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1. Introduction. The aim of this paper is to provide a generalization of the Poincaré-Hopf theorem for con-
tinuous functions over compact regions defined by a finite number of smooth inequality constraints. We use this
generalized theorem to provide sufficient conditions for the uniqueness of solutions to finite-dimensional varia-
tional inequalities and the uniqueness of stationary points in nonconvex optimization problems for such regions.
Let M be a subset of the Euclidean set �n and k ≤ n be a positive integer. M is a k-dimensional smooth

manifold with boundary if for each x ∈M there exists an open set U ⊂ �n and a continuously differentiable
function f � U �→�n with a continuously differentiable inverse such that f maps the set U ∩	�k−1×�+×
0�n−k�

to a neighborhood of x in M , where �+ denotes the set of nonnegative real numbers. Our definition of smooth
manifold follows Milnor [22] and Mas-Colell [20], and focuses on smooth manifolds embedded in an ambient
Euclidean space �n. For a more general definition (with or without boundary), see Guillemin and Pollack [14]
or Hirsch [16].
For M ⊂�n, 
	M� denotes its Euler characteristic. Euler characteristic is a useful homotopy invariant, in the

sense that two sets that are homotopy equivalent (cf. Definition 4.3 and Lemma 4.5) have the same Euler char-
acteristic. See Rotman [27], Chapter 1, for a definition and detailed discussion on homotopy equivalence. See
Hirsch [16] or Guillemin and Pollack [14] for a definition and detailed discussion on the Euler characteristic
of smooth manifolds, and Rotman [27] for the Euler characteristic of more general simplicial complexes. See
Massey [21] for a proof of homotopy invariance of the Euler characteristic. The following is a list of the Euler
characteristics of some familiar sets:

(i) Let n be a nonnegative integer and Bn = 
x ∈�n � �x� ≤ 1�, then 
	Bn�= 1.
(ii) Let n be a nonnegative integer and Sn = 
x ∈�n+1 � �x� = 1�, then 
	Sn�= 2 for n even and 
	Sn�= 0

for n odd.
(iii) Let M ⊂�n be nonempty and convex (including �n itself), then 
	M�= 1.
The following is a version of the standard Poincaré-Hopf theorem applied to continuous vector fields on

a smooth n-dimensional manifold M ⊂ �n with boundary. The standard theorem claims that, when a vector
field has a finite number of zeros over a smooth manifold, the algebraic sum of the zeros is equal to the Euler
characteristic of the region (see Poincaré-Hopf Theorem in Milnor [22] for the smooth version and Hirsch [16],
Chapter 5 for the continuous version). The following version uses a nondegeneracy assumption [(2) below]
which guarantees that the vector field has a finite number of zeros.
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Poincaré-Hopf Theorem. Let M ⊂�n be an n-dimensional compact smooth manifold with boundary. Let
U be an open set containing M and F � U �→�n be a continuous function which is continuously differentiable at
every x ∈Z, where

Z= 
x ∈M � F 	x�= 0�
denotes the set of zeros of F over M . Assume the following:

Assumption 1 (A1). F points outward on the boundary of M . In other words, given x ∈ bd	M�, there exists
a sequence �i ↓ 0 such that x+ �iF 	x��M for all i ∈�+.

Assumption 2 (A2). For all x ∈Z, det	�F 	x�� �= 0.
Then, F has a finite number of zeros over M . Moreover, the algebraic sum of zeros (sum of indices corre-

sponding to zeros) of F over M is equal to the Euler characteristic of M . In other words,∑
x∈Z
sign	det	�F 	x���= 
	M��

where sign� � �→ 
−1�0�1� is defined as

sign	x�=




−1 if x < 0�

0 if x= 0�
1 if x > 0�

The main contribution of this paper is to generalize the Poincaré-Hopf theorem in a number of directions.
Our main result, Theorem 3.1, relaxes the smooth manifold assumption and allows M to be a region defined by
a finite number of smooth inequality constraints, which is not necessarily a smooth manifold. Furthermore, we
introduce the notion of a generalized critical point that encompasses both the interior zeros of the vector field and
the zeros of the tangential vector field on the boundary used in Morse [23] and Gottlieb and Samaranayake [13]
for the case of a smooth manifold. The approach enables us to drop (1) and prove a version of the Poincaré-Hopf
theorem for generalized critical points over a region that is not necessarily a smooth manifold.
To illustrate the usefulness of the generalized Poincaré-Hopf theorem, we present two related applications:

First, we derive sufficient (local) conditions for the uniqueness of solutions to variational inequalities. (Existing
uniqueness results rely on global monotonicity conditions (Facchinei and Pang [12], Theorem 2.3.3).) Our gener-
alization of the Poincaré-Hopf theorem is essential for this application since solutions to variational inequalities
are typically on the boundary of the region defined by these inequalities (see Facchinei and Pang [12], p. 4).
Second, we provide local sufficient conditions for the uniqueness of stationary points in constrained optimiza-
tion problems. The most standard uniqueness results rely on convexity and quasiconvexity, and the generalized
theorem is used to deal with stationary points that are on the boundary of the region defined by the constraints.
Jongen et al. [18] also provide related uniqueness results, but they derive these from the generalization of Morse
theory. Ben-El-Mechaiekh and Kryszewski [1], Cornet [7], and Cornet and Czarnecki [8, 9] use the axiomatic
index (degree) theory (see Ortega and Rheinboldt [24], Chapter 6) to prove the existence of zeros of vector val-
ued functions and correspondences, but they do not investigate uniqueness issues. Dierker [10], Mas-Colell [20],
Varian [28], and Hildenbrand and Kirman [15] use the Poincaré-Hopf theorem to prove uniqueness results for
general equilibrium economies with boundary conditions that restrict the equilibrium to be in the interior of the
region (i.e., a zero of the vector field), and Eraslan and McLennan [11] use the axiomatic index theory to prove
uniqueness in a bargaining game.
Our proof for the generalization relies on certain properties of the Euclidean projection, which we show in

§4.1 and which could be of independent interest. We prove, among other things, that the projection on a region
that can be represented by finitely many continuously differentiable inequalities and that satisfies a constraint
qualification (linear independence constraint qualification [LICQ]; see Assumption 2.1), is a Lipschitz function.
We further characterize the set over which the projection is continuously differentiable and derive an explicit
formula for the Jacobian.

2. Notation and preliminaries. In this paper, all vectors are viewed as column vectors, and xT y denotes the
inner product of the vectors x and y. We denote the two-norm as �x� = 	xT x�1/2. For a given set X, we use
cl	X� to denote the closure of X. When X is a finite set, we use �X� to denote its cardinality. Given x ∈�n and
�> 0, B	x��� denotes the open ball with radius � centered at x, i.e.,

B	x���= 
y ∈�n � �y− x�<���
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For a given function f � A �→ B, f �C� C �→ B denotes the restriction of f to C ⊂ A, and f 	C�⊂ B denotes the
image of C under f . If f is differentiable at x, then �f 	x� denotes the gradient of f . If f is twice differentiable
at x, then Hf 	x� denotes the Hessian of f at x. If f � A×B �→C and f 	·� y�� A→C is differentiable at x ∈A,
then �xf 	x� y� denotes the gradient of f 	·� y� at x ∈A.
We consider a compact region, M , defined by finitely many inequality constraints, i.e.,

M = 
x ∈�n � gi	x�≤ 0� i ∈ I = 
1�2� " " " � �I ���� (1)

where the gi� �
n �→�, i ∈ I , are twice continuously differentiable. For some x ∈M , let I	x�= 
i ∈ I � gi	x�= 0�

denote the set of active constraints. Throughout the paper, the following assumption will be in effect:

Assumption 2.1. The set M is nonempty and every x ∈ M satisfies the LICQ, i.e., for every x ∈ M , the
vectors 
�gi	x� � i ∈ I	x�� are linearly independent (see Bertsekas et al. [4], §5.4).

We define the normal space at x as the subspace of �n spanned by the vectors 
�gi	x� � i ∈ I	x��. For x ∈M ,
we denote the n× �I	x�� change-of-coordinates matrix from normal coordinates to standard coordinates as

G	x�= $�gi	x��i∈I	x�%� (2)

where columns �gi are ordered in increasing order of i. We define the tangent space at x as the subspace that is
the orthogonal complement in �n of the normal space at x. Let Ic	x�= 
�I	x��+1� " " " � n� and let 
vj� j ∈ Ic	x��
be an arbitrary but fixed orthonormal basis of the tangent space at x. We denote the change-of-coordinates matrix
from tangent coordinates to standard coordinates as

V 	x�= $vj �j∈Ic	x�% (3)

and note that
G	x�T V 	x�= V 	x�TG	x�= 0�

where 0 denotes the zero matrix with appropriate dimensions. (For notational convenience, when the normal
space (respectively the tangent space) is zero dimensional, G	x� (respectively V 	x�) denotes the n× 0 dimen-
sional empty matrix.) We call the basis


gi	x� � i ∈ I	x��∪ 
vj� j ∈ Ic	x��

a normal-tangent basis for x ∈M . We denote C	x�= $G	x� V 	x�% and note that C	x� is a change-of-coordinates
matrix from normal-tangent coordinates to standard coordinates.
We next recall the notion of a normal cone which will be used in our analysis (see Clarke [5] or Cornet [7]):
Definition 2.1. Let M be given by (1). Let x ∈M with I	x� �= �. The normal cone of M at x, NM	x�, is

defined by
NM	x�= 
v ∈�n � v=G	x�+� + ∈��I	x��� +≥ 0��

We define the boundary of the normal cone of M at x, bd(NM	x�), by

bd	NM	x��=NM	x�− ri	NM	x���

where ri	NM	x�� is the relative interior of the convex set NM	x�, i.e.,

ri	NM	x��= 
v ∈�n � v=G	x�+� + ∈��I	x��� + > 0��

If I	x�=�, we define NM	x�= 
0� and bd	NM	x��=�.

3. Generalized index theorem. We consider a region M given by (1) and present an extension of the
Poincaré-Hopf theorem that applies for a generalized notion of critical points of a function over M .
Definition 3.1. Let M be a region given by (1). Let U be an open set containing M and F � U �→�n be a

function.
(a) We say that x ∈M is a generalized critical point of F over M if −F 	x� ∈ NM	x�. We denote the set of

generalized critical points of F over M by Cr	F �M�.
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Figure 1. Illustration of critical points. Note that A, B, C are complementary critical points, whereas D and E are critical points that are
not complementary.

(b) For x ∈Cr	F �M�, we define .	x�≥ 0 to be the unique vector in ��I	x�� that satisfies

F 	x�+G	x�.	x�= 0�
We say that x ∈M is a complementary critical point if −F 	x� ∈ ri	NM	x��. In other words, x ∈ Cr	F �M� is
complementary if and only if .	x� > 0 (see Figure 1).
(c) Let F be continuously differentiable at x ∈Cr	F �M�. We define

/	x�= V 	x�T
(
�F 	x�+ ∑

i∈I	x�
.i	x�Hgi

	x�

)
V 	x��

where V 	x� denotes the change-of-coordinates matrix from tangent coordinates to standard coordinates [cf. Equa-
tion (3)]. We say that x is a nondegenerate critical point if /	x� is a nonsingular matrix. (For notational
convenience, if A is the 0×0 dimensional empty matrix, we assume that A is nonsingular and det	A�= 1. Thus,
if the tangent space at x is zero dimensional, then /	x� is nonsingular and x is a nondegenerate critical point
of F .)
For an optimization problem, the local minima are generalized critical points of the gradient mapping of the

objective function. To see this, let M be the region given by (1), U be an open set containing M , and f � U �→�
be a twice continuously differentiable function. Consider the following optimization problem:

minimize f 	x�

subject to x ∈M�
(4)

Let x∗ be a local optimum of (4). If x∗ ∈ int	M�, then by the unconstrained optimality conditions we have
�f 	x∗�= 0. Since NM	x

∗�= 
0�, we have −�f 	x∗� ∈NM	x
∗� and x∗ is a generalized critical point of �f overM .

For general (not necessarily interior) x∗, we have −�f 	x∗� ∈ NM	x
∗�, which is the optimality condition for

minimization over an abstract set constraint (see Bertsekas et al. [4]). Therefore, every local minimum of f is a
generalized critical point of �f over M . More generally, a generalized critical point is equivalent to a generalized
equilibrium of Cornet and Czarnecki [9] and to a solution of the generalized equation of Robinson [25]. When
M is convex, a generalized critical point is equivalent to a solution of the variational inequality problem (cf.
Lemma 5.1).
We now define the notion of the index of a critical point and state our main result.
Definition 3.2. Let M be a region given by (1). Let U be an open set containing M and F � U �→�n be a

function that is continuously differentiable at x ∈Cr	F �M�, where x is complementary and nondegenerate. We
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define the index of F at x as
indF 	x�= sign	det	/	x����

We note that this definition is independent of the choice of V 	x�. Changing V 	x� to another change-of-coordi-
nates matrix V ′	x� corresponds to changing coordinates over the tangent space. Since /	x� can be viewed as a
linear map from the tangent space to itself, a change of coordinates does not change its determinant. Recall also
that, for notational convenience, when A is the 0×0 dimensional empty matrix we assume det	A�= 1. Thus, if
the tangent space at x is zero dimensional, then indF 	x�= 1.

Theorem 3.1. Let M be a compact region given by (1). Let U be an open set containing M and F � U �→�n

be a continuous function which is continuously differentiable at every x ∈Cr	F �M�. Assume the following:
	A2� Every x ∈Cr	F �M� is complementary and nondegenerate.

Then, F has a finite number of critical points over M . Moreover,∑
x∈Cr	F �M�

indF 	x�= 
	M��

It is useful, especially for future reference, to note that the complementarity condition in this theorem cor-
responds to the strict complementary slackness condition used in the context of local sufficient optimality
conditions in nonlinear programming (cf. Bertsekas [3]). The nondegeneracy condition is the extension of As-
sumption 2 in the Poincaré-Hopf theorem.
In §4, we will provide a proof of Theorem 3.1. Following Morse [23], we use an extension idea for this proof.

The specific extension theorem, which is presented and proved in §4, may also be of independent interest.

4. The extension theorem and the proof of generalized Poincaré-Hopf theorem. Let M be a compact
region given by (1). Given � > 0, let

M� = 
x ∈�n � �x− y�< � for some y ∈M��

In other words, M� denotes the set of points with distance to M strictly less than �. Our goal is to extend F
to M� in a way that maps the generalized critical points of F to zeros of the extended function. Our extension
relies on the properties of the projection function in a neighborhood of M .

4.1. Properties of the Euclidean projection. In §4.1, we define the projection of a vector x in �n on a
closed possibly nonconvex set and explore its properties. We show that an inequality defined region that satisfies
the LICQ condition displays local convexity properties. Consequently, the projection of proximal points on such
nonconvex sets inherits many properties of projection on a convex set.
Definition 4.1. We define the projection correspondence 0� �n ⇒M as

0	y�= argmin
x∈M

�y− x��

We also define the distance function d� �n �→� as

d	y�= inf
x∈M

�y− x��

We note from Berge’s maximum theorem (Berge [2]) that 0 is upper-semi-continuous and d is continuous. Also,
since M is closed, we have x ∈M if and only if d	x�= 0. We can then characterize the sets M and M� as

M = 
x ∈�n � d	x�= 0��
and

M� = 
x ∈�n � d	x� < ���

We next show that for sufficiently small �, the projection correspondence 0�M� is single-valued and Lipschitz
continuous.

Proposition 4.1. There exists � > 0 such that 0�M� is a globally Lipschitz function over M�. In other words,
0	x� is single-valued for all x ∈M� and there exists k > 0 such that

�0	y�−0	x�� ≤ k�y− x�� ∀x� y ∈M��
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d

AA1

A2

M

Figure 2. M cannot be represented by finitely many continuously differentiable inequalities and the projection of a point A on the line
segment d has two elements A1 and A2.

Two properties of M are essential for the preceding proposition: the first is that M can be represented by
finitely many continuously differentiable inequalities, and the second is that M satisfies the LICQ condition.
Figure 2 shows how the proposition fails for a region M that cannot be represented by finitely many inequalities.
Similarly, the following example shows that the LICQ condition is essential for the proposition.
Example 4.1. Let g� �2 �→� be given by

g	x1� x2�= 	x21 − 1�2+ x22 − 1
and consider the set

M = 
x ∈�2 � g	x�≤ 0��
We have, g	0�= 0 and �g	0�= 0, thereforeM does not satisfy the LICQ condition. It can be seen that 0		0� x2��
is not a singleton when x2 �= 0 (cf. Figure 3), so that the projection correspondence 0�M� is not a function for
any � > 0.
We need some preliminary results to prove Proposition 4.1. We first note the following lemma that is a direct

consequence of the LICQ condition:

Lemma 4.1. There exists some scalar m> 0 such that for all x ∈M with I	x� �= � and + ∈��I	x��, we have

�G	x�+� ≥m
∑

i∈I	x�
�+i�� (5)

where G	x� is the change-of-coordinates matrix from normal to standard coordinates at x [cf. Equation (2)].

x1

x 2

–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0
–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

d

(0,0)
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g(x) = 0

g(x) < 0

Figure 3. M does not satisfy the LICQ condition and the projection of a point A on the line d has two elements A1 and A2.
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Proof. Let
�	I�= 
S ⊂ I � S = I	x� for some x ∈M with I	x� �= ���

If �	I�=�, then the statement is trivial and holds for any m> 0. Assume that �	I� �= �. For S ∈�	I� define,

GS = 
x ∈M � gi	x�= 0 if i ∈ S��

Clearly, GS is a compact and nonempty set. By the LICQ condition, for every x ∈GS the vectors $�gi	x��i∈S%
are linearly independent. This implies that the following minimization problem has a positive solution:

mS	x�= min
�u�=1� u∈��S�

∥∥∥∥∑
i∈S

ui�gi	x�

∥∥∥∥�
By Berge’s maximum theorem (Berge [2]), mS	x� is continuous in x. Then, since mS	x� > 0 for all x ∈ GS

and GS is compact, there exists �mS > 0 such that mS	x� ≥ �mS for all x ∈ GS . Since the set �	I� is finite,
m′ =minS∈�	I� �mS > 0.
We claim that the result holds with m = m′/�I �. Let x ∈ M with I	x� �= � and + ∈ ��I	x��. If + = 0, the

statement is trivial. When + �= 0, we have I	x� ∈�	I� and x ∈GI	x�, which implies∥∥∥∥ ∑
i∈I	x�

+i

�+��gi	x�
∥∥∥∥≥m′�

and thus ∥∥∥∥ ∑
i∈I	x�

+i�gi	x�

∥∥∥∥ ≥ m′�+�

≥ m′√�I	x��
∑

i∈I	x�
�+i� ≥

m′

�I �
∑

i∈I	x�
�+i��

where to get the second inequality, we used the Cauchy-Schwartz inequality. We conclude that the result holds
with m=m′/�I �. �

Definition 4.2. Given � > 0, we define the �-normal correspondence N�� M �→�n as

N�	x�= 	x+NM	x��∩M��

We also define the correspondence ri	N �	x�� as

ri	N �	x��= 	x+ ri	NM	x���∩M��

The following lemma shows that for sufficiently small positive �, the �-normal correspondence satisfies a
Lipschitzian property:

Lemma 4.2. There exists � > 0 and k > 0 such that for all x� y ∈M , and sx ∈N�	x�, sy ∈N�	y�, we have

�y− x� ≤ k�sy − sx��
Proof. For some i ∈ I , we define the function ei� U ×U �→� as

ei	x� y�=



gi	y�− gi	x�+�gi	x�

T 	y− x�+ 	1/2�	y− x�T Hgi
	x�	y− x�

�y− x�2 if y �= x�

0 if y = x�

(6)

Since gi is twice continuously differentiable, the function ei is continuous. Thus, the function �ei� has a maximum
over the compact set M ×M , i.e., there exists some 6> 0 such that

�ei	x� y��<6� ∀x� y ∈M� (7)

Given n× n matrix A, we define the matrix norm of A as

�A� = max
�u�=1

�Au�� (8)
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We note, by Cauchy-Schwartz inequality, that

�uT Au� ≤ �A��u�2� ∀u ∈�n� (9)

Let Hi =maxx∈M�Hgi
	x��. The maximum exists since �Hgi

� is a continuous function over the compact regionM .
Let

Hm =max
i∈I

Hi� (10)

Also, let m> 0 be a scalar that satisfies Equation (5) in Lemma 4.1.
We will prove that the result in Lemma 4.2 holds for

�= m

2n	Hm + 26� > 0� (11)

and k= 2. Let x� y ∈M and sx� sy in N�	x� and N�	y�, respectively. If y = x then we are done. Assume y �= x.
Then, by the definition of the �-normal correspondence and the normal cone, there exist scalars +i ≥ 0� i ∈ I	x�,
and 7j ≥ 0� j ∈ I	y� such that

sx = x+ ∑
i∈I	x�

+i�gi	x�� (12)

sy = y+ ∑
j∈I	y�

7j�gj	y�� (13)

We claim ∑
i∈I	x�

�+i�<
1

2n	Hm + 26� ≤
1

2	Hm + 26�� (14)

Since sx ∈N�	x�, we have �sx−x�< �. If I	x�=�, the claim in (14) is trivial. Else if I	x� �= �, by Lemma 4.1,
we have

m
∑

i∈I	x�
�+i� ≤

∥∥∥∥ ∑
i∈I	x�

+i�gi	x�

∥∥∥∥= �sx − x�< �≤ m

2n	Hm + 26��

which implies Equation (14). Similarly, we have

∑
j∈I	y�

�7j �<
1

2n	Hm + 26� ≤
1

2	Hm + 26��

Using the definition of the function ei [cf. Equation (6)], we have for all i,

gi	y�= gi	x�+�gi	x�
T 	y− x�+ 1

2
	y− x�T Hgi

	x�	y− x�+ ei	y� x��y− x�2�

and
gi	x�= gi	y�+�gi	y�

T 	x− y�+ 1
2
	x− y�T Hgi

	y�	x− y�+ ei	x� y��x− y�2�
Multiplying the preceding relations with +i and 7j , respectively, and summing over i ∈ I	x� and j ∈ I	y�, we
obtain

∑
i∈I	x�

+igi	y�+
∑

j∈I	y�
7jgj	x� =

( ∑
i∈I	x�

+i�gi	x�−
∑

j∈I	y�
7j�gj	y�

)T

	y− x�

+ ∑
i∈I	x�

+i

(
1
2
	y− x�T Hgi

	x�	y− x�+ �i	y� x��y− x�2
)

+ ∑
j∈I	y�

7j

(
1
2
	x− y�T Hgj

	y�	x− y�+ �j	x� y��x− y�2
)
� (15)

Since x� y ∈M and +i ≥ 0, 7j ≥ 0, the term on the left-hand side of Equation (15) is nonpositive. By Equations
(12) and (13), it follows that the first term on the right-hand side is equal to

	sx − x− sy + y�T 	y− x�= 	sx − sy�
T 	y− x�+�y− x�2�
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Combining Equation (7), Equation (9), and the definition of Hm in (10), it can be seen that the second term on
the right of Equation (15) is bounded below by

∑
i∈I	x�

−�+i�	Hm/2+6��y− x�2 ≥− 1
2	Hm + 26� �Hm/2+6��y− x�2 ≥−1/4�y− x�2�

where we used Equation (14) to get the second inequality. Similarly, the last term on the right-hand side of
Equation (15) is bounded below by −1/4�y− x�2. Combining the above relations, Equation (15) yields

0≥ 	sx − sy�
T 	y− x�+�y− x�2− 1

4
�y− x�2− 1

4
�y− x�2�

which implies that

−1
2
�y− x�2 ≥ 	sx − sy�

T 	y− x�≥−�sy − sx��y− x��
where we used the Cauchy-Schwartz inequality to get the second inequality. Finally, since y �= x, we obtain

�y− x� ≤ 2�sy − sx��

Hence, the claim is satisfied with the � given by Equation (11) and k= 2. �

For the rest of §4.1, let � > 0, k > 0 be fixed scalars that satisfy the claim of Lemma 4.2. The following is a
corollary of Lemma 4.2 and shows that the �-normal correspondence is injective.

Corollary 4.1. Given x� y ∈M , if x �= y, then N�	x�∩N�	y�=�.
Proof. Let v ∈N�	x�∩N�	y�. Then, by Lemma 4.2, �y− x� ≤ k�v− v� = 0 implies that �y− x� = 0 and

hence x= y as desired. �

We next note the following lemma that shows that the correspondence N� is the inverse image of the projection
correspondence.

Lemma 4.3. Given y ∈M� and p ∈M , p ∈0	y� if and only if y ∈N�	p�.

Proof. Let y ∈ M� and p ∈ 0	y�. Then, by the optimality conditions, we have y − p ∈ NM	p� and thus
y ∈ N�	p�. Conversely, let y ∈ N�	p� for some p ∈ M . Assume that p � 0	y�. Then there exists p′ ∈ 0	y�
such that p′ �= p. Then y ∈ N�	p′�∩N�	p�, which is a contradiction by Lemma 4.1. Therefore, we must have
p ∈0	y�, completing the proof. �

Proof of Proposition 4.1. Assume that there is some x ∈M� such that 0	x� is not single-valued. Then,
there exist p�q ∈ 0	x�⊂M such that p �= q. By Lemma 4.3, x ∈ N�	p� and x ∈ N�	q�, therefore x ∈ N�	p�∩
N�	q�, contradicting Lemma 4.1. Therefore, we conclude that 0�M� is single-valued.
Let x� y ∈M�. Then, x ∈N�	0	x�� and y ∈N�	0	y�� (cf. Lemma 4.3), and it follows by Lemma 4.2 that

�0	y�−0	x�� ≤ k�y− x��

showing that 0 is globally Lipschitz. �

The next proposition shows that the distance function restricted to M� −M , d�M�−M , is continuously differen-
tiable. Since 0	x� is a singleton for all x ∈M� −M (cf. Proposition 4.1), this result follows from Theorem 4.11
in Clarke et al. [6]. We present an alternative proof in the appendix for completeness.

Proposition 4.2. The distance function d is continuously differentiable for all x ∈M� −M with derivative

�d	x�= x−0	x�

d	x�
�

We note the following corollary to the preceding proposition:

Corollary 4.2. There exists �′ > 0 such that cl	M�′� is an n-dimensional smooth manifold. Moreover,

bd	M�′�= 
x ∈�n � d	x�= �′��
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Proof. Let �′ such that 0< �′ < �. From Proposition 4.2, d� M�−M �→ 	0� �� is a continuously differentiable
function with �d	y�= 	y−0	y��/d	y� for every y ∈M�−M . Since �d	y� �= 0 for every y such that d	y�= �′,
we have that �′ is a regular value of d in the sense of Sard (cf. Milnor [22]). Then, from the pre-image theorem,
cl	M�′�= 
x ∈�n � d	x�≤ �′� is an n-dimensional smooth manifold with boundary (cf. Lemma 3 in Milnor [22],
Chapter 2). Furthermore, the boundary is characterized by

bd	M�′�= 
x ∈�n � d	x�= �′��

completing the proof. �

For the rest of §4.1, we assume that � > 0 is a sufficiently small fixed scalar such that it also satisfies the result
of Corollary 4.2.
Given y ∈M�, we define +	y� ∈��I	0	y��� to be the unique vector that satisfies

y−0	y�=G	0	y��+	y�� (16)

We also define H	y� as
H	y�= ∑

i∈I	0	y��

+i	y�Hgi
	0	y�� (17)

and we adopt the notation
$X%�Y = Y T XY

where X and Y are matrices with appropriate dimensions. If Y is invertible, we also adopt the notation

$X%�Y = Y −1XY �

We next study the differentiability properties of the projection function. For the following proposition, we
adopt the convention that the inverse of the 0×0 empty matrix is the 0×0 empty matrix. Then, when V 	0	y�� is
the n×0 empty matrix, i.e., when the tangent space at 0	y� is zero dimensional, the equation reads �0	y�= 0.
Proposition 4.3. Let y be a vector in ri	N �	0	y���. Then, 0 is continuously differentiable at y. Moreover,

the Jacobian of 0 in the tangent-normal coordinates of 0	y� is

$�0	y�%�C	0	y�� =
[
0 0

0 	I + $H	y�%�V 	0	y���
−1

]
�

where C	x�= $G	x� V 	x�% denotes the change-of-coordinates matrix from normal-tangent coordinates to stan-
dard coordinates for x ∈M (cf. §2) and I denotes the identity matrix with appropriate dimension.

Proposition 4.3 agrees with similar formulas obtained by Holmes [17] with the gauge function when M is
assumed to be convex. Note that this proposition could be proved using Theorem 5.3 of Robinson [26] after
casting the problem of finding the Euclidean projection as a variational condition. We include a direct proof
here that is more in line with the rest of our analysis and notation.
Proof. We assume without loss of generality that I	0	y�� = 
1�2� " " " � Iy� where Iy = �I	0	y���. We

will prove the proposition using the implicit function theorem. Let f � M� ×�n ×�Iy �→�n+Iy be such that

f
1�2� " " " �n�	v�p�7�= v−p− ∑
i∈I	0	y��

7i�gi	p��

fn+j 	v�p�7�= gj	p� for j ∈ I	0	y���

Then f is a continuously differentiable function since the gi are twice continuously differentiable. For a =
	y�0	y��+	y��, we have f 	a�= 0. Denote by J 	y� the Jacobian �	p�7�f evaluated at a. Then

J 	y�=
[

JUL	y� G	0	y��

G	0	y��T 0

]
� (18)

where JUL	y�=−I −H	y�.
We first claim that JUL	y� is negative definite. From the proof of Lemma 4.2, we know that � was chosen suf-

ficiently small such that ∑
k∈I	0	y��

�+k	y�� ≤
1

2n	Hm + 26�� (19)
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where Hm is given by (10) and 6> 0 is a scalar. For a matrix A, let Aij denote its entry at the ith row and the
jth column. Then, from the definition of the matrix norm in (8) and the definition of Hm in (10), we have

�Hgk
	0	y��ij � ≤Hm� ∀ i� j ∈ 
1�2� " " " � n��

Then for i ∈ 
1�2� " " " � n�, we have

	JUL	y��
ii − ∑

j∈
1�2� " " " �n�−
i�

�JUL	y�
ij � = −1+ ∑

k∈I	0	y��

+k	y�Hgk
	0	y��ii − ∑

j∈
1�2� " " " �n�−i

∣∣∣∣ ∑
k∈I	0	y��

+k	y�Hgk
	0	y��ij

∣∣∣∣
≤ −1+ ∑

j∈
1�2� " " " �n�

∑
k∈I	0	y��

�+k	y��Hm

≤ −1+ ∑
j∈
1�2� " " " �n�

1
2n	Hm + 26�Hm

< −1+ ∑
j∈
1�2� " " " �n�

1/n= 0�

where we used Equation (19) to get the second inequality. Thus, JUL	y� is trictly diagonally negative dominant
and hence is negative definite. We next claim that J 	y� is nonsingular. Assume, to obtain a contradiction, that
there exists 	p�7� �= 0 such that J 	y�	p�7�T = 0. Then,

JUL	y�p
T +G	0	y��7T = 0 (20)

G	0	y��T pT = 0� (21)

Premultiplying Equation (20) by p and using Equation (21), we obtain

pJUL	y�p
T = 0�

Since JUL	y� is strictly negative definite, it follows that p= 0. Then, from Equation (20), G	0	y��7T = 0 and
since the columns of G	0	y�� are linearly independent, we obtain 7 = 0. Thus, 	p�7�= 0, which is a contra-
diction, establishing that J 	y� is nonsingular.
Then, the implicit function theorem applies to f 	v�p�7� and there exist open sets D1 ⊂ M�, D2 ⊂ �n,

D3 ⊂�I	y� such that
a= 	y�0	y��+	y�� ∈ 	D1×D2×D3�

and there exist unique continuously differentiable functions p� D1 �→D2, 7� D1 �→D3 such that

f 	v�p	v��7	v��= 0
for all v ∈D1.
We next show that there exists an open set D⊂�n containing y such that p	v�=0	v� and 7	v�= +	v� for all

v ∈D. Note that p	y�=0	y� and 7	y�= +	y�. Since y ∈ ri	N �	0	y��, we have +	y� > 0. Then 7	y�= +	y� > 0,
and the continuity of 7 implies that there exists an open set D7 ⊂D1 containing y such that 7	v� > 0 for v ∈D7 .
Similarly, gj	p	y��= gj	0	y�� < 0 for all j � I	0	y��, thus there exists an open set Dg ⊂D1 containing y such
that gj	p	v�� < 0 for all j � I	0	y�� and v ∈Dg . Let

D=D7 ∩Dg�

Then y ∈D. For v ∈D we have

v= p	v�+ ∑
i∈I	0	y��

7i	v��gi	p	v�� (22)

gi	p	v��= 0� ∀ i ∈ I	y�

gj	p	v�� < 0� ∀ j � I	y��

Then we have p	v� ∈M and I	p	v��= I	0	y�� and it follows from Equation (22) that v ∈N�	p	v��. Therefore,
from Lemma 4.3 and the definition in (16), we have p	v�=0	v� and 7	v�= +	v� for all v ∈D.
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Since p is a continuously differentiable function over a neighborhood D of y, we conclude that 0 is continu-
ously differentiable at y as desired. Moreover, by the implicit function theorem, we have the following expression
for the Jacobian of 	0>+� at y:

�	0�+�	y� = −	�	p�7�f 	a��
−1�vf 	a�

= −J 	y�−1I 	n+Iy � n��

where for positive integers n, m

I	n�m� =




the n× n identity matrix, if n=m�

the n×m matrix $I 	n�n� 0%� if n<m�

the n×m matrix $I 	m�m� 0%T � if n>m�

For y ∈ ri	N �	0	y���, since p=0 in a neighborhood of y we have

�0	y�=−I 	n�n+Iy�J 	y�−1I 	n+Iy � n�� (23)

For notational simplicity, we fix y and denote V = V 	0	y��, G=G	0	y��, C =C	0	y��, H =H	y�, J = J 	y�,
and JUL = JUL	y�. By Equation (23), we have

$�0	y�%�C =−C−1I 	n�n+Iy�J−1I 	n+Iy � n�C� (24)

We first note that

I 	n+Iy � n�C =
[
�gi	0	y�� · · · vj · · ·

0 · · · 0 · · ·

]
�

We next let ek denote the kth unit vector in �n+Iy . Then

Jen+i =
[
�gi	0	y��

0

]
�

thus

J−1
[
�gi	0	y��

0

]
= en+i� (25)

Next, we let

J−1
[
vj

0

]
=
[
xj

yj

]
� (26)

Then,

J

[
xj

yj

]
=
[
vj

0

]

and thus
JULxj +Gyj = vj� (27)

and
GT xj = 0� (28)

Since columns of V span the space of vectors orthogonal to each column of G, Equation (28) implies that
xj = V?j for some ?j ∈�n−Iy . Then, premultiplying Equation (27) by V T , we obtain

V T JULV?j +V TGyj = V T vj

and using the fact that V TG= 0 and that V T JULV is invertible, we get

?j = 	V T JULV �−1ej� (29)

hence ?j is the jth column of 	V T JULV �−1. (When V is not the empty matrix, since JUL is strictly negative
definite, V T JULV is strictly negative definite, and hence is invertible. When V is the n× 0 dimensional empty
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matrix, then V T JULV is the 0× 0 dimensional empty matrix and it is invertible by our convention.) Let ? =
$?j �j∈
1�2� " " " �n−Iy�

% and Y = $yj �j∈
1�2� " " " �n−Iy�
%. Then, using Equations (25), (26), and (29),

J−1I 	n+Iy � n�C =
[

0 V?

I	Iy� Iy� Y

]
=
[

0 V 	V T JULV �−1

I 	Iy� Iy� Y

]
�

Substituting this expression in Equation (24) yields

$�0	y�%�C = −C−1I 	n�n+Iy�

[
0 V 	V T JULV �−1

I 	Iy� Iy� Y

]

= −C−1$0 V 	V T JULV �−1%

= C−1$G V %

[
0 0

0 	V T 	−JUL�V �−1

]

=
[
0 0

0 	V T 	I +H�V �−1

]

=
[
0 0

0 	I +V THV �−1

]
�

showing the desired relation. �

4.2. The extension theorem. We now state and prove the extension theorem that will subsequently be used
in the proof of the generalized Poincaré-Hopf theorem.

Theorem 4.1. Let M be a region given by (1). Let U be an open set containing M and F � U �→�n be a
continuous function. Let F max =maxx∈M �F 	x�� and let r ∈�. Let Fr � cl	M

�� �→�n be defined as

Fr	y�= F 	0	y��+ r	y−0	y���

Then, we have the following:
(i) Fr is a continuous function.
(ii) Let y ∈ ri	N �	0	y��� and F be continuously differentiable at 0	y� ∈M . Then, Fr is continuously differ-

entiable at y. Moreover, the Jacobian of Fr in the tangent-normal coordinates of 0	y� is

$�Fr	y�%�C	0	y�� =
[
rI S

0 $�F 	0	y��+ rH	y�%�V 	0	y��	I + $H	y�%�V 	0	y���
−1

]
(30)

for some Iy × 	n− Iy� matrix S. Furthermore,

det	�Fr	y��= rIydet	$�F 	0	y��+ rH	y�%�V 	0	y���det	I + $H	y�%�V 	0	y���
−1� (31)

Also, if r > 0, then
sign	det	�Fr	y���= sign	det	$�F 	0	y��+ rH	y�%�V 	0	y����� (32)

(iii) If r > F max/�, then Fr points outward cl	M
�� on the boundary of cl	M��. In other words, given y ∈

bd	M��, there exists a sequence �i ↓ 0 such that y+ �iFr 	y�� cl	M�� for all i ∈�+.

Proof. (i) Follows immediately since the projection function 0 is continuous.
(ii) Let y ∈ ri	N �	0	y���. Then Fr is continuously differentiable at y since F is continuously differentiable at

0	y� and 0 is continuously differentiable at y (cf. Proposition 4.3). For notational simplicity, we fix y and denote
V = V 	0	y��, G=G	0	y��, C =C	0	y��, H =H	y�.
First consider the case in which V is the n× 0 empty matrix, i.e., Iy = n. In this case, by the chain rule and

the fact that �0	y�= 0 (cf. Proposition 4.3), we have
�Fr	y�= �F 	y��0	y�+ r	I −�0	y��= rI�
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showing Equation (30). Equations (31) and (32) also follow since the determinant of a 0×0 matrix is equal to 1
by our convention.
Next, consider the case in which V is not an empty matrix. Since V TG= 0 and V T V = I , we note that

$G V %−1 =
[

R

V T

]
(33)

for some matrix R. We can write the Jacobian of Fr in the tangent-normal coordinates as

$�Fr	y�%�C = $�F 	0	y��%�C$�0	y�%�C + r	I − $�0	y�%�C�
= 	$�F 	0	y��%�C − rI�$�0	y�%�C + rI

= $G V %−1	�F 	0	y��− rI�$G V %

[
0 0

0 	I +V THV �−1

]
+ rI

=
[ · · · · · ·
· · · V T 	�F 	0	y��− rI�V

][
0 0

0 	I +V THV �−1

]
+
[
rI 0

0 r	I +V THV �	I +V THV �−1

]
�

where, to get the last equation, we used Equation (33) and the fact that 	V T 	I +H�V � is invertible (cf. Proof
of Proposition 4.3). Then, for some matrix S, we have,

$�Fr	y�%�C =
[
0 S

0 V T 	�F 	0	y��− rI�V 	I +V THV �−1

]
+
[
rI 0

0 V T 	rI + rH�V 	I +V THV �−1

]

=
[
rI S

0 V T 	�F 	0	y��− rI + rI + rH�V 	I +V THV �−1

]

=
[
rI S

0 V T 	�F 	0	y��+ rH�V 	I +V THV �−1

]

as desired. The determinant then can be calculated as

det	�Fr	y�� = det	rI Iy×Iy �det	V T 	�F 	0	y��+ rH�V 	I +V THV �−1�

= rIydet	V T 	�F 	0	y��+ rH�V �det	I +V THV �−1

as desired. We have noted that V T 	−I−H�V is negative definite (cf. Proof of Proposition 4.3). Then, I+V THV
is positive definite and thus 	I +V THV �−1 is positive definite. Then

det	I +V THV �−1 > 0

and for r > 0 we have
sign	det	�Fr	y���= sign	det	V T 	�F 	0	y��+ rH�V ��

as desired.
(iii) Let y ∈ bd	M��. By Corollary 4.2, we have

bd	M��= 
y ∈�n � d	x�= ���

which implies
d	y�= �y−0	y�� = �� (34)

Since
cl	M��= 
x ∈�n � d	x�≤ ���

a vector v ∈�n points outward cl	M�� at y if

vT �d	y�= vT
y−0	y�

d	y�
> 0� (35)
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We have

Fr	y�
T 	y−0	y�� = F 	0	y��T 	y−0	y��+ r	y−0	y��T 	y−0	y��

≥ −�F 	0	y����y−0	y��+ r�y−0	y���y−0	y��
≥ −F max�+ r�2

> �2
(
r − F max

�

)
�

where we used the Cauchy-Schwartz inequality to get the first inequality and Equation (34) and the definition
of F max to get the second inequality. If r > F max/�, then Fr	y�

T 	y−0	y�� > 0 and by Equation (35), Fr points
outward at y as desired. This completes the proof of the theorem. �

The following proposition establishes that there exists a one-to-one correspondence between the zeros of Fr

over M� and the critical points of F over M .

Proposition 4.4. Let M be a region given by (1). Let U be an open set containing M and F � U �→ �n

be a continuous function. Let F max =maxx∈M �F 	x�� and let r > F max/� be a scalar. Let Fr � cl	M
�� �→ �n be

defined as
Fr	y�= F 	0	y��+ r	y−0	y���

and let
Z= 
z ∈M� � Fr	z�= 0��

Define the function s� Cr	F �M� �→�n such that

s	x�= x− F 	x�

r
= x+G	x�

.	x�

r

(cf. Definition 3.1.) Then, s is a one-to-one and onto function from Cr	F �M� to Z, with inverse equal to 0�Z.
Proof. Clearly, s	x�− x ∈NM	x�. Also, since

�s	x�− x� = �F 	x��
r

≤ F max

r
< ��

we have
s	x� ∈N�	x�� (36)

Then it follows from Proposition 4.3 that 0	s	x��= x. Also, it follows from the definition of + that +	s	x��=
.	x�/r . We first show that s	x� ∈Z for all x ∈Cr	F �M�. Note that

Fr	s	x�� = F 	0	s	x���+ r	s	x�− x�

= F 	x�+ r

(
1
r
G	x�.	x�

)
= F 	x�+G	x�.	x�= 0�

Thus s	x� ∈Z. We next show that s� Cr	F �M� �→Z is onto. To see this, let y ∈Z. Then,

Fr	y�= F 	0	y��+ r	y−0	y��= 0
implies

−F 	0	y��= r	y−0	y��= rG	0	y��+	y��

Since r+	y�≥ 0, we have −F 	0	y�� ∈NM	0	y�� and thus 0	y� ∈Cr	F �M�. Moreover,

s	0	y��=0	y�− F 	0	y��

r
=0	y�+ r 	y−0	y��

r
= y�

and thus s� Cr	F �M� �→Z is onto.
We finally show that s is one-to-one. Assume there exists x�x′ ∈ Cr	F �M� such that y = s	x�= s	x′�. Then

y ∈ N�	x� and y ∈ N�	x′� [cf. Equation (36)]. From Lemma 4.1, x= x′ and thus s is one-to-one. We conclude
that s is a one-to-one and onto function from Cr	F �M� to Z (see Figure 4). �
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F(A)

s(A)

A
B

s(B)

F(B)

M

M ε
C = s(C )

F(C ) = 0

ε

Figure 4. A, B, C are the generalized critical points of F , whereas s	A�, s	B�, and s	C� are the critical points in the usual sense of the
extended function Fr . In other words, s converts the generalized critical points of F to critical points of Fr .

The following lemma relates the index of a generalized critical point to the Poincaré-Hopf index of the zero
of the extended function.

Lemma 4.4. Let r > F max/� and Fr � M
� �→�n be the extension defined in Theorem 4.1 and Proposition 4.4.

Let x ∈Cr	F �M� be complementary and nondegenerate, and let F be continuously differentiable at x. Then, Fr

is continuously differentiable at s	x�. Moreover,

indF 	x�= sign	det	�Fr	s	x����� (37)

Proof. If x ∈ Cr	F �M� is complementary, then .	x� > 0. Thus +	s	x�� = .	x�/r > 0. Therefore, s	x� ∈
ri	N �	x��. Then, Fr is continuously differentiable at s	x� (cf. part (ii) of Proposition 4.1). Furthermore, we have

sign	det	�Fr	s	x���� = sign	det	V 	x�T 	�F 	x�+ rH	s	x���V 	x���

= sign
(
det

(
V 	x�T

(
�F 	x�+ ∑

i∈I	x�
r+i	s	x��Hgi

	x�

)
V 	x�

))

= sign
(
det

(
V 	x�T

(
�F 	x�+ ∑

i∈I	x�
.i	x�Hgi

	x�

)
V 	x�

))

= sign	det	/	x���

= indF 	x�

as desired. �

4.3. Proof of the generalized Poincaré-Hopf theorem. We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. Let r > F max/� and Fr � cl	M

�� �→�n be the extension defined in Theorem 4.1 and
Proposition 4.4. Let

Z= 
z ∈�n � Fr	z�= 0��
By Corollary 4.2, cl	M�� is a manifold with boundary. Moreover, by Proposition 4.1, Fr points outward on the
boundary of M� and is continuously differentiable at every y ∈Z since 0	y� ∈Cr	F �M� is complementary and
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nondegenerate and F is continuously differentiable at 0	y�. Then, the Poincaré-Hopf theorem applies to Fr and
Z has a finite number of elements. By Proposition 4.4, Cr	F �M� has a finite number of elements. Moreover,

∑
z∈Z
sign	det	�Fr	z���= 
	cl	M����

Then using Proposition 4.4 and Lemma 4.4, we have

∑
x∈Cr	F �M�

indF 	x� =
∑

x∈Cr	F �M�

sign	det	/	x���

= ∑
s	x�∈Z

sign	det	�Fr	s	x����= 
	cl	M���� (38)

To complete the proof, we need an additional lemma. First, recall the following definition:
Definition 4.3. Two continuous functions a�b� X �→ Y are homotopic if there exists a continuous map

F � X× $0�1% �→ Y such that

F 	x�0�= a	x� and F 	x�1�= b	x�� for all x ∈X�

Such a function F is called a homotopy between a and b.
Next, we have the following result:

Lemma 4.5. The set cl	M�� is homotopy equivalent to M , i.e., there exists continuous functions f � cl	M�� �→
M and g� M �→ cl	M�� such that f � g is homotopic to iM and g � f is homotopic to icl	M�, where iX� X �→X
denotes the identity function on some set X. In particular, 
	cl	M���= 
	M�.

Proof. Let f =0�cl	M��� cl	M
�� �→M and g = iM � M �→M . Then, f and g are continuous and

f � g	x�= f 	g	x��=0	x�= x� for all x ∈M�

Then, f � g = iM and thus is homotopic to iM . We have

g � f 	x�= g	f 	x��=0	x�� for all x ∈ cl	M�� (39)

Let F 	cl	M��× $0�1%� �→�n such that

F 	x� D�= 	1− D�0	x�+ Dx�

F is continuous since 0 is continuous over cl	M��. We have

F 	x�0�=0	x�= g � f 	x� for all x ∈ cl	M��

where we used Equation (39), and

F 	x�1�= x= icl	M�	x�� for all x ∈ cl	M��

Thus, F is a homotopy between g � f and icl	M�, which implies that g � f is homotopic to icl	M�. Then f and
g satisfy the conditions for homotopy equivalence of cl	M�� and M , which implies that cl	M�� is homotopy
equivalent to M as desired. In fact, this argument proves the stronger result that M is a strong deformation
retract of M�, i.e., there exists a homotopy F � M� × $0�1% �→M� such that F 	x�0�= x and F 	x�1� ∈M for all
x ∈M� (cf. Kosniowski [19]).
Since the Euler characteristic is invariant for sets that are homotopy equivalent to each other (see, for example,

Massey [21]), we have 
	cl	M���= 
	M�, completing the proof of Lemma 4.5. �

Finally, combining the result of Lemma 4.5 with Equation (38), we complete the proof of Theorem 3.1. �

5. Applications of the generalized Poincaré-Hopf theorem. In §5, we use Theorem 3.1 to present suffi-
cient conditions for the uniqueness of solutions to finite-dimensional variational inequalities and the stationary
points in nonconvex optimization problems.
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5.1. Variational inequalities.
Definition 5.1. LetM ⊂�n be a region and F � M �→�n be a function. The variational inequality problem is

to find a vector x ∈M such that
	y− x�T F 	x�≥ 0� ∀y ∈M�

We denote the set of solutions to this problem with VI	F �M�.
The following lemma establishes that, when M is given by (1), every solution of the variational inequality

problem corresponds to a generalized critical point of F over M and vice versa. The proof is straightforward and
hence omitted.

Lemma 5.1. Let M ⊂�n be a closed convex region given by (1). Then,

x ∈VI	F �M� ⇐⇒ x ∈Cr	F �M��

The following proposition establishes sufficient conditions for the existence and the uniqueness of solutions to
a variational inequality problem over a convex and compact region M given by (1). The proof is a direct appli-
cation of Theorem 3.1 in view of Lemma 5.1.

Proposition 5.1. Let M be a compact convex region given by (1). Let U be an open set containing M
and F � U �→ �n be a continuous function that is continuously differentiable at every x ∈ Cr	F �M�. Assume
that every x ∈ Cr	F �M� is complementary and nondegenerate. Furthermore, assume that indF 	x� = 1 for all
x ∈Cr	F �M�. Then, VI	F �M� has a unique element.

5.2. Karush-Kuhn-Tucker points in nonconvex optimization. In the special case when F is the gradient of
a scalar valued function, a generalized critical point of F corresponds to a Karush-Kuhn-Tucker (KKT) stationary
point of a constrained optimization problem, which allows us to establish sufficient conditions for the uniqueness
of the local optimum for nonconvex optimization problems.
In some works in the optimization literature, the word “nondegenerate solution” is used for what we define

as a complementary critical point (cf. Definition 3.4.1 in Facchinei and Pang [12]). We choose to use the latter
naming, since we use the former to denote a different concept (cf. Definition 5.2, part (c)).
Definition 5.2. Consider a compact region M given by (1). Let U be an open set containing M and

f � U �→� be a twice continuously differentiable function.
(a) We say that x ∈M is a KKT point of f over M if there exists 6i ≥ 0 such that

�f 	x�+ ∑
i∈I	x�

6i�gi	x�= 0� (40)

We denote the set of KKT points of f over M with KKT	f �M�.
(b) For x ∈KKT	f �M�, we define 6	x�≥ 0 to be the unique vector in R�I	x�� that satisfies Equation (40). We

say that x is a complementary KKT point if 6	x� > 0.
(c) We define

E	x�= V 	x�T
(
Hf 	x�+

∑
i∈I	x�

6i	x�Hgi
	x�

)
V 	x�� (41)

where V 	x� denotes the change-of-coordinates matrix from tangent coordinates to standard coordinates [cf. Equa-
tion (3)]. We say that x is a nondegenerate KKT point if E	x� is a nonsingular matrix.
(d) Let x be a complementary and nondegenerate KKT point of f over M . We define the KKT index of f at

x as
indKKTf 	x�= sign	det	E	x����

Note that the KKT points of f over M are precisely the generalized critical points of �f over M , with
.	x�=6	x� in Definition 3.1. Therefore, the following proposition and the subsequent corollary follow directly
from Theorem 3.1.

Proposition 5.2. Consider a compact region M given by (1). Let U be an open set containing M and
f � U �→� be a twice continuously differentiable function. Assume that every KKT point of f over M is com-
plementary and nondegenerate. Then, the set KKT	F �M� has a finite number of elements. Moreover, we have∑

x∈KKT	f �M�

indKKTf 	x�= 
	M��
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Corollary 5.1. Consider a compact region M given by (1). Let U be an open set containing M and
f � U �→� be a twice continuously differentiable function. Assume that 
	M�= 1 and that every x ∈KKT	f �M�
is nondegenerate, complementary, and satisfies indKKTf 	x� = 1. Then, f has a unique local minimum over M
which is also the global minimum.

Traditional optimization results establish the uniqueness of the minimum under a global convexity assumption,
i.e., when the Hessian of the objective function is positive definite for every vector in the constraint region. In
contrast, Corollary 5.1 establishes the uniqueness of a local minimum of a nonconvex optimization problem by a
sufficient local condition that requires that the determinant of the (generalized) Hessian is positive at every KKT
point of the function over the region. In the following example, we use Corollary 5.1 to prove the uniqueness
of a local minimum in a nonconvex problem:
Example 5.1. Let n be a positive integer, L = 
1�2� " " " � n� be a set, a�b ∈ � be scalars such that

0<a< 1/n and a< b. Let f � M = $a� b%n �→�n be a function given by

f 	p�=−∑
j∈L
log

(
pj

p−j

)
�

where p−j = 1+∑
k �=j> k∈L pk� It can be seen that f 	p� is a nonconvex function.

We claim that every KKT point of f is complementary, nondegenerate, and has KKT index equal to 1. Let
p ∈KKT	f �M�. By Definition 5.2, every KKT point satisfies

�fi	p�≥ 0� if pi = a (42)

�fi	p�= 0� if a< pi < b (43)

�fi	p�≤ 0� if pi = b� (44)

If the inequalities in (42) and (44) are strict, p is complementary. If pi = a, then

�fi	p�=−1
a
+∑

j �=i

1
p−j

≤−1
a
+ 	n− 1� < 0�

since a< 1/	n− 1�, therefore Equation (42) does not hold for any i ∈ L. Let I	p� denote the set of indices for
which pi = b. Assume, to get a contradiction, that �fi	p�= 0 for some i ∈ I	p�. Then, for j ∈ I	p�, pi = pj = b,
and by symmetry, we have

�fj	p�= �fi	p�= 0�
Together with Equation (43), the preceding relation implies that �fi	p�= 0 for all i ∈ L. Then, using the inequal-
ity

∑
j �=k> j∈L pj/p−k < 1, we obtain

0=∑
j∈L

pj�fj	p�=−n+∑
k∈L

∑
j �=k> j∈L

pj

p−k
< 0�

yielding a contradiction. Hence, �fi	p� < 0 for all i ∈ I	p�, implying that p is a complementary KKT point. Let
INB	p� denote the set of indices for which Equation (43) holds. For this example, E	p� (cf. Equation (41)) is
given by

E	p�=Hf 	p��INB	p��
where Hf 	p��INB	p� denotes the principal submatrix of Hf 	p� corresponding to the indices in INB	p�. Let

C = PHf 	p�P�

where P is the n× n diagonal matrix with entries pi in the diagonal. It can be seen that C�INB	p� is positive
diagonally dominant. Consequently, det	E	p�� > 0, which implies that p is nondegenerate and indKKTf 	p�= 1
as desired.
Since 
	M�= 1 and every p ∈KKT	f �M� is complementary, nondegenerate, and satisfies indKKTf 	p�= 1, by

Corollary 5.1, f has a unique local minimum over M . It can be seen that the unique local minimum is located
at p = 	b� b� " " " � b�. In essence, using the first-order conditions given by Equations (42), (43), and (44), we
could prove that f is locally convex around each stationary point, which, by Corollary 5.1, implies that f has
a unique stationary point and a unique local minimum over M . Note that the Poincaré-Hopf theorem cannot be
applied to this problem since the region M is not a manifold and the unique critical point of the vector field �f
is on the boundary of the region M .
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Appendix. Proof of Proposition 4.2. For the proof, we need the following result:

Lemma A.1. For any x ∈M� and z ∈M , we have

	x− z�T 	0	x�− z�≥ 0�
Proof. For any x ∈M� and z ∈M , we can write x−0	x�= 	x− z�+ 	z−0	x��, which implies that

�x−0	x��2 = �x− z�2+ 2	x− z�T 	z−0	x��+�z−0	x��2�
By the definition of 0	x�, we have �x−0	x�� ≤ �x−z�; therefore, the preceding implies that 	x−z�T 	0	x�−
z�≥ 0, completing the proof. �

The following lemma proves that a function that has values close to another differentiable function is also dif-
ferentiable. This lemma was inspired by the proof of Theorem 3.1 in Clarke et al. [6].

Lemma A.2. Let A⊂�n be an open set, and f � g� A �→� be scalar valued functions such that f is differ-
entiable at x ∈A. Assume that f 	x�= g	x� and there exists r > 0 such that

�f 	y�− g	y�� ≤ r�y− x�2� ∀y ∈A� (A1)

Then, g is differentiable at x with derivative equal to �f 	x�.

Proof. Define

efx 	v�=
f 	x+ v�− f 	x�−�f 	x�T v

�v� �

The assumption that f is differentiable at x ∈A implies that

lim
v→0

efx 	v�= 0�

By (A1), for all v �= 0 and sufficiently small such that x+ v ∈A, we have

egx	v�=
g	x+ v�− g	x�−�f 	x�T v

�v� ≤ f 	x+ v�+ r�v�2− f 	x�−�f 	x�T v

�v� = efx 	v�+ r�v��

Similarly,

egx	v�≥
f 	x+ v�− r�v�2− f 	x�−�f 	x�T v

�v� = efx 	v�− r�v��
Combining the preceding two relations, we obtain

efx 	v�− r�v� ≤ egx	v�≤ efx 	v�+ r�v��
By taking the limit as v→ 0,

0= lim
v→0

efx 	v�− r�v� ≤ lim
v→0

egx	v�≤ lim
v→0

efx 	v�+ r�v� = 0�

Thus, limv→0 e
g
x	v�= 0, showing that g is differentiable at x with derivative �f 	x� as desired. �

Proof of Proposition 4.2. Let x be an arbitrary vector in M�−M . Consider the function f � M�−M �→�
given by

f 	w�= �w−0	x���
Let � ∈� be such that 0<�< d	x�. Then, f is differentiable on the ball B	x��� with derivative

�f 	w�= w−0	x�

�w−0	x�� �

Let y ∈ B	x��� (see Figure A.1). By the definition of d	y� and �, we have

f 	y�≥ d	y�≥ d	x�− �> 0� (A2)
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d(y)

π(y)

π(x)
δ

d(x)

x

y

M

f (y)

Figure A.1. The distance function d is close to the function f in a neighborhood of x. Then, since f is differentiable at x, d is also
differentiable at x with derivative �f 	x�.

Using y−0	x�= y−0	y�+ 	0	y�−0	x��, we obtain

f 	y�2 = �y−0	x��2 = �y−0	y��2+�0	y�−0	x��2+ 2	y−0	y��T 	0	y�−0	x��

= d	y�2+�0	y�−0	x��2+ 2	y− x+ x−0	y��T 	0	y�−0	x��

= d	y�2+�0	y�−0	x��2+ 2	y− x�T 	0	y�−0	x��+ 2	x−0	y��T 	0	y�−0	x��

≤ d	y�2+�0	y�−0	x��2+ 2�y− x��0	y�−0	x��
≤ d	y�2+ 	k2+ 2k��y− x�2�

where we used Lemma A.1 (with z=0	y�) and the Cauchy-Schwartz inequality to get the first inequality and the
fact that 0 is globally Lipschitz over M� (cf. Proposition 4.1) to get the second inequality. Using the preceding,
we obtain

f 	y�2−d	y�2 ≤ 	k2+ 2k��y− x�2�
which implies

f 	y�−d	y�≤ k2+ 2k
f 	y�+d	y�

�y− x�2�
Using Equation (A2), we further obtain

f 	y�−d	y�≤ k2+ 2k
2	d	x�− ��

�y− x�2�

Then, for

r = k2+ 2k
2	d	x�− ��

> 0�

we have
0≤ f 	y�−d	y�≤ r�y− x�2

for all y ∈ B	x���. Since f 	x�= d	x�, we conclude by Lemma A.2 that d is differentiable at x with derivative

�d	x�= �f 	x�= x−0	x�

�x−0	x�� = x−0	x�

d	x�
�

Since x was an arbitrary point in M� −M , and �d	x�= 	x−0	x��/d	x� is a continuous function of x over
M� −M , we conclude that d is continuously differentiable over M� −M , completing the proof. �
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