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EQUILIBRIUM BIAS OF TECHNOLOGY

BY DARON ACEMOGLU1

This paper presents three sets of results about equilibrium bias of technology.
First, I show that when the menu of technological possibilities only allows for factor-
augmenting technologies, the increase in the supply of a factor induces technological
change relatively biased toward that factor—meaning that the induced technological
change increases the relative marginal product of the factor becoming more abundant.
Moreover, this induced bias can be strong enough to make the relative marginal prod-
uct of a factor increasing in response to an increase in its supply, thus leading to an
upward-sloping relative demand curve. I also show that these results about relative bias
do not generalize when more general menus of technological possibilities are consid-
ered. Second, I prove that under mild assumptions, the increase in the supply of a factor
induces technological change that is absolutely biased toward that factor—meaning that
it increases its marginal product at given factor proportions. The third and most impor-
tant result in the paper establishes the possibility of and conditions for strong absolute
equilibrium bias—whereby the price (marginal product) of a factor increases in response
to an increase in its supply. I prove that, under some regularity conditions, there will
be strong absolute equilibrium bias if and only if the aggregate production function
of the economy fails to be jointly concave in factors and technology. This type of fail-
ure of joint concavity is possible in economies where equilibrium factor demands and
technologies result from the decisions of different agents.

KEYWORDS: Biased technology, economic growth, endogenous technical change, in-
novation, nonconvexity.

1. INTRODUCTION

DESPITE THE GENERALLY AGREED UPON IMPORTANCE of technological prog-
ress for economic growth and a large and influential literature on technological
progress,2 the determinants of the direction and bias of technological change
are not well understood. An analysis of equilibrium bias of technology is im-
portant for a number of reasons. First, in most situations, technical change is
not neutral: it benefits some factors of production, while directly or indirectly
reducing the compensation of others. This possibility is illustrated both by the
distributional impact of the major technologies introduced during the Indus-
trial Revolution and by the effects of technological change on the structure

1I am grateful to Rabah Amir, Alexandre Debs, David Levine, and Asuman Ozdaglar for nu-
merous suggestions, to Alp Simsek for help with Lemma 1, and to Susan Athey, Ivan Werning,
Muhamet Yildiz, three anonymous referees, and seminar participants in the Canadian Institute
of Advanced Research, Georgetown, MIT, Northwestern, Toulouse, and UCLA for useful com-
ments. I also thank the Toulouse Network on Information Technology for financial support.

2See, among others, Reinganum (1981, 1985), Spence (1984), and Grossman and Shapiro
(1987) in the industrial organization literature and Romer (1990), Segerstrom, Anant, and
Dinopoulos (1990), Grossman and Helpman (1991), Aghion and Howitt (1992), and Stokey
(1991) in the economic growth literature.
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of wages during the past half century or so.3 The bias of technological change
determines its distributional implications, for example, which groups are the
winners and which will be the losers from technological progress, and thus the
willingness of different groups to embrace new technologies. Second, the bias
of technology determines how factor prices respond to changes in factor sup-
plies, for example, whether equilibrium factor demand curves are downward-
sloping as in basic producer theory. Third, understanding the determinants of
innovation requires an analysis of the bias and direction of new technologies,
for example, for evaluating whether lines of previous innovations or technolo-
gies will be exploited in the future and the potential compatibility between old
and new technologies.4

Recent research has focused on the relative bias of technology—defined as
the impact of technology on relative factor prices at given factor proportions.5
For example, using a growth model with two factors, factor-augmenting tech-
nologies and a constant elasticity of substitution between factors, Acemoglu
(2002) showed that when a factor becomes more abundant, technology be-
comes endogenously more (relatively) biased toward that factor. Moreover,
this induced bias could be strong enough that relative demand curves for fac-
tors could be upward-sloping, rather than downward-sloping as in models with
exogenous technology. These results were derived in the context of versions
of the endogenous growth models of Romer (1990), Grossman and Helpman
(1991), and Aghion and Howitt (1992), and as such, they incorporated a num-
ber of specific features. Investigating whether these results are an artifact of
the assumptions imposed in this class of models is important not only for ob-
taining general theorems about equilibrium bias, but also because without such
an investigation, our understanding of the forces that determine the nature of
technological progress would be incomplete.

This paper presents three sets of results about equilibrium bias of technol-
ogy.

First, the results concerning relative bias mentioned above extend to a more
general environment with factor-augmenting technologies. In particular, it is
shown that in this more general environment an increase in the abundance
of a factor always makes technology relatively biased toward this factor (weak
relative equilibrium bias). Moreover, if the (local) elasticity of substitution be-
tween factors is sufficiently large, the relative demand curves for factors are
upward-sloping (strong relative equilibrium bias).6 It is also shown, however,

3On the biases and distributional effects of the technologies introduced during the Industrial
Revolution, see Mantoux (1961) or Mokyr (1990). On the skill bias of more recent technologies,
see, for example, Autor, Krueger, and Katz (1998).

4See, for example, Farrell and Saloner (1985) and Katz and Shapiro (1985).
5Equivalently, relative bias can be described as referring to cost-minimizing relative factor

demands at a given factor price ratio. The two definitions of relative bias are equivalent for the
purposes of this paper.

6The difference between weak and strong bias can be alternatively expressed as follows: weak
bias refers to how factor prices or demands change at given factor proportions when there is an
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that these results do not extend further; once the menu of possibilities includes
non-factor-augmenting technologies, it is easy to construct examples where an
increase in the abundance of a factor induces technology to be biased against
this factor.

A more natural concept may be absolute bias, which has not received much
attention in the literature. A technology is absolutely biased toward a factor
if it increases its marginal product. While a study of relative bias is relevant
to a range of questions (including those concerning inequality), the study of
absolute bias is important for understanding how factor demands respond to
changes in factor supplies and for the implications of technological change for
the level of factor returns. The second major result in this paper is that an
increase in the abundance of a factor always induces a change in technology
that is absolutely biased toward this factor (weak absolute equilibrium bias).
The intuition for this result is simple and is related to a type of “market size
effect”: when a factor becomes more abundant, technologies that make use
of this factor become more valuable, ensuring a change in the direction of
technological change toward increasing the demand and thus the equilibrium
price of this factor (at given factor proportions).

The third major result in this paper is the most important and relates to strong
absolute equilibrium bias. Strong absolute equilibrium bias refers to a situation
in which an increase in the abundance of a factor induces sufficient bias to in-
crease its marginal product (price), making the endogenous-technology factor
demand curve upward-sloping. Theorem 4 establishes that, under some regu-
larity conditions, there will be strong absolute equilibrium bias if and only if
the production possibilities set of the economy is nonconvex at the equilibrium
point.

To describethis result at a heuristic level, let θ represent the technology
choices and let Z denote the only factor in the economy. Suppose that θ is de-
cided by a technology producer (which may sell this technology or intermediate
goods embodying this technology to firms), while firms make the employment
decisions for factor Z, taking the available technology θ as given. A (general)
equilibrium requires both the technology producer and firms to maximize their
profits. Under certain conditions to be specified below, the profits of the tech-
nology producer can be represented as a transformation of the net aggregate
production function of the economy F(Z�θ) (inclusive of the costs of produc-
ing new technologies). A point (Z∗� θ∗) is an equilibrium if it is an optimum
both for the technology producer (i.e., F(Z∗� θ∗) ≥ F(Z∗� θ′) for all feasible
θ′) and for final good producers (i.e., F(Z∗� θ∗) − wZZ

∗ ≥ F(Z′� θ∗) − wZZ
′

induced change in technology (i.e., an adjustment in technology to the equilibrium level corre-
sponding to the new factor proportions). Strong bias, on the other hand, refers to the change in
factor prices or demand at the new factor proportions after the induced change in technology.
It therefore consists of the direct effect of the change in factor proportions on (relative) factor
prices at given technology plus the impact of the induced technology.
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for all feasible Z′, where wZ is the price of factor Z). Although F(Z�θ) will be
concave in Z and in θ at an equilibrium point (Z∗� θ∗), it need not be jointly
concave in (Z�θ). Instead, (Z∗� θ∗) could be a “quasi-saddle point,” mean-
ing that there exists a direction in the (Z�θ) plane in which both F(Z�θ) and
F(Z�θ) − wZZ increase (see footnote 30 below). The essence of Theorem 4
is that whenever F(Z�θ) fails to be jointly concave in (Z�θ) at an equilibrium
(Z∗� θ∗) (or equivalently whenever (Z∗� θ∗) is a “quasi-saddle point”), there
will be strong absolute equilibrium bias and, conversely, if F(Z�θ) is jointly
concave in (Z�θ) at (Z∗� θ∗), then there cannot be strong absolute equilibrium
bias. Intuitively, when (Z∗� θ∗) is a quasi-saddle point, a change in Z induces
the technology producer to develop technologies that move the economy in
the (Z�θ) direction that increases F(Z�θ) and F(Z�θ)−wZZ, and this trans-
lates into a higher price for Z (higher wZ). When F(Z�θ) is jointly concave
at (Z∗� θ∗), this is not possible and an increase in Z necessarily reduces its
equilibrium price.

This discussion illustrates three important points. The first is the intimate
link between nonconvexity and strong equilibrium bias—failure of joint con-
cavity is necessary (and essentially sufficient) for strong absolute equilibrium
bias. The second is that in a competitive equilibrium, where the first and sec-
ond welfare theorems hold, strong absolute equilibrium bias is not possible,
because such an environment would ensure that (Z∗� θ∗) is a maximum. Third
and related is that strong absolute equilibrium bias is not a pathological phe-
nomenon. Once we consider noncompetitive environments, the equilibrium
point (Z∗� θ∗) is often a quasi-saddle point; (Nash) equilibrium only requires
each player to optimize and does not imply joint optimization.

The early literature on technological bias includes the work on induced in-
novations by, among others, Hicks (1932), Kennedy (1964), Samuelson (1965),
Drandakis and Phelps (1965), Nordhaus (1973), and Binswanger and Ruttan
(1978), although these papers did not specify microfounded models of tech-
nological change and, consequently, did not obtain results related to weak or
strong bias. The more recent literature includes Acemoglu (1998, 2002, 2003a,
2003b), Acemoglu and Zilibotti (2001), Kiley (1999), Caselli and Coleman
(2004), Xu (2001), Gancia (2003), Thoenig and Verdier (2003), Ragot (2003),
Duranton (2004), Benabou (2005), and Jones (2005).7 Specialized versions of
the results on relative bias presented here are contained in Acemoglu (1998,
2002). The more general results on relative bias, the relationship between rela-
tive bias and factor-augmenting technologies, the results on absolute bias, and

7The focus of the first papers in this literature, Acemoglu (1998) and Kiley (1999), was to
investigate when and why technology could be biased toward skilled workers. Later Acemoglu
(2003b) and Jones (2005) studied similar ideas to investigate why technical change may be purely
labor-augmenting. Acemoglu (2003a), Xu (2001), Gancia (2003), and Thoenig and Verdier (2003)
used versions of this framework to investigate the effect of international trade on the bias of
technology.
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the results that link strong absolute bias and nonconvexity have not been fea-
tured in any of these papers.

The results on weak absolute bias are also related to the LeChatelier prin-
ciple (see, for example, Samuelson (1947, 1960), Milgrom and Roberts (1996),
and Roberts (1999)). The LeChatelier principle states that long-run demand
curves of profit-maximizing firms (which allow adjustment in all factors) are
more elastic than short-run demand curves (which hold the employment level
of other factors constant). Results about the endogenous bias of technology
may be viewed as equilibrium versions of the LeChatelier principle. The main
difference is that the focus here is on the effect of changes in factor supplies on
general equilibrium outcomes, rather than the partial equilibrium/maximization
focus of the LeChatelier principle. The above discussion illustrates that the
general equilibrium structure is responsible for the possibility of strong equi-
librium bias (because a firm’s demand curve for a factor can never be upward-
sloping; see, e.g., Mas-Colell, Whinston, and Green (1995, Proposition 5.C.2)).
Equivalently, as discussed above, strong bias requires technology and factor
demands to be chosen by different agents.

The rest of the paper is organized as follows. Section 2 describes a number
of alternative environments, with different market structures and assumptions
on technology choice, and shows that the determination of equilibrium bias in
these different economies boils down to the same problem. Section 3 provides
a generalization of existing relative bias results. Section 4 presents the results
on weak absolute equilibrium bias. Section 5 contains the main theorem of the
paper, which establishes the possibility of strong absolute equilibrium bias and
demonstrates the relationship between nonconvexities and strong bias. Sec-
tion 6 concludes.

2. THE BASIC ENVIRONMENTS

Consider a static economy consisting of a unique final good and N+1 factors
of production, Z and L = (L1� � � � �LN). All agents’ preferences are defined
over the consumption of the final good and all factors are supplied inelasti-
cally, with supplies denoted by Z̄ ∈ R+ and L̄ ∈ R

N
+ . Throughout I will focus

on comparative statics with respect to changes in the supply of factor Z, while
holding the supply of other factors, L̄, constant. The economy consists of a
continuum of firms (final good producers) denoted by the set F , each with an
identical production function. Without loss of any generality let us normalize
the measure of F , |F |, to 1. The price of the final good is also normalized to 1.8

I first describe technology choice in four different economic environments.
All these environments will lead to a similar structure for the determination of

8Because all agents’ preferences are defined over the final good, ownership of firms is not
important for the equilibrium allocations. In particular, firms will always maximize profits in-
dependently of their exact ownership structure. For this reason, I do not specify the ownership
structure of firms in what follows.
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equilibrium bias, but will have different implications for the convexity of the
aggregate production set and thus for strong equilibrium bias (see below for
formal definitions).

The first, Economy D (for decentralized), is a decentralized competitive
economy in which technologies are chosen by firms themselves. In some ways,
in this economy, technology choice can be interpreted as choice of just another
set of factors and the entire analysis can be conducted in terms of technology
adoption.9

The second, Economy C (for centralized), features a socially run research
firm that chooses the technology. The third and the fourth environments,
Economies M and O (for monopoly and oligopoly) are more standard in
analyses of technological progress, and allow either a monopoly or a set of
oligopolies to produce and sell new technologies (or machines embodying
these technologies) to final good producers.

2.1. Economy D—Decentralized Equilibrium

In the first environment, Economy D, all markets are competitive and tech-
nology is decided by each firm separately. Each firm i ∈F has access to a pro-
duction function

Y i =G(Zi�Li� θi)�(1)

where Zi ∈ Z ⊂ R+�Li ∈ L ⊂ R
N
+ , and θi ∈ Θ ⊂ R

K is the measure of technol-
ogy. G is a real-valued production function, which I take to be twice continu-
ously differentiable in (Zi�Li� θi) throughout its domain Z ×L×Θ. The cost
of technology θ ∈ Θ in terms of final goods is C(θ), which is also taken to be
twice continuously differentiable.10

Each final good producer (firm) maximizes profits,

max
Zi∈Z�Li∈L�θi∈Θ

π(Zi�Li� θi)= G(Zi�Li� θi)−wZZ
i−

N∑
j=1

wLjL
i
j−C(θi)�(2)

where wZ is the price of factor Z and wLj is the price of factor Lj for j =
1� � � � �N , all taken as given by the firm. The vector of prices for factors L is

9See Boldrin and Levine (2001, 2004) and Quah (2002) for other models of technological
change in competitive economies.

10Throughout, the cost of creating (producing) new technologies is in terms of the final good.
This is only to highlight the novel results in the paper. If the “technology sector” has different
factor intensities than the final good sector, there will be an additional—indirect—effect, because
changes in factor supplies will influence the costs of creating new technologies. Nevertheless, this
will not affect our main results (as long as producing different types of technologies does not
require different factor intensities).
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denoted by wL. Because there is a total supply Z̄ of factor Z and a total supply
L̄j of Lj , market clearing requires

∫
i∈F

Zi di ≤ Z̄ and
∫
i∈F

Li
j di ≤ L̄j for j = 1� � � � �N�(3)

DEFINITION 1: An equilibrium in Economy D is a set of decisions {Zi�Li�
θi}i∈F and factor prices (wZ�wL) such that {Zi�Li� θi}i∈F solve (2) given prices
(wZ�wL) and (3) holds.

I refer to any θi that is part of the set of equilibrium allocations, {Zi�Li�
θi}i∈F , as equilibrium technology. For notational convenience let us define the
“net production function”

F(Zi�Li� θi)≡G(Zi�Li� θi)−C(θi)�(4)

ASSUMPTION 1: Either F(Zi�Li� θi) is jointly strictly concave in (Zi�Li� θi)
and increasing in (Zi�Li), and Z , L, and Θ are convex or F(Zi�Li� θi) is in-
creasing in (Zi�Li) and exhibits constant returns to scale in (Zi�Li� θi), and we
have (Z̄� L̄) ∈Z ×L.

Assumption 1 is restrictive, because it requires concavity (strict concavity or
constant returns to scale) jointly in the factors of production and technology.11

Such an assumption is necessary for a competitive equilibrium to exist; the
other economic environments considered below will relax this assumption. It
is worth emphasizing that the notation F(Zi�Li� θi) does not imply that there
are no costs of technology adoption (recall (4)).

PROPOSITION 1: Suppose Assumption 1 holds. Then any equilibrium technol-
ogy θ in Economy D is a solution to

max
θ′∈Θ

F(Z̄� L̄� θ′)�(5)

and any solution to this problem is an equilibrium technology.

The proof uses standard arguments and can be found in Acemoglu (2005).
Proposition 1, which establishes the first and second welfare theorems for

this environment, enables us to focus on a simple maximization problem for
the determination of equilibrium technology. An important implication of this
proposition is that the equilibrium is a Pareto optimum (and vice versa) and
corresponds to a maximum of F in the entire vector (Zi�Li� θi).

11It is also possible to allow for mixtures of constant returns to scale and strict convexity. How-
ever, because this is not essential for the focus here, I simplify the notation by imposing Assump-
tion 1.
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It is also straightforward to see that equilibrium factor prices in this econ-
omy are equal to the marginal products of the G or the F function. That
is, wZ = ∂G(Z̄� L̄� θ)/∂Z = ∂F(Z̄� L̄� θ)/∂Z and wLj = ∂G(Z̄� L̄� θ)/∂Lj =
∂F(Z̄� L̄� θ)/∂Lj for j = 1� � � � �N , where θ is the equilibrium technology
choice (and where the second equalities follow in view of (4)).

2.2. Economy C—Centralized Equilibrium

In this economy, each firm again has access to the production function (1),
with Zi ∈ Z ⊂ R+�Li ∈ L ⊂ R

N
+ , and θi ∈ Θ ⊂ R

K . In addition, each firm has
free access to technology θ provided by a centralized (socially run) research
firm. This research firm can create any technology θ at cost C(θ) from the
available technology menu Θ. Once created, this technology is nonrival, nonex-
cludable, and available to any firm. In addition, to further simplify the analysis,
I assume that the research firm can only choose one technology, which might
be, for example, because of the necessity of standardization across firms.12

All factor markets are again competitive. Consequently, given the technol-
ogy offer of θ from the research firm, the maximization problem of each final
good producer is

max
Zi∈Z�Li∈L

π(Zi�Li� θ) = G(Zi�Li� θ)−wZZ
i −

N∑
j=1

wLjL
i
j�(6)

Notice that in contrast to Economy D, final good producers are only maximiz-
ing with respect to (Zi�Li), not with respect to θi, which will be determined by
the centralized research firm.

The objective of the research firm is to maximize total net output:

max
θ∈Θ

Π(θ) =
∫ 1

0
G(Zi�Li� θ)di−C(θ)�(7)

DEFINITION 2: An equilibrium in Economy C is a set of firm decisions
{Zi�Li}i∈F , technology choice θ, and factor prices (wZ�wL) such that {Zi�
Li}i∈F solve (6) given (wZ�wL) and θ, (3) holds, and the technology choice
for the research firm, θ, maximizes (7).

12In general, a social planner may want to create two different technologies, say θ1 and θ2,
and provide one technology to a subset of firms and the other to the rest. This strategy could
be optimal if C(θ) were sufficiently small (so that duplication costs are not too large). In the
current environment, this is generally not possible because of nonexcludability; all firms would
want to use the technology that is superior. To simplify the discussion, I assume that choosing
two separate technologies from the menu is not possible (see the further discussion in Acemoglu
(2005)).
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We now impose a weaker version of Assumption 1, which only requires con-
cavity in (Z�L):

ASSUMPTION 2: Either G(Zi�Li� θi) is jointly strictly concave and increasing
in (Zi�Li), and Z and L are convex or G(Zi�Li� θi) is increasing and exhibits
constant returns to scale in (Zi�Li), and we have (Z̄� L̄) ∈Z ×L.

PROPOSITION 2: Suppose Assumption 2 holds. Then any equilibrium technol-
ogy θ in Economy C is a solution to

max
θ′∈Θ

F(Z̄� L̄� θ′)≡G(Z̄� L̄� θ′)−C(θ′)(8)

and any solution to this problem is an equilibrium technology.

The proof again uses standard arguments and is contained in Acemoglu
(2005).

This proposition shows that technology choice in Economy C is identical to
that in Economy D. Nevertheless, the equilibrium of this economy need not
be a social optimum. To obtain the social optima, we would need to allow the
centralized research firm to act as a social planner and decide not only the
technology θ, but also the allocation of factors to firms (potentially operating
some firms at a larger scale and shutting down others). However, because in
this environment, once created, technologies are nonexcludable, all firms have
access to them and will be active.

For our purposes, the more important difference is that although in Econ-
omy D the function F(Z̄� L̄� θ) is jointly concave in (Z�θ), the same is not true
in Economy C.

Finally, note that as in Economy D, equilibrium factor prices are given
by wZ = ∂G(Z̄� L̄� θ)/∂Z = ∂F(Z̄� L̄� θ)/∂Z and wLj = ∂G(Z̄� L̄� θ)/∂Lj =
∂F(Z̄� L̄� θ)/∂Lj for j = 1� � � � �N .

2.3. Economy M—Monopoly Equilibrium

The next environment features a monopolist supplying technologies to fi-
nal good producers. I take the simplest structure to deliver results similar to
Propositions 1 and 2.13 There is a unique final good and each firm has access
to the production function

Y i = α−α(1 − α)−1[G(Zi�Li� θi)]αq(θi)1−α�(9)

This is similar to (1), except that G(Zi�Li� θi) is now a subcomponent of the
production function, which depends on θi, the technology used by the firm.

13Appendix A in Acemoglu (2005) analyzes the same environment as in Economy C with a
monopolist provider of technologies that can charge nonlinear prices.
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Assumption 2 now applies to this subcomponent. The subcomponent G needs
to be combined with an intermediate good embodying technology θi, denoted
by q(θi)—conditioned on θi to emphasize that it embodies technology θi. This
intermediate good is supplied by the monopolist. The term α−α(1 − α)−1 is a
convenient normalization. This structure is similar to models of endogenous
technology (e.g., Romer (1990), Grossman and Helpman (1991), or Aghion
and Howitt (1992, 1998)), but is somewhat more general because it does not
impose that technology necessarily takes a factor-augmenting form. I continue
to assume that Zi ∈ Z ⊂ R+�Li ∈ L ⊂ R

N
+ and that G is twice continuously

differentiable in (Zi�Li� θi).
The monopolist can create technology θ at cost C(θ) from the technology

menu. Once θ is created, the technology monopolist can produce the inter-
mediate good embodying technology θ at constant per unit cost normalized to
1−α unit of the final good (this is also a convenient normalization). It can then
set a (linear) price per unit of the intermediate good of type θ, denoted by χ.

All factor markets are competitive, and each firm takes the available tech-
nology, θ, and the price of the intermediate good embodying this technology,
χ, as given and maximizes

max
Zi∈Z�Li∈L�

q(θ)≥0

π(Zi�Li� q(θ) | θ�χ) = α−α(1 − α)−1[G(Zi�Li� θ)]αq(θ)1−α(10)

−wZZ
i −

N∑
j=1

wLjL
i
j −χq(θ)�

which gives the following simple inverse demand for intermediate of type θ as
a function of its price, χ, and the factor employment levels of the firm as

qi(θ�χ�Zi�Li)= α−1G(Zi�Li� θ)χ−1/α�(11)

The problem of the monopolist is to maximize its profits,

max
θ�χ�[qi(θ�χ�Zi�Li)]i∈F

Π = (χ− (1 − α))

∫
i∈F

qi(θ�χ�Zi�Li)di−C(θ)(12)

subject to (11). Therefore, an equilibrium in this economy can be defined as
follows:

DEFINITION 3: An equilibrium in Economy M is a set of firm decisions
{Zi�Li� qi(θ�χ�Zi�Li)}i∈F , technology choice θ, and factor prices (wZ�wL)
such that {Zi�Li� qi(θ�χ�Zi�Li)}i∈F solve (10) given (wZ�wL) and technology
θ, (3) holds, and the technology choice and pricing decision for the monopolist,
(θ�χ), maximize (12) subject to (11).
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This definition emphasizes that, as in Economy C, factor demands and tech-
nology are decided by different agents (the former by the final good producers;
the latter by the technology monopolist).

To characterize the equilibrium, note that (11) defines a constant elasticity
demand curve, so the profit-maximizing price of the monopolist is given by the
standard monopoly markup over marginal cost and is equal to χ = 1. Conse-
quently, qi(θ) = qi(θ�χ = 1� Z̄� L̄) = α−1G(Z̄� L̄� θ) for all i ∈ F . Substituting
this into (12), the profits and the maximization problem of the monopolist can
be expressed as

max
θ∈Θ

Π(θ) =G(Z̄� L̄� θ)−C(θ)�(13)

Thus we have established the following proposition (proof in the text):

PROPOSITION 3: Suppose Assumption 2 holds. Then any equilibrium technol-
ogy θ in Economy M is a solution to

max
θ′∈Θ

F(Z̄� L̄� θ′)≡G(Z̄� L̄� θ′)−C(θ′)

and any solution to this problem is an equilibrium technology.

Relative to Economies D and C, the presence of the monopoly markup im-
plies greater distortions in this economy.14 Nevertheless, once again equilib-
rium technology in Economy M is a solution to a problem identical to that in
Economy D or C, that of maximizing F(Z̄� L̄� θ) ≡ G(Z̄� L̄� θ) − C(θ) as in
(4). As in Economy C, F(Z̄� L̄� θ) need not be concave in (Z�θ), even in the
neighborhood of the equilibrium.

Finally, it can be verified that in this economy, equilibrium factor prices are
given by wZ = (1−α)−1 ∂G(Z̄� L̄� θ)/∂Z and wLj = (1−α)−1∂G(Z̄� L̄� θ)/∂Lj ,
which are proportional to the derivatives of the G or the F function defined
in (4). To facilitate comparison with Economies D and C, with a slight abuse
of terminology I will refer to the derivatives of the G or the F function as the
“equilibrium factor prices,” even in Economy M.

2.4. Economy O—Oligopoly Equilibrium

Finally, similar results can also be obtained when a number of different
firms supply complementary or competing technologies. In this case, some

14For example, it can be verified that taking the behavior of the final good producers as given,
the socially optimal allocation in this case would maximize (1 − α)−1/αG(Z̄� L̄� θi)−C(θ) rather
than G(Z̄� L̄�θi)−C(θ).
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more structure needs to be imposed to ensure tractability. Let θi be the vector
θi ≡ (θi

1� � � � � θ
i
S), and suppose that output is now given by

Y i = α−α(1 − α)−1[G(Zi�Li� θi)]α
S∑

s=1

qs(θ
i
s)

1−α�(14)

where θi
s ∈ Θs ⊂ R

Ks is a technology supplied by technology producer s =
1� � � � � S, and qs(θ

i
s) is an intermediate good (or machine) produced and sold

by technology producer s, which embodies technology θi
s.

15 Factor markets are
again competitive, and a maximization problem similar to (10) gives the inverse
demand functions for intermediates as

qi
s(θ�χs�Z

i�Li)= α−1G(Zi�Li� θ)χ−1/α
s �(15)

where χs is the price charged for intermediate good qs(θ
i
s) by technology pro-

ducer s = 1� � � � � S.
Let the cost of creating technology θs be Cs(θs), where Cs(·) is twice contin-

uously differentiable for s = 1� � � � � S. The cost of producing each unit of any
intermediate good is again normalized to 1 − α.

DEFINITION 4: An equilibrium in Economy O is a set of firm decisions
{Zi�Li� [qi

s(θ�χs�Z
i�Li)]Ss=1}i∈F , technology choices (θ1� � � � � θS), and factor

prices (wZ�wL) such that {Zi�Li� [qi
s(θ�χs�Z

i�Li)]Ss=1}i∈F maximize firm prof-
its given (wZ�wL) and the technology vector (θ1� � � � � θS), (3) holds, and the
technology choice and pricing decision for technology producer s = 1� � � � � S,
(θs�χs), maximize its profits subject to (15).

The profit-maximization problem of each technology producer is similar to
(12) and implies a profit-maximizing price for intermediate goods equal to χs =
1 for any θs ∈ Θs and each s = 1� � � � � S. Consequently, with the same steps as
in the previous subsection, each technology producer will solve the problem,

max
θs∈Θs

Πs(θs)= G(Z̄� L̄� θ1� � � � � θs� � � � � θS)−Cs(θs)�(16)

This establishes the following proposition (proof in the text):

PROPOSITION 4: Suppose Assumption 2 holds. Then any equilibrium technol-
ogy in Economy O is a vector (θ∗

1� � � � � θ
∗
S) such that θ∗

s is solution to

max
θs∈Θs

G(Z̄� L̄� θ∗
1� � � � � θs� � � � � θ

∗
S)−Cs(θs)

15A potentially unappealing feature of the production function (14) is that technology θs might
affect productivity even when qs(θs) = 0. This can be avoided by writing the production function
separately for the cases in which qs(θs) = 0 for some s as G(Z̄� L̄�θ1� � � � � θs = 0� � � � � θS). In
practice, this is not an issue, because as equation (15) shows, final good producers will always
choose qs(θs) > 0 for all s. I therefore do not to introduce the additional notation.
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for each s = 1� � � � � S, and any such vector gives an equilibrium technology.

The parallels between this result and Propositions 1–3 are evident. The ma-
jor difference is that the equilibrium is no longer given by a simple maximiza-
tion problem, but as a fixed point of a set of maximization problems. Neverthe-
less, this has little effect on the results below (and when it does, I will discuss
Economy O separately). In the special case where ∂2G/∂θs ∂θs′ = 0 for all s and
s′ (which is the case, for example, in the product variety models as in Romer
(1990) or Grossman and Helpman (1991)), the equilibrium can again be rep-
resented as a solution to a unique maximization problem—that of maximizing
G(Z̄� L̄� θ1� � � � � θs� � � � � θS)− ∑S

s=1 Cs(θs).
Two additional remarks about Economy O are useful:

REMARK 1: Economy O can also be used to model “monopolistic competi-
tion,” whereby the number of active firms is determined by a zero profit condi-
tion. In particular, assume that to be active each technology producer needs to
pay some fixed cost c̄s > 0. Then in equilibrium, a subset of the S oligopolists
will be active. Without loss of any generality, let this subset be {1� � � � � S′}.
Then the equilibrium problem is simply maxθs∈Θs G(Z̄� L̄� θ∗

1� � � � � θs� � � � � θ
∗
S′�0�

� � � �0)−Cs(θs) for 1 ≤ s ≤ S′. All the local results below apply when the set of
active firms is taken as given, and the global results also apply when the set of
active firms changes in response to changes in the supply of a factor.

REMARK 2: It is also possible to allow competition between technology pro-
ducers for supplying the same technology. For example, suppose that for each
s, there exists an “innovative” firm, with cost of creating new technologies
equal to Cs(θs) and marginal cost of producing each unit of the intermedi-
ate good equal to 1 − α as above, and there also exists a set Ms of “fringe”
firms that can copy this technology without any cost and compete to sup-
ply intermediates embodying this technology to final good producers. Each
fringe firm r ∈ Mr faces a marginal cost of producing intermediates equal to
ξr > 1 − α. Then it is straightforward to verify that in equilibrium the innova-
tive firm will be the sole supplier of the intermediate good charging the price
χs = max〈1�minr∈Ms{ξr}〉, that is, possibly a limit price. In this case, only the
constant in front of the profit function will be affected and all of the results
apply as before.

3. RELATIVE EQUILIBRIUM BIAS

The previous section established that in a number of different environments,
with different market structures and conceptions of technology choice, the
characterization of equilibrium technology boils down to the maximization of
some function F(Z̄� L̄� θ), where Z̄ and L̄ are the factor supplies in the econ-
omy. In this and the next two sections, I make use of this characterization to
derive a number of results about equilibrium bias of technology.
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This section analyzes relative equilibrium bias, and I focus on a more spe-
cialized economy with only two factors, that is, N = 1. Moreover, Θ is a convex
compact subset of R

K (with the jth component of θ denoted by θj). I continue
to assume that the production function G : R+×R+×R

K → R+ is twice contin-
uously differentiable in (Z�L�θ).16

Recall that, in a two-factor economy, relative equilibrium bias is defined as
the effect of technology on the marginal product (price) of a factor relative to
the marginal product (price) of the other factor. Denote the marginal products
of the two factors by

wZ(Z�L�θ) = ∂G(Z�L�θ)

∂Z
and wL(Z�L�θ) = ∂G(Z�L�θ)

∂L

when employment levels (factor proportions) are given by (Z�L) and the tech-
nology is θ. From the twice differentiability of G, these marginal products are
also differentiable functions of Z and L. In the remainder, I suppress the ar-
guments of the derivatives when this causes no confusion (i.e., I use ∂G/∂Z
instead of ∂G(Z̄� L̄� θ)/∂Z, etc.).

DEFINITION 5: An increase in technology θj for j = 1� � � � �K is relatively bi-
ased toward factor Z at (Z̄� L̄� θ) ∈Z ×L×Θ if ∂(wZ/wL)/∂θj ≥ 0.

Definition 5 simply expresses what it means for a technology to be relatively
biased toward a factor (similarly, a decrease in θj is relatively biased toward
factor Z if the derivative in Definition 5 is nonpositive). From this definition, it
is clear that (weak) relative equilibrium bias corresponds to a change in tech-
nology θ in a direction biased toward Z in response to an increase in Z̄ (or
Z̄/L̄); this is stated in the next definition.17

DEFINITION 6: Denote the equilibrium technology at factor supplies
(Z̄� L̄) ∈ Z ×L by θ∗(Z̄� L̄) and assume that ∂θ∗

j /∂Z exists at (Z̄� L̄) for all
j = 1� � � � �K. Then there is weak relative equilibrium bias at (Z̄� L̄� θ∗(Z̄� L̄)) if

K∑
j=1

∂(wZ/wL)

∂θj

∂θ∗
j

∂Z
≥ 0�(17)

16Because C(θ) is twice continuously differentiable, F(L̄� Z̄� θ) ≡ G(L̄� Z̄�θ) − C(θ) is also
twice continuously differentiable. Throughout I will refer to both G and F as “the production
function” of the economy.

17Throughout this section, I focus on changes in the supply of factor Z, which is also equivalent
to a change in relative supplies Z/L (with L kept constant). Moreover, I denote the change in
equilibrium technology by ∂θj/∂Z rather than dθj/dZ because θ is not generally a function of
only Z. I reserve the notation d(wZ/wL)/dZ to denote the total change in relative (or absolute)
wages, which includes the technological adjustment, and contrast this with the partial change
∂(wZ/wL)/∂Z, which holds technology constant (see, for example, (18)).
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Weak relative equilibrium bias requires the (overall) change in technology in
response to an increase in Z̄ to be biased toward Z at the point (Z̄� L̄) ∈Z ×L
for which ∂θ∗

j /∂Z exists for all j. The condition that ∂θ∗
j /∂Z exists for all j

used in this definition will be further discussed below (see the discussion after
Theorem 2 in the next section).

The next definition introduces the more stringent concept of strong relative
equilibrium bias, which requires that in response to an increase in Z̄, tech-
nology changes so much that the overall effect (after the induced change in
technology) is to increase the relative price of Z.

DEFINITION 7: Denote the equilibrium technology at factor supplies
(Z̄� L̄) ∈ Z × L by θ∗(Z̄� L̄), and assume that ∂θ∗

j /∂Z exists at (Z̄� L̄) for all
j = 1� � � � �K. Then there is strong relative equilibrium bias at (Z̄� L̄� θ∗(Z̄� L̄))
if

d(wZ/wL)

dZ
= ∂(wZ/wL)

∂Z
+

K∑
j=1

∂(wZ/wL)

∂θj

∂θ∗
j

∂Z
> 0�(18)

By comparing the latter two definitions, it is clear that there will be strong
relative equilibrium bias if (17) is large enough to dominate the direct (nega-
tive) effect of the increase in relative supplies on relative wages (the first term
in (18)).

Before deriving the main results of this section, it is useful to clarify the
notions introduced so far using an example, which captures the main findings
in Acemoglu (1998, 2002), but in the context of Economy C, M, or O studied
above rather than in the endogenous growth setup of the original papers.18

EXAMPLE 1—Relative Equilibrium Bias: Suppose that

G(Z�L�θ)= [
γ(AZZ)(σ−1)/σ + (1 − γ)(ALL)

(σ−1)/σ
]σ/(σ−1)

�(19)

where θ = (AZ�AL) ∈ Θ = R
2
+. In particular, AZ and AL are two separate

factor-augmenting technology terms, γ ∈ (0�1), and σ ∈ [0�∞] is the elasticity
of substitution between the two factors. When σ = ∞, the two factors are per-
fect substitutes, and the production function is linear. When σ = 1, the produc-
tion function is Cobb–Douglas; when σ = 0, there is no substitution between
the two factors and the production function is Leontief.

The relative marginal product of Z is given by

wZ

wL

= γ

1 − γ

(
AZ

AL

)(σ−1)/σ(
Z̄

L̄

)−1/σ

�(20)

18Related static models of the direction of technology choice have also been considered by
Caselli and Coleman (2004) and Jones (2005).
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which is decreasing in the relative supply of Z, Z̄/L̄. This is the usual substitu-
tion effect, leading to a downward-sloping relative demand curve (with exoge-
nous technology). This expression also makes it clear that the measure of rela-
tive bias toward Z will correspond to θ̄ ≡ (AZ/AL)

(σ−1)/σ , because higher levels
of θ̄ increase the marginal product of Z relative to L for all values of σ (recall
Definition 5). It is important that the bias toward factor Z is (AZ/AL)

(σ−1)/σ ,
not AZ/AL (AZ/AL is the ratio of Z-augmenting to L-augmenting technol-
ogy). When σ > 1, an increase in AZ/AL increases the relative marginal prod-
uct of Z, while when σ < 1, an increase in AZ/AL reduces the relative mar-
ginal product of Z. Suppose also that the costs of producing new technologies
are ηZA

1+δ
Z and ηLA

1+δ
L , where δ > 0. Despite the fact that δ > 0 introduces

diminishing returns in the choice of technology, the aggregate production pos-
sibilities set of this economy is potentially nonconvex, because there is choice
both over the factors of production, Z and L, and the technologies, AZ and
AL (see below). From Proposition 2 or 3, equilibrium technology in Economy
C or M is given by the solution to the strictly concave maximization problem

max
AZ�AL

[
γ(AZZ̄)(σ−1)/σ + (1 − γ)(ALL̄)

(σ−1)/σ
]σ/(σ−1)

(21)

−ηZA
1+δ
Z −ηLA

1+δ
L �

(When considering Economy O, Proposition 4 implies a similar maximization
problem, with the only difference that AZ and AL maximize (21) individually,
which leads to identical results, because (21) is jointly concave in AZ and AL.)

Now, taking the ratio of the first-order conditions with respect to AZ and
AL, and denoting the equilibrium values by asterisks (*), the solution to this
problem yields

A∗
Z

A∗
L

=
(
ηZ

ηL

)−σ/(1+σδ)(
γ

1 − γ

)σ/(1+σδ)(
Z̄

L̄

)(σ−1)/(1+σδ)

�(22)

This equation can also be expressed in an alternative form useful for Theo-
rem 1:

∂ ln(A∗
Z/A

∗
L)

∂ ln(Z/L)
= σ − 1

1 + σδ
�(23)

There will be weak equilibrium bias if the expression in Definition 6 is nonneg-
ative. Using (20) (and preparing for Theorem 1), we can express the condition
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for weak relative equilibrium bias as19

�

(
wZ

wL

)
≡ ∂ ln(wZ/wL)

∂ ln(AZ/AL)

∂ ln(A∗
Z/A

∗
L)

∂ ln(Z/L)
≥ 0�(24)

Using (20) and (23), we obtain

�

(
wZ

wL

)
= σ − 1

σ
× σ − 1

1 + σδ
= (σ − 1)2

(1 + σδ)σ
≥ 0�

which is always nonnegative, thus establishing that there is always weak rela-
tive equilibrium bias.20 Intuitively, when σ > 1, an increase in Z̄/L̄ increases
A∗

Z/A
∗
L, which in turn raises wZ/wL at given factor proportions. In contrast,

when σ < 1, an increase in Z̄/L̄ reduces A∗
Z/A

∗
L, but in this case, an increase

in A∗
Z/A

∗
L is relatively biased against factor Z, so the decrease in A∗

Z/A
∗
L again

raises wZ/wL.
Next, to investigate the conditions under which there is strong relative equi-

librium bias, let us use Definition 7 (again in log form) and check whether

∂ ln(wZ/wL)

∂ ln(Z/L)
+ ∂ ln(wZ/wL)

∂ ln(A∗
Z/A

∗
L)

∂ ln(A∗
Z/A

∗
L)

∂ ln(Z/L)
> 0�

From (20) and (24), this condition is equivalent to

− 1
σ

+ (σ − 1)2

(1 + σδ)σ
= σ − 2 − δ

1 + σδ
(25)

being strictly positive. Therefore, when σ > 2 + δ, the relative demand curve
for Z is upward-sloping and there is strong relative equilibrium bias.21 This

19Expressing everything in terms of log changes rather than level changes is simply for conve-
nience (and also useful for Theorem 1). In particular, note that for x > 0 and a > 0, ∂x/∂a � 0

if and only if ∂ lnx/∂ lna � 0. Moreover, because L is constant, ∂x/∂(Z/L) = (∂x/∂Z)L, so

�(wZ/wL)≥ 0 if and only if
∑K

j=1 ∂(wZ/wL)/∂θj × ∂θ∗
j /∂Z ≥ 0 (as required by Definition 6).

20 Alternatively, the same result follows by looking directly at the measure of relative bias
toward Z, θ̄ ≡ (AZ/AL)

(σ−1)/σ . Substituting for (22), we have

θ̄ =
(
ηZ

ηL

)−(σ−1)/(1+σδ)( γ

1 − γ

)(σ−1)/(1+σδ)( Z̄

L̄

)(σ−1)2/((1+σδ)σ)

�

which is always nondecreasing in Z̄/L̄.
21In Acemoglu (2003a), the condition for upward-sloping relative demand curves was σ >

2 − δ′ for some other parameter δ′ > 0. The reason is that in that context, as in many endoge-
nous growth models, the technology allowed for knowledge spillovers and the parameter δ′ mea-
sured how much a particular type of technology benefits from past innovations in the same line,
adding another degree of nonconvexity. Here a higher value of the parameter δ makes the aggre-
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result can be also obtained more directly by substituting for A∗
Z/A

∗
L from (22)

into (20) to obtain

wZ

wL

=
(
ηZ

ηL

)−(σ−1)/(1+σδ)(
γ

1 − γ

)(σ+σδ)/(1+σδ)(
Z̄

L̄

)(σ−2−δ)/(1+σδ)

�

and, thus,

d ln(wZ/wL)

d ln(Z/L)
= σ − 2 − δ

1 + σδ
�

which confirms the result of strong relative equilibrium bias when σ > 2 + δ
shown in (25).22

This example thereforeillustrates the possibility of both weak and strong rel-
ative bias. In particular, technological change induced in response to an in-
crease in Z is always (weakly) relatively biased toward Z and, moreover, if the
condition σ > 2 + δ is satisfied, there is also strong relative bias. This exam-
ple also corresponds to the most general result that exists in the literature (see
Acemoglu (2002)). Nevertheless, the structure of the economy is quite special

gate technology of the economy more “convex” and thus makes upward-sloping relative demand
curves less likely.

22Anticipating Theorem 4, we can note that strong relative equilibrium bias, that is, the condi-
tion σ > 2 +δ, is also related to nonconvexity, but to the nonconvexity of a “modified production
function” rather than that of the original G or F functions—this is because we are dealing with
relative, not absolute, bias. In particular, consider the (net) modified production function, which
is made up of the relative factor share of Z (i.e., wZZ̄/wLL̄) minus the relative costs of technolo-
gies for the two factors:

F̃(Z̄� L̄� θ) = σ

σ − 1
wZZ̄

wLL̄
− 1

1 + δ

(
ηZ

ηL

)(
AZ

AL

)1+δ

= γσ

(1 − γ)(σ − 1)

(
AZ

AL

)(σ−1)/σ(
Z̄

L̄

)(σ−1)/σ

− 1
1 + δ

(
ηZ

ηL

)(
AZ

AL

)1+δ

�

The first-order condition with respect to AZ/AL gives the equilibrium relative technology
A∗

Z/A
∗
L as in (22). Evaluating the second-order conditions at the equilibrium A∗

Z/A
∗
L, we find that

(∂2F̃/∂(Z̄/L̄)2)× (∂2F̃/∂(AZ/AL)
2)− (∂2F̃/∂(Z̄/L̄) ∂(AZ/AL))

2 ≥ 0 if and only if σ ≤ 2 +δ. In
other words, there will be strong relative equilibrium bias if this modified production function
fails to be jointly concave in Z̄/L̄ and AZ/AL at the equilibrium point A∗

Z/A
∗
L. We will see the

parallel between this result and Theorem 4 below.
This discussion also provides the intuition for the condition σ > 2+δ necessary for strong bias.

First, a greater elasticity of substitution, σ , makes it more likely that the modified production
function, F̃ , is nonconvex. Second, a higher δ, which corresponds to greater convexity in the costs
of generating new technologies, makes F̃ more convex. Finally, there is a “2” in this condition,
because the first term in F̃—the relative factor share wZZ/wLL—is jointly concave in Z̄/L̄ and
AZ/AL when σ ≤ 2.
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(e.g., it uses specific aggregate production and cost functions). I next extend
this result to a more general setup with factor-augmenting technologies. Be-
fore stating this result, recall that a function f (x� y) is homothetic in x and y ,
if (∂f (x� y)/∂x)/(∂f (x� y)/∂y) is a function of only x/y for all x and y .

THEOREM 1—Relative Equilibrium Bias with Factor-Augmenting Technolo-
gies: Consider Economy C, M, or O with two factors, (Z�L) ∈Z ×L⊂ R

2
+, and

two factor-augmenting technologies, (AZ�AL) ∈ R
2
+, such that the production

function is G(AZZ�ALL). Assume that G is twice continuously differentiable,
concave and homothetic in its two arguments, and that the cost of producing tech-
nologies AZ and AL, C(AZ�AL), is also twice continuously differentiable, strictly
convex, and homothetic in AZ and AL. Denote the first derivatives of C(AZ�AL)
by CZ and CL. Let σ be the (local) elasticity of substitution between Z and L
defined by

σ = − ∂ ln(Z/L)

∂ ln(wZ/wL)

∣∣∣∣
AZ/AL

�

and let

δ = ∂ ln(CZ/CL)

∂ ln(AZ/AL)
�

Finally, suppose that factor supplies are given by (Z̄� L̄), and denote equilibrium
technologies by (A∗

Z�A
∗
L) and equilibrium factor prices by wZ and wL. Then we

have that, for all (Z̄� L̄) ∈Z ×L,

∂ ln(A∗
Z/A

∗
L)

∂ ln(Z/L)
= σ − 1

1 + σδ
(26)

and

∂ ln(wZ/wL)

∂ ln(AZ/AL)

∂ ln(A∗
Z/A

∗
L)

∂ ln(Z/L)
≥ 0�(27)

so that there is always weak relative equilibrium bias. Moreover,

d ln(wZ/wL)

d ln(Z/L)
= σ − 2 − δ

1 + σδ
�(28)

so that there is strong relative equilibrium bias if and only if σ − 2 − δ > 0.

PROOF: By Propositions 2 or 3, an equilibrium (A∗
Z�A

∗
L) in Economy C or

M maximizes G(AZZ̄�ALL̄) − C(AZ�AL). Moreover, by Proposition 4, A∗
Z

and A∗
L individually maximize the same function in Economy O. In either case,
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the maximization problem is strictly concave in AZ and AL, and the first-order
conditions are necessary and sufficient. Taking their ratio gives

Z̄

L̄

∂G/∂Z

∂G/∂L
= CZ

CL

�

Recalling the definition of marginal products and multiplying both sides by
A∗

Z/A
∗
L, we obtain

Z̄

L̄

wZ

wL

= A∗
Z

A∗
L

CZ

CL

�(29)

Because G is homothetic, wZ/wL is only a function of Z/L and AZ/AL. More-
over, because C is homothetic, CZ/CL is also only a function of AZ/AL, and
δ in the theorem is well defined. Using these facts, taking logs in (29), and
differentiating totally with respect to ln(Z/L) gives

(
1 + ∂ ln(CZ/CL)

∂ ln(AZ/AL)

)
∂ ln(A∗

Z/A
∗
L)

∂ ln(Z/L)
(30)

= ∂ ln(wZ/wL)

∂ ln(Z/L)

∣∣∣∣
A∗

Z/A∗
L

+ 1 + ∂ ln(wZ/wL)

∂ ln(AZ/AL)

∣∣∣∣
Z̄/L̄

∂ ln(A∗
Z/A

∗
L)

∂ ln(Z/L)
�

The definition of σ then implies

∂ ln(wZ/wL)

∂ ln(AZ/AL)
= σ − 1

σ
�(31)

Substituting (31) into (30), rearranging, and recalling the definitions of δ and
σ , we obtain

∂ ln(A∗
Z/A

∗
L)

∂ ln(Z/L)
= σ − 1

1 + σδ

as in (26). Then (27) immediately follows by combining this with (31) and, by
the same argument as in Example 1, this establishes weak equilibrium bias.

Equation (28) and the fact that there is strong relative equilibrium bias if
and only if σ > 2 + δ follow from (26) by noting that

d ln(wZ/wL)

d ln(Z/L)
= − 1

σ
+ σ − 1

σ

∂ ln(A∗
Z/A

∗
L)

∂ ln(Z/L)

= σ − 2 − δ

1 + σδ
� Q.E.D.

This theorem shows that the insights from Example 1 generalize in a fairly
natural way as long as the potential menu of technological possibilities only
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consists of two technologies, one augmenting Z and the other augmenting L
(and also, as long as G and C are homothetic). The only difference is that
the parameter δ and the elasticity of substitution σ are no longer constants,
but are functions of AL, AZ , L̄, and Z̄, so changes in factor supplies will have
effects that depend on the local elasticity of substitution and the local value of
δ. Nevertheless, the change in AZ/AL (or in (AZ/AL)

(σ−1)/σ as in Example 1)
induced by an increase in Z̄ is always relatively biased toward Z, and there is
strong equilibrium relative bias if σ > 2 + δ.

Theorem 1 establishes both the presence of weak relative equilibrium bias
and the possibility of strong relative equilibrium bias (when the local elasticity of
substitution between factors, σ , is sufficiently high and the parameter δ is rela-
tively low). The intuition for both weak and strong relative bias is related to the
“market size effect,” whereby an increase in the relative abundance of a fac-
tor increases the market size for technologies that complement that factor and
makes their development more profitable (see Acemoglu (1998)). The magni-
tude of the market size effect, and thus whether there is weak or strong relative
bias, is also closely related to whether the aggregate production possibilities set
of the economy is convex as illustrated in Example 1 (recall footnote 22).

The assumption that the production function ought to take the form
G(AZZ�ALL), with two factor-augmenting technologies, cannot be dispensed
with in Theorem 1. When it is relaxed, an increase in the supply of factor Z
may induce a change in technology that is relatively biased against this factor.
This is illustrated by the following two examples. For simplicity, both examples
focus on economies with a single dimension of technology. The first one con-
siders a homothetic, constant returns production function G and shows that,
even in this case, a direct choice over the elasticity of substitution may lead
to endogenous technological change biased against the factor that is becom-
ing more abundant.23 The second one shows that the form of the production
function in Theorem 1, G(AZZ�ALL), is also important for the result.

EXAMPLE 2—Counterexample I: Suppose that

G(Z�L�θ)= [Zθ +Lθ]1/θ(32)

and that the cost of technology creation, C(θ), defined over Θ = [a�b]
is convex and twice continuously differentiable over the entire Θ. The
choice of θ again maximizes F(Z�L�θ) ≡ G(Z�L�θ) − C(θ); thus we have
∂G(Z̄� L̄� θ∗)/∂θ − ∂C(θ∗)/∂θ = 0 and ∂2G(Z̄� L̄� θ∗)/∂θ2 − ∂2C(θ∗)/∂θ2 < 0.
From Definition 6, a counterexample would correspond to a situation where

�

(
wZ

wL

)
≡ ∂(wZ/wL)

∂θ

∂θ∗

∂Z
= −∂(wZ/wL)

∂θ

∂2F/∂θ∂Z

∂2F/∂θ2
< 0�(33)

23See Benabou (2005) for a model of endogenous choice of the elasticity of substitution as a
function of the inequality of human capital among workers in the economy.
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The equality in (33) follows from the implicit function theorem. Moreover,
from (32), wZ/wL = (Z/L)θ−1, which is increasing in θ as long as Z >L (mak-
ing higher θ relatively biased toward Z). It can be verified easily (see Acemoglu
(2005) for details) that when C(·) is chosen such that θ∗ is sufficiently small
(e.g., L̄ = 1, Z̄ = 2, θ∗ = 0�1), we also have ∂2F(Z̄� L̄� θ∗)/∂θ∂Z < 0. From
the second-order conditions, ∂2F/∂θ2 < 0, so that in this case (∂2F/∂θ∂Z) ×
(∂2F/∂θ2) > 0 and an increase in Z/L reduces θ∗, creating a change in tech-
nology relatively biased against Z.

EXAMPLE 3—Counterexample II24: Suppose that

G(Z�L�θ)=Zθ+Lθ2

and that the cost of creating new technologies is given by C0θ
2/2 with C0 > 0

for all θ ∈Θ = R and L ∈L⊂ (0�C0/2). The equilibrium technology θ∗ is given
by

θ∗(Z̄� L̄)= Z̄

C0 − 2L̄
�

which is increasing in Z̄ for any L̄ ∈L. The relative price of factor Z is given by
wZ(θ)/wL(θ) = θ−1, which is clearly decreasing in θ. An increase in Z̄ there-
fore induces technological change relatively biased against Z.

These examples show that a result similar to Theorem 1 no longer holds
when the menu of technologies available to the society does not take the sim-
ple form with one technology augmenting factor Z and the other augmenting
factor L.25 Although this type of factor-augmenting technology is an interest-
ing and empirically important special case, one may be interested in more gen-
eral theorems that apply without imposing a specific structure on the interac-
tion between technologies and the factors of production. More general results
would be particularly useful for analyses of technology choices related to shifts
from one type of organizational form or production system to another, such as
those experienced during recent decades, during the emergence of the Ameri-
can system of manufacturing, or during the Industrial Revolution. These shifts
transform the way the whole production process is organized and thus directly
affect the elasticity of substitution between factors.

The next section presents a much more general theorem for absolute bias. In
fact, Examples 2 and 3 already hint at this possibility. The reason why induced

24I thank Rabah Amir for suggesting an example along these lines.
25Nevertheless, it is also important to emphasize that these examples do not imply that with

the general menu of technologies, changes in relative supplies will cause technical change that is
relatively biased against the more abundant factor. In many cases, weak equilibrium bias will still
apply, but without imposing more structure, we do not have a general theorem.
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technology (in response to an increase in Z̄) is not relatively biased toward Z in
both examples is that the induced change in technology increases wZ (at given
factor proportions), but it has an even larger (positive) effect on the marginal
product of the other factor, wL.26

4. ABSOLUTE EQUILIBRIUM BIAS

This section shows that, under mild assumptions, an increase in the supply of
a factor will induce a change in technology in a direction absolutely biased to-
ward that factor. The problem of equilibrium technology choice is again equiv-
alent to

max
θ∈Θ

F(Z̄� L̄� θ)�(34)

where L̄ denotes the supply of other inputs and Z̄ denotes the supply of Z. Let
us assume that Θ is a convex compact subset of R

K for some K ≥ 1 and that F
is twice differentiable in (Z�θ). As before, the marginal product (or price) of
factor Z is wZ = ∂F/∂Z, which implies that wZ is continuously differentiable
in θ.

DEFINITION 8: An increase in technology θj for j = 1� � � � �K is absolutely
biased towards factor Z at (Z̄� L̄) ∈Z ×L if ∂wZ/∂θj ≥ 0.

Conversely, we could define a decrease in technology θ as absolutely biased
toward factor Z if the same derivative is nonpositive. Notice also that this de-
finition requires the bias for only small changes in technology and only at the
current factor proportions (Z̄� L̄).

DEFINITION 9: Denote the equilibrium technology at factor supplies
(Z̄� L̄) ∈ Z ×L by θ∗(Z̄� L̄) and assume that ∂θ∗

j /∂Z exists at (Z̄� L̄) for all
j = 1� � � � �K. Then there is weak absolute equilibrium bias at (Z̄� L̄� θ∗(Z̄� L̄))
if

K∑
j=1

∂wZ

∂θj

∂θ∗
j

∂Z
≥ 0�(35)

26To see this more explicitly, note that ∂2F/∂θ∂Z = ∂wZ/∂θ and rewrite (33) as

�

(
wZ

wL

)
≡ −∂(wZ/wL)

∂θ

∂wZ/∂θ

∂2F/∂θ2
�

When wL is constant, this is equivalent to (38) in the proof of Theorem 2 in the next section and
is always nonnegative. However, as Examples 2 and 3 show, a large effect of θ on wL can reverse
this result.
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This definition requires the induced change in technology resulting from an
increase in Z̄ to increase the marginal product of factor Z. As in Definition 6
for relative equilibrium bias, this definition also requires ∂θ∗

j /∂Z to exist for
all j. The next theorem will also be stated under this assumption, which can
alternatively be replaced by Assumption A1 below.

THEOREM 2—Weak Absolute Equilibrium Bias: Consider Economy D, C, or
M. Suppose that Θ is a convex subset of R

K and that F(Z�L�θ) is twice contin-
uously differentiable in (Z�θ). Let the equilibrium technology at factor supplies
(Z̄� L̄) be θ∗(Z̄� L̄), and assume that θ∗(Z̄� L̄) is in the interior of Θ and that
∂θ∗

j /∂Z exists at (Z̄� L̄) for all j = 1� � � � �K. Then there is weak absolute equi-
librium bias at all (Z̄� L̄) ∈Z ×L, that is,

K∑
j=1

∂wZ

∂θj

∂θ∗
j

∂Z
≥ 0 for all (Z̄� L̄) ∈Z ×L�(36)

with strict inequality if ∂θ∗
j /∂Z �= 0 for some j = 1� � � � �K.

PROOF: The proof follows from the implicit function theorem. For exposi-
tional clarity, I first present the case where θ ∈ Θ ⊂ R. Because Θ ⊂ R and θ∗

is in the interior of Θ, we have ∂F/∂θ = 0 and ∂2F/∂θ2 ≤ 0. Because ∂θ∗/∂Z
exists at (Z̄� L̄) by hypothesis, from the implicit function theorem it must be
equal to

∂θ∗

∂Z
= −∂2F/∂θ∂Z

∂2F/∂θ2
= − ∂wZ/∂θ

∂2F/∂θ2
�(37)

so we must have ∂2F/∂θ2 �= 0, that is, ∂2F/∂θ2 < 0. This in turn implies

∂wZ

∂θ

∂θ∗

∂Z
= −(∂wZ/∂θ)

2

∂2F/∂θ2
≥ 0�(38)

establishing the weak inequality in (36). Moreover, if ∂θ∗/∂Z �= 0, then from
(37), ∂wZ/∂θ �= 0, so (38) holds with strict inequality, establishing the result for
the case in which Θ ⊂ R.

Next, let us look at the general case where θ ∈ Θ ⊂ R
K with K > 1. For a

matrix (vector) v, let v′ denote its transpose. Define �wZ as the change in wZ

resulting from the induced change in θ (at given factor proportions) as in (35),

�wZ ≡
K∑
j=1

∂wZ

∂θj

∂θ∗
j

∂Z
(39)

= [∇θwZ]′[∇Zθ
∗]

= [∇2
θZF]′[∇Zθ

∗]�
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where [∇θwZ] is a K×1 vector of changes in wZ in response to each component
of θ ∈ Θ⊂ R

K and [∇Zθ
∗] is the gradient of θ with respect to Z, that is, a K× 1

vector of changes in each component of θ in response to the change in Z̄. The
second line in (39) uses the fact that wZ is the derivative of the F function, so
[∇2

θZF] is also the K×1 vector of changes in wZ in response to each component
of θ. Because ∂θ∗

j /∂Z exists at (Z̄� L̄) for all j, the gradient ∇Zθ
∗ also exists and

from the implicit function theorem (i.e., from differentiating the technology
equilibrium condition ∇θF = 0), it satisfies

[∇Zθ
∗]′ = −[∇2

θZF]′[∇2
θθF]−1�

where ∇2
θθF is the K × K Hessian of F with respect to θ. The fact that θ∗

is a solution to the maximization problem (34) implies that ∇2
θθF is negative

semidefinite. That ∇Zθ
∗ exists then implies that ∇2

θθF is nonsingular and thus
negative definite. Because it is a Hessian, it is also symmetric. Therefore, its
inverse [∇2

θθF]−1 is also symmetric and negative definite. Substituting in (39),
we obtain

�wZ = −[∇2
θZF]′[∇2

θθF]−1[∇2
θZF] ≥ 0�

which establishes (36) for the case in which Θ ⊂ R
K .

By the definition of a negative definite matrix B, x′Bx < 0 for all x �= 0, so
to establish the strict inequality in (36) in this case, it suffices that one element
of ∇Zθ

∗ is nonzero, that is, ∂θ∗
j /∂Z �= 0 for one j = 1� � � � �K, completing the

proof. Q.E.D.

This theorem therefore shows that once we shift our focus to absolute bias,
there is a fairly general result. Under very mild assumptions, technological
change induced by a change in factor supplies will be biased toward the fac-
tor that has become more abundant.

REMARK 3: The assumption that θ∗ is in the interior of Θ can be relaxed.
In this case, for some components of θ, the first-order conditions may hold
as strict inequalities. Given the continuous differentiability of F , these strict
inequalities will continue to hold in response to a small change in Z, and thus
there would be no change in these components of θ. This case is still covered
by the theorem, because (36) is stated with a weak inequality.

REMARK 4: Theorem 2 is stated for Economies D, C, and M. It can be ver-
ified that it also applies to Economy O as long as ∇2

θθF is negative definite at
the equilibrium technology θ∗. Because in this economy, θ∗ is not chosen by
a single firm, but its different components are decided by different technology
producers, negative-definiteness of ∇2

θθF is not guaranteed and needs to be im-
posed as an additional assumption. A sufficient condition is that F is concave
in θ, but in fact much less is necessary, because negative-definiteness of ∇2

θθF



1396 DARON ACEMOGLU

at θ∗ requires neither F to be concave in θ nor the vector θ∗ to be a global
maximum for the technology producers considered jointly.

There is a clear parallel between Theorem 2 and the LeChatelier princi-
ple, because we can think of the change in technology as happening in the
“long run,” in which case Theorem 2 states that long-run changes in marginal
products (factor prices) will be less than those in the short run because of in-
duced technological change. However, there are also some important differ-
ences. First, this theorem concerns how marginal products (or prices) change
as a result of induced technological changes resulting from changes in factor
supplies rather than the elasticity of short-run and long-run demand curves.
Second, it applies to the equilibrium of an economy, not to the maximization
problem of a single firm. This last distinction will become central in the next
section.

Theorem 2 is stated and proved under the assumption that ∂θ∗
j /∂Z exists at

(Z̄� L̄) for all j = 1� � � � �K. This assumption entails two restrictions. The first
is the usual nonsingularity requirement to enable an application of the implicit
function theorem, i.e., that the Hessian of F with respect to θ, ∇2

θθF , is nonsin-
gular at the point θ∗ (see, for example, Rudin (1964, Theorem 9.18), or Simon
and Blume (1994, Theorem 15.2)). The second is more subtle; because we have
not made global concavity assumptions (except in Economy D), a small change
in Z may shift the technology choice from one local optimum to another, thus
essentially making ∂θ∗

j /∂Z infinite (or undefined). This possibility is also ruled
out by this assumption. In fact, the assumption that ∂θj/∂Z exists at (Z̄� L̄) can
be replaced by the following assumption:

ASSUMPTION A1: ∇2
θθF is nonsingular, and there exists ε > 0 such that for

all θ′ ∈ Θ with ∂F(Z̄� L̄� θ′)/∂θ = 0 and θ′ �= θ∗(Z̄� L̄), we have F(Z̄� L̄� θ∗(Z̄�
L̄))− F(Z̄� L̄� θ′) > ε.

The second part of the assumption ensures that the peaks of the function
F(Z̄� L̄� θ) in θ are “well separated” in the sense that in response to a small
change in factor supplies, there will not be a “shift” in the global optimum of θ
from one local optimum to another.27 Consequently, Assumption A1 is equiv-

27More explicitly, suppose that the maximization problem (34) has multiple local maxima, and
denote the set of these maxima at factor proportions (Z̄� L̄) by Θm(Z̄� L̄). All of these solutions
satisfy the first-order necessary conditions of problem (34). Suppose θ̂(Z̄� L̄) is a vector that
satisfies these first-order necessary conditions. Given the nonsingularity assumption (first part of
Assumption A1), the implicit function theorem can be applied to θ̂(Z̄� L̄). However, this does
not guarantee that ∂θ∗/∂Z exists, because θ∗ corresponds to the global maximum of (34) and,
loosely speaking, the change in Z may “shift” the global maximum from θ̂(Z̄� L̄) to some other
θ̃(Z̄� L̄) ∈ Θm(Z̄� L̄). The second part of Assumption A1 rules this possibility out by imposing
that one of the solutions to the first-order necessary conditions gives uniformly higher value, so
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alent to assuming that ∂θ∗
j /∂Z exists at (Z̄� L̄) for all j. A straightforward con-

dition to ensure that Assumption A1 is satisfied is to assume that F is strictly
quasi-concave in θ, although this is considerably stronger than Assumption A1.
Because it is more intuitive to directly assume that the derivatives ∂θ∗

j /∂Z ex-
ist rather than imposing Assumption A1, I state the relevant theorems under
this direct assumption. However, depending on taste, Assumption A1 can be
substituted in Theorem 2 and the subsequent theorems.

An important shortcoming of Theorem 2 should be noted here. As Defi-
nition 9 makes clear, weak absolute equilibrium bias is a local phenomenon.
For example, an increase in Z̄ may change θ∗ in a direction biased toward Z
at (Z̄� L̄), but this change may be biased against Z at some different factor
proportions, say (Z̄′� L̄′). This is illustrated in the next example:

EXAMPLE 4—No Global Bias: Suppose that F(Z�θ) = Z + (Z −Z2/8)θ−
C(θ), and Z ∈ Z = [0�6] and Θ = [0�2] so that F is everywhere increasing in
Z. Suppose also that C(θ) is a strictly convex and continuously differentiable
function with C ′(0) = 0 and C ′(2) = ∞ (where C ′ denotes C ’s derivative).
F(Z�θ) satisfies all the conditions of Theorem 2 at all points Z ∈ Z = [0�6]
(because F is strictly concave in θ everywhere on Z ×Θ = [0�6] × [0�2]).

Now consider Z̄ = 1 and Z̄′ = 5 as two potential supply levels of factor Z. It
can be easily verified that θ∗(1) satisfies C ′(θ∗(1)) = 7/8, while θ∗(5) is given
by C ′(θ∗(5)) = 15/8. The strict convexity of C(θ) implies that θ∗(5) > θ∗(1).
Moreover, wZ(Z�θ)= 1 + (1 −Z/4)θ, so

wZ(5� θ∗(5))= 1 − θ∗(5)/4 < 1 − θ∗(1)/4 =wZ(5� θ∗(1))�

Similar examples can be constructed for any Z̄′ > Z̄.

This exampleshows that it may not be possible to “splice” local absolutely
biased changes so as to obtain global absolute bias (say between two levels Z̄
and Z̄′), because a change in technology that is absolutely biased toward Z
at Z̄ may be biased against this factor at Z̄′ (see footnote 31 below for further
discussion). Nevertheless, it is possible to obtain global results by imposing fur-
ther structure to rule out “reversals” in the direction of bias of technologies.
In particular, similar to Milgrom and Roberts’ (1996) generalization of the
LeChatelier principle, a global version of Theorem 2 can be obtained by im-
posing a form of “supermodularity.” This is done in detail in Acemoglu (2005);
here I simply give the main result:

DEFINITION 10: Let θ∗ be the equilibrium technology choice in an economy
with factor supplies (Z̄� L̄). Then there is global absolute equilibrium bias if for

that a small (infinitesimal) change in Z cannot induce a shift from one element of Θm(Z̄� L̄) to
another.
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any Z̄′� Z̄ ∈Z , Z̄′ ≥ Z̄ implies that

wZ(Z̃� L̄� θ∗(Z̄′� L̄))

≥wZ(Z̃� L̄� θ∗(Z̄� L̄)) for all Z̃ ∈Z and L̄ ∈L�

There are two notions of “globality” in this definition. First, the increase
from Z̄ to Z̄′ is not limited to small changes. Second, the change in technology
induced by this increase is required to raise the price of factor Z for all Z̃ ∈Z .
The proof of Theorem 3 shows that these two notions of globality are closely
related. Now we state another definition (see, e.g., Topkis (1998)):

DEFINITIONS 11: Let x = (x1� � � � � xn) be a vector in X ⊂ R
n and suppose

that the real-valued function f (x) is twice continuously differentiable in x.
Then f (x) is supermodular on X if and only if ∂2f (x)/∂xi ∂xi′ ≥ 0 for all x ∈ X
and for all i �= i′.

Let X and T be partially ordered sets. Then a function f (x� t) defined on
a subset S of X × T has increasing differences (strict increasing differences) in
(x� t), if for all t ′′ > t, f (x� t ′′)− f (x� t) is nondecreasing (increasing) in x.

THEOREM 3—Global Equilibrium Bias: Suppose that Θ is a lattice, let Z̄ be
the convex hull of Z , let θ∗(Z̄� L̄) be the equilibrium technology at factor pro-
portions (Z̄� L̄), and suppose that F(Z�L�θ) is continuously differentiable in Z,
supermodular in θ on Θ for all Z ∈ Z̄ and L ∈ L, and exhibits strictly increasing
differences in (Z�θ) on ¯Z×Θ for all L ∈L, then there is global absolute equilib-
rium bias, that is, for any Z̄′� Z̄ ∈Z , Z̄′ ≥ Z̄ implies

θ∗(Z̄′� L̄)≥ θ∗(Z̄� L̄) for all L̄ ∈L

and

wZ(Z̃� L̄� θ∗(Z̄′� L̄))≥wZ(Z̃� L̄� θ∗(Z̄� L̄))(40)

for all Z̃ ∈Z and L̄ ∈L�

with strict inequality if θ∗(Z̄′� L̄) �= θ∗(Z̄� L̄).

PROOF: Given the continuity and the supermodularity of F(Z�L�θ) on
Z̄ × Θ, and the fact that Θ is a lattice and Z is a subset of R (and therefore
also a lattice), Topkis’ monotonicity theorem implies that the set of equilib-
rium technologies is a nonempty, compact, and complete sublattice of Θ (see
Theorems 2.7.1, 2.8.1, 2.8.4, 2.8.6 and Corollary 2.7.1 in Topkis (1998)). More-
over, supermodularity of F in θ and strict increasing differences in (Z�θ) imply
that Z̄′ ≥ Z̄ �⇒ θ∗(Z̄′� L̄) ≥ θ∗(Z̄� L̄) for all L̄ ∈ L. Next, (strict) increas-
ing differences of F(Z�L�θ) in (Z�θ) on Z̄ × Θ imply that ∂F(Z̃� L̄� θ)/∂Z
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is increasing in θ for all Z̃ ∈ [Z̄� Z̄′] ⊂ Z̄ . Because wZ(Z̃� L̄� θ∗(Z̄′� L̄)) =
∂F(Z̃� L̄� θ∗(Z̄′� L̄))/∂Z, the weak inequality in (40) follows. The fact that F
exhibits strict increasing differences in (Z�θ) then establishes the strict in-
equality when θ∗(Z̄′� L̄) �= θ∗(Z̄� L̄). Q.E.D.

The fact that θ∗(Z̄′� L̄)≥ θ∗(Z̄� L̄) (say, rather than θ∗(Z̄′� L̄)≤ θ∗(Z̄� L̄)) is
not important, because the order over the set Θ is not specified. It could be that
as Z̄ increases, some measure of technology t declines. However, in this case,
this measure would correspond to a type of technology biased against factor Z.
If so, we can simply change the order over this parameter, for example, we can
consider changes in t̃ = −t rather than t.

5. STRONG ABSOLUTE EQUILIBRIUM BIAS

The results in Section 4 concern “weak” bias in the sense that they compare
marginal products at a given level of factor supplies (in response to a change
in θ induced by a change in Z). This section turns to “strong” bias. It provides
conditions under which equilibrium bias will be strong in the sense that once
technology has adjusted, the increase in the supply of factor Z will increase
its marginal product (price). It will also clarify the close connection between
nonconvexity of the aggregate of production possibilities set and strong bias.
As noted in the Introduction, an analysis of strong bias is particularly important
because it clarifies the central role of the equilibrium structure in the analysis
here (recall that strong bias and the resulting upward-sloping factor demand
curves are not possible in basic production theory).

DEFINITION 12: Denote the equilibrium technology at factor supplies
(Z̄� L̄) ∈ Z ×L by θ∗(Z̄� L̄) and suppose that ∂θ∗

j /∂Z exists at (Z̄� L̄) for all
j = 1� � � � �K. Then there is strong absolute equilibrium bias at (Z̄� L̄) ∈ Z ×L
if

dwZ

dZ
= ∂wZ

∂Z
+

K∑
j=1

∂wZ

∂θj

∂θ∗
j

∂Z
> 0�

In this definition, dwZ/dZ denotes the total derivative, while ∂wZ/∂Z de-
notes the partial derivative holding θ = θ∗(Z̄� L̄). Recall also that if F is
jointly concave in (Z�θ) at (Z�θ∗(Z̄� L̄)), its Hessian with respect to (Z�θ),
∇2F(Z�θ)(Z�θ), is negative semidefinite at this point (though negative semi-
definiteness is not sufficient for local joint concavity). The main theorem of
this section (and of the paper) is the following:

THEOREM 4—Nonconvexity and Strong Bias: Consider Economy D, C, or M.
Suppose that Θ is a convex subset of R

K , suppose that F is twice continuously dif-
ferentiable in (Z�θ), let θ∗(Z̄� L̄) be the equilibrium technology at factor supplies
(Z̄� L̄), and assume that θ∗ is in the interior of Θ and that ∂θ∗

j (Z̄� L̄)/∂Z exists
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at (Z̄� L̄) for all j = 1� � � � �K. Then there is strong absolute equilibrium bias at
(Z̄� L̄) if and only if F(Z�L�θ)’s Hessian in (Z�θ), ∇2F(Z�θ)(Z�θ), is not negative
semidefinite at (Z̄� L̄� θ∗(Z̄� L̄)).

PROOF: Let us start with the case where Θ ⊂ R. Because, by hypothesis,
θ∗ is in the interior of Θ, as in the proof of Theorem 2, we have ∂F/∂θ = 0,
∂2F/∂θ2 ≤ 0, and (37). Substituting (37) into the definition for dwZ/dZ and
recalling that ∂wZ/∂Z = ∂2F/∂Z2, we have the condition for strong absolute
equilibrium bias as

dwZ

dZ
= ∂wZ

∂Z
+ ∂wZ

∂θ

∂θ∗

∂Z

= ∂2F

∂Z2
− (∂2F/∂θ∂Z)2

∂2F/∂θ2
> 0�

From Assumption 1 or 2, F is concave in Z, so ∂2F/∂Z2 ≤ 0, and from the
fact that θ∗ is a solution to (34) and ∂θ∗/∂Z exists, we also have ∂2F/∂θ2 < 0.
Then the fact that F ’s Hessian, ∇2F(Z�θ)(Z�θ), is not negative semidefinite at
(Z̄� L̄� θ∗(Z̄� L̄)) implies that

∂2F

∂Z2
× ∂2F

∂θ2
<

(
∂2F

∂Z ∂Zθ

)2

�(41)

Because, at the optimal technology choice, ∂2F/∂θ2 < 0, this immediately
yields dwZ/dZ > 0, establishing strong absolute bias at (Z̄� L̄� θ(Z̄� L̄)) as
claimed in the theorem.

Conversely, if ∇2F(Z�θ)(Z�θ) is negative semidefinite at (Z̄� L̄� θ∗(Z̄� L̄)),
then (41) does not hold and this together with ∂2F/∂θ2 < 0 implies that
dwZ/dZ ≤ 0.

For the general case where Θ⊂ R
K , the overall change in the price of factor

Z is

dwZ

dZ
= ∂2F

∂Z2
− [∇2

θZF]′[∇2
θθF]−1[∇2

θZF]�(42)

Again by the same arguments, ∂2F/∂Z2 ≤ 0 and ∇2
θθF is negative definite and

symmetric (which implies that its inverse [∇2
θθF]−1 is also negative definite and

symmetric). Lemma 1 in the Appendix shows that if Q is an (n− 1)× (n− 1)
symmetric negative definite matrix, with inverse denoted by Q−1, b is a scalar,
and v is an (n− 1)× 1 column vector, then an n× n matrix

B =
(
Q v
v′ b

)
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is negative semidefinite if and only if b − v′Q−1v ≤ 0. Let us now apply this
lemma with B = [∇2F(Z�θ)(Z�θ)], b = ∂2F/∂Z2, Q = [∇2

θθF], and v = [∇2
θZF], so

that (42) evaluated at (Z̄� L̄� θ∗(Z̄� L̄)) is equal to b − v′Q−1v. Lemma 1 then
implies that if ∇2F(Z�θ)(Z�θ) is not negative semidefinite at (Z̄� L̄� θ∗(Z̄� L̄)),
then b − v′Q−1v > 0, so that dwZ/dZ > 0 and there is strong bias at
(Z̄� L̄� θ∗(Z̄� L̄)).

Conversely, from Lemma 1, if ∇2F(Z�θ)(Z�θ) is negative semidefinite at
(Z̄� L̄� θ∗(Z̄� L̄)), then b − v′Q−1v ≤ 0 and dwZ/dZ ≤ 0, so that there is no
strong bias at (Z̄� L̄� θ∗(Z̄� L̄)). Q.E.D.

There are two important results in this theorem. First, it demonstrates the
possibility of strong absolute equilibrium bias, whereby the induced response
of technology is sufficiently pronounced that the endogenous-technology fac-
tor demand curves are upward- rather than downward-sloping. Moreover, the
conditions necessary for strong absolute equilibrium bias are not very restric-
tive (see also Theorem 5 below).28 This theorem, therefore, contrasts with
the standard results from basic producer theory, where factor demand curves
are always downward-sloping (e.g., Mas-Colell, Whinston, and Green (1995,
Proposition 5.C.2)). Second, the theorem establishes that there will be strong
absolute equilibrium bias if and only if the Hessian of the function F(Z�L�θ)
with respect to (Z�θ) fails to be negative semidefinite, which loosely corre-
sponds to F failing to be jointly concave in (Z�θ). It therefore highlights the
importance of nonconvexities in generating strong bias. In this sense, strong
absolute equilibrium bias is a manifestation of a strong form of the market size
effect discussed above.

REMARK 5: The assumption that θ∗(Z̄� L̄) is in the interior of Θ in The-
orem 4 is adopted to obtain the “if and only if” result. When θ∗(Z̄� L̄) is at
the boundary of Θ, strong equilibrium bias is again possible, but for the rea-
sons pointed out in Remark 3, failure of negative semidefiniteness is no longer
sufficient. Furthermore, Theorem 4 is stated for Economy D, C, or M. As dis-
cussed in Remark 4, it also applies to Economy O under the additional assump-
tion that ∇2

θθF is negative definite at θ∗. If ∇2
θθF is not negative definite, then

the aggregate production possibilities set will be nonconvex, but there may not
be strong bias. Nevertheless, Economy O is not less likely to exhibit strong bias
than the other economies, because the additional nonconvexity resulting from
oligopolistic competition may create another force toward strong bias.

28It is straightforward to construct examples of strong absolute equilibrium bias. As a trivial
example, take F(Z�θ) = 4Z1/2 +Zθ− θ2/2, which is concave in Z and θ, but not jointly concave
in both for Z > 1. Consider a change from Z̄ = 4 to Z̄ = 9. It is easily verified that θ∗(Z̄ = 4) = 4
while θ∗(Z̄ = 9) = 9, so that wZ(Z̄ = 4� θ∗(4)) = 5 <wZ(Z̄ = 9� θ∗(9)) = 9 2

3 .
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An immediate corollary of Theorem 4 is that strong absolute equilibrium
bias is not possible in Economy D (where equilibria coincide with Pareto op-
tima)29:

COROLLARY 1—No Strong Bias in Economy D: Suppose that Θ is a convex
subset of R

K , F is twice continuously differentiable in (Z�θ), let the equilibrium
technology at factor supplies (Z̄� L̄) be θ∗(Z̄� L̄), and assume that ∂θ∗

j /∂Z exists
at (Z̄� L̄) for all j = 1� � � � �K. Then there cannot be strong absolute equilibrium
bias in Economy D.

The proof follows because F is jointly concave in (Z�L�θ) in Economy D.
In Economy D, factor demand and technology choices, Z and θ, are made

by the same agents. In contrast, in Economies C, M, and O, they are made
by different agents. For example, in Economy M, final good producers choose
input demands, while the technology monopolist chooses technology. This im-
plies that we are at a maximum of F when we change only θ (and thus at a
maximum of F − wZZ for given wZ), and also that we are at a maximum of
F − wZZ from final good producers’ profit maximization. However, this does
not guarantee that we are at a maximum of F −wZZ in the entire (Z�θ) plane.
In other words, the equilibrium may be a saddle point of F −wZZ (or a quasi-
saddle point of F) rather than a maximum.30 When this is the case, a change in
Z will induce θ to change in the direction of increasing both F and F −wZZ,
and from the labor demand decisions of final good producers, this will increase
the marginal product and price of factor Z.

Corollary 1 therefore shows that strong absolute bias is an equilibrium phe-
nomenon and would not apply in Pareto optimal allocations. This is because
when a social planner chooses both Z and θ, F (or F − wZZ) will be max-
imized in (Z�θ). Strong absolute bias is only possible when the equilibrium
allocation corresponds to a quasi-saddle point of F , which in turn requires an
interaction between the choices by different agents (e.g., final good producers
and the technology monopolist). This discussion also clarifies the difference
between the approach in this paper and the LeChatelier principle, which ap-
plies in partial equilibrium and implies that a firm’s demand curve for a factor
is always downward-sloping.

Finally, the following result further illustrates the importance of noncon-
vexities and characterizes what types of economies are likely to exhibit strong
absolute equilibrium bias. Let C2[B] denote the set of twice continuously differ-
entiable functions over some compact set B and endow C2 with the standard

29Perhaps surprisingly, strong bias can arise in Economy D when Θ is nonconvex. See Ace-
moglu (2005) for an example.

30I refer to (Z̄� θ∗) as a “quasi-saddle point” if it is a maximum of F(Z�L�θ) in θ and a max-
imum of F(Z�L�θ) − wZZ in Z, but there exists a direction in the (Z�θ) plane starting from
(Z̄� θ∗) along which both F(Z�L�θ) and F(Z�L�θ) − wZZ increase. Therefore, (Z̄�θ∗) is a
quasi-saddle point if F(Z̄�θ) is maximized at θ = θ∗, but is not jointly concave in (Z�θ) at (Z̄� θ∗).
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“sup” metric. Let C2
+[B] ⊂ C2[B] be the set of such functions that are strictly

convex and let C2
−[B] ⊂ C2[B] be the set of such functions that are strictly con-

cave in each of their arguments (though not necessarily jointly so). Recall also
that F(Z�L�θ) ≡G(Z�L�θ)−C(θ). For simplicity, I assume Θ ⊂ R (the gen-
eralization to Θ⊂ R

K is straightforward).

THEOREM 5—Conditions for Strong Bias: Suppose that Θ ⊂ R and Z ⊂ R+
are compact, denote the equilibrium technology by θ∗, and for fixed L̄ ∈ L, let
G(Z̄� L̄� θ) ∈ C2

−[Z×Θ]. For each C(·) ∈ C2
+[Θ], let DC ⊂ C2

−[Θ] be such that for
all G(Z̄� L̄� θ) ∈DC there is strong absolute equilibrium bias. Then we have:

(i) For each C(·) ∈ C2
+[Θ], DC is a nonempty open subset of C2

−[Θ].
(ii) Suppose that θ∗ is an equilibrium technology for both C1(·)�C2(·) ∈ C2

+[Θ]
and that ∂2C1(θ

∗)/∂θ2 < ∂2C2(θ
∗)/∂θ2. Then DC2 ⊂DC1 (and DC2 �=DC1 ).

PROOF: Because C(·) ∈ C2
+[Θ], 0 < ∂2C(θ∗)/∂θ2 < ∞, and because G ∈

C2
−[Z×Θ], ∂2G/∂Z2 < 0, and ∂2G/∂θ2 < 0. From Theorem 4, only the values

of the second derivatives evaluated at (Z̄� L̄� θ∗) determine whether there is
strong bias. Because ∂2C(θ∗)/∂θ2 > 0, ∂2G/∂Z2 < 0, and ∂2G/∂θ2 < 0, DC in-
cludes all G(Z̄� L̄� θ) (for fixed L̄ ∈L) such that

∂2G

∂Z2
×

(
∂2G

∂θ2
− ∂2C

∂θ2

)
<

(
∂2G

∂Z ∂θ

)2

and is clearly a nonempty open subset of C2
−[Θ×Z], which proves part (i).

For part (ii), fix G ∈ C2
−[Θ × Z] and consider C1(·)�C2(·) ∈ C2

+[Θ] with
∂C1(θ

∗)/∂θ = ∂C2(θ
∗)/∂θ (so that θ∗ is the equilibrium technology with

both C1(·) and C2(·)) and suppose that ∂2C1(θ
∗)/∂θ2 < ∂2C2(θ

∗)/∂θ2. Then
∂2G/∂Z2 × (∂2G/∂θ2 − ∂2C2/∂θ

2) < (∂2G/∂Z ∂θ)2 implies that

∂2G

∂Z2
×

(
∂2G

∂θ2
− ∂2C1

∂θ2

)
<

(
∂2G

∂Z ∂θ

)2

;

hence DC2 ⊂DC1 . Next, take G ∈ C2
−[Θ×Z] such that

∂2G

∂Z2
×

(
∂2G

∂θ2
− ∂2C2

∂θ2

)
=

(
∂2G

∂Z ∂θ

)2

�

which is not in DC2 , but because

∂2C1(θ
∗)

∂θ2
<

∂2C2(θ
∗)

∂θ2
�

∂2G

∂Z2
×

(
∂2G

∂θ2
− ∂2C1

∂θ2

)
<

(
∂2G

∂Z ∂θ

)2

�

G ∈DC1 �

This establishes that DC2 �=DC1 and completes the proof. Q.E.D.
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There are two important implications of this theorem. First, when the cost
of generating new technologies is more “convex” in the sense that ∂2C(θ∗)/∂θ2

is higher, strong absolute equilibrium bias becomes less likely. This is intuitive,
because a more convex C function corresponds to a more concave aggregate
production possibilities set for the economy. The second and perhaps more
important implication is that for any C function that is twice continuously dif-
ferentiable over a compact set, there exists a nonempty open set of G functions
that leads to strong absolute equilibrium bias. In other words, irrespective of
the exact shape of the C function, strong bias is neither a pathological nor a
nongeneric possibility.

Finally, I state a global version of Theorem 431:

THEOREM 6—Nonconvexity and Global Strong Bias: Suppose that Θ is a
convex subset of R

K and that F is twice continuously differentiable in (Z�θ). Let
Z̄� Z̄′ ∈ Z , with Z̄′ > Z̄, let L̄ ∈ L, and let θ∗(Z̃� L̄) be the equilibrium tech-
nology at factor supplies (Z̃� L̄), and assume that θ∗(Z̃� L̄) is in the interior of
Θ and that ∂θ∗

j /∂Z exists at (Z̃� L̄) for all j = 1� � � � �K and all Z̃ ∈ [Z̄� Z̄′].
Then there is strong absolute equilibrium bias at ({Z̄� Z̄′}� L̄) if F(Z�L�θ)’s
Hessian, ∇2F(Z�θ)(Z�θ), fails to be negative semidefinite at (Z̃� L̄� θ∗(Z̃� L̄)) for all
Z̃ ∈ [Z̄� Z̄′].

PROOF: The proof follows from the fundamental theorem of calculus and
the proof of Theorem 4. Take Z̄ and Z̄′ > Z̄ in Z and fix L̄ ∈L. Then

wZ(Z̄
′� L̄� θ∗(Z̄′� L̄))−wZ(Z̄� L̄� θ∗(Z̄� L̄))(43)

=
∫ Z̄′

Z̄

dwZ(Z̄� L̄� θ∗(Z� L̄))

dZ
dZ�

The hypotheses of the theorem, combined with the proof of Theorem 4, imply
that dwZ(Z̄� L̄� θ(Z� L̄))/dZ > 0 for all Z ∈ [Z̄� Z̄′], so (43) is positive, estab-
lishing the result. Q.E.D.

6. CONCLUSION

An investigation of the determinants of equilibrium bias is important both
for a better understanding of the nature of technological change and for the

31At this point, let us return to Example 4 and to the question of why local weak bias did not
lead to global weak bias there. One might have conjectured that an argument using the funda-
mental theorem of calculus similar to that in the proof of Theorem 6, in particular, equation (43),
may work for weak bias as well as strong bias. To illustrate why this is not the case, take Θ ⊂ R,
so that dwZ/dZ = ∂wZ/∂Z + (∂wZ/∂θ)× (∂θ∗/∂Z). Equation (43) and Theorem 6 apply to this
entire expression, while weak bias concerns the second term, and it is not possible to apply the
fundamental theorem of calculus just to this term.
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study of the distributional implications of new technologies. In this paper, I an-
alyzed the implications of changes in factor supplies on relative and absolute
biases of technology and presented three main sets of results.

First, when the economy has two factors and two technologies, each of which
augments one of the factors, equilibrium technology is relatively biased to-
ward the factor that has become more abundant—in the sense that the induced
change in technology will increase the relative price of the factor whose supply
has increased. Moreover, when the elasticity of substitution between factors is
sufficiently large, this induced bias can be strong enough to increase the rela-
tive price of the factor that becomes more abundant. These results concerning
relative bias do not generalize to economies where the available menu of tech-
nologies includes non-factor-augmenting choices.

Second, I proposed the concept of absolute bias, which refers to how in-
duced changes in technology affect the level of factor awards. Under fairly mild
assumptions, changes in technology induced by small changes in factor sup-
plies are always (absolutely) biased toward the factor that has become more
abundant—in the sense that the induced change in technology increases the
demand or the marginal product of the factor that has become more abun-
dant.

Third, when the aggregate production possibilities set (inclusive of the tech-
nology costs) is nonconvex, there is strong absolute equilibrium bias—so that
an increase in the supply of a factor induces a sufficiently large change in tech-
nology and raises the marginal product (price) of the factor that has become
more abundant. Consequently, in such economies the endogenous-technology
demand curves for factors are upward-sloping. The analysis established not only
the possibility of strong bias, but also provided precise conditions for an econ-
omy to exhibit strong absolute equilibrium bias. In particular, economies with-
out nonconvexities (or those where the equilibrium corresponds to a Pareto
optimum) cannot exhibit strong bias. In contrast, in economies where factor
demands and technology choices are made by different agents (e.g., technol-
ogy producers versus final good producers), such nonconvexities are possible
(in fact quite typical), and strong absolute bias and upward-sloping demand
curves emerge in equilibrium.

To keep the exposition simple, the paper has made a number of simplifying
assumptions. An obvious generalization is to introduce multiple goods rather
than a single final good. This complicates the analysis, but the general insights
do not appear to depend on the single good assumption. Another interest-
ing direction for future research might be to integrate some of these results
into growth models where there can be long-run growth due to technological
change (see Acemoglu (1998, 2002, 2003b) or Jones (2005), for various growth
models with relative equilibrium bias). It would also be interesting to inves-
tigate the implications of the results of absolute bias presented here for the
theory of economic growth, for example, in the context of the effects of popu-
lation growth on technological change, wages, and standards of living. Finally,
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the most important area for future research is an empirical investigation of
whether the implications of these strong theorems actually hold in the data.

Dept. of Economics, Massachusetts Institute of Technology, 50 Memorial Drive,
Cambridge, MA 02142-1347, U.S.A.; daron@mit.edu.

Manuscript received November, 2005; final revision received January, 2007.

APPENDIX

The following lemma is used in the proof of Theorem 4.32 Recall that for a
matrix (vector) v, v′ denotes its transpose.

LEMMA 1: Consider the n× n matrix

B =
(
Q v
v′ b

)
�(A1)

where Q is an (n− 1)× (n− 1) symmetric negative definite matrix, b is a scalar,
and v is an (n−1)×1 column vector. Then we have that B is negative semidefinite
if and only if b− v′Q−1v ≤ 0.

PROOF: (⇐�) B is negative semidefinite if and only if

(x; y)′B(x; y)≤ 0�

where x is an arbitrary (n− 1)× 1 vector, y is a scalar, and (x; y) is the n × 1
column vector constructed by stacking x and y . Using the form of B in (A1),
we have

(x; y)′B(x; y)= x′Qx+ 2yx′v+ by2�(A2)

When y = 0, the above expression is always nonpositive because Q is negative
definite, so B is negative semidefinite as claimed.

Next consider the case where y �= 0. In this case, let z be the (n − 1) × 1
vector constructed as z = x/y and let us expand (A2) as

(x; y)′B(x; y) = y2(z′Qz + 2z′v+ b)(A3)

= y2(z′Qz + 2z′v+ v′Q−1v)+ y2(b− v′Q−1v)�

Because Q is a real symmetric negative definite matrix, −Q is a real symmetric
and positive definite matrix, so there exists a nonsingular matrix M such that

32I thank Alp Simsek for help with the proof of this lemma. Alternatively, this lemma can be
proved using the notion of Schur complements (e.g., Lay (1997, Chap. 2)).

mailto:daron@mit.edu
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−Q = M ′M . Moreover, we also have that −Q−1 = M−1(M ′)−1 = M−1(M−1)′

(because (M ′)−1 = (M−1)′). Now, rewriting (A3) in terms of M , we have

(x; y)′B(x; y)(A4)

= −y2(z′(−Q)z − 2z′v− v′Q−1v)+ y2(b− v′Q−1v)

= −y2(z′(M ′M)z − 2z′v+ v′M−1(M ′)−1v)+ y2(b− v′Q−1v)�

Equation (A4) implies that B is negative semidefinite if and only if

κ≡ y2(z′(M ′M)z − 2z′v + v′M−1(M ′)−1v)− y2(b− v′Q−1v)≥ 0�

Now, rearranging terms and with straightforward matrix manipulation, we
have

κ ≡ y2
(
(Mz)′Mz − 2z′(M ′(M ′)−1)v + ((M−1)′v)′(M−1)′v

)
− y2(b− v′Q−1v)

≡ y2
(
(Mz)′Mz − 2(Mz)′(M−1)′v+ ((M−1)′v)′(M−1)′v

)
− y2(b− v′Q−1v)

≡ y2
[
(Mz − (M−1)′v)′(Mz − (M−1)′v)

] − y2(b− v′Q−1v)�

Therefore, B is negative semidefinite if and only if

κ≡ y2
[
(Mz − (M−1)′v)′(Mz − (M−1)′v)

] − y2(b− v′Q−1v) ≥ 0�(A5)

Now suppose

b− v′Q−1v ≤ 0�

Then, from (A5), the first term of κ takes the form y2a′a for a ≡ (Mz −
(M−1)′v)′(Mz − (M−1)′v) and is always nonnegative for any z, so κ ≥ 0, es-
tablishing that B is negative semidefinite.

(�⇒) Conversely, suppose that B is negative semidefinite, which implies that
(x; y)′B(x; y)≤ 0 for all (x; y). To obtain a contradiction, suppose that

b− v′Q−1v > 0�

Take y �= 0, and in terms of (A5), set z = M−1(M ′)−1v, which yields κ =
−y2(b − v′Q−1v) < 0 in (A5), contradicting the hypothesis that B is negative
semidefinite (or that (x; y)′B(x; y) ≤ 0 for all (x; y)), thus yielding a contra-
diction. Q.E.D.
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