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Abstract
The aim of this paper is to establish sufficient local conditions for the unique-

ness of solutions to Nonlinear Complementarity Problems (NCP) and Mixed Com-
plementarity Problems (MCP). Our main theorems state that for NCP and MCP
defined by continuously differentiable functions, the solution is unique if the Ja-
cobian of the function is a partial P-matrix at each solution. These theorems
generalize the previous uniqueness results in a number of directions, including re-
laxing the strict complementary slackness requirement necessary in some of these
approaches. The method of proof uses and extends a recent result by Simsek-
Ozdaglar-Acemoglu [14] regarding the uniqueness of generalized critical points.

1 Introduction

Let F : Rn
+ 7→ Rn be a continuous function, where Rn denotes the n-dimensional Euclid-

ean space and Rn
+ denotes the nonnegative orthant in Rn. The nonlinear complemen-

tarity problem (NCP) is to find a vector x ∈ Rn
+ that satisfies the following:

x ≥ 0, F (x) ≥ 0, (1)

xT F (x) = 0. (2)

We denote the set of solutions to (1)-(2) by NCP(F ). The NCP is a powerful framework
for modeling equilibrium in a diverse set of problems that arise in engineering, economics,
game theory, and finance; see [5] for applications.

A problem similar to the NCP is the mixed complementarity problem (MCP), which
is to find a vector x ∈ [a, b] ⊂ Rn such that for each i ∈ {1, .., n} one of the following
holds:

xi = ai, Fi(x) ≥ 0 (3)

ai < xi < bi, Fi(x) = 0. (4)

xi = bi, Fi(x) ≤ 0 (5)
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We denote the set of solutions to (3)-(5) by MCP(F, [a, b]). In the literature, the case
when one or more of ai, bi are +∞ or −∞ is also allowed. In this work, we restrict
ourselves to the case when a, b ∈ Rn.

In this work, we establish sufficient conditions on F for the uniqueness of solutions
to the NCP and sufficient conditions on F and [a, b] for the uniqueness of solutions to
the MCP. There are two lines of earlier work concerning the uniqueness of solutions to
NCP. The first line, originated by Samelson-Thrall-Wesler [13] for the linear comple-
mentarity problem (i.e., complementarity problems in which the defining function F is
affine) and by Cottle [3] for the NCP, assumes global P-properties of the function F (see
Karamardian [8], More [11]) and, when F is continuously differentiable, global P-matrix
properties or uniform boundedness of the Jacobian of F (see Cottle [3], Megiddo-Kojima
[10], Facchinei-Pang [5]).1

The second line of work originated in Saigal and Simon’s work [12], which studied the
NCP for the case when F is continuously differentiable using fixed point index theory
(see Guillemin-Pollack [7] and Dold [4]). Saigal and Simon established that under a
set of regularity conditions, local conditions on the Jacobian of F [which only need to
be satisfied at the vectors in NCP(F )] guarantees that NCP(F ) has an odd number of
elements. Their result was used and strengthened by Kolstad-Mathiesen [9], who, under
similar conditions, established the uniqueness of Cournot equilibrium, formulated as an
NCP. One of the regularity conditions necessary for the approach of Saigal and Simon
[12] and Kolstad-Mathiesen [9] is the strict complementarity assumption (Assumption
SCS-NCP below). This assumption is not only difficult to verify without characterizing
all of the solutions of the NCP, but as also recently pointed out by Gaudet-Salant [6], it
may be overly restrictive.2

In this paper, we generalize the uniqueness result by Saigal and Simon [12] (and of
Kolstad-Mathiesen [9]) by relaxing the strict complementary slackness assumption. We
instead introduce local and partial P-matrix properties on the Jacobian of F and show
that these are sufficient to ensure uniqueness.

Our results thus also generalize results that require global P-matrix properties. More-
over, we provide a unified study of uniqueness for both the NCP and the MCP. Our proof
relies on a recent result by Simsek-Ozdaglar-Acemoglu [14] regarding the uniqueness of
generalized critical points of functions defined over compact regions defined by finitely
many inequality constraints. We apply and generalize this result to study uniqueness of
solutions for the MCP without regularity requirements. We then relate the solutions of
the NCP and the MCP to establish the uniqueness of solutions of the NCP.

The organization of the paper is as follows. In the next section, we review Saigal and
Simon [12]’s approach to NCP and state our main theorems both for NCP and MCP. In
section 3, we define partial P-matrices and show properties of functions whose Jacobians
are partial P-matrices, which will be used for the proofs of the main theorems. These

1Megiddo and Kojima also studied the globally uniquely solvable property (GUS) of the NCP, i.e., it
has a unique solution and this property will not change even if any constant term is added to the function
F . They provided sufficient conditions that involve global assumptions to establish GUS property of
an NCP and related these conditions to earlier conditions of Cottle [3], Karamardian [8], and More [11]
that establish uniqueness of solution to the NCP.

2For example, Gaudet-Salant [6] show that this assumption often fail in examples of practical interest.
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results might also be of independent interest. In Section 4, we present proofs of the two
main theorems. Section 5 presents examples demonstrating how our theorems improve
over existing uniqueness results.

Regarding notation, all vectors are viewed as column vectors, and xT y denotes the
inner product of the vectors x and y. We denote the 2-norm by ‖x‖ = (xT x)1/2. xi

denotes the ith component of vector x in standard coordinates. For x, y ∈ Rn, x < y
implies xi < yi for all i ∈ {1, .., n}. We let [x, y] denote the closed rectangle defined by
vectors x, y, i.e.

[x, y] =
{

u ∈ Rn | xi ≤ u ≤ y, ∀ i ∈ {1, .., n}
}

.

For a given matrix A, Aij denotes its entry in ith row and jth column. For an n×n matrix
A and J ⊂ {1, 2, .., n}, let A|J denote the principal sub-matrix of A that contains the
entries Aij where i, j ∈ J . When X is a finite set, we use |X| to denote its cardinality.
For a closed set M , we use the notation U |M to denote an open set containing M . For
a vector x ∈ Rn and a set J ⊂ {1, 2, .., n}, we use the notation x|J to denote the |J |-
dimensional vector that contains the entries xj where j ∈ J . If f is differentiable at x,
then ∇f(x) denotes the gradient of f . We say that f is continuously differentiable at
x ∈ A if f is continuously differentiable over an open set U ⊂ A containing x.

2 Uniqueness Results for the NCP and the MCP

2.1 Uniqueness for the NCP

To avoid any difficulties related to smoothness, we assume that F is defined over an
open set Un

+ ⊂ Rn containing Rn
+. Note that this assumption does not yield any loss of

generality since any function F : Rn
+ 7→ Rn can be extended to a function F̄ over Un

+

such that the extension preserves the differentiability properties of F over Rn
+, i.e., for

any x ∈ Rn
+, F is (continuously) differentiable at x (restricted to the directions interior

to Rn
+) if only if F̄ is (continuously) differentiable at x (see Saigal-Simon [12] for an

explicit construction of one such extension).
We first review Saigal-Simon [12] and Kolstad-Mathiesen [9] results which establish

the uniqueness of solutions to the NCP. Saigal-Simon [12] study the properties of the
solution set of an NCP under the following assumptions.

Assumption BC (Boundary Condition): There exists a compact set C ⊂ Rn
+ such

that for all x ∈ Rn
+ − C, there exists some y ∈ C such that

∑

i∈{1,..,n}
(yi − xi)Fi(x) < 0.

Assumption ND-NCP (Non-degeneracy for the NCP): For each x∗ ∈ NCP(F ),
F is continuously differentiable at x∗ and

det(∇F (x∗)|INB−NCP (x∗)) > 0,
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where
INB−NCP (x) =

{
i ∈ {1, .., n} | xi > 0

}
.

Assumption SCS-NCP (Strict Complementary Slackness for the NCP): For
each x∗ ∈ NCP(F ), x∗i = 0 implies Fi(x

∗) > 0, i.e.

INB−NCP (x∗) = IF (x∗),

where
IF (x∗) =

{
i ∈ {1, .., n} | Fi(x

∗) = 0
}

. (6)

The following result is implicit in Saigal-Simon [12], and is more explicitly stated by
Kolstad-Mathiesen [9] (cf. Theorem 1 in [9]):

Theorem 1 Let F : Un
+ 7→ Rn be a continuously differentiable function. Assume that F

satisfies assumptions BC, SCS-NCP, and ND-NCP. Then, NCP(F ) has a unique element.

We now introduce new assumptions that essentially relax Assumption SCS-NCP and
BC to generalize Theorem 1. It can be seen that the following boundedness assumption
is weaker than Assumption BC.

Assumption WBC (Weak Boundary Condition): There exists a compact set
C ⊂ Rn

+ such that for all x ∈ Rn
+ − C, there exists some y ∈ C and i ∈ {1, .., n} such

that
(yi − xi)Fi(x) < 0.

The following assumption is used to generalize the regularity requirements of The-
orem 1, in particular, relaxing Assumption SCS-NCP. We say that x∗ ∈ NCP(F ) is a
strongly non-degenerate solution if F is continuously differentiable at x∗ and

det(∇F (x∗)|J) > 0

for all J such that
INB−NCP (x∗) ⊂ J ⊂ IF (x∗).

Assumption SND-NCP (Strong Non-degeneracy for the NCP): Each x∗ ∈
NCP(F ) is strongly non-degenerate.

The following theorem, which is our main result for the uniqueness of the NCP, gener-
alizes Theorem 1 in two directions: First, it requires a weaker boundary assumption. Sec-
ond, it relaxes the strict complementary slackness assumption, Assumption SCS-NCP. It
is evident that Assumptions SCS-NCP and ND-NCP together imply SND-NCP, however
the converse is not true, hence our result requires weaker regularity requirements.
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Theorem 2 Let F : Un
+ 7→ Rn be a continuous function. Assume that F satisfies

assumptions WBC and SND-NCP. Then, NCP(F ) has a unique element.

Before providing a proof of this theorem, we study the related problem of uniqueness
of solutions to MCP problems. MCP problems are not only important in many applica-
tions, but it is also more convenient to prove uniqueness of solutions to MCP problems
before proving Theorem 2 (see Section 4.2).

2.2 Uniqueness for the MCP

Throughout this section, a, b ∈ Rn denote vectors such that a < b, M = [a, b] denotes a
closed rectangle, and U |M ⊂ Rn denotes an open set containing M . As in the previous
section, to avoid smoothness difficulties, we work with the extended function F : U |M 7→
Rn without loss of any generality. In [14], we define and study the generalized critical
points of F over M , denoted by Cr(F,M), when the set M is defined by finitely many
smooth inequalities. For the special case of M = [a, b], it can be seen that

MCP(F, M) = Cr(F, M).

The following assumption is equivalent to stating that every vector x∗ ∈ MCP(F,M) =
Cr(F, M) is complementary in the sense of [14].

Assumption SCS-MCP (Strict Complementary Slackness for the MCP): For
each x∗ ∈ MCP(F, M), x∗i = ai implies Fi(x

∗) > 0 and x∗i = bi implies Fi(x
∗) < 0, i.e.

INB−MCP(x∗) = IF (x∗), where

INB−MCP(x) =
{

i ∈ {1, .., n} | ai < xi < bi

}
,

and IF (x∗) is defined in (6).

The following assumption is equivalent to stating that every vector x∗ ∈ MCP(F,M) =
Cr(F, M) is non-degenerate in the sense of [14].

Assumption ND-MCP (Non-degeneracy for the MCP): For each x∗ ∈ MCP(F,M),
F is continuously differentiable at x∗ and

det(∇F (x∗)|INB−MCP (x∗)) > 0.

The following uniqueness result for the MCP follows directly from the main result
in [14]. The subsequent corollary establishes the uniqueness of solutions to the MCP
by local conditions on F at vectors in MCP(F, M) and is similar to Theorem 1 for the
NCP case.

Theorem 3 Let F : U |M 7→ Rn be a continuous function. Assume that (F,M) satisfies
Assumption SCS-MCP. Moreover, assume that for each vector x∗ ∈ MCP(F, M), F is
continuously differentiable at x∗ and

det(∇F (x∗)|INB−MCP(x∗)) 6= 0.
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Then, MCP(F, M) has a finite (odd) number of elements and

∑

x∗∈MCP(F,M)

sign
(

det(∇F (x∗)|INB−MCP(x∗))
)

= 1.

Corollary 1 Let F : U |M 7→ Rn be a continuous function. Assume that (F,M) satisfies
assumptions SCS-MCP and ND-MCP. Then, MCP(F ) has a unique element.

We introduce the following assumption to further generalize the preceding corol-
lary by relaxing the strict complementary slackness assumption. We say that x∗ ∈
MCP(F, M) is a strongly non-degenerate solution if F is continuously differentiable at
x∗ and

det(∇F (x∗)|J) > 0

for all J such that
INB−MCP (x∗) ⊂ J ⊂ IF (x∗).

Assumption SND-MCP (Strong Non-degeneracy for the MCP): Each x∗ ∈
MCP(F ) is strongly non-degenerate.

The following theorem is our main result for the uniqueness of solutions to the MCP.

Theorem 4 Let F : U |M 7→ Rn be a continuous function. Assume that (F,M) satisfies
Assumption SND-MCP. Then, MCP(F ) has a unique element.

We prove Theorem 4 in Section 4. For the proof, we need some preliminary results
regarding properties of square matrices, which we present in the next section.

3 Partial P-Matrices and Properties

We first define the P-matrix property for a square matrix.

Definition 1 An n× n matrix A is called a P-matrix if the determinant of each of its
principal sub-matrices is positive, i.e. if

det(A|J) > 0, ∀ J ⊂ {1, 2, .., n}.

P-matrices play an important role in establishing global univalance of continuous
maps3 (see the celebrated Gale-Nikaido Theorem [1]). The P-matrix property is weaker
than positive definiteness when the matrix is not necessarily symmetric. Every positive
definite matrix is also a P-matrix, yet the converse statement is only true if the matrix is

3Given X, Y ⊂ Rn, a map φ : X 7→ Y is called globally univalent if φ is a homeomorphism between
X and Y , i.e., φ is a one-to-one map of X to Y such that the two maps φ and its inverse φ−1 are both
continuous.
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symmetric (see [1], [2]). This makes the P-matrix property a useful notion for analyzing
vector-valued functions whose Jacobian is not necessarily symmetric.

P-matrix properties of the Jacobian of F are also relevant in studying the uniqueness
of solutions to the NCP in (1)-(2). The appropriate generalization of non-degeneracy
when the complementary slackness assumption is relaxed requires assumptions regarding
certain principal minors of the matrix ∇F (x∗)|IF (x∗). The P-matrix property constrains
all of the principal minors of a matrix and would be too strong for our purposes. We,
therefore, introduce and study the weaker notion of a partial P-matrix.

Definition 2 Given an index set I ⊂ {1, 2, .., n} and an n×n matrix A, we say that A
is a partial P-matrix with respect to I if

det(A|J) > 0, ∀ J with I ⊂ J ⊂ {1, 2, .., n}.

Clearly, every P-matrix is a partial P-matrix with respect to any subset I ⊂ {1, .., n}.
Note also that the strong non-degeneracy assumptions of the previous section are closely
related to the partial P-matrix properties of ∇F (x). It can be seen that F satisfies
Assumption SND-NCP [resp. (F, M) satisfies SND-MCP] if and only if∇F (x∗)|IF (x∗) is a
partial P-matrix with respect to INB−NCP (x∗) [resp. INB−MCP (x∗)] for all x∗ ∈ NCP(F )
[resp. MCP(F,M)].

We note the following result which provides a sufficient condition for a matrix to be
a P-matrix and which therefore could be useful in establishing Assumptions SND-NCP
and SND-MCP in applications (for the proof, see [15]).

Lemma 1 Let A be an n×n positive row diagonally dominant matrix, i.e. assume that
for all i ∈ {1, .., n},

Aii −
∑

j 6=i

|Aij| > 0.

Then, A is a P-matrix.

In the remainder of this section, we study properties of partial P-matrices, which
we need for the proofs of our main results, and which could also be of independent
interest. The following lemma is a generalization of the similar property for P-matrices
(see Theorem 7.8.2 in [1]).

Lemma 2 Let I ⊂ {1, 2, .., n} and let A be an n × n partial P-matrix with respect to
I. Let D be an n× n diagonal matrix with diagonal entries di such that

di = 0, ∀ i ∈ I and di ≥ 0, ∀ i /∈ I.

Then, A + D is also a partial P-matrix with respect to I.

Proof. Without loss of generality, assume that I = {k + 1, ..., n}. Let Di denote the
diagonal matrix with diagonal entries (0, .., 0, di, 0, ..0). We first claim that A + D1 is
a partial P-matrix with respect to I. Let J = {j1, .., jm} be an index set such that
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I ⊂ J ⊂ {1, 2, .., n}. If 1 /∈ J , then det((A + D1)|J) = det(AJ) > 0. Else if 1 ∈ J
(assume j1 = 1), then we have

det((A + D1)|J) = det




A11 A1j2 .. A1jm

Aj21 Aj2j2 .. Aj2jm

.. .. .. ..
Ajm1 Ajmj2 .. Ajmjm




+d1 det




Aj2j2 .. Aj2jm

.. .. ..
Ajmj2 .. Ajmjm




= det(A|J) + d1 det(A|J−{1})

Since 1 /∈ I and I ⊂ J , we have I ⊂ J − {1}. Then, since A is a partial P-matrix
with respect to I, both of the determinants above are positive. Since d1 ≥ 0, we have
det((A+D1)|J) > 0, showing that A+D1 is a partial P-matrix with respect to I. Now,
repeating the same argument recursively, we have that

A + D1 + D2 + .. + Dk = A + D

is a P-matrix with respect to I. Q.E.D.

Lemma 3 Let I ⊂ {1, 2, .., n} and let A be an n × n partial P-matrix with respect to
I. Then, there exists µ1, µ2 > 0 such that, for any v 6= 0 such that

|(Av)i| ≤ µ1‖v‖, ∀ i ∈ I,

there exists j /∈ I such that
vj(Av)j > µ2‖v‖2.

Proof. Consider the function f : Rn 7→ R given by

f(v) = max
i∈I

|(Av)i|

and the function g : Rn 7→ R given by

g(v) = max
i/∈I

vi(Av)i.

To prove this result, we show that there exists some scalar µ > 0 such that the following
optimization problem either is infeasible or has a positive optimal value:

min g(v) (7)

subject to ‖v‖ = 1, f(v) ≤ µ.
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For this purpose, we consider

min g(v) (8)

subject to ‖v‖ = 1, f(v) ≤ 0.

If (8) is infeasible, i.e., for all v with ‖v‖ = 1, we have f(v) > 0, then, by the continuity
of f , we have min‖v‖=1 f(v) > 0, showing that there exists some µ > 0 such that (7) is
infeasible and the result follows. Thus, we assume that problem (8) is feasible.

We next show that if problem (8) has a positive optimal value then so does problem
(7). We denote the optimal value of problem (7) by p(µ) and show that p(µ) is right
continuous at µ = 0. Consider a scalar sequence {µk} with µk ↓ 0. Since (8) is feasible,
problem (7) with µ = µk is feasible for all k, which by the continuity of g(v) and the
compactness of the constraint set, implies the existence of some vk with ‖vk‖ = 1 and

g(vk) = p(µk) ≤ p(0), f(vk) ≤ µk.

Since the sequence {vk} is bounded, it has a limit point v̄ with ‖v̄‖ = 1. Taking the
limit as k →∞ along the relevant subsequence in the preceding relations and using the
continuity of g and f , we obtain

g(v̄) = lim
k→∞

p(µk) ≤ p(0), f(v̄) ≤ 0.

This implies that v̄ is feasible for problem (8), and therefore g(v̄) = p(0), establishing
the right continuity of p(µ) at µ = 0 by the preceding relation, and showing the claim.

We, finally, show that (8) has a positive optimal value. Assume the contrary, i.e. for
every vector v that is feasible for (8),

g(v) = vi(Av)i ≤ 0, ∀ i /∈ I. (9)

Consider some v feasible for (8) and let J = {i | vi 6= 0}. By Eq. (9), for all i ∈ J − I,
there exists αi ≥ 0 such that (Av)i = −αivi. Moreover, by feasibility of v, for all i ∈ I,
(Av)i = 0. Let αi = 0 for i ∈ I, and consider the n×n diagonal matrix D with diagonal
entries αi. Then, we have (

(A + D)v
)∣∣∣

I∪J
= 0.

Since vi = 0 for i /∈ I ∪ J , this implies that

(A + D)|(I∪J) v|(I∪J) = 0. (10)

By Lemma 2, A+D is a partial P-matrix with respect to I, which implies, in particular,

that det
(
(A + D)|(I∪J)

)
> 0. By the preceding relation, this implies that v = 0,

contradicting the feasibility of v for (8), and showing the desired result. Q.E.D.

We next present two propositions related to local univalence properties of a differen-
tiable mapping.
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Proposition 1 Let I ⊂ {1, 2, .., n}, U ⊂ Rn be an open set, F : U 7→ Rn be a function
and x ∈ U be a vector. Assume that F is differentiable at x and ∇F (x) is a partial
P-matrix with respect to I. Then, there exists an open set Ux containing x such that
the set

E =
{

y ∈ Ux − {x}
∣∣∣ Fi(y) = Fi(x), ∀ i ∈ I,

(yi − xi)
(
Fi(y)− Fi(x)

)
≤ 0, ∀ i /∈ I

}

is empty.

Note that some special cases of this result are known. Assume that F is continuously
differentiable at x. When I = {1, 2, .., n}, ∇F (x) is a partial P-matrix with respect to I
if and only if det(∇F (x)) > 0. Then, from the Inverse Function Theorem, F is locally
invertible, which implies, in particular that there exists an open set Ux containing x such
that for all y ∈ Ux, F (y) 6= F (x), implying the result of the proposition for this case.
When I = ∅, then ∇F (x) is a partial P-matrix with respect to I if and only if it is a
P-matrix. Then, by the continuity of the determinants of the sub-matrices of ∇F , there
exists an open rectangle Ux containing x such that F is continuously differentiable over
Ux and ∇F (y) is a P-matrix for all y ∈ Ux. Then, F is a P-function on Ux implying the
result of the proposition for this case (cf. Proposition 3.5.9 in [5]).

Proof of Proposition 1 By using a translation argument, we can assume, without loss
of generality, that F (x) = 0. Since F is differentiable at x, there exists an open set Vx

containing x such that, for all y ∈ Vx,

F (y) = ∇F (x)T (y − x) + ε(y)‖y − x‖ (11)

where ε : Vx 7→ Rn is a continuous error function such that ε(x) = 0. By Lemma 3, there
exists µ1, µ2 > 0 such that for all v 6= 0 such that

∣∣∣(∇F (x)v)i

∣∣∣ ≤ µ1‖v‖, ∀ i ∈ I

there exists j /∈ I such that
vj(∇F (x)v)j > µ2‖v‖2.

Let Ux ⊂ Vx be an open set containing x such that |εi(y)| < min(µ1, µ2), for all i and
for all y ∈ Ux. Assume, to get a contradiction, that there exists y ∈ Ux, y 6= x such that

Fi(y) = 0 for all i ∈ I,

(yi − xi)Fi(y) ≤ 0 for all i /∈ I. (12)

Since Fi(y) = 0 for all i ∈ I, by Eq. (11), we have for all i ∈ I

∣∣∣
(
∇F (x)(y − x)

)
i

∣∣∣ = |εi(y)|‖y − x‖ < µ1‖y − x‖.
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Therefore, by the choice of µ1 and µ2, there exists j /∈ I such that

(yj − xj)
(
∇F (x)(y − x)

)
j
> µ2‖y − x‖2. (13)

Multiplying Eq. (11) with (yj − xj) from the left and considering the jth component
equation, we have

(yj − xj)Fj(y) = (yj − xj)
(
∇F (x)(y − x)

)
j
+ (yj − xj)εj(y)‖y − x‖

> µ2‖y − x‖2 − |(yj − xj)|µ2‖y − x‖

Since |yj − xj| ≤ ‖y − x‖, we have

(yj − xj)Fj(y) > 0,

for some j /∈ I, contradicting Eq. (12). Q.E.D.

The following proposition strengthens Proposition 1.

Proposition 2 Let I1 ⊂ I2 ⊂ {1, 2, .., n}, U ⊂ Rn be an open set, F : U 7→ Rn be a
function, and x ∈ U be a vector. Assume that F is differentiable at x and ∇F (x)|I2 is
a partial P-matrix with respect to I1. Then, there exists an open set Ux containing x
such that the set

E =
{

y ∈ Ux − {x}
∣∣∣ yi = xi, ∀ i /∈ I2, (14)

Fi(y) = Fi(x), ∀ i ∈ I1,

(y − x)i(Fi(y)− Fi(x)) ≤ 0, ∀ i ∈ I2 − I1

}

is empty.

Proof. Without loss of generality, assume that I2 = {1, 2, .., m} for some m ≤ n. Given
some set A ⊂ Rn, we use the notation A|I2 to denote a subset of Rm given by

A|I2 =
{

u ∈ Rm |(u1, .., um, xm+1, .., xn) ∈ A
}

.

Consider the function G : U |I2 7→ Rm defined by

Gi(u) = Fi(u1, .., um, xm+1, .., xn), ∀ i ∈ I2, ∀ u ∈ U |I2 . (15)

Then, G is differentiable at (x1, .., xm) ∈ U |I2 . Moreover, we have

Gk(x1, .., xm) = Fk(x), ∀ k ∈ I2,

and
∇G(x) = ∇F (x)|I2 ,
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which implies that ∇G(x) is a partial P-matrix with respect to I1. Then, by Proposition
1, there exists an open set U ′

x ⊂ U |I2 ⊂ Rm containing (x1, .., xm) such that the set

E ′ =
{

(u1, .., um) ∈ U ′
x − {(x1, .., xm)}

∣∣∣ Gi(u1, .., um) = Gi(x1, .., xm), ∀ i ∈ I1,

(ui − xi)
(
Gi(u1, .., um)−Gi(x1, .., xm)

)
≤ 0, ∀ i ∈ I2 − I1

}

is empty. We claim that the open subset of U given by

Ux = {u ∈ U | (u1, .., um) ∈ U ′
x}

satisfies the claim of the proposition. Assume the contrary, that E is not empty. Let
y ∈ E. By the definition of Ux, we have (y1, .., ym) ∈ U ′

x. Further, since y 6= x and
yi = xi for all i /∈ I2, it follows that (y1, .., ym) 6= (x1, .., xm). Then, by Eq. (15) y ∈ E
implies that (y1, .., ym) ∈ E ′, contradicting the fact that E ′ is empty. Thus, we conclude
that E is empty as desired. Q.E.D.

4 Proofs of the Uniqueness Results for the MCP

and the NCP

In this section, we provide proofs of our two main theorems Theorems 2 and 4. We start
in reverse order with Theorem 4, and then use this theorem to provide a simpler proof
of Theorem 2.

4.1 Proof of Theorem 4

As in Section 2.2, throughout this section, we let a, b ∈ Rn denote vectors such that
a < b, M = [a, b] denote a closed rectangle, and U |M ⊂ Rn be an open set containing
M . We introduce the notion of an irregular pair to prove Theorem 4.

Definition 3 Let F : U |M 7→ Rn be a function. We say that (i, x∗) is an irregular pair
if

x∗ ∈ MCP(F, M), i ∈ IF (x∗)− INB−MCP (x∗),

i.e. the inequality corresponding to i in either Eq. (3) or Eq. (5) is not strict. We
denote the set of irregular pairs of F over M by

A(F, M) =
{

(i, x∗) | x∗ ∈ MCP(F,M), i ∈ IF (x∗)− INB−MCP (x∗)
}

.

We note that (F,M) satisfies Assumption SCS-MCP if and only if A(F, M) = ∅.
The following lemma, which shows that we can recursively remove the irregular pairs.

Lemma 4 Let F : U |M 7→ Rn be a continuous function. Assume that x∗ ∈ MCP(F,M)
is a strongly non-degenerate solution. Then,
(i) There exists an open set Ux∗ containing x∗ such that Ux∗ ∩MCP(F, M) = {x∗}, i.e.
x∗ is an isolated solution to the MCP.
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(ii) Assume that (k, x∗) ∈ A(F,M). Then, there exists a function F̃ : U |M 7→ Rn such
that

(a) MCP(F̃ , M) = MCP(F,M).
(b) A(F̃ ,M) = A(F, M)− {(k, x∗)}.
(c) x∗ ∈ MCP(F̃ , M) is a strongly non-degenerate solution.

Proof. For notational convenience, for each x ∈ M we let

INB(x) = INB−MCP(x) =
{

i ∈ {1, .., n} | ai < xi < bi

}

denote the set of non-binding indices. Since x∗ is a strongly non-degenerate MCP so-
lution for F , ∇F (x∗)|IF (x∗) is a partial P-matrix with respect to INB(x∗). Then by
Proposition 2, there exists an open set Vx∗ ⊂ Rn containing x∗ such that the set

E =
{

y ∈ Vx∗ − {x∗}
∣∣∣ yi = x∗i , ∀ i /∈ IF (x∗),

Fi(y) = Fi(x
∗), ∀ i ∈ INB(x∗),

(yi − x∗i )
(
Fi(y)− Fi(x

∗)
)
≤ 0, ∀ i ∈ IF (x∗)− INB(x∗)

}

is empty. Let Ux∗ ⊂ Vx∗ be an open set which is sufficiently small such that Fi(x
∗) > 0,

[resp. Fi(x
∗) < 0] [resp. aj < x∗j < bj] implies Fi(u) > 0 [resp. Fi(u) < 0] [resp.

aj < uj < bj] for all u ∈ Ux∗ . We will show that Ux∗ satisfies part (i) of the lemma.

(i) Assume, to get a contradiction, that there exists some y ∈ Ux∗ ∩MCP(F, M) such
that y 6= x∗. Let J = {i | yi 6= x∗i } and consider i ∈ J . We first claim that i ∈ INB(y).
If i ∈ INB(x∗), by choice of Ux∗ , i ∈ INB(y). Else if x∗i = ai or x∗i = bi, since yi 6= x∗i and
y ∈ M , we have ai < yi < bi, i.e. i ∈ INB(y), showing the claim. Since y ∈ MCP(F,M),
we further have i ∈ IF (y). Then, by choice of Ux∗ , we also have i ∈ IF (x∗). Thus, we
have shown

J ⊂ IF (y) and J ⊂ IF (x∗). (16)

We next claim that y ∈ E. We have yi = x∗i for all i /∈ IF (x∗). Since INB(x∗) ⊂ IF (x∗)
and INB(y) ⊂ IF (y) [in view of the fact that y ∈ MCP(F, M)], we also have Fi(x

∗) =
Fi(y) for all i ∈ INB(x∗). Let i ∈ IF (x∗)− INB(x∗). If i /∈ J , then x∗i = yi and

(x∗i − yi)
(
Fi(x

∗)− Fi(y)
)

= 0 ≤ 0.

If i ∈ J , then, by Eq. (16), Fi(x
∗) = Fi(y) = 0, thus

(x∗i − yi)
(
Fi(x

∗)− Fi(y)
)

= 0 ≤ 0,

hence y ∈ E, contradicting the fact that E is empty. Thus, Ux∗ ∩ Cr(F, M) = {x∗} as
desired.

(ii) Since k /∈ INB(x∗), we have either x∗k = ak or x∗k = bk. Assume x∗k = ak. Let
w : Rn 7→ R be a continuously differentiable weight function such that




w(x∗) = 1,

w(u) ≥ 0, if u ∈ Ux∗

w(u) = 0, if u /∈ Ux∗ .
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Let F̃ : U 7→ Rn be given by

{
F̃k(u) = Fk(u) + w(u), for all u ∈ U ,

F̃i(u) = Fi(u), for all i 6= k and u ∈ U .
(17)

We will show that the function F̃ satisfies the claims of the lemma. We have,

F̃k(x
∗) > 0, and F̃i(x

∗) = Fi(x
∗) for i 6= k. (18)

Since x∗ ∈ MCP(F, M), F̃ (x∗) satisfies (3)-(5) and thus x∗ ∈ MCP(F̃ , M). We have

I F̃ (x∗) = IF (x∗)− {k}. (19)

By Eq. (19) and the definition in (17), we have

∇F̃ (x∗)|IF̃ (x∗) = ∇F (x∗)|IF̃ (x∗). (20)

Since x∗ is a strongly non-degenerate solution for F , ∇F (x∗)|IF (x∗) is a partial P-matrix

with respect to INB(x∗). Then, by Eqs. (19) and (20), ∇F̃ (x∗)|IF̃ (x∗) is also a partial

P-matrix with respect to INB(x∗). This shows that x∗ ∈ MCP(F̃ , M) is a strongly
non-degenerate solution and hence that F̃ satisfies the claim in (ii)-(c).

We next claim that MCP(F̃ , M) ∩ Ux∗ = {x∗}. Assume that there exists an MCP
solution y for F̃ in Ux∗ such that y 6= x∗. Let J = {i | yi 6= x∗i }. As shown in the proof
of part (i),

J ⊂ I F̃ (x∗) ⊂ IF (x∗) and J ⊂ I F̃ (y). (21)

We claim that y ∈ E. We have yi = x∗i for all i /∈ IF (x∗) and Fi(x
∗) = Fi(y) for all

i ∈ INB(x∗). Let i ∈ IF (x∗)− INB(x∗). If i /∈ J , then x∗i = yi and

(x∗i − yi)
(
Fi(x

∗)− Fi(y)
)

= 0 ≤ 0.

If i ∈ J , then, by Eq. (16), Fi(x
∗) = F̃i(y) = 0. If i 6= k, then since Fi(y) = F̃i(y) = 0,

we have
(x∗i − yi)

(
Fi(x

∗)− Fi(y)
)

= 0 ≤ 0.

Else if i = k, then yi > x∗i since x∗i = x∗k = ak. We have

0 = (x∗i − yi)F̃i(y) = (x∗i − yi)Fi(y) + (x∗i − yi)w(y)

which, since w(y) ≥ 0, implies

(x∗i − yi)
(
Fi(x

∗)− Fi(y)
)
≤ 0. (22)

Hence, Eq. (22) holds for all i ∈ IF (x∗)−INB(x∗), showing that y ∈ E. This contradicts
the fact that E is empty and completes the proof of part (ii)-(a) of the lemma.

Since F̃k(x
∗) = w(x∗) > 0, (k, x∗) /∈ A(F,M). Let (i, x∗) ∈ A(F, M) for some

i 6= k. Then, since F̃i = Fi, we have (i, x∗) ∈ A(F̃ , M). Let (i, y) ∈ A(F,M) for
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some y ∈ Cr(F,M) such that y 6= x∗. Then by part (i) of this Lemma, y /∈ Ux∗ and
thus F (y) = F̃ (y). This implies, (i, y) ∈ A(F̃ ,M). We conclude that A(F̃ ,M) =
A(F, M)− {k, x∗}, completing the proof of part (ii)-(b) of the lemma.

The proof for the case when k ∈ Imax(x) can be analogously given with the continu-
ously differentiable weight function chosen such that




w(x∗) = −1,

w(u) ≤ 0, if u ∈ Ux∗

w(u) = 0, if u /∈ Ux∗ .

Q.E.D.

We are now ready to prove Theorem 4.

Proof of Theorem 4. We first claim that MCP(F, M) is a compact set. Let

A1
i = {x ∈ M | Fi(x) = 0}

A2
i = {x ∈ M | Fi(x) ≥ 0 and xi = ai}

and
A3

i = {x ∈ M | Fi(x) ≤ 0 and xi = bi}.
Since each of A1

i , A
2
i , A

3
i is compact, so is Ai = A1

i ∪ A2
i ∪ A3

i . By equations (3)-(5), we
have

MCP(F, M) =
⋂

i∈{1,2,..,n}
Ai.

Then, being the intersection of compact sets, MCP(F,M) is compact. We next claim
that MCP(F, M) has a finite number of elements. By part (i) of Lemma 4, for each x∗ ∈
MCP(F, M), there exists an open set Ux∗ containing x∗ such that Ux∗∩Cr(F, M) = {x∗}.
Then, {Ux∗ | x∗ ∈ MCP(F,M)} is an open covering of the compact set MCP(F,M),
which implies that it has a finite sub-covering. This further implies that MCP(F,M)
has a finite number of elements.

We finally claim that there exists a function G : U |M 7→ Rn such that MCP(G,M) =
MCP(F, M) and (G,M) satisfies assumptions SCS-MCP and ND-MCP. Let F 0 = F
and, for any j ≥ 0 such that A(F j,M) 6= ∅, define

F j+1 = F̃ j

where F̃ j is the modified function which satisfies the claim of part (ii) of Lemma 4 for
the function F j and an arbitrary (k, x) ∈ A(F j, M). By part (ii) of Lemma 4,

|A(F j+1,M)| = |A(F j,M)| − 1.

Since MCP(F, M) has finitely many elements, A(F, M) has finitely many elements,
which implies that there exists an integer m ≥ 0 such that A(Fm,M) = ∅. We let, G =
Fm. Since A(G,M) = ∅, (G,M) satisfies Assumption SCS-MCP. Also, by part (iii) of
Lemma 4, every x∗ ∈ MCP(G,M) is strongly non-degenerate, which means that (G,M)
satisfies Assumption ND-MCP. Then, G satisfies the claim and Corollary 1 applies to
G, showing that MCP(G, M) has a unique element. Since MCP(F,M) = MCP(G,M),
we conclude that MCP(F, M) also has a unique element, as desired. Q.E.D.
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4.2 Proof of Theorem 2

We first prove that when F satisfies Assumption WBC, NCP(F ) = MCP(F, M) for an
appropriately chosen M = [a, b].

Lemma 5 Let F : Un
+ 7→ Rn be a function which satisfies Assumption WBC. For each

i, let bi > 0 be sufficiently large such that yi < bi for all y in the compact set C of
Assumption WBC. Let M = [0, b]. Then, we have
(i) NCP(F ) = MCP(F, M).
(ii) INB−NCP(x∗) = INB−MCP(x∗), for all x∗ ∈ NCP(F ) = MCP(F, M).
(iii) F satisfies Assumption SCS-NCP (resp. ND-NCP), (resp. SND-NCP) if and only
if (F, M) satisfies Assumption SCS-MCP (resp. ND-MCP), (resp. SND-MCP).

Proof. (i) By the choice of bi, we have

C ⊂ M. (23)

Let x∗ ∈ NCP(F ). We first claim that x∗ ∈ C. Assume, to get a contradiction, that
x∗ /∈ C. Then, by Assumption WBC, there exists y ∈ C and i ∈ {1, .., n} such that

(yi − x∗i )Fi(x
∗) < 0. (24)

If x∗i > 0, then since x∗ ∈ NCP(F ), we have Fi(x
∗) = 0, contradicting Eq. (24). Else if

x∗i = 0, then yi ≥ x∗i and Fi(x
∗) ≥ 0 implies

(yi − x∗i )Fi(x
∗) ≥ 0,

thus Eq. (24) yields a contradiction, showing that x∗ ∈ C, and by (23) that x∗ ∈ M .
Since x∗ also satisfies Eqs. (3)-(5), we have x∗ ∈ MCP(F, M).

Conversely, let x∗ ∈ MCP(F, M). We claim that x∗ ∈ C. Assume, to get a contra-
diction, that x∗ /∈ C. By Assumption WBC, there exists y ∈ C and i ∈ {1, .., n} such
that Eq. (24) holds. If 0 < x∗i < bi, then we have Fi(x

∗) = 0, contradicting Eq. (24).
Else if x∗i = 0, then yi ≥ xi and Fi(x

∗) ≥ 0 implies

(yi − x∗i )Fi(x
∗) ≥ 0,

which contradicts Eq. (24). Finally, if x∗i = bi, we have yi < bi by choice of bi and
Fi(x

∗) ≤ 0 since x∗ ∈ Cr(F,M), implying that

(yi − x∗i )Fi(x
∗) ≥ 0,

once again contradicting Eq. (24) and showing that x∗ ∈ C. Then, by choice of bi, we
have x∗i < bi for all i, which by Eqs. (4) and (3) implies that x∗ ∈ NCP(F ). We have
shown,

NCP(F ) ⊂ MCP(F, M) ⊂ C and MCP(F, M) ⊂ NCP(F ) ⊂ C,

which implies that NCP(F ) = MCP(F, M) as desired.
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(ii) Since NCP(F ) ⊂ C, for all x∗ ∈ NCP(F ) and i, we have x∗i < bi. Then,

INB−NCP(x∗) = {i | 0 < x∗i }
is equal to

INB−MCP(x∗) = {i | 0 < x∗i < bi}
as desired.

(iii) Follows in view of part (ii) and the definitions of the assumptions. Q.E.D.

Now, Lemma 5 enables us to use Theorem 4 to provide a simple proof of Theorem 2.

Proof of Theorem 2. Let M = [0, b] be appropriately chosen such that Lemma 5
holds. Since F satisfies Assumption SND-NCP, by part (iii) of Lemma 5, (F, M) sat-
isfies Assumption SND-MCP. Then, by Theorem 4, MCP(F, M) has a unique element.
Finally, by part (i) of Claim 5, NCP(F ) = MCP(F, M) has a unique element, as desired.
Q.E.D.

5 Examples

In this section, we demonstrate how our two main theorems improve over earlier results.

5.1 Example For Theorem 2

The following example illustrates the improvement of Theorem 2 over Theorem 1.

Example 1 Let d1, .., dn ≥ 0 be scalars and consider the function F : Un
+ 7→ Rn be

given by,

Fi(p) = − di

epi
+

∑

j 6=i

dj

p−j
+ 1 (25)

where
p−j = 1 +

∑

k 6=j

epk

for all i ∈ {1, .., n} and p ∈ Un
+. We now use Theorem 2 to show that NCP(F ) has a

unique element. First, we claim that F satisfies Assumption WBC. By the definition
in (25), there exists pmax ∈ R sufficiently large such that for every vector p ∈ Rn

+ and i
such that pi > pmax,

Fi(p) > 0. (26)

Let C be the rectangular region defined by

C =
[
0, (pmax, .., pmax)

]
.

For any p ∈ Rn
+−C, there exists i ∈ {1, .., n} such that pi > pmax, hence using Eq. (26),

for y = 0 ∈ C, we have
(yi − pi)Fi(p) < 0.
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Then, F satisfies Assumption WBC with the compact set C, showing our first claim.
We next claim that F satisfies Assumption SND-NCP. Let p ∈ NCP(F ). It can be seen
that

∇F (p)ii =
di

epi
− epi

∑

j 6=i

dj

(p−j)2

and for k 6= i

∇F (p)ik = epk

∑

j 6=i,k

dj

(p−j)2
.

We claim that ∇F (p)|IF (p) is positive row diagonally dominant. For i ∈ IF (p), using
Fi(p) = 0, we have

∇F (p)ii −
∑

k 6=i

∇F (p)ik = 1 +
∑

j 6=i

dj

p−j
− epi

∑

j 6=i

dj

(p−j)2
−

∑

k 6=i

epk

∑

j 6=i,k

dj

(p−j)2

= 1 +
∑

j 6=i

dj

p−j

(
1− epi

p−j
−

∑

k 6=i,j

epk

p−j

)

= 1 +
∑

j 6=i

dj

p−j

(
1−

∑
k 6=j epk

p−j

)
≥ 1,

where the inequality follows by the definition of p−j. Since ∇F (p)ik ≥ 0 for i 6= k, this
shows, in particular, that

∇F (p)ii −
∑

k 6=i,k∈IF (p)

∣∣∇F (p)ik
∣∣ > 0,

i.e. ∇F (p)|IF (p) is positive row diagonally dominant. Then, by Lemma 1, ∇F (p)|IF (p)

is a P-matrix, showing, in particular, that it is a partial P-matrix with respect to
INB−NCP (p). Then, F satisfies Assumption SND-NCP as desired. Since F satisfies
assumptions WBC and SND-NCP, we conclude that NCP(F ) has a unique element.

Note that Theorem 1 could not have been used to assert uniqueness in this problem
since whether F satisfies Assumption SCS-NCP cannot be verified. In fact, when d1 =
1, d2 = .. = dn = 0, it is evident that the unique solution to the NCP is p∗ = (0, .., 0)
and F does not satisfy Assumption SCS-NCP since F1(p

∗) = 0. Theorem 2 by relaxing
the strict complementary slackness assumption, which is difficult to establish for a given
problem, can be applied to this class of problems.

It is also noteworthy that earlier uniqueness results that require ∇F (p) to be a P-
matrix for all p ∈ Rn

+ cannot be used to assert uniqueness in this problem. Our proof
shows that ∇F (p)|IF (p) is a P-matrix for p ∈ NCP(F ), yet it can be seen that ∇F (p) is
not necessarily a global P-matrix [i.e., it is not a P-matrix when p /∈ NCP(F )].

5.2 Example For Theorem 4

The following example demonstrates Theorem 4 and its improvement over Corollary 1.
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Example 2 Let 0 < a < b be vectors in Rn, d1, .., dn > 0 be scalars, and M = [a, b] be
a rectangular region in Rn. Consider the function f : Rn 7→ R given by

f(p) =
∑

i∈{1,..,n}
−di log

(
pi

p−j

)

where
p−j = 1 +

∑

k 6=j

pk.

Let F : Rn 7→ Rn be given by F = ∇f , i.e. for i ∈ {1, .., n} 4,

Fi(p) =
−di

pi

+
∑

j 6=i

dj

p−j
.

We will use Theorem 4 to show that MCP(F, M) has a unique element. We claim that
(F,M) satisfies Assumption SND-MCP. Let p ∈ MCP(F,M). It can be seen that

∇F (p)ii =
di

p2
i

−
∑

j 6=i

dj

(p−j)2
(27)

and for k 6= i,

∇F (p)ik =
∑

j 6=i,k

− dj

(p−j)2
. (28)

We claim that ∇F (p)|IF (p) is a P-matrix. Let

C = P∇F (p)P

where P is the n × n diagonal matrix with entries pi in the diagonal, and note that
∇F (p)|IF (p) is a P-matrix if and only if C|IF (p) is a P-matrix. We claim that C|IF (p) is
positive row diagonally dominant. For i ∈ IF (p), using Fi(p) = 0, we have

Cii +
∑

k 6=i

Cik =
∑

j 6=i

djpi

p−j
−

∑

j 6=i

djp
2
i

(p−j)2
−

∑

k 6=i

∑

j 6=i,k

djpipk

(p−j)2

=
∑

j 6=i

dj
pi

p−j
−

∑

j 6=i

djpi

∑
k 6=j pk

(p−j)2

>
∑

j 6=i

dj
pi

p−j
−

∑

j 6=i

dj
pi

p−j
= 0,

where the inequality follows from the definition of p−j. Since ∇F ik < 0 for all k 6= i,
this shows, in particular, that

Cii −
∑

k 6=i,k∈IF (p)

∣∣Cik
∣∣ > 0,

4We picked F to be the gradient vector of a relatively simple scalar valued function to show that
such examples are likely to appear in simple applications.
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hence C|IF (p) is positive row diagonally dominant. Then by Lemma 1, C|IF (p) is a
P-matrix and hence ∇F (p)|IF (p) is a P-matrix. Then, p is a strongly non-degenerate
solution and (F, M) satisfies Assumption SND-MCP, showing the claim. By Theorem
4, MCP(F,M) has a unique element as desired.

We note that Theorem 3 could not have been used to show uniqueness in this ex-
ample, since there is no obvious way to prove (or in fact disprove) whether F satisfies
Assumption SCS-MCP. Theorem 4 enables us to establish uniqueness without taking
strict complementary.
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