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Abstract

We develop a theoretical model of security investments in a network of interconnected agents. Network 
connections introduce the possibility of cascading failures due to an exogenous or endogenous attack de-
pending on the profile of security investments by the agents. We provide a tractable decomposition of 
individual payoffs into an own effect and an externality, which also enables us to characterize individual 
investment incentives recursively (by considering the network with one agent removed at a time). Using 
this decomposition, we provide characterization of equilibrium and socially optimal investment levels as a 
function of the structure of the network, highlighting the role of a new set of network centrality measures 
in shaping the levels of equilibrium and optimal investments. When the attack location is endogenized 
(by assuming that the attacker chooses a probability distribution over the location of the attack in order to 
maximize damage), similar forces still operate, but now because greater investment by an agent shifts the 
attack to other parts of the network, the equilibrium may involve too much investment relative to the social 
optimum.
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1. Introduction

Computer, communication, transport and economic networks all depend on some degree of 
security for their operation. For example, a virus that infects a set of connected computers or a 
malfunction in a router, domain or switch may influence the functioning of the entire system, 
and in the worst case scenario, will spread from one part to the rest of the network. Almost all 
networks are protected with security investments. For example, individual computers use virus 
scans and refrain from visiting websites that appear suspicious. Domains use firewalls and other 
security devices to prevent exposure to viruses and malware. Consequently, it has long been 
recognized, in Anderson and Moore’s (2006, p. 610) words, that “security failure is caused at 
least as often by bad incentives as by bad design”.

An emerging literature at the boundary of economics and computer science investigates how 
these incentives are determined and how they shape security investments and resilience of net-
works. A clear positive externality exists in security investments. An agent that fails to protect 
itself adequately not only increases the probability of its own infection but also increases the 
likelihood that infection will spread to other agents. Based on this intuition, the literature has so 
far presumed that there will be underinvestment in security (e.g., Anderson and Moore, 2006;
Bachrach et al., 2012; Goyal and Vigier, 2011; Larson, 2011). These intuitions, however, are 
based on analysis of “symmetric networks”. In symmetric networks, there is either no network 
and all agents (or individuals or nodes) interact with all others or, loosely speaking, all agents 
occupy the same position in the network as all others. Such symmetric networks are neither 
realistic nor conducive to an understanding of the role of the structure of the network on equi-
librium (and optimal) security investments. The lack of realism is obvious: there is considerable 
heterogeneity across agents in all of the aforementioned networks; domains and routers differ in 
terms of their size and importance, and computer users are typically connected to very differ-
ent numbers of users and occupy different positions in the overall network. The importance of 
analyzing the impact of network structure is also equally salient and has long been recognized 
as central for the study of network security as the following quote, again from Anderson and 
Moore (2006, p. 613), illustrates: “Network topology can strongly influence conflict dynamics... 
Different topologies have different robustness properties with respect to various attacks.”

In this paper, we investigate the impact of the structure of the network on security investments 
and the likelihood of contagion in a general, asymmetric network. The key to our analysis is a 
characterization of infection probabilities of different agents, or nodes,1 in terms of their position 
in the network when the levels of security investments are small. In our model, each agent i
is connected to a subset of other agents and chooses a security investment qi . An infection is 
probabilistically transmitted across connected agents. Conditional on transmission to agent i, the 
probability of infection of this agent is 1 − qi (meaning that with probability qi , this agent is 
immune to infection). This formulation is both tractable and makes the positive externality from 
network investments transparent. We distinguish two types of attacks: (1) random attacks, which 
are likely to hit each agent uniformly at random (and in particular independent of their security 

1 Throughout the paper we use the terms agents and nodes interchangeably. Similarly, we will use the terms network 
and graph interchangeably.
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investments); (2) strategic attacks, where the location of the attack is determined by an adversary 
wishing to maximize expected infection (see also Bachrach et al., 2012; Goyal and Vigier, 2011).

We first provide a tractable decomposition of individual payoffs into an own effect and an 
externality, which underpins the rest of our analysis, applies in a very similar manner in both 
the random and the strategic attack models, and appears not to have been noticed so far in the 
literature. This decomposition enables us to write the payoff of an agent as a function of network 
effects of others and as a linear function of her own security investment, minus its own cost 
of investment. These network effects have a simple recursive structure and can be computed 
by considering the network with one agent removed at a time. Using these decompositions we 
establish the existence of a pure-strategy Nash equilibrium in the random attacks model.

Second, in the case where security investments are small (which will be the case when cost 
of investments are high or sufficiently convex), we provide a complete characterization of the 
relationship between the structure of the network and security investments. Our characterization 
highlights the importance of a new notion of network centrality, which we refer to as “pro-
tection centrality” and which conveniently summarizes the key strategic forces in our random 
attack model. It is related to how blocked (or protected) a node is by “gatekeepers”.2 Specifi-
cally, a node, say j , is a gatekeeper between two other nodes/agents, say i and k, if the infection 
traveling between i and k has to pass through node j (and has no other path). Loosely speaking, 
the protection centrality measure sums over the protection that all gatekeepers provides to an 
agent. Intuitively, when an agent has a high protection centrality (is well protected by gatekeep-
ers), the infection is unlikely to reach her and she does not have incentives to choose a high level 
of security investment. This notion also highlights the role of strategic substitutabilities in our 
model: security investments are strategic substitutes, because the greater is the investment of its 
gatekeeper, the more protected is the agent and thus the more it can afford not to invest in its own 
security. As a result, in the example above, the more node j invests, the less nodes i and k are 
incentivized to invest themselves.

Under the same assumptions, we also provide a tight characterization of the relationship be-
tween socially optimal levels of investments (which maximize overall welfare in the network) 
and the structure of the network, and compare socially optimal and equilibrium levels of security 
investments. Socially optimal levels of investment depend on a different yet complementary no-
tion of centrality, which we refer to as “gatekeeping centrality”. While the protection centrality 
measure captures how protected a node is by gatekeepers, the gatekeeping centrality measure 
summarizes how much of a gatekeeper a node is to the rest of the network. It is intuitive that de-
centralized equilibrium investments depend on how protected an agent is while socially optimal 
investments depend on how much of a protection that agent offers to others.

We also show that these characterization results from our baseline model generalize under a 
variety of extensions. First, in our baseline model, we take the network as exogenously given, 
which we consider to be a good approximation to most modern communication networks where 
it is not the structure of the network itself but the level of precaution and security investments 
that respond to security considerations. Nevertheless, we show that our basic insights generalize 
to a setup in which the network is endogenous, except in cases where security concerns make 
agents drop almost all of their connections. Second, we generalize our characterization results 
to a setup in which infection travels through each link only probabilistically. Third, we also 
verify via simulations that our main characterization results, which are based on first-order Taylor 

2 We thank an anonymous referee for suggesting this terminology.
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expansions for small levels of security investments, provide good approximations to the results 
when security investments are not small.

The second part of the paper turns to the strategic attack model and shows a robust
force towards overinvestment in this case, which echoes an intuition going back to
de Meza and Gould (1992): preventive activities can create negative instead of positive external-
ities when they shift attacks to other nodes. In this case, the game also has elements of strategic 
complements: the level of desired investment of a node is increasing in the investments of other 
nodes because such investments increase the likelihood that the strategic attacker will target the 
node in question. We provide a similar complete characterization of equilibrium investments 
under strategic attacks, and also present conditions under which symmetric networks (which al-
ways lead to underinvestment in the random attack model) generate under or overinvestment in 
this case. The possibility of overinvestment is a consequence of the strategic complementarities 
in investment decisions in this strategic attack model.

There is now a large literature on spreads of infections and epidemics over networks including, 
among others, Molloy and Reed (1998, 2000), Newman et al. (2001), and Chung and Lu (2002). 
Early works considering control of infections and epidemics include Sanders (1971) and Sethi
(1974). Brito et al. (1991), Geoffard and Phillipson (1997), Goldman and Lightwood (1995), 
Toxvaerd (2009), and Galeotti and Rogers (2013) analyzed certain aspects of precautionary or 
vaccination behavior in related settings.

More closely related to our paper are Bachrach et al. (2012), Goyal and Vigier (2014) and 
Larson (2011), which analyze endogenous formation of networks (connections) together with 
security decisions in the presence of infections. In Larson’s model, for example, network con-
nections generate benefits for agents but also spread infection. Both of these papers focus on 
symmetric networks (e.g., Erdős–Rényi random graphs), and thus do not obtain any of our main 
results. Blume et al. (2011) also study network formation in the presence of negative contagion, 
but focus on providing bounds on the inefficiency of equilibrium.3

Also closely related are works related to “strategic attacks,” where precautionary behavior 
shifts attacks from one agent to another. As mentioned above, an early paper showing this possi-
bility is de Meza and Gould (1992). Related issues are studied in Baccara and Bar-Isaac (2008), 
Bachrach et al. (2012), Goyal and Vigier (2011), Kovenock and Roberson (2010), Bier et al.
(2007) and Hoyer and Jaegher (2010), but once again without focusing on the effects of network 
structure.

Though focusing on different types of interactions, the literature on network games, and 
in particular the subbranch on the private provision of public goods over networks, is also 
closely related to our work. Papers such as Ballester et al. (2006), Bramoulle and Kranton 
(2007a, 2007b), Calvo-Armengol et al. (2009), Galeotti et al. (2010), Bramoullé et al. (2014)
and Allouch (2015), show how equilibrium actions in such network games are often linked to 
simple network centrality measures. Given the nature of the interactions considered in these pa-
pers (e.g., linear-quadratic structures), the relevant statistics are typically standard eigenvector or 
Bonacich centrality measures. This contrasts with the rather different measures that emerge in 

3 Classic references on network formation include Jackson and Wolinsky (1996) and Bala and Goyal (2000). See also 
Jackson (2008) and Vega-Redondo (2007) for excellent book-length treatments of issues of contagion in networks and 
network formation.
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our environment, which relate to how much of a gatekeeper a node is and how protected it is by 
other gatekeepers in the network.4

The rest of the paper is organized as follows. Section 2 presents our basic model. Section 3
focuses on the case in which attacks are random (undirected with respect to security investments), 
while Section 4 considers strategic attacks (directed with respect to the security investment profile 
of agents). Section 5 concludes, while the Appendix contains all the proofs and some additional 
examples.

2. Model

We study the spread of infection among a set V = {1, . . . , n} of agents over a network. Agent 
interactions are represented by an undirected network G = (V , E), where E denotes the set of 
edges. An attacker exposes one of the agents to an infection (virus), which then spreads dynam-
ically to the other agents. The attacker’s decision of which agent to target is represented by the 
probability vector � = (φ1, . . . , φn), where φi denotes the probability of attacking agent i. We 
use the notation s to denote the selected target agent, also referred to as the seed agent. The 
infection is transmitted on the edges of the network.

Before the location of the attack is realized, each agent i invests in a security level qi ∈ [0, 1]
to decrease the chance of getting infected. We use q = [qj ]j∈V and q−K = [qj ]j∈V, j /∈K for an 
arbitrary set K ⊂ {1, . . . , n} to denote the security profiles (short for security investment profiles) 
of all agents and all agents other than agents in set K respectively.5 Here, qi can be interpreted as 
the probability that agent i is immune to the infection. Conversely, 1 − qi is the probability that 
the agent is susceptible, meaning that if the infection reaches her, she gets infected with probabil-
ity 1 − qi (independent of all other events).6 We use Xi to denote the indicator random variable 
which takes value 1 if agent i is susceptible and takes value 0, otherwise. Given network G, 
security profile q and attack decision �, we denote the probability of node i getting infected by 
Pi (G, q, �). The utility function of agent i, denoted by ui is given by

ui(G,q,�) = vi (1 − Pi (G,q,�)) − ci(qi),

where vi is the value agent i derives from being uninfected and ci(qi) is the cost agent i incurs 
for investing in security level qi . We assume vi = 1 in the rest of the paper, which is without loss 
of generality and we will also sometimes take the cost function to be the same to simplify the 
exposition. We adopt the following standard assumption on the investment cost function.

Assumption 1 (Investment cost). For each i, the function ci : [0, 1] → R
+ is continuously dif-

ferentiable, strictly increasing, strictly convex and satisfies the boundary conditions c(0) = 0, 
c′(0) = 0, and limq→1 c′(q) = ∞.7

We define (utilitarian) social welfare as the sum of the utilities of the agents in the network:

4 See Acemoglu et al. (2015), Golub and Jackson (2012), and Goyal and Vigier (2013) for other models of the spread 
of shocks or information over networks.

5 Unless otherwise stated, all vectors are taken to be column vectors.
6 If we think of the spread of the infection dynamically over the network, this implies that if the agent is not infected 

the first time the infection reaches her, she will not be infected in any of the subsequent instances.
7 The boundary conditions are imposed to simplify the exposition. All of our results can be generalized to the case in 

which these conditions are relaxed, though this would be at the expense of keeping track of whether an agent chooses 
positive investment.
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W(G,q,�) =
∑
i∈V

ui(G,q,�).

We use G−K for an arbitrary set K ⊂ V , to denote the network obtained from G after removing 
nodes in K from G. Given network G and security profile q, we define susceptible agents Vs ⊆ V

as the set of all i ∈ V for which Xi = 1. We then define the transmission network as the subgraph 
of the network G induced over Vs and denote it by Gt . The infection is transmitted through the 
transmission network. In particular, given transmission network Gt and seed agent s, the set of 
infected agents consists of the set of agents that belong to the same connected component with 
agent s in Gt . We refer to a path in the transmission network as an active path.

We study two different attack models: a random attack model in which the attacker targets 
each agent with attack decision �, which is determined exogenously and independent of the 
security investments of the agents, and a strategic attack model in which the location of the 
attack is determined by an adversary who observes the security profiles of all agents and chooses 
one agent to attack with the goal of maximizing expected infections. The random attack model 
represents the scenario where the attack is an exogenous random event and one of the agents is 
selected at random according to �. The strategic attack model on the other hand represents a 
strategic adversary wishing to maximize the damage to the network.8

3. Random attack model

In this section, we focus on the random attack model, where the attacker’s decision is an 
exogenously given probability vector � = (φ1, . . . , φn). We first present two useful characteriza-
tion results, delineating the impact of an agent’s security investments on the rest of the network. 
We use these characterizations to establish the existence of a pure-strategy Nash equilibrium for 
the resulting game and compare best response and welfare-maximizing strategies. Our most sub-
stantive results characterize equilibrium and socially optimal security investments in terms of the 
structure of the network for the case in which each agent’s security investment is “small”.

3.1. Key properties

Our first proposition provides a simple decomposition of individual utility functions into an 
own effect and network effects from other individuals.

Proposition 1 (Network effect). Given network G, security profile q, and attack decision �, the 
infection probability of agent i satisfies

Pi (G,q,�) = (1 − qi)P̃i(G,q−i ,�),

where P̃i(G, q−i , �) is the probability of the infection reaching agent i (including the probability 
of agent i being the seed).

As with all the other results in the paper, unless stated otherwise, the proof of this proposition 
is provided in the Appendix.

8 A hybrid model, where the attacker can target agents according to the characteristics but not their security invest-
ments, gives results very similar to the random attack model. We do not discuss this hybrid case to economize on space.
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This result is intuitive in view of the fact that agent i is susceptible to infection with probability 
1 − qi . If she is immune, then she will not get infected in any case. If she is susceptible, she will 
only get infected if the infection reaches her. In what follows, we refer to P̃i(G, q−i , �) as the 
network effect of G on i. The network effect on an agent admits a simple decomposition and can 
be computed recursively by considering the network with one agent removed at a time.9

Proposition 2 (Decomposition). Given network G, security profile q−j , and attack decision �, 
the probability of the infection reaching agent j , P̃j (G, q−j , �), satisfies the following: For all 
i ∈ V, i 	= j ,

P̃j (G,q−j ,�) = P̃j (G−i ,q−{i,j},�) + (1 − qi)Qji(G,q−{i,j},�),

where Qji(G, q−{i,j}, �) is the probability of infection reaching agent j only through a path that 
contains agent i conditional on i being susceptible.

We refer to (1 − qi)Qji(G, q−{i,j}, �) as the externality of i on j .
This decomposition follows from considering the following mutually exclusive events under 

which infection reaches agent j : (A) there exists an active path from the seed agent s to j in 
the transmission network that does not include i, or (B) all possible paths from s to j in the 
transmission network go through i. The probability of the first event is equal to the probabil-
ity of infection reaching agent j in the network G−i and is independent of qi (and qj ).10 The 
probability of the second event can be written as the probability of infection reaching j through 
a path that contains i conditional on i being susceptible (which does not depend on qi) times 
the probability of i being susceptible, which is (1 − qi). In Section 3.2, we use Proposition 1 to 
characterize best response and equilibrium investments, and then we compare them to welfare-
maximizing investment levels which are obtained using Proposition 2. From Propositions 1 and 
2, ∂ui

∂qi∂qj
= −Qji(G, q−{i,j}, φ) < 0, which implies that our random attack model is a game of 

strategic substitutes, i.e., an agent will invest more when others are investing less.

3.2. Equilibrium investments

Using Proposition 1, we can write the utility function of agent i as

ui(G,q,�) =
(

1 − (1 − qi)P̃i(G,q−i ,�)
)

− ci(qi).

Similarly, fixing any i ∈ V , from Propositions 1 and 2, social welfare takes the following form:

W(G,q) =
∑
j∈V

uj (G,q,�) (1)

=
(

1 − (1 − qi)P̃i(G,q−i ,�)
)

− ci(qi)

+
∑

j∈V j 	=i

(
1 − (1 − qj )

(
P̃j (G−{i},q−{i,j},�) + (1 − qi)Qji(G,q−{i,j},�)

))

− cj (qj ).

9 In a graph G = (V , E), a path between nodes u and v is a sequence of node and edges, u = v0, e1, v1, e2, . . . , ek,

vk = v where ei = (vi−1, vi) ∈ E, for all 1 ≤ i ≤ k with no repeated edges and nodes.
10 This probability does not depend on �i , nevertheless we keep the dependence on the entire vector � to simplify the 
notation.
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A security profile qe is a (pure-strategy) Nash equilibrium if for all i ∈ V and all qi ∈ [0, 1],
ui(G,qe,�) ≥ ui(G, (qi,qe−i ),�).

Similarly, a security profile qs is a social optimum if for all q ∈ [0, 1]n,

W(G,qs ,�) ≥ W(G,q,�),

i.e., qs is a global maximum of the social welfare function.

Theorem 1 (Equilibrium existence). Suppose Assumption 1 holds. Then, for any network G, 
a pure-strategy Nash equilibrium exists in the random attack model. Moreover, if c′′(x) ≥ n for 
all x ∈ [0, 1], the pure-strategy Nash equilibrium is unique.

The existence of a pure-strategy Nash equilibrium follows readily from the concavity of the 
utility function ui(G, q, �) in qi , its continuity in q, and the fact that the strategy spaces are 
compact. Since the arguments are standard, we omit a formal proof. The uniqueness result builds 
on Rosen’s (1965) proof of uniqueness of equilibrium based on diagonal strict concavity.

It is useful for what follows to define the best response strategy of an agent i, Bi(q−i ), as the 
security level qi that maximizes her utility given the security profile q−i of other agents. Clearly:

c′
i (Bi(q−i )) = P̃i(G,q−i ,�). (2)

Similarly, the welfare maximizing strategy of agent i, Si(q−i ), which maximizes social wel-
fare given the security profile q−i of other agents, satisfies

c′
i (Si(q−i )) = P̃i(G,q−i ,�) +

∑
j 	=i

(1 − qj )Qji(G,q−{i,j},�). (3)

A comparison of these two expressions immediately establishes that

Bi(q−i ) ≤ Si(q−i ), (4)

or that an agent’s best response to a strategy profile is always less than the welfare-maximizing 
investment in response to the same profile.11 The network effect satisfies the following intuitive 
monotonicity properties.

Proposition 3. Given network G and two security profiles q and q̂, the following properties hold 
for each agent i ∈ V :

(a) If q−i ≥ q̂−i , then P̃i(G, q−i , �) ≤ P̃i(G, q̂−i , �).
(b) For any V̂ ⊂ V , P̃i(G−V̂

, q−(V̂ ∪{i}), �) ≤ P̃i(G, q−i , �).

(c) If P̃i(G, q−i , �) ≥ P̃i(G, q̂−i , �), then Bi(q−i ) ≥ Bi(q̂−i ).

Part (a) of this proposition states the intuitive fact that probability of the infection reaching 
agent i is smaller when other agents select a higher security profile. Part (b) establishes that the 

11 This relationship does not establish that every agent will underinvest in equilibrium relative to the welfare-maximizing 
strategy profile. This is because investment levels are strategic substitutes, and the underinvestment of one agent may 
trigger a sufficiently large increase in the investments of others, which then ends up overinvesting relative to the welfare-
maximizing profile.
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probability of the infection reaching agent i is smaller in a subgraph (which is intuitive in view of 
the fact that there are more paths along which infection can reach agent i in the original graph). 
Finally, part (c) shows that the best response strategy of agent i is higher when the network effect 
of G on i is higher.

3.3. Symmetric networks

Before moving to our main focus, which is general networks, we briefly discuss symmetric 
networks (with symmetric agents in terms of their cost function ci , which is denoted by c in this 
subsection). We use automorphism of a graph to define symmetric networks. An automorphism 
of a graph G = (V , E) is defined as a permutation σ of the node set V , such that the pair of nodes 
(u, v) ∈ E if and only if the pair (σ (u), σ(v)) ∈ E. Using this definition, we define symmetric 
networks as follows:

Definition 1 (Symmetric network). A network G = (V , E) is symmetric if for any two pair of 
adjacent nodes (u1, v1) ∈ E and (u2, v2) ∈ E, there exists an automorphism f : V → V such 
that f (u1) = u2 and f (v1) = v2.

Rings and complete graphs are examples of symmetric networks. Our next result shows that 
in symmetric networks, a unique symmetric equilibrium security profile exists and that invest-
ment levels in the symmetric equilibrium are always lower than the (unique) symmetric social 
optimum.

Theorem 2. Suppose Assumption 1 holds and all agents have the same cost function. Then, for 
any symmetric network, there exists a unique symmetric pure-strategy Nash equilibrium (with 
investment qe) and a unique symmetric social optimum (with investment qs). Moreover, qe ≤ qs .

The key result in Theorem 2 is the underinvestment in security in the symmetric equilibrium 
relative to the social optimum. This result, which confirms those in the existing literature, has a 
straightforward intuition, which can be seen from Eq. (4): given the security profile of all other 
agents, an individual always has weaker incentives to invest in security in the best response 
strategy than in the welfare maximizing strategy. In a symmetric equilibrium this implies that 
everybody will have weaker incentives to invest in security, leading to underinvestment.12

3.4. Network centrality and equilibrium investments

We now consider a situation in which equilibrium investments are all “small”, which will 
enable us to undertake a tractable first-order Taylor series expansion of best responses, and then 
express equilibrium investments in terms of the network position (centrality) of each agent.

Let us simplify the exposition in the rest of this section by assuming that all agents have 
the same cost function, and that � = ( 1

n
, ... 1

n
), so that each agent is attacked with the same 

probability, 1
n

.13 We also simplify the notation by suppressing � from Pi (G, q,�), writing it 
simply as Pi (G, q).

12 Symmetric networks may have asymmetric equilibria, because the game is strategic substitute. See Bramoullé et al.
(2014) for detailed discussion on multiplicity of equilibria in strategic substitute games.
13 Both of these assumptions can be relaxed without any significant effect on our results.
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Fig. 1. Examples of gatekeeper indicator variable.

We next characterize equilibrium investments in terms of the position of each agent within 
the network (and some implied network centrality measures). The key notion will turn out to 
be whether a node is a “gatekeeper” between two other agents, so that the infection traveling 
from one agent to the other has to pass through this node. In particular, let aj

ik be an indicator 
variable that takes value 1 if node j is a gatekeeper between nodes i and k, meaning that j is 
included in all paths between i and k; in this case, if j were removed, the infection could not 
travel from agent i to agent k. We define aj

ii = 0 for all j 	= i, and aj
ij = 1 and aj

ji = 1. For 
example in the network shown in Fig. 1a, node 1 is a gatekeeper between node 2 and node 4, i.e., 
a1

24 = 1, and in Fig. 1b, node 1 is not a gatekeeper between node 2 and node 4 since they still 
stay connected if node 1 is removed, thus a1

24 = 0, though 1 is a gatekeeper between 2 and 3. 
Based on this definition, we define the “protection” of node j for node i (meaning how much of 
a gatekeeper node j is in protecting agent i), denoted by aj

i , as the fraction of nodes for which j
is a gatekeeper to reach i.

Definition 2. The protection of node j for node i, aj
i , is defined as aj

i ≡ 1
n

∑
k a

j
ik , with the 

convention that ai
i = 1 for all i.14

In Fig. 1a, the protection of node 1 for 2 is 3/4, and in Fig. 1b, the protection of node 1 for 2 is 
2/4. Intuitively, the protection of node j for node i designates how much of the infection can be 
blocked by node j on its way to i: the more protection node j provides for node i, the more the 
infection probability of node i depends on node j ’s security investment. Our first result provides 
a characterization of network effect of G on i, which we combine with Eq. (2) to characterize 
the equilibrium security investments.

Proposition 4. Given a network G and the security investment q, we have15

P̃i(G,q−i ) = 1 −
∑
j 	=i

a
j
i qj + o(||q||∞).

Because this proposition forms a foundation for many of our subsequent results and because 
it helps introduce several important notions we use in the rest of the analysis, we give a detailed 
sketch of the proof here. We start with the proof for tree networks. Note that we can express the 
network effect of G on i as

14 For general � 	= ( 1
n , . . . , 1n ), we define aj

i
≡ ∑

k a
j
ik

φk .
15 We use the notation o(x) to denote a function h(x) that satisfies limx→0

h(x) = 0.
x
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P̃i(G,q−i ) = 1

n
+ 1

n

∑
k 	=i

P rob({i ↔ k}|Xi = 1) (5)

The first term on the right hand side, is the probability that agent i is attacked and the second 
term is the sum over all agents k 	= i, the probability that agent k is attacked and there is an 
active path between i and k, denoted by the event {i ↔ k}, conditional on i being susceptible. 
The assumption of α = c′′(0) sufficiently large ensures that the equilibrium security investments 
are small and we can express Prob({i ↔ k}|Xi = 1) as

Prob({i ↔ k}|Xi = 1) =
∏

j∈i↔k,j 	=i

(1 − qj ) = 1 −
∑

j∈i↔k,j 	=i

qj + o(||q||∞), (6)

where we used the notation i ↔ k to denote the active path from i to k. Since G is a tree, there is 
a unique path between i and k, therefore, j ∈ i ↔ k if and only if aj

ik = 1, i.e., j is a gatekeeper 
between i and k. Therefore, we can rewrite Eq. (6) as

Prob({i ↔ k}|Xi = 1) = 1 −
∑
j 	=i

a
j
ikqj + o(||q||∞).

Combining with Eq. (5), we obtain

P̃i(G,q−i ) = 1

n
+ 1

n

∑
k 	=i

P rob({i ↔ k}|Xi = 1)

= 1

n
+ 1

n

∑
k 	=i

(1 −
∑
j 	=i

a
j
ikqj ) + o(||q||∞) = 1 −

∑
j 	=i

a
j
i qj + o(||q||∞).

To extend the proof to general networks, we use a fundamental decomposition result from graph 
theory, referred to as block tree decomposition of a graph (Hopcroft and Tarjan, 1973). To state 
this result, we first define a connected graph to be biconnected if removal of any single node 
cannot make the graph disconnected (e.g. a ring network is biconnected). We also define a cut 
vertex to be a node whose removal makes the graph disconnected. Hence, a biconnected graph 
does not have a cut vertex. A tree network is not biconnected, and nodes except the leaves are cut 
vertices. The block-tree decomposition by Hopcroft and Tarjan (1973) states that any connected 
graph can be decomposed into a unique tree of maximal biconnected components.16 We call each 
maximal biconnected component a block and the tree of blocks as the block tree of the graph. 
More formally, given a graph G, we define its block tree as a tree with its nodes consisting of 
all cut vertices of G and also all blocks of G (where a block is joined to all cut vertices of G
contained in the block).

We use the block tree decomposition of graph G to analyze the probability that there is an 
active path between i and k, Prob({i ↔ k}|Xi = 1). Consider the unique path from i to k in the 
block tree decomposition of G, defined in terms of the cut vertices shared between the blocks, 
denoted by v1, . . . , vt , and let i = v0 and k = vt+1 (where v1 and vt are cut vertices in the blocks 
that i and k belong to). We characterize Prob({i ↔ k}|Xi = 1) as

Prob({i ↔ k}|Xi = 1) (7)

16 Each biconnected component is maximal in a sense that the addition of any other node in the graph will make it 
non-biconnected. We will use this additional property of components in our proof.
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=
t+1∏
j=1

Prob(vj is susceptible )

t∏
j=0

Prob({vj ↔ vj+1}|vj &vj+1 are susceptible).

Since vj and vj+1 belong to the same block, which is a biconnected component, we have

Prob({vj ↔ vj+1}|vj &vj+1 are susceptible ) = 1 − o(||q||∞), (8)

i.e., in order to have no active paths between vj and vj+1, we need to have at least two nodes 
on the paths between vj and vj+1 to be immune, the probability of which is given by o(||q||∞). 
Combining Eqs. (7) and (8), we have

Prob({i ↔ k}|Xi = 1) =
t+1∏
j=1

Prob(vj is susceptible ) · (1 − o(||q||∞) (9)

= 1 −
t+1∑
j=1

qj + o(||q||∞) = 1 −
∑
j 	=i

a
j
ikqj + o(||q||∞).

The third equality holds since only the cut vertices (and node k) on the unique path between 
i and k in the block tree are the gatekeepers between i and k in G, therefore, aj

ik = 1 for all 

j ∈ {v1, . . . , vt+1} and aj
ik = 0, otherwise. Combining Proposition 4 with the best response rep-

resentation in Eq. (2), we obtain the full characterization of qe in terms of protection values aj
i . 

In the rest of the paper, we will use the notation a
α≈ b as a shorthand for ‖a − b‖2 = o( 1

α2 ).

Theorem 3. Suppose Assumption 1 holds. Then for α = c′′(0) sufficiently large, the equilibrium 
security investments are given by

qe α≈ (A + αI)−1 e, (10)

where A is the matrix with Aij = a
j
i , for j 	= i, Aii = 0, and e is the vector of all 1’s.17,18

With a further approximation, we also have

qe α≈ 1

α
e − 1

α2
Ae. (11)

This theorem is stated under the assumption that c′′(0) is sufficiently large. Under this assump-
tion, we show that the payoff functions are diagonally strictly concave, which implies that the 
equilibrium security investments are unique. Also, this assumption ensures that the last part of 
the theorem follows because, when α is large, we can also approximate Eq. (10) as

(A + αI)−1 = 1

α

(
A

α
+ I

)−1
α≈ I

α
− A

α2
.

17 Directly imposing that these investments are small, we could have written Eq. (10) as qe = (A + αI)−1e +
1
α o(||q||∞). An alternative would have been to assume that the marginal cost of investment at zero, c′(0), is suffi-
ciently large, which would also rule out very high equilibrium security investment levels, though in this case we would 
have to keep track of the agents choosing zero investment, substantially complicating the analysis.
18 It is also straightforward to generalize this theorem to the case of arbitrary � with 

∑
j∈V φj < 1, which would 

change Eq. (10) to qe = (A + αI)−1e
∑

j∈V φj + o( 1
2 ).
α
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It is also useful to remark that Eq. (10) holds even when α = c′′(0) is not large, since we have 
included the residual term o( 1

α2 ) explicitly, though in this case there may also be non-unique 
equilibrium investment levels.

We next introduce a new network centrality measure, called the protection centrality, mea-
suring how much of a gatekeeper a particular node is to all agents in the network, and use this 
centrality measure to provide a ranking of the equilibrium security investments of all agents 
in the same or different networks, again focusing on the case where α is large (or equilibrium 
investments are small).

Definition 3. Given network G, we define the protection centrality of node i, ai as the sum of 
the row i of A, i.e., ai ≡ ∑

j a
j
i .

As can be seen from the definition, ai measures how protected node i is by gatekeepers, i.e., 
ai will be high if i is connected to the rest of the network through gatekeepers. Intuitively, when 
gatekeepers limit exposure of node i to infection or when node i is more blocked, the infection 
is less likely to reach it. Using Theorem 3, we have

qe
i

α≈ 1

α

⎛
⎝1 − 1

α

∑
j 	=i

a
j
i

⎞
⎠ = 1

α

(
1 − 1

α
ai

)
. (12)

As highlighted in Eq. (12), when ai is high, i will choose a lower level of security investment. 
This expression is particularly simple since ai is only a function of position of i in G. Based on 
this, we can also compare equilibrium investments of different nodes (in the same or different 
networks).

Corollary 1. Suppose Assumption 1 holds and α = c′′(0) is sufficiently large. Let G and Ĝ be 
two (arbitrary) networks. For agents i, j belonging to G and Ĝ, respectively, if agent j has 
lower protection centrality (is less protected via gatekeepers) than agent i, then it has a greater 
equilibrium security investment.

This corollary provides a sharp characterization (in particular because it applies to any two 
arbitrary networks), and shows that the ranking of the investments of any two nodes (in any two 
networks) is simply in terms of their protection centrality measures: the node with greater pro-
tection centrality will invest less. The next example illustrates one implication of this corollary.

Example 1. Consider two networks depicted in Fig. 2. The protection centrality of node x, ax , 
is given by ax = ∑6

i=1 ai
x = 2 × 3/7 + 4 × 1/7 = 10/7, because nodes 1 and 4 have protection 

of 3/7 for x whereas all the other nodes are only gatekeepers for themselves and thus have 
protection of 1/7. The protection centrality of node y, ay , is, on the other hand, given by ay =∑6

i=1 ai
y = 6 ×1/7 = 6/7. Thus, ax > ay , i.e., the protection centrality of x is higher than y. This 

is because node x is more “blocked” than node y as it is protected by two gatekeepers, nodes 1 
and 4, which block the infection coming from nodes 2, 3, 5 and 6. Corollary 1 then implies that 
qe
x < qe

y , i.e., the more blocked node x invests less than node y.

The most substantive result of this corollary is that when security investments are small, the 
protection is the key structural feature of a network determining equilibrium security investments. 



D. Acemoglu et al. / Journal of Economic Theory 166 (2016) 536–585 549
Fig. 2. Node x invests less in the equilibrium compared to node y.

To understand the implications of this result, we first consider the case where the underlying net-
work is a tree, and then explain the implications of this result for general networks.19 For tree 
networks, ai is just the average distance of the nodes to node i, and therefore, ai has the same 
ordering as the “closeness centrality”, i.e., for tree networks, nodes with higher closeness cen-
trality have higher equilibrium security investments.20 Moreover, rooting the tree at the node 
with the highest closeness centrality, as we move from the root toward the leaves, the closeness 
centrality decreases, which implies that the protection centrality increases, and the security in-
vestments decrease. In tree networks, the node with the highest closeness centrality also has the 
balancing property, i.e., the maximum size of the subtree rooted at his children is minimized. We 
will use this definition, to define balancing node for general networks, which also has the highest 
equilibrium security investment.

For general networks, we again consider the block tree decomposition of the network. In the 
block tree decomposition, we call two cut vertices adjacent, if they have a common neighbor 
(which is a block) in the decomposition. A cut vertex v is balancing if rooting the block tree 
at v, the maximum size of all subtrees rooted at his adjacent cut vertices, i.e., the size of the 
blocks in that subtree, is minimized among all cut vertices. We show that the balancing node 
i has the lowest ai , which implies that the balancing node has the highest equilibrium security 
investment. Moreover, as we move down the block tree rooted at the balancing cut vertex toward 
the leaves, the protection centrality increase, and as a result the equilibrium security investments 
of cut vertices decrease. We next formally state these results.

Corollary 2. Suppose Assumption 1 holds and α = c′′(0) is sufficiently large. Consider the block 
tree decomposition of a given network. Then:

(a) The balancing cut vertex has the highest equilibrium security investment in the network.
(b) Given two adjacent cut vertices i and j in the block tree, the node closer to the balancing 

cut vertex has higher equilibrium security investment.
(c) In each block, the equilibrium security investments of the cut vertices of the block are higher 

than the non-cut vertices belonging to that block. Moreover, the equilibrium security invest-
ments of all non-cut vertices in a block are the same up to o( 1

α2 ) error.

19 The theorem does not assume that the network is a tree. We are using the tree example to illustrate the idea.
20 In connected graphs farness of a node s is defined as the sum of the length of their shortest paths to all other nodes, 
and its closeness is defined as the reciprocal of the farness (Bavelas, 1950).
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Fig. 3. Examples of separating pairs.

This result implies that the node that balances the network has the highest security investment 
in the equilibrium, and as nodes get farther from this node, their security investments decrease.

3.5. Network centrality and socially optimal investments

We next provide a characterization of socially optimal security investments of agents as a 
function of their position in the network, and compare these to equilibrium investment. It will turn 
out that socially optimal investments depend not on the notion of protection centrality introduced 
in the previous subsection (in particular, recall Corollary 1), but a different notion related to 
gatekeeping centrality in the network: how much of a gatekeeper an agent is to the rest of the 
network. This is intuitive: as explained in subsection 3.4, in equilibrium an agent estimates the 
number of active paths from other agents to himself, i.e., the number of paths that are not blocked. 
However, in the socially optimal solution, an agent’s investment should depend on the number of 
pairs of nodes that the node blocks.

Preparing for a formal derivation for these results, let us define, b(i,j)
kt ∈ {0, 1} as an indicator 

variable that takes value 1 if i and j is a separating pair defined as follows: (i, j) is a separating 
pair for nodes k and t if neither of these two nodes is a gatekeeper between nodes k and t (i.e., 
ai
tk = 0 and aj

tk = 0), but all paths between k and t includes either i or j . Put differently, (i, j) is 
a separating pair, if removing either one of them will not disconnect nodes k and t , but removing 
both will do so. For example in Fig. 3a, (1, 3) is a separating pair for 2, 4, i.e., b(1,3)

24 = 1, in 
Fig. 3b, even though after removing nodes 1 and 3, nodes 2 and 4 become disconnected, (1, 3)

is not a separating pair between them, since a1
24 = 1, thus b(1,3)

24 = 0, and in Fig. 3c, nodes 2 and 

4 stay connected even after removing both 1 and 3, thus b(1,3)
24 = 0. Based on this definition, we 

define network separation of node i and node j as the difference between the number of pairs 
for which both i and j are gatekeepers and the number of pairs for which (i, j) is a separating 
pair. More formally:

Definition 4. Given network G, network separation of i and j is defined as bj
i = 1

n

∑
k,t

(
a

j
kta

i
kt −

b
(i,j)
kt

)
, with the convention that bi

i = 0.21 We also define the gatekeeping centrality of node i, 

denoted by si , as si = ∑
j ai

j .

21 Note that bi = b
j .
j i
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Intuitively, the gatekeeping centrality of node i measures the number of pairs of nodes for 
which i is a gatekeeper. In the example given in Fig. 3b, b1

3 = 3
2 , in Fig. 3a, b1

3 = 0, and in 
Fig. 3c, b1

3 = 1
2 . We next provide a characterization of socially optimal investments in terms of 

b
j
i and si .

Theorem 4. Suppose Assumption 1 holds. The socially optimal security investments are given 
by

qs α≈ (B + αI)−1 s, (13)

where B is the matrix with Bij = b
j
i for all j , and s is the vector of si ’s (as defined in Defini-

tion 4).

This theorem demonstrates that when security investments are small, the network separation 
property is the key structural feature that defines the socially optimal security investments. We 
provide a sketch of the proof here (see Appendix A for details). The proof relies on the charac-
terization of social optimal security investments given in Eq. (3), i.e.,

c′(qs
i ) = P̃i(G,q−i ) +

∑
j

(1 − qj )Qji(G,q), (14)

which follows from the decomposition provided in Proposition 2. Note that the left hand side in 
this expression is the sum of the network effect of G on i and the externality of i on other agents. 
The proof proceeds by characterizing these two expressions using the gatekeeper and separating 
pair properties of nodes. In particular, using an argument similar to the one used for equilibrium 
investments (following Proposition 4), we obtain

P̃i(G,q−i ) = 1 −
∑
j

a
j
i qj + o(||q||∞). (15)

We next write, the externality of i on j , as

Qji(G,q)(1 − qj ) = ai
j − 1

n

∑
k 	=i

∑
t

(
ai
jt a

k
jt − b

(i,k)
j t

)
qk + o(||q||∞) (16)

The first term on the right hand side represents the fraction of nodes for which i is a gatekeeper 
to reach j , which is the same as the probability that infection falls on any of the nodes, 1

n
, times 

the number of such nodes. The second term, representing the fraction of nodes that are blocked 
from j by both i and k (conditioned on k being immune), corrects for the double-counting in the 
first term.22 The third term represents the fraction of nodes that are blocked from j when both i
and k are immune, i.e., (i, k) is a separating pair for j and all nodes in that set. Note that when 
(i, k) is a separating pair between j and t , if k is immune, which happens with probability qk , all 
paths from t to j go through i, and should be counted in Qji(G, q).23 Combining Eqs. (15) and 
(16), we obtain

22 Note that because of linearization, when computing the conditional probability Qji , we only need to consider double-
counting due to another node k blocking infection paths to j , in addition to i. Double-counting due to three or more nodes 
blocking paths to j is second-order and neglected.
23 To formalize the argument for general networks similar to Proposition 4, we use in the appendix a well-known unique 
decomposition of networks, first by their cut vertices and then by their separating pairs, by Hopcroft and Tarjan (1973).
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P̃i(G,q−i ) +
∑
j 	=i

Qji(G,q)(1 − qj )

= 1 −
∑

k

ak
i qk +

∑
j 	=i

ai
j − 1

n

∑
k 	=i

∑
t

(
ai
jt a

k
jt − b

(i,k)
j t

)
qk + o(||q||∞)

= 1 +
∑
j 	=i

a
j
i −

∑
k 	=i

qk

⎛
⎝ak

i + 1

n

∑
j 	=i

∑
t

ai
j t a

k
jt + b

(i,k)
j t

⎞
⎠ + o(||q||∞)

= si −
∑
k 	=i

qkb
k
i + o(||q||∞).

The third equality here follows from the fact that for j = i, we have

1

n

∑
t

(
ai
jt a

k
jt + b

(i,k)
j t

)
= 1

n

∑
t

ak
it = ak

i ,

since ai
it = 1 and b(i,k)

it = 0 for all t . Combining this with Eq. (14), Theorem 4 follows.
Under the assumption that α is large, we can express the socially optimal investments as

qs α≈ 1

α

[(
I − B

α

)
s
]

.

This yields the following characterization for socially optimal security investments:

qs
i

α≈ 1

α

⎛
⎝si − 1

α

∑
j

Bij sj

⎞
⎠ . (17)

This expression highlights the role of the gatekeeping centrality of node i for its socially optimal 
level of investment.24 The next corollary uses this characterization to provide a comparison of 
equilibrium and socially optimal levels of investment.

Corollary 3. Suppose Assumption 1 holds and α = c′′(0) is sufficiently large. Then:

• The equilibrium security investments are smaller than the socially optimal security invest-
ments.

• The node with the largest gatekeeping centrality increases its investment the most in the 
socially optimal solution compared to the equilibrium.

• For all nodes with the same gatekeeping centrality, the gap between socially optimal invest-
ment and equilibrium is proportional to ai − ∑

j Bij sj .

By combining Eqs. (12) and (17), we have

qs
i − qe

i

α≈ 1

α

∑
j 	=i

ai
j − 1

α2

⎛
⎝∑

j 	=i

Bij sj − a
j
i

⎞
⎠ . (18)

24 In tree networks, b(i,j)
kt

terms are equal to zero, and thus the socially optimal investments can be expressed as a 
function of protections of nodes. In other networks, these terms are not zero due to the presence of separating pairs.
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Also by definition ai
j ≥ 1

n
, since node i is a gatekeeper between himself and j , hence, 

∑
j 	=i a

i
j ≥

1 − 1
n

. Therefore, the first term on the right hand side of Eq. (18) is strictly positive, and assuming 
α sufficiently large, it implies the first part of Corollary 3, i.e., qs

i > qe
i , for all nodes i. Moreover, 

for α sufficiently large, neglecting second order terms, this gap is proportional to si − 1, which 
implies the second part of the corollary. Finally, for two nodes i and k, if si = sk , to compare the 
gap between the equilibrium and socially optimal investments in Eq. (18), one should consider 
the second term on the right hand side, i.e., in this scenario, if ai − ∑

j Bij sj > ak − ∑
j Bkj sj , 

then qs
i −qe

i < qs
k −qe

k . To draw out the implications of this corollary, we can partition the nodes 
of a given graph into three classes:

(A) Nodes that are not cut vertices and also do not belong to any separating pair.
(B) Nodes that are not cut vertices but belong to at least one separating pair.
(C) Cut vertices.

We show that the gap between socially optimal and equilibrium security investments, is ordered 
from lowest in class (A), to highest in class (C), using Corollary 3. Note that for node i in 
class (A), since i is not a cut vertex, si − 1 = ∑

j 	=i a
i
j = 1 − 1

n
, takes its smallest value and 

Bij = 2
n

for all j since i does not belong to any separating pair. For node i in class (B), si − 1
still takes its lowest value, however, compared to nodes in class (A), he has higher gap between 
socially optimal and equilibrium security investments. Note that for any node j that forms a 
separating pair with i, 

∑
j Bij sj < 2

n

∑
j sj , and therefore Corollary 3 implies that nodes in class 

(B) have higher gaps between socially optimal and equilibrium investment levels than those in 
class (A). Finally, for a given node i in class (C), si −1 > 1 − 1

n
, since ai

j > 1
n

for all j . Therefore, 

the gap in class (C) is strictly higher compared to the nodes in class (A) or (B).25

Intuitively, the social planner would like an agent to invest more when this agent is more of a 
gatekeeper, and thus her investment will protect a greater number of nodes in the network. Cru-
cially, this is very different than the calculus that an agent engages in equilibrium, which, as we 
showed before, is related to how blocked the agent is by other nodes — her protection centrality. 
In general these two notions of centrality will not coincide, implying not only a gap between 
equilibrium and social optimum, but also that the ranking of nodes in terms of their investments 
in equilibrium and the socially optimal allocation will differ depending on the network positions 
of the nodes and the global properties of the network.

The next example illustrates some of these ideas by comparing equilibrium and social opti-
mum investment level in different networks, and shows that even in tree networks, the node with 
the highest security investment in equilibrium could be different from the node with the highest 
security investment in the social optimum.

Example 2. Consider nodes x and y in the networks given in Fig. 4. In the star network, x has 
the lowest protection centrality and also has the highest gatekeeping centrality. Hence, x has the 
highest investment both in the equilibrium and the socially optimal investment. However, in the 
network given in Fig. 4b, y has the lowest protection centrality, but c and d have the highest 
gatekeeping centrality. This implies that qe

c < qe
y while qs

c > qs
y .

25 It is also useful to note that in tree networks, the ranking obtained by the gatekeeping centrality is the same as the 
betweenness centrality measure, though this is not generally the case for non-tree networks.
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Fig. 4. The node with the highest security investment in the equilibrium may or may not coincide with the social optimum.

3.6. Equilibrium investment with probabilistic contagious links

In this and the next two sections, we consider various extensions of our baseline model and 
show that the main insights highlighted above continue to apply in these cases. To economize 
on space, we focus on equilibrium investments. We start with a generalization of the stochastic 
process by which an infection spreads over the network. In our baseline model, the infection is 
transmitted with probability 1 on any link (and is only prevented from further spreading when it 
encounters a node that is immune because of its security investments). Here we generalize this, 
assuming that each infected node transmits infection to any of his neighbors independently with 
probability β ≤ 1, which defines a more general percolation process over the network (similar 
to the independent cascade model studied in Kempe et al., 2003). To study this, given a network 
G = (V , E), we consider a random graph G(β) constructed by including each edge of G with 
probability β , independent from every other edge. Equivalently, all graphs G(V, E ′) with E ′ ⊆ E , 
and |E ′| = k, have equal probability of βk(1 − β)|E|−k .

Using this definition, let γij denote the probability of j being connected to i in G(β), so that 
γi = 1

n

∑
j γij is the expected size of the component connected to i in G(β). We also define σ j

ki , 
as the probability of k being connected to i in G−j (β), where G−j (β) is the graph obtained from 
G(β) after removing node j .

Based on these definitions, we define the probabilistic gatekeeper value of node j between 
node i and node k, as zj

ik = γik − σ
j
ik . Note that zj

ik is similar to aj
ik , and in fact if β = 1, we 

have zj
ik = a

j
ik since γik = 1 and σ j

ik = 1 − a
j
ik (when β = 1, after removing j , i and k stay 

connected if and only if j is not a gatekeeper between them). Based on this definition, we define 
the expected protection value of node j for node i, denoted by zj

i as the expected fraction of 
nodes for which j is a probabilistic gatekeeper to reach i.

Definition 5. The expected protection value of node j for node i, zj
i is defined as zj

i ≡ 1
n

∑
k z

j
ik , 

with the convention that zi
i = 1.

Intuitively the expected protection value of node j for node i defines how much of the 
infection can be blocked by j on its way to i. Similar to subsection 3.4, we first provide a 
characterization of network effect of G on i.
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Proposition 5. Given a random network G(β) and security investments q, we have

P̃i(G(β),q) = γi −
∑
j 	=i

qj z
j
i + o (||q||∞) .

The first term on the right-hand side is the probability that the seed node is in the same con-
nected component as i in G(β), and the second term is the probability of i being protected by 
any other node j from i. Intuitively, zj

i represents the expected protection of node j for node i, 

and when β = 1, this quantity is exactly aj
i . We next characterize the equilibrium investments 

using Proposition 5.

Theorem 5. Suppose Assumption 1 holds. For α = c′′(0) sufficiently large, the equilibrium secu-
rity investments satisfy

qe = (Z + αI)−1 γ + o

(
1

α2

)
, (19)

where Z is the matrix with Zij = z
j
i , and Zii = 0.

This theorem provides a direct generalization of Theorem 3. To see the relationship between 
the two theorems more clearly, let us take another Taylor approximation, which gives

qe =
(

I
α

− Z
α2

)
γ + o

(
1

α2

)
, (20)

or

qe
i = 1

α

⎛
⎝γi − 1

α

∑
k 	=i

zk
i γk

⎞
⎠ + o

(
1

α2

)
.

Eq. (20) can be directly compared to Eq. (11). In particular, when β = 1, Eq. (20) is the same 
as Eq. (11). More generally, when β < 1, the equilibrium investment of a node inherits the in-
fluences already highlighted in Theorem 3, but in addition, depends on the expected size of the 
component attached to that node in G(β), given by γi . Moreover, the expected protection values 
of node j for node i is scaled by the expected size of the component of j , γj , which represents 
an approximation of the equilibrium security investment of j .

To see the difference that β < 1 makes, consider two different biconnected networks with 
four nodes, a ring network and a complete network. Let qe

r denote the symmetric equilibrium 
investment of nodes in ring network, and qe

c denote the symmetric equilibrium investment of 
nodes in complete network. For β = 1, using Eq. (11), we have

qe
r

α≈ qe
c

α≈ 1

α
(1 − 3

4α
).

When β < 1, Eq. (20) implies that the security investment of a node depends on γi , on whether 
it is blocked by other nodes, and how well connected those nodes are. Let γ c

i and γ r
i denote the 

expected size of the component attached to node i in the complete network and the ring network, 
respectively. Using Eq. (20), we calculate qc

i and qr
i for α = 2.5 and for various values of β , 

as given in Fig. 5. It can be seen from this figure that when β < 1, the approximate equilibrium 
investments may be different in biconnected networks. In fact, when α is sufficiently large (where 
we can ignore terms of o( 1 )), equilibrium investment of node i is proportional to γi , and as the 
α
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Fig. 5. Equilibrium security investments for various values of β , for a complete network and a ring network of size 4. 
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

network becomes denser, the equilibrium investment of all nodes increase. Moreover, in a given 
network, nodes with larger γi have higher equilibrium security investments.

3.7. Numerical results

Our results on the relationship of network and equilibrium investments were derived under 
the assumption that α = c′′(0) is large (or equilibrium investment levels are small). A natural 
question is whether the relationships highlighted by our characterization in Theorem 3 also apply 
when this assumption does not hold. In this section, we shed some light on this question by 
comparing equilibrium investment levels in general to those obtained in Theorem 3, and show a 
close correspondence.

For illustration purposes, we focus on a star network (of 21 nodes), a ring network of 11 nodes, 
two attached rings of 4 nodes (7 nodes in total) and also a barbell network of 20 and 40 nodes. 
Throughout we take β = 1. The figures that follow plot, for 5 ≤ α ≤ 100, the approximation qe

i

calculated from Theorem 3 and the approximation from Eq. (12) as well as the exact equilibrium 
investment levels (see Figs. 6, 7, 8, 9). Note that for a complete network of any size, when β = 1, 
Eq. (12) and the exact solution are the same. For the other networks, as shown in these figures, the 
gap between either approximation and the exact solution is low and goes to zero as α increases.

3.8. Network formation and equilibrium investments

In our baseline model, the network of connections is taken as exogenous. Though this is 
a good starting point, it is natural to wonder whether endogenous changes in network would 
fundamentally alter the insights highlighted so far. To provide an answer to this question, in this 
section we consider a more general setting, where agents obtain utility from their connections 
and can decide to sever these links in order to protect themselves against infection. For simplicity, 
throughout this section we take β = 1.

Formally, we assume that, before the location of the attack is realized, each agent i decides 
which subset Ẽi ⊂ E of his initial connections to maintain as well as his security investment 
level, qi ∈ [0, 1], as before. A connection between two agents will be maintained only if both 
agents decide to maintain the connection, i.e., an edge (i, j) will be maintained, if and only if 
(i, j) ∈ Ẽi ∩ Ẽj . We denote the set of maintained edges by Ê , and the induced network over these 
edges by Ĝ, i.e.,
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Fig. 6. Star network of size 21: the solid and dashed lines represent the exact and approximate equilibrium investments, 
respectively. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

Fig. 7. Equilibrium security investment levels as a function of α for a ring network of size 11. The solid line plots the 
exact equilibrium investment. The dashed line in (a) plots the approximation from Eq. (12) and the dashed line in (b) 
plots the approximation from Theorem 3.

Fig. 8. Equilibrium security investment levels as a function of α for a barbell network of size 20. The solid line plots the 
exact equilibrium investment. The dashed line in (a) plots the approximation from Eq. (12) and the dashed line in (b) 
plots the approximation from Theorem 3. (For interpretation of the references to color in this figure, the reader is referred 
to the web version of this article.)
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Fig. 9. Equilibrium security investment levels as a function of α for a connection of two rings of overall size 7. The solid 
line plots the exact equilibrium investment. The dashed line in (a) plots the approximation from Eq. (12) and the dashed 
line in (b) plots the approximation from Theorem 3. (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.)

Ĝ = (V , Ê), Ê =
{
(i, j) ∈ E : (i, j) ∈ Ẽi ∩ Ẽj

}
.

Given Ĝ and security investments q, the utility function of agent i is given by

ui(Ĝ,q) = vi |Êi |
(

1 − Pi (Ĝ,q)
)

− ci(qi), (21)

where vi is the value agent i derives from each connection conditional on being uninfected, and 
Êi = Ẽi ∩ Ê (i.e., neighbors of agent i in Ĝ). Similar to the rest of the paper, in this section, we 
assume vi = 1. We further focus on a quadratic cost function c(q) = α

2 q2 for simplicity.

Let Ci(Ĝ) denote the size of the connected component attached to i in Ĝ, and the component 
size vector of Ĝ is then defined as C(Ĝ) = [Ci(Ĝ)]i∈V . Using a similar argument to that of Theo-
rem 3, we first generalize the equilibrium investments characterization, removing the assumption 
that Ĝ is connected, and also allowing various agents to obtain different values when they are 
not infected. Note that in this setting Eq. (2) no longer holds. Instead, for a given network Ĝ, we 
have

c′(Bi(q−i )) = |Ei |P̃i(Ĝ,q−i ), (22)

where Bi(q−i ) denotes the security level that maximizes the utility of agent i. Furthermore, in 
this setting since Ĝ can be disconnected, we use an extension of Proposition 4 for a general 
(possibly disconnected) graph, i.e.,26

P̃i(Ĝ,q) = Ci(Ĝ)

n
−

∑
j 	=i

a
j
i (Ĝ)qj + o(||q||∞).

We next provide a characterization of equilibrium investments qe in terms of component size 
vector, degrees of the nodes and the protection values in Ĝ.

Proposition 6. Suppose Assumption 1 holds. Given a network Ĝ (not necessarily connected), for 
α = c′′(0) sufficiently large, the equilibrium security investments are unique and satisfy

26 For a general network (possibly disconnected), we use the same definition for aj
i

, i.e., aj
i
(Ĝ) = 1

n

∑
k a

j
ki

(Ĝ). Note 
that if i and k are not connected in Ĝ, aj

(Ĝ) = 0 for all j .

ik
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qe = 1

n

(
αI + KÂ

)−1
KC(Ĝ) + o

(
1

α2

)
,

where Â is the matrix with Âij = a
j
i (Ĝ), and K = Diag(|E1|, · · · , |En|).

For large α we can approximate the matrix inverse using Taylor’s series approximation, i.e.,(
I + 1

α
KA

)−1
α≈ I − 1

α
KA,

which yields the following characterization for equilibrium investments:

qe
i

α≈
[

1

nα

(
I − KÂ

α

)
KC(Ĝ)

]
i

= |Ei (Ĝ)|
α

⎛
⎝Ci(Ĝ)

n
− 1

α

∑
j 	=i

a
j
i (Ĝ)|Ej (Ĝ)|Cj (Ĝ)

n

⎞
⎠ .

(23)

Note that aj
i (Ĝ) 	= 0 if and only if j and i reside on the same connected component. Therefore, 

we can rewrite Eq. (23) as

qe
i

α≈ (
|Ei (Ĝ)|Ci(Ĝ)

n
)

1

α

⎛
⎝1 − 1

α

∑
j 	=i

a
j
i (Ĝ)|Ej (Ĝ)|

⎞
⎠ . (24)

When Ĝ is connected, Ci(Ĝ)
n

= 1, for all i, therefore, for α sufficiently large, qe
i is proportional 

to |Ei |, which implies that nodes with higher degree invest in more security. For an agent i with 
a given degree, the equilibrium investments also depend on 

∑
j 	=i a

j
i (Ĝ)|Ej (Ĝ)|, which means 

how protected node i is by other nodes of high degree. We next characterize the equilibrium 
network, once again under the assumption of c′′(0) = α sufficiently large. Using Eq. (22), we 
have

ui(Ĝ,qe) = |Ei |
(
(1 − (1 − qe

i )P̃i(Ĝ,qe−i )
)

− c(qe
i ) = |Ei | − (1 − qe

i )c
′(qe

i ) − c(qe
i )

Since c(q) = α
2 q2, using Eq. (24), the utility of agent i in the equilibrium can be expressed as

ui(Ĝ,qe) = |Ei |(1 − Ci(Ĝ)

n
) − 1

α

⎛
⎝ |Ei |Ci(Ĝ)

n
(
∑
j 	=i

a
j
i |Ej | − 1

2
)

⎞
⎠ + o(

1

α
).

This expression allows us to decompose the optimization problem of agent i: she first decides 
on the connections she maintains to maximize the number of connections times the probability of 
infection not being present in this component, then she selects her security investment according 
to Eq. (24).

Proposition 7. Suppose c(q) = α
2 q2. For α sufficiently large, in the network formation equi-

librium, agents maintain connections to maximize |Êi| 
(

1 − Ci(Ĝ)
n

)
in the equilibrium, where 

Êi = Ẽi ∩ Ẽ−i , and Ĝ = (V , Ê) with Ê = ∪j∈V Ẽj ∩ Ẽ−j .

Intuitively, agents try to decrease the size of the connected component they belong to by drop-
ping some of their connections, while maintaining as many edges as possible. When an agent 
decreases her degree, there are two forces affecting her utility: (i) the size of her connected 
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component (i.e., Ci(Ĝ)) decreases, resulting in larger utility (because with a smaller connected 
component, the risk of infection goes down); (ii) the size of her neighborhood (i.e., |Êi |) de-
creases, resulting in smaller utility.27

Overall, this characterization implies that the same forces as in Theorem 3 continue to apply 
when agents decide on their equilibrium security investments. However, we also obtain additional 
insights in this case as both security investments and individuals’ connection decisions depend 
on others’ connection decisions, which determine the size of the connected component in the 
graph.

4. Strategic attack model

We have so far focused on the random attack model where the attack decision � is determined 
randomly and independently from the security investments of the agents. In many applications, 
however, the attack is not a random event, but the act of a strategic adversary, intended on causing 
maximum damage. This, in particular, implies that the location of the attack will in general 
depend on network positions and security investments. In this section, we focus on this latter 
case. The main insight is that strategic attack generates a clear, new force towards overinvestment 
in security relative to the socially optimal security investments.

We consider a strategic attacker which, after observing the security profile of agents, selects an 
attack decision � = (φ1, . . . , φn) (where φi is the probability of attacking agent i) to maximize 
his utility given by expected infections minus the cost of the attack decision. We assume that the 
cost of an attack decision � is given by 

∑n
i=1 ζ(φi) where ζ is a convex function. We introduce 

a convex cost function for the attacker both for substantive and technical reasons. Substantively, 
targeting attacks according to the investment vector would require very precise knowledge about 
each agent’s investments. A convex cost function enables us to capture the idea that the closer 
the attacker would like to come to precisely targeting one agent over all others, the greater the 
cost it has to incur. Most importantly, the convexity of this cost function will also contribute to 
the existence of a pure-strategy equilibrium as we explain next.

Because in our model the attacker observes the security level of all the agents, the relevant 
equilibrium concept is that of the Stackelberg equilibrium of the resulting two stage game: the 
agents first select their security levels anticipating the decision of the attacker and the attacker 
optimizes his attack strategy given the security choices. We refer to it simply as “equilibrium” to 
simplify terminology.

The next example shows that, without the convexity of ζ , a pure-strategy equilibria may fail to 
exist for reasons similar to the non-existence of pure-strategy equilibria in Bertrand competition 
with capacity constraints, as the next example illustrates.

Example 3. Consider the network G with 2 singleton agents. We show that attacking a single 
agent without cost may lead to non-existence of a pure-strategy equilibrium. For any security 
profile q, the attacker selects the agent with minimum security level to attack. We next consider 
all possible candidates for a pure-strategy equilibrium and present a profitable deviation for each 
candidate, establishing non-existence:

27 Note however that the equilibrium solution may not be unique; see Appendix A for details.
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Finally, though most of the results in this section can be derived for general convex cost 
functions for the attacker, in the remainder we simplify the analysis by assuming a quadratic 
form:

Assumption 2 (Attack cost). ζ(φ) = θ
2 φ2.

4.1. Equilibrium in the strategic attack model

In this section, we study the equilibrium in the strategic attack model with convex cost. In the 
rest of this section, we will use the following notation. We use 1n to denote the vector of dimen-
sion n with each entry equal to 1

n
, ei to denote the vector of all 0’s except the ith entry which 

is 1, e to denote the vector of all 1’s, and I (G, q, �) to denote the expected number of infected 
people given the security profile q and attack decision �. The utility function of the attacker, 
given network G, security profile q, and an attack decision � = (φ1, . . . , φn), ua(G, q, �) is 
defined as follows:

ua(G,q,�) =
n∑

i=1

φi

I (G,q, ei)

n
− ζ(φi).

In this model, since the security choices of agents impact the location of the attack, the network 
effect on an agent is no longer independent of his security level, i.e., Proposition 1 does not hold 
for this model. This implies that security investments will no longer satisfy the characterization 
we used so far, cf. Eq. (2).

Nevertheless, expected infections when agent i is targeted (in the strategic attack model) are 
closely linked to the infection probability of agent i under random attack model (where, recall 
each agent is attacked with equal probability independent of their security investments). This 
property enables us to use the decomposition similar to that in Proposition 1 to write the utility 
function of the attacker in closed form.

Lemma 6. Given network G and security profile q, expected infections when agent i is attacked 
is I (G, q, ei) = nPi (G, q, 1n) = n(1 − qi)P̃i(G, q−i , 1n).

Intuitively, the infection probability of agent i under the random attack model is the probabil-
ity of having a path between i and a randomly selected agent. Conveniently, expected infections 
when i is attacked are given by the sum (over all j ) of the probability of having a path between 
i and j , and thus the two quantities are closely linked as shown in the lemma. Using this result, 
we next prove:

Theorem 7. In the strategic attack model, suppose that c′′(q)θ ≥ 2n and θ ≥ n. Then there exists 
a pure-strategy equilibrium.

The condition in this theorem is sufficient to ensure concavity of each agent’s utility in their 
own investment. This theorem clarifies the role of the parameter θ . When θ = 0, so that the 
attacker can target any node without cost, Example 3 showed the possibility that a pure-strategy 
equilibrium may fail to exist. The condition in this theorem prevents this possibility. In the next 
subsection, we show that for symmetric networks equilibria in the strategic attack model may 
involve overinvestment.
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4.2. Strategic attacks in symmetric networks

In this subsection, we consider the strategic attack model over symmetric networks. As ex-
plained in subsection 3.3, in the random attack model the security investments create positive 
externalities on others. Our results so far have shown that, under our baseline assumptions, this 
force ensures that expected equilibrium infections are greater than expected infections in the 
social optimum (see in particular Corollary 3). In the strategic attack model, however, security 
investments also create negative externalities on others because they divert the attacker to other 
agents. The next example shows the possibility of overinvestment with strategic attacks.

Example 4. Consider the line network with two agents and suppose the investment cost function 

is c′(q) = q
2(1−q)

for both agents, and attacker cost function is ζ(φ) = φ2

24 . It can be verified 
that the unique (pure-strategy) Nash equilibrium is qe = (0.66, 0.66) while the socially optimal 
security profile is qs = (0.63, 0.63).

The force towards overinvestment is intuitive: by investing more, an agent not only reduces 
the probability of infection conditional on attack, but also discourages attacks. The strategic 
attacker would prefer to target a low-investment node from where a successful attack can spread. 
A high level of investment, on the other hand, increases the likelihood that the attack will be 
dead in its tracks. This implies that, in addition to the positive externality identified so far (that 
security investments reduce infection probability for the rest of the network), there is a negative 
externality (that high security investments increase the probability that the attacker will target 
another agent). The example provides an instance where the negative externality dominates the 
positive externality, leading to overinvestment relative to the socially optimal investment levels. 
In fact, in contrast to our random attack model, our strategic attack model has elements of both 
strategic substitutes and complements. The latter element arises from the response of the strategic 
attacker who becomes more likely to target a node when others are investing more, thus inducing 
the node in question to also increase its investment. It is through this channel that there is an “arms 
race” between different nodes in this model, whereby each invests more in order to discourage 
the attack, in the process potentially amplifying the negative externalities they impose on others. 
This arms race was at the root of the non-existence problem in Example 3, and even though it 
does lead to non-existence of pure-strategy equilibria here, it does undergird overinvestment.

The next theorem provides a characterization of over- and underinvestment relative to the 
socially optimal investment levels in strongly symmetric networks. We first define strongly sym-
metric networks before stating the result.

Definition 6 (Strongly symmetric network). A network G is strongly symmetric if any permuta-
tion π : V → V is an automorphism. Similarly, a random network G drawn from a probability 
space (�, F, P) is strongly symmetric if by applying any permutation π : V → V the probability 
space of the random graph stays unchanged.

Note that rings are symmetric but not strongly symmetric. Examples of strongly symmetric 
networks include complete networks, Erdős–Rényi random graphs and random graphs with arbi-
trary degree distributions. Note also that for random networks, the interaction network need not 
be symmetric; rather, agent locations within the network are identical in expectation.
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Theorem 8. Suppose Assumptions 1 and 2 hold and the network G is strongly symmetric. Then a 
pure-strategy symmetric Nash equilibrium always exists. Furthermore, if θ ≥ 1 underinvestment 
always happens and if for all q ∈ [0, 1], c′′(q)θ > n and θ ≤ n−1

n2 c′−1( 1
n
) then overinvestment 

will happen.

The conditions for under/overinvestment in the theorem are intuitive and are related to the 
degree of convexity of the attacker’s cost function. Overinvestment requires this cost function 
not to be “too convex” (θ not too high), whereas underinvestment results when the cost function 
is highly convex (θ high). To understand this, recall the discussion of negative externalities in 
the strategic attack model provided above. If the attacker’s cost function were very convex, then 
the attacker would end up choosing probabilities of attack very close to those in the random 
attack model (uniform across all agents), thus muting the negative externalities resulting from 
the agents’ responses to a strategic attack.

4.3. Network centrality and strategic attack equilibrium investments

In this subsection, we provide a characterization of equilibrium security investments for strate-
gic attack model for a general network. This characterization highlights how the presence of 
strategic attacks changes investments relative to the random attack model and determines how 
equilibrium investments vary by network position. Let us first define dj

ik as the difference of the 
protection value of j for i when k is targeted and the protection value of j for i in the random 
attack model. Note that the gatekeeper indicator variable aj

ik specifies whether j can block the 

infection reaching i when k is attacked. With this interpretation, we can express dj
ik as

d
j
ik = a

j
ik − 1

n

∑
k

a
j
ik = a

j
ik − a

j
i .

This quantity captures whether node j becomes more of a gatekeeper when node k is attacked 
compared to the random attack profile. Based on this definition, we define inverse scaled protec-
tion of node k for node i, denoted by dj

i , as follows:

Definition 7. Given network G, for two nodes i, j , the scaled protection of j for i is dj
i =∑

k ai
kd

j
ik = ∑

k ai
k(a

j
ik − a

j
i ) We also define the inverse scaled protection of node i, di , as the 

negative of the sum of scaled protection of all nodes for node i, i.e., di = − 
∑

j 	=i d
j
i .

Note that ai
k is proportional to the number of people infected through i when k is attacked, 

which reflects the probability of agent k being attacked, and dj
ik denotes how much the protection 

of the node j for node i increases when k is attacked instead of having a random attack. Hence, 
scaled protection of j for i, dj

i , represents the expected increase in the protection value of j for i
in the strategic attack model compared to the random attack model and di represents the change 
in the expected protection of i in the strategic attack compared to the random attack model. We 
next provide a characterization of strategic attack equilibrium investments in terms of scaled 
protection measures.

Theorem 9. Suppose Assumptions 1 and 2 hold and α = c′′(0) and θ are sufficiently large. In the 
strategic attack model the equilibrium investments are given by
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qstattack α≈ (D + αI)−1 e,

where Dij = a
j
i + d

j
i

θ
for j 	= i, Dii = 0.

This characterization shows how security investments in the strategic attack model compare 
to the random attack model. Note that if dj

i = 0, then Dij = Aij .
We next present an alternative characterization of equilibrium security investments in the 

strategic attack model in terms of the inverse scaled protection of each agent, di . In particular, 
under the assumption that α is large, equilibrium investments can be expressed as

qstattack α≈ 1

α

(
I − D

α

)
e.

Expanding the right hand side, we have

qstattack
i

α≈ 1

α

⎛
⎝1 − 1

α

∑
j

Dij

⎞
⎠ = qe

i + 1

α2θ
di,

or

qstattack
i − qi

e

α≈ 1

α2θ
di,

where qe
i denotes the equilibrium investment of node i in the random attack model. It reflects 

the fact that some nodes will voluntarily increase their investment to decrease the probability 
of attack on nodes that they are not well protected against. Using this inverse scaled protection 
measure, we obtain the following characterization of strategic attack equilibrium investments 
relative to the random attack equilibrium investments.

Corollary 4. Suppose Assumptions 1 and 2 hold. For α = c′′(0) and θ sufficiently large, for a 
given network, the node with the greatest inverse scaled protection measure, di , has the greatest 
gap between random attack equilibrium security investment and the strategic attack equilibrium 
security investment.

To relate the inverse scaled protection measure to underlying network properties, we first 
consider tree networks. We first provide a characterization of di for tree networks based on 
average distance of nodes to i and the size of subtrees of i. We also show that di can take both 
positive and negative values, which implies that depending on the position of an agent in the 
graph, the equilibrium security investment in the strategic attack model might be lower or higher 
compared to the random attack model. In particular, for node i, let C1, . . . , Ck denote the size of 
the subtrees obtained after removing i, and let 
j denote the average distance of the nodes in the 
subtree j to node i. For a tree network, we have

di =
∑k

j=1 C2
j

n

(∑k
j=1 
jC

2
j∑k

j=1 C2
j

−
∑k

j=1 
jCj∑k
j=1 Cj

)
(25)

(see the appendix for the proof). This is equivalent to comparing the weighted average of dis-
tances with two different weights. For larger components, the weights of the first term are higher 
than the weights of the second term. Using Holders inequality, one can further show that if the 
larger subtrees have greater average distance, then this value is always positive, and thus the 
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Fig. 10. The security investment of node r in the equilibrium is lower in the strategic attack model compared to the 
random attack model.

agent in question will choose a greater security investment in the strategic attack model than 
in the random attack model. Note that in this scenario, an agent would like to shift the attack 
away from low average distance subtrees and towards a higher average distance component. This 
would enable her to have a larger distance from the source of the infection, which would increase 
her security.

On the other hand, if larger subtrees have smaller average distances, then this value is negative, 
inducing the agent to choose a lower level of investment in the strategic attack model than in 
the random attack model. Intuitively, agents are now taking into account the differential attack 
probability they will be subject to (relative to the random attack model). Some agents, because 
they are a convenient pathway to other nodes in the network, will particularly act strategically 
to direct the attacker to one or another part of the network. Recognizing this, they will choose 
greater or lower security investments. These considerations are captured by the inverse scaled 
protection measure, di , which approximates the scale with which i can direct the attacker toward 
another agent times the effect of this manipulation on i’s protection.

In general networks, in a biconnected component, any non-cut vertex i has di > 0, since

di =
∑
j 	=i

a
j
i

∑
k

ai
k −

∑
k

ai
k

∑
j 	=i

a
j
ik = 2n − 1

n

∑
j 	=i

a
j
i −

∑
k

1

n

∑
j 	=i

a
j
ik = n − 1

n

∑
j 	=i

a
j
i > 0

This implies that these nodes have greater security investments in the strategic attack model 
compared to the random attack model. The next example illustrates these considerations.

Example 5. Consider Fig. 10. The inverse scaled protection measure of node r , dr , is given by

dr = 1

111
(20450 − 23111.71) = −23.979,

which implies that qstattack
r < qe

r . In general, node r invests less in the strategic attack model 
than in the random attack model when the “large” subtrees connected to r have “small” average 
distances to r while small subtrees connected to r have high average distances to r .

5. Conclusion

In this paper, we developed a theoretical model of security investments in a network of in-
terconnected agents. An infection spreads over a network of agents depending on the profile of 
security investments by the agents. We provided a tractable decomposition of individual payoffs 
into an own effect and an externality, and use this decomposition to show how individual invest-
ments can be characterized recursively (by considering the network with one agent removed at 
a time). This enables us to establish a tight characterization of equilibrium and socially optimal 
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investment levels and link those to the structure of the network. We showed that two new mea-
sures of network centrality, one related to how protected an individual is by gatekeepers in the 
network and the other to how much of a gatekeeper the agent is to the rest of the network, shape 
equilibrium and socially optimal levels of security investments.

We then extended this framework to allow for the case of strategic attack where an attacker 
chooses a probability distribution over the location of the attack in order to maximize damage. 
We showed that the same decomposition applies in this case and enables a similar character-
ization of equilibrium (and its relationship to certain network centrality measures). But a new 
economic force now changes the nature of incentives: greater investment by an agent shifts the 
attack to other parts of the network. This implies that the equilibrium may now involve too much 
investment relative to the social optimum.

We believe that our paper points to several interesting directions for research. First, our 
sharpest results focus on the case in which high costs lead to relatively low levels of security 
investments. Identifying the more general relationship between the structure of the network and 
equilibrium and socially optimal levels of investments is more challenging and may require dif-
ferent mathematical approaches. Second, an interesting extension would consider the case where 
some agents control or influence the security investments of several nodes in the network (e.g., 
domains or software providers in computer networks). Third, an interesting direction is to allow 
real-time defense against the spread of infections, for example, in the form of dynamic responses 
as agents or a centralized domain observe the spread of the infection over time.

Appendix A

Proof of Proposition 1 (Network effect). Agent i gets infected only if i is susceptible. Let (Xi)

denote the event that agent i is susceptible. The infection probability of i can be stated as

Pi (G,q,�) = Pi (G,q,�|(Xi))(1 − qi). (A.1)

We next show that Pi (G, q, �|(Xi)) does not depend on qi . Let i
Gt−−→ j denote the event that i

is connected to j in the transmission network Gt . By definition, i gets infected if i
Gt−−→ s. The 

infection probability of i conditional on (Xi) can be written as

Pi (G,q,�|(Xi)) =
∑

{Gt |s∈Gt &i
Gt−−→s}

P(G,q)(G
t |(Xi))

=
∑

{Gt |s∈Gt &i
Gt−−→s}

∑
{Vs⊆V |Gt=G[Vs ]}

∏
j∈Vsj 	=i

(1 − qj )
∏
j /∈Vs

qj .

Second equality follows from the definition of the probability of the transmission network and 
the fact that conditional on (Xi), i ∈ Vs . This shows that Pi (G, q, �|(Xi)) is independent 
of qi . Substituting Pi (G, q, �|(Xi)) with P̃i(G, q−i , �) in Eq. (A.1) we have Pi (G, q, �) =
(1 − qi)P̃i(G, q−i , �). �
Proof of Proposition 2 (Decomposition). Let (Xi) denote the event that agent i is susceptible, 

i
Gt−−→ j denote the event that i is connected to j in Gt , and let s denote the seed node. In the 

transmission network Gt ∼ (G, q), for two agents j and i with i 	= j , one of the following 
mutually exclusive events will happen: (A) s is connected to j in Gt , (B) s is not connected 
−i
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to j in Gt−i , but is connected to j in Gt , or (C) s is not connected to j in Gt . Agent j gets 
infected if event (A) or (B) happens. We next express infection probability of agent j as the sum 

of probabilities of events (A) and (B). Let i
G−→ j denote the event that i is connected to j in G. 

Also, let Gj denote the collection of transmission networks in which j is connected to s, i.e., 

G
j = {Gt ∼ (G, q)|j Gt−−→ s}. The infection probability of agent j can be written as

Pj (G,q,�) =
∑

Gt∈Gj

P(G,q)(G
t )

=
∑

{Gt |Gt−i∈Gj
−i }

P(G,q)(G
t ) +

∑
{Gt |Gt−i /∈Gj

−i

∧
Gt∈Gj }

P(G,q)(G
t ), (A.2)

where the first and the second term in the last equation are the probabilities of event (A) and (B), 
respectively. We show that the first term can be written as Pj (G−i , q−i , �). By definition,

Pj (G−i ,q−i ,�) =
∑

{Ḡt |Ḡt∈Gj
−i }

P(G−i ,q−i )(Ḡ
t ). (A.3)

The probability of the transmission network Ḡt generated from (G−i , q−i ) is the marginal proba-
bility of Gt that satisfies Gt−i = Ḡt , i.e., P(G−i ,q−i )(Ḡ

t ) = ∑
{Gt |Gt−i=Ḡt } P(G,q)(G

t ). Combining 
the preceding relation with Eq. (A.3), we obtain

Pj (G−i ,q−i ,�) =
∑

{Ḡt |Ḡt∈Gj
−i }

∑
{Gt |Gt−i=Ḡt }

P(G,q)(G
t ) =

∑
{Gt |Gt−i∈G

j
−i }

P(G,q)(G
t ),

which shows the desired result. We next rewrite the second term in Eq. (A.2), i.e., probability of 
event (B) by conditioning it on the event that i and j are susceptible.∑

{Gt |Gt−i /∈Gj
−i

∧
Gt∈Gj }

P(G,q)(G
t )

= (1 − qi)(1 − qj )
∑

{Gt |Gt−i /∈Gj
−i

∧
Gt∈Gj }

P(G,q)(G
t |(Xi) ∩ (Xj )). (A.4)

Let Qj,i be the function that represents the probability of event (B) conditional on the event 
(Xi) ∩ (Xj ). Clearly, 

∑
{Gt |Gt−i /∈Gj

−i

∧
Gt∈Gj } P(G,q)(G

t |(Xi) ∩ (Xj )) only depends on q−{i,j}
and G and is independent of qi and qj . Hence, Qj,i is a function of G, q−{i,j}, and �. Hence, 
it can be expressed as Qj,i(G, q−{i,j}, �). Combining the preceding relation with Eqs. (A.2), 
(A.3), and (A.4) and using Proposition 1, we obtain

Pj (G,q,�) = Pj (G−i ,q−i ,�) + (1 − qi)(1 − qj )Qj,i(G,q−{i,j},�)

= (1 − qj )
(
P̃j (G−i ,q−i ,�) + (1 − qi)Qj,i(G,q−{i,j},�)

)
.

By applying Proposition 1 to the preceding equation, we obtain

P̃j (G,q−j ,�) = Pj (G,q,�)

1 − qj

= P̃j (G−i ,q−{i,j},�) + (1 − qi)Qj,i(G,q−{i,j},�),

which shows the desired result. �
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Proof of Theorem 1 (Equilibrium existence). We show the uniqueness of equilibrium when 
c′′(x) ≥ n, using the result by Rosen (1965). The strategy space of each agent in this problem 
is qi ∈ [0, 1] which is a compact set and can be defined as all q for which h(q) = q − q2 is 
greater or equal 0. We next show that the utility of each agent is diagonally strictly concave. 
A set of payoff functions (u1, ..., uI ) are diagonally strictly concave, if for every x∗, x̄ ∈ S, we 
have (x̄ − x∗)T ∇u(x∗) + (x∗ − x̄)T ∇u(x̄) > 0. Rosen (1965) showed that given a strategic form 
game, if the strategy space Si of each agent can be represented by Si = {xi ∈ Rmi |hi(xi) ≥ 0}, 
where hi(·) is a concave function, if there exists some x̄i ∈ Rmi such that hi(x̄i) > 0, and if 
the payoff functions (u1, . . . , uI ) are diagonally strictly concave for x ∈ S, then the game has a 
unique pure-strategy Nash equilibrium. Furthermore, Rosen showed that a sufficient condition 
for diagonal concavity is to have the symmetric matrix (U(x) + UT (x)) being negative definite 
for all x ∈ S, where U(x) is the Jacobian of ∇u(x). i.e., if for all x ∈ S, we have yT (U(x) +
UT (x))y < 0 ∀y 	= 0, then the payoff functions (u1, ..., uI ) are diagonally strictly concave for 
x ∈ S. Let us define matrix U as follows:

U =

⎛
⎜⎜⎜⎝

∂2u1(q)

(∂q1)
2

∂2u1(q)
∂q1∂q2

. . .

∂2u2(q)
∂q2∂q1

. . .

...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

−c′′(q) −Q12(G,q) . . .

−Q21(G,q)
. . .

...

⎞
⎟⎟⎠

From Rosen (1965), it is sufficient for the uniqueness of pure-strategy Nash equilibrium to show 
that U + UT is negative definite. Since Qji(G, q) ≤ 1, from Gershgorin’s Theorem we obtain 
c′′(q) ≥ n ≥ ∑

j Qji(G, q) as a sufficient condition. �
Proof of Proposition 3.

(a) Network effect monotonicity in security profile: We first show that given network G and 
two security profiles q−i and q̂−i with q−i ≥ q̂−i , we have P̃i(G, q−i , �) ≤ P̃i(G, q̂−i , �). Let 
V̂ denote the set of agents with strictly higher security levels in the security profile q compared 
to q̂, i.e., V̂ = {v ∈ V−i | qv > q̂v}. We prove the claim by induction on |V̂ |. The base case is 
immediate: If |V̂ | = 0, then qv = q̂v for all v ∈ V−i . Hence, P̃i(G, q−i , �) = P̃i(G, q̂−i , �). 
We next assume that for an integer m > 0, if |V̂ | = m, the claim holds, i.e., P̃i(G, q−i , �) ≤
P̃i(G, q̂−i , �) (Induction Hypothesis). We will next prove that the claim still holds if |V̂ | =
m + 1. Consider an arbitrary agent 1 ∈ V̂ . Define a new security profile q̃ such that q̃v = qv for 
all v 	= 1, and q̃1 = q̂1. Note that q−i and q̃−i only differ in the security level of agent 1. We first 
show that P̃i(G, q−i , �) ≤ P̃i(G, q̃−i , �). Using Proposition 2 (with the identification j = i and 
i = 1), we can rewrite P̃i(G, q−i , �) as

P̃i(G,q−i ,�) = P̃i(G−1,q−{1,i},�) + Qi,1(G,q−{i,1},�)(1 − q1)

≤ P̃i(G−1,q−{1,i},�) + Qi,1(G,q−{i,1},�)(1 − q̃1)

= P̃i(G−1, q̃−{1,i},�) + Qi,1(G, q̃−{i,1},�)(1 − q̃1) = P̃i(G, q̃−i ,�).

(A.5)

The inequality follows from q̃1 = q̂1 < q1 and the last equality follows from q̃j = qj for all j 	= 1. 
We next compare P̃i(G, q̃−i , �) with P̃i(G, q̂−i , �). First note that q̃ ≥ q̂. Moreover, we have 
|{j ∈ V−i | q̃j > q̂j }| = m. Induction hypothesis implies that P̃i(G, q̃−i , �) ≤ P̃i(G, q̂−i , �). 
Combining with Eq. (A.5), we obtain P̃i(G, q−i , �) ≤ P̃i(G, q̂−i , �).
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(b) Network effect monotonicity in network density: We show that given V̂ ⊂ V and 
agent i ∈ V − V̂ , P̃i(G−V̂

, q−V̂ ∪{i}, �) ≤ P̃i(G, q−i , �). Using Proposition 1, we have 

Pi (G−V̂
, q−V̂

, �) = (1 − qi)P̃i(G−V̂
, q−(V̂ ∪{i}), �). By definition, P̃i(G−V̂

, q−(V̂ ∪{i}), �) is 

the probability of infection reaching agent i in G−V̂
. Consider a transmission network Ḡt gener-

ated from (G−V̂
, q−V̂

) in which infection can reach agent i. The probability of the transmission 
network Ḡt can be written as the marginal probability of the transmission networks Gt generated 
from (G, q) that satisfies Gt

−V̂
= Ḡt . Furthermore, in any transmission network Gt that satisfies 

Gt

−V̂
= Ḡt , infection can reach agent i. Hence, the probability of infection reaching agent i in 

a transmission network generated from (G, q) is at least P̃i(G−V̂
, q−(V̂ ∪{i}), �). In other words, 

P̃i(G−V̂
, q−V̂ ∪{i}, �) ≤ P̃i(G, q−i , �).

(c) Best response monotonicity in network effect: Given network G and security profiles q−i

and q̂−i , if P̃i(G, q−i , �) ≥ P̃i(G, q̂−i , �), then Bi(q−i ) ≥ Bi(q̂−i ). Using Eq. (2), we have 
c′
i (Bi(q−i )) = P̃i(G, q−i , �) ≥ P̃i(G, q̂−i , �) = c′

i (Bi(q̂−i )). Combining with Assumption 1, 
we obtain Bi(q−i ) ≥ Bi(q̂−i ) which shows the desired result. �
Proof of Eq. (4). Let Bi(q−i ) and Si(q−i ) denote the best response strategy and welfare 
maximizing strategy of agent i. Using Eq. (3) we have c′

i (Si(q−i )) = P̃i(G, q−i , �) +∑
j 	=i Qj,i(G, q−{i,j}, �)(1 − qj ). By definition, Qj,i(G, q−{i,j}, �)(1 − qj ) is a probability. 

Therefore, we have

c′
i (Si(q−i )) = P̃i(G,q−i ,�) +

∑
j 	=i

Qj,i(G,q−{i,j},�)(1 − qj ) ≥ P̃i(G,q−i ,�)

= c′
i (Bi(q−i )),

where the last equation follows from Eq. (2). The claim follows by the assumption that ci(·) is 
strictly convex (cf. Assumption 1), and therefore c′

i(·) is a strictly increasing function. �
Proof of Theorem 2.

Existence of the symmetric pure-strategy Nash equilibrium. We show that there exists a qe ∈
[0, 1] such that u(G, q, �) achieves its maximum at q = qe

n. Due to symmetry, we have

∂

∂qi

u(G,q,�)|q=qn = ∂

∂qj

u(G,q,�)|q=qn ∀ i, j ∈ V. (A.6)

Let f (x) = ∂
∂qj

u(G, q, �)|q=xn . We show that, f (x) is decreasing in x. The continuity and 
differentiability of u(G, qn, �) follows from Propositions 1, 2 and Assumption 1. By definition, 
u(G, qn, �) = 1 − (1 − q)P̃ (G, qn−1, �) − c(q). Hence, f (q) = P̃ (G, qn−1, �) − c′(q). Using 
Proposition 3(a), we have P̃ (G, qn−1, �) is a decreasing function in q . Also by Assumption 1, 
c′(q) is continuous and strictly increasing, which shows that f (q) is strictly decreasing in q . We 
next show that, there exists a unique qe ∈ (0, 1) such that f (qe) = 0. Using Assumption 1 and the 
inequality 0 ≤ P̃ (G, qn−1, �) ≤ 1, it is guaranteed that f (0) ≥ 0 and f (1) < 0. Therefore, there 
exists a unique qe such that f (qe) = 0. As a result, using Eq. (A.6), qe

n is the unique symmetric 
equilibrium.

Underinvestment in the symmetric equilibrium. For the sake of contradiction, assume 
qe > qs . We next show that under this assumption, we have c′(qs) ≥ c′(qe). Using Eqs. (2), 
(3), and the fact that P̃ (G, qn−1, �) is decreasing in q , the following relations hold.
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c′(qs) = P̃ (G,qs
n−1,�) − (1 − qs)

∂

∂qs
P̃ (G,qs

n−1,�) ≥ P̃ (G,qs
n−1,�)

≥ P̃ (G,qe
n−1,�) = c′(qe),

where the second inequality follows from Proposition 3(a). Assumption 1 implies that c′(qe) >
c′(qs) assuming qe > qs . This contradicts the preceding inequality, completing the proof. �
Proof of Theorem 3. The uniqueness of equilibrium security investments follows from Theo-
rem 1. Let qe denote the equilibrium security investment obtained from Eq. (2), i.e., c′(qe

i ) =
P̃i(G, qe−i ), and let q̃ denote the solution to q̃ = (αI + A)−1e, i.e.,

αq̃i = 1 −
∑
j 	=i

a
j
i q̃j . (A.7)

We next show that ||qe − q̃||∞ = o( 1
α2 ). By Proposition 4, we have P̃i(G, q) = 1 −∑

j 	=i a
j
i qj +

o(||q||∞), for all q ∈ [0, 1]n. Moreover, writing the Taylor series expansion for function c′(q)

around 0, we have c′(q) = c′(0) + c′′(0)q + o(q) = αq + o(q). Combining with Eq. (2) we 
obtain

αqe = e − Aqe + 
, (A.8)

where for all i we have |
i | = o(||qe||∞). Note that using Eq. (2), we have for all i, c′(qe
i ) =

P̃i(G, qe) ≤ 1. Moreover, from the Taylor approximation, assuming c′′(0) ≥ α, we have c′(qe
i ) =

c′(0) + c′′(0)qe
i + o(||qe||∞) ≥ αqe

i + o(||qe||∞). Therefore, qe
i ≤ b

α
for some constant b.

Combining Eqs. (A.7) and (A.8) we have α(qe − q̃) = A(q̃ − qe) + 
, which leads to

‖qe − q̃‖ = ‖(A + αI)−1
‖ ≤ ‖(A + αI)−1‖‖
‖

= 1

α

∥∥∥∥∥
(

1

α
A + I

)−1
∥∥∥∥∥‖
‖ ≤ 1

α

∥∥∥∥∥
(

1

α
A + I

)−1
∥∥∥∥∥ b

α2
= o

(
1

α2

)
,

where we used |
i | = o(||qe||∞) along with qe
i ≤ b

α
for all i, and limα→∞

∥∥∥∥(
1
α
A +

I
)−1

∥∥∥∥ = 1. �
Proof of Corollary 2.

(a) We first show that for two non-cut vertices i, j belonging to the same block, ak
it = ak

jt , for 

all k 	= i, j . Suppose to the contrary that for some k, ak
it = 1 and ak

jt = 0. This implies that by 
removing k from the network, nodes j and t are still connected, but node i and t become discon-
nected. Since both nodes i and j belong to the same bi-connected component, by removing only 
one node, they still stay connected, which implies that i and t are also connected, which shows 
the contradiction. With a similar argument, we have for all k, t 	= {i, j}, ai

kt = a
j
kt = 0. Using 

Definition (2), we have ak
i = 1

n

∑
t a

k
it = 1

n

∑
t a

k
j t = ak

j , and aj
i = ai

j = 1
n

. Using Proposition 4
we have

αqe
i + 1

n
qe
j = 1 −

∑
k 	=i,j

ak
i q

e
k + o

(
1

α

)
, αqe

j + 1

n
qe
i = 1 −

∑
k 	=i,j

ak
j q

e
k + o

(
1

α

)
.
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This implies that (α − 1
n
)(qe

i − qe
j ) = 1 − ∑

k 	=i,j ak
i q

e
k − (1 − ∑

k 	=i,j ak
j q

e
k ) + o

(
1
α

)
α≈ 0, com-

pleting the proof. Note that we only used Theorem 3, and did not need to use the second Taylor 
series approximation given in Eq. (12). With a similar argument, one can show that for a cut 
vertex k and a non-cut vertex i in the same bi-connected component, ak

i > ai
k , which implies that 

qk
e > qi

e.

(b) and (c) We first show part (c). Consider two cut vertices i and j that are adjacent in the block 
tree decomposition, i.e., there exists a block which is the neighbor of both i and j in the block 
tree decomposition. First note that ak

it = ak
jt for all k, t 	= {i, j}, since i and j are connected via 

a block. We define the size of a subtree in the block tree as the number of nodes from G, that 
belong to that subtree. Let x and y denote the size of subtrees attached to j and i after removing 
the common block between i and j in the block tree decomposition. One can verify that aj

i = x
n

and ai
j = y

n
and x + y ≤ n. Using Proposition 4 and assuming x < y, with a similar argument 

given in part (a), we obtain qe
i > qe

j , completing the proof of part (c).
We next provide the proof for part (b). Let v denote the balancing cut vertex in the block 

tree decomposition, i.e., the maximum size of the subtrees rooted at his adjacent cut vertices is 
minimized. Using part (c), one can show that v has a higher security investment compared to any 
cut vertex u adjacent to v (in the block tree decomposition), since the size of the subtree attached 
to v is higher that the size of the subtree attached to u, after removing the common block between 
u and v. Using similar argument, considering v as the root, as the nodes get farther from v, their 
security investments decrease. �
Lemma A.1. The total expected infection passing through agent i in a network is equal to

P̃i(G,q) +
∑
j

(1 − qj )Qji(G,q) = si −
∑
j

b
j
i qj + o(||q||∞).

Proof of Lemma A.1. We start by providing the proof for tree network structures. Using Propo-
sition 4, we have P̃i(G, q) = 1 − ∑

j 	=i a
j
i qj + o(||q||∞). We next characterize Qji(G, q). The 

probability of infection reaching agent j through i (conditioning on i being susceptible) can be 
written as

Qji(G,q)(1 − qj ) = 1

n

∑
t

P rob(j
i↔ t |Xi = 1). (A.9)

The term on the right hand side is sum over all agents t , the probability that agent t is attacked 

and all active paths between t and j go through i, denoted by the event Prob(j
i↔ t |Xi = 1). 

Assuming α = c′′(0) is sufficiently large ensures that the equilibrium security investments are 

small and we can express Prob(j
i↔ t |Xi = 1) as

Prob(j
i↔ t |Xi = 1) = ai

jt

∏
k∈j↔t,k 	=i

(1 − qk) ≈ ai
jt (1 −

∑
k∈j↔t,k 	=i

qk) + o(||q||∞).

(A.10)

Since G is a tree, there is a unique path between j and k, therefore i ∈ j ↔ t only if ai
jt = 1, and 

also k ∈ j ↔ t if and only if ak
jt = 1. Therefore, we can rewrite Eq. (A.10) as Prob(j

i↔ t |Xi =
1) = ai − ∑

ai ak qk + o(||q||∞). Combining with Eq. (A.9), we have
j t k 	=i j t j t
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Qji(G,q)(1 − qj ) = 1

n

∑
t

P rob(j
i↔ t |Xi = 1) (A.11)

= 1

n

∑
t

(ai
j t −

∑
k 	=i

ai
j t a

k
jt qk) + o(||q||∞)

= ai
j − 1

n

∑
k 	=i,t

ai
j t a

k
jt qk + o(||q||∞).

Combining Proposition 4, and Eq. (A.11), we have

P̃i(G,q) +
∑
j 	=i

(1 − qj )Qji(G,q) (A.12)

= 1 −
∑
k 	=i

ak
i qk +

∑
j 	=i

(ai
j − 1

n

∑
k 	=i,t

ai
j t a

k
jt qk) + o(||q||∞)

= 1 +
∑
k 	=i

ai
k −

∑
k 	=i

ak
i qk +

∑
j 	=i

∑
k 	=i

1

n
ai
jta

k
jt qk + o(||q||∞)

= si −
∑
k 	=i

qk

⎛
⎝ak

i + 1

n

∑
j 	=i

∑
t

ai
j t a

k
jt

⎞
⎠ + o(||q||∞).

Also note that

ak
i + 1

n

∑
j 	=i

∑
t

ai
j t a

k
jt = ai

k + 1

n

∑
j

∑
t

ai
j t a

k
jt − 1

n

∑
t

ai
it a

k
it (A.13)

= ai
k + 1

n

∑
j

∑
t

ai
j t a

k
jt − ak

i = 1

n

∑
j

∑
t

ai
j t a

k
jt ,

where the second equation follows from 
∑

t a
i
it a

k
it = ∑

t 1 × ak
it = nak

i . Combining Eqs. (A.12)
and (A.13), we obtain

P̃i(G,q) +
∑
j 	=i

(1 − qj )Qji(G,q) = si −
∑
k 	=i

qk

1

n

∑
j

∑
t

ai
j t a

k
it + o(||q||∞)

= si −
∑
k 	=i

bk
i qk + o(||q||∞),

completing the proof for the tree networks, since in tree network structures b(i,j)
kt = 0. The proof 

extends to general networks using similar arguments to those we used for Theorem 3. We use 
again a decomposition result from graph theory, referred to as the SPQR tree decomposition of 
a biconnected graph. To state the result, we first define a connected network to be tri-connected 
if removal of any pair of nodes, or any single node, cannot make the graph disconnected (e.g., a 
ring network is not tri-connected, but a complete network is tri-connected). Hopcroft and Tarjan
(1973) present a series-parallel rigid (SPQR) tree decomposition of a graph, which states that 
any bi-connected network can be decomposed into a unique tree of (maximal) tri-connected 
components connected to each other via separating pair nodes. Furthermore, the set of maximal 

tri-connected components are unique. We next show that Prob(j
i↔ t) = ai

jt + ∑
k 	=i b

(i,k)
j t qk −∑

ai ak qk +o(||q||∞). Consider the unique path from j to t in the block tree decomposition, 
k 	=i j t j t
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given by j = v0, · · · , vm, vm+1 = t , where v1 and vm are the cut vertices in the blocks that 

j and t belong to. Let Vj t = {v1, · · · , vm+1}. Event j
i↔ t happens if either i ∈ Vj t , or i /∈

Vj t&∃p, vp
i↔ vp+1. Without loss of generality, conditioning on i being susceptible, we have 

Prob(j
i↔ t |Xi = 1) = β0 − ∑

k 	=i βkqk + +o(||q||∞). We first show that β0 = ai
jt and βk =

ai
jt a

k
jt −bik

j t . Tree decomposition results guarantee that the paths in the block tree decomposition, 
and also SPQR tree are unique, therefore simplifying the arguments. There are two possible 
scenarios, (a) either i ∈ Vj t . In this scenario, ai

jt = 1, and all paths between j and t should go 
through i. The probability of having a path between j and t has been calculated in subsection 3.4. 
Also, note that by definition, b(i,k)

j t = 0 for all k, since i ∈ Vj t . Therefore, we have β0 = 1 = ai
jt

and βk = ak
jt = ai

jt a
k
jt − b

(i,k)
j t , or (b) i /∈ Vjk , which implies that there exists a block p, such 

that vp
i↔ vp+1. Since all blocks are biconnected, assuming i is susceptible, assuming all paths 

between vp and vp+1 pass through i, we have Prob(vp
i↔ vp+1) = ∑

k b
(i,k)
vpvp+1qk − o(||q||∞). 

Therefore, in this scenario, we have

Prob(j
i↔ k|Xi = 1)

=
t+1∏
j=0

Prob(vj is susceptible )

t∏
j=0,j 	=m

Prob({vj ↔ vj+1}|vj &vj+1 are susceptible)

× Prob({vm
i↔ vm+1}|vm&vm+1&i are susceptible)

=
t+1∏
j=0

Prob(vj is susceptible )

(∑
k

b(i,k)
vpvp+1

qk + o(||q||∞)

)
(1 − o(||q||∞))

=
∑

k

b(i,k)
vpvp+1

qk + o(||q||∞) =
∑

t

b
(i,k)
j t qk + o(||q||∞).

In this scenario β0 = 0 = ai
jt , and βk = −b

(i,k)
j t = ai

jt a
k
jt − b

(i,k)
j t . Therefore, we have

P̃i(G,q) +
∑
j

(1 − qj )Qi,j (G,q−{i,j}) = 1

n

∑
j

∑
{t |i∈j↔t}

Prob({j i↔ t |Xi = 1})

= 1

n

∑
j

∑
t

ai
j t − 1

n

∑
j

∑
t

∑
k 	=i

(
ai
jt a

k
jt − b

(i,k)
j t

)
qk + o(||q||∞)

= (1 +
∑
j 	=i

ai
j ) − 1

n

∑
j

∑
t

∑
k 	=i

(
ai
jt a

k
jt − b

(i,k)
j t

)
qk + o(||q||∞)

= (1 +
∑
j 	=i

ai
j ) − 1

n

∑
k 	=i

∑
j

∑
t

(
ai
jt a

k
jt − b

(i,k)
j t

)
qk + o(||q||∞)

= si −
∑
k 	=i

bk
i qk + o(||q||∞),

completing the proof. �
Proof of Theorem 4. Using the optimality conditions for socially optimal investments, we have
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c′(qs
i ) = P̃i(G,qs−i ) +

∑
j

(1 − qs
j )Qij (G,qs−{i,j}). (A.14)

Using similar argument as given for Theorem 3, we can show that when Assumption 1 holds, 
for α sufficiently large, we can approximate Pi(G, qs) + (1 − qs

i ) 
∑

j (1 − qs
j )Qi,j (G, q−{i,j})

with first order terms. Combining Lemma A.1 and Eq. (A.14), we have αqs
i

α≈ si − ∑
j 	=i b

j
i qj . 

Rewriting the preceding equation in terms of matrix B , we have αqs
α≈ s − Bqs , which implies

qs α≈ (B + αI)−1 s = 1

α

(
B

α
+ I

)−1

s,

completing the proof. �
Proof of Corollary 3. Using Eqs. (12) and (17), we have

qs
i − qe

i = 1

α
(si − 1) − 1

α2

⎛
⎝∑

j 	=i

Bij sj − a
j
i

⎞
⎠ + o

(
1

α2

)

= 1

α

⎛
⎝1 +

∑
j 	=i

ai
j − 1

⎞
⎠ − 1

α2

⎛
⎝∑

j 	=i

Bij sj − a
j
i

⎞
⎠ + o

(
1

α2

)

= 1

α

∑
j 	=i

ai
j − 1

α2

⎛
⎝∑

j 	=i

Bij sj − a
j
i

⎞
⎠ + o

(
1

α2

)
.

One can show that for any graph G, there exists α0, such that for all α > α0, 1
α

∑
j 	=i a

i
j −

1
α2

(∑
j 	=i Bij sj − a

j
i

)
+ o

(
1
α2

)
> 0, since 

∑
j ai

j > 0. For α sufficiently large, we have

qs
i − qe

i

α≈ 1

α

∑
j 	=i

ai
j − 1

α2

⎛
⎝∑

j 	=i

Bij sj − a
j
i

⎞
⎠ ,

which shows the second part of the corollary. Finally for two nodes i, j with the same gatekeep-
ing centrality, we have

(qs
i − qe

i ) − (qs
j − qe

j ) =
⎛
⎝ 1

α

∑
k 	=i

ai
k − 1

α2

∑
k 	=i

(Biksk − ak
i )

⎞
⎠

−
⎛
⎝ 1

α

∑
k 	=i

a
j
k − 1

α2

∑
k 	=i

(Bjksk − ak
j )

⎞
⎠ + o

(
1

α2

)

= 1

α2

⎛
⎝∑

k 	=i

(Bjksk − ak
j ) −

∑
k 	=i

(Biksk − ak
i )

⎞
⎠ + o

(
1

α2

)

α≈ 1

α2

⎛
⎝∑

k 	=i

(Bjksk − ak
j ) −

∑
k 	=i

(Biksk − ak
i )

⎞
⎠ ,

completing the proof. �
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Proof of Proposition 5. For a given network G (deterministic) let xik(Ĝ) denote the indicator 

variable for i being connected to k in Ĝ. Also, we define Prob(i
Ĝ↔ k) as the probability of i

being connected to k in Ĝ, which is a function of q (again Ĝ is a deterministic network), and 
finally aj

ik(Ĝ) denotes the indicator variable of j being a gatekeeper between i and k in Ĝ. Note 

that if i is not connected to k, aj
ik(Ĝ) = 0. By definition we have

P̃i(G(β),q) =
∑

Ĝ∼G(β)

P (Ĝ)P̃i(Ĝ,q) =
∑

Ĝ∼G(β)

P (Ĝ)
1

n

∑
k

P rob(i
Ĝ↔ k|Xi = 1) (A.15)

Combining with Eq. (9), we have

P̃i(G(β),q) = 1

n

∑
Ĝ∼G(β)

P (Ĝ)
∑

k

P rob(i
Ĝ↔ k|Xi = 1) (A.16)

= 1

n

⎛
⎝ ∑

Ĝ∼G(β)

P (Ĝ)
∑

k

⎛
⎝xik(Ĝ) −

∑
j 	=i

a
j
ik(Ĝ)qj

⎞
⎠

⎞
⎠ + o(||q||∞)

= 1

n

∑
k

∑
Ĝ∼G(β)

P (Ĝ)xik(Ĝ) − 1

n

∑
j 	=i

qj

∑
k

∑
Ĝ∼G(β)

P (Ĝ)a
j
ik(Ĝ) + o(||q||∞)

Note that if i is connected to k in Ĝ, xik(Ĝ) = 1, and the second equation is the same as Eq. (9), 
and if i is not connected to k, xik(Ĝ) as well as all aj

ik = 0 for all j . Furthermore, by definition, 
we have

γi = 1

n

∑
k

γik = 1

n

∑
k

∑
Ĝ∼G(β)

P (Ĝ)xik(Ĝ), (A.17)

z
j
i = 1

n

∑
k

z
j
ik = 1

n

∑
k

(γik − σ
j
ik) = 1

n

∑
k

∑
Ĝ∼G(β)

P (Ĝ)
(
xik(Ĝ) − xik(Ĝ−j )

)
(A.18)

= 1

n

∑
k

∑
Ĝ∼G(β)

P (Ĝ)a
j
ik(Ĝ).

Combining Eqs. (A.16), (A.17), and (A.18), we obtain P̃i(G(β), q) = γi − ∑
j 	=i qj z

j
i +

o(||q||∞), completing the proof. �
Proof of Theorem 5. Using Eq. (2), equilibrium investments satisfy c′(qe

i ) = P̃i(G, qe
−i ). Using 

Proposition 5 we have c′(qe
i ) = P̃i(G, qe

−i ) = γi − ∑
j 	=i qj z

j
i + o(||q||∞). For α sufficiently 

large, and knowing that qe < 1
α

, we obtain αqe = γ − Zqe + o(||q||∞). Therefore, we have 
(αI + Z)qe = γ + (||q||∞). Note that under Assumption 1, (αI + Z) is non-singular, completing 
the proof. �
Proof of Proposition 6. Applying first order condition on Eq. (21), and using Proposition 1, we 
obtain c′(qe

i ) = |Ei |P̃i(Ĝ, qe−i ). Also, using similar argument as in Proposition 4, we have

P̃i(Ĝ,q) = Ci(Ĝ)

n
−

∑
j

a
j
i (Ĝ)qj + o(||q||∞), 1 ≤ i ≤ n,
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where aj
i (Ĝ) denotes the fraction of nodes blocked from i by j in Ĝ. Combining the pre-

ceding equations and assuming c(q) = α
2 q2, we obtain αqe

i = |Ei | 
(

Ci(Ĝ)
n

− ∑
j a

j
i (Ĝ)qj

)
+

o(||q||∞), 1 ≤ i ≤ n. Rewriting in vector form, we have αK−1qe = C(Ĝ)
n

− Âqe + o(||q||∞), 
which implies that

qe α≈
(
αK−1 + Â

)−1 C(Ĝ)

n
= 1

α

(
K−1(I + 1

α
KÂ)

)−1 C(Ĝ)

n

= 1

α

(
I + 1

α
KÂ

)−1

K
C(Ĝ)

n
,

completing the proof. �
Proof of Proposition 7. We use Proposition 6, and calculate the utility of agents in Ĝ, when 
agents invest in qe. Using Eq. (21), we have

ui(Ĝ,qe) = |Êi |
(

1 − Pi (Ĝ,qe)
)

− ci(q
e
i ) (A.19)

= |Êi |
(

1 − P̃i(Ĝ,qe−i )(1 − qe
i )

)
− ci(q

e
i )

(1)= |Êi |
(

1 − c′(qe
i )

|Ei | (1 − qe
i )

)
− ci(q

e
i )

= |Êi |
(

1 − αqe
i

|Ei | (1 − qe
i )

)
− αqe2

i

2
= |Êi | − αqe

i + αqe2

i

2

= |Ei | − |Ei |Ci(Ĝ)

n
(1 − 1

α

∑
j 	=i

a
j
i (Ĝ)|Ei |)

× (1 − 1

2α
|Ei |Ci(Ĝ)

n
(1 − 1

α

∑
j 	=i

a
j
i (Ĝ)|Ej |)) + o(

1

α
)

= |Ei |(1 − Ci(Ĝ)

n
) − 1

α

⎛
⎝ |Ei |Ci(Ĝ)

n
(
∑
j 	=i

a
j
i |Ej | − 1

2
)

⎞
⎠ + o(

1

α
),

where (1) follows from Pi (Ĝ, qe) = (1 −qe
i )P̃i (Ĝ, qe) = (1 −qe

i )
c′(qe

i )

|Ei | . Assuming α sufficiently 

large, we then have ui(Ĝ, qe) = |Êi | 
(

1 − Ci(Ĝ)
n

)
+ O

(
1
α

)
. Hence, to maximize her utility, an 

agent maintains connections, maximizing |Êi| 
(

1 − Ci(Ĝ)
n

)
, where Êi = Ẽi ∩ Ẽ−i , and Ĝ with 

node set V has edge set Ê = ∪j∈V Ẽj ∩ Ẽ−j . Note that the solution might not be unique, as 
explained next. �
Example 6. Consider a path of length n − 1 with n nodes. We next show that the formed 
equilibrium network may not be unique. Suppose n is divisible by 4. For α sufficiently large, 
one equilibrium is having agent n/2 not maintaining her connection to agent n/2 + 1, and all 
other nodes keeping their connections. Note that for agent n/2, if she keeps both his edges, 

|E | 
(

1 − C(G)
)

= 2(1 − 1) which is less than 1(1 − 1/2), her utility after dropping her link to the 

n
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next node. For any other agent j , the dominant term of utility is 2(1 −1/2) = 1 ≥ 1(1 −Cj). An-
other equilibrium of the path is obtained by breaking the link between agent n/4 and n/4 +1, and 
the link between agent 3n/4 and 3n/4 + 1, while maintaining the rest of the edges. If agent n/4
(or agent 3n/4) keeps both her edges, the dominant term of his utility would be 2(1 −3/4) = 1/2
which is lower than 1(1 − 1/4). Any other agent obtains at least 2(1 − 1/2) which is higher than 
only maintaining one edge.

Proof of Lemma 6. Let (Xi) denote the event that agent i is susceptible. In the random 
attack model, the probability of a susceptible agent i getting infected is Pi (G, q, �) =
Pi (G, q, �|(Xi))(1 − qi). Put differently, the probability of a susceptible agent i getting 
infected is equal to the probability of having a path between agent i and a randomly 
selected seed node s in the transmission network Gt ∼ (G, q), i.e., Pi (G, q, 1n|(Xi)) =
1
n

∑
s∈V

∑
{Gt |(s∈Gt )

∧
i

Gt−−→s}
P(G,q)(G

t |(Xi)). Moreover, to compute the expected infections af-

ter attacking agent i, we can restate it as the sum over all agents j , the probability of agent i
being connected to agent j . Using this interpretation it is clear that I (G, q, ei) = nPi (G, q, 1n). 
Using Proposition 2, we have I (G, q, ei) = P̃i(G, q−i , 1n)(1 − qi)n. �
Proof of Theorem 7. For a given security profile q let P̄i = Pi (G, q, 1n) and Pi(ej ) =
Pi (G, q, ej ), where ej is the vector of 0’s except the j th element which is 1. The utility of 
an agent in the strategic attack model can be written as follows:

us
i (G,q) = 1 − Pi (G,q, φ) − c(qi) = 1 −

∑
j

φjPi(ej ) − c(qi),

where φ denotes the strategic attack decision and it is the solution to the following optimization 
problem:

maximize
∑

i

φi

I (G,q, ei)

n
− ζ(φi), s.t.

∑
i

φi = 1, φi ≥ 0

Using Lemma 6 and Assumption 2, the preceding optimization can be written as

maximize
∑

i

φi P̄i − θ

2
φ2

i , s.t.
∑

i

φi = 1, φi ≥ 0.

Define L(�, λ, μ) = ∑n
i=1 φiP̄i − θ

2 φ2
i + λ 

(∑n
i=1 φi − 1

) + ∑n
i=1 μiφi , where λ ∈ R and 

μi ∈ R+. By the first order necessary conditions for the optimality of the solution of a nonlinear 
program, we have ∂

∂φi
L = P̄i − θφi + λ + μi = 0, and μiφi = 0 (for all i ∈ [n]), which implies 

that φi = max
{

0,
P̄i+λ

θ

}
. We first assume that θ is chosen such that φi > 0. Since 

∑
i φi = 1, we 

have 
∑

i φi = ∑
i

P̄i+λ
θ

= 1. Thus if for all i, φi > 0, we have

λ = θ − ∑
j P̄j

n
, φi = 1

n
+ 1

θ

(
P̄i −

∑
j P̄j

n

)
. (A.20)

To ease the notation, let avg(P̄ ) =
∑

i P̄i

n
and Qji = Qji(G, qe, [ 1

n
])(1 − qj ). We then have

ui(G,q, φ) = 1 −
∑

φjPi(ej ) − c(qi) = 1 −
∑(

1

n
+ 1

θ

(
P̄j − avg(P̄ )

))
Pi(ej ) − c(qi)
j j
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= 1 − 1

n

∑
j

Pi(ej ) − 1

θ

∑
j

(
P̄j − avg(P̄ )

)
Pi(ej ) − c(qi)

= 1 − P̄i + 1

θ

∑
j

P̄j (P̄i − Pi(ej )) − c(qi).

Assuming c′′(q) ≥ (2n)/θ we then have

∂2ui(G,q, φ)

∂qi
2

= ∂2

∂qi
2

⎛
⎝1 − P̄i + 1

θ

∑
j

P̄j (P̄i − Pi(ej )) − c(qi)

⎞
⎠

= ∂

∂qi

⎛
⎝P̃i − 1

θ

∑
j

Qji(P̄i − Pi(ej )

⎞
⎠ − 1

θ

∑
j

P̄j (P̃i − P̃i(ej )) − c′(qi)

= 2

θ

∑
j

Qji(P̃i − P̃i(ej )) − c′′(qi)
(1)≤ 2

θ

∑
j

Qji − c′′(qi)

≤ 2n

θ
− c′′(qi) ≤ 0,

where (1) follows from having P̃i − P̃i(ej ) ≤ 1. Moreover, assuming θ > n is a sufficient condi-
tion for the solution of φi to be interior. �
Proof of Theorem 8. Consider a security profile in which the security level of all agents except 
agent i is equal to qe and the security level of agent i is q ′. In the rest of this section, we 
define qe = [qe]n. Assuming that the attack cost function is convex, for a strongly symmetric 
network, the attack decision of the strategic attacker can be stated as, � = (φ1, . . . , φn), where 
φi = φ, and for all j 	= i, φj = (1 − φ)/(n − 1). Let P̂ (n, q) = P̃ (G, qn, 1n) and P̂ (n − 1, q) =
Ev∈V

[
P̃ (G−v,q−v, 1̂n−1)

]
. The optimal value of φ is obtained from the following program:

maximize

φ(1 − q ′)P̂ (n, qe) + (1 − φ)(1 − qe)

(
P̂ (n − 1, qe) + (1 − q ′) P̂ (n, qe) − P̂ (n − 1, qe)

1 − qe

)

− θφ2

2
− θ(1 − φ)2

2(n − 1)
,

subject to 0 ≤ φ ≤ 1. (A.21)

We first show under what condition the utility of agent i with respect to q ′ is always concave in 
the symmetric setting. Using Proposition 1, we can rewrite the utility of agent i as follows:

ui(G, (q ′,qe
n−1),�)

= 1 − (1 − q ′)
(

φ
n

n − 1
(1 − P̂ (n, qe)) + 1

n − 1
(nP̂ (n, qe) − 1)

)
− c(q ′). (A.22)

Hence, we have

∂2

∂q ′2 ui(G, (q ′,qe
n−1),�) = −c′′(q ′) + n

n − 1
(P̂ (n, qe) − 1)

(
−2

∂φ

∂q ′ + ∂2φ

∂q ′2 (1 − q ′)
)

.

(A.23)
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We next show that under Assumptions 1 and 2, ∂φ
∂q ′ < 0 and ∂2φ

∂q ′2 > 0. Assuming the existence of 

an interior solution for φ, the optimality condition of φ in Eq. (A.21) implies

φ = 1

n
+ n − 1

θn
P̂ (n − 1, qe)(qe − q ′), ∂φ

∂q ′ = −(n − 1)P̂ (n − 1, qe)

nθ
≤ 0,

∂2φ

∂q ′2 = 0.

(A.24)

Combining Eqs. (A.23) and (A.24) with the fact that P̃ (G, q, �) ≤ 1 implies that given a 
strongly symmetric network, if Assumptions 1 and 2 hold, then ∂

∂2q ′ u(G, (q ′, qe), �) ≤ 0. Also, 
when φ hits the boundary conditions, it will not change, and utility stays concave. We next 
show that if qe = 0, q ′ > 0, and if qe = 1, assuming c′(1) > 1

n
, q ′ < 1. Assuming qe = 0, 

we have ui(G, (q ′, 0n−1), �) = 1 − (1 − q ′) (φ + (1 − φ)) − c(q ′) = q ′ − c(q ′), and optimality 
implies that q ′ > 0. Moreover, for qe = 1 we have ui(G, (q ′, e), �) = 1 − (1 − q ′)φ − c(q ′), 
where φ = min{1, 1

n
+ n−1

nθ
(1 − q ′)}. Note that if q ′ = 1, then φ = 1

n
and is interior, there-

fore it should satisfy φ = 1
n

+ n−1
nθ

(1 − q ′), and in the utility function of i, we should have 
∂

∂q ′ ui(G, (q ′, e), �)|q ′=1 = 2(n−1)
nθ

(1 − q ′) + 1
n

− c′(q ′) ≥ 0, which under the assumption of 

c′(1) > 1
n

does not hold. Therefore, the best response strategy when qe = 1 is q ′ < 1. Further-
more, using Eq. (A.24), one can show that φ is continuous in (q ′, qe), therefore u(G, (q ′, qe), �)

is continuous in (q ′, qe) (when hitting the boundary conditions φ stays unchanged and as a result 
maintains continuity). Combined with Kakutani’s fixed point theorem, this implies the existence 
of symmetric pure strategy Nash equilibrium, completing the proof of the first part. We next 
study the conditions under which we have under or overinvestment in strongly symmetric net-
works for the strategic attack model. We first study the symmetric socially optimal solution. Let 
us denote the symmetric socially optimal security level by qs and the symmetric equilibrium 
security level, qe. Note that in symmetric equilibrium φ = 1

n
. We then have

c′(qs) = g(qs) = P̃ (G,qs
n−1,1n) − (1 − qs)

∂

∂qs
P̃ (G,qs

n−1,1n)

= P̂ (n, qs) − (1 − qs)
∂

∂qs
P̂ (n, qs),

c′(qe) = f (qe) = P̂ (n, qe) − (1 − qe)

(
n

n − 1

(
1 − P̂ (n, qe)

) ∂φ

∂q ′ |q ′=qe

)

= P̂ (n, qe) + (1 − q)
P̂ (n − 1, qe)(1 − P̂ (n, qe))

θ
, (A.25)

where the first order condition in the equilibrium follows from Eq. (A.22), and Eq. (A.24) is 
used to obtain the last equation. We show that if θ > 1 or c′′(q)θ > n, then the derivative of 
the utility with respect to the symmetric security investment is monotonically decreasing, i.e., 
d/dq(f (q) − c′(q)) ≤ 0.

d

dq
(f (q) − c′(q)) = d

dq
(P̂ (n, q) + (1 − q)

P̂ (n − 1, q)(1 − P̂ (n, q))

θ
− c′(q))

= d

dq
P̂ (n, q)

(
1 − (1 − q)

θ
P̂ (n − 1, q)

)
+ d

dq
P̂ (n − 1, q)

(
(1 − P̂ (n, q))(1 − q)

θ

)

− P̂ (n − 1, q)(1 − P̂ (n, q)) − c′′(q)

θ
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≤ d

dq
P̂ (n, q)

(
1 − (1 − q)P̂ (n − 1, q)

θ

)
− c′′(q) ≤ 0, (A.26)

where the first inequality follows from Proposition 3 which implies that d
dq

P̂ (n, q), d
dq

P̂ (n −
1, q) < 0. If θ > 1, then 1 − (1−q)P̂ (n−1,q)

θ
> 1, implying the last inequality. If θ < 1, using the 

assumption we have c′′(q)θ > n. Also note that

d

dq
P̂ (n, q)

(
1 − (1 − q)P̂ (n − 1, q)

θ

)
− c′′(q) ≤ d

dq
P̂ (n, q)

−(1 − q)

θ
− c′′(q), (A.27)

where the inequality follows from d
dq

P̂ (n, q) < 0, and P̂ (n − 1, q) < 1. We next show that 
d
dq

P̂ (n, q) > −nP̂ (n,q)
1−q

. For a given symmetric security profile qn we can rewrite P̂ (n, q) as 

P̂ (n, q) = ∑n−1
i=0 biq

i(1 − q)n−i−1, which implies that

∂

∂q
P̂ (n, q) =

n−1∑
i=1

ibiq
i−1(1 − q)n−i−1 −

n−2∑
i=0

(n − i − 1)biq
i(1 − q)n−i−2

≥ −
n−2∑
i=0

(n − i − 1)biq
i(1 − q)n−i−2

≥ −n

n−2∑
i=0

biq
i(1 − q)n−i−2 ≥ −n

1 − q

n−2∑
i=0

biq
i(1 − q)n−i−1 ≥ −n

1 − q
P̂ (n, q).

(A.28)

Combining Eqs. (A.27) and (A.28) with the assumption of c′′(q)θ > n, completes the proof of 
Eq. (A.26). We next show that under this assumption, at q = qs , we have c′(qs) = g(qs) <
P̂ (n, qs) + n(1−qs)

1−qs P̂ (n, qs) < f (qs). Combining this with the observation that f (q) − c′(q)

is monotonically decreasing, it implies that qe > qs . Using Eq. (A.25), to show the preceding 
inequality, it suffices to show that

P̂ (n − 1, q)(1 − P̂ (n, q))

θ
≥ nP̂ (n, q)

(1 − q)
, or

nθ ≤ (1 − q)
P̂ (n − 1, q)(1 − P̂ (n, q))

P̂ (n)
= R, for q = qs.

We next find a lower bound for the right hand side of the preceding relation, which is denoted 
by R. By definition, we have

1

n
≤ P̂ (n, qs) ≤ 1

n
+ n − 1

n
(1 − qs),

1

n
≤ P̂ (n − 1, qs) ≤ 1

n
+ n − 2

n
(1 − qs).

Using the preceding inequalities, it is easy to show that

R ≥ 1

n
(1 − qs)

(
1

1
n

+ n−1
n

(1 − qs)
− 1

)
= n − 1

n

qs(1 − qs)

1 + (n − 1)(1 − qs)
.

One can easily show that the above function is increasing between qs ∈
[
0,1 − 1√

n+1

]
and 

decreasing between qs ∈
(

1 − 1√ ,1
]
. Furthermore, assuming that qs is the socially op-
n+1
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timal solution we have c′−1
(

1
n

)
≤ qs ≤ c′−1(n). We then consider the following cases (1)

c′−1(n) ≤ 1 − 1√
n+1

, (2) c′−1( 1
n
) ≥ 1 − 1√

n+1
, and (3) c′−1( 1

n
) ≤ 1 − 1√

n+1
≤ c′−1(n).

We will only analyze the first case. Other cases can be analyzed similarly. In the first case, 
R will be minimized when qs = c′−1( 1

n
). Hence, the sufficient condition for having overin-

vestment is θ ≤ n−1
n2

c′−1( 1
n
)(1−c′−1( 1

n
))

1+(n−1)(1−c′−1( 1
n
))

. The second scenario, will be reduced to having θ ≤
n−1
n2

c′−1(n)(1−c′−1(n))

1+(n−1)(1−c′−1(n))
, and the third scenario will be reduced to θ ≤ min

{
n−1
n2

c′−1(n)(1−c′−1(n))

1+(n−1)(1−c′−1(n))
,

n−1
n2

c′−1( 1
n
)(1−c′−1( 1

n
))

1+(n−1)(1−c′−1( 1
n
))

}
. Next, we show that when θ ≥ 1 then underinvestment always hap-

pen. We first show that in the symmetric socially optimal solution, we have P̂ (n, qs) − (1 −
qs) ∂

∂qs P̂ (n, qs) ≥ 2P̂ (n, qs). Let s denote the seed node. Using Eq. (3) for an agent i in the 
symmetric socially optimal security profile, we have

− (1 − qs)
∂

∂qs
P̂ (n, qs) =

∑
j 	=i

Qj,i(G,qs
−n−2,�)(1 − qs)

≥
∑
j 	=i

Qj,i(G,qs
−n−2,�|s = i)(1 − qs)P (s = i)

+
∑
j 	=i

Qj,i(G,qs
−n−2,�|s 	= i)(1 − qs)P (s 	= i)

≥
∑
j 	=i

Qj,i(G,qs
−n−2,�|s = i)(1 − qs)P (s = i) = I (G,qs , ei)

1

n(1 − qs)
= P̂ (n, qs),

where the last inequality follows from Lemma 6. As was shown under Assumptions 1 and 2, 
when c′(1) ≥ 1

n
the utility of each agent with respect to his security level is concave. Hence, to 

guarantee that qe ≤ qs , it suffices to show that

P̂ (n, qe) + (1 − q)
P̂ (n − 1, qe)(1 − P̂ (n, qe))

θ
≤ 2P̂ (n, qe) = g(qe).

Assuming θ ≥ 1, the preceding relation always holds. �
Proof of Theorem 9. In the rest of this proof, let P̄i = Pi (G, qe, 1n), P̃i = P̃i(G, qe, 1n), 
Pi(ej ) = Pi (G, qe, ej ), P̃i(ej ) = P̃i(G, qe, ej ), and Qji = Qji(G, qe, 1n)(1 − qj ). Also, let 
Sum(P̄ ) = ∑

j P̄j . We also denote P̃i = Qii . As was shown in Theorem 7, for θ > n, we have 
an interior solution for φ always. Hence, assuming that θ is sufficiently large, in the rest of this 
proof, we only look at the interior solution of φ without loss of generality. Using Eq. (A.20) and 
assuming ζ(φ) = θ

2 φ2, we have

φi = 1

n
+ 1

θ

(
P̄i − Sum(P̄ )

n

)
. (A.29)

The utility of agent i, is ui(G, qe, φ) = (1 − Pi (G,qe, φ))−c(qi) = 1 −∑n
j=1 φjPi(ej ) −c(qi). 

Using Eq. (A.29), we have

Pi (G,qe, φ) =
∑(

1

n
+ 1

θ

(
P̄j − Sum(P̄ )

n

))
Pi(ej )
j
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= 1

n

∑
j

Pi(ej ) + 1

θ

∑
j

P̄jPi(ej ) − Sum(P̄ )

nθ

∑
j

Pi(ej )

= P̄i − Sum(P̄ )

θ
P̄i + 1

θ

∑
j

P̄jPi(ej )

= P̄i

(
1 − Sum(P̄ )

θ

)
+ 1

θ

∑
j

P̄jPi(ej ).

Hence, we have

d

dqi

Pi (G,qe, φ)

= −P̃i

(
1 − Sum(P̄ )

θ

)
+ P̄i

θ

∑
j

Qji − 1

θ

⎛
⎝∑

j

(
QjiPi(ej ) + P̄j P̃i(ej )

)⎞
⎠ ,

− d

dqi

Pi (G,qe, φ)

= P̃i(1 − Sum(P̄ )

θ
)− P̃i

θ

∑
j

Qji(1 − qi)+ 1

θ

⎛
⎝∑

j

(
(1−qi)QjiP̃i(ej )+ P̄j P̃i(ej )

)⎞
⎠

= P̃i − P̃i

θ

⎛
⎝Sum(P̄ ) +

∑
j

Qji(1 − qi)

⎞
⎠ + 1

θ

⎛
⎝∑

j

P̃i(ej )
(
Qji(1 − qi) + P̄j

)⎞⎠

= P̃i − P̃i

θ

⎛
⎝∑

j

(P̄j + Qji(1 − qi)

⎞
⎠ + 1

θ

⎛
⎝∑

j

P̃i(ej )
(
Qji(1 − qi) + P̄j

)⎞⎠

= P̃i − 1

θ

⎛
⎝∑

j

P̃i(P̄j + Qji(1 − qi)

⎞
⎠ + 1

θ

⎛
⎝∑

j

P̃i(ej )
(
Qji(1 − qi) + P̄j

)⎞⎠
= P̃i − 1

θ

∑
j

(
P̃i − P̃i(ej )

)(
P̄j + Qji(1 − qi)

)
.

Let Lj = (P̃i − P̃i(ej )) and Mj = (P̄j + Qji(1 − qi)). We next calculate Lj and Mj . We have 
Lj = (P̃i − P̃i(ej )) = 1 − ∑

k 	=i a
k
i qk − (1 − ∑

k ak
ij qk + o(q)) = ∑

k(a
k
ij − ak

i )qk + o(q), and 
we have

Mj = (P̄j + Qji(1 − qi)) = (1 −
∑

k

ak
j qk) + 1

n

∑
k

P rob(j
i↔ k)

= (1 −
∑

k

ak
j qk) + 1

n

∑
k

⎛
⎝ai

jk(1 − qi) −
∑
t 	=i

(
ai
jka

t
jk − b

(i,t)
jk

)⎞
⎠ = 1 + ai

j + O(q).

Combining together we obtain

− d

dqi

Pi (G,qe, φ) = P̃i − 1

θ
(
∑

(P̃i − P̃i(ej ))(P̄j + Qji(1 − qi)) (A.30)

j
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= P̃i − 1

θ
(
∑
j

LjMj )

= P̃i − 1

θ
(
∑
j

∑
k 	=i

(
(ak

i − ak
ij )qk + o(q)

)(
1 + ai

j + O(q)
)

= P̃i − 1

θ

∑
k 	=i

qk

∑
j

(1 + ai
j )(a

k
ij − ak

i ) + o(q)

= P̃i − 1

θ

∑
k 	=i

qk

⎛
⎝∑

j

ak
ij −

∑
j

ak
i +

∑
j

ai
j a

k
ij −

∑
j

ai
j a

k
i

⎞
⎠ + o(q)

= P̃i − 1

θ

∑
k 	=i

qk

(
nak

i − nak
i + nak

i a
i
k − bia

k
i

)
+ o(q)

= P̃i − 1

θ

∑
k 	=i

qk

(
nak

i a
i
k − bia

k
i

)
+ o(q).

Using the first order condition, in the equilibrium, we have c′(qi) = −d
dqi

Pi (G, qe, φ). Using a 
similar argument as given for Theorem 3, we can show that when Assumption 1 holds, for α suf-
ficiently large, we can approximate −d

dqi
Pi (G, qe, φ) with first order terms. Combining Eq. (A.30)

and the first order condition equation, then we have

αqstattack
i

α≈ 1 −
∑
j

a
j
i qj − 1

θ

∑
k 	=i

qk

(
nak

i a
i
k − bia

k
i

)
= 1 −

∑
j

a
j
i qj − 1

θ

∑
j 	=i

d
j
i qj

= 1 −
∑
j 	=i

qj

⎛
⎝a

j
i + 1

θ

∑
j 	=i

d
j
i

⎞
⎠ .

Rewriting in terms of matrix D, we have qstattack
α≈ 1

α

(
I − D

α

)
e, completing the proof. �

Lemma A.2. For a tree network, we have di =
∑k

j=1 C2
j

n

(∑k
j=1 
j C2

j∑k
j=1 C2

j

−
∑k

j=1 
j Cj∑k
j=1 Cj

)
.

Proof. By definition, we have

−di =
∑
j 	=i

d
j
i =

∑
j 	=i

∑
k

ai
k(a

j
ik − a

j
i ) =

∑
k

ai
k

∑
j 	=i

a
j
ik −

∑
j 	=i

a
j
i

∑
k

ai
k.

We first interpret n 
∑

k ai
k

∑
j 	=i a

j
ik . In tree networks, aj

ik = 1, if j is on the unique path between 

i and k, therefore, 
∑

j 	=i a
j
ik = Dist (i, k), where Dist (i, k) denotes the distance of i and k in the 

tree. We then have∑
k

ai
k

∑
j 	=i

a
j
ik =

∑
k

ai
kDist (i, k) = 1

n

∑
j

(n − Cj )
∑

k∈Subtree j

Dist (i, k)

= 1

n

∑
j

(n − Cj )
jCj . (A.31)
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Note that for all nodes k belonging to subtree j of i, ai
k = n−Cj

n
, which gives us the second equa-

tion. We next interpret the second term of di . From subsection 3.4, recall that for tree networks, 
we have∑

j 	=i

a
j
i = 1

n

∑
k

Dist (i, k) = 1

n

∑
j


jCj , (A.32)

∑
k

ai
k = 1

n

∑
k

∑
j

ai
jk = 1

n

∑
j

Cj (n − Cj ). (A.33)

Combining Eqs. (A.31), (A.32), and (A.33), we obtain

di =
∑
j 	=i

a
j
i

∑
k

ai
k −

∑
k

ai
k

∑
j 	=i

a
j
ik

= 1

n

∑
j

Cj (n − Cj )
1

n

∑
k


kCk − 1

n

∑
j

(n − Cj)
jCj

= 1

n2
(n2 −

∑
j

C2
j )

∑
k


kCk −
∑
j


jCj + 1

n

∑
j


jC
2
j

= 1

n

⎛
⎝∑

j


jC
2
j − 1

n
(
∑
j

C2
j )

∑
k


kCk

⎞
⎠

= (
∑

j C2
j )

n

⎛
⎝∑

j


j

C2
j

(
∑

k C2
k )

−
∑
j


j

Cj

(
∑

k Ck)

⎞
⎠ ,

establishing Eq. (25). �
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