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Abstract. To systematically study the implications of additional information about routes
provided to certain users (e.g., via GPS-based route guidance systems), we introduce a new
class of congestion games inwhich users have differing information sets about the available
edges and canonlyuse routes consistingof edges in their information set.After defining the
notion of an information-constrainedwardrop equilibrium (ICWE) for this class of conges-
tion games and studying its basic properties,we turn to ourmain focus:whether additional
information can be harmful (in the sense of generating greater equilibrium costs/delays).
We formulate this question in the form of an informational Braess’ paradox (IBP), which
extends the classic Braess’ paradox in traffic equilibria and asks whether users receiving
additional information can become worse off. We provide a comprehensive answer to this
question showing that in anynetwork in the series of linearly independent (SLI) class,which
is a strict subset of series-parallel networks, the IBP cannot occur, and in any network that is
not in the SLI class, there exists a configuration of edge-specific cost functions forwhich the
IBP will occur. In the process, we establish several properties of the SLI class of networks,
which include the characterization of the complement of the SLI class in terms of embed-
ding a specific set of networks, and also an algorithm that determines whether a graph is
SLI in linear time. We further prove that the worst-case inefficiency performance of ICWE
is noworse than the standardWardrop equilibrium.

Funding: This research was supported by the National Science Foundation Cyber-Physical Systems
(CPS) Frontiers project “Foundations Of Resilient CybEr-physical Systems (FORCES)” [Award
1239166].
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1. Introduction
The advent of GPS-based route guidance systems, such
as Waze or Google maps, promises a better traffic
experience to its users, as it can inform them about
routes that they were not aware of or help them choose
dynamically between routes depending on recent lev-
els of congestion. Although other drivers might plausi-
bly suffer increased congestion as the routes they were
using become more congested as a result of this real-
location of traffic, or certain residents may experience
elevated noise levels in their side streets, it is gener-
ally presumed that the users of these systems (and
perhaps society as a whole) will benefit. In this paper,
we present a framework for systematically analyzing
how changes in the information sets of users in a traf-
fic network (e.g., because of route guidance systems)
impact the traffic equilibrium, and we show the condi-
tions under which even those with access to additional
information may suffer greater congestion.
Our formalmodel is a version of thewell-known con-

gestion games, augmentedwithmultiple types of users

(drivers), each with a different information set about
the available edges in the network. These different in-
formation sets represent the differing knowledge of
drivers about the road network, which may result from
their past experiences, from inputs from their social
network, or from the different route guidance sys-
tems they might rely on. A user can only utilize a
route (path between origin and destination) consist-
ing of edges belonging to her information set. Each
edge is endowed with a latency/cost function repre-
senting costs due to congestion. We generalize the clas-
sic notion of the Wardrop equilibrium (Wardrop 1952,
Beckmann et al. 1956 and Schmeidler 1973), where each
(nonatomic) user takes the level of congestion on all
edges as given and chooses a route with minimum cost
(defined as the summation of costs of edges on the
route). Our notion of an information-constrainedWardrop
equilibrium (ICWE), also imposes the same equilibrium
condition as Wardrop equilibrium but only for routes
that are contained in the information set of each type
of user.

893

http://pubsonline.informs.org/journal/opre/
mailto:daron@mit.edu
mailto:makhdoum@mit.edu
http://orcid.org/0000-0001-5422-0314
mailto:azarakhsh.malekian@rotman.utoronto.ca
http://orcid.org/0000-0001-9464-746X
mailto:asuman@mit.edu
http://orcid.org/0000-0002-1827-1285


Acemoglu et al.: Informational Braess’ Paradox
894 Operations Research, 2018, vol. 66, no. 4, pp. 893–917, ©2018 INFORMS

After establishing the existence and essential unique-
ness of the ICWEand characterizing itsmain properties
for networks with a single origin–destination pair (an
assumption we impose for simplicity and later relax),
we turn to our key question of whether expanding the
information sets of some group of users canmake them
worse off—in the sense of increasing the level of con-
gestion they suffer in equilibrium. For this purpose,
we define the notion of an informational Braess’ para-
dox (IBP), designating the possibility that users with
expanded information sets experience greater equilib-
rium cost. We then provide a tight characterization of
when IBP is and is not possible in a traffic network.
Our main result is that IBP does not occur if and

only if the network is series of linearly independent
(SLI). More specifically, this result means that in an
SLI network, IBP can never occur, ensuring that users
with an expanded information set always benefit from
their additional information. Conversely, if the net-
work is not SLI, then there exists a configuration of
latency/cost functions for edges for which the IBP will
occur. To understand this result, let us consider what
the relevant class of networks comprises. The set of SLI
networks is a subset of series-parallel networks, which
are those for which two routes never pass through
any edge in opposite directions. An SLI network is
obtained by joining together a collection of linearly inde-
pendent (LI) networks in a series. LI networks are those
in which each route includes at least one edge that is
not part of any other route. The intuition of our main
result is as follows. To show that the IBP does not occur
in an SLI network, we show the result on each of its LI
parts. A key property of LI networks used in proving
our main result is that for a traffic network with mul-
tiple information types, if we reduce the total traffic
demand, then there exists a routewith strictly less flow.
When some users have more information, they change
their routing, redirecting it to some subnetwork A of
the original network from some other subnetwork B
(and since the original network is LI, both A and B are
also LI). All else equal, this will increase flows in A and
decrease flows in B. By the key property of LI networks,
this will reduce flows in some route in B, and since
users with more information have access to routes in B,
this rerouting cannot increase their costs. Other users
adjust their routing by allocating flows away from A
(since flow in A has increased), which again by the LI
property of the subnetwork implies that costs of some
routes in A decrease, establishing the “if” part of our
main result. The “only if” part is proved by showing
that every non-SLI network embeds one of the collec-
tion of networks, and we demonstrate constructively
that each one of these networks generates IBP (for some
configuration of costs).

We should also note that, since SLI is a restrictive
class of networks, and few real-world networks would

fall into this class, we take this characterization to
imply that the IBP is difficult to rule out in practice,
and thus the new, highly anticipated route guidance
technologies may make traffic problems worse.

Since the class of SLI networks plays a central role
in our analysis, a natural question is whether identi-
fying SLI networks is straightforward. We answer this
question by showing that whether a given network
is SLI or not can be determined in linear time. This
result is based on the algorithms for identifying series-
parallel networks proposed by Valdes et al. (1979),
Schoenmakers (1995), and Eppstein (1992).

If, rather than considering a general change of infor-
mation sets, we specialize the problem so that only one
user type does not have complete information about
the available set of routes and the change in question is
to bring all users complete information, then we show
that an IBP is possible if and only if the network is not
series parallel. It is intuitive that this class of networks is
less restrictive than SLI, since we are now considering
a specific change in information sets (thus making IBP
less likely to occur).

Our main focus is on traffic networks with a sin-
gle origin–destination pair for which we provide a full
characterization of network topologies for occurrence
of IBP. In Section 6.4, we consider multiple origin–
destination pairs and use our characterization to pro-
vide a sufficient condition on the network topology
under which the IBP does not occur.

Our notion of the IBP closely relates to the clas-
sic Braess’ paradox (BP), introduced in Braess (1968)
and further studied in Murchland (1970) and Arnott
and Small (1994), which considers whether an addi-
tional edge in the network can increase equilibrium
cost. When BP occurs in a network, the IBP with a sin-
gle information type also occurs (since the IBP with a
single information type can be shown to be identical
to BP). Various aspects of BP and congestion games
in general are studied in Murchland (1970), Steinberg
and Zangwill (1983), Dafermos and Nagurney (1984),
Patriksson (1994), Bottom et al. (1999), Jahn et al. (2005),
Ordóñez and Stier-Moses (2010), Meir and Parkes
(2014), Nikolova and Stier-Moses (2015), Chen et al.
(2015), and Feldman and Friedler (2015). Our charac-
terization of the ICWE and IBP clarifies that our notion
is different and, at least mathematically, more general.
This can be seen readily from a comparison of our
results to the most closely related papers to ours in
the literature, Milchtaich (2005, 2006). The characteri-
zations in Milchtaich (2006) imply that BP can be ruled
out in series-parallel networks. Since the IBP is a gen-
eralization of BP, it should occur in a wider class of
networks, and this is indeed what our result shows—
SLI is a strict subset of series-parallel networks. This
result also indicates that the IBP is a considerably more
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pervasive phenomenon than BP. Notably, the mathe-
matical argument for our key theorem is different from
Milchtaich (2006) because of the key difficulty rela-
tive to BP that not all users have access to the same
set of edges, and thus changes in traffic that benefit
some groups of users might naturally harm others by
increasing the congestion on the routes that they were
previously utilizing.
Issues related to Braess’ paradox arise not only in the

context of models of traffic but also in various models
of communication, pricing and choice over congested
goods, and electrical circuits. See, for example, Orda
et al. (1993), Korilis et al. (1997), Kelly et al. (1998), and
Low and Lapsley (1999) for communication networks;
the classic works by Pigou (1920) and Samuelson (1952)
as well as more recent works by Johari and Tsitsiklis
(2004), Acemoglu and Ozdaglar (2007), Ashlagi et al.
(2009), and Perakis (2004) for related economic prob-
lems; Frank (1981), Cohen and Horowitz (1991), and
Cohen and Jeffries (1997) for mechanical systems and
electrical circuits; and Rosenthal (1973) and Vetta
(2002) for general game-theoretic approaches. This
observation also implies that the results we present
here are relevant beyond traffic networks, in fact to
any resource allocation problem over a network sub-
ject to congestion considerations. As pointed out in
Newell (1980) and Sheffi (1985), the Braess’ paradox
and related inefficiencies are a clear and present chal-
lenge to traffic engineers, who often try to restrict travel
choices to improve congestion (e.g., via systems such
as ramp metering on freeway entrances).

Other inefficiencies created by providingmore infor-
mation in the context of traffic networks have been
studied inMahmassani andHerman (1984), Ben-Akiva
et al. (1991), Arnott et al. (1991), and Liu et al. (2016).
In particular, Arnott et al. (1991) consider a model with
atomic drivers in which users decide on their depar-
ture time and route choice. They show that provid-
ing imperfect information regarding capacity/delay
of roads might be worse than providing no infor-
mation. More broadly, inefficiencies created by pro-
viding more information in other contexts are stud-
ied in Maheswaran and Başar (2003), Sanghavi and
Hajek (2004), Yang andHajek (2005), Harel et al. (2014),
Dughmi (2014), and Rogers et al. (2015), among others.

Because our analysis also presents “price of an-
archy”–type results (i.e., bounds on the overall level
of inefficiency that can occur in an ICWE), our paper
is related to previous work on the price of anar-
chy in congestion and related games started by sem-
inal works of Koutsoupias and Papadimitriou (1999)
and Roughgarden and Tardos (2002) and followed by
Correa et al. (2004), Correa et al. (2005), and Friedman
(2004), as well as more generally to the analysis of equi-
librium and inefficiency in the variants of this class
of games, including Milchtaich (2004a, b), Acemoglu

et al. (2007), Mavronicolas et al. (2007), Nisan et al.
(2007), Arnott and Small (1994), Lin et al. (2004), Meir
and Parkes (2015), and Anshelevich et al. (2008). Here,
our result is that the presence of users with different
information sets does not change the worst-case ineffi-
ciency traffic equilibrium as characterized, for example,
in Roughgarden and Tardos (2002).

The rest of this paper is organized as follows. In
Section 2, we introduce our model of traffic equilib-
rium with users that are heterogeneous in terms of the
information about routes/edges they have access to,
and then define the notion of information-constrained
Wardrop equilibrium for this setting. In Section 3,
we prove the existence and essential uniqueness of
information-constrained Wardrop equilibrium. Before
moving to ourmain focus, in Section 4, we review some
graph-theoretic notions about series-parallel and lin-
early independent networks, and then we introduce
the class of series of linearly independent networks and
prove some basic properties of this class of networks,
which are then used in the rest of our analysis. Sec-
tion 5 defines our notion of the informational Braess’
paradox. Section 6 contains our main result, showing
that the informational Braess’ paradox occurs “if and
only if” the network is not in the class of series of
linearly independent networks. Section 7 characterizes
the worst-case inefficiency of information-constrained
Wardrop equilibrium, and finally, Section 8 concludes.
All the omitted proofs are included in the appendix.

2. Model
We first describe the environment and then introduce
our notion of information-constrained Wardrop equi-
librium.

2.1. Environment
We consider an undirected multigraph without self-
loops denoted by G � (V,E, f ) with vertex set V , edge
setE, and a function f : E→{{u , v}, u , v ∈V, u, v} that
maps each edge to its end vertices. For ease of notation,
we will refer to G as (V,E) and denote an edge e with
f (e)� {u , v} by e � (u , v). We use the terms “node” and
“vertex” interchangeably. Each edge e ∈ E joins two
(distinct) vertices u and v, referred to as the end vertices
of e. An edge e and a vertex v are said to be incident
to each other if v is an end vertex of e. A path p ∈ G of
length n (n > 0) is a sequence of edges e1 , . . . , en in E,
where ei and ei+1 share a vertex. If an edge e appears
on a path p, we write e ∈ p. The first and last vertices of
a path p are called the initial and terminal vertices of p,
respectively. If q is a path of the form en+1 , . . . , em , with
the initial vertex the same as the terminal vertex of p
but all the other vertices and edges of q do not belong
to p, then e1 , . . . , en , en+1 , . . . , em is also a path, denoted
by p + q. For a path p and two nodes v and u on it, we
denote the section of path between u and v by puv .
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Throughout the paper, we focus on an undirected
multigraph G � (V,E) together with an ordered pair
of distinct vertices, called terminals, an origin O and a
destination D, referred to as a network. A subnetwork
of G is defined as (V′,E′), where V′ ⊆V and E′ ⊆E and
for any e � (u , v) ∈ E′, we have u , v ∈ V′. We assume
that each vertex and edge belong to at least one path
between the initial vertex O and the terminal vertex D.
This assumption is without loss of generality because
the vertices and edges that do not belong to any path
from O to D are irrelevant for the purpose of sending
traffic from O to D. Any path r with O as the initial
vertex and D as the terminal vertex will be called a
route. The set of all routes in a network is denoted byR.

We suppose there are K > 1 types of users (we use
the terms “users” and “players” interchangeably) and
use the shorthand notation [K] � {1, . . . ,K} to denote
the set of types. Each type i ∈ [K] has total traffic demand
si ∈ �+, and we denote the vector of traffic demands
by s1:K � (s1 , . . . , sK). For each type i, we use E i ⊆ E
to denote the set of edges that type i knows and Ri
to denote the routes formed by edges in E i (assumed
nonempty). We refer to E i orRi as type i’s information
set. We use E1:K � (E1 , . . . ,EK) to denote the informa-
tion sets of all types.
We use f (i) � ( f (i)r : r ∈ Ri) to denote the flow vector

of type i, where for all r ∈ Ri , f (i)r > 0 represents the
amount of traffic (flow) that type i sends on route r. We
use f (1:K) � ( f (1) , . . . , f (K)) to denote the flow vector of
all types. Each edge of the network has a cost (latency)
function ce : �+ → �+, which is continuous, nonnega-
tive, and nondecreasing. We denote the set of all cost
functions by c � {ce : e ∈ E}. For instance, if all the cost
functions are affine functions, then for any e ∈ E, we
would have ce(x) � ae x + be for some ae , be ∈ �+. We
refer to (G,E1:K , s1:K , c) as a traffic network with multiple
information types. A feasible flow is a flow vector f (1:K) �
( f (1) , . . . , f (K)) such that for all i ∈ [K], f (i) is a flowvector
of type i (i.e., f (i):Ri→�+ and∑

r∈Ri
f (i)r � si).Wedenote

the total flow on each route r by fr (i.e., fr �
∑K

i�1 f (i)r ).

2.2. Information-Constrained Wardrop Equilibrium
The cost of a route r with respect to a flow
( f (1) , . . . , f (K)) is the sum of the cost of the edges that
belong to this route—that is, cr( f (1:K)) � ∑

e∈r ce( fe),
where fe denotes the amount of traffic that passes
through edge e (i.e., fe �

∑
r∈R: e∈r fr).

We assume flows get allocated at equilibrium ac-
cording to a “constrained” version of Wardrop’s prin-
ciple: flows of each user type are routed along routes
in her information set with minimal (and hence equal)
cost. We next formalize this equilibrium notion.
Definition 1 (ICWE).Afeasible flow f (1:K)�( f (1) , . . . , f (K))
is an ICWEif for every i∈[K]andeverypair r, r̃∈Ri with
f (i)r >0, we have

cr( f (1:K)) 6 c r̃( f (1:K)). (1)

Figure 1. Example of a Network with Edge Cost Functions
Given by ce1

(x)� ce4
(x)� ce6

(x)� x and ce2
(x)� ce5

(x)�
ce7
(x)� 1+ ax and ce3

� ax for Some a > 0

O D

e1

e2

e3

e4

e5

e7e6

This implies that all the routes inRi with positive flow
from type i have the same cost, which is smaller or
equal to the cost of any other route in Ri . The equilib-
rium cost of type i, denoted by c(i), is then given by the
cost of any route in Ri with positive flow from type i.
Note that the Wardrop equilibrium (WE) is a special
case of this definition for a traffic network with a single
information type (i.e., K � 1).

We next provide an example that illustrates this def-
inition and how it differs from the classic Wardrop
equilibrium.

Example 1. Consider the network G � (V,E) given in
Figure 1 with s1 � s, s2 � 1 − s, and the cost functions
specified in Figure 1. There are five different routes
from origin to destination, which we denote by r1 �

e1e3e4, r2 � e1e3e5, r3 � e2e3e4, r4 � e2e3e5, and r5 � e6e7.
We let E1 � E and E2 � {e6 , e7}, which results in R1 �

{r1 , r2 , r3 , r4 , r5} and R2 � {r5}, respectively.
• If s 6 (2+ a)/(3+2a), the ICWE is f (1)r1 � s and f (2)r5 �

1− s. The equilibrium cost of type 1 is c(1) � cr1
( f (1: 2))�

s + as + s � s(a + 2). The equilibrium cost of type 2 is
c(2) � cr5

( f (1: 2))� (1− s)+ (1+ a(1− s))� (1− s)(1+ a)+1.
Hence, the equilibrium cost of type 1 and type 2 users
need not be the same.

• If s > (2 + a)/(3 + 2a), the ICWE is f (1)r1 � (2 + a)/
(3 + 2a), f (1)r5 � s − (2 + a)/(3 + 2a) > 0, and f (2)r5 � 1 − s,
which gives c(1)� c(2)� ((2+a)2)/(3+2a). This illustrates
that when different types use a common route in an
equilibrium, their equilibrium costs are the same.

3. Existence of Information-Constrained
Wardrop Equilibrium

In this section,we show that givena trafficnetworkwith
multiple information types (G,E1:K , s1:K , c), an ICWE
always exists and is “essentially” unique; that is, for
each type, equilibrium cost is the same for all equilibria.
Our proof of the existence and essential uniqueness
of the ICWE relies on the following characterization,
which is a straightforward extension of thewell-known
optimization characterization of the Wardrop equilib-
rium (see Beckmann et al. 1956, Smith 1979).
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Proposition 1. A flow f (1:K) is an ICWE if and only if it is
a solution of the following optimization problem:

min
∑
e∈E

∫ fe

0
ce(z) dz

fe �

K∑
i�1

∑
r∈Ri : e∈r

f (i)r ,∑
r∈Ri

f (i)r � si , and f (i)r > 0 for all r ∈Ri . (2)

We call ∑e∈E ∫
fe

0 ce(z) dz the potential function and denote
it by Φ.

Using the characterization of ICWE as theminimizer
of a potential function, we can now show the existence
and essential uniqueness.

Theorem 1 (Existence and Uniqueness of ICWE). Let (G,
E1:K , s1:K , c) be a traffic network with multiple information
types.

• There exists an ICWE flow f (1:K) � ( f (1) , . . . , f (K)).
• The ICWE is essentially unique in the sense that if

f (1:K) and f̃ (1:K) are both ICWE flows, then ce( fe) � ce( f̃e)
for every edge e ∈ E.

Remark 1. As shown in Milchtaich (2005), Gairing
et al. (2006), andMavronicolas et al. (2007) the essential
uniqueness of equilibrium does not hold for multiple-
type congestion games where different types of users
have different cost functions for the same edge. This
class of congestion games is also referred to as player-
specific congestion games. Several conditions on the edge
cost functions and network topology have been pro-
posed to guarantee the existence of an essentially
unique equilibrium (see Konishi et al. 1997, Voorneveld
et al. 1999, Milchtaich 2005, Mavronicolas et al. 2007,
Georgiou et al. 2009, Gairing and Klimm 2013). In par-
ticular, Milchtaich (2005) provides sufficient and neces-
sary conditions on the network topology under which
an essentially unique equilibrium exists. Mavronicolas
et al. (2007) and Georgiou et al. (2009) show that
when the edge costs are affine functions and differ
by a player-specific additive constant, then an equilib-
rium exists. Our model is a special case of a player-
specific congestion game in which the cost of an edge
e for a type i user is ce( · ) if e ∈ E i and ∞ otherwise.
Therefore, the results of Mavronicolas et al. (2007) and
Georgiou et al. (2009) can directly be used to estab-
lish the existence of an equilibrium in our model. For
completeness, we provide an alternative proof of The-
orem 1 in Appendix A.1 based on the classical results
of Beckmann et al. (1956), Schmeidler (1973), Smith
(1979), and Milchtaich (2000).

Theorem 1 assumes that the cost functions are
nondecreasing. If we strengthen this assumption to
strictly increasing cost functions, then the results of

Roughgarden and Tardos (2002), Mavronicolas et al.
(2007), and Georgiou et al. (2009) show that the essen-
tial uniqueness result can be strengthened. In this case,
the total flow on any edge at any equilibrium would be
the same.

4. Some Graph-Theoretic Notions
In this section, we first present two classes of net-
works—namely, series-parallel and linearly indepen-
dent networks—which we use in our characterization
of an IBP. In preparation for our main graph-theoretic
results, we also present equivalent characterizations
of these networks and delineate the relations among
them. Finally, we define a new class of networks termed
series of linearly independent and present a charac-
terization for it in terms of embedding of a few basic
networks.

Definition 2 (Series-Parallel Network (SP)). A (two-ter-
minal) network is called series parallel if two routes
never pass through an edge in opposite directions.
Equivalently, as was shown by Riordan and Shannon
(1942), a network is series parallel if and only if

(i) it comprises a single edge between O and D, or
(ii) it is constructed by connecting two series-pa-

rallel networks in series (i.e., by joining the destination
of one series-parallel network with the origin of the
other one), or

(iii) it is constructed by connecting two series-paral-
lel networks in parallel (i.e., by joining the origins and
destinations of two series-parallel networks).

As an example, the networks shown in Figures 2(b)
and 2(c) are series-parallel networks, while the net-
work shown in Figure 2(a) is not. The reason is that
two routes e1e5e4 and e2e5e3 pass through the edge e5 in
opposite directions.

An important subclass of series-parallel networks
are linearly independent networks.

Definition 3 (Linearly Independent Network). A (two-
terminal) network is called linearly independent if each
route has at least one edge that does not belong to any
other route. Equivalently, as was shown by Holzman
and Law-yone (2003), a network is linearly indepen-
dent if and only if

(i) it comprises a single edge between O and D, or
(ii) it is constructedby connectinga linearly indepen-

dent network in series with a single edge network, or
(iii) it is constructed by connecting two linearly in-

dependent networks in parallel.

This class is termed linearly independent because
of an algebraic characterization of the routes when
viewed as vectors in the edge space. In particular, for
any r ∈R, let vr ∈ �|E |2 be vr � (v1

r , . . . , v
|E |
r ), where v i

r � 1
if ei ∈ r and 0 otherwise. A network G is LI if and only
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Figure 2. Networks That Cannot Be Embedded in SP and LI Networks: Network (a) Is Not Embedded in SP Networks;
Networks (a), (b), and (c) Are Not Embedded in LI Networks
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if the set of vectors {vr : r ∈R} is linearly independent
(see Milchtaich 2006, Diestel 2000).
As Definitions 2 and 3 make clear, the class of lin-

early independent networks is a subset of the class
of series-parallel networks. An alternative characteri-
zation of linearly independent and series-parallel net-
works is based on the “graph embedding” notion,
shown by Duffin (1965) and Milchtaich (2006), respec-
tively. We next define a graph embedding and then
present these characterizations, which will be used
later in our analysis.

Definition 4 (Embedding). A network H is embedded
in the network G if we can start from H and construct
G by applying the following steps in any order:
(i) Divide an edge; that is, replace an edge with two

edges with a single common end node.
(ii) Add an edge between two nodes.
(iii) Extend origin or destination by one edge.

Proposition 2. (a) (Milchtaich 2006): A network G is LI
if and only if none of the networks shown in Figure 2 are
embedded in it. Furthermore, a network G is LI if and only
if for every pair of routes r and r′ and every vertex v ,O ,D
common to both routes, either the section rOv is equal to r′Ov
or the section rvD is equal to r′vD .
(b) (Duffin 1965 and Milchtaich 2006): A network G is

SP if and only if the network shown in Figure 2(a) is not
embedded in it. Furthermore, a network G is SP if and only
if the vertices can be indexed in such a way that, along each
route, they have increasing indices.

This proposition shows that series-parallel networks
are those in which the network shown in Figure 2(a),
which is referred to as the Wheatstone network (see
Braess 1968), is not embedded. LI networks, in addi-
tion, also exclude embeddings of series-parallel net-
works that have routes that “cross” as indicated in Fig-
ures 2(b) and 2(c).
We now introduce a new class of networks, which

we refer to as series of linearly independent networks.

Definition 5 (Series of Linearly Independent Network). A
(two-terminal) network G is called series of linearly
independent if and only if
(i) it comprises a single linearly independent net-

work, or

(ii) it is constructed by connecting two SLI networks
in series.
A biconnected LI network is called an LI block, where a
graph is biconnected if it is connected and after remov-
ing any node and its incident edges the graph remains
connected (see Bondy andMurty 1976, chap. 3). Equiv-
alently, a network G is SLI if and only if it is con-
structed by connecting several LI blocks in series (see
Appendix A.2.1 for a formal proof). We refer to each of
these blocks as an LI block of SLI network G.

We next provide a new characterization of SLI net-
works in terms of graph embedding using the char-
acterizations for SP and LI networks presented in
Proposition 2.

Theorem 2 (Characterization of SLI). A network G is SLI
if and only if none of the networks shown in Figure 3 are
embedded in it.

The class of SLI networks is a subset of series-parallel
networks and a superset of linearly independent net-
works. This class plays an important role in our char-
acterization of networks that exhibit IBP. Valdes et al.
(1979) provided an algorithm to determine whether a
given network is SP in O(|E |+ |V |) steps based on a tree
decomposition of SP networks. This leads to the ques-
tion whether one can find a linear time algorithm (i.e.,
linear in the number of vertices and edges) to recognize
an SLI network. We next use the results of Valdes et al.
(1979) to show that we can recognize whether a given
network is SLI in linear time.

Proposition 3. There exists an algorithm that can deter-
mine whether a given network G is SLI in O(|E | + |V |).

5. Informational Braess’ Paradox
We first present the classical BP, which is defined for a
traffic network with a single type of user with E1 � E,
denoted by (G,E1 , s1 , c).
Definition 6 (BP).Consider a traffic networkwith a sin-
gle information type (G,E1 , s1 , c). BP occurs if there
exists another set of cost functions ĉ with ĉe(x) 6 ce(x)
for all e ∈E and x ∈�+, such that the equilibrium cost of
(G,E1 , s1 , ĉ) is strictly larger than the equilibrium cost
of (G,E1 , s1 , c).
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Figure 3. Networks That Cannot Be Embedded in SLI Networks
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BP refers to an unexpected increase in equilibrium
cost in response to a decrease in edge costs. We next
discuss the IBP, which arises when providing more
information to a subset of users in a traffic network
increases those users’ costs.

Definition 7 (IBP). Consider a traffic network with
multiple information types (G,E1:K , s1:K , c). IBP occurs
if there exist expanded information sets C̃1:K with E1 ⊂
C̃1 ⊆ E and C̃i � E i , for i � 2, . . . ,K, such that the equi-
librium cost of type 1 in (G, C̃1:K , s1:K , c) is strictly larger
than the equilibrium cost of type 1 in (G,E1:K , s1:K , c).
We denote the equilibrium cost of type i ∈ [K] before
and after the expansion of information sets by c(i)

and c̃(i), respectively.

The choice of type 1 users in this definition iswithout
loss of generality; that is, we assume that the informa-
tion set of only one type expands and the information
sets of the rest of the types remain the same. In com-
paring IBP to BP, first note that BP occurs in a network
if and only if a special case of BP occurs in which we
decrease the cost of one of the edges from infinity to its
actual cost; that is, equilibrium cost increases by adding
a new edge to the network. The “if” part holds by defi-
nition, and the “only if” part holds because the special
case of BP occurs in the Wheatstone network (as pre-
sented in Example 2(a)) and the Wheatstone network
is embedded in any network that features BP as shown
by Milchtaich (2005). In light of this, it follows that the
occurrence of IBP is a generalization of that of BP since
addition of a new edge to the network can be viewed
as expansion of the information set of a type to include
that edge in a traffic network with a single information
type.
The next example shows that IBP occurs in all net-

works shown in Figure 3—that is, all the basic networks
that are embedded in non-SLI networks.

Example 2. In this example we will show that for all
networks shown in Figure 3, there exists an assignment
of cost functions along with information sets for which
IBP occurs.

(a) IBP occurs for the Wheatstone network shown in
Figure 3(a). This follows from the occurrence of BP on
the Wheatstone network as shown in Braess (1968). We
will provide the example for the sake of completeness
in Appendix A.3.1.

(b) Consider the network shown in Figure 3(b) with
cost functions given by ce1

(x)� 1
2 x, ce2

(x)� x+ 3
4 , ce3
(x)�

4
3 x, ce4

(x) � 2, and ce5
(x) � x. The information sets are

E1 � {e2 , e3 , e5}, E2 � {e1 , e4 , e5}, and C̃1 � {e1 , e2 , e3 , e5}.
For s1 � 13/4 and s2 � 1, the equilibrium flows are

f (2)e1e4 � 1, f (2)e5 � 0, f (1)e2e3 �
3
4 , f (1)e5 �

10
4 ,

f̃ (2)e1e4 � 0, f̃ (2)e5 � 1, f̃ (1)e2e3 � 0, f̃ (1)e1e3 �
6
4 , f̃ (1)e5 �

7
4 .

The resulting equilibrium costs are c(1) � c(2) � 10/4 and
c̃(1) � c̃(2) � 11/4. Since c̃(1) > c(1), IBP occurs in this net-
work. The main intuition for this example is as follows.
After adding e1 to E1, type 1 users will no longer use
e2e3 and instead redirect part of their flow over e1e3.
This, in turn, will increase the cost of e1e4 for type 2
users and induce them to redirect all their flow from
e1e4 to e5. In balancing the costs of e1e3 and e5 for type 1
users, their equilibrium cost goes up.

(c) Finally, for the networks shown in Figures
3(c)–3(i), IBP occurs if we use the same setting as in
part (b) and include extra edges in all information sets
with zero cost.

Remark 2. In Appendix A.3.2, we show that Exam-
ple 2(b) is not degenerate and provide an infinite
set of (affine) cost functions for which IBP occurs in
this network. Similar to Example 2(c), this argument
extends to show that there are infinitely many cost
functions for which IBP occurs in networks shown in
Figures 3(c)–3(i). Finally, for the network shown in Fig-
ure 3(a), there are infinitely many cost functions for
which BP occurs when edge e5 is added; hence IBP
occurs as well (see, e.g., Steinberg and Zangwill 1983).

In a seminal paper, Milchtaich (2006) provided
necessary and sufficient conditions on the network
topology under which BP occurs. In particular,
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Milchtaich (2006) showed that for a given traffic net-
work with a single information type (G,E1 , s1 , c), BP
does not occur if and only if G is SP. That is, if G is SP,
then for any assignment of cost functions c and traffic
demand, BP does not occur, and if G is not SP, then
there exists an assignment of cost functions c for which
BP occurs.
We next investigate conditions on the topology of

the network under which IBP occurs. In a way similar
to the characterization provided by Milchtaich (2006),
we will identify classes of networks for which IBP does
not occur regardless of the cost functions of the edges.
Since, as already noted, IBP is a strict generalization of
BP, we will see that IBP can occur in a broader class of
networks, underscoring the problem mentioned in the
introduction that IBP is likely to be a more pervasive
problem.

6. Characterization of Informational
Braess’ Paradox

In this section, after establishing the key lemmas that
underpin the rest of our analysis, we provide our main
characterization of IBP. In Section 6.3 we provide a
characterization for IBP for a more restricted type of
change in information sets. We conclude this section
with a discussion of extensions of our results to multi-
ple origin–destination pairs.

6.1. Three Key Lemmas
The following lemmas identify properties of the traffic
network consisting of heterogeneous users over an LI
network.

Lemma 1. (a) Given an LI network G, let f (1:K) and f̃ (1:K)

be two arbitrary nonidentical feasible flows for two traffic
networks (G,E1:K , s1:K , c) and (G,E1:K , s̃1:K , c), respectively.
If ∑K

i�1 si >
∑K

i�1 s̃i , then there exists a route r such that∑K
i�1 f (i)r >

∑K
i�1 f̃ (i)r and fe > f̃e for all e ∈ r.

(b) Given an LI network G, let c(i) and c̃(i) denote the
equilibrium cost of type i ∈ [K] users in traffic networks
(G,E1:K , s1:K , c) and (G, C̃1:K , s1:K , c), respectively. If E1 ⊆
C̃1 and C̃i � E i , for i � 2, . . . ,K, then there exists some
i ∈ [K] such that c̃(i) 6 c(i).

This lemma directly follows from Milchtaich (2006,
lemma 5 and theorem 3). The first part of the lemma
shows that in an LI network, if the total traffic increases,
then there exists at least one route whose flow strictly
increases, and the flow on each of its edges weakly
increases. The second part shows that in an LI network,
if we expand the information set of type 1 users, then
the equilibrium cost of at least one of the types does not
increase. In fact, a similar argument shows that even if
we expand the information set of multiple types, then
the equilibrium cost of at least one of the types does
not increase (see Milchtaich 2006, theorem 3). Note
that this result is not sufficient for establishing that

IBP does not occur over LI networks because what we
need to establish is that it is the equilibrium cost of
type 1 users that does not increase. For completeness,
in Appendix A.4.1, we show how this lemma follows
from the results of Milchtaich (2006).

The next lemma shows a property of equilibrium
flows and equilibrium costs in a network, which is
the result of attaching two networks in series. We use
the following definition to state the lemma. Suppose
f (1:K) is a feasible flow for (G,E1:K , s1:K , c), where G is
the result of attaching G1 and G2 in series. We denote
the attaching point of G1 and G2 by D1. The restric-
tion of f (1:K) to G1 (similarly to G2) is defined as f̄ (1:K) �
( f̄ (1) , . . . , f̄ (K)), where the flow of type i on any route r̄ in
G1 is the summation of the flows of type i on all routes
of G that contain r̄. Formally, for any i ∈ [K], we have
f̄ (i)(r̄)�∑

r∈R̄i (r̄) f (i)(r), where R̄i(r̄)� {r ∈Ri : rOD1
� r̄}.

Note that f̄ (1:K) is a feasible flow on G1.

Lemma 2. (a) If G is the result of attaching two networks
G1 and G2 in series, then the restriction of an equilibrium
flow for G to each of G1 and G2 is an equilibrium flow.

(b) If G is the result of attaching two networks G1 and
G2 in series, then the equilibrium cost of any type on G
is the summation of the equilibrium costs of that type on
G1 and G2.

The third lemma shows our key lemma that we will
use in the proof of Theorem 3. Intuitively, this lemma
states that in an LI network, if we decrease the traffic on
one subset of routes RA of the network and reroute it
through the rest of the routes in the network, denoted
by RB �R\RA, then the maximum cost improvement
over all the routes in RA cannot be smaller than the
minimum cost improvement over all the routes in RB .
This result will enable us to establish that in an LI or
SLI network, the reallocation of traffic because of one
type of user obtaining more information cannot harm
that type.

Lemma 3. Given an LI network G, we let RA ,RB , �
denote a partition of routes R (i.e., RB � R\RA). We let
f (1:K) and f̃ (1:K) be two feasible flows for traffic networks
(G,E1:K , s1:K , c) and (G,E1:K , s̃1:K , c), respectively. For these
two flows, we let the traffic over RA and RB be sA �∑

r∈RA

∑K
i�1 f (i)r , s̃A �

∑
r∈RA

∑K
i�1 f̃ (i)r , sB �

∑
r∈RB

∑K
i�1 f (i)r ,

and s̃B �
∑

r∈RB

∑K
i�1 f̃ (i)r . If s̃A 6 sA and s̃B > sB , thenwe have

max
r∈RA

{cr − c̃r} >min
r∈RB

{cr − c̃r},

where for any route r, cr and c̃r denote the cost of this route
with flows f (1:K) and f̃ (1:K), respectively.

Before proving this lemma for a general LI network,
let us show it for the special case where G consists
of parallel edges from O to D. In this case RA and
RB are two disjoint sets of edges from O to D. Since
s̃A 6 sA, there exists an edge eA inRA such that f̃eA

6 feA
.
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Similarly, since s̃B > sB , there exists eB ∈ RB such that
f̃eB
> feB

. Since the cost functions are nondecreasing,
we have

max
r∈RA

{cr − c̃r} > ceA
( feA
) − ceA

( f̃eA
) > 0 > ceB

( feB
) − ceB

( f̃eB
)

>min
r∈RB

{cr − c̃r},

which is the desired result. The proof for the general
case is by induction on the number of edges and is
included next.

Proof. We first note a consequence of Proposition 2.

Claim 1. If a network G is LI then for any vertex v, either the
sections from O to v of all routes that pass through v (which
consists of v and all the vertices and edges preceding it on the
route) are identical or the sections from v to D of all routes
that pass through v (which consists of v and all the vertices
and edges succeeding it on the route) are identical. Consider
a route r that passes through v. First, note that since G is
SP, part (b) of Proposition 2 implies that the only common
node of rOv and rvD is v. Also, the only common node of r′Ov
and r′vD is v. Claim 1 follows since if the contrary holds, then
there exist two routes r � rOv + rvD and r′ � r′Ov + r′vD with
a common vertex v such that rOv , r′Ov and rvD , r′vD . This
contradicts the statement of part (a) of Proposition 2.

Wenowprove Lemma 3 using induction on the num-
ber of edges. For a single edge, it evidently holds. For a
general LI network, we have the following cases:

• There exists r ∈RA such that cr > c̃r and r′ ∈RB
such that cr′ 6 c̃r′ . This leads to

max
r∈RA

{cr − c̃r} > cr − c̃r > 0 > cr′ − c̃r′ >min
r∈RB

{cr − c̃r},

which concludes the proof in this case.
• For any r ∈RA, we have cr < c̃r . We break the proof

into three steps.
Step 1. There exist a route r ∈RA and an edge e ∈ r

with the following properties: (i) The flow on r from s̃A
is less than or equal to the flow on r from sA. (ii) The
flow on e from s̃B is larger than the flow on e from sB ,
and the flow on e from s̃A is less than or equal to the
flow on e from sA.

This step follows from invoking part (a) of Lemma 1.
Since s̃A 6 sA, using part (a) of Lemma 1, there exists a
route r ∈RA such that the flow on each edge of r from
s̃A is less than or equal to the flow from sA. However,
we know that the overall cost of any r ∈RA has gone
up (i.e., c̃r > cr). This implies that there exists an edge
e ∈ r such that the flow from s̃B on e is more than the
flow from sB on e.

Step 2. Let Re denote the set of routes using edge
e � (ue , ve) as defined in Step 1. Note thatRe has the fol-
lowing properties: (i) Either there exists a vertex D′ ∈V
such that all routes r ∈Re have a common path from O
to ve and a common path from D′ to D or there exists

a vertex O′ ∈ V such that all routes r ∈Re have a com-
mon path from ue to D and a common path from O
to O′. Without loss of generality, we assume it is the for-
mer case. (ii) There exists a subnetwork G′ with origin
O′ � ve and destination D′ such that for the restricted
parts of RA and RB over G′, denoted by R′A and R′B ,
if we let s′A, s̃′A, s′B , and s̃′B to denote the corresponding
traffic demands on R′A and R′B , then we have s̃′A 6 s′A
and s̃′B > s′B .
Using Claim 1, for an edge e � (ue , ve), either there is

a unique path from O to ve or there is a unique path
from ve to D; we assume without loss of generality it
is the former case. We let D′ be the first node on route
r such that all routes in Re coincide from D′ to D.
Therefore, all routes r ∈Re have a common path from
O to ve and a common path from D′ to D, showing the
first property.

We next show that the subnetwork consisting of all
routes from ve to D′, denoted by G′, satisfies the second
property. To see this, note that the flows on G′ are only
the ones that are passing through edge e. From Step 1,
we know that the flow on e from s̃B is larger than the
flow on e from sB and the flow on e from s̃A is less than
or equal to the flow on e from sA, showing the second
property.

Step 3. Using Steps 1 and 2 and the induction
hypothesis for G′, we will show that

max
r∈RA

{cr − c̃r} >min
r∈RB

{cr − c̃r}.

First note that Re ∩RA , �, since r ∈ RA and e ∈ r.
Furthermore,Re∩RB ,�, since, as explained in Step 1,
the flow on e from s̃B is strictly positive. This, in turn,
shows that R′A and R′B are nonempty. Using Step 2,
all the conditions of Lemma 3 hold for subnetwork G′.
Therefore, we can use the induction hypothesis for LI
network G′ to obtain

max
r∈R′A
{cr − c̃r} >min

r∈R′B
{cr − c̃r}.

Using Step 2, for all the routes in Re the costs of going
from O to O′, denoted by cO′→O , are the same. Similarly,
the costs of all routes inRe going from D′ to D, denoted
by cD′→D , are the same.
Therefore, we have

max
r∈RA

{cr − c̃r} > max
r∈RA∩Re

{cr − c̃r} � (cO→O′ − c̃O→O′)

+max
r∈R′A
{cr − c̃r}+ (cD′→D − c̃D′→D)

> (cO→O′ − c̃O→O′)+min
r∈R′B
{cr − c̃r}+ (cD′→D − c̃D′→D)

� min
r∈RB∩Re

{cr − c̃r} >min
r∈RB

{cr − c̃r},

which concludes the proof in this case.
• For any r ∈RB , we have cr > c̃r . The proof of this

case is similar to the previous case. We state the three
steps without repeating the reasoning for each of them.
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Step 1. There exists a route r ∈RB and an edge e ∈ r
with the following properties: (i) The flow on r from s̃B
is larger than or equal to the flow on r from sB . (ii) The
flow on e from s̃A is smaller than the flow on e from sA,
and the flow on e from s̃B is larger than or equal to the
flow on e from sB .
Step 2. Let Re denote the set of routes using edge

e � (ue , ve) as defined in Step 1. We have the following
properties: (i) Either there exists a vertex D′ ∈ V such
that all routes r ∈Re have a common path from O to
ve and a common path from D′ to D or there exists a
vertex O′ ∈V such that all routes r ∈Re have a common
path from ue to D and a common path from O to O′.
Without loss of generality, we assume it is the former
case. (ii) There exists a subnetwork G′ with origin O′ �
ve and destination D′ such that for the restricted parts
ofRA andRB over G′, denoted byR′A andR′B , if we let
s′A, s̃′A, s′B , and s̃′B denote the corresponding traffic on
R′A andR′B , then we have s̃′A 6 s′A and s̃′B > s′B .
Step 3. Again, using Steps 1 and 2 and the induction

hypothesis for G′, we have

max
r∈RA

{cr − c̃r} >min
r∈RB

{cr − c̃r},

which completes the proof.

6.2. Characterization of the Informational
Braess’ Paradox

We next present our main result, which states that IBP
does not occur if and only if the network is SLI. The
idea of this result, as already discussed in the intro-
duction, is the following. To show the “if” part, we
note that using Lemma 2 it suffices to show IBP does
not occur in LI networks. Consider an expansion of

Figure 4. (Color online) Proof of Theorem 3: Set A (B) Represents Types with Higher (Lower) Equilibrium Costs and SetRA
(RB) Represents Routes with Higher (Lower) Costs
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the information set of type 1 and the new equilibrium
flows. If the equilibrium cost of type 1 increases, then
ICWE definition implies the following:

• Consider all types with increased equilibrium
costs (including type 1). All routes used by these types
(in the equilibrium before information expansion) have
higher costs in the new equilibrium.

• Consider all types with decreased equilibrium
costs. All routes used by these types (in the equilib-
rium after information expansion) have lower costs in
the new equilibrium.

Using these two claims, it follows that the total flow
sent over the routes with higher costs is lower, and the
total flow sent over the routeswith lower costs is higher
(see Figure 4). Since the network is LI, Lemma 3 leads
to a contradiction. The “only if” part holds because any
non-SLI network embeds one of the networks shown
in Figure 3, and an IBP can be constructed for each of
them (Example 2), which then extends to an IBP for the
non-SLI network.
Theorem 3 (Characterization of IBP). IBP does not occur
if and only if G is SLI. More specifically, we have the
following:

(a) If G is SLI, for any traffic network (G,E1:K , s1:K , c)
with arbitrary assignment of cost functions c, K, traffic
demands s1:K , and information sets E1:K , IBP does not occur.
(b) If G is not SLI, there exists an assignment of cost

functions c, K, traffic demands s1:K , and information sets
E1:K in which IBP occurs.

Proof of Part (a). To reach a contradiction, suppose
that c̃(1) > c(1). By Definition 5, G is obtained from
attaching several LI blocks in series, denoted by
G1 , . . . ,GN for some N > 1. Using part (b) of Lemma 2,
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we have c̃(1) �
∑N

t�1 c̃(1)t >
∑N

t�1 c(1)t � c(1), where c(1)t
denotes the equilibrium cost of type 1 users in Gt .
Therefore, there exists one LI block such as j for which
c̃(1)j > c(1)j . Also, using part (a) of Lemma 2, the restric-
tion of equilibrium flows f (1:K) and f̃ (1:K) to G j creates
an equilibrium flow for this LI block. Therefore, IBP
occurs in LI block G j . In the rest of the proof of part (a),
we will assume IBP occurs in an LI block (and hence
LI network) and reach a contradiction. We let f (1:K)

and f̃ (1:K) be the equilibrium flows before and after the
information set expansion, respectively. Also, for any
route r ∈R, we let cr and c̃r denote the cost of route r
with flows f (1:K) and f̃ (1:K), respectively.

We partition the set [K] into groups A and B as
follows:

A � {i ∈ [k]: c̃(i) > c(i)},
and

B � {i ∈ [k]: c̃(i) 6 c(i)};
that is, set A denotes all types with higher equilibrium
cost in the game with higher information, and set B
denotes the rest of the types.
We also partition the routes of the network into two
subsets RA and RB , where

RA � {r ∈R: c̃r > cr}

and
RB � {r ∈R: c̃r 6 cr};

that is, RA denotes all routes that have higher costs in
the game with higher information, andRB denotes the
rest of the routes. We show the following claims.

Claim 1. For any type i ∈ A and any route r ∈RB , we have
f (i)r � 0; that is, for a given type i, if the equilibrium cost
increases in the game with higher information, then the cost
of all routes that type i was using (with strictly positive flow)
also increases. This follows since if r < Ri , then f (i)r � 0.
Otherwise, r ∈Ri , which implies r ∈ R̃i as well, where R̃i
denotes the set of available routes to type i in the expanded
information set. Assuming i ∈ A and r ∈RB , we have

cr > c̃r > c̃(i) > c(i) ,

where the first inequality follows from the definition of the
set RB . The second inequality follows from the definition
of ICWE. The third inequality follows from the definition
of set A. The overall inequality and the definition of ICWE
show that f (i)r � 0.

Claim 2. For any type i ∈ B and any route r ∈ RA, we
have f̃ (i)r � 0; that is, for a given route, if the cost of the
route in the equilibrium increases in the game with higher
information, then the equilibrium costs of all types that are
using this route in the equilibrium of the higher information
game also increases. This follows since if r < R̃i , then f̃ (i)r �0.
Otherwise, r ∈ R̃i , which implies r ∈Ri , because 1 < B and

the information set of all other types are fixed. Assuming
i ∈ B and r ∈RA, we have

c̃r > cr > c(i) > c̃(i) ,

where the first inequality follows from the definition of the
set RA. The second inequality follows from the definition
of ICWE. The third inequality follows from the definition
of set B. The overall inequality and the definition of ICWE
show that f̃ (i)r � 0.

Claim 3. Letting sA �
∑

r∈RA

∑K
i�1 f (i)r , s̃A �

∑
r∈RA

∑K
i�1 f̃ (i)r ,

sB�
∑

r∈RB

∑K
i�1 f (i)r , and s̃B�

∑
r∈RB

∑K
i�1 f̃ (i)r , we have s̃A6 sA

and s̃B> sB .
This follows from Claims 1 and 2. The traffic on the

routes in RA from f (1:K) is sA, which is the entire traffic
demand si for all i ∈ A (Claim 1) and possibly some
portion of the traffic demand s j for j ∈ B. On the other
hand, the traffic on the routes in RA from f̃ (1:K) is s̃A,
which contains only some portion of the traffic demand
si for i ∈ A. Claim 2 implies that for all j ∈ B the traffic
demand s̃ j is only sent on the routes inRB . This shows
that s̃A 6 sA, which in turn leads to s̃B > sB (see Figure 4
for an illustration of the partitioning and the flows).

Part (b) of Lemma 1 shows that there exists type i
for which c̃(i) 6 c(i), which in turn shows that set B
is nonempty—also by the contradiction assumption
1 ∈ A, which implies that both A and B are nonempty.
Using Claim 1, if A is nonempty, then RA , � as the
flow f (1:K) of the types in A can only go to routes
in RA. Also using Claim 2, since B is nonempty, we
haveRB ,� as the flow f̃ (1:K) of the types in B can only
go to routes in RB . Therefore, we have partitioned the
routes of the network into two nonempty sets RA and
RB such that c̃r > cr for all r ∈ RA and c̃r 6 cr for all
r ∈RB . In other words, we have maxr∈RA

{cr − c̃r} < 0
and minr∈RB

{cr − c̃r} > 0. We now have all the pieces to
use Lemma 3, which yields

0 >max
r∈RA

{cr − c̃r} >min
r∈RB

{cr − c̃r} > 0,

which is a contradiction, completing the proof of
part (a). �
Proof of Part (b). The proof of this part follows from
Theorem 2. Let G be a non-SLI network. Using The-
orem 2, one of the networks shown in Figure 3 must
be embedded in G. Using Example 2, for all networks
shown in Figure 3, there exists an assignment of cost
functions and information sets for which IBP occurs.

To construct an example for G we start from the
cost functions for which the embedded network fea-
tures IBP (as shown in Example 2) and then following
the steps of embedding, given in Definition 4, we will
update the information sets as well as the cost func-
tions in a way that IBP occurs in the final network G.
The updates of information sets and cost functions are
as follows.
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(i) If the step of embedding is to divide an edge, we
assign half of the original edge cost to each of the new
edges and update the information set by adding both
newly created edges to the same information set as of
the original edge. This guarantees that the equilibrium
flow of the network after dividing an edge is the same
as the one before.

(ii) If the step of embedding is to add an edge, then
we include that edge in none of the information sets (or
equivalently assign cost infinity to it). This guarantees
that the new edge is never used in any equilibrium.

(iii) If the step of embedding is to extend origin or
destination, we let the cost of the new edge be c(x)� x
and update all of the information sets by adding this
edge to them. Since this edge will be used by all types
and the flow on it will not change, this step of embed-
ding does not affect the equilibrium flow.
This construction establishes that since IBP is present
in the initial network—that is, one of the networks
shown in Figure 3—it will be present in the network G
as well. This completes the proof of part (b).

Recall that in Remark 2 we showed for each of the
networks shown in Figure 3 that there exist infinitely
many cost functions for which IBP occurs. This shows
that if IBP occurs in a network, then it occurs for
infinitely many cost functions. This is because if IBP
occurs in a network G, Theorem 3, part (a) implies G
is not SLI, and Theorem 2 shows that one of the basic
networks shown in Figure 3 is embedded in G. Finally,
by construction of the proof of Theorem 3, part (b), the
cost function configuration of the basic network can be
extended to network G, showing that IBP occurs for
infinitely many cost functions.

6.3. IBP with Restricted Information Sets
In this subsection, we show that restricting focus
to networks with a much more specific information
structure—wherebyonlyone typedoesnotknowall the
edges, and the change in question informs this type of
all edges—allows us to establish that IBP does not occur
in a larger set of networks. Interestingly, in this case,
IBP does not occur in exactly the same set of networks
on which BP does not occur, series-parallel networks,
although the two concepts continue to be very differ-
ent evenunder thismore specific information structure.
The similarity is that after the change, as in the classic
Wardrop equilibrium setting studied for BP, there is no
more heterogeneity among users. We first define IBP
with restricted information sets and then state the char-
acterization of network topology that leads to it.

Definition 8 (IBP with Restricted Information Sets). Con-
sider a traffic network with multiple information types
(G,E1:K , s1:K , c). IBP with restricted information sets
occurs if there exist expanded information sets C̃1:K
with E1 ⊂ C̃1 � E, and E i � C̃i � E for i � 2, . . . ,K, such

that the equilibrium cost of type 1 in (G, C̃1:K , s1:K , c)
is strictly larger than the equilibrium cost of type 1 in
(G,E1:K , s1:K , c). We denote the equilibrium cost of type
i ∈ [K] before and after the expansion of information
by c(i) and c̃(i), respectively.

Theorem 4. IBP with restricted information sets does not
occur if and only if the network G is SP. More specifically,
we have the following:

(a) If G is SP, then for any network with multiple infor-
mation sets (G,E1:K , s1:K , c) with arbitrary assignment of
cost functions c, K, traffic demands s1:K , and information
set E1, IBP with the restricted information sets does not
occur.

(b) If G is not SP, then there exists an assignment of cost
functions c, K, traffic demands s1:K , and information set E1
in which IBP with restricted information sets occurs.

6.4. Extension to Multiple Origin–Destination Pairs
In this subsection, we consider networks with multi-
ple information types and multiple origin–destination
pairs as defined next.

Definition 9. Consider a graph G � (V,E) containing m
origin–destination pairs denoted by (Oi ,Di), i ∈ [m].
For any i ∈ [m], there are Ki types of users, each with
information set E i , j ⊆ E, for j ∈ [Ki]. We refer to (i , j)
as the type of a user, where i ∈ [m] denotes the origin–
destination pair of this type and j ∈ [Ki] represents
its information set. The traffic network with multi-
ple information types and multiple origin–destination
pairs is denoted by (G, {E i , 1:Ki

}m
i�1 , {si , 1:Ki

}m
i�1 , c). We let

Ri , j denote the set of routes available to a user of type
(i , j) (i.e., routes formed by edges in E i , j). A feasible
flow is a flow vector f � ( f (1, 1:K1) , . . . , f (m , 1:Km )) such
that f (i , 1:Ki ) is a feasible flow for origin–destination pair
(Oi ,Di).

We denote the total flow on an edge e by fe , where
fe �

∑m
i�1

∑Ki
j�1

∑
r∈Ri , j : e∈r f (i , j)

r . Note that since G is an
undirected graph, the total flow on each edge is the
sum of the flows sent through that edge in either direc-
tion (see Lin et al. 2011, Holzman and Monderer 2015).
The cost of a route r is defined as cr( f ) �

∑
e∈r ce( fe).

ICWE in this case is defined naturally as follows.
A feasible flow f � ( f (1, 1:K1) , . . . , f (m , 1:Km )) is an ICWE

if for every i ∈ [m] and j ∈ [Ki] and every pair r, r̃ ∈Ri , j

with f (i , j)
r > 0 we have

cr( f ) 6 c r̃( f ). (3)

This implies that all routes of type (i , j) with positive
flow have the same cost, which is smaller than or equal
to the cost of any other route in Ri , j . The equilibrium
cost of type (i , j), denoted by c(i , j), is then given by
the cost of any route in Ri , j with positive flow from
type (i , j).
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The existence of ICWE in this setting follows from
an identical argument to that of Theorem 1. Finally, the
definition of IBP for this extended setting is as follows.
Definition 10 (IBPwithMultiple Origin–Destination Pairs).
Consider a traffic network with multiple informa-
tion types and multiple origin–destination pairs (G,
{E i ,1:Ki

}m
i�1 ,{si ,1:Ki

}m
i�1 ,c). IBP occurs if there exists an

expanded information set {C̃i ,1:Ki
}m

i�1 with E1,1 ⊂ C̃1,1
and C̃i , j �E i , j for all (i , j), (1,1), i ∈ [m], j ∈ [Ki], such
that the equilibrium cost of type (1,1) in (G,{C̃i ,1:Ki

}m
i�1 ,

{si ,1:Ki
}m

i�1 ,c) is strictly larger than the equilibrium cost
of type (1,1) in (G,{E i ,1:Ki

}m
i�1 ,{si ,1:Ki

}m
i�1 ,c).

Note that the choice of type (1, 1) for information
expansion is arbitrary and without loss of generality.
We next establish a sufficient condition on the net-
work topology under which IBP with multiple origin–
destination pairs does not arise. Wewill use the follow-
ing definitions from Chen et al. (2016).
Definition 11.

• For any origin–destination pair (Oi ,Di), the rele-
vant network i denoted by Gi � (Vi ,Ei) consists of all
edges and nodes of G that belong to at least one route
from Oi to Di in G.

• For an SLI network Gi , each LI block has two ter-
minal nodes, an origin and a destination, such that the
origin is the first node and the destination is the last
node in the block visited on any route in Gi . For two
SLI networks Gi and G j , a coincident LI block is a com-
mon LI block of Gi and G j with the same set of terminal
nodes, allowing the origin of one to be the destination
of the other.
Note that the definition of relevant network Gi as

well as its LI blocks depends only on the network G and
the origin–destination pair (Oi ,Di), not on the infor-
mation sets. From this definition, we next provide a
sufficient condition for excluding IBP.
Proposition 4. Let G be a graph with m > 1 origin–desti-
nation pairs. For any i ∈ [m], let Gi � (Vi ,Ei) be the relevant
network for origin–destination pair (Oi ,Di). IBP does not
occur if the following two conditions hold:
(a) For any i ∈ [m], the network Gi is SLI.
(b) For any i , i′ ∈ [m] either E i ∩ E i′ � � or E i ∩ E i′

consists of all coincident blocks of Gi and Gi′ .
Proof. We let f and f̃ denote the equilibrium flows
before and after the expansion of the information set
of type (1, 1). To reach a contradiction, suppose that
c̃(1, 1) > c(1, 1). Using part (b) of Lemma 2 and condi-
tion (a) of the proposition, the equilibrium cost of type
(1, 1) users is the sum of the equilibrium cost of the LI
blocks of G1. Since c̃(1, 1) > c(1, 1), there exists an LI block
of G1 for which the equilibrium cost after expand-
ing information set of type (1, 1) increases. We denote
this LI block by G∗ and its corresponding origin and
destination by O∗ and D∗, respectively. Using condi-
tion (b) for any i , 1, we have one of the following two

cases: (i) Gi does not have any common edge with G∗,
and therefore none of the route flows of (Oi ,Di) goes
through any edge of G∗; or (ii) O∗ and D∗ belong to all
routes of Gi , and therefore all route flows of (Oi ,Di)
go through G∗. We let C be the set of indices of such
origin–destination pairs (i.e., C � {i ∈ [m]: O∗ ,D∗ ∈ r,
∀ r ∈ Gi}). We next define a traffic network with single
origin–destination pair (O∗ ,D∗) over G∗ for which IBP
has occurred. The types of users are (⋃i∈C{(i , j): j ∈
[Ki]})∪{(1, j): j ∈ [K1]}with their corresponding traffic
demands. Note that for all i ∈ C, even though our def-
inition of coincident LI block allows the route flows of
(Oi ,Di) to go from O∗ to D∗ in either direction, without
loss of generality, we can assume that route flows go
from O∗ to D∗. This is because the cost of any edge is
a function of the sum of the flows that passes through
that edge in either direction, and reversing the flows
does not change the equilibrium flows on edges. Using
Lemma 2, part (a), the restriction of equilibrium flows
f and f̃ to G∗ are equilibrium flows for the conges-
tion gamewithmultiple information types and a single
origin–destination pair defined on G∗. Note that G∗ is
an LI network, and the equilibrium cost of type (1, 1)
users after expanding their information set has gone
up, which is a contradiction using Theorem 3. �

Figure 5(a) shows two SLI networks with their cor-
responding LI blocks, and Figure 5(b) shows a graph
with two origin–destination pairs, which satisfies our
sufficient condition.

Thenext example shows that the conditions ofPropo-
sition 4 are not necessary for nonoccurrence of IBP.

Example 3. Consider the network G shown in Figure 6.
The common LI block of relevant networks G1 and G2
is G itself, which is not a coincident LI block because
the sets of terminals of this block for G1 and G2 are dif-
ferent. Therefore, this network does not satisfy the con-
ditions of Proposition 4. However, in Appendix A.4.4
we show that for any set of edge cost functions, IBP
does not occur in this network.

In concluding this subsectionwe should note that BP
with multiple origin–destination pairs has been stud-
ied in Epstein et al. (2009), Lin et al. (2011), Fujishige
et al. (2017), Holzman and Monderer (2015), and Chen
et al. (2016). In particular, Chen et al. (2016) provide a
full characterization of network topologies for which
BP occurs withmultiple origin–destination pairs. BP as
defined in Chen et al. (2016) occurs if adding an edge
(decreasing cost of an edge) increases the equilibrium
cost of the users of one of the origin–destination pairs,
even if that edge is never used by the users of that
origin–destination pair. With this definition it is pos-
sible to have a network for which IBP does not occur
while BP occurs. For instance, BP occurs in the network
considered in Example 3 (see Chen et al. 2016), while
we showed IBP does not occur in this network.
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Figure 5. (Color online) (a) Two SLI Networks with Their Corresponding LI Blocks; (b) A Graph with Two OD Pairs for
Which IBP Does Not Occur
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Figure 6. Example 3: IBP Does Not Occur on This Network
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7. Efficiency of Information Constrained
Wardrop Equilibrium

In this section, we provide bounds on the inefficiency
of ICWE. We show that the worst-case inefficiency
remains the same as the standard Wardrop equilib-
rium, even though our notion of ICWE is considerably
more general than the Wardrop equilibrium since it
allows for a rich amount of heterogeneity among users.

We start by defining the social optimum defined as
the feasible flow vector that minimizes the total cost
over all edges. We focus on aggregate efficiency loss
defined as the ratio of total cost experienced by all
users at social optimum and ICWE. We provide tight
bounds on this measure of efficiency loss that are real-
ized for different classes of cost functions. We also con-
sider type-specific efficiency loss defined as the ratio
of total cost experienced by type i users at social opti-
mum and ICWE. We show that the bounds in this case
are different from the ones in the standard Wardrop
equilibrium.
Given a traffic network with multiple information

types (G,E1:K , s1:K , c), we define the social optimum,
denoted by f (1:K)

so � ( f (1)so , . . . , f (K)so ) (or simply fso), as
the optimal solution of the following optimization
problem:

min
∑
e∈E

fe ce( fe),

fe �

K∑
i�1

∑
r∈Ri : e∈r

f (i)r ,∑
r∈Ri

f (i)r � si , and f (i)r > 0 for all r ∈Ri and i. (4)

This optimization problem minimizes the total cost
over all edges incurred by all users of all types. Under
the assumption that each cost function is continuous,
it follows that the optimal solution of problem (4) and
hence a social optimum always exists. We denote the
total cost of a feasible flow f (1:K) by

C( f (1:K)) ,
∑
e∈E

fe ce( fe).

Similarly, for a feasible flow f (1:K), we define the total
cost incurred by type i users as

C(i)( f (1:K)) ,
∑
e∈E

f (i)e ce( fe).

Consequently, we define the socially optimal cost of
type i as C(i)so � C(i)( f (1:K)

so ) for i ∈ [K] and the overall
cost (over all types) of social optimum as Cso �C( f (1:K)

so ).
Similarly, we define the equilibrium cost of type i as
C(i)cwe � C(i)( f (1:K)

cwe ) for i ∈ [K] and the overall cost (over
all types) of ICWE as Ccwe � C( f (1:K)

cwe ), where f (1:K)
cwe (or

simply fcwe) denotes an ICWE. Note that C(i)( f (1:K)
cwe ) is

different from the equilibrium cost of type i denoted by
c(i), as the latter notion is the cost per unit of flow and
the former is the aggregate cost. The relation between
these two is simply C(i)cwe � si c(i), i ∈ [K].
The following result from Roughgarden and Tardos

(2002) and Correa et al. (2005) presents bounds on the
efficiency loss of the Wardrop equilibrium, which pro-
vides bounds on the efficiency loss of ICWE in a traffic
network with a single information type, with E1 � E
denoted by (G,E1 , s1 , c).
Proposition 5 (Roughgarden and Tardos (2002)). Con-
sider a traffic network with a single information type
(G,E1 , s1 , c). Let fwe be a Wardrop equilibrium, and let fso
be a social optimum. Then, we have

(a) inf(G,E1 , s1 , c): ceconvex Cso/Cwe � 0.
(b) Suppose ce(x) is an affine function for all e ∈E. Then,

we have Cso/Cwe >
3
4 , and this bound is tight.

(c) Let C be a class of latency functions, and let β(C) �
supc∈C, x>0 β(c , x), where

β(c , x)� max
z>0

z (c(x) − c(z))
x c(x) .

Then, we have Cso/Cwe > 1− β(C), and the bound is tight.
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Our next result shows that Proposition 5 holds
exactly for ICWE, indicating that within the class of
heterogeneous, information-constrained traffic equilib-
ria we consider, the worst-case scenario occurs for net-
works with homogeneous users.

Proposition 6. Consider a traffic network with multiple in-
formation types (G,E1:K , s1:K , c). Let fcwe be an ICWE, and
let fso be a social optimum. Then, we have

(a) inf(G,E1:K , s1:K , c): ce convex Cso/Ccwe � 0.
(b) Suppose ce(x) is an affine function for all e ∈E. Then,

we have Cso/Ccwe >
3
4 , and this bound is tight.

(c) Let C be a class of latency functions, and let β(C) �
supc∈C, x>0 β(c , x), where

β(c , x)� max
z>0

z (c(x) − c(z))
x c(x) .

Then, we have Cso/Ccwe > 1− β(C), and the bound is tight.

Proof. We first show that for any type i, and any feasi-
ble flow f (i) for this type, we have∑

e∈E
ce( fe , cwe)( f (i)e , cwe − f (i)e ) 6 0. (5)

The reason is that in ICWE each type uses only the
routes with the minimal costs. Therefore, for any type i
and any feasible flow f (i) for type i, we have∑

r∈Ri

cr( f (1:K)
cwe ) f

(i)
r, cwe 6

∑
r∈Ri

cr( f (1:K)
cwe ) f

(i)
r .

This leads to

0 >
∑
r∈Ri

cr( f (1:K)
cwe )( f

(i)
r, cwe − f (i)r )

�
∑
r∈Ri

(∑
e: e∈r

ce( fe , cwe)
)
( f (i)r, cwe − f (i)r )

�
∑
e∈E

ce( fe , cwe)
∑

r∈Ri : e∈r
( f (i)r, cwe − f (i)r )

�
∑
e∈E

ce( fe , cwe)( f (i)e , cwe − f (i)e ),

which is the desired inequality, showing Equation (5).
We next proceed with the proof.
Part (a). This holds because a traffic network with

one type is a special case of traffic network with mul-
tiple information types, and part (a) of Proposition 5
shows that the infimum is zero.
Part (b). Using Equation (5) for f (i) � f (i)so for any

i ∈ [K], and taking summation over all types i ∈ [K], we
obtain

Ccwe �
∑
e∈E

fe , cwece( fe , cwe)

�

K∑
i�1

∑
e∈E

ce( fe , cwe) f (i)e , cwe 6
K∑

i�1

∑
e∈E

ce( fe , cwe) f (i)e , so

�
∑
e∈E

ce( fe , cwe)
K∑

i�1
f (i)e , so �

∑
e∈E

fe , soce( fe , cwe)

�
∑
e∈E

fe , soce( fe , so)+
∑
e∈E

fe , so(ce( fe , cwe) − ce( fe , so))

6
∑
e∈E

fe , soce( fe , so)+ 1
4

∑
e∈E

fe , cwece( fe , cwe),

where the last inequality comes from the fact that with
ce(x)� ae x + be for be , ae > 0, we have

fe , so(ce( fe , cwe) − ce( fe , so))
� ae fe , so( fe , cwe − fe , so) 6 1

4 f 2
e , cweae 6

1
4 fe , cwece( fe , cwe).

The proof of tightness follows from part (b) of Proposi-
tion 5 as a traffic networkwith one type is a special case
of a traffic network with multiple information types.

Part (c). Using the same argument as in part (b), we
obtain

Ccwe �
∑
e∈E

fe , cwece( fe , cwe)

6
∑
e∈E

fe , soce( fe , so)+
∑
e∈E

fe , so(ce( fe , cwe) − ce( fe , so))

6
∑
e∈E

fe , soce( fe , so)+ β(C)
∑
e∈E

fe , cwece( fe , cwe),

where the last inequality comes from the fact that

fe , so(ce( fe , cwe) − ce( fe , so)) 6 β(ce , fe , cwe) fe , cwece( fe , cwe)
6 β(C) fe , cwece( fe , cwe).

The proof of the tightness follows from part (c) of
Proposition 5. �
In concluding this section, we should note that in

this environment with heterogeneous users, there are
alternatives to our formulation of the social optimum
problem, which considers the “utilitarian” social opti-
mum, summing over the costs of all groups. An alter-
native would be to consider a weighted sum or focus
on the class of users suffering the greatest costs. We
next illustrate that if we focus on type-specific costs,
even with affine cost functions, some groups of users
may have worse than 3/4 performance relative to the
social optimum.
Example 4. Consider the network shown in Figure 7
with E1 � {e1}, E2 � {e1 , e2}. The ICWE is f (1)e1 , cwe � s1 and
f (2)e1 , cwe � 1/a − s1, f (2)e2 , cwe � s2 − 1/a + s1. The equilibrium
costs are C(1)cwe � s1 and C(2)cwe � s2. The social optimum
is f (1)e1 , so � s1 and f (2)e1 , so � 1/(2a) − s1, f (2)e2 , so � s2 − 1/(2a)
+ s1. The corresponding costs are C(1)so � s1/2 and C(2)so �

−1/(4a)+ s2 + s1/2 (assuming 1/(2a) > s1 and s2 > 1/a−
s1). Therefore, we have

C(1)so
C(1)cwe

�
1
2 ,

C(2)so
C(2)cwe

�
−1/(4a)+ s2 + s1/2

s2
, and

C(1)so +C(2)so
C(1)cwe +C(2)cwe

�
s1 + s2 − 1/(4a)

s1 + s2
.
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Figure 7. Example 4: Type-Specific Efficiency Loss vs.
Aggregate Efficiency Loss

O D

ce1
(x) = ax

ce2
(x) = 1

We next show that the ratio of the aggregate costs is
greater than or equal to 3/4. We have s1 + s2 > 1/a,
which leads to

Cso

Ccwe
�

s1 + s2 − 1/(4a)
s1 + s2

� 1− 1
4a

1
s1 + s2

> 1− 1
4a

a �
3
4 .

However, the type-specific efficiency loss can be
smaller than 3

4 as we have (C(1)so /C(1)cwe) < 3
4 .

8. Concluding Remarks
GPS-based route guidance systems, such as Waze or
Google Maps, are rapidly spreading among drivers
because of their promise of reduced delays as they
inform their users about routes that they were not
aware of or help them choose dynamically between
routes depending on recent levels of congestion. Nev-
ertheless, there is no systematic analysis of the impli-
cations for traffic equilibria of additional information
provided to subsets of users. In this paper, we sys-
tematically studied this question. We first extended the
class of standard congestion games used for analysis of
traffic equilibria to a setting where users are heteroge-
neous because of their different information sets about
available routes. In particular, each user’s information
set contains information about a subset of the edges in
the entire road network, and drivers can only utilize
routes consisting of edges that are in their informa-
tion sets. We defined the notion of ICWE, an extension
of the classic Wardrop equilibrium notion, and estab-
lished the existence and essential uniqueness of ICWE.
We then turned to our main focus, which we formu-

late in the form of IBP. IBP asks whether users receiv-
ing additional information can become worse off. Our
main result is a comprehensive answer to this question.
We showed that in any network in the SLI class, which
is a strict subset of series-parallel network, IBP cannot
occur, and in any network that is not in the SLI class,
there exists a configuration of edge-specific cost func-
tions for which IBP will occur. The SLI class is made up
of networks that join linearly independent networks in
series, and linearly independent networks are those for
which every path between the origin and destination
contains at least one edge that is not in any other such
path. This is the property that enables us to prove that
IBP cannot occur in any SLI network. We also showed

that any network that is not in the SLI class necessarily
embeds at least one of a specific set of basic networks,
and then we used this property to show that IBP will
occur for some cost configurations in any non-SLI net-
work. We further proved that whether a given network
is SLI can be determined in linear time. Finally, we
also established that the worst-case inefficiency perfor-
mance of ICWE is noworse than the standardWardrop
equilibrium with one type of user.

There are several natural research directions that are
opened up by our study. These include the following:

• Our analysis focused on the effect of additional
information on the set of users receiving the informa-
tion; for what classes of networks is additional infor-
mation very harmful for other users? This question is
important from the viewpoint of fairness and other
social objectives. We may like that users utilizing route
guidance systems are experiencing lower delays but
not if this comes at the cost of significantly longer
delays for others.

• How “likely” are the cost function configurations
that cause IBP to occur in non-SLI networks? This ques-
tion is important for determining, ex ante before know-
ing the exact traffic flows, whether additional informa-
tion for some sets of users, coming, for example, from
route guidance systems, might be harmful.

• Is there an “optimal information” configuration
for users of a traffic network? Specifically, one could
consider the following question: Given the traffic de-
mands of K types, s1 , . . . , sK , find the information
sets E1 , . . . ,EK that generate the minimum overall cost
for all types in an ICWE. This question is related to
Roughgarden (2001, 2006),who investigate thequestion
of finding the subnetwork of the initial network that
leads to an optimal equilibrium cost with one type of
user.

• We established a sufficient condition under which
IBP does not occur on a traffic network with multiple
origin–destination pairs. One natural question is to find
a sufficient and necessary condition for this problem.

• Finally, our study poses an obvious empirical
question, complementary to similar studies for the
Braess’ paradox: Are there real-world settings where
we can detect IBP?
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Appendix A
A.1. Proofs of Section 3
A.1.1. Proof of Proposition 1. Since for any e ∈ E the func-
tion ce( · ) is nondecreasing, ∫

fe
0 ce(z) dz as a function of f (i)r is

convex and continuously differentiable.
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Claim 1. If f (1:K) is an optimal solution of (2), then it is an ICWE.
Since the objective function is convex and the constraints

are affine functions, regularity conditions hold and Karush-
Kuhn-Tucker (KKT) conditions are satisfied; that is, there
exists µi , r 6 0 and λi such that for all i ∈ [K] and r ∈ Ri
we have
∂

∂ f (i)r

(∑
e∈E

∫ fe

0
ce(z) dz−

K∑
i�1
λi

(∑
r∈Ri

f (i)r − si

)
+

∑
r, i
µr, i f (i)r

)
�0,

(A.1)

where µr, i � 0 for f (i)r > 0 (Bertsekas 1999, chap. 3). We show
that the flow f (1:K) is an ICWE with the equilibrium cost of
type i being λi . First, note that f (1:K) is a feasible flow by the
constraints of (2). Second, we can rewrite (A.1) as∑

e∈E

∂ fe

∂ f (i)r

ce( fe)�
∑

e∈E: e∈r
ce( fe)�

{
� λi if f (i)r > 0,
> λi if f (i)r � 0,

(A.2)

where we used µr, i � 0 for f (i)r > 0 in the first case and µr, i 6 0
for f (i)r � 0 in the second case. This is exactly the definition of
ICWE, which completes the proof of Claim 1.
Claim 2. If f (1:K) is an ICWE, then it is an optimal solution of (2).

We let the equilibrium cost of type i users be λi , which
leads to the following relation:∑

e∈E: e∈r
ce( fe)�

{
� λi if f (i)r > 0,
> λi if f (i)r � 0.

(A.3)

For all i ∈ [K] and r ∈Ri , if f (i)r > 0, thenwe define µi , r � 0, and
if f (i)r � 0, then we define µi , r � λi −

∑
e∈E: e∈r ce( fe). First, note

that µi , r 6 0, and if f (i)r > 0, then µi , r � 0. Second, note that

∂

∂ f (i)r

(∑
e∈E

∫ fe

0
ce(z) dz −

K∑
i�1
λi

(∑
r∈Ri

f (i)r − si

)
+

∑
r, i
µr, i f (i)r

)
� 0.

(A.4)

Therefore, the flow f (1:K), together with λi and µi , r , satisfies
the KKT conditions. Since the objective function of (2) is con-
vex and the constraints are affine functions, KKT conditions
are sufficient for optimality (Bertsekas 1999, chap. 3), proving
the claim. �
A.1.2. Proof of Theorem 1. The set of feasible flows f (1:K) is a
compact subset of a K |R|-dimensional Euclidean space. Since
edge cost functions are continuous, the potential function
is also continuous. The Weierstrass extreme value theorem
establishes that optimization problem (2) attains its mini-
mum, which, by Proposition 1, is an ICWE.

We next show that in two different equilibria f (1:K) and
f̃ (1:K), the equilibrium cost for each type is the same. By Pro-
position 1, both f (1:K) and f̃ (1:K) are optimal solutions of (2).
Since Φ( · ) is a convex function, we have

Φ(α f (1:K)
+ (1− α) f̃ (1:K)) 6 αΦ( f (1:K))+ (1− α)Φ( f̃ (1:K))

for any α ∈ [0, 1]. Since Φ( f (1:K)) and Φ( f̃ (1:K)) are both equal
to the optimal value of (2), and for each e, the function
∫ fe

0 ce(z) dz is convex (its derivative with respect to fe is ce( fe),
which is nondecreasing), the functions ∫ fe

0 ce(z) dz for any
e ∈ E must be linear between values of fe and f̃e . This shows
that all cost functions ce are constant between fe and f̃e , and
in particular, the equilibrium costs are the same. �

A.2. Proofs of Section 4
A.2.1. Proof of Equivalence in Definition 5. We first show
that each LI network G is the result of attaching several LI
blocks in series. This follows by induction on the number of
edges. Using Definition 3, G is either the result of attaching
two LI networks in parallel or the result of attaching an LI
network and a single edge in a series. If G is the result of
attaching two LI networks in parallel, then G is biconnected
and so is an LI block. If G is the result of attaching an LI
network G1 with a single edge, then the single edge is an LI
block and, by the induction hypothesis, G1 is a series of sev-
eral LI blocks. Therefore, G is the result of attaching several
LI blocks in a series.

We next show that the following two definitions are equiv-
alent.

• An SLI network is either a single LI network or the con-
nection of two SLI networks in series. We let SET1 denote the
set of such networks.

• An SLI network consists of attaching several LI blocks
in series. We let SET2 denote the set of such networks.
We show that SET1 � SET2 by induction on the number of
edges; that is, we suppose that for any network with its num-
ber of edges less than or equal to m that these two sets are
equal and then show that for networks with m + 1 edges that
the two sets are equal as well (note that the base of this induc-
tion for m � 1 corresponds to a single edge, which evidently
holds).

• If a network G belongs to SET1, then either it is a single
LI network or it is the result of attaching two SLI networks
in series. In the former case, it belongs to SET2 as we have
shown each LI network is the result of attaching several LI
blocks. In the latter case, by the induction hypothesis, both
SLI subnetworks are the series of several LI blocks and so is
their attachment in series. This shows SET1 ⊆ SET2.

• If a network G belongs to SET2, then either it is a single
LI block or it is the result of attaching several LI blocks in
series. In the former case, by definition, it belongs to SET1.
In the latter case, we let G1 denote the LI block that contains
origin and the series of the rest of LI blocks by G2. By defini-
tion, G1 is SLI as it is a single LI block and G2 is SLI by the
induction hypothesis. Therefore, the series attachment of G1
and G2 belongs to SET1. This shows SET2 ⊆ SET1, completing
the proof.
A.2.2. Proof of Theorem 2. We first show that if a network
G belongs to the class SLI, then none of the networks shown
in Figure 3 is embedded in it. First note that since all net-
works in the class SLI are series parallel, using part (b) of
Proposition 2 implies that the Wheatstone network shown in
Figure 3(a) is not embedded in it. The SLI network G consists
of several LI blocks that are attached in a series. Using part
(a) of Proposition 2, none of the networks shown in Figure 3
(i.e., networks shown in Figures 3(b)–3(i)) can be embedded
in one of the LI blocks.

We next show that they cannot be embedded in the series
of two LI blocks as well. We let G1 and G2 be two LI blocks
that are attached in series where the resulting network from
this attachment is H. Also, we let the node c be the attaching
node of these two networks. We will show that the network
shown in Figure 3(b) cannot be embedded in H (a similar
argument shows that the rest of the networks shown in Fig-
ure 3 cannot be embedded in it). To reach to a contradiction,
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Figure A.1. (Color online) Proof of Theorem 2: G1 Is Not LI
and G2 Has at Least One Route from O to D
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A� v B� B
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we suppose the contrary—that is, H is obtained from the net-
work shown in Figure 3(b) by applying the embedding proce-
dure described in Definition 4. We define the corresponding
routes to e5, e1e4, and e2e3 in H by r3, r1, and r2. Formally, we
start from r3 � e5, r1 � e1e4, and r2 � e2e3 in the network shown
in Figure 3(b), and at each step of the embedding procedure
whenever we divide an edge on ri (i � 1, 2, 3), we will update
ri by adding that edge, and whenever we extend the origin
or destination, we will add the new edge to all ri ’s. Given this
construction, in the network H we have three routes, r3, r1,
and r2, where r1 and r2 have a common node and do not have
any common node (except O and D) with r3. This is a contra-
diction, as all routes in H must have node c in common. This
completes the proof of the first part.

We next show that if none of the networks shown in Fig-
ure 3 is embedded in G, then G belongs to the class SLI.
Proposition 2(b) implies that since Figure 3(a) is not embed-
ded in G, it is series parallel. We next show that given a
series-parallel network G, if G is not SLI, then we can find an
embedding of one of the networks shown in Figures 3(b)–3(i)
in it. The proof is by induction on the number of edges of G.
Following Definition 2, consider the last building step of the
network G. If the last step is attaching two networks G1 and
G2 in a series, then assuming that G is not SLI, we conclude
that either G1 or G2 is not SLI (or neither are). Therefore, by
the induction hypothesis, we can find an embedding of one
of the networks shown in Figures 3(b)–3(i) in either G1 or G2,
which in turn shows that it is embedded in G. If the last step
is attaching two networks G1 and G2 in parallel, then it must
be the case that either G1 or G2 is not LI. This is because,
otherwise, the parallel attachment of two LI networks is LI
(Definition 3) and hence SLI, which contradicts the fact that G
is not SLI. Without loss of generality, we let the network that
is not LI be G1. Therefore, part (a) of Proposition 2 shows that
there exist two routes r and r′ and a vertex v common to both
routes such that both sections rOv and r′Ov as well as rvD and
r′vD are not equal (note that v < {O ,D} because otherwise, if
v � O, then rOv � r′Ov , as both are the single node O).

Note that using part (b) of Proposition 2, there is a way
to index vertices such that along any route, the vertices have
increasing indices. We let A be the last vertex (with the
prescribed indexing) before which the two routes r and r′

become the same (this vertex can be O itself). Since v is the
common vertex of these two routes and rOv , r′Ov , such a ver-
tex exists. Because v is a common vertex of r and r′, the two
routes r and r′ have a common vertex between A and v. We
let A′ be the first such vertex (it can be v itself). Similarly, we
define B as the first vertex after which r and r′ become the
same (B can be D itself) and B′ as the last vertex after v for
which r and r′ coincide (B′ can be v itself). Given these def-
initions for the nodes v ,A,A′,B, and B′, we know that rAA′

(the path between A and A′ on r) and r′AA′ (the path between
A and A′ on r′) do not have any vertex in common, and sim-
ilarly, rBB′ and r′BB′ do not have any vertex in common. The
definition of the nodes A, A′, B, and B′ is illustrated in Fig-
ure A.1. Next, we show that one of the networks shown in
Figures 3(b)–3(i) is embedded in G. We have the following
cases:

• A�O, B �D, A′� v, and B′� v: In this case, the network
shown in Figure 3(b) is embedded in G. This is because there
are two disjoint paths from O to v and from v to D, and
there is at least one path from O to D in G2. Since any other
edge and vertex of the network belong to a path that connects
O to D, we can construct the graph G by starting from the
network shown in Figure 3(b) and applying the embedding
procedure.

• A � O, B � D, and A′ , v or B′ , v: In this case, the net-
work shown in Figure 3(c) is embedded in G. This is because
there is at least one path from O to D in G2, and the network
shown in Figure 3(c) is embedded in G1. To see this, note
that the edges e1 and e2 are embedded in the section of the
routes r and r′ between O and A′, and the edges e3 and e4
are embedded in the section of the routes r and r′ between
B′ and D. Also, note that the single edge e6 is embedded in
the network between A′ and B′ (the single edge is embedded
in any network).

• A,O, B � D, and A′ � v and B′ � v: The network shown
in Figure 3(d) is embedded in G.

• A � O, B ,D, and A′ � v and B′ � v: The network shown
in Figure 3(e) is embedded in G.

• A � O, B ,D, and A′ , v or B′ , v: The network shown
in Figure 3(f) is embedded in G.

• A ,O, B � D, and A′ , v or B′ , v: The network shown
in Figure 3(g) is embedded in G.

• A ,O, B ,D, and A′ , v or B′ , v: The network shown
in Figure 3(h) is embedded in G.

• A,O, B ,D, and A′ � v and B′ � v: The network shown
in Figure 3(i) is embedded in G.
This completes the proof.

A.2.3. Proof of Proposition 3. We use the following results
and definitions in this proof.

Proposition 7 (Valdes et al. 1979). A network is series parallel if
following the steps S and P shown in FigureA.2 in any order turns
the network into a single edge connecting the origin to the destina-
tion. Moreover, if a network is series parallel, then in linear time
O(|E | + |V |) we can obtain a binary tree decomposition (shown in
Figure A.3), which indicates a sequence of S and P that turns G
into a single edge.

We now proceed with the proof of Proposition 3. Using
Proposition 7, we first verify whether G is series parallel,
which can be done in linear time. If G is not series paral-
lel, then it is not SLI as well. If G is series parallel, then
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Figure A.2. (Color online) Two Operations That Turn a
Series-Parallel Network into a Single Edge

P
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a binary tree decomposition can be obtained in linear time
(again using Proposition 7). Note that the binary tree decom-
position is not unique, and the following argument works
with any binary tree decomposition. In this tree the edges of
G are represented by the leaves of the tree. We label the inci-
dent edges to the origin by O and the incident edges to the
destination by D (an edge might be labeled both O and D).
Since G is SP, by definition, it is the result of attaching two SP
networks in series or parallel. If it is the result of attaching
two SP networks in a series, then there exists a node of the
tree labeled S, referred to as the root of the tree, such that
on one of the subtrees starting from that node we have only
O labeled leaves and on the other subtree we have only D
labeled leaves (this can be done in linear time by traversing
the tree). If G is the result of attaching two SP networks in
parallel, then there exists a node of the tree labeled P, again
referred to as the root of the tree, such that on both subtrees
starting from it we have both O and D labeled leaves.

We next show by induction on the size of tree that whether
the binary tree represents an SLI network can be verified in
linear time. If the root of the tree is S, then we have a series of
two networks. By the induction hypothesis, in linear time we
can verify whether each of these subtrees represents an SLI
network, which in turn determines whether G is SLI. If the
root of the tree is P, we need to check whether each subtree
represents an LI network. We next show that this can be done
in linear time, which concludes the proof.

Claim. Given the binary tree decomposition, we can verify whether
the underlying network is LI in linear time.

We show this claim by induction on the size of the tree as
well. Starting from the root of the tree, if the root has label P,
then by the induction hypothesis, for each of the subtrees
denoted by T1 and T2, we can verify whether the underly-
ing network is LI in O(VT1

) and O(VT2
), respectively. The

underlying network is LI if and only if both of these subtrees
represent an LI network. Therefore, in O(V) it can be verified
whether the underlying network is LI. If the root is labeled
S, then the underlying network is LI if and only if one of the
subtrees is only labeled S and the other subtree is LI. Using
any traversing algorithm (e.g., breadth-first search, depth-
first search, etc.), one can visit all nodes in both subtrees in
linear time, verifying if it only has S labels. Furthermore, by
induction, we can verify whether each subtree represents an
LI network. Therefore, in linear time, we can verify whether
the network is LI, completing the proof.

A.3. Proofs of Section 5
A.3.1. Expansion of Example 2. We provide an example for
part (a) of Example 2. Let K � 1, ce1

(x)� x, ce2
(x)� 1, ce3

(x)� 1,

ce4
(x) � x, ce5

(x) � 0, and s1 � 1. Also, we let the informa-
tion sets be E1 � {e1 , e2 , e3 , e4}, and C̃1 � {e1 , e2 , e3 , e4 , e5}. In
equilibrium, we have f (1)e1e3 � f (1)e2e4 �

1
2 with c(1) � 3

2 and f̃ (1)e1e3 �

f̃ (1)e2e4 � 0, f̃ (1)e1e5e4 � 1 with c̃(1) � 2. Therefore, after expanding
the information set of type 1 users, their equilibrium cost has
increased from 3

2 to 2.
A.3.2. Proof of the Claim of Remark 2. We will show that
there are infinitely many cost functions for the network
shown in Figure 3(b) for which IBP occurs. In particular, we
show the following claim.
Claim. For any a1 , a3 , a5 > 0 such that a1+a3 > a5, there exist non-
negative b1 , b2 , b3 , b4 , b5 , a2 , s1, and s2 such that with cost func-
tions cei

(x)� ai x + bi , 1 6 i 6 5, IBP occurs in the network shown
in Figure 3(b). In particular, we show that the following cost func-
tion parameters along with E2 � {e1 , e4 , e5}, E1 � {e2 , e3 , e5}, and
Ẽ1 � {e1 , e2 , e3 , e5} lead to IBP:

a4�b1�b3�b5�0,

b2�a1 y�a1
a5(s1+s2)
a1+a3+a5

,

b4�
a5a3(s1+s2)
a1+a3+a5

,

s1

s1+s2
∈
(

a1+a3

a1+a3+a5
,

min
{ (a3+a5)(a3a5+a2

1+a1a3+a1a5)−a1a2
5

(a1+a3+a5)(a3a5+a3a1+a1a5)
,1

})
,

a2�
a2

5(s1w−a1)
(a5s1−a1s2)w−a3a5

−a3−a5 , with w�
a1+a3+a5

s1+s2
.

Proof. We let a4 � b1 � b3 � b5 � 0 and then find a2 , b2 , b4 ,
s1, and s2 for which IBP occurs with E2 � {e1 , e4 , e5}, E1 �

{e2 , e3 , e5}, and Ẽ1 � {e1 , e2 , e3 , e5}. We will find the a2 , b2 ,
b4 , s1, and s2 parameters such that before expanding the
information set, the equilibrium flow is f (2)e5 � 0, f (2)e1e4 � s2, and
f (1)e5 � s1 − x, f (1)e2e3 � x. We will further impose the constraint
that the cost of route e5 for type 2 users is equal to the cost
of route e1e4. For this to hold, it is sufficient and necessary to
have a5(s1 − x)� a2x + b2 + a3x, which leads to

x �
a5s1 − b2

a2 + a3 + a5
∈ [0, s1]. (A.5)

We also have a1s2 + b4 � a5(s1 − x), which leads to

a1s2 + b4 � a5

(
s1 −

a5s1 − b2

a2 + a3 + a5

)
. (A.6)

We will also choose a2, b2, b4, s1, and s2 parameters such that
after expanding the information set, the equilibrium flow
becomes f̃ (2)e5 � s2, f̃ (2)e1e4 � 0, f̃ (1)e5 � s1 − y, f̃ (1)e2e3 � 0, and f̃ (1)e1e3
� y. We will further impose the constraint that the cost of all
available routes for each type of user is equal. For this to hold,
it is sufficient and necessary to have a5(s1 + s2− y)� a1 y+ a3 y,
which leads to

y �
a5(s2 + s1)
a1 + a3 + a5

∈ (0, s1). (A.7)

We also have a1 y + a3 y � b2 + a3 y, which after substituting y
from (A.7) leads to

b2 � a1 y � a1
a5(s2 + s1)
a1 + a3 + a5

. (A.8)
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Figure A.3. (Color online) Binary Tree Decomposition of a Series-Parallel Network
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Also, for type 2 users we have a1 y + b4 � a5(s2 + s1− y), which
after substituting y from (A.7) leads to

b4 �
a5a3(s2 + s1)
a1 + a3 + a5

. (A.9)

Therefore, Equations (A.9) and (A.8) determine b2 and b4 as
a function of other parameters. In what follows we will show
how to choose nonnegative s1 , s2, and a2 such that Equa-
tions (A.5)–(A.7) hold as well. After some rearrangements,
we can see that the constraints imposed by Equations (A.5)
and (A.7) are equivalent to

s1

s2 + s1
>

max{a5 , a1}
a1 + a3 + a5

. (A.10)

Furthermore, IBP occurs if we have a1 y+ b4 > a1s2 + b4, which
leads to s2/(s2 + s1) < a5/(a1 + a3 + a5) or, equivalently,

s1

s2 + s1
>

a1 + a3

a1 + a3 + a5
. (A.11)

Using a1 + a3 > a5, Equations (A.10) and (A.11) become equiv-
alent to

s1

s2 + s1
>

a1 + a3

a1 + a3 + a5
. (A.12)

Using Equation (A.6), we can find a2 as follows:

a2 �
a2

5(s1w − a1)
a5s1w − a5a3 + a1s1w − a1(a1 + a3 + a5)

− a3 − a5 , (A.13)

where w �
a1 + a3 + a5

s1 + s2
,

with the condition that the right-hand side of Equation (A.13)
is nonnegative. From (A.12), the nonnegativity of a2 becomes
equivalent to

s1

s1 + s2
(a1 + a3 + a5) 6

(a3 + a5)(a3a5 + a2
1 + a1a3 + a1a5) − a1a2

5

(a3 + a5)(a5 + a1) − a2
5

.

(A.14)

Choosing (s1/(s1+ s2))(a1+a3+a5), which satisfies both Equa-
tions (A.14) and (A.12), is feasible if we have

a1 + a3 <
(a3 + a5)(a3a5 + a2

1 + a1a3 + a1a5) − a1a2
5

(a3 + a5)(a5 + a1) − a2
5

,

which after simplification becomes equivalent to a3a2
5 > 0 and

therefore holds. Hence, by choosing (s1/(s1 + s2))(a1 + a3 + a5)
such that

s1

s1 + s2
(a1 + a3 + a5)

∈
(
a1 + a3 ,min

{ (a3 + a5)(a3a5 + a2
1 + a1a3 + a1a5) − a1a2

5

(a3 + a5)(a5 + a1) − a2
5

,

a1 + a3 + a5

})
, (A.15)

all the conditions are satisfied, and IBP occurs in this network
for infinitely many cost functions. �

A.4. Proofs of Section 6
A.4.1. Proof of Lemma 1. Given the feasible flow f (1:K) for
(G,E1:K , s1:K , c), we construct a feasible flow f with load∑K

i�1 si for a single type of user by letting fr �
∑K

i�1 f (i)r . Using
this construction, from two feasible flows f (1:K) and f̃ (1:K), we
obtain two feasible flows f and f̃ for a single-type congestion
game such that the load of f is larger than or equal to the traf-
fic demand of f̃ . Therefore, part (a) follows from Milchtaich
(2006, lemma 5).

We next show part (b). Since part (a) holds for any two
feasible flows, we can apply it for the equilibrium flows
f (1:K) and f̃ (1:K) over the traffic networks (G,E1:K , s1:K , c) and
(G, C̃1:K , s1:K , c), respectively (we can view f (1:K) as a feasible
flow over the traffic network (G, Ẽ1:K , s1:K , c) as well). It fol-
lows that there exists a route r such that ∑K

i�1 f (i)r >
∑K

i�1 f̃ (i)r

and fe > f̃e for all e ∈ r. From the first inequality it follows
that ∑K

i�1 f (i)r > 0, which shows at least one of the types (say,
type i) sends positive traffic on route r. Note that i can be any
element of [K] (it can also be 1 as the flow f (1:K) is a feasible
flow for the traffic network (G,E1:K , s1:K , c)). We obtain

c(i) � cr > c̃r > c̃(i) ,

where the first equality follows from f (i)r > 0. The first
inequality follows from fe > f̃e for all e ∈ r. The second
inequality follows from the definition of ICWE and the fact
that if type i users can use route r in (G,E1:K , s1:K , c), then
they can use it in (G, C̃1:K , s1:K , c) as well, since the informa-
tion sets are not smaller in the second game. This completes
the proof.
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A.4.2. Proof of Lemma 2. Part (a): Suppose f (1:K) is an equi-
librium flow on G. We next show that the restriction of f (1:K)

to G1 creates an equilibrium for G1. Consider type i users and
let r1 be a route in G1 such that f (i)r1 > 0, and let r′1 be another
route in G1, which belongs to the information set of type i
users. The route r1 is part of a route r in G for which f (i)r > 0.
We let r2 be the restriction of r to G2 (so that r � r1 + r2). Since
f (1:K) is an equilibrium of G, we have cr � cr1

+ cr2
6 cr′1

+ cr2
�

cr′1+r2
, which leads to cr1

6 cr′1
, showing that the restriction

of f (1:K) to G1 is an equilibrium. Similarly, the restriction to
G2 is an equilibrium.

Part (b): We consider an equilibrium f (1:K) for G, and
then using part (a), we consider the equilibria of G1 and G2
obtained by restriction of f (1:K) to G1 and G2. For a type i and
route r such that f (i)r > 0, we have c(i) � cr � cr1

+ cr2
, where r1

and r2 are the restriction of r to G1 and G2, respectively (note
that the only common node of r1 and r2 is the destination
of G1, which is the same as the origin of G2; hence the opera-
tion r1 + r2 is a valid operation). Since f (i)r1 > 0 and f (i)r2 > 0, we
have cr1

� c(i)1 and cr2
� c(i)2 , which leads to c(i) � c(i)1 + c(i)2 . �

A.4.3. Proof of Theorem 4. We first show two lemmas that
wewill use in the proof. The first lemma directly follows from
the results of Milchtaich (2006) for a single-type congestion
game.

Lemma 4. Consider a traffic network with multiple information
types (G,E1:K , s1:K , c). Let f (1:K) and f̃ (1:K) be two (arbitrary) non-
identical feasible flows such that ∑K

i�1 si >
∑K

i�1 s̃i . If G is series
parallel, there exists a route r such that fe > f̃e and fe > 0 for
all e ∈ r.

Proof. Similar to the proof of Lemma 1, given a feasible flow
f (1:K) for (G,E1:K , s1:K , c)we define a feasible flow f with traf-
fic demand ∑K

i�1 si for a congestion game with a single infor-
mation type. Therefore, this lemma follows from Milchtaich
(2006, lemma 2). �

Lemma 5. Consider a traffic network with multiple information
types (G,E1:K , s1:K , c), where Ei � E for i � 2, . . . ,K, E1 ⊆ E, and
G is a SP network. Consider an ICWE with flow ( f (1) , . . . , f (K))
and let r be a route for which fe > 0 for any e ∈ r. We have

cr ∈
[

min
i∈[K]

c(i) ,max
i∈[K]

c(i)
]
,

where for any i ∈ [K], c(i) denotes the equilibrium cost of type i
users.

Proof. Since all the types except type 1 have full informa-
tion, we have c(i) � c( j) for all i , j ∈ {2, . . . ,K}, maxi∈[K] c(i) �
c(1), and mini∈[K] c(i) � c( j), j , 1. By the definition of ICWE,
we have cr > c(i) (as r ∈ Ri) for all i > 2. This leads to cr >
mini∈[K] c(i), showing the lower bound. We will next show the
upper bound. We will prove this by induction on the num-
ber of edges of G. It evidently holds for a single edge as all
equilibrium costs are equal to cr . We next show the result
for a series-parallel network G. Since G is SP, it is the result
of either attaching two SP networks in series or attaching
two SP networks in parallel. If G is the result of attaching
two SP networks GA and GB in series, then using part (a) of
Lemma 2, an ICWE for the overall network is obtained by
concatenating an ICWE for GA with an ICWE for GB . We let
rA and rB denote the sections of r that belong to GA and GB ,

respectively. We also let c(i)A and c(i)B be the equilibrium costs
of type i users in GA and GB , respectively. By the induction
hypothesis, we have crA

6maxi∈[K] c
(i)
A and crB

6maxi∈[K] c
(i)
B .

Since the traffic demands of type 1 users on both GA and GB

are nonzero, we have maxi∈[K] c
(i)
A � c(1)A and maxi∈[K] c

(i)
B � c(1)B .

This leads to

cr � crA
+ crB
6 c(1)A + c(1)B � c(1) ,

where we used part (b) of Lemma 2 in the last equality.
Now suppose that G is the result of attaching GA and GB

in parallel and suppose r ∈ GA. Let T � {i > 2: f (i)A > 0} denote
the set of types that are sending a nonzero flow over GA.
Depending on whether T � �, we have the following two
cases:

• T � �: Since fe > 0 for all e ∈ r, at least one type must
send a nonzero flow over GA and since T � �, only type 1
sends a nonzero flow over GA. Therefore, we have cr � c(1).
We also have c(1) 6maxi∈[K] c(i), leading to cr 6maxi∈[K] c(i).

• T ,�: We either have f (1)A > 0 or f (1)A � 0. If f (1)A > 0, then
by the induction hypothesis, we have

cr 6 max
i∈T∪{1}

c(i)A � max
i∈T∪{1}

c(i) 6max
i∈[K]

c(i) ,

where the equality holds because each type i ∈ T ∪ {1} sends
a positive flow over A and its equilibrium cost in G is the
same as its equilibrium cost in GA. If f (1)A � 0, then again by
the induction hypothesis and using T ,�, we have

cr 6max
i∈T

c(i)A � max
i∈T

c(i) 6max
i∈[K]

c(i) ,

where the equality holds because each type i ∈ T sends a
positive flow over A.

This concludes the proof of lemma.

Proof of Part (a) of Theorem 4. After expanding information
set of type 1 users to E, we obtain c̃(i) � c̃(1) for all i ∈ [K].
Using Lemma 4, there exists a route r such that fe > f̃e and
fe > 0 for any e ∈ r. We have

cr > c̃r > c̃(i) � c̃(1) , ∀ i ∈ [K],

where the first inequality follows from fe > f̃e , the second
inequality follows from the definition of ICWE, and the
equality follows from C̃i �E for all i � 1, . . . ,K. Since E1 ⊆ E,
we have c(i) � c( j) 6 c(1) for all i , j � 2, . . . ,K. Using Lemma 5,
this leads to

cr 6max
i∈[K]

c(i) � c(1).

Combining the previous two relations leads to c̃(1) 6 c(1).

Proof of Part (b) of Theorem 4. The proof is similar to the
proof of part (b) of Theorem 3. In Example 2, we have pro-
vided an example showing that IBP with restricted informa-
tion sets can occur over the Wheatstone network shown in
Figure 3(a).

Suppose that a network G is not series parallel. Using
Proposition 2, G can be constructed from theWheatstone net-
work shown in Figure 3(a) by following the steps of embed-
ding. To construct an example for G, we start from the cost
functions for which the embedded network features IBP with
restricted information sets, and then following the steps of
embedding, wewill update the information sets aswell as the
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cost functions in a way that IBP occurs in the final network,
which is G. The updates are identical to those described in
the proof of part (b) of Theorem 3 and establishes that if IBP
with restricted information sets is present in the initial net-
work (i.e., the Whetstone network shown in Figure 3(a)), it
will be present in network G aswell. This completes the proof
of part (b).

A.4.4. Omitted Proof of Example 3. First, note that after
expansion of information, without loss of generality, each
type of user (i , j), i � 1, 2 has at least two routes from Oi to Di .
Because, otherwise, if a type with traffic demand s has only
one route r, we can consider an equivalent game in which
we update the cost of all edges on r from ce(x) to ce(x + s).
Also, note that because of symmetry, we can only consider
the information expansion of one of the types of the form
(1, j). Therefore, without loss of generality, we assume that
there exists one type from O2 to D2 with information about
all edges of the network and there exists either one or two
types from O1 to D1. Below, we examine all possible cases
and show that IBP does not occur:

1. There exist two types {(1, 1), (2, 1)} such that R2, 1 �

{e1e3 , e2}, R1, 1 � {e1}, and R̃1, 1 � {e1 , e2e3}: If type (1, 1) does
not use route e2e3 after information expansion, then the equi-
librium remains the same. Now suppose that type (1, 1) uses
route e2e3 (i.e., f̃ (1, 1)e1 < f (1, 1)e1 � s1, 1). If f̃e1

6 fe1
, then we have

c̃(1, 1) 6 ce1
( f̃e1
) 6 ce1

( fe1
)� c(1, 1) ,

which shows that IBP does not occur. Now suppose f̃e1
> fe1

,
which in turn shows f̃e2

< fe2
as f̃e1

+ f̃e2
� fe1

+ fe2
� s1, 1 + s2, 1.

We have

f̃e3
� f̃ (1, 1)e2e3 + f̃ (2, 1)e1e3 > f (1, 1)e2e3 + f (2, 1)e1e3 � fe3

,

wherewe used f̃ (1, 1)e2e3 > f (1, 1)e2e3 � 0 and f̃ (2, 1)e1e3 > f (2, 1)e1e3 , which holds
because f̃ (2, 1)e1e3 � f̃e1

− f̃ (1, 1)e1
> fe1

− s1, 1 � fe1
− f (1, 1)e1 � f (2, 1)e1e3 .

Therefore, we have

ce1
( f̃e1
)+ce3

( f̃e3
)6ce2

( f̃e2
)6ce2

( fe2
)6ce1

( fe1
)+ce3

( fe3
), (A.16)

where the first inequality holds because f̃ (2, 1)e1e3 > f (2, 1)e1e3 > 0,
the second inequality holds because f̃e2

< fe2
, and the third

inequality holds because f (2, 1)e2 � s2, 1 − f (2, 1)e1e3 > s2, 1 − f̃ (2, 1)e1e3 �

f̃ (2, 1)e2 > 0. Inequality (A.16), together with ce1
( f̃e1
) > ce1

( fe1
)

and ce3
( f̃e3
) > ce3

( fe3
), shows that the cost of all three edges

before and after information expansion are the same, leading
to the same equilibrium cost for all types. Therefore, IBP does
not occur in this case.

2. There exist two types {(1, 1), (2, 1)} such that R2, 1 �

{e1e3 , e2},R1, 1 � {e2e3}, and R̃1, 1 � {e1 , e2e3}: If type (1, 1) does
not use e1 after information expansion, then the equilibrium
remains the same. Now suppose type (1, 1) uses route e1. We
show that IBP does not occur in this case by considering all
possibilities as follows:

a. f̃e1
6 fe1

: Since fe1
+ fe2

� s1, 1 + s2, 1 � f̃e1
+ f̃e2

, we have
f̃e2
> fe2

. We also have f̃e3
< fe3

, because

f̃e3
� f̃ (1, 1)e2e3 + f̃ (2, 1)e1e3 < f (1, 1)e2e3 + f (2, 1)e1e3 � fe3

,

whereweused f̃ (1,1)e2e3 < f (1,1)e2e3 as type (1,1) is using e1 after infor-
mation expansion and f̃ (2,1)e1e3 < f (2,1)e1e3 as f̃ (2,1)e1e3 � f̃e1

− f̃ (1,1)e1 < fe1
�

f (2,1)e1e3 . The inequality f̃ (2,1)e1e3 < f (2,1)e1e3 implies f̃ (2,1)e2 > f (2,1)e2 > 0.
Therefore, we have

ce2
( f̃e2
)6ce1

( f̃e1
)+ce3

( f̃e3
)6ce1

( fe1
)+ce3

( fe3
)6ce2

( fe2
), (A.17)

where the first inequality follows from f̃ (2, 1)e2 > 0, the second
inequality follows from f̃e1

6 fe1
and f̃e3

6 fe3
, and the third

inequality follows from f (2, 1)e1e3 > f̃ (2, 1)e1e3 > 0. Inequality (A.17)
leads to

c(1, 1) � ce2
( f̃e2
)+ ce3

( f̃e3
) 6 ce2

( fe2
)+ ce3

( fe3
) 6 c̃(1, 1) ,

showing that IBP does not occur.
b. f̃e1

> fe1
: Since fe1

+ fe2
� s1, 1 + s2, 1 � f̃e1

+ f̃e2
, we have

f̃e2
< fe2

. If f̃e3
6 fe3

, then we have

c(1, 1) � ce2
( f̃e2
)+ ce3

( f̃e3
) 6 ce2

( fe2
)+ ce3

( fe3
) 6 c̃(1, 1) ,

showing that IBP does not occur. Otherwise, we have f̃e3
> fe3

.
First note that if f̃e3

> fe3
, then f̃ (2, 1)e1e3 > f (2, 1)e1e3 . This inequality

holds because

f̃ (2, 1)e1e3 � f̃e3
− f̃ (1, 1)e2e3 > fe3

− f (1, 1)e2e3 � f (2, 1)e1e3 ,

where we used f̃e3
> fe3

and f̃ (1, 1)e2e3 < f (1, 1)e2e3 as (1, 1) uses e1 after
the expansion of information (i.e., f (1, 1)e2e3 � s1, 1 and f̃ (1, 1)e2e3 < s1, 1).
Therefore, we have

ce1
( f̃e1
)+ce3

( f̃e3
)6ce2

( f̃e2
)6ce2

( fe2
)6ce1

( fe1
)+ce3

( fe3
), (A.18)

where the first inequality holds because f̃ (2, 1)e1e3 > f (2, 1)e1e3 > 0,
the second inequality holds because f̃e2

< fe2
, and the third

inequality holds because f (2, 1)e2 � s2, 1 − f (2, 1)e1e3 > s2, 1 − f̃ (2, 1)e1e3 �

f̃ (2, 1)e2 > 0. Inequality (A.18), together with f̃e1
> fe1

and f̃e3
>

fe3
, leads to ce1

( fe1
) � ce1

( f̃e1
), ce2
( fe2
) � ce2

( f̃e2
), and ce3

( fe3
) �

ce3
( f̃e3
). Therefore, we have

c̃(1, 1) 6 ce2
( f̃e2
)+ ce3

( f̃e3
)� ce2

( fe2
)+ ce3

( fe3
)� c(1, 1) ,

showing that IBP does not occur.
3. There exist three types {(1, 1), (1, 2), (2, 1)} such that

R2, 1 � {e1e3 , e2}, R1, 2 � {e1 , e2e3}, R1, 1 � {e1}, and R̃1, 1 �

{e1 , e2e3}: This case is similar to the first case. If type (1, 1)
does not use e2e3 after the expansion of information, then the
equilibrium remains the same. Now suppose that type (1, 1)
uses route e2e3 (i.e., f̃ (1, 1)e1 < f (1, 1)e1 � s1, 1). If f̃e1

6 fe1
, then we

have
c̃(1, 1) 6 ce1

( f̃e1
) 6 ce1

( fe1
)� c(1, 1) ,

which shows that IBP does not occur. Now suppose that f̃e1
>

fe1
, which in turn shows f̃e2

< fe2
as f̃e1

+ f̃e2
� fe1

+ fe2
�

s1, 1 + s1, 2 + s2, 1. We consider the following two cases:
a. f̃ (1, 1)e1 + f̃ (1, 2)e1 < f (1, 1)e1 + f (1, 2)e1 (note that f (1, 1)e1 � s1, 1): We

have

f̃ (2, 1)e1e3 � f̃e1
− ( f̃ (1, 1)e1 + f̃ (1, 2)e1 ) > fe1

− ( f (1, 1)e1 + f (1, 2)e1 )� f (2, 1)e1e3 ,

f̃ (1, 1)e2e3 + f̃ (1, 2)e2e3 � s1, 1 + s1, 2 − ( f̃ (1, 1)e1 + f̃ (1, 2)e1 ) > s1, 1 + s1, 2

− ( f (1, 1)e1 + f (1, 2)e1 )� f (1, 2)e2e3 .

These two inequalities lead to

f̃e3
� f̃ (2, 1)e1e3 + f̃ (1, 1)e2e3 + f̃ (1, 2)e2e3 > f (2, 1)e1e3 + f (1, 2)e2e3 � fe3

.
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Therefore, we have

ce1
( f̃e1
)+ce3

( f̃e3
)6ce2

( f̃e2
)6ce2

( fe2
)6ce1

( fe1
)+ce3

( fe3
), (A.19)

where the first inequality holds because f̃ (2, 1)e1e3 > f (2, 1)e1e3 > 0,
the second inequality holds because f̃e2

< fe2
, and the third

inequality holds because f (2, 1)e2 � s2, 1 − f (2, 1)e1e3 > s2, 1 − f̃ (2, 1)e1e3 �

f̃ (2, 1)e2 > 0. Inequality (A.19), together with f̃e1
> fe1

and f̃e3
>

fe3
, leads to ce1

( fe1
) � ce1

( f̃e1
), ce2
( fe2
) � ce2

( f̃e2
), and ce3

( fe3
) �

ce3
( f̃e3
). Therefore, the cost of all three edges before and after

information expansion are the same, leading to the same
equilibrium cost for all types. Therefore, IBP does not occur
in this case.

b. f̃ (1, 1)e1 + f̃ (1, 2)e1 > f (1, 1)e1 + f (1, 2)e1 : We have

f̃ (1, 2)e1 � ( f̃ (1, 1)e1 + f̃ (1, 2)e1 ) − f̃ (1, 1)e1 > ( f (1, 1)e1 + f (1, 2)e1 ) − f̃ (1, 1)e1

> ( f (1, 1)e1 + f (1, 2)e1 ) − f (1, 1)e1 � f (1, 2)e1 , (A.20)
f̃ (1, 1)e2e3 + f̃ (1, 2)e2e3 � s1, 1 + s1, 2 − ( f̃ (1, 1)e1 + f̃ (1, 2)e1 ) 6 s1, 1 + s1, 2

− ( f (1, 1)e1 + f (1, 2)e1 )� f (1, 2)e2e3 . (A.21)

If f̃ (2, 1)e1e3 6 f (2, 1)e1e3 , then inequality (A.21) leads to

f̃e3
� f̃ (1, 1)e2e3 + f̃ (1, 2)e2e3 + f̃ (2, 1)e1e3 6 f (1, 2)e2e3 + f (2, 1)e1e3 � fe3

.

Therefore, we obtain

ce1
( f̃e1
)� ce2

( f̃e2
)+ ce3

( f̃e3
) 6 ce2

( fe2
)+ ce3

( fe3
) 6 ce1

( fe1
),

where the first equality holds because, using inequality
(A.20), we obtain f̃ (1, 2)e1 > f (1, 2)e1 > 0 and f̃ (1, 1)e2e3 > 0, the first
inequality holds because f̃e2

< fe2
and f̃e3

< fe3
, and the second

inequality holds because, using inequality (A.20), we obtain
f (1, 2)e2e3 � s1, 2 − f (1, 2)e1 > s1, 2 − f̃ (1, 2)e1 > 0. Inequality (A.22) leads to

c̃(1, 1) 6 ce1
( f̃e1
) 6 ce1

( fe1
)� c(1, 1) ,

showing that IBP does not occur in this case.
Now suppose that f̃ (2, 1)e1e3 > f (2, 1)e1e3 , which leads to

ce1
( f̃e1
) 6 ce1

( f̃e1
)+ ce3

( f̃e3
) 6 ce2

( f̃e2
) 6 ce2

( fe2
)

6 ce2
( fe2
)+ ce3

( fe3
) 6 ce1

( fe1
), (A.22)

where the second inequality holds because f̃ (2, 1)e1e3 > f (2, 1)e1e3
> 0, the third inequality holds because f̃e2

< fe2
, and the last

inequality holds because, using inequality (A.20), we obtain
f (1, 2)e2e3 � s1, 2 − f (1, 2)e1 > s1, 2 − f̃ (1, 2)e1 > 0. Inequality (A.22) leads to

c̃(1, 1) 6 ce1
( f̃e1
) 6 ce1

( fe1
)� c(1, 1) ,

showing that IBP does not occur in this case.
(4) There exist three types {(1, 1), (1, 2), (2, 1)} such that

R2, 1 � {e1e3 , e2}, R1, 2 � {e1 , e2e3}, R1, 1 � {e2e3}, and R̃1, 1 �

{e1 , e2e3}: This case is similar to the second case.
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