asymptotic learning to occur, the information that each
agent receives from other agents should not only come from a bounded subset of agents.
This property is established in the following definition. For this definition and throughout
the paper, if the set B(n) is empty, we set maxb∈B(n) b = 0.

Definition 5 The network topology has expanding observations if for all K ∈ N, we have

lim
n→∞ Qn

(
max
b∈B(n)

b < K
)

= 0.

If the network topology does not satisfy this property, then we say it has non-expanding
observations.

Recall that the neighborhood of agent n is a random variable B(n) (with values in the set
of subsets of {1,2, . . . , n − 1}) and distributed according to Qn. Therefore, maxb∈B(n) b is a
random variable that takes values in {0,1, . . . , n−1}. The expanding observations condition
can be restated as the sequence of random variables {maxb∈B(n) b}n∈N converging to infinity
in probability. Similarly, it follows from the preceding definition that the network topology
has non-expanding observations if and only if there exists some K ∈ N and some scalar
ε > 0 such that

lim sup
n→∞

Qn

(
max
b∈B(n)

b < K
)

≥ ε.

An alternative restatement of this definition might clarify its meaning. Let us refer to a finite
set of individuals C as excessively influential if there exists a subsequence of agents who,
with probability uniformly bounded away from zero, observe the actions of a subset of C.
Then, the network topology has non-expanding observations if and only if there exists an
excessively influential group of agents. Note also that if there is a minimum amount of arrival
of new information in the network, so that the probability of an individual observing some
other individual from the recent past goes to one as the network becomes large, then the
network topology will feature expanding observations. This discussion therefore highlights
that the requirement that a network topology has expanding observations is quite mild and
most social networks, including all of those discussed above, satisfy this requirement.

Acemoglu, Dahleh, Lobel, and Ozdaglar [5] establish the following characterization re-
sults for asymptotic learning by this social network (society) of agents.

Theorem 4 Assume that the signal structure (F0,F1) has unbounded private beliefs and the
network topology {Qn}n∈N has expanding observations. Then, asymptotic learning occurs in
every equilibrium σ ∈ 	∗.

Theorem 5 There exists no equilibrium σ ∈ 	∗ with asymptotic learning if either:

1. the network topology {Qn}n∈N has non-expanding observations; or
2. the signal structure (F0,F1) has bounded private beliefs and the network topology

{Qn}n∈N satisfies one of the following three conditions:
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(a) B(n) = {1, . . . , n − 1} for all n,
(b) |B(n)| ≤ 1 for all n, or
(c) there exists some constant M such that |B(n)| ≤ M for all n and

lim
n→∞ max

b∈B(n)
b = ∞ with probability 1.

Several points are worth noting. First, Theorem 4 is surprising. Each agent is solving a
complex updating problem, and may directly have access to a very limited amount of in-
formation. For instance, an example of a network topology with expanding observations is
one in which each agent observes only one other agent from the past (which may be some
recent neighbor or somebody randomly drawn from those that have already acted). It might
appear that the information transmitted by the action of this one agent is quite limited; not
only is this just a single agent rather than a collection of many agents as much of the pre-
vious literature assumes, but also it will not be known who this agent himself has observed
from the past, and thus it is difficult to infer this individual’s own signal from his action. The
result in the theorem follows nonetheless because of a form of an improvement principle,
whereby each agent can do as well as the one individual she observes by just copying him.
In fact, with unbounded private signals, she will strictly do better than copying him by fol-
lowing her signals when they are “extreme”. This reasoning suggests that for any sequence
of agents, expected payoffs are strictly increasing along the sequence, which, combined with
the expanding observations assumption, ensures that this improvement sequence will con-
tinue until there is convergence to the right decision with probability 1, implying asymptotic
learning. The role of the unbounded private signals in this result is related to but different
from that in [86]. In Smith and Sørensen, the social belief is a martingale, and unbounded
private signals ensure that this martingale cannot converge anywhere but to the correct belief.
Here, in contrast, the unbounded private belief ensures that the above-mentioned improve-
ment principle must be strict.

Second, first part of Theorem 5 shows that there are also several network structures that
preclude learning even with unbounded private signals. These are network structures in
which there are excessively influential agents who are the only source of all of the infor-
mation for a non-trivial subset of society. While mathematically not surprising, this result is
still useful in highlighting that social learning of the underlying state, and thus aggregation
of dispersed information, is only possible if all but a trivial fraction of the agents have access
to new information, meaning information coming from “recent” actions.

Third, Theorem 5 also shows that for many commonly-studied network topologies,
bounded private signals preclude learning of the underlying state. Note that bounded private
signals do not mean uninformative signals. The support (β,β) defined above could be quite
close to (0,1). And there is always sufficient (dispersed) information to reveal the underly-
ing state θ when a sufficiently large number of agents are considered. Therefore, the failure
of the equilibrium to aggregate this dispersed information is not a forgone conclusion. It is,
however, the equilibrium outcome because each agent stops using his own information, thus
free riding on the information revealed by past actions, before there is sufficient aggrega-
tion of dispersed information on the underlying state. Thus there is a herding-related reason
why social learning does not take place. This is also the reason why in many situations with
bounded private beliefs the equilibrium not only involves lack of social learning, but also
convergence to a consensus or more appropriately to a quasi-consensus, whereby beliefs
across individuals are very similar (sufficiently similar so that they take the same action).

Fourth, Theorem 5 does not, however, state that social learning will necessarily fail with
bounded private signals. In fact, this is not true, and Acemoglu, Dahleh, Lobel, and Ozdaglar
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[5] identify a range of network topologies where social learning takes place even though the
information structure may involve bounded private signals (and there are other structures
where social learning takes place in some equilibria but not in others). In particular, Ace-
moglu, Dahleh, Lobel, and Ozdaglar [5] show that in a class of stochastic network topologies
where a subset of the agents do not receive sufficient information from others and are thus
forced to use their own signals and the remaining agents observe individuals from this subset
with sufficiently high probability, social learning always takes place. This result illustrates
the importance of the network topology, and in fact its specific stochastic properties, for
long-run learning outcomes.

Fifth, despite the just-mentioned result on learning with bounded private signals, which
illustrates how learning depends on the specific network topology, the network topology
appears relatively unimportant in Theorems 4 and 5, beyond the issue of expanding vs. non-
expanding observations. This is to some degree a shortcoming of the model, since informal
intuition and some empirical work indicate that network interactions are important for in-
formation dissemination. In fact, this shortcoming is in part a consequence of our focus on
long-run learning outcomes. It can be shown that the speed of learning is very different be-
tween network structures that allow social learning (with unbounded private signals). For
example, when each individual observes only one person from the past, the speed of learn-
ing is much greater when this person is a recent neighbor than when he is chosen from the
past (uniformly) randomly. Thus in this context, network effects might exhibit themselves
more in the speed of learning than on whether there is learning asymptotically. However,
a systematic analysis of the issue of speed of learning in general networks is much more
challenging.

Sixth, social networks play an important role in opinion formation in practice because
we tend to talk to people in our social network. This type of learning is not well captured by
observational models, and instead requires a model of communication. This will be our next
task.

Finally, returning to some of the themes raised in the previous section, Bayesian updating
here is quite complex. It requires not only a standard application of Bayes rule, but also
necessitates each individual to correctly conjecture what types of information each agent he
has observed will have received (e.g., which ones of the many past actions he has observed,
and which actions have the individuals observed by this agent observed themselves, and
so on). This observation highlights that models of Bayesian observation learning in social
networks might require a very high degree of sophistication from the agents and suggests
that incorporating some aspects of non-Bayesian updating in this context might be necessary.
This is a topic we will take up in Sect. 4.

3.2 Bayesian Communication Learning

3.2.1 Problem

Consider next a similar environment where information concerning an underlying state θ is
held dispersely and agents will make a decision on the basis of θ . However, learning will
not arise from observation of others’ actions, but through communication. The difficulty
with information aggregation in models of observational learning resulted from the selfish
interests of the agents: they ignore their impact on others’ learning. With communication,
selfish interests are again a problem, but in a different way. If all of the agents have common
interests and could communicate costlessly and rapidly, we would expect that information
sharing would occur and this is the basis of Condorcet’s Jury Theorem. There are two prob-
lems preventing this strong conclusions from emerging, however. First, not all agents may
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have the same interests. If an agent suspects that another one might try to mislead him or
her, communication will be hampered. In the game theory literature, this issue is typically
addressed by using the so-called “cheap talk” models first proposed by Crawford and Sobel
[25]. In these models, a sender, who has some information, will send a message to a receiver,
who will use this information to make a decision. The problem is that the sender and the re-
ceiver may have different interests, and thus the sender might try to influence the receiver’s
decision by communicating incorrect information. Crawford and Sobel [25], and the liter-
ature that follows them, characterizes the amount of information that can be transmitted in
such an interaction (see, e.g., [22, 34, 70]).

Second, communication, even without strategic interactions, is time-consuming. An indi-
vidual might prefer to make a decision sooner rather than later, even if this involves receiving
less information. But in doing so, the individual will also be affecting the information that
others obtain. Thus, selfish behavior, now in the form of trying to reach a decision quickly,
will again affect the information that is available to others in a society or in a social network.

We next present a model based on Acemoglu, Bimpikis, and Ozdaglar [3] designed to
address these issues. The literature on learning by communication in groups is somewhat
smaller than the observational learning literature (there are several non-Bayesian models
of communication, which we will discuss in the next section). Most closely related to the
model we will present here are [41, 55], which look at one-shot cheap talk games super-
imposed over a network of interacting agents. Their main focus is on the conditions under
which there will be truthful communication in a given network. Though they represent im-
portant advances in our understanding of the limits of communication in the context of social
groups and networks, these papers do not provide an analysis of the aggregation of dispersed
information, which is our focus here.

3.2.2 Model

We next study a simple model of learning with communication based on [3]. We consider n

agents situated in a communication network represented by a directed graph Gn = (N n, E n),
where N n = {1, . . . , n} is the set of agents and E n is the set of directed edges with which
agents are linked. Agents make decisions over time and the payoff to each agent depends on
her decision and an underlying unknown state of the world θ , which we assume to be binary,
i.e., θ ∈ {0,1}. For simplicity, we again assume that both values of θ are equally likely, i.e.,
P(θ = 0) = P(θ = 1) = 1/2.

Agent i forms beliefs about θ from a private signal si ∈ Si (where Si is a Euclidean
space), as well as from information she obtains from other agents through the network Gn.
At each time period, t = 0,1, . . . , agent i can decide to take an irreversible action, 0 or 1,
or wait for another time period. Her payoff is thus

un
i (x

n
i , θ) =

{
δτπ if xn

i,τ = θ and xn
i,t = “wait” for t < τ,

0 otherwise,

where xn
i = [xn

i,t ]t=0,1... denotes the sequence of agent i’s actions (xn
i,t ∈ {“wait”,0,1}). Here,

xn
i,t = 0 or 1 denotes agent i taking action 0 or 1 respectively, while “wait” designates the

agent deciding to wait for that time period without taking an action; π > 0 is the payoff from
the correct action. Without loss of generality, we normalize π to be equal to 1. We say that
the agent “exits”, if she chose to take action 0 or 1. The discount factor δ ∈ (0,1) implies
that an earlier exit is preferred to a later one.
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Fig. 1 The information set of
Agent 1 under truthful
communication

We say that agent i sends information (or a message) to agent j (or equivalently j re-
ceives information from i) if there is an edge from i to j in graph Gn, i.e., (i, j) ∈ E n. Let
I n
i,t denote the information set of agent i at time t and I n

i,t denote the set of all possible
information sets. For any i, j , such that (i, j) ∈ E n, the messages that i can send to j at
time t are defined through a mapping mn

ij,t : I n
i,t → Mn

ij,t , where Mn
ij,t denotes the set of

all possible messages. This mapping makes it clear that the messages that i can send to j

could in principle depend on the information set of agent i as well as the identity of agent j .
Importantly, we assume that the cardinality (“dimensionality”) of Mn

ij,t is no less than that
of I n

i,t , so that communication can take the form of agent i sharing all her information with
agent j . This has two key implications. First, an agent can communicate (indirectly) with
a much larger set of agents than just her immediate neighbors, albeit with a time delay. As
an example, an agent can communicate with the neighbors of her neighbors in two time pe-
riods (see Fig. 1). Second, mechanical duplication of information is avoided. For example,
the second time agent j communicates with agent i, she can repeat her original signal, but
this will not be recorded as an additional piece of information by agent j , since given the
size of the message space Mn

ij,t , each piece of information can be “tagged”. This ensures
that under truthful communication, there need be no confounding of new information and
previously communicated information.

The information set of agent i at time t ≥ 1 is given by

I n
i,t = {si,m

n
ji,τ , for all 1 ≤ τ < t and j such that (j, i) ∈ E n}

and I n
i,0 = {si}. In particular, the information set of agent i at time t ≥ 1 consists of her

private signal and all the messages her neighbors sent to i in previous time periods. Agent
i’s action xn

i,t at time t is a mapping from her information set to the set of actions, i.e.,

σn
i,t : I n

i,t → {“wait”,0,1}.
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The tradeoff between taking an action (0 or 1) and waiting, should be clear at this point.
An agent would wait, in order to communicate with a larger set of agents and potentially
choose the correct action with higher probability. On the other hand, the future is discounted,
therefore, delaying is costly. Moreover, an agent may delay her decision so that other agents,
whom she receives information from, delay their exit decisions. These strategic considera-
tions introduce a game among the agents, which we refer to as the information exchange
game.

We will need the notion of the neighborhood of an agent in the following analysis. In
particular, the neighborhood of agent i at time t is defined as

Bn
i,t = {j �= i | ∃ a directed path from j to i with at most t links in Gn},

i.e., Bn
i,t consists of all agents that are at most t links away from agent i in graph Gn. In-

tuitively, if agent i waits for t periods and all of the intervening agents receive and send
information truthfully, i will have access to all of the signals of the agents in the set Bn

i,t .
We next define the equilibria of the information exchange game.7

Definition 6 An action strategy profile σn,∗ is a pure-strategy Perfect Bayesian Equilib-
rium of the information exchange game if for every i ∈ N n and time t , σ

n,∗
i,t maximizes the

expected payoff of agent i given the strategies of other agents σ
n,∗
−i , i.e.,

σ
n,∗
i,t ∈ arg max

y∈{“wait”,0,1}
E((y,σ

n,∗
i,−t

),σ
n,∗
−i

)(ui(x
n
i , θ)|I n

i,t ).

Let us consider a sequence of communication networks {Gn}∞
n=1 and refer to it as a

society. We use the term equilibrium to denote a sequence of equilibria σ = {σn}∞
n=1 of

information exchange games. The next definition introduces asymptotic learning for a given
society. For any fixed n ≥ 1 and any equilibrium of the information exchange game σn, we
introduce the indicator variable:

Mn
i,t =

{
1 if agent i takes the correct decision by time t,

0 otherwise.
(13)

Definition 7 We say that asymptotic learning occurs in society {Gn}∞
n=1 along equilibrium

σ if for every ε > 0, we have

lim
n→∞ lim

t→∞ Pσ

([
1

n

n∑
i=1

(1 − Mn
i,t )

]
ε

)
= 0.

This definition states that asymptotic learning occurs with all but a negligible fraction of
the agents taking the correct action (as the society grows infinitely large).

Let us also simplify the analysis and the exposition by assuming that private signals are
binary. In particular, we assume that si ∈ {0,1} for all i. Let L(x) denote the likelihood ratio
for private signal x, i.e., L(x) = P(x|θ=1)

P(x|θ=0)
. We assume that L(1) = β

1−β
and L(0) = 1−β

β
(with

1/2 > β). Moreover, the (common) precision of the private signals β is taken to be less than
the discount factor δ, i.e., β < δ. We will also further simplify the analysis by assuming

7Note that σn
i,−t

denotes the vector of actions of agent i at all times except t .
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that communication is truthful (thus, until she exists, an agent truthfully reports all of her
information). These results are extended to the case with strategic communication in [3].

We next introduce the concepts that are instrumental for asymptotic learning: the min-
imum observation radius and k-radius sets. We define the minimum observation radius of
agent i as the following stopping time:

Definition 8 The minimum observation radius of agent i is defined as dn
i , where

dn
i = arg min

t
min

In
i,t

∈{0,1}|I
n
i,t

|
{xn,∗

i,t (I n
i,t ) ∈ {0,1}}.

In particular, the minimum observation radius of agent i can be simply interpreted as
the minimum number of time periods that agent i will wait before she takes an irreversible
action 0 or 1, given that all other agents do not exit, over any possible realization of the
private signals. Given the notion of a minimum observation radius, we define k-radius sets
as follows.

Definition 9 Let V n
k be defined as

V n
k = {i ∈ N | |Bn

i,dn
i
| ≤ k}.

We refer to V n
k as the k-radius set.

Intuitively, V n
k includes all agents that may take an action before they receive signals

from more than k other individuals—the size of their (indirect) neighborhood by the time
their minimum observation radius dn

i is reached is no greater than k. Equivalently, agent i

belongs to set V n
k if the number of agents that lie at distance less than dn

i from i are at most
k. From Definition 9 it follows immediately that

i ∈ V n
k ⇒ i ∈ V n

k′ for all k′ > k. (14)

The following theorem provides a necessary and sufficient condition for asymptotic
learning to occur in a society under the assumption that communication is truthful.

Theorem 6 Suppose communication is truthful. Then, asymptotic learning occurs in society
{Gn}∞

n=1 (in any equilibrium σ ) if and only if

lim
k→∞

lim
n→∞

1

n
· |V n

k | = 0. (15)

This result states that asymptotic learning is precluded if there exists a significant fraction
of the society that will take an action before seeing a large set of signals, because in this case
there will be a positive probability of each individual making a mistake, since her decision
is based on a small set of signals. Intuitively, this condition requires that most agents are
a short distance away from information hubs, defined as agents that have a very large (in
the limit, infinite) number of connections. This motivates two different types of information
hubs as conduits of asymptotic learning (both of these labels are inspired by [47]). The first
are information mavens, which have a large in-degree, enabling them to aggregate informa-
tion. If most agents are close to an information maven, asymptotic learning is guaranteed.
The second type of hubs are social connectors, which have large out-degree, enabling them
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to communicate their information to a large number of agents. Social connectors are only
useful for asymptotic learning if they are close to mavens, so that they can distribute their
information. Thus, asymptotic learning is also obtained if most agents are close to a social
connector, who is in turn a short distance away from a maven.

In [3], we study an environment, in which individuals may (strategically) misreport their
information if they have an incentive to do so. We show that individuals may in general
choose to misreport their information in order to delay the action of their neighbors, thus ob-
taining more information from them in the future. Nevertheless, we establish that whenever
truthful communication leads to asymptotic learning, it is an ε-equilibrium of the strategic
communication game to report truthfully. Interestingly, the converse is not necessarily true:
strategic communication may lead to asymptotic learning in some special cases in which
truthful communication precludes learning.

The most important implication of this analysis is that even if truthful communication
can be guaranteed, the conditions for learning are quite stringent. In particular, Theorem 6
shows that such learning will only take place when there are mavens and social connec-
tors that can effectively aggregate almost all of the dispersed information. While this might
sometimes be a good approximation to media sources or other central individuals that play
the role of information aggregation in society, it does not provide a good description of most
social networks and societies, where information flows are much more local. What happens
when the dispersed information cannot be aggregated through communication? Because the
underlying model here corresponds to a strongly connected network, even when all of the
dispersed information cannot be aggregated, there are strong forces here toward consensus.
In particular, a common situation would be one in which highly connected individuals will
not wait for all of the possible information that they can gather, because of the cost of de-
lay, and will instead make a decision at some point. But since they are highly connected,
this choice will be observed by others and will influence their beliefs. Because there will be
no more information forthcoming from these individuals, in most situations the rest of the
society might also immediately follow the actions of these highly connected individuals. In
this situation, even though all individuals may not hold exactly the same beliefs, they will
still have beliefs that are very similar, and in particular, they will all choose the same action.
Therefore, there will be a form of “herding” in this environment as well, now based on (par-
tially informative) communication rather than observation of past actions. The reason why
this information does not aggregate is therefore not a lack of consensus, but rather the fact
that consensus forms too soon.

This discussion therefore highlights that both in Bayesian models of observational learn-
ing and communication, there are reasons to expect opinions not to effectively aggregate
dispersed information, though the result will often be some type of consensus. Therefore,
Bayesian models highlight the difficulties of aggregating dispersed information, while also
emphasizing that it is rare for individuals observing each others’ actions or communicating
together to arrive at very different beliefs.8

3.3 Learning in Markets

Even though the underlying state θ may be related to economic decisions, the models we
have discussed so far allow for social and economic interactions but not for market-based in-
teractions. A different perspective, pioneered by the famous economist Frederich von Hayek,

8As we saw in the previous section, this type of differences in long-run beliefs can arise when there is more
uncertainty about the underlying state and the process through which signals are generated.



32 Dyn Games Appl (2011) 1: 3–49

also argues that dispersed information can be aggregated effectively through markets, in-
stead of through individuals’ observation of and communication with their network. Hayek
reached a similar conclusion to that of Galton on the collective intelligence of groups be-
cause he argued that markets and prices were effective at aggregating dispersed information.
For example, Hayek wrote ([58], p. 526):

“The mere fact that there is a one [market] price for any commodity. . . brings about
the solution which. . . might have been arrived at by one single mind possessing all the
information which is in fact dispersed among all people involved in the process.”

Hayek in fact believed that while markets could successfully aggregate dispersedly-held
complex information, no single individual or government could play the same role because
the cost of computation and processing it would be prohibitive. Thus in Hayek’s vision,
social learning mediated by the market is superior to what a centralized authority could
achieve even if it had access to the same information.

The economics literature has attempted to construct models to formalize this perspective.
One approach has been to augment the standard Arrow-Debreu competitive equilibrium
analysis with dispersed information. The key assumption is that while each individual might
have dispersed and even private information, he still behaves in a competitive manner, as
a price taker, meaning he takes prices as fixed and independent of his actions (e.g., [8, 52,
75, 76]). Under some (sometimes quite stringent) assumptions, this approach shows that
market prices might effectively aggregate all the relevant information. This is a striking
result, though there are several challenges in mapping it to reality.

First, the result follows only when in the full information case (after dispersed infor-
mation has been effectively aggregated), there is a one-to-one mapping between observed
prices and the underlying state θ . This may not be the case in many situations, particularly
if the underlying state θ has a high dimension.

Second, as noted by the seminal paper by Grossman and Stiglitz [53], if all information is
reflected in prices, then there may not be incentives for individuals to acquire information,
and this may lead to the disappearance (or nonexistence) of this type of fully revealing
equilibrium.

Third and perhaps most important, this entire approach has been based on the competi-
tive equilibrium framework, and requires a Walrasian auctioneer to do the price setting and
adjustment. This is particularly important, since full revelation arises because individuals
can submit fully contingent demands to the Walrasian auctioneer. Hayek’s intuition, in con-
trast, is based on decentralized trading. In fact, as we have emphasized, Hayek believed that
markets were achieving something that a central authority with all of this information in its
hands could not. Therefore, a systematic investigation of the role of markets in social learn-
ing requires more microfounded models, where trade takes place in a decentralized manner,
possibly over a social network rather than in a centralized Walrasian market. It would also be
necessary to investigate interactions between non-market learning and information revealed
by prices in markets.9

4 Non-Bayesian Learning

In this section, we present non-Bayesian models of belief formation with learning through
communication and show that the forces toward the emergence of incorrect beliefs in the

9Wolinsky [95], Ostrovsky [73] and Golosov, Lorenzoni and Tsyvinski [49] investigate the revelation of
information by prices in markets in which buyers and sellers match and bargain over prices.
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long run are even stronger. We first present a classical model introduced in [28], which is a
simple model of belief and consensus formation over social networks (see also [30, 50]).10

We will see, however, that the specific assumptions it makes on how beliefs are updated may
have certain non-desirable implications. Motivated by this, we will consider a variant of this
model that avoids some of these properties and will then enrich it by introducing issues
related to the spread of misinformation, belief manipulation and persistent disagreements
between agents.

4.1 DeGroot Model of Belief Updating

We consider a set N = {1, . . . , n} of agents interacting in a social network. Each agent i

starts with an initial belief about an underlying state, which we denote by xi(0) ∈ R. Agents
exchange information about their beliefs with their neighbors. We assume that agents update
their beliefs at discrete time instances. At any time k ≥ 0, agent i updates his belief according
to the relation

xi(k + 1) =
n∑

j=1

Tij xj (k). (16)

Here the nonnegative scalar Tij indicates the weight that agent i puts on agent j ’s belief.
Letting x(k) = [x1(k), . . . , xn(k)]′ denote the vector of beliefs, the evolution of the beliefs
can be expressed as

x(k + 1) = T x(k) for all k ≥ 0,

where the weight matrix T = [Tij ]i,j∈N represents the social network of interactions, i.e.,
Tij = 0 implies that agent i does not get direct information from agent j regarding his
belief, or equivalently, there is no directed link from agent i to j in the underlying social
network.11 We assume that the weight matrix T is a (row) stochastic matrix, i.e., the sum
of entries across each row is equal to one. Hence, at each time instance agents update their
beliefs to a convex combination of their current beliefs and the beliefs of their neighbors.12

10The DeGroot model and variations have also been studied extensively in the cooperative control literature
as natural algorithms for achieving cooperative behavior with local information in networked-systems (see
[18, 33, 62, 67, 71, 72, 87–89]).
11The appealing interpretation is that this type of averaging would be optimal at time t = 0 if all agents had
independent beliefs drawn from a normal distribution with mean equal to the underlying state and weights
adjusted according to the precision of the distribution. At times t > 0, the weights assigned to the neighbors
need to be updated to account for the new information they obtained from their neighbors. Therefore, this
type of updating can be viewed as a boundedly rational version of the optimal processing of information
where the weights are kept constant over time. This interpretation is discussed in detail in [30] in a related
context.
12The literature has also considered versions of the DeGroot model with time varying weights and belief-
dependent weights (the weight matrix T is a function of agent beliefs x(k)). Time varying weights have been
studied both in social models of belief formation and in the cooperative control literature and capture the
natural setting in which an individual changes self and/or neighbor weights as he gets more information or as
the underlying network of interactions changes over time. Belief-dependent weights represent situations in
which the underlying communication patterns are affected by the current beliefs of agents. A natural belief-
dependent weight model is due to [63], which allows an agent to pay attention to beliefs that do not differ
too much from his own (see also [27, 59, 93]). The convergence of beliefs in these models is studied in [68],
which under mild conditions on the weight matrix T (x(k)), shows that the set of agents can be partitioned
into groups such that each group reaches a consensus (see also [17] for a proof of convergence on Krause’s
model and properties of limiting beliefs, and [66] for application of a belief-dependent communication model
within a multi-agent optimization framework).
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This is a simple update rule, capturing the “imitation” aspect of non-Bayesian models we
discussed in Sect. 2. When we think of a one-step update, this rule is also quite reasonable.
For example, the entries of the matrix T can be interpreted as the trust that an individual
places on another (with Tij = 0 corresponding to the case in which agent i does not trust
j ), and it may appear natural that an individual should update her beliefs to be closer to
those of the agents whom she trusts. However, when this update rule is applied dynamically,
it may not be as compelling. To see this, note that an individual will update her beliefs at
each date according to the beliefs of the agents that she trusts. Take a special case in which
Tij > 0 (agent i trusts agent j ) and Tjk = 0 for all k �= j , so that agent j does not update
her beliefs. In this situation, after the first period, agent i has already taken all the relevant
information from j . But according to the DeGroot update rule, she will keep on updating her
own information according to the unchanging information of agent j , creating an extreme
form of duplication of information. In most practical situations, we would imagine that after
repeated interactions, agent i should realize that agent j has an unchanging opinion and
there is no more point in updating her views because of agent j ’s different beliefs. While
this special case is extreme (because agent j ’s opinions are not changing), it illustrates a
general feature that the DeGroot update rule might be too myopic, especially in the context
of individuals that are interacting in the same manner in each period.

The attractive feature of this model, on the other hand, is that the analysis of consensus
is quite straightforward. In particular, standard results from Markov Chain Theory can be
used to establish sufficient conditions that ensure convergence of the beliefs to a stationary
distribution, which here will represent consensus among all of the agents, i.e., there will
exist x̄ ∈ R such that x(k) converges to e′x̄ as k goes to infinity, where e is the vector of
all ones. This is because the matrix T has been assumed to be a (row) stochastic matrix as
noted above (this feature ensures that the stationary distribution can be represented as e′x̄).

In particular, it can be shown that if the weight matrix T is such that the Markov chain
with transition matrix T is irreducible and aperiodic, then agent beliefs reach a consensus
in the limit. The irreducibility of the Markov chain is equivalent to the underlying social
network being strongly connected so that there is a directed path from every node to every
other node. Most of the literature in this area guarantees aperiodicity by assuming that Tii >

0 for some or all i so that some or all agents assign positive weight to their own belief in the
update relation (16).13

This discussion also implies that consensus will arise under fairly weak assumptions
in this model (in particular, to avoid consensus, one needs to assume that the society is
not “strongly connected,” meaning that there is no communication between two or more
subsets, which would not be a realistic description of any society, however fragmented).
Therefore, certain aspects of this model need to be generalized for the study of persistent
disagreements, the spread of misinformation and belief manipulation. In the next subsection,
we will present a variant of this model, which deals with several of these problems.

4.2 Spread of Misinformation

We next consider a variation on the DeGroot model, developed in [1], which enables us to
study the effect of prominent agents on the beliefs of the society. We consider a similar setup
as in the previous section with a set N = {1, . . . , n} of agents interacting over a social net-
work with initial beliefs xi(0) ∈ R about some underlying state θ ∈ R. We assume, in a way

13It is not necessary to have Tii > 0 for even a single i to ensure consensus. Necessary and sufficient condi-
tions for reaching a consensus in this model are presented in [51].
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that parallels the assumptions in the Bayesian models, that there is sufficient information
about θ held in a dispersed manner among all of the agents in the society. In particular, let
us suppose that the average of initial beliefs in the society is equal to θ , i.e.,

1

n

n∑
i=1

xi(0) = θ.

We also assume that there are two types of agents; regular and forceful. Regular agents
exchange information with their neighbors (when they meet). In contrast, forceful agents
influence others disproportionately.

We use an asynchronous continuous-time model to represent meetings between agents. In
particular, we assume that each agent meets and communicates with other agents at instances
defined by a rate one Poisson process independent of other agents. This implies that the
meeting instances (over all agents) occur according to a rate n Poisson process at times tk ,
k ≥ 1. Note that in this model, by convention, at most one node is active (i.e., is meeting
another) at a given time. We discretize time according to meeting instances (since these are
the relevant instances at which the beliefs change), and refer to the interval [tk, tk+1) as the
kth time slot. On average, there are n meeting instances per unit of absolute time. Suppose
that at time (slot) k, agent i is chosen to meet another agent (probability 1/n). In this case,
agent i will meet agent j ∈ N with probability pij ≥ 0 (we assume that

∑n

j=1 pij = 1 for all
i). We let P denote the matrix with entries pij , which is again a (row) stochastic matrix.14

Following a meeting between i and j , there is a potential exchange of information.
Throughout, we assume that all events that happen in a meeting are independent of any
other event that happened in the past. Let xi(k) denote the belief of agent i about the under-
lying state at time k. The agents update their beliefs according to one of the following three
possibilities.

(i) Agents i and j reach pairwise consensus and the beliefs are updated according to

xi(k + 1) = xj (k + 1) = xi(k) + xj (k)

2
.

We denote the conditional probability of this event (conditional on i meeting j ) as βij .
(ii) Agent j influences agent i, in which case for some ε ∈ (0,1/2], beliefs change accord-

ing to

xi(k + 1) = εxi(k) + (1 − ε)xj (k), and xj (k + 1) = xj (k). (17)

In this case beliefs of agent j do not change.15 We denote the conditional probability
of this event as αij , and refer to it as the influence probability. Note that we allow
ε = 1/2, so that agent i may be treating agent j just as a regular agent, except that
agent j himself does not change his beliefs.

14There is a natural parallel between the matrix T indeed DeGroot model and the matrix P here. However,
we will see that it will in fact be an augmented version of this matrix that will play a mathematically similar
role to that of T into the DeGroot model.
15We could allow the own-belief weight ε to be different for each agent i. This generality does not change
the results or the economic intuitions, so for notational convenience, we assume this weight to be the same
across all agents.
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(iii) Agents i and j do not agree and stick to their beliefs, i.e.,

xi(k + 1) = xi(k), and xj (k + 1) = xj (k).

This event has probability γij = 1 − βij − αij .

The first advantage of this framework is that the problem of duplication of information
highlighted in the context of the DeGroot model, though still present, is now less severe. In
particular, ignoring the events in which one agent influences the other (events with proba-
bility αij described in (ii) above), two agents who match again after having communicated
in the recent past will have either reached a consensus or will not have exchanged any infor-
mation, and thus one more round of updating is either inconsequential or would not run into
the problem that there is duplication of information. There will be communication, instead,
if one of them has met with somebody else and has updated her beliefs in the process, and
in this case, there is relevant information to be exchanged, though there will still be some
amount of replication of information.

The second advantage is that we can introduce, in a natural way, the possibility that some
agents are “prominent” and influence others, without themselves being influenced to the
same degree. This will then enable us to model some agents trying to manipulate the beliefs
of others or spreading misinformation. In particular, our description above makes it clear
that when αij > 0 agent j will have a special influence on agent i. To emphasize this, any
agent j for whom the influence probability αij > 0 for some i ∈ N is referred to as a forceful
agent. Moreover, the directed link (j, i) is referred to as a forceful link.16

We can interpret forceful agents in multiple different ways. First, forceful agents may
correspond to community leaders or news media, who have a disproportionate effect on the
beliefs of their followers. In such cases, it is natural to consider ε small and the leaders or
media not updating their own beliefs as a result of others listening to their opinion. Second,
forceful agents may be indistinguishable from regular agents, and thus regular agents engage
in what they think is information exchange, but forceful agents, because of stubbornness or
some other motive, do not incorporate the information of these agents in their own beliefs.
In this case, it may be natural to think of ε as equal to 1/2. The results that follow remain
valid with either interpretation.

The influence structure described above will determine the evolution of beliefs in the
society. Below, we will give a more precise separation of this evolution into two components,
one related to the underlying social network, and the other to influence patterns.

We next state our assumptions on the belief evolution model among the agents. Our
first assumption is about the connectivity of the agents in the social network. Consider the
directed graph (N , E ), where E is the set of directed links induced by the positive meeting
probabilities pij , i.e.,

E = {(i, j) | pij > 0}. (18)

We assume that the graph (N , E ) is strongly connected, i.e., for all i, j ∈ N , there exists a
directed path connecting i to j with links in the set E . This assumption ensures that every
agent “communicates” with every other agent (possibly through multiple links). This is not
an innocuous assumption, since otherwise the graph (N , E ) (and the society that it repre-
sents) would segment into multiple non-communicating parts. Though not innocuous, this
assumption is also natural for two reasons. First, the evidence suggests that most subsets of

16We refer to directed links/edges as links and undirected ones as edges.
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the society are not only connected, but are connected by means of several links (e.g., [61,
91]), and the same seems to be true for indirect linkages via the Internet. Second, if the
society is segmented into multiple non-communicating parts, the insights here would apply,
with some modifications, to each of these parts.

Let us also use dij to denote the length of the shortest path from i to j and d to denote
the maximum shortest path length between any i, j ∈ N , i.e.,

d = max
i,j∈N

dij . (19)

Since (N , E ) is strongly connected, these are all well defined. Finally, we also impose the
following no-man-is-an-island assumption, that there is positive probability that every agent
(even if he is forceful) receives some information from an agent in his neighborhood. In
particular, for all (i, j) ∈ E , the sum of the averaging probability βij and the influence prob-
ability αij is positive, i.e.,

βij + αij > 0 for all (i, j) ∈ E .

The assumption that the network is strongly connected ensures that there is a path from any
forceful agent to other agents in the network, implying that for any forceful agent i, there
is a link (i, j) ∈ E for some j ∈ N . Then the no-man-is-an-island assumption guarantees
that even the forceful agents at some point adopt information from the other agents in the
network.17 This is a central assumption for the analysis in this subsection, and we will see
in the next subsection that the implications of the model are enriched considerably (though
the analysis also becomes more involved) when this assumption is relaxed.

We can express the preceding belief update model compactly as follows. Let x(k) =
(x1(k), . . . , xn(k)) denote the vector of agent beliefs at time k. The agent beliefs are updated
according to the relation

x(k + 1) = W(k)x(k), (20)

where W(k) is a random matrix given by

W(k) =

⎧⎪⎨
⎪⎩

Aij ≡ I − (ei−ej )(ei−ej )′
2 with probability pijβij /n,

J ij ≡ I − (1 − ε)ei(ei − ej )
′ with probability pijαij /n,

I with probability pijγij /n,

(21)

for all i, j ∈ N . The preceding belief update model implies that the matrix W(k) is a sto-
chastic matrix for all k, and is independent and identically distributed over all k.

Given our assumptions, we have for some nonnegative matrix W̃ ,

E[W(k)] = W̃ for all k ≥ 0. (22)

The matrix, W̃ , which we refer to as the mean interaction matrix, represents the evolution
of beliefs in the society. It incorporates elements from both the underlying social network
(which determines the meeting patterns) and the influence structure. In what follows, it will
be useful to separate these into two components, both for our mathematical analysis and to

17This assumption is stated for all (i, j) ∈ E , thus a forceful agent i receives some information from any j in
his “neighborhood”. This is without any loss of generality, since we can always set pij = 0 for those j ’s that
are in i’s neighborhood but from whom i never obtains information.
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clarify the intuitions. For this purpose, let us use the belief update model (20)–(21) and write
the mean interaction matrix W̃ as follows:18

W̃ = 1

n

∑
i,j

pij [βijA
ij + αijJ

ij + γij I ]

= 1

n

∑
i,j

pij [(1 − γij )A
ij + γij I ] + 1

n

∑
i,j

pijαij [J ij − Aij ],

where Aij and J ij are matrices defined in (21), and the second equality follows from the
fact that βij = 1 − αij − γij for all i, j ∈ N . We use the notation

T = 1

n

∑
i,j

pij [(1 − γij )A
ij + γij I ], D = 1

n

∑
i,j

pijαij [J ij − Aij ], (23)

to write the mean interaction matrix, W̃ , as

W̃ = T + D. (24)

Here, the symmetric matrix T only depends on meeting probabilities (matrix P ) and on
the probability that following a meeting no exchange takes place, γij . We can therefore think
of the matrix T as representing the underlying social network (friendships, communication
among coworkers, decisions about which news outlets to watch, etc.), and refer to it as the
social network matrix. It will be useful below to represent the social interactions using an
undirected (and weighted) graph induced by the social network matrix T . This graph is
given by (N , A), where A is the set of undirected edges given by

A = {{i, j} | Tij > 0}, (25)

and the weight we of edge e = {i, j} is given by the entry Tij = Tji of the matrix T . We refer
to this graph as the social network graph.

The matrix D, on the other hand, can be thought of as representing the influence structure
in the society, and is hence called the influence matrix. It incorporates information about
which individuals and links are forceful, i.e., which types of interactions will lead to one
individual influencing the other without updating his own beliefs. It is also useful to note for
interpreting the mathematical results below that T is a doubly stochastic matrix, while D is
not. Therefore, (24) gives a decomposition of the mean connectivity matrix W̃ into a doubly
stochastic and a remainder component, and enables us to use tools from matrix perturbation
theory.

The next result shows that (stochastic) consensus will emerge despite the possibility of
misinformation and stochastic communication. We refer to this as stochastic consensus be-
cause the consensus value of beliefs itself is a random variable that depends on the initial
beliefs and the random sequence of matrices {W(k)}.

Theorem 7 The sequences {xi(k)}, i ∈ N , generated by (20) converge to a consensus belief,
i.e., there exists a scalar random variable x̄ such that

lim
k→∞

xi(k) = x̄ for all i with probability one.

18In the sequel, the notation
∑

i,j will be used to denote the double sum
∑n

i=1
∑n

j=1.
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Moreover, the random variable x̄ is a convex combination of initial agent beliefs, i.e.,

x̄ =
n∑

j=1

πjxj (0),

where π = [π1, . . . , πn] is a random vector that does not depend on the initial beliefs, and
satisfies πj ≥ 0 for all j , and

∑n

j=1 πj = 1.

The key implication of this result is that, despite the presence of forceful agents, the
society will ultimately reach a consensus. Though surprising at first, this result is intuitive in
light of our no-man-is-an-island assumption. Note, however, that, in contrast to the DeGroot
model discussed in the previous subsection, this consensus value here is a random variable
even conditional on initial beliefs. In particular, the consensus value will depend on the order
in which meetings have taken place. The main role of this result for us is that we can now
conduct our analysis on quantifying the extent of the spread of misinformation by looking
at this consensus value of beliefs.

The next theorem characterizes E[x̄] in terms of the limiting behavior of the matrices W̃ k

as k goes to infinity.

Theorem 8 Let x̄ be the limiting random variable of the sequences {xi(k)}, i ∈ N generated
by (20) (cf. Theorem 7). Then we have:

(a) The matrix W̃ k converges to a stochastic matrix with identical rows π̄ as k goes to
infinity, i.e.,

lim
k→∞

W̃ k = eπ̄ ′.

(b) The expected value of x̄ is given by a convex combination of the initial agent values
xi(0), where the weights are given by the components of the probability vector π̄ , i.e.,

E[x̄] =
n∑

i=1

π̄ixi(0) = π̄ ′x(0).

Combining Theorem 7 and Theorem 8(a) (and using the fact that the results hold for
any x(0)), we have π̄ = E[π ]. The stationary distribution π̄ is crucial in understanding
the formation of opinions since it encapsulates the weight given to each agent (forceful or
regular) in the limiting mean consensus value of the society. We refer to the vector π̄ as the
consensus distribution corresponding to the mean interaction matrix W̃ and to its component
π̄i as the weight of agent i.

It is also useful at this point to highlight how consensus will form around the correct
value in the absence of forceful agents. Let {x(k)} be the belief sequence generated by the
belief update rule of (20). When there are no forceful agents, i.e. αij = 0 for all i, j , then
the interaction matrix W(k) for all k is either equal to an averaging matrix Aij for some
i, j or equal to the identity matrix I ; hence, W(k) is a doubly stochastic matrix (i.e., it has
both row and column sums equal to 1). This implies that the average value of x(k) remains
constant at each iteration and is given by

1

n

n∑
i=1

xi(k) = 1

n

n∑
i=1

xi(0) for all k ≥ 0.
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But since, by assumption, 1
n

∑n

i=1 xi(0) = θ , we have from Theorem 7 the following
simple but important corollary:

Corollary 1 Assume that there are no forceful agents, i.e., αij = 0 for all i, j ∈ N . We have

lim
k→∞

xi(k) = 1

n

n∑
i=1

xi(0) = θ with probability one.

Therefore, in the absence of forceful agents, the society is able to aggregate information
effectively. Theorem 8 then also implies that in this case π̄i = 1/n for all i (i.e., beliefs
converge to a deterministic value), so that no individual has excess influence. These results
no longer hold when there are forceful agents.

We next study the effect of the forceful agents and the structure of the social network on
the extent of misinformation and excess influence of individuals. As a measure of the extent
of misinformation, we consider the expected value of the difference between the consensus
belief x̄ (cf. Theorem 7) and the true underlying state, θ (or equivalently the average of the
initial beliefs), i.e.,

E[x̄ − θ ] = E[x̄] − θ =
∑
i∈N

(
π̄i − 1

n

)
xi(0), (26)

(cf. Theorem 8).
The next theorem provides a key result on characterizing the extent of misinformation

and establishes an upper bound on the l∞-norm of the difference between the stationary
distribution π̄ and the uniform distribution 1

n
e, which, from (26), also provides a bound

on the deviation between expected beliefs and the true underlying state, θ . The proof uses
results from Markov Chain Theory, which enable us to decompose the mean interaction
matrix W̃ in (24) into a component given by the social network matrix T , which is doubly
stochastic, and an influence matrix D, which is the source of deviation of Ex̄ from θ (see,
in particular, [57, 83]).

Theorem 9

(a) Let π̄ denote the consensus distribution. The l∞-norm of the difference between π̄ and
1
n
e is bounded by

∥∥∥∥π̄ − 1

n
e

∥∥∥∥∞
≤ 1

1 − δ

∑
i,j pijαij

2n
,

where δ is a constant defined by

δ = (1 − nχd)
1
d ,

χ = min
(i,j)∈E

{
1

n

[
pij

1 − γij

2
+ pji

1 − γji

2

]}
,

and d is the maximum shortest path length in the graph (N , E ) [cf. (19)].
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(b) Let x̄ be the limiting random variable of the sequences {xi(k)}, i ∈ N generated by (20)
(cf. Theorem 7). We have

∣∣∣∣∣E[x̄] − 1

n

n∑
i=1

xi(0)

∣∣∣∣∣ ≤ 1

1 − δ

∑
i,j pijαij

2n
‖x(0)‖∞.

Before providing the intuition for the preceding theorem, we provide a related bound on
the l2-norm of the difference between π̄ and the uniform distribution 1

n
e in terms of the

second largest eigenvalue of the social network matrix T .

Theorem 10 Let π̄ denote the consensus distribution (cf. Theorem 8). The l2-norm of the
difference between π̄ and 1

n
e is given by

∥∥∥∥π̄ − 1

n
e

∥∥∥∥
2

≤ 1

1 − λ2(T )

∑
i,j pijαij

n
,

where λ2(T ) is the second largest eigenvalue of the matrix T defined in (23).

Theorem 10 characterizes the variation of the stationary distribution in terms of the aver-

age influence,
∑

i,j pij αij

n
, which captures the importance of forceful agent in the society, and

in terms of structural properties of the social network as represented by the matrix T —in
particular, its second largest eigenvalue λ2(T ). As is well known, the difference 1 − λ2(T ),
also referred to as the spectral gap, governs the rate of convergence of the Markov Chain
induced by the social network matrix T to its stationary distribution. In particular, the larger
1−λ2(T ) is, the faster the kth power of the transition probability matrix converges to the sta-
tionary distribution matrix. When the Markov chain converges to its stationary distribution
rapidly, we say that the Markov chain is fast mixing.

In this light, Theorem 10 shows that, in a fast-mixing graph, given a fixed average in-

fluence
∑

i,j pij αij

n
, the consensus distribution is “closer” to the underlying θ = 1

n

∑n

i=1 xi(0)

and the extent of misinformation is limited. This is intuitive. In a fast-mixing social net-
work graph, there are several connections between any pair of agents. Now for any forceful
agent, consider the set of agents who will have some influence on his beliefs. This set it-
self is connected to the rest of the agents and thus obtains information from the rest of the
society. Therefore, in a fast-mixing graph (or in a society represented by such a graph), the
beliefs of forceful agents will themselves be moderated by the rest of the society before they
spread widely. In contrast, in a slowly-mixing graph, we can have a high degree of clus-
tering around forceful agents, so that forceful agents get their (already limited) information
intake mostly from the same agents that they have influenced. If so, there will be only a very
indirect connection from the rest of the society to the beliefs of forceful agents and forceful
agents will spread their information widely before their opinions also adjust. As a result, the
consensus is more likely to be much closer to the opinions of forceful agents, potentially
quite different from the true underlying state θ .

This discussion also gives the intuition for Theorem 9 since the constant δ in that result is
closely linked to the mixing properties of the social network matrix and the social network
graph. In particular, Theorem 9 clarifies that δ is related to the maximum shortest path and
the minimum probability of (indirect) communication between any two agents in the society.
These two notions also crucially influence the spectral gap 1 − λ2(Tn), which plays a key
role in Theorem 10.
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There are several important implications of the model presented in this subsection and
its analysis. First, the model has introduced a tractable variant of the DeGroot model, with
an arguably easier interpretation and more limited duplication of information. Second, it has
incorporated forceful agents, which give us a way of introducing belief manipulation and
spread of misinformation. Third, because of the no-man-is-an-island assumption, despite
the presence of forceful agents and the possibility of misinformation being spread, beliefs
converge to a consensus in the long run, albeit a stochastic consensus. This is both a conve-
nient implication, because it makes further analysis feasible and relatively straightforward,
and a negative implication, because it does not allow the emergence of persistent disagree-
ment. Finally, the analysis in this subsection has shown how one can go considerably beyond
the question of whether there is (stochastic or nonstochastic) consensus and provide a full
characterization of the divergence between consensus beliefs and a benchmark correspond-
ing to a simple notion of aggregation of dispersed information. In particular, this analysis
has shown that this measure of divergence depends on the presence and importance of force-
ful agents and structural properties of the social network (in particular, on the second largest
eigenvalue, which captures how fast mixing the Markov chain induced by the social network
of the society is).

4.3 Persistent Disagreement

The no-man-is-an-island assumption played a crucial role in the previous subsection in en-
suring that the beliefs of the forceful agents are affected (even if infrequently) by the beliefs
of the rest of the society. This feature then underpinned the emergence of (stochastic) con-
sensus, which enabled the rest of the analysis to be conducted in a relatively simple manner.
While “no-man-is-an-island” is a plausible assumption for forceful agents, it may not be a
good description of how those trying to manipulate the beliefs of others or spread misin-
formation may act. For example, it may be realistic to assume this feature when one of the
agents in a village or in a community has a leadership role but still listens to the rest of
the group, but it may be highly implausible when we want to have a stylized description of
how state media in authoritarian regimes such as Iran or China might try to manipulate the
beliefs of its citizens. In this subsection, we relax this assumption. In addition to providing a
generalization of the learning model presented in the previous subsection, this will enable us
to have a framework in which disagreement among agents may be a long-run phenomenon
despite the fact that the society is strongly connected.

More specifically, following [2], we consider a model with (fully) stubborn agents which
are similar to the forceful agents in the previous subsection but never update their opin-
ions and continuously influence those of the rest of the society. This model is developed
and studied in [4]. We show that the presence of these agents leads to persistent disagree-
ments among the rest of the society—because different individuals are within the “sphere of
influence” of distinct stubborn agents and are influenced to varying degrees.

Consider a population N = {1, . . . , n} of agents, communicating and exchanging infor-
mation. As in the previous two sections, each agent starts with an opinion xi(0) ∈ R and
is then “recognized” according to a rate-1 independent Poisson process in continuous time.
Following this event, she meets one of the agents in her neighborhood according to a sto-
chastic matrix P . We shall identify agents with the vertices of a (directed) graph G = (N , E ),
representing an underlying social network, where (i, j) ∈ E if and only if Pij > 0.

As noted above, stubborn agents are those that never change or update their opinions,
and we think of them as typically few in number. The (nonempty) set of stubborn agents is
denoted by S ⊆ N . The remaining agents are referred to as regular agents, and their set is
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denoted by A ≡ N \ S . These regular agents update their beliefs to some weighted average
of their pre-meeting belief and the belief of the agent they met. Specifically, we assume that,
if agent a ∈ A is recognized at time t ≥ 0, and meets agent v ∈ N , then her belief jumps
from its current value xa(t

−) to

xa(t) = (1 − θ)xa(t
−) + θxv(t

−),

where xv(t
−) denotes the limit limu↑t xv(u). All other agents’ beliefs remain constant. The

parameter θ ∈ (0,1) represents the trust that regular agent a puts on agent v’s belief (here
assumed to be constant over all agents and over time for notational simplicity).

We denote the vector of beliefs at time t by x(t) ∈ R
N and study its long-run behavior,

under the assumption that the graph G is strongly connected, which implies that the induced
continuous-time Markov chain (i.e., the Markov chain with set of states given by N and
transition probability matrix P ) admits a unique stationary probability distribution, denoted
by π , supported over all N .

The next theorem shows that, in contrast to the models we have seen so far, opinions
no longer converge to a consensus. Instead, they exhibit both persistent disagreement and
persistent fluctuations.

Theorem 11 Assume that xs(0) �= xs′(0) for some s, s ′ ∈ S . Then, with probability one, x(t)

does not converge.

From a substantive point of view, this is one of the central results of the model. In partic-
ular, it shows that with probability one, opinions fail to converge. Thus persistent disagree-
ment will remain, and in fact, all opinions will fluctuate even in the long run. Notably, there
is persistent disagreement despite the fact that the social network in the society is strongly
connected and thus the opinion of each regular agent can be (indirectly) influenced by that
of any other regular agent. Disagreement arises because of the constant pull of the society
in different directions by the influence of stubborn agents.

Nevertheless, we can show that regardless of the initial values of regular agents’ beliefs,
the belief vector x(k) is convergent in distribution to a random vector X. Recall that this
means that the probability law of x(t), to be denoted by L(x(t)), converges, according to
the weak-* topology, to L(X), the probability law of an R

N -valued random variable X, i.e.,

lim
t→+∞ E[ϕ(x(t))] = E[ϕ(X)],

for all bounded and continuous test functions ϕ : R
N → R.

Theorem 12 For every value of the stubborn agents’ beliefs {xs(0)} ∈ R
S , there exists an

R
N -valued random variable X, such that

lim
t→+∞x(t) = X,

in distribution.

As in the previous subsection, we next derive results linking the social network structure
to the distribution of asymptotic beliefs. We focus on the empirical average of beliefs:

αv ≡ lim
k→+∞

1

t

∫ t

0
xv(u)du, v ∈ N .
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Standard ergodic theorems for Markov chains imply that agent beliefs are ergodic, therefore
the preceding limit is given by the expected value of the random vector X, i.e., αv = E[Xv]
for all v ∈ N , independent of the distribution of x(0). We refer to α = [αv]v∈N as the ex-
pected asymptotic belief vector. The next theorem provides an explicit characterization of α.

Theorem 13 The expected asymptotic belief vector α is the unique solution of the following
Laplace equation

((P − I )α)a = 0 for all a ∈ A,

with boundary conditions αs = xs(0) for all s ∈ S .

Here ((P − I )α)a refers to the ath element of the vector ((P − I )α). The reason why we
do not have ((P − I )α) = 0 is that this vector also includes the stubborn agents, whereas the
requirement ((P − I )α)a = 0 is only for a ∈ A, i.e., only for regular agents. This theorem
provides us with an explicit expression for the expected asymptotic belief vector α. In fact,
α admits the following standard representation (see [7], Chap. 2, Lemma 27):

αv =
∑
s∈S

Pv(τS = τs)xs(0), for all v ∈ N ,

where Pv(·) denotes the probability measure associated with a continuous-time random walk
V (t), with initial state V (0) = v, transition rates P , while τW ≡ inf{t ≥ 0 : V (t) ∈ W} de-
notes the hitting time of an arbitrary subset W ⊆ N . This representation enables us to com-
pute α exactly for certain social network topologies. In cases when the expected asymptotic
belief vector α cannot be explicitly computed in a simple way, it is possible to provide
bounds on its dispersion.

Theorem 14 Assume that the stochastic matrix P is reversible. Then, for all ε > 0, we have

1

n

∣∣∣∣
{
v :

∣∣∣∣αv −
∑
u∈N

πuαu

∣∣∣∣ ≥ �∗ε
}∣∣∣∣ ≤ 2

ε
log(2e2/ε)

τ

nπ∗Eπ [τS ] ,

where �∗ ≡ maxs,s′∈S xs(0) − xs′(0), π∗ ≡ minu πu, Eπ [·] denotes the expectation of the
random walk V (t) with initial distribution π , and τ is the (variational distance) mixing
time of the random walk V (t), i.e.,

τ ≡ inf{t ≥ 0 | ‖Pv(V (t) = ·) − Pv′(V (t) = ·)‖T V ≤ e−1,∀v, v′ ∈ N }.

Theorem 14 therefore provides a bound on the stationary distribution of beliefs in terms
of the beliefs and the belief differences of the stubborn agents and structural properties of
the social network, in particular as captured by the mixing time τ (in the same way that
mixing times were important in the previous subsection). Intuitively, the theorem states that
if the Markov chain V (t) mixes in time faster than the expected hitting time of the stubborn
agent set S , then it will eventually hit any of them with approximately equal probability, and
thus the expected asymptotic opinions do not vary much over the network.

5 Concluding Remarks

In this paper, we have provided an overview of recent work on opinion dynamics and learn-
ing in social networks. We emphasized the insights and the shortcomings of both Bayesian
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and non-Bayesian approaches. Our focus has been on mathematical models linking the dy-
namics of opinions to the distribution of prior beliefs, the form of updating (e.g., Bayesian
vs. non-Bayesian) and crucially to the structural properties of the social network in which
agents are situated. In particular, we highlighted the importance of these factors on three sets
of questions:

a. Consensus: will social learning lead different individuals, who might start with different
views (priors) and observe the actions of and engage in communication with different
subsets of the society, to hold beliefs that are in agreement?

b. Asymptotic learning: will social learning effectively aggregate dispersed information?
c. Misinformation: will media sources, “prominent agents,” politicians and officers of the

state be able to manipulate the beliefs of individuals, indoctrinate them and convince
them of views that may not have the backing of data and evidence?

We have emphasized that even when agents are Bayesian and start with fairly accurate
models of the world, that is, the correct understanding of how signals are generated and
reasonable priors, asymptotic learning may not emerge because selfish behavior by each
agent need not lead to the aggregation of dispersed information. Even though they do not
guarantee asymptotic learning, Bayesian models create a strong tendency toward consensus
and they limit the extent to which misinformation can arise (because Bayesian agents are
relatively difficult to fool).

We then showed that some benchmark models of non-Bayesian learning also lead to
consensus and similarly are unlikely to lead to asymptotic learning. The forces that lead to
consensus also preclude the emergence of persistent disagreements and this feature might
put limits on the extent of misinformation. We then outlined some recent work on the spread
of misinformation and persistent long-run disagreement and linked these features to the
structural properties of social networks in which communication and learning take place.

Our overview has been purposefully partial. A large amount of work on learning, opin-
ion formation and communication has either been mentioned only in passing or has been
ignored, because it is less directly related to our focus. We have also concentrated on math-
ematical models that enable the study of links between the structure of social networks and
opinion dynamics. There are several areas upon which we touched only briefly and some
which we could not mention because of space constraints that are important areas for future
research. We end the paper by a brief discussion of some of these.

1. To enable sharp mathematical characterization, we have throughout focused on long-
run properties of opinion dynamics. For example, rather than asking whether incorrect
beliefs can persist for a long time, we have investigated whether there is asymptotic
learning, meaning whether in the very long-run society will arrive at the correct beliefs
and actions. Opinion dynamics away from this very long-run limit are often important
and interesting, but more difficult to study. Moreover, even if there is asymptotic learn-
ing, the rate at which different societies arrive at this might be very different (as briefly
mentioned in Sect. 3). The development of more powerful mathematical tools to study
opinion dynamics away from the long-run stationary distribution and to investigate the
rates at which the long-run distribution is reached constitutes an important area for future
research.

2. Also to facilitate analysis, we have focused on models in which actions are either implicit
(as in the models in Sect. 4) or each agent only takes a single action (as in the models in
Sect. 3). An important area for future research is to consider models in which individu-
als interact with others repeatedly and update their information dynamically taking into
account implications of this information both today and in the future.
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3. We have emphasized repeatedly that non-Bayesian models provides several useful in-
sights, but that they also have several ad hoc features and properties such as the “du-
plication of information” of the DeGroot model, which are unattractive (and which, in
particular, we might expect not to survive in the long run). An interesting area of study is
to develop more adaptive non-Bayesian models in which such easily identifiable myopic
behavior is avoided by changes in the relevant rules of thumbs, at least in the long run.

4. We have seen that individuals’ conjectures about others’ behavior plays a crucial role in
Bayesian models. These considerations are entirely absent in non-Bayesian models. It
would also be interesting to extend non-Bayesian models to incorporate some of these
concerns. For example, even if individuals are not Bayesian, they might worry about how
to draw inferences from the behavior of others and about whether some other agents are
trying to mislead them.

5. Models of misinformation and persistent disagreement are very much in their infancy. We
have presented only one approach to these questions. Given the ubiquity of these issues
in practice, more work is necessary to understand how misinformation spreads to some
parts of the society and how individuals that communicate and share the same sources of
information might nonetheless disagree significantly even in the very long run. It would
be particularly important to see how such long-run disagreement is possible even when
more Bayesian features are introduced or non-Bayesian models are made more adaptive.

6. In the area of persistent disagreement, it is also interesting to study whether persistent
disagreement will lead to a situation in which there are clusters of relatively unchanging
opinions within different parts of the social network, or whether there is greater fluidity
and different types of opinions spread and retreat throughout the network at different
points.

7. More work is also necessary on modeling indoctrination and belief manipulation. While
the spread of misinformation in social networks gives us some clues about these issues,
indoctrination in practice is often carried out by political movements or by the state using
several instruments. Control of schools and the media might be particularly important.
Currently, we know relatively little on this important topic.

8. Issues of misinformation also open up another area of study: if there will periodically
be new sources of misinformation, either from parties that are purposefully trying to
manipulate beliefs or because some agents and community leaders are stubborn and will
not change their opinion even if these are not strongly based on the facts, then it becomes
important to understand what types of societies and social structures are “robust” to the
spread of misinformation and what can be done, from a design perspective, to make
society more robust and opinions more stable or less subject to manipulation.
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