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Abstract and Keywords

This chapter develops a unified framework for the study of how network interactions can 
function as a mechanism for propagation and amplification of microeconomic shocks. The 
framework nests various classes of games over networks, models of macroeconomic risk 
originating from microeconomic shocks, and models of financial interactions. Under the 
assumption that shocks are small, the authors provide a fairly complete characterization 
of the structure of equilibrium, clarifying the role of network interactions in translating 
microeconomic shocks into macroeconomic outcomes. This characterization provides a 
ranking of different networks in terms of their aggregate performance. It also sheds light 
on several seemingly contradictory results in the prior literature on the role of network 
linkages in fostering systemic risk.

Keywords: interaction networks, shock propagation, systemic risk

21.1 Introduction
The recent financial crisis, often attributed in part to contagion emanating from pervasive 
entanglements among financial institutions, has rekindled interest in the role of complex 
economic, financial, or social interlinkages as channels for propagation and amplification 
of shocks. In the words of Charles Plosser, the president of the Federal Reserve Bank of 
Philadelphia:
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due to the complexity and interconnectivity of today’s financial markets, the 
failure of a major counterparty has the potential to severely disrupt many other 
financial institutions, their customers, and other markets.

(Plosser 2009)

Similar ideas on the role of interconnections and the possibility of cascades have also 
surfaced in a variety of other contexts. For instance, Acemoglu et al. (2012 2014b) and 

Jones (2013) have argued that idiosyncratic shocks at the firm or sectoral level can 
propagate over input-output linkages within the economy, with potentially significant 
implications for macroeconomic volatility and economic growth, while Caplin and Leahy 
(1993) and Chamley and Gale (1994) have emphasized the spread of economic shocks 
across firms due to learning and imitation.

Though the domains studied by these and other related papers are often different, their 
underlying approaches share important economic and mathematical parallels. Most 
importantly, in each case, the problem is one of a set of interacting agents who influence 
each other, thus opening the way for shocks to one agent to propagate to the rest of the 
economy. Furthermore, on the methodological side, almost all these papers rely 
on a network model to capture the pattern and extent of interactions between agents. 
Despite these parallels, there is a bewildering array of different (and sometimes even 
contradictory) results, often presented and developed with little linkage to other findings 
in the literature.

The disparity in the predictions and results of different studies in the literature can be 
best illustrated by focusing on a concrete setting, namely that of financial interactions. 
The models of financial interactions studied in a variety of papers, such as Allen and Gale 
(2000), Giesecke and Weber (2006), Blume et al. (2011), Battiston et al. (2012), Elliott, 
Golub, and Jackson (2014), Cabrales, Gottardi, and Vega-Redondo (2014), and Acemoglu, 
Ozdaglar, and Tahbaz-Salehi (2015c) are, at least on the surface, very similar. In each 
case, a financial institution’s “state” which, for example, captures its health or ability to 
meet its obligations, depends on the state of other financial institutions to which it is 
connected.  Consequently, shocks to a given institution can propagate to other 
institutions within the economy, potentially snowballing into a systemic crisis. Despite 
such commonalities, the predictions of many of the papers in this literature are quite 
different or sometimes even contradictory. For example, in the models of Allen and Gale 
(2000) and Freixas, Parigi, and Rochet (2000), denser interconnections mitigate systemic 
risk, whereas several other papers, such as Vivier-Lirimont (2006) and Blume et al. 
(2011), have suggested that such dense interconnections can act as a destabilizing force.

Our aim in this chapter is to unify and improve the understanding of the key economic 
and mathematical mechanisms in much of the literature on the effects of network 
interactions on the economy’s aggregate performance. We start with a general reduced-
form model in which n agents interact with one another. Each agent is assigned a real-
valued variable known as its state which, depending on the context, may capture her 
choice of actions (e.g., output or investment) or some other economic variable of interest. 
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Our reduced-form model consists of three key ingredients: (i) a fairly general interaction 
function that links each agent’s state to a summary measure of the states of other agents; 
(ii) an (interaction) network that specifies how these summary measures are determined 
as a function of other agents’ states; and (iii) an aggregation function that describes how 
agent-level states collectively shape the macroeconomic variable of interest.

We first show that our general framework nests a wide variety of problems studied in the 
literature, including those mentioned above. We also show that under fairly general 
conditions on the interaction function, an equilibrium—defined as a mutually consistent 
set of states for all agents in the network—always exists and is generically unique. We 
then use our framework to study how the nature of inter-agent interactions shape various 
measures of aggregate performance. Our analysis not only nests the main results 
obtained in several papers in the literature, but also clarifies where the sources of 
differences lie.

In order to obtain sharp and analytical predictions for the role of network interactions in 
shaping economic outcomes, we focus on an economy in which agent-level shocks are 
small. This assumption enables us to approximate the equilibrium state of each agent and 
the economy’s macroeconomic state by the first few terms of their Taylor expansions. Our 
results show that the impact of network structure depends on the properties of the 
economy’s Leontief matrix corresponding to the underlying interaction network. This 
matrix, which is defined in a manner analogous to the same concept used in the literature 
on input-output economies, accounts for all possible direct and indirect effects of 
interactions between any pair of agents. Using this characterization, we show that the 
curvatures of the interaction and aggregation functions play a central role in how the 
economy’s underlying network translates microeconomic shocks into macroeconomic 
outcomes.

As our first characterization result, we show that as long as the interaction and 
aggregation functions are linear, the economy exhibits a “certainty equivalence” property 
from an ex ante perspective, in the sense that the expected value of the economy’s macro 
state is equal to its unperturbed value when no shocks are present. This observation 
means that, in a linear world, the economy’s aggregate performance, in expectation, does 
not depend on the intricate details of its underlying interaction network.

Our next set of results illustrates that this certainty equivalence property may no longer 
hold if either the aggregation or interaction function is nonlinear. Rather, in the presence 
of a nonlinear interaction or aggregation function, the exact nature of these nonlinearities 
is central to determining how the economy’s underlying interaction network affects its ex 
ante performance.

We show that with a nonlinear aggregation function, the economy’s ex ante performance 
depends on the heterogeneity in the extent to which agents interact with one another. In 
particular, if the aggregation function is concave—for example, to capture the idea that 
volatility is detrimental to the economy’s aggregate performance—a more uniform 
distribution of inter-agent interactions increases macroeconomic performance in 
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expectation. An important corollary to this result establishes that with a concave 
aggregation function, regular economies (in which the overall influence of each agent on 
the rest of the agents is identical across the network) outperform all other economies. 
These results are consistent with, and in some ways generalize, those of Acemoglu et al. 
(2012), who, in the context of input-output economies, show that the volatility of the 
economy’s aggregate output increases in the extent of heterogeneity in the role of 
different firms as input-suppliers. Our results thus clarify that it is the concavity of 
economy’s aggregation function—resulting from the focus on volatility—that lies at the 
heart of the results in Acemoglu et al. (2012).

We then focus on understanding how nonlinearities in the interaction function shape the 
economy’s ex ante performance. Our results illustrate that when the interaction function 
is concave, economies with denser interconnections outperform those whose 

interaction networks are more sparse. In particular, the complete network, in which 
interlinkages are maximally dense, outperforms all other (symmetric) economies. 
Furthermore, we show that with a convex interaction function, this performance ordering 
flips entirely, making the complete network the worst performing economy. This flip in the 
comparative statics of aggregate performance with respect to the network structure 
parallels the findings in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015c), who show that, 
in the context of financial interactions, whether the complete network fosters stability or 
instability depends on the size and number of shocks: with a few small shocks, the 
complete network is the most stable of all economies, whereas when shocks are 
numerous or large, there is a phase transition, making the complete network the least 
stable financial arrangement. Our results here clarify that the findings of Acemoglu et al. 
(2015c) are essentially due to the fact that increasing the size or the number of shocks 
corresponds to a shift from a concave to a convex region of the interaction function, thus 
reversing the role of interbank connections in curtailing or causing systemic risk. They 
also highlight that similar phase transitions transforming the role of network 
interconnections in shaping aggregate performance can emerge in other settings with 
nonlinear interactions.

Overall, our results highlight that the relationship between the economy’s aggregate 
performance and its underlying network structure depends on two important economic 
variables: (i) the nature of economic interactions, as captured by our interaction function; 
and (ii) the properties of the aggregate performance metric, as captured by the notion of 
aggregation function in our model.

We also use our framework to provide a characterization of how the nature of interactions 
determine the agents’ relative importance in shaping aggregate outcomes. As long as 
agent-level interactions are linear, the well-known notion of Bonacich centrality serves as 
a sufficient statistic for agents’ “systemic importance”: negative shocks to an agent with a 
higher Bonacich centrality lead to larger drops in the economy’s macro state. We also 
demonstrate that, in the presence of small enough shocks, this result generalizes to 
economies with nonlinear interactions, but with one important caveat: even though a 
strictly larger Bonacich centrality means that the agent has a more pronounced impact on 
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the economy’s macro state, two agents with identical Bonacich centralities are not 
necessarily equally important. This is due to the fact that Bonacich centrality only 
provides a first-order approximation to the agents’ impact on aggregate variables. 
Therefore, a meaningful comparison of systemic importance of two agents with identical 
Bonacich centralities (as in a regular network) requires that we also take their higher-
order effects into account. As our final result, we provide such a characterization of 
agents’ systemic importance in regular economies. We show that the second-order impact 
of an agent on the economy’s macro state is summarized via a novel notion of centrality, 
called concentration centrality, which captures the concentration of an agent’s influence 
on the rest of the agents (as opposed to its overall influence captured via Bonacich 
centrality).

These characterization results thus highlight that relying on standard and off-the-
shelf notions of network centrality (such as Bonacich, eigenvector, or betweenness 
centralities) for the purpose of identifying systemically important agents may be 
misleading. Rather, the proper network statistic has to be informed by the nature of 
microeconomic interactions between different agents.

21.1.1 Related Literature

As already indicated, this chapter relates to several strands of literature on social and 
economic networks, such as the literature on network games, various models of systemic 
risk, and the literature that studies microeconomic foundations of macroeconomic 
fluctuations. Many of the papers related to our setup are discussed in the next section, 
when we describe how different models are nested within our general framework. Here, 
we provide a brief overview of the literature and some of the key references.

The critical building block of our general framework is an interaction network whereby 
each player’s “state” is a function of the state of its neighbors in a directed, weighted 
network. These interlinked states could be thought of as best responses of each player to 
the actions of her neighbors. As such, our setup builds on various different contributions 
on the network games literature, such as Calvó-Armengol and Zenou (2004), Ballester, 
Calvó-Armengol, and Zenou (2006), Candogan, Bimpikis, and Ozdaglar (2012), Allouch 
(2012), Badev (2013), Bramoullé, Kranton, and D’Amours (2014), and Elliott and Golub 
(2015), several of which can be cast as special cases of our general framework.  Several 
papers consider applications of network games to various specific domains. For example, 
Calvó-Armengol, Patacchini, and Zenou (2009) study peer effects and education decisions 
in social networks; Calvó-Armengol and Jackson (2004) study the role of referral networks 
in the labor market; and Galeotti and Rogers (2013), Acemoglu, Malekian, and Ozdaglar 
(2014a), and Dziubiński and Goyal (2014) consider a network of interlinked players 
making endogenous security investments against an infection or an attack. Jackson and 
Zenou (2015) and Bramoullé and Kranton (2015) provide thorough surveys of the network 
games literature.
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Even though the literature on network games does not generally consider the 
propagation of idiosyncratic shocks, our results highlight that, depending on the specific 
economic question at hand, the interaction models at the heart of this literature could be 
used for the study of such propagation.

A related literature has directly originated from the study of cascades. Various models 
have been developed in the computer science and network science literatures, including 
the widely used threshold models (Granovetter 1978) and percolation models (Watts 
2002). A few works have applied these ideas to various economic settings, including 

Durlauf (1993) and Bak et al. (1993) in the context of economic fluctuations; 
Morris (2000) in the context of contagion of different types of strategies in coordination 
games; and more recently, Gai and Kapadia (2010) and Blume et al. (2011) in the context 
of spread of an epidemic-like financial contagion.

The framework developed in this chapter is also closely linked to a small literature in 
macroeconomics that studies the propagation of microeconomic shocks over input-output 
linkages. This literature, which builds on the seminal paper by Long and Plosser (1983), 
has witnessed a recent theoretical and empirical revival. On the theoretical side, 
Acemoglu et al. (2012 2014b) and Jones (2013) argue that the propagation of idiosyncratic 
shocks and distortions over input-output linkages can have potentially significant 
implications for macroeconomic volatility and economic growth.  On the empirical side, 
Foerster, Sarte, and Watson (2011), Carvalho (2014), di Giovanni, Levchenko, and Méjean 
(2014), Acemoglu, Autor, Dorn, Hanson, and Price (2015a), and Carvalho, Nirei, Saito, 
and Tahbaz-Salehi (2015) provide evidence for the relevance of such propagation 
mechanisms in different countries.

As mentioned earlier, this chapter is also closely related to the growing literature on the 
spread of financial shocks over a network of interconnected financial institutions. The 
seminal papers of Allen and Gale (2000) and Freixas, Parigi, and Rochet (2000) developed 
some of the first formal models of contagion over financial networks. The recent financial 
crisis resulted in further attention to this line of work. Some of the more recent examples 
include Gai, Haldane, and Kapadia (2011), Battiston et al. (2012), Alvarez and Barlevy 
(2014), and Glasserman and Young (2015).

Within this literature, four recent papers deserve further discussion. The first, which is 
our own work (Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015c), considers a network of 
banks linked through unsecured debt obligations and studies the emergence of financial 
cascades resulting from counterparty risk. This paper, which in turn builds on and 
extends Eisenberg and Noe’s (2001) seminal framework of financial interlinkages, is 
explicitly treated as a special case of our general framework here. The second is the 
related paper by Elliott, Golub, and Jackson (2014), which also considers financial 
contagion in a network, though based on microfoundations linked to cross-shareholdings 
across institutions as opposed to counterparty risk. The third is Cabrales, Gottardi, and 
Vega-Redondo (2014), which is closely connected to Elliott et al. (2014) and in addition 
considers the endogenous formation of the financial network.  Finally, Cabrales, Gale, and 
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Gottardi (2015) provide a unified treatment of the previous three papers, highlighting 
various commonalities as well as some important differences between them. The key 
distinction between their unified treatment and ours is that they start with the fixed point 
equation resulting from the interactions in the various financial network models, 
whereas we develop a more general framework starting from the best response equations 
or the equations linking each agent’s state to her neighbors’. This formulation enables us 
to nest not only existing models of financial networks but a wider array of network 
interactions, use first- and second-order approximations to provide a sharper 
characterization of the structure of equilibrium, and clarify the role of interaction and 
aggregation functions in transforming small, agent-level shocks into differences in 
aggregate performance or volatility.

21.1.2 Outline

The rest of this chapter is organized as follows. In Section 21.2, we provide our general 
framework for the study of network interactions and present a few examples of how our 
setup maps to different applications. In Section 21.3, we provide a second-order 
approximation to the macro state of the economy in terms of the economy’s underlying 
interaction network. Section 21.4 uses these results to characterize how the nature of 
interactions between different agents impacts the macro state of the economy from an ex 
ante perspective, whereas Section 21.5 provides a characterization of the systemic 
importance of different agents. Section 21.6 concludes.

21.2 General Framework
Consider an economy consisting of n agents indexed by . Of key interest to our 
analysis is each agent i’s state, , which captures the agent’s choice of action (e.g., 
output or investment) or some other economic variable of interest (such as the solvency 
of a financial institution). In the next three subsections we will provide concrete examples 
clarifying the interpretation of these states. For the time being, however, we find it 
convenient to work with a general, reduced-form setup without taking a specific position 
on how to interpret the agents or their states.

The key feature of the environment is that the states of different agents are interlinked. 
Such interdependencies may arise due to strategic considerations, contractual 
agreements, or some exogenous (e.g., technological) constraints on the agents. Formally, 
the state of any given agent i depends on the states of other agents via the relationship

(21.1) where f is a continuous and increasing function, which we refer to as the 

economy’s interaction function. As the name suggests, this function represents the nature of 
interactions between the agents in the economy. The variable ϵ  is an “agent-level” 
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shock, which captures stochastic disturbances to i’s state. We assume that these shocks are 
independently and identically distributed (so that they correspond to “idiosyncratic” shocks) and 
have mean zero and variance σ .
The constant  in (21.1) captures the extent of interaction between agents i and j. In 
particular, a higher w  means that the state of agent i is more sensitive to the state of 
agent j, whereas  implies that agent j does not have a direct impact on i’s state. 
Without much loss of generality, we assume that , which guarantees that the 

extent to which the state of each agent depends on the rest of the agents is constant. We 
say the economy is symmetric if  for all pairs of agents i and j.

For a given f, the interactions between agents can be also represented by a weighted, 
directed graph on n vertices, which we refer to as the economy’s interaction network. 
Each vertex in this network corresponds to an agent and a directed edge from vertex j to 
vertex i is present if , that is, if the state of agent i is directly affected by the state of 
agent j.

Finally, we define the macro state of the economy as

(21.2)
Where . As we will clarify in what follows, y represents some macroeconomic 
outcome of interest that is obtained by aggregating the individual states of all agents. 
Throughout the paper, we refer to g as the economy’s aggregation function.

An equilibrium in this economy is defined in the usual fashion by requiring each agent’s 
state to be consistent with those of others. Formally:

Definition 1. Given the realization of the shocks , an equilibrium of the 
economy is a collection of states  such that equation (21.1) holds for all 
agents i simultaneously.

As the above definition clarifies, our solution concept is an ex post equilibrium notion, in 
the sense that agents’ states are determined after the shocks are realized. This notion 
enables us to study how the equilibrium varies as a function of the shock realizations.

Throughout the paper, we assume that . This normalization guarantees 
that, in the absence of shocks, the equilibrium state of all agents and the economy’s 
macro state are equal to zero.

We next show how a wide variety of different applications can be cast as special cases of 
the general framework developed above.

21.2.1 Example: Network Games

Our framework nests a general class of network games as a special case. Consider, for 
example, an n-player, complete information game, in which the utility function of agent 

i is given by

2

ij
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 where x  denotes the action of player i and ϵ  is realization of some 

shock to her payoffs. That is, the payoff of player i depends not only on her own action, but also 
on those of her neighbors via the interaction function f. In this context, the underlying network, 
encoded in terms of coefficients w , captures the pattern and strength of strategic interactions 
between various players in the game.
It is immediate to verify that as long as the interaction function f satisfies certain 
regularity conditions—essentially to ensure that one can use the first-order conditions—
and that  for all i, the best-response of player i as a function of the actions of other 
players is given by equation (21.1). Consequently, the collection  that solves the 
system of equations (21.1) corresponds to the Nash equilibrium of the game.

The game described above nests a wide variety of models studied in the literature. Note 
that since f is increasing, the players face a game of strategic complements over the 
network: the benefit of taking a higher action to player i increases the higher the actions 
of her neighbors are. Examples of such network games include research collaboration 
among firms (Goyal and Moraga-González 2001), crime networks (Ballester, Calvó-
Armengol, and Zenou 2006), peer effects (Calvó-Armengol, Patacchini, and Zenou 2009), 
and local consumption externalities (Candogan, Bimpikis, and Ozdaglar 2012). On the 
other hand, had we assumed that the interaction function f is decreasing, the players 
would have faced a network game of strategic substitutes, as in Bramoullé and Kranton 
(2007) who study information sharing and the provision of local public goods.

An important subclass of network games is the case in which players’ payoff functions are 
quadratic,

(21.3) where  is some constant.  Under such a 

specification, the corresponding interaction function is given by , hence, implying that the 
equilibrium of the game can be characterized as a solution to a system of linear equations.
We end our discussion by pointing out two natural candidates for the economy’s macro 
state in this context. The first is the sum (or the average) of the agents’ equilibrium 

actions,

 representing the aggregate level of activity in the economy. In our general 
framework, this corresponds to the assumption that . The second is the total or 
average utility (or equivalently total social surplus) in the equilibrium, given by 

Although summing both sides of equation (21.3) over all players i shows that social surplus 
depends not only on the agents’ states, but also on weights w  and the realizations of the shocks 

ϵ , using the fact that equilibrium actions satisfy (21.1) enables us to write y  in the form of 

equation (21.2) as  which corresponds to  and  in our general framework.

i i

ij

5

6
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21.2.2 Example: Production Networks

Our general setup also nests a class of models that focus on the propagation of shocks in 
the real economy. In this subsection, we provide an example of one such model along the 
lines of Long and Plosser (1983) and Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi 
(2012), and show that it can be cast as a special case of our general framework.

Consider an economy consisting of n competitive firms (or sectors) denoted by , 
each of which produces a distinct product.  Each product can be either consumed by a 
mass of consumers or used as an input for production of other goods. All firms employ 
Cobb-Douglas production technologies with constant returns to scale that transform labor 
and intermediate goods to final products. Production is subject to some idiosyncratic 
technology shock. More specifically, the output of firm i, which we denote by X , is equal 
to

(21.4) where A  is the corresponding productivity shock; l  is the amount of labor 

hired by firm i; X  is the amount of good j used for production of good i; b  is a constant; and 

 is the share of intermediate goods in production. The exponent  in (21.4) captures 
the share of good j in the production technology of good i: a higher w  means that good j is more 
important in producing i, whereas  implies that good j is not a required input for i’s 
production technology. The assumption that firms employ constant returns to scale technologies 
implies that  for all i.

The economy also contains a unit mass of identical consumers. Each consumer is 
endowed with one unit of labor which can be hired by the firms for the purpose of 
production. We assume that the representative consumer has symmetric Cobb-Douglas 
preferences over the n goods produced in the economy. In particular,

 where c  is the amount of good i consumed and  is some positive constant.

One can naturally recast the interactions between different firms in such an economy in 
terms of a network, with each vertex corresponding to a firm and the factor shares w
capturing the intensity of interactions between them. Furthermore, given the log-linear 
nature of Cobb-Douglas production technologies, the equilibrium (log) output of each firm 
can be written in the form of equation (21.1), linking it to the outputs of its input 
suppliers and the productivity shocks in the economy.

To see this, consider the first-order conditions corresponding to firm i’s problem:

(21.5) (21.6) where ω denotes the market wage and p  is the price of 
good i. The market clearing condition for good i, given by , implies that 

 where  is the equilibrium sales of firm i. Note that in deriving the above 

expression, we are using the fact that the first-order condition of the consumer’s problem 
requires that . Given that the above equality defines a linear system of equations in 
terms of the equilibrium sales of different firms, it is straightforward to show that  for 
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some constant ζ .  Therefore, replacing for equilibrium price p  in equations (21.5) and (21.6) in 
terms of the output of firm i yields  and . Plugging these quantities back 

into the production function of firm i leads to 

Now it is immediate that with the proper choice of constants b , the log output of 
firm i, denoted by , satisfies

(21.7) where  is the log productivity shock to firm i. In other words, the 

interactions between different firms can be cast as a special case of our general framework in 
equation (21.1) with linear interaction function .
We end our discussion by remarking that the logarithm of real value added in the 
economy, which is the natural candidate for the economy’s macro state y, can also be 
expressed in terms of our general formulation in (21.2). Because of the constant returns 
to scale assumption, firms make zero profits in equilibrium, all the surplus in the 
economy goes to the consumers, and as a consequence, value added is simply equal to 
the market wage ω. Choosing the ideal price index as the numeraire, that is, , 
and using the fact that , we obtain that the log real value added in the economy is 
equal to

Therefore, with the appropriate choice of , we can rewrite log(GDP) as

(21.8) as in (21.2) in our general framework with .

21.2.3 Example: Financial Contagion

As a final example, we show that our general framework also nests models of financial 
contagion over networks. As a concrete example, we focus on a variant of a model along 
the lines of Eisenberg and Noe (2001) and Acemoglu, Ozdaglar, and Tahbaz-Salehi 
(2015c), who study how the patterns of interbank liabilities determine the extent of 
financial contagion.

Consider an economy consisting of n financial institutions (or banks), which are linked to 
one another via unsecured debt contracts of equal seniority. Each bank i has a claim of 
size  on bank j, where we assume that , thus guaranteeing that all 

banks have identical total claims (of size ξ) on the rest of the banking system. In addition 
to its interbank claims and liabilities, bank i has an outside asset of net value a and is 
subject to some liquidity shock ϵ .

Following the realizations of these liquidity shocks, banks need to repay their 
creditors. If a bank cannot meet its liabilities in full, it defaults and repays its creditors on 
a pro rata basis. Let z  denote the repayment of bank m on its debt to bank i. The cash 
flow of bank i is thus equal to . Therefore, as long as , bank i can meet 

i
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its liabilities in full, guaranteeing that  for all banks j. If, on the other hand, , 
the bank defaults and its creditors are repaid in proportion to the face value of their 
contracts (i.e., ). Finally, if , bank i’s creditors receive nothing, that is, . 
Putting the above together implies that the repayment of bank i on its debt to a given 
bank j is equal to

Summing both sides of the above equation over the set of banks j and letting 

denote the total out-payment of bank i to its creditors implies

(21.9) where we are using the fact that .

It is then straightforward to see that the interactions between different banks can be 
represented as a network, with each vertex corresponding to a bank and the size of bank 

i’s obligation to bank j representing the intensity of interactions between the two. 
Furthermore, the specific nature of interbank repayments can be cast as a special case of 
our general model (21.1) with interaction function .

Note that unlike the examples presented in Sections 21.2.1 and 21.2.2, this interaction 
function does not satisfy the normalization assumption  if . Nevertheless, this is 
not of major consequence, as a simple change of variables would restore the original 
normalization: redefining the state of agent i as  leads to the modified interaction 
function , which satisfies  whenever . Given that all our 
results and their corresponding economic insights are robust to the choice of 
normalization, we find it easier to work with the original model.

Finally, assuming that each default results in a deadweight loss of size A (for example, 
because of the cost of early liquidation of long-term projects), the social surplus in the 
economy is equal to

 corresponding to  and  in our general framework.
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21.2.4 Existence and Uniqueness of Equilibrium

We now return to the general framework introduced above and establish the existence 
and (generic) uniqueness of equilibrium. In general, the set of equilibria not only depends 
on the economy’s interaction network, but also on the properties of the interaction 
function. We impose the following regularity assumption on f:

Assumption 1. There exists  such that  for all . 
Furthermore, if , then there exists  such that  for all .

This assumption, which is satisfied in each of the economies discussed in Sections 21.2.1–
21.2.3 as well as in most other natural applications of this framework, guarantees that the 
economy’s interaction function is either (i) a contraction with Lipschitz constant ; or 
alternatively, (ii) a bounded non-expansive mapping. Either way, it is easy to establish that 
an equilibrium always exists. In particular, when , the contraction mapping theorem 
implies that (21.1) always has a fixed point, whereas if f is bounded, the existence of 
equilibrium is guaranteed by the Brouwer fixed point theorem.

Our first formal result shows that beyond existence, Assumption 1 is also sufficient to 
guarantee that the equilibrium is uniquely determined over a generic set of shock 
realizations.

Theorem 1. Suppose that Assumption 1 is satisfied. Then, an equilibrium always 
exists and is generically unique.

A formal proof of the above result is provided in the Appendix. Intuitively, when , the 
contraction mapping theorem ensures that the economy has a unique equilibrium. The 
economy may have multiple equilibria, however, when  (for example, as in the 
financial contagion example in Section 21.2.3). Nevertheless, Theorem 1 guarantees that 
the equilibrium is generically unique, in the sense that the economy has multiple 
equilibria only for a measure zero set of realizations of agents-level shocks.

21.3 Smooth Economies
In the remainder of this chapter, we study how the economy’s underlying network 
structure, as well as different properties of the aggregation and interaction functions, 
shape economic outcomes. In particular, we are interested in characterizing how these 
features determine the extent of propagation and amplification of shocks within the 
economy.

To achieve this objective, we impose two further assumptions on our model. First, we 
assume that the underlying economy is smooth, in the sense that functions f, g, 
and h are continuous and at least twice differentiable. The class of smooth economies 

(p. 582) 
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nests many of the standard models studied in the literature, such as variants of the 
network games and the production economy presented in Sections 21.2.1 and 21.2.2. On 
the other hand, the model of financial interactions presented in Section 21.2.3 is not 
nested within this class, as the corresponding interaction function is not differentiable 
everywhere. Nevertheless, this non-smoothness is not of major consequence, as the 
interaction function f can be arbitrarily closely approximated by a smooth function  in 
such a way that economic implications of the model under this smooth approximation are 
identical to those of the original model.

As our second assumption, we focus on the case where agent-level shocks are small. This 
assumption enables us to approximate the equilibrium state of each agent and the 
economy’s macro state by the first few terms of their Taylor expansions. Even though it 
may appear restrictive, our following results highlight that such a “small-shock analysis” 
can lead to fairly general and robust insights on how different network interactions shape 
economic outcomes.

21.3.1 First-Order Approximation

We start our analysis by providing a first-order (that is, linear) approximation to the 
agents’ equilibrium states around the point where  for all i. If agent-level shocks are 
small, such an approximation captures the dominant effects of how shocks shape the 
economy’s macro state.

Let us first use the implicit function theorem to differentiate both sides of the interaction 
equation (21.1) with respect to the shock to agent r:

(21.10)

Evaluating the above equation at the point  yields

Where we are using the fact that in the absence of shocks  for all m. This equation 
can be rewritten in matrix form as , where  is the 
vector of agents’ states and e  represents the r-th unit vector. It is therefore immediate 
that the derivative of the agents’ states with respect to the shock to agent r is 
given by

(21.11)

Note that, as long as , the matrix  is invertible, implying that the right-hand 
side of (21.11) is well-defined. We find it useful to define the following concept:

Definition 2. The Leontief matrix of the economy with parameter  is 

, where  is the economy’s interaction matrix.

9

r
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In view of the above definition, we can rewrite equation (21.11) as

(21.12) where  and ℓ  is the (i,r) element of the economy’s Leontief matrix with 

parameter α. The equilibrium state of agent i around the point  can then be linearly 

approximated as (21.13)

In other words, when the agent-level shocks are small (so that we can rely on a linear 
approximation), the economy’s Leontief matrix serves as a sufficient statistic for the 
network’s role in determining the state of agent i. More specifically, the impact of a shock 
to agent r on the equilibrium state of agent i is simply captured by ℓ .

Before continuing with our derivations, a few remarks are in order. First, note that 
Definition 2 generalizes the well-known concept of the Leontief input-output matrix to an 
economy with a general form of interaction among agents. In particular, the (i,r) element 
of the matrix not only captures the direct interaction between agents i and r but also 
accounts for all possible indirect interactions between the two. To see this, note that ℓ
can be rewritten as

(21.14) where the higher-order terms account for the possibility of 

indirect interactions between i and r. Thus, essentially, equation (21.14) shows that a shock to 
agent r impacts agent i not only through their direct interaction term w , but also via indirect 
interactions with the rest of the agents: such a shock may impact the state of some agent k and 
then indirectly propagate to agent i. However, note that the impact of a shock to agent r on i’s 
state is deflated by a factor  whenever the length of the indirect interaction chain between 
the two agents is increased by one.

In view of the 
interpretation that ℓ
captures the equilibrium 
impact of agent i on the state 
of agent m, it is natural to 
interpret  as the extent 
of agent i’s overall influence 
on the rest of the agents in 
the economy. We define the 
following concept, which is 
well-known in the study of 
social and economic 
networks:

Definition 3. For a 
given parameter , 
the Bonacich centrality

Click to view larger

Figure 21.1  The star interaction network.
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of agent i is , where  is the corresponding Leontief matrix of the 
economy.

To see how the above concept captures an intuitive notion of network centrality as well as 
the overall extent of agents’ influence on one another, consider the star interaction 
network depicted in Figure 21.3.1. As the figure suggests, a shock to agent 1, which takes 
a more central position in the network, should have a larger impact on other agents’ 
states compared to a shock to agent . Indeed, it is easy to verify that the Bonacich 
centrality of agent 1 is equal to , whereas  for .

More generally, in any given interaction network, agent i’s Bonacich centrality can be 
written recursively in terms of the centralities of the rest of the agents in the economy:

(21.15)

This expression shows that i has a higher centrality (and hence a more pronounced 
impact on the rest of the agents) if it interacts strongly with agents that are themselves 
central.

Returning to our derivations, we next provide a linear approximation to the economy’s 
macro state y in the presence of small shocks. Differentiating (21.2) with respect 
to ϵ  yields

(21.16)

Evaluating this expression at  and replacing for the derivative of agent i’s state from 

(21.12), we obtain

(21.17) where we have again used that fact that, in the absence of shocks, 

 for all m and that . Putting Definition 3 and equation (21.17) together leads to the 
following linear approximation to the economy’s macro state as a function of its underlying 
interaction network, the interaction and aggregation functions, and the agent-level shocks:

Theorem 2. Suppose that . Then, the first-order approximation to the 
macro state of the economy is

(21.18)

where v  is the Bonacich centrality of agent i with parameter f′(0).

The above result highlights that, as long as one is concerned with the first-order effects, 
the agents’ Bonacich centralities serve as sufficient statistics for how shocks impact the 
economy’s macro state. In particular, shocks to agents who take more central roles in the 
economy’s interaction network have a more pronounced influence on economy’s macro 
state. The intuition underlying this result can be understood in terms of the recursive 
definition of agents’ centralities in (21.15): a shock to an agent with a higher Bonacich 
centrality impacts the states of other relatively central agents, which in turn propagate 

(p. 586) 
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the shock further to other agents, and so on, eventually leading to a larger aggregate 
impact.

We end our discussion by remarking that when the interaction and aggregation functions 
are linear, Theorem 2 provides an exact characterization of—as opposed to a linear 
approximation to—the macro state of the economy in terms of the agent-level shocks. For 
example, recall the special case of network games with quadratic utilities studied in 
Section 21.2.1. By Theorem 2, the aggregate level of activity in such an economy is 
proportional to a convex combination of agent–level shocks, with weights given by each 
agent’s Bonacich centrality in the network:

This result coincides with those of Ballester et al. (2006) and Calvó-Armengol et 
al. (2009), to cite two examples. Similarly, in the context of production economies with 
Cobb-Douglas production functions studied in Section 21.2.2, recall from (21.7) that the 
log output of any firm i is a linear function of the log-output of its suppliers. Using the log-
value added, defined in (21.8), as the macro state of the economy, Theorem 2 implies that

 where ϵ  is the log productivity shock to firm j, confirming a representation used 

in Acemoglu et al. (2012).

21.3.2 Second-Order Approximation

The linear approximation provided in the previous section characterizes how, in the 
presence of small shocks, the nature and strength of interactions between agents shape 
the economy’s macro state. An important limitation of such an approximation is that the 
solution exhibits a certainty equivalence property, in the sense that the expected value of 
the economy’s macro state is equal to its unperturbed value when no shocks are present. 
More specifically, as Corollary 1 below will show,  regardless of the economy’s 
interaction network or the shape of the interaction and aggregation functions.
Consequently, even though potentially useful from an ex post perspective, the first-order 
approximation provided in Theorem 2 is not particularly informative about how the 
economy’s interaction network shapes aggregate outcomes from an ex ante point of view. 
In order to go beyond this certainty equivalence property, we next provide a second-order 
approximation to the economy’s macro state. As our results in the following sections will 
show, taking the second-order effects into account provides a more refined 
characterization of how agent-level shocks shape economic outcomes.

We start by differentiating both sides of equation (21.10) with respect to the shock to 
agent j:

(p. 587) 
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Evaluating this expression at  implies

 where, once again, we are using the fact that  for 

all m and that the first derivative of the agents’ states with respect to the shocks can be written 
in terms of the economy’s Leontief matrix, as given by (21.12). On the other hand, one can show 
that .  Therefore, the previous expression can be simplified to 

 leading to (21.19) where we are using the 

definition of the Leontief matrix. The above equation thus provides the second-order derivates of 
agents’ equilibrium states as a function of the interaction function and the Leontief matrix of the 
economy.
To obtain a second-order approximation to the macro state of the economy, we need to 
also differentiate (21.16) with respect to ϵ :

Replacing for the first-order and second-order derivates of agents’ equilibrium states 
from (21.13) and (21.19), respectively, leads to

which can be further simplified to

 where v  is the Bonacich centrality of agent m with 

parameter α. Combining the above with (21.17) leads to the following result:

Theorem 3. Suppose that . Then, the second-order approximation to the 
macro state of the economy is given by

(p. 588) 
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(21.20)

where  is the economy’s Leontief matrix with parameter  and v  is the 
corresponding Bonacich centrality of agent i.

This result thus refines Theorem 2 by providing a second-order approximation to the role 
of agent-level shocks in shaping the economy’s macro state. Note that the first line of 
(21.20) is simply the first-order approximation, y , characterized in (21.18). The rest of 
the terms, which depend on the curvatures of the interaction and aggregation functions, 
capture the second-order aggregate effects. The second line, in particular, corresponds to 
additional terms resulting from the nonlinearity of the aggregation function, g. Note that 
these terms depend simply on Bonacich centralities, the v  terms. This is due to the fact 
that as long as the interaction function f is linear, the total influence of agent i on the rest 
of the agents in the economy is given by the Bonacich centrality of agent i, . The 
third line, on the other hand, shows that if either the interaction function f or the h
function is nonlinear, the centrality measures are no longer sufficient statistics for the 
shocks’ second-order effects. Rather, other network statistics—in particular,  and 

—also play a key role in how shocks propagate throughout the economy.

It is also worth noting that as long as shocks are small enough and the linear 
approximation is nontrivial, the second-order terms in (21.20) are dominated by the effect 
of the first-order terms. However, as our following results will show, in many applications 
the linear terms are equal to zero (reflecting the above-mentioned certainty 
equivalence property), and hence are uninformative about the nature of the economy’s 
macro state, making the second-order approximation essential for a meaningful 
characterization of the aggregate impact of microeconomic shocks.

21.4 Ex Ante Aggregate Performance
In the remainder of this chapter, we use Theorems 2 and 3 to characterize how network 
interactions translate small, agent-level shocks into aggregate effects measured by the 
economy’s macro state.

This section provides a comparative study of the role of the economy’s underlying 
network structure—as well as its interaction and aggregation functions—in shaping y
from an ex ante perspective, by interpreting the expectation of the macro state y as the 
economy’s “performance metric.” Formally:

i

1st

i
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Definition 4. An economy outperforms another if  is larger in the former than 
the latter.

A natural first step to obtain a comparison between the performance of different 
economies in the presence of small shocks is to compare their first-order approximations. 
Recall from Theorem 2 that the first-order approximation of an economy’s macro state is 
equal to a linear combination of agent-level shocks with the corresponding weights given 
by the agents’ Bonacich centralities (i.e., ), leading to the following 
immediate corollary:

Corollary 1. .

This simple corollary shows that the economy exhibits a certainty equivalence property
from an ex ante perspective up to a first-order approximation: the expected value of the 
economy’s macro state is equal to its unperturbed value when no shocks are present, 
regardless of the nature of pairwise interactions or the shape of the interaction and 
aggregation functions. The more important implication, however, is that the linear 
approximation provided in Theorem 2 is not informative about the comparative 
performance of different economies, even in the presence of small shocks. Rather, a 
meaningful comparison between the ex ante performance of two economies requires that 
we also take the higher-order terms into account.

Thus, a natural next step is to use the second-order approximation provided in Theorem 

3. Equation (21.20) shows that once second-order terms are taken into account, the ex 
ante performance of the economy, , depends on the curvatures of the interaction and 
aggregation functions. In order to tease out these effects in a transparent manner, in the 
remainder of this section, we focus on how nonlinearities in each of these functions shape 
the economy’s macro state, while assuming that the rest of the functions are linear.

21.4.1 Nonlinear Aggregation: Volatility

We first consider an economy with a general, potentially nonlinear aggregation function 

g, while assuming that f and h are increasing, linear functions. In this case, the ex ante 
performance of the economy is given by

This observation highlights that the curvature of g essentially captures the extent to 
which society cares about volatility, for instance, because of risk-aversion at the 
aggregate level. To see this, suppose that g is concave. In this case, the economy’s 
performance is reduced the more correlated agents’ states are with one another. In fact, 
if , the economy’s ex ante performance simply captures the volatility of . 
On the other hand, a convex g corresponds to the scenario in which performance 
increases with volatility.

(p. 591) 
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In either case, Theorem 3 implies that the expected value of the economy’s macro state, 
up to a second-order approximation, is given by

(21.21) where we are using the assumption that all shocks are 

independent with mean zero and variance σ  and the assumption that functions f and h are 
linear. Equation (21.21) shows that, in contrast to Corollary 1, not all economies have identical 
performances once second-order terms are taken into account. Rather, the economy’s ex ante 

performance depends on , which in turn, can be rewritten as n 

where , thus leading to the following result:

Proposition 4. Suppose that the aggregation function g is concave (convex). An 
economy’s ex ante performance decreases (increases) in .

This proposition implies that, if g is concave, networks in which agents exhibit a less 
heterogenous distribution of Bonacich centralities outperform those with a more unequal 
distribution. This is due to the fact that a more equal distribution of Bonacich centralities 
means that shocks to different agents have a more homogenous impact on the economy’s 
macro state, and thus wash each other out more effectively at the aggregate level. On the 
other hand, a more unequal distribution of centralities implies that shocks to some agents 
play a disproportionally larger role in shaping y, and as a result are not canceled out by 
the rest of the agent-level shocks, increasing the overall volatility and reducing the value 
of  whenever g is concave.

To see the implications of Proposition 4, consider an economy with the underlying 
star interaction network depicted in Figure 21.1. As already mentioned, the Bonacich 
centralities of agents in such an economy are highly unequal as agent 1 has a 
disproportionally large impact on the states of the rest of the agents. In fact, it is easy to 
show that  is maximized for the star interaction network. This implies that when g is 
concave, the star network has the least ex ante performance (and hence, the highest level 
of volatility) among all economies.

At the other end of the spectrum are regular economies in which the extent of interaction 
of each agent with the rest of the agents is constant. More formally,

Definition 5. An economy is regular if  for all agents i.

Figures 21.2(a) and 21.2(b) depict two regular networks, known as the ring and complete
interaction networks, respectively. Because they are symmetric, all agents in both 
economies should have identical Bonacich centralities. In fact, summing both sides of 
(21.14) over i in an arbitrary regular economy implies that

 for all r, where recall that . This implies the following result:

Lemma 1. In any regular economy, all agents have identical Bonacich centralities.

2
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Therefore,  is minimized for all regular economies, implying that with a 
concave g, they outperform all other economies from an ex ante perspective: all agent-
level shocks in such an economy take symmetric roles in determining the macro state, 
and minimize the overall volatility of  and thus increase . This implies the 
following corollary to Proposition 4:

Corollary 2. Suppose that aggregation function g is concave (convex). Any 
regular economy outperforms (underperforms) all other economies, whereas the 
economy with the star interaction network underperforms (outperforms) all 
others.

This corollary and 
Proposition 4 are closely 
connected to the results in 

Acemoglu et al. (2012), 
who show that in the 
context of the production 
economies presented in 
Section 21.2.2, aggregate 
output volatility is 
increasing in the extent of 
heterogeneity in the firms’ 

centralities and is maximized (minimized) for the star (regular) network. This parallel can 
be better appreciated by noting that the logarithm of output of a given firm i satisfies 
linear equation (21.7) and that . Therefore, the volatility of log 
value added is simply

Setting  implies that economies that have a higher ex ante performance in the 
sense of Definition 4 are less volatile at the aggregate level. Hence, Proposition 4 and 
Corollary 2 guarantee that any economy in which firms exhibit more heterogeneity in 
terms of their roles as input-suppliers exhibits higher levels of aggregate (log) output 
volatility due to idiosyncratic firm-level shocks. Our results thus show that it is the 
concavity of economy’s aggregation function that lies at the heart of the findings of 
Acemoglu et al. (2012).

21.4.2 Nonlinear Interactions

We now focus on the role of nonlinear interactions in shaping the economy’s ex ante 
performance. To illustrate this role in a transparent manner, we consider an economy 
with a general, nonlinear interaction function f, while assuming that g and h are 
increasing, linear functions.  The ex ante performance of such an economy is given by

Click to view larger

Figure 21.2  Two regular economies

(p. 593) 
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The above equation highlights that the curvature of the interaction function f
captures the extent of “risk-aversion” at the micro-level.

To understand the role of interlinkages in affecting economic performance, we focus on 
the set of symmetric, regular economies.  Recall from Theorem 3 that, in the presence of 
small shocks, the expected value of the economy’s macro state can be approximated by

(21.22)

Note that as before, we need to rely on a second-order approximation, as the first-order 
terms are not informative about the comparative performance of different economies; 
that is  regardless of the shape of f or the economy’s interaction network. Given 
that all agents in a regular network have identical Bonacich centralities, equation (21.22)
shows that the economy’s performance depends on the value of . On the other hand, 

it is easy to verify that

(21.23) where  is the agents’ (common) Bonacich 

centrality, thus suggesting that the term  decreases if inter-agent influences  are 
more evenly distributed. The following result, which is proved in the Appendix, captures this 
idea formally:

Corollary 3. Suppose that there are no self-interaction terms, that is, . If the 
interaction function f is concave (convex), then the complete network outperforms 
(underperforms) all other symmetric economies.

This corollary is related to the findings of Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015c), 
who, in the context of the model of financial interactions presented in Section 21.2.3, 
show that the complete financial network exhibits a “phase transition”: when the total net 
asset value of the financial system is large enough, the complete network is the financial 
network with the least number of defaults. However, as the net asset value of the 
financial system is reduced, beyond a certain point, the complete network flips to be the 
economy with the maximal number of bank failures.

(p. 594) 
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To see the connection 
between their results and 
Corollary 3, recall that the 
corresponding interaction 
function in such an 
economy is given by 

. 
As depicted in 

Figure 21.3(a), for large 
enough values of a (in 
particular, when ), this 
interaction function is 

concave in the neighborhood of 0. Therefore, Corollary 3 implies that the complete 
network outperforms all other economies.  In contrast, once the banks’ net asset value a
becomes small enough, the interaction function is locally convex around 0, as depicted in 
Figure 21.3(b). In stark contrast to the former case, Corollary 3 now implies that all other 
economies would outperform the complete network. Thus, our characterization results 
clarify that the findings of Acemoglu et al. (2015c) are due to the fact that reducing the 
banks’ net asset values (for example, due to some exogenous shocks) essentially 
corresponds to a shift from the concave to the convex region of the interaction function, 
thus reversing the role of interbank connections.

In addition to providing a different perspective on the results of Acemoglu et al. (2015c), 
Corollary 3 presents a partial answer to the question posed in the Introduction, related to 
the sometimes contradictory claims on the role of dense network interconnections in 
creating systemic risk and instability. It shows that when economic (financial) interactions 
correspond to a concave f, denser interconnections are stabilizing (as in Allen and Gale 
2000), whereas they play the role of generating systemic risk when these interactions 
correspond to a convex f function. Finally, our result that more densely interconnected 
networks are more unstable in the presence of convex interactions is akin to similar 
results in the epidemic-like cascade models (such as Blume et al. 2011), in which a bank 
fails once the number of its defaulting counterparties passes a certain threshold.

21.5 Systemically Important Agents
A central concern in many analyses of economic and social networks is the identification 
of “key players” or “systemically important agents” (e.g., Ballester et al. 2006 and Zenou 
2015). Loosely speaking, these are entities that have a disproportionally high impact on 
some aggregate statistic of interest. For example, Banerjee, Chandrasekhar, Duflo, and 
Jackson (2013 2014) study how the social network position of the first individual to 
receive information about a new product within a village can increase the extent of 
information diffusion within that community. Similarly, in the context of multi-agent 

Click to view larger

Figure 21.3.  The interaction function 
 corresponding to the model of 

financial interactions in Section 21.2.3. Panels (a) 
and (b) plot the function for the case that  and 

, respectively. The thin red line in each panel 
depicts a smooth approximation to the interaction 
function.

(p. 595) 
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contracting in the presence of externalities, Bernstein and Winter (2012) are interested in 
obtaining an ordering of agents who when subsidized induce the maximal level of 
participation by other agents. Relatedly, in the context of the example presented in 
Section 21.2.3, Acemoglu et al. (2015c) characterize the set of systemically important 
institutions in a financial network, a shock to whom would lead to a large cascade of 
defaults.

In this section, we utilize Theorems 2 and 3 to study how different features of the 
environment determine the impact of each agent on the macro state of the economy and 
provide a characterization of the set of agents that are more important from a systemic 
perspective. We start by defining this concept formally:

Definition 6. Agent i is said to be systemically more important than agent j if 
, where y  denotes the macro state of the economy when agent i is hit with 

a negative shock.

In other words, agent i is systemically more important than agent j if a shock to i leads to 
a larger drop in the economy’s macro state. Note that in general, the relative systemic 
importance of an agent may depend on the size of the negative shock. Nevertheless, we 
can use our results in Section 21.3 to provide a characterization of the systemic 
importance of different agents for small enough shocks.

We should also remark that our notion of systemically important agents is related to, but 
distinct from, the notion of “key players” studied by Ballester et al. (2006) and Zenou 
(2015). Whereas our focus is on how a shock to a given agent impacts some 
macroeconomic variable of interest, these papers study the impact of the removal of an 
agent from the network.

21.5.1 Linear Interactions

We start by focusing on economies where the interaction and aggregation functions are 
linear. This enables us to highlight, in a transparent manner, how the presence of 
nonlinearities can shape equilibrium outcomes.

Recall that when the interaction and aggregation functions are linear, Theorem 2
provides an exact characterization of the economy’s macro state in equilibrium. More 
specifically, it shows that y is a linear combination of the idiosyncratic, agent-level shocks, 
with the weights proportional to the Bonacich centralities of the corresponding agents, 
leading to the following result:

Proposition 5. Suppose that the economy’s interaction function is linear. Then 
agent i is more systemically important than agent j if , where v  is the 
Bonacich centrality of agent i.

(i)

(p. 597) 
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In other words, in an economy with linear interactions, a negative shock to the agent with 
the highest Bonacich centrality leads to the largest drop in the economy’s macro state. 
The intuition underlying this result is simple and well-known in the literature: shocks to 
more central agents propagate more extensively over the network and as a result have 
larger impacts on the economy’s macro state.

To see the implications of the above result, consider the economies depicted in Figures 

21.1 and 21.2. Given that the ring and complete networks depicted in Figure 21.2 are 
regular, Proposition 5 suggests that in the presence of linear interactions, all agents in 
such economies are equally systemically important. In contrast, in the economy depicted 
in Figure 21.1, agent 1 takes a more central position with respect to the rest of the 
agents, leading to the intuitive result that it is the most systemically important agent 
within the economy.

Proposition 5 also has sharp predictions for the set of systemically important agents in 
the class of network games with quadratic payoffs discussed in Section 21.2.1. Recall that 
the first-order conditions in such games can be represented in the form of a linear 
interaction function. Thus, by Proposition 5, the player with the highest Bonacich 
centrality would be the most influential player in the game. This is indeed in line with the 
observations of Candogan, Bimpikis, and Ozdaglar (2012), who argue that subsidizing 
players with the highest centrality would induce the largest increase in the level of 
aggregate activity in the economy.

Similarly, in the context of production economies with Cobb-Douglas (and hence, log-
linear) production technologies discussed in Section 21.2.2, Acemoglu et al. (2012) show 
that productivity shocks to firms with higher centralities have a larger impact on the 
economy’s aggregate output, an observation consistent with the predictions of 
Proposition 5. More specifically, in line with the examples we discussed above, they also 
argue that, compared to a shock of equal size to one of the more peripheral firms, a shock 
to firm 1 in the star network depicted in Figure 21.1 would have a much larger impact on 
the log value added of the economy.

Finally, Proposition 5 also echoes some of the results in the literature on social learning 
that studies the long-run implications of different learning rules. In particular, Golub and 
Jackson (2010) show that if agents update their beliefs as a linear combination of their 
neighbors’ opinions (what is commonly known as DeGroot-style learning), the information 
available to those with higher centralities plays a more prominent role in the 
eventual beliefs in the society. Relatedly, Jadbabaie et al. (2012 2013) show that the rate 
of information aggregation in a social network is more sensitive to the quality of the 
signals observed by the more central agents.

(p. 598) 
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21.5.2 Nonlinear Interactions

Our previous results show that if the economy’s interaction function is linear, Bonacich 
centrality provides a comprehensive measure for agents’ systemic importance. This 
observation also means that, as long as agent-level shocks are small enough, more central 
agents would play a more prominent role in shaping the economy’s macro state, even if 
the interactions are nonlinear. This is due to the fact that by Theorem 2, the economy’s 
macro state can be linearly approximated by

 leading to the following result:

Corollary 4. If , then agent i is systemically more important than agent j for 
all interaction functions f.

This conclusion is subject to an important caveat: even though  implies that i is more 
systemically important than j in the presence of small shocks,  does not guarantee 
that the two agents are equally systemically important. Rather, in such a scenario, a 
meaningful comparison of the agents’ systemic importance requires that we also take 
their higher-order effects into account. Thus, Corollary 4 is simply not applicable to 
regular economies, in which all agents have identical Bonacich centralities.

In order to obtain a 
meaningful measure for 
agents’ systemic 
importance in a regular 
economy, a natural step 
would be to utilize 
Theorem 3 to compare the 
second-order effects of 
agent-level shocks on the 
economy’s macro state. 
From (21.20), we have 
that, in any regular 
economy,

where  is the 
agents’ (common) Bonacich 
centrality, thus implying that 

agent i’s systemic importance is determined by the value of . On the other hand, 

recall from (21.23) that  essentially measures the variation in the extent to which agent i
influences other agents in the economy. We define the following concept:

Click to view larger

Figure 21.4  A regular economy where agents have 
identical centralities, but differ in their concentration
centralities.
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Definition 7. The concentration centrality of agent i is , where 

 is the economy’s Leontief matrix.

Thus, a smaller d  means that agent i’s influence is more evenly distributed throughout 
the economy. In other words, whereas an agent’s Bonacich centrality captures its overall 
influence, concentration centrality measures how evenly the agent’s influence is 
distributed across the rest of the agents. As an example, consider the economy depicted 
in Figure 21.4. It is easy to verify that the depicted network corresponds to a regular 
economy, implying that all agents have identical Bonacich centralities. However, the 
extent of dispersion is not identical across agents. Rather, for large enough values of n, 

 for all : compared to all other agents, agent 1’s interactions are more evenly 
distributed throughout the economy.

This discussion is summarized in the next proposition.

Proposition 6. Suppose that the economy’s interaction network is regular.

(a) If f is concave, then i is systemically more important than j if and only if 
.

(b) If f is convex, then i is systemically more important than j if and only if 
.

Taken together, Proposition 6 and Corollary 4 suggest that while Bonacich centralities 
summarize the first-order effects of agent-level shocks on aggregate outcomes, the 
second-order effects are captured by the agents’ concentration centralities. These 
second-order effects become critical in a regular network, where first-order terms are 
simply uninformative about agents’ systemic importance.

Proposition 6 also reenforces an observation made by Acemoglu et al. (2015c) that relying 
on standard and off-the-shelf notions of network centrality (such as eigenvector 

or betweenness centralities) for the purpose of identifying systemically important agents 
may be misleading. As Proposition 6 suggests, the proper notion of network centrality has 
to be informed by the nature of microeconomic interactions between different agents.

21.6 Conclusion
This chapter presented a unified framework nesting a wide variety of network interaction 
models, such as various classes of network games, models of macroeconomic risk built up 
from microeconomic shocks, and models of financial interactions. Under the assumption 
that shocks are small (and the relevant interactions are smooth), our main results provide 
a fairly complete characterization of the equilibrium, highlighting the role of different 
types of network interactions in affecting the macroeconomic performance of the 
economy. Our characterization delineates how microeconomic interactions function as a 

i
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channel for the propagation of shocks. It also provides a comparative study of the role of 
the economy’s underlying network structure—as well as its interaction and aggregation 
functions—in shaping macroeconomic outcomes. In addition to clarifying the relationship 
between disparate models (for example, those focusing on input-output linkages, financial 
contagion, and general cascades), our framework highlights some of the reasons behind 
the apparently contradictory conclusions in the literature on the role of network 
interactions in the emergence of systemic risk.

Our hope is that the framework provided here will be useful in future work on 
understanding network interactions in general and the study of network games, 
macroeconomic risk and financial contagion in particular. We believe that several 
important issues remain open to future research. First, our framework focuses on an 
environment in which shock realizations are common knowledge. Generalizing this setup 
to environments with incomplete and private information would enable us to understand 
the interplay between network interactions and information asymmetries. A second 
direction for future research would be to apply similar analyses to economies that exhibit 
richer strategic interactions (e.g., general imperfect competition rather than competitive 
or monopolistically competitive economies). Finally, a systematic investigation of 
endogenous network formation in the presence of rich propagation and cascade dynamics 
remains an important area for future research.

A. Technical Appendix
Lemma 2. Suppose that  for a pair of points . Then, the 
interaction function f is linear in the interval  with a unit slope.

Proof. Pick an arbitrary point . Given Assumption 1 and the 
monotonicity of the interaction function, it must be the case that

 

Summing the above inequalities immediately implies that both inequalities have to 
be tight simultaneously. Therefore, for any  in the interval , it must be the case 
that . □

Lemma 3. The interaction function f has at most countably many discontinuity 
points.

Proof. Let D denote the set of points where f is discontinuous. For any , define

 

Given the fact that f is nondecreasing, it must be the case that . 
Therefore, there exists a rational number  such that

(p. 601) 
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Furthermore, for any pair of points  satisfying , it is immediate that 
. Consequently,  has to be an injection, proving that D is at most 

countable. □

Proof of Theorem 1
We prove this result for two separate cases depending on whether (i)  or (ii) . 
Throughout, we assume that the economy’s interaction network is strongly connected in 
the sense that there exists a directed path from each agent to any other agent in the 
economy. In case of a disconnected interaction network, the proof would apply to any 
connected component separately.

Case (i)
First, suppose that . Define the mapping  as

(21.24)

For any , we have

where the first inequality is a consequence of Assumption 1 and the second 
inequality follows from a simple application of the triangle inequality. The fact that 

 implies that

 and as a consequence, 

In other words,

Therefore, the mapping Φ is a contraction with respect to the infinity norm with a 
Lipschitz constant . The contraction mapping theorem then immediately implies that 
the mapping has a unique fixed point , for all shock realizations . □

(p. 602) 
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Case (ii)
Next, suppose that . In this case, Assumption 1 guarantees that there exists  such 
that  for all z.

Recall mapping Φ from (21.24). By assumption, it is continuous and maps the compact 
and convex set  to itself. Therefore, by the Brouwer fixed-point theorem, there 
exists  such that , thus proving the existence of an equilibrium.

Next, we prove that this equilibrium is generically unique. Suppose that the economy has 
two distinct equilibria, denoted by x and . Let  be the element-wise difference 
between the two equilibria, which by assumption is a non-zero vector. By definition, for 
any given agent i, we have

(21.25) (21.26) where the first inequality is a consequence of 

Assumption 1. We now show that both inequalities above are tight for all agents i.
Suppose that either inequality holds strictly for some agent i, implying that .

Let  denote the left eigenvector corresponding to the top eigenvalue of matrix W. By 
the Perron-Frobenius theorem, vector q is element-wise strictly positive.  Multiplying 
both sides by q  and summing over all agents i implies that

 leading to a contradiction. Therefore, it is immediate that (21.25) and 

(21.26) hold as equalities, thus implying that  for all agents i, or in matrix notation, 

.
Consequently, by the Perron-Frobenius theorem, e has to be proportional to the Perron 
vector of matrix W, which is the vector of all ones. In other words,  for all i and some 
strictly positive constant c. Furthermore, the fact that (21.26) holds as an equality implies 
that  has the same sign for all i. Assuming that , it must be the case that 
for all agents i.

Summarizing the above implies that for all agent i,

 and 

Letting  and subtracting both sides of the above equalities lead to

Thus, by Lemma 2, the interaction function f has to be linear with a unit slope within the 
interval . Consequently, there exists some constant b  such that  for all 

. Therefore,
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 for all i. Multiplying both sides of the above equality by q  and summing over all 

agents i lead to (21.27) where once again we are using the fact that . 

Therefore, the economy has two distinct equilibria if and only if the agent-level shocks satisfy 

(21.27). Now, Lemma 3 guarantees that there are at most countably many of such values b , as 
otherwise the interaction function f would have uncountably many points of discontinuity. In 
other words, for the economy to have multiple equilibria, the term  has to belong to a 
countable set B. This coupled with the observation that  guarantees that the economy has a 
unique equilibrium for a generic set of shock realizations. □

Proof of Corollary 3
Suppose that f is concave. The proof for the case in which f is convex is identical. Recall 
from Equation (21.22) that the ex ante performance the economy is decreasing in 

, which can be rewritten as

Denoting the k-th largest eigenvalue of a generic matrix X with , we have:

 where the second inequality is a consequence of the fact that 

.
On the other hand, the assumption that  implies that trace , 

whereas  guarantees that . Putting these two observation together implies 

that . Therefore,

(21.28) (21.29) where the second equality is 

due to the fact that function  is convex. On the other hand, it easy to show that for 
the complete network,  for all . Therefore, the complete network obtains the 
lower bound in (21.29), and hence, has maximal ex ante performance when the interaction 
function is concave. □
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Notes:

( ) For instance, in the context of counterparty relationships considered by Acemoglu et 
al. (2015c), the connections capture the extent of prior interbank lending and borrowing 
and each bank’s state captures its ability to meet those obligations. As highlighted in 

Cabrales, Gale, and Gottardi (2015), other forms of interlinkages operate in a similar 
fashion.

( ) Network games of incomplete information are studied in Galeotti et al. (2010).

( ) Relatedly, Gabaix (2011) argues that microeconomic shocks can lead to aggregate 
fluctuations if the firm-size distribution within the economy exhibits a heavy enough tail, 
even in the absence of input-output linkages.

( ) Other papers that study network formation in related contexts include Bala and Goyal 
(2000), Babus (2014), Zawadowski (2013), Acemoglu, Ozdaglar, and Tahbaz-Salehi 
(2014c), Farboodi (2014), and Erol and Vohra (2014).

( ) Allowing both for strategic complementarities and substitutabilities, Acemoglu, Garcia-
Jimeno, and Robinson (2015b) develop an application of these models in the context of 
local municipalities’ state capacity choices, and estimate the model’s parameters using 
Colombian data.

(p. 608) 

1

2

3

4

5



Networks, Shocks, and Systemic Risk

Page 38 of 39

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: Massachusetts Institute of Technology (MIT); date: 11 August 2017

( ) See Zenou (2015) for a discussion and a variety of extensions of the baseline network 
game with quadratic payoffs.

( ) Since each one of these firms is supposed to act competitively, they can also be 
interpreted as “representative firms” standing in for a set of competitive firms within 
each of the n sectors.

( ) To be more precise, , where v  is the i-th column sum of matrix . In 
Section 21.3, we show that this quantity coincides with the notion of Bonacich centrality 
of firm i in the economy.

( ) More specifically, it is sufficient for  to satisfy Assumption 1 and, as f, be initially 
concave and then convex.

( ) See Schmitt-Grohé and Uribe (2004) for a similar argument in the context of a 
general class of discrete-time rational expectations models.

( ) To see this, recall that the Leontief matrix can be rewritten as , which 

implies that .

( ) Note that by Hölder’s inequality,  , 
regardless of the economy’s interaction network, where recall that . This inequality 
is tight for the star network, implying that  obtains its maximal value.

( ) The results, and in fact the expressions, are essentially identical when h is also 
nonlinear.

( ) Recall that an economy is said to be symmetric if  for all .

( ) To be more precise, Acemoglu et al. (2015c) state their results in terms of whether 
exogenous shocks that hit financial institutions are small or large. Nevertheless, given 
that such shocks simply impact the net asset value of the banks, their results can be 
equivalently stated in terms of the size of the net asset value of the banks, a.

( ) As already noted, even though the corresponding interaction function is not smooth, 
it can be arbitrarily closely approximated by a smooth function in such a way that the 
economic implications of the model under this smooth approximation are identical to 
those of the original model. Figure 21.3 depicts one such smooth approximation.

( ) The main results in this literature are in terms of agents’ eigenvector centralities, 
defined as a limiting case of Bonacich centrality. In particular, the eigenvector centrality 
of agent i satisfies . See Jackson (2008) for a discussion on other notions of 
centrality and their relationships to one another.

( ) For more on the Perron-Frobenius theorem, see Chapter 2 of Berman and Plemmons 
(1979).
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