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Appendix B from Costinot et al., “A Theory of Capital Controls as
Dynamic Terms-of-Trade Manipulation”
(JPE, vol. 122, no. 1, p. 77)

In continuous time the planning problem of the home government described in Section II.B can be expressed as

e()

max fe"’u(c(t))dt (Pc)
subject to
je‘”’u*’(Y —c(0)[y(2) — c(t)]dt = 0.

The objective of this appendix is to show that if time is continuous, then proposition 1 generalizes to economies in which
u™(Y = ¢)(c — y) is not a strictly convex function of ¢. The only assumptions required are those imposed in Section ILA.

AsSUMPTION 1. The functions u and u”* are strictly increasing, strictly concave, and twice continuously differentiable
with the boundary conditions lim,_, u'(c) = lim+_,u”(c") = o ¢t.

AssuMPTION 2. The functions y(¢) and y*(¢) are bounded away from zero for all z.

Throughout this appendix, for any p > 0 and any date ¢, we let

C(t,n) = arg max u(c) + pu"' (Y — c)[y(¢) — ].

ce(0,Y)

To derive proposition 1 in this environment, we first establish four lemmas.

LeEmMA 1. Suppose that assumptions 1 and 2 hold. Then for any u > 0 and any date ¢, C(¢,p) # & .

Proof. Fix pu>0and¢ > 0. By assumption 1, we know that lim,_, u'(¢) = . Thus there must be m € (0, ) such that,
for all ¢ € (0, m),

u(c) + pa”' (Y = ) [y(t) = ] <u(m) + pa” (Y — m)[p(t) — m]. (B1)

By assumption 2, we know that foreign endowments are bounded away from zero. Thus domestic endowments are
bounded away from Y. By assumption 1, we therefore have lim. .y u™' (Y — ¢)[y(¢) — ¢] = —o°. Thus there must be
M e (m, Y) such that, for all c € (M, Y),

u(c) + pu”' (Y = c)[y(t) = o] <u(M) + pu” (Y = M)[y(t) — M]. (B2)

Since u(c) + pu™'(Y — ¢)[y(¢) — c] is continuous over [m, M|, Weierstrass’s extreme value theorem implies the existence
of
c(t) € arg max u(c) + pu*' (Y — ¢)[y(¢t) — ¢

cem,M)]

By inequalities (B1) and (B2), we also have ¢(¢) € C(¢, n). QED

LEMMA 2. Suppose that assumptions 1 and 2 hold. Then for any p > 0 and any pair of dates ¢ and s, if y(¢) > y(s),
then ¢() > c(s) for all ¢(¢) € C(t,u) and c(s) € C(s, p). Similarly, for any date ¢, if u > p’, then c(¢) <c/(¢) for all
c(t)e C(t,p) and ¢'(1) € C(t, ).
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Proof. Fix p>0 and consider a pair of dates 7 and s such that y(¢) > y(s). By definition, if ¢(#) € C(¢,p) and
c(s) €C(s, u), then

u(c(t)) + pu™' (Y = e(0)[(0) = e(0)] Zu(c(s)) + p' (Y = c(s))[y(t) = ()],
= c(9)] zu(c()) + pa” (Y = (1)) [y(s) = (1)].

Adding up the two previous inequalities, we obtain after simplification
(Y = (1)) = u” (Y = ¢(s)]Iy(1) = y(s)] 2 0.
This implies ™' (Y — ¢(¢)) >u™' (Y — c(s)). By assumption 1, u* is strictly concave. Thus we must have c(¢) > ¢(s).

To conclude, let us show that we cannot have ¢(¢) = ¢ (s ). We proceed by contradiction. If ¢(s) € C(¢, u) N C(s, ), then the
following first-order conditions must be satisfied:

w'(c(s)) = pu”' (Y = c(s)) — (Y = ¢(s))[¥(s) — e(s)] =0,
u'(c(s)) = pu”' (Y = () — (Y = () [y(t) = c(s)] =0

This implies u*"(Y — ¢(s))[v(¢) — »(s)] = 0, which contradicts y(¢) # y(s). This completes the first part of lemma 2.
The second part of lemma 2 can be established in a similar fashion and is omitted. QED
LemMA 3. Suppose that assumptions 1 and 2 hold. Then there exists u > 0 such that

j e u (Y = e()[y(0) — e(0)ldt =0, (83)

with ¢(¢) € C(¢, ) for all ¢,
Proof.  We proceed in four steps.
Step 1: There exist p > 0 and p > p such that

f e (Y = et w)[y(0) — elt,wldt <0, (B4)

J e (Y olt, 1) [¥(0) — e(t, )] > O, (B3)

with ¢(¢,u) € C(¢, ) and c(t, ) € C(¢, ) for all ¢.
For any ¢, let us define u(¢) = u'(y(¢))/u™'(Y — y()). We first check that y(¢) € C(¢, u(¢)). Since u is concave, we
know that

u(e) su(y(2)) +u'(y(1)[e — (1))

for all c. Since u* is concave, we also know that



Appendix B from Costinot, et al., A Theory of Capital Controls as Dynamic Terms-of-Trade Manipulation

P

if and only if ¢ > y(¢). The two previous observations imply

u'(y(0)u' (Y —¢)
u' (Y = (1))

u(e) su(y(1)) + e = x(0)].

Using the definition of u(¢), this can be rearranged as

u(y(t)) zu(e) + u(0u™ (Y = c)[y(1) — d,

which implies y(¢) € C(t, u(¢)). Now let us define p = u'(y) /u™' (Y — y) and p = u'(y) /u*' (Y —y) withy = inf,., y(t) > 0
and y = sup,.,(¢) < Y. Since u and u" are strictly concave, we have u(t) € (u, i) for all . By lemma 2, y(¢) € C(t, u(t))
implies that c(z) > y(¢) for all c(¢) € C(t, ) and ¢(t) < y(¢) for all ¢(f) € C(t, i). Since the previous inequalities hold
for all ¢, we have found p and & such that

Je"”u*/(Y = c(t,w))[(0) = e(t, w)ldr <0,

fe_m”*/(Y — (6, ) [¥(0) — et m)] > 0,

with c(t, u) € C(t, ) and c(t, n) € C(t, ) for all .
Step 2: For any p € [, 5] and any ¢, there exist ¢* (¢, u) and ¢ (¢, n) such that

c* (1, p) € arg max u”'(Y — c)[y(t) — ], (B6)
¢ (. p) carg min u”'(Y = ¢)[y(t) — c]. (B7)

Take ¢ and ¢ such that
¢ € arg max u(c) + pu*' (Y = c)(y — o),
cearg n%?i;) u(e) + pu' (Y —c)(y —¢).

By lemma 1, we know that such ¢ and ¢ exist. By lemma 2, for any p € [p, 1] and any ¢, we also must have

C(t,pn) = argmax u(c) + pu"' (Y — ¢)[y(¢) — cJ.

cele.d)

Since u(c) + pu*' (Y — ¢)(y, — ¢) is continuous in (c, u), the maximum theorem implies that C(¢, u) is compact and, for
future reference, upper hemicontinuous in u. Since u™'(Y — ¢)[y(¢) — ¢] is continuous in ¢, Weierstrass’s extreme value
theorem implies the existence of ¢* (¢, ) and ¢ (¢, u) satisfying (B6) and (B7), respectively.

Step 3: There exists p, € [p, ] such that

f et (Y = ¢ (1, )W) — ¢ (1, po) e > 0, (BS)
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fe%WY—cmmmum—cammm<o (B9)
By construction of ¢* (-, u) and ¢ (-, u), for any p and c(-, n) such that ¢(¢, u) € C(¢, ) for all ¢, we have

fe’”u*'(Y = (t,w) () — " (¢ w)ldt
> fe”’u*'(Y —c(t,w)[y(1) = c(t, w)lat

Zfe%WY—cﬁwmﬂo—CMMW-

Thus inequalities (B4) and (B5) in step 1 imply

fep’u*’(Y —c (W) [¥(0) — ¢ (&, pldt > 0, (B10)

feWWY—cmMMﬂn—cmMW<u (B11)

To show that there exists p, € [u, ] such that inequalities (B8) and (B9) are satisfied, we proceed by contradiction.
Suppose that there does not exist u, € [u, #| such that the two previous inequalities are satisfied. Then there must exist
t € [, ] and & > 0 such that, for any 5 > 0, there exists u such that |u, — pu| <7 and

f e (Y — e (6, m))[0(0) — ¢ (& py)]dt

_fewwy—meMﬂo—fmmw>w

In step 2, we have already argued that C(¢, u) is compact-valued and upper hemicontinuous in p. So there must be
c(t, p) €C(t, p) for all u and 7 such that

limc(t,p) = c(t,pm,) €C(t, py)- (B12)

et

For all ¢, u™(Y — ¢)[y(t) — c] is continuous in ¢ and uniformly bounded by max...,u”(Y — ¢)(y — ¢). Thus the limit
condition (B12) implies

1MJ€WWY—WMMW%W@MW=JeWWY—WMMMO—WMMﬁ

e}
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Accordingly, there must be ¢ € (0,¢,) and 5, > 0 such that if |x, — u| <79,, then
f e (Y = elt.w)y(0) = el ) lde - f e (Y = c(t,w)y(0) — el w)lde <.
By construction of ¢* (-, u) and ¢ (-, ), we know that

Jem”*l(Y - C(Lp.]))[y( ) t I’Ll dt>f —c t l"l))[y<t) - Cf(t,p,l)]dt,

fe"’u*’(Y—C(t,u))[y()—ctu dt<f “u (1, w) (1) — " (¢, wlat.

The three previous inequalities imply the existence of 5, > 0 such that if |u, — p| <7,, then

J e (Y — ¢ (t,m)) () — ¢ (6 w)]dt

) J e (Y = (0,0)[(0) = ¢ o, lde < 2,

a contradiction.
Step 4: There exists c(+, p,) such that (¢, pu,) € C(¢, p,) for all ¢ and

fe‘”u*'(Y = (t, o)) (1) — (t, o))t = 0. (B13)

Let

H(T)= J e (Y — ¢ (6, m)) [(0) — ¢ (4, mo)]dt

¥ f e (Y = ¢ () y(0) = € (6 o)l

By step 3, there must exist 7 <7 such that H(T) > 0 > H(T). Since H is continuous in 7, the intermediate value theorem

implies the existence of 7, such that H(7,) = 0. Now let us construct c(-, u,) such that ¢(z, p,) = ¢ (¢, p,) for all t < T,

and c(t,p,) = c* (¢, p,) for all > T;. By construction, ¢(+, g, ) satisfies equation (B13) with ¢(z, p,) € C(¢, u,). QED
LeEmMA 4. Suppose that there exist u > 0 and ¢(-, ) such that

i. c(t,p) €C(t,p) for all ¢,
ii. Je {u (Y = et w)[y(0) — e(t, w)] it =

Then any solution ¢’(-) of (P.) must be such that ¢°(¢) € C(¢, u) for almost all 7.
Proof. Suppose that ¢°(-) is a solution of

c()

max fe‘”u(c(t))dt
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subject to
j e (" (Y = c(t) (1) = e(t)]}di = 0.
By condition ii, we must therefore have
Je"’u(co(t))dti fe"’u(c(t, w))dt.

Since

f e " (Y = () [y(r) = (0)]}dr = f e {u” (Y = c(t, ) [y(2) — c(t, w)]}dt = 0,
this further implies

f e {u(c’ (1)) + (Y = (1) [y(0) = ()] }at

> f e {ule(t, ) + pr” (Y = e(t, w)[(6) — et )]t

By condition i, we know that
Je"’{u(C(h ) + (Y = e(t, w)) (1) — c(t, w)] }dt

~ max J e fu(c(t)) + pr” (Y — (0)[(0) — (o)t

)
Thus the previous inequality implies

() e argmaXfe‘”{u(C(t)) (Y = c(0)[y(0) = e(n)]}dr,

which requires ¢°(¢) € C(¢, ) for almost all £. QED

We are now ready to establish proposition 1.

ProrosiTion 1 (Procyclical consumption).  Suppose that assumptions 1 and 2 hold. Then for any solution ¢(-) of (P)
and almost all pairs of dates ¢ and s, if y(¢) > y(s), then c(¢) > ¢ (s).

Proof. By lemmas 1 and 3, the conditions of lemma 4 are satisfied. Thus if ¢(-) is a solution of the planning
problem (Pr), we must have ¢(¢) € C(z, ) for almost all . By lemma 2, we know that y(¢) > y(s) implies ¢(¢) > ¢(s) for
all ¢(¢) € C(¢, ) and c(s) € C(s, ). Proposition 1 derives from the two previous observations. QED



