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Efficiency and Braess’ Paradox under Pricing Iin
General Networks
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Abstract—We study the flow control and routing decisions [38]. There is a recent interest for quantifying this inefficiency,
of self-interested users in a general congested network where areferred to as therice of anarchy (POA)which is defined as
single profit-maximizing service provider sets prices for different o ratio of the performance of user equilibrium to the social
paths in the network. We define an equilibrium of the user . . Lo .
choices. We then define the monopoly equilibrium (ME) as the optlmum. In [34], Kqutsouplas and Papgdlmltrlou consider
equ”ibrium prices set by the service provider and the corre- a tWO-|II’]k network W|th users that ha.Ve f|Xed demands and
sponding user equilibrium. We analyze the networks containing study the performance of selfish routing. They provide a
different types of user utilities: elastic or inelastic. For a network  tight analysis of the ratio of the worst-case user equilibrium
containing inelastic user utilities, we show the flow allocations at and the social optimum. The tight analysis of a parallel-link

the ME and the social optimum are the same. For a network twork with arbit b f links is i by C .
containing elastic user utilities, we explicitly characterize the ME NEWOrK With arbitrary number of finks 1s given by Lzumaj

and study its performance relative to the user equilibrium at 0 and Vocking [35]. A recent paper by Roughgarden and Tardos
prices and the social optimum that would result from centrally  [8] studies the POA for selfish routing for a general topology
maximizing the aggregate system utility. We also define Braess’ network. They show that when the latency functions are affine,
Paradox for a network involving pricing and show that Braess’ e total latency of a user equilibrium is at most 4/3 of the
Paradox does not occur under monopoly prices. . . . . .
minimum total latency (that is achieved at the social optimum).
Index Terms—Service provider, pricing, efficiency, Braess’ However, for more general convex latency functions, the total
paradox. latency at the user equilibrium can be arbitrary large. The POA
has also been studied for other types of resource allocation
I. INTRODUCTION problems, such as resource allocation by market mechanisms

ESPITE the significant increase in bandwidth, managé?ohari and Tsitsiklis [10], Sanghavi and Hajek [42]) and

ment of congestion is still a major problem in commun€Work design (Anshelevich et. al. [43]).

nication networks. Such management typically involves two N many real world networks, information is indeed decen-
elements: flow control. i.e.. the control of the amount df&lized and users are selfish, but they do also face prices and

data sent by various users, and routing, i.e., the control restrictions sgt by the §ervice provid'er in the netvvork'. !n most
the route choices of data transmitted in the network. Tig&me-theoretic analysis of networking problems, pricing has
standard approach to both flow control and routing is t en used as a means to cope with the inefficiency created by
regulation of network traffic in a centralized manner by §lfish users. In [4], Kelly shows that the network manager

network manager (planner) with complete information aboff" USe implicit prices (congestion signals) to induce the rate
user needs and command over user actions, resulting afjpcation that maximizes the total user utility. Similar results

the so-calledsystem or social optimunTodays's networks &€ given by Low and Lapsley in [5], Yehe, Mazumdar, and
emerged from interconnection of privately owned networkd0Senberg in [36], and Korilis, Lazar, and Orda in [41]. There
and serve heterogeneous users with different service nedj€. many other works that study pricing as a tool to achieve
This motivated the need for the analysis of resource allocatiGficieNcy- (see [36],[37] and the references therein) However,
in the presence of agents with multitude of economic interegyéth a fgw exceptions (7], [13], [14], [15])’ the_ game-theoretic
and service requirements. Consequently, a recent theoret|BLfraction between users and service providers have largely
literature considers a distributed control paradigm in which€€n neglected. In [7], Basar and Srikant analyze monopoly
some network control functions are delegated to users dpdcing under specific assumptions on the utility and latency
studies the selfish flow choices and routing behavior of usdtgictions. In [15], He and Walrand propose a fair revenue

in the absence of central planning (see, among others, [gparlng scheme for multiple service providers under specific

[10]). These models show that selfish behavior typically lea§§Mand models. In [13], Acemoglu and Ozdaglar analyze

to allocations that are highly inefficient from a system poirfduilibrium flows and routing in a parallel-link network and

of view (e.g., too much flow or the wrong routing choices)S10W how profit-maximizing prices from the viewpoint of

The reason for this divergence between system optimum afi§ Service provider typically also play the role of efficiently

user equilibrium is that users do not take into account tﬁggulat!ng data transmission. .

congestion that they cause for other users. In this paper, we analyze the equilibrium of a model that
The fact that selfish behavior leads to inefficiency in perfopjcorporates a self-interested service provider and study the

mance has been well-recognized since the early work of PigBgfformance gap between the equilibrium and the system
optimum in a network with a general topology. Analysis

Manuscript received January 20, 2002; revised November 18, 2002. of a general network is considerably more difficult than
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networks with parallel links. For a given price, we providde the flow of userj of OD pair k on pathp wherej € 7,
a characterization of the user equilibrium of flow rates arehdp € P;,. We then use
routing dec_|S|ons under th_e standard Wardrop assgmptlc_m_ that = Z ”
each user is small (thus ignores the effect of their decisions k.j
on aggregate congestion). Furthermore, we provide a full
characterization of the “monopoly equilibrium”, i.e., profitto represent the total flow on pathand
maximizing prices from the viewpoint of service provider . _ P _ P (1
and the resulting allocations. We show that for the case off zk:jg\;{ |eeze7> }f’w zk:{ |eeze7> }f @
routing with participation control (see Sec. Ill, which natu- FAPICERPETRT PIeEppE T
rally corresponds to the inelastic user utilities), the monopol§ represent the total flow (link load) on link We also use
equilibrium achieves the system optimum. This result contradt following notation to represent different flow vectors:
with pervasive inefficiencies in the routing models with selfish [£€]cce, vector of link loads. 2)
agents, for example, as in [8]. For the case of elastic user
o C T . ) ) [fP]pep, vector of path flows. 3)
utilities, monopoly pricing introduces a distortion and induces ]
users to reduce their flow rates. The performance of the fr : [f*lper.,vector of path flows of OD paik. (4)
[
[

JETk

monopoly equilibrium relative to a situation without prices and  f, ; f,f,j]pepk,vector of path flows of usejf.  (5)
to the social optimal depends on the extent of the congestion ¢

T _ IV pePy.jed..kew, vector of flows of all  (6)
effects (externalities). When these are important, the monopoly kg PEFIIEThRE

equilibrium, which forces users to internalize these effects, users.
performs relatively well. Finally, we denote

An important problem in general network topologies is the »
potential for network performance to deteriorate as a result Trj= Z Frg-

of increasing network resources, which is also referred to as PEPk

Braess’ paradox [16]. A simple example of this is the posdie be the total flow rate of useg
bility of the addition of a new link to increase congestion on In the absence of central regulation, we assume that each
all links in the network. Previous research has focused on thger in the network is interested in his own payoff. This payoff
detection of Braess’ paradox on specific network topologiégould reflect the tradeoff between the utility of sending data
and restrictions on methods of network upgrade for preventiagd the disutility of incurred delays and monetary costs during
it. We study the effects of profit-maximizing prices on Braesdransmission. We next formalize the user payoff function.
paradox, and show that at the monopoly prices, there can neveYVe assume each usge J;, receives a utility ofuy ;(T'x ;).
be Braess’ paradox, so for-profit incentives appear sufficidaepending on the application service requirements, the utility
to eliminate this type of paradoxical outcomes. function takes different forms. Shenker [9] categorized ap-
The rest of the paper is organized as follows. Section plications into two main classes based on their service re-
describes the network topology and user preferences, providggrementsinelastic and elastic application®eal-time voice
the definition of a user equilibrium, and monopoly equilibriumand video applications require a fixed amount of bandwidth
Section 11l shows the efficiency of the monopoly equilibriunfor adequate QoS, hence are inelastic in their demand for
in the case of users with inelastic utility. Section 1V discusségindwidth. Therefore, it is reasonable to model their utility as
the monopoly equilibrium in the case of users with elasti step function, see Figure 1(a). On the other hand, traditional
utility. It first analyzes the sensitivity of the equilibrium alloca-applications such as e-mail and file transfer are elastic; they are
tions to prices. Then, it defines and characterizes the monoptsiierant of delay and can take advantage of even the minimal
equilibrium, and provides a comparison of the monopoly equdmounts of bandwidth. The utility function in this case can
librium with the social optimum. Finally, Section V discussef€e represented as a nondecreasing and concave function, see

Braess’ paradox under pricing. Figure 1(b). We assume that each user is using only one
application. A user who is using multiple applications can be

Il. MODEL: USEREQUILIBRIUM, MONOPOLY viewed as multiple users, each using one application. Different
EQUILIBRIUM, AND SOCIAL OPTIMUM users might have different utility functions even though they

We consider a directed network = (V,£) where Y are using the same type of application, representing different
denotes the set of nodes afiddenotes the set of links. Wepreferences. We say that a user with an inelastic (elastic) ap-
assume that there are origin-destination (OD) node pairs plication has an inelastic (elastic) utility function. Both utility
{s1,t1}, ..., {Sm,tm}, and we denote the set of OD pairs bylasses can be analyzed within the framework introduced here.
W. For each OD pair{s;,tx} € W, there areJ, users, To model delays incurred during transmission, we assume
belonging to set7:, that send data from node, to node that each linke has a flow-dependent latency functitiif©)
ti, through paths that connesf, andt;,. We also denote the Where f¢ is link load on linke [cf. Eq. (1)]. The latency cost
set of paths betwees), andt;, by P}, and the set of all paths Of sending one unit of flow on pathis then given by
in the network byP = UgcwPr. We say a linke € p when Zle(fe) @)
the link lies along the path.

To facilitate our analysis, we first introduce some of the
notations that we will use in the discussion. We derﬁgg: to 1we use the term flow to represent the data stream that the user sends.

ecp
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Inelastic We will adopt the following assumptions on utility and link

utility latency functions.

Assumption 1: Assume that for each user € Jj, the
utility function uy,; is nondecreasing. For elastic user utility
functions, we further assume that the functions are strictly
concave, continuously differentiable, and< w;, ;(0) < oo.

We also assume that for each linkthe latency functlon)e is
continuous and strictly increasing.

We next define the user payoff function: For a given price
q, each userj chooses his path flowk, ; to maximize his
payoff function

flowrae kg (i 36:0) = wrj (Th ) — Y <Zl€ fe ) .

pEPr \e€p

utility _ - Z qpflf,j- (8)

e PEPr

whereg is defined in (2).
As is common in traffic equilibrium models used in trans-
portation and communication networks, we assume that each
user is small, thus focus on Wardrop Equilibria, where the
individual user does not anticipate the effect of his flow
! on the total level of congestion. [1, 8, 13] This appears as
a realistic assumption in today’s large-scale data networks
/ such as the Internet and transportation networks. Standard
arguments establish that Wardrop equilibria are obtained as
flow rate estimates of Nash equilibria as the number of users gto
(b) (see [18]).
Definition 1: Letf be the vector of flows of all users in the
hetwork that is defined in (6). For a given price vectpy 0,
a flow vectorf* is a Wardrop equilibrium (WE) of the user
game if

and the latency of sending ; units of flow along patfp is fy . € arg max vy ;(f, ;0,0), Vi€ Tp, k€W,
given by ! f >0

(F) L. |
21U, FEYY Y g, veee

The additive latency cost is an assumption that is used ex- k€T plecp.pEPr

tensn_/ely in communication and transportation literature. In Hence, each price vector induces a WE among the users.
practice, the end-to-end delay encountered by the flows n‘@x

Fig. 1. a) Inelastic utility as a function of flow rate. b) Elastic utility as a
function of flow rate.

. . e service provider (monopolist) chooses the price vector to
depend on other factors than the link loads. For example, in t imize his profit. The maximization problem can be written

Internet, there is a processing delay on each node associated
with the total flow entering the node .(see [41]). The end-to- A qufp( )
end delay may also have more complicated structures than the >0

additive structure defined in Eq. (7). Nevertheless, our model

provides a tractable framework for capturing the essentihere f7(q) is the flow on pattp at a WE for a given price

aspects of queueing delay and is a good approximation wectorg. We will show in later sections that under Assumption

delay costs in real networks (see [39)). (1), Problem (9) has an optimal solution, which we denote by
For the cost of services, we assume that the service provid@ér We refer tog* as themonopoly price Let f* = f(q*) be

charges a price? per unit of bandwidth for patp. We denote the flow vector at a WE for pricg*. Then we call(q*,f")

g to be the price vectofg?],cp. Given the prices set by thethe monopoly equilibrium(ME) of the problem.

service provider, the goal of each user in the network is to To study the performance of the ME, we compare the total

maximize his own payoff. Note that an alternative model is orgystem utility at the equilibrium with the total system utility at

in which the service provider charges prices for links rathéne network’s social optimumA flow f is a social optimum

than paths. However, it can be seen that the service providfeit maximizes the total system utility:

can make more profit by charging prices for the paths.

p
2Qiu et. al. have discussed some representative link latency functions for Z Z Uk, ](Fk J Z <Z 1°(f°) ) fk,j - (10)

the Internet in [39]. EEW jE€Tk pEPL \e€p
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We can view the social optimum as the allocation that woull WE in which A sends his data and B does not. In the
be chosen by a network planner, which has full informatidiollowing, we show that at the monopoly price, there exists a
and control over the network. The allocation at an ME is nWE, which moreover achieves the social optimum. (i.e., the
necessarily the same as the social optimum. In the followingpw allocations at any ME and the social optimum are the
we analyze the performance of the ME relative to the socisdme). For consistency, we define the social optimum for the
optimum for both inelastic and elastic user utilities. Theelastic utility case as a vectdf, z) that maximizes the total
different structure of the utility functions introduces significangystem utility:

differences in the analysis and the resulting performances of

these utility classes.
5 (watrema - ¥ (Sr00) 2,
[1l. INELASTIC USERUTILITY (ROUTING WITH kew jeJy PEPL \e€p
PARTICIPATION CONTROL) (13)
Proposition 1: Consider a routing problem with participa-

We first analyze a network containing users with inelastic
utility functions. When a user has an inelastic utility functiont,Ion control.
it can be seen from Eq. (8) that at a given price vector, he eitherl) There exists a monopoly pricg and a WE(f, z) at price
sends a fixed amount of data or decides not to participate in the q.

network. Hence, the problem with inelastic utility functions is 2) A vector(f,z) is a social optimum if and only if there

a routing problem, where usgris interested in choosing the exists a price vectoq such that(q, (f, z)) is an ME.
paths to send his fixed amount of data, #ay units; but he Proof: To establish this proposition, we first prove two

also has the option of not sending any data when it is Cosﬂymmas. The first lemma gives a characterization of a WE

to do S0 This is also a natura_l model_to stu_dy th_e routing any price vector and the second one gives an explicit
problem in the presence of service providers since it prevents,

. . T i aracterization of the monopoly price. The first lemma is
th? service provider frpm charging 'F‘f'”'te prices. We refer roved by exploiting the linear structure of problem (12).
this problem asghe routing problem with participation control L 1'Fo : : 00 > 0 tor (f
This problem was studied for parallel link networks in [13]. . emma L.For a given price vectoq = U, a vec or ( ’.Z)’.
Here, we extend this analysis to general networks. with f,; > 0, 25 € {0,1} V k,5, is a WE if and only if it

The problem can be modelled using the following utilit)?atISﬂes the following conditions:

function for userj 1) fC=220 2 jeq 2plecppery f,f’j, Veek.
. = ) 2) |f Zk:,j = 1, Z P fk:,' = tk)]‘.
g (@) = { Sk | :; Ox § v bh.g (11)  3) If 2, =0, f,fjezko for all p € Py.
7 =k Define the set

together with binary variables;, ; which indicate whether user
j chooses to participate or not, i.e; ; = 1 if userj decides L
to sendt,, ; units of data, and;, ; = 0 if he decides not to P. = {p |pePrand Y I°(f) +q¢" <
send any data. Denoteto be the vectofz; ;] jc 7, kew. The e€p
user equilibrium of this problem can be defined as follows. ,

Definition 2: For a given price vectorq > 0, a vector min{LmHéi};k{Z 1°(f°) +qm}}}-
(f*,z*), is a WE of the routing problem with participation ecm

control if for all £ and all j € J, _ )
4) Ifpé¢ Pk,thenf,gj =0, Vje Tk

(frj» 2k ;) € arg . max 5) If minmepk{zeém I°(f°) + ¢} < 1l,thenz,; =
5,5 20:%k.,5 €{0,1} 1 for all j € 7, and k.
Proof: The proof of the necessity of conditions (1) - (5)
. . . _ e () ¥ P
wk,j(Tk,2h,5) Z (Z(l (f) +a ) flw’ » (12) is immediate. We show that these conditions are sufficient. We
PEPk \e€p rewrite problem (12) as:
fe:Z Z Z (f*)zl;jv Veeé’, . .
k jETk ple€p,pEPx (fk,jazk,j) € arg max

o fkyjzo,zk,je{m}

wherewy, ; is given by Eq. (11).
Since the utility function [Eq. (11)] is not concave, we

cannot guarantee the existence of a WE for any price vector. In LEE Z
fact, a WE may not exist for some price vectors. For example,
consider a network that consists of one directed link where
two users,A and B, send data through this link. Assume that
ta=1, tp =15, I(z) = Lz. It can be seen that if the price s.t. Z foj =teg if 2y =1 (15)
of the link is 0, a WE does not exist. In the same example, PEPy
however, one can also show that the profit-maximizing price
set by the monopolist is 0.5, and at this price, there existsLet (f,z) be a vector satisfying conditions (1) - (5). To show

> + qp> fLoe (14

PEPE \e€p
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that this vector is a WE, we show that for all Lemma 2:Let (q, (f,z)) be an ME. Then, for alp with
fP >0, we have

{tk,jzk,j -y (Zle(fe) + qp> f;f,j} ¢ =1 1°(f%). (18)

N ec
PEPkK P cep

> {thZkJ - Z (Z () + qp) fzf,j} , (16) Proof: Since(f, z) is a feasible solution of problem (17),

PEPE \e€p (f,2) is a WE. Letp be a path irP;, with positive flow (f? >
where 0). By condition (4) in Lemma 1, we havyec P;. Therefore,
by condition (3) we have
FeXY X g vees
k j€Jk ple€p,pEPk q° + Z le(fe) <1

ec
and(f, ;,zx ;) is any feasible solution of problem (14). Note ?

that thefe on the both sides of inequality (16) are the sam&ow, assumeqp + Zeep
for all e since each user is small and does not anticipate i@ ' >~ 0 we have
effect of his flow on the total level of congestion. Now, we

¢(f°) < 1, then for everyp’ € Py

consider an ar?itrary usgre Ji. There are two cases: ¢ + Z () = ¢ + Z 1°(f°)
Case 1z ; # Zj ;- cep cep’
First consider the cas®g, ; = 0 and 2 ; = 1. By condition
(3), z; = 0 implies thatff ; = 0 V p. Therefore, usey's < mm{l min > " 1°(f },
payoff is 0 at(f,, s Zk.j)- BY condition (5), we further have MEPL ocm
v p/ S Pk.

T,Ifé%lk {; () +a } 2 1. Hence, there exists some> 0 such that
Since z ; = 1, this shows that usef’'s payoff is less than — ¢* + > 1°(f) + € <
or equal to 0 at(fkvj,zk,j). Next assume that; ; = 1 and ecp’
zk,; = 0. Condition (4) implies that usej's payoff is greater _ ) o e " _
than or equal to 0 aff, ;. z. ;). However,z, ; = 0 implies min Lﬂ?;l%zl (f)+a™ ¢, Vo' € P
by problem (14) that usef’s payoff is less than or equal to "eem

0 at (fm,zk,j). Therefore, for both cases, usgs payoff at Now, letq = g+ .., wheree,, is a |P|-dimensional vector
(f1,;» 2x.;) is greater than or equal to his payoff@f, ;, zr.;)- with value ¢ in the m™ component ifm € Py, and 0
Case 2z j = Zy,;- otherwise. We can verify that, given price vectgyr (f,2)
For the case where;. ; = z;; = 0, user;’s payoff is 0 at  satisfies all of the conditions in Proposition 1. Therefdfez)
(f1;» 2v,7) [cf. condition (3)] and is less than or equal to Qs a WE at pricey/. However,(q, (f,2)) has a strictly higher

at (f ;, 21.;)- Next, we look at the case whetg ; = Z.; =  objective value tharfg, (f,2)), which contradicts the fact that
L. By condition (4), it follows that for all pathg such that (q (f 7)) is an ME. Thereforeg? = 1 — 3 o, le(fe) for
o ) ) . ecp
fi; >0, we have everyp with f7 > 0. Now if f? = 0, condition (5) implies
? =13, 1°(f°). QE.D.
Zle )4 ¢” = min< 1, min {Zle(fe) +qm} v We now return to the proof of Proposition 1. We first
eep " mePy consider the following problem.
In view of the linear structure of the problem, this shows that max Z P fP (19)

userj's payoff at (f_m,zk,j) is greater than or equal to his
payoff at(f, ;,zr;). Q.E.D. . - »

For the second lemma, we consider the monopoly problem subject to fr= Z fej VPEP,
for the routing problem with participation control, jeTx

peEP

@ =1=) I°(f%), if f*=0,
max Y ¢"f” €y g
peP q" 20, if f*>0,
subjectto  fP= > fl., VpeP, (f,2) € G(q),
JE€ETk
q>0, where G(q) is the set of vectorgf, z) that satisfy conditions
(f,2) € G(q), (2)-(5) of Lemma 1. It can be shown thé, (f,z)) is an

optimal solution of problem (17) if and only if there exists a
whereG(q) is the set of vectorgf, z) that satisfy conditions price q such that(q, (f,z)) is an optimal solution of problem
(2)-(5) of Lemma 1. (19).
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Now, we can rewrite problem (19) as therefore omitted. Essential uniqueness of a WE is important
for our analysis, since it implies that total flows on each path
max Z(l ’Zle(fe))fp are uniquelz defined. Thispresult does not, however, ir?]ply
pEP cep the uniqueness of a WE. In fact, it is easy to establish that
subject to fP= Z f,fj’j, VpeP when there is one OD pair with at least two users with
JETk positive equilibrium flows and at least two paths with positive
Z f/fj =ty if zp; =1, total flows, then there are infinitely many Wile use this_
pePy property of a WE in proving the following result, which will
fP=0,VpePy, if 2y =0, be essential in our subsequent analysis.

; . Lemma 3:Let Assumptions (1) and (2) hold. Given any
kg =05 215 €{0,1}, Vj € Tk, Y ks price g > O, let f be a WE, and be the flow rate at price

or equivalently, g. Let fP be the@w on pathy. Also defineP;, = {p | P>

0, pePrtandJ, ={j | Tx; >0, j € Ji} for everyk.

max Z Z (zk,jtk’j — Then

fi 202 5601} k jETk 1) For everyk, if p € P, and j € Ty,

T Zle(fe)f;f,j) (20) (D) — () — P =

pEP) €EP eEp
subjectto  fP= Y ff.. VpeP, 2) There exists a WE such thatff ; > 0 for all p € Py ,
JETk j € Jx, and for all k.
Z L=t if 2y =1 Proof: 1) Letp € Py, andj € J. Sincel'y ; > 0, there
Py exists some pathk such thatf; ; > 0, which implies by the
fr; >0, 2, €{0,1}, ¥V j € T,V k. first order conditions that
This problem has an optimal solution (since for eath uh s (Trg) = D 1°(f) —¢° =0 (21)
the objective function is continuous and the constraint set is ees

compact). This proves part (1) of Proposition 1. For part (23nd
we notice that problem (20) is the same as the social problem "(T ) — 16(f) —q¥ <0. Vs cP
that maximizes the aggregate system utility as defined by Eqg. Ui (Tkg) eez; (F)=a =0, Vs b

13). Hence, the result in part (2) of Proposition 1 follows . . . :
Eg E) D part (2) P Combining the preceding two relations, we obtain

S+ 23 )+t V8 € P

IV. ELASTIC USERUTILITY ecs’ ecs

In this section, we study a network containing users withherefore,
elastic utility functions. {

le € S: 3
2L+ = iy

Do)+ qs/} . (22

ecs ecs’

A. Existence, Essential Uniqueness, and Price Sensitivity
. . ) .
Each price vectoq defines a user subgame. Given the pricdoW: sincef” > 0, there exists somg’ such thatfy ;, > 0.

vector, users play this subgame by choosing the flow rates aHen. , o/ e v

path flows that maximize their payoffs. If a WE exists, then at gt (Thyjr) = Zl (f)—¢"=0

this WE, no user can increase his payoff by any deviation, so e€p

he does not have any incentive to deviate. We make a furtted

assumption on link latency functions: uﬁc,j/(l“k,jf) _ Z 1°(f) — qs/ <0,V ePy.

Assumption 2: Assume¢(f¢) — oo as f¢ — C¢, where
C* denotes the available capacity on limk

ecs’

This assumption on the latency functions serves to guaran%% we have
that no individual has an infinite demand. This assumption o/ re ) o/ ve o
could be relaxed by assuming that, for eggctthere exists a Zl (f)+a"= sep {Zl (f) +a } : (23)
nonzero scalai3; such thatu)(B;) = 0, which holds for the eep ees’
inelastic utility case. From equations (22) and (23), we get
Proposition 2: (Existence-Essential Uniqueness)et As- e/ re o e/ re s
sumptions (1) and (2) hold. For a given price vectpiet the ;l (F) +a" = EZESZ (F) +a (24)

payoff function for each user in the network be defined as Eq.
(8). Then for anyq > 0, the user game has a WE. Moreover, 3This is because, for such user game, we can construct a new WE from a
the user flow rates and link loads at any WE are unique. given WE by interchanging units of userj;’s flow on pathp; with e units _
. of userja's flow on pathps (wherep; andpz belong to the same OD pair
The proof uses standard arguments used in tranSportatéQHe is less than or equal to the minimum §f’s flow on pathp; andja's
and communication networks literature (see [19,20]), and fisw on pathps).
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(1) = 1017 1(f) = f¢, 19(f9) = f9.

Given the price vectory, where ¢l@¢t = 50, ¢{0d} =
50, ¢l»edt = 10, ¢l9% = 90, the path flows at the WE
are floct = flbdl — flaedt — flo} — 2 Consider
another price vector; where we increase the price of path
- {a,e,d} to 14. Given g, the path flows at the new WE are
{a7c} _ *{bvd} ~ 7{a,e,d} ~ 7{9} ~
f =f ~ 3.032, f ~ 0.792, ' ~ 1.2721.
However,

7Y o flot — 9 andT ~8.1281 > T = 8.

This shows that at a higher price vector, the flow on an
Fig. 2. A network that violates the monotonicity of flow rates and th@lternative path decreases and the total flow rate of the user
monotonicity of link loads. increases. We will study Braess’ paradox in general networks
in more detail in Sec. V.

Substituting equation (24) into equation (21) yields the result . ] )
B. Monopoly Price, Social Optimum, and Performance

g, ;(Trj) — Zle(f )—¢"=0. In this section, we provide an explicit characterization of
eep the monopoly price and compare the system performance at
_ 2) Letf be a WE at the pricg. We construct a new flow the monopoly equilibrium with the social optimum. Recall that
f in the following way: If j ¢ J, or p ¢ Py, Setf,fyj = 0. the monopoly problem is
Otherwise, set

o el max > "7 (),
" Zl)epk fp - b
which is > 0 becausej € 7, andp € P,. Now, since where f?(q) is the flow on pattp at a WE for a given price

~ ~ vectorg. Under Assumptions 1 and 2, we can assume
P
fr=>"f,=fVpeP

o 0 <¢” < minwuy ;(0), VpePy, k

JETk
and . - . and by an argument similar to the one given in [13], we
Lhj = Efk,j =Thj, Vi€ Te,keW. can show thatf?(q) is continuous inqg for all p. Therefore,
PEP problem (9) has an optimal solution. We now look at the

following proposition which is essential to our analysis.

Proposition 3: Let Assumptions (1) and (2) hold, and let
(g,f) be an ME. LetP = U, Py, wherePy, = {p|p € Py, f* >
Theng? >0, VpeP.

f is a WE such thaf? . > 0 for all p € Py , j € Tk, and for
all k. Q.E.D.

It is informative to understand how link loads and usersﬂ}' ) o
flow rates change with prices. There are two natural conjec- FTo0f: TO/ arrive at a contradiction, we assume that there
tures in this context: As the price of a particular path increasé&iSts @ paty’ € P andg¢?” = 0. From Lemma 3, we know
the amount of data transmitted on the other paths increali@t Sincep’ € Py, there exists some WE such that for all
Similarly, the flow rate of each user is a nondecreasidgE J&" fir,; > 0. Sinceus ; is strictly concave and;, ; is
function of the price vector. These results were proven f§@ntinuous, we can pick an> 0 such that for every € Jj,
networks with parallel links in [13]. The same results do ndhere exist & < §; < ff, ; satisfies the following equation.
generalize to a general network topology, however. , ,

In a general network where there are no prices and users i (Ui g = 05) = gy j(Trr ) = €
have fixed d_emands, i_mp@ving the latency function of one Ii%otice that for everye € pf, f¢ > 5. _— 4. We define a
(i-e., replacingl®(z) with I°(z) such thati*(z) < I°(z) ¥V = . price vector as J€Tw
for some linke) while keeping the rest unchanged, may cause
all users to encounter higher latency costs. This phenomenon
is known as the Braess’ Paradox. We next demonstrate sugh= ¢” + Z e(fe)—1e(fre = Z 3;) | +e
a counterintuitive phenomenon in a network with users with elecp,cep’
elastic utilities. Consider the example in Figure 2, where a
single user sends flow from node 1 to node 4. Assume that
the user’s utility function isu(I") = 184y/8I'>-®, and the link p ef ey 1eq ge
latency functions are given E)y) T=q ) (U= Y6

JET
if p e Prs

ele€ep,ecp’ JET

1(f*) = 10, 1°(f%) = f*, 1°(f°) = [¢, otherwise. (25)
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Sincel is strictly increasingg? > ¢? if p € Py and@® > ¢P

Therefore,f is a WE with priced. However, sincejpl > q

otherwise. Now consider the flofvthat satisfies the following and?p/ >0

conditions:
Vije T

717/ ’

_ 4
fk:’,j_ fk’,j_dﬁ
= otherwise

—p )
f}c,j - f]s,j’

Now, we will showf is a WE for the price vectog. From
Egs. (26), we have

(26)

== 6 ifecy;
JET
7 = fe, otherwise
Twy=Tw;—0; VjeETu;

T,; =TIy , otherwise. (27)

From Egs. (25) and (27), we see that for everg P, and
JE€ Tk

U;C, j(fk’ i)
= ujy,; (Th g — 65)
= up;(Twy) +e
< D) +qP +e
ecp
= D () -
ecp
> (16( ) =1 = > 65) )
ele€p,ecp’ jejk,
= Y- Y (e -ed)) v
e€p ele€p,ecp’
= Y+ (28)
ecp
We knowfi, . > 0 iff f,f, - > 0. Hence, the equality of Eq.
(28) holds |ffk, > 0. S|m|larly, for everyp € Py, j € Tk,
andk # K’
u.;f,j(ka)
= u;c,j(rk,j)
< D)+
eep
= DU -
ecp
£ (e £ o)or
elecp,ecp’ JETwr
= Y+ (29)
ecp

Again, the equality of Eq. (29) holds yfk] > 0. For priceq,

g >o.

Then equation (30) together with> q and¢? = 0

Y IT=FT YTy =) e

peP p#p’ p#p’ peEP
Therefore,(f, q) is not an ME and this yields a contradiction.
Hence, the result follows. Q.E.D.

Now, we can derive an explicit characterization of the
monopoly prices. Letf,q) be a ME and for each, letZ, =
{1,---,|Px|} be the set of indices oP; and{1,---,|Jx|}
be the set of indices aff,. We also denot@}‘C to be theit"
path for OD pairk. Without loss of generality, we assume that
userl € 7, and pathl € Py, for everyk such that7, # @.
Using the necessary and sufficient optimality conditions of a
WE at a price vectoyg together with Lemma 3, we can see
that if (f, q) is a ME, then([f?] _z, [['j];ez,q) is an optimal
solution of the following probr

(30)

maximize > ¢ f? (31)
peEP
subject to uj, ; (k1) — Y I°( Y f7) — ¢ =0,
e€pi,  pleep
Vpi €ePrkeW (32
up 1 (Trt) = DY f7) ) — g <0,
e€pi,  ple€p
Vi, ¢ Pr,keW  (33)
uy i (Crj) — Zlerp —qpk—O
e€p;  ple€p
Vieds—{1LkeWw (34)
w i (Thg) = Y 1CD 1) =" <0,

e€p,  ple€p
Vi¢ T,VkeW (35)
S = TijVkew (36)
PEPk JETk
[y;>0,VjeTpkew,
fP>0,VpeP,

>0, VpeP.

Note that we use the necessary and sufficient optimal-
ity conditions for a WE to write problem (31) in vari-
ables ([f*] 5, [I'j]jes,q) instead of variables(f,q) and
use Lemma 3 to eliminate the redundant constraints. This
reduction in the dimension of the feasible set allows us to show
that the regularity constraint qualification is satisfied (i.e., the
constraint gradients of problem (31) are linearly independent
at the optimal solution). Thus, the nonconvex problem (31)
admits Lagrange multipliers, which will be the key in proving

Egs. (28) and (29) show thsatisfies the first order necessaryne subsequent proposition. This is stated in the following

and sufficient conditions:

-2

ecp

:0,
<0,

if f,”>0
if fkj—()

i

uﬁcl ; Fk/ i

Lemma. The proof can be found in Appendix A.
Lemma 4:The constraint gradients of problem (31) at any
feasible solution([f?] [['ljer,0q) are linearly indepen-

pEP?
dent.
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Proposition 4: Let Assumptions (1) and (2) hold. Assum&implifying the preceding equation, we get

further thatu,, ; is twice continuously differentiable for each

j and k, andl® is continuously differentiable for each Let o — n eV pe

(f,q) be an ME, then for every pathin P, we have Z ; A | GZG )|+
m | nez,,—1 eleep; .e€py,

e(ie e Z €Pr fp
= (Zf‘(l')’(f )) + =S L - G (AL Y i+ Y Gy >
ecp jEJk Uk (Fk J) . T i 1
4 JE€Tm—{1} 3¢Tm ele€py ey,
_ . +pg,1 = 0.
Proof: Let ([f?] _z,[l'jljes,d) be an optimal solution
of problem (31). Detpnak to be the set of the indices of theSubstituting Egs. (40) into the equation above, we have
paths inP, andZ; to be the set of indices of the paths7,.
By Lemma 4, there exist Lagrange Multipliers for problem _pi _ Do e/ ( fe
; the ! q ! () | +
(31). We assigm\;, to the constraints (32) and (33)y,; to Z nEIZI we;eepn( )
the constraints (34) and (36), and finafly; to the constraints ” R

m

(35). The Lagrangian functiod(q,f, A, 1, ) can be written 1 0N pe
o el Y @YU | | Faea =0
eleepi ,e€pl,
L(qva)\au7§) = _ and then
DoAY Nl (Tea) = D 19(f%) — ¢¥]
»eP k €Tk e€p}, gk — Z Z Z frm L Q€)' ()
+Z Z pie [y, (T j) — Z 1°(f%) k eEp;, ™ {n|n€l,.eepp,}
k jeT—{1} e€p;, +pr,1 = 0.
+Z Z Ek,jlth ;(Trg) — Z 1°(f€) Therefore,
k¢ c€py, Pk—Zfe 1(f¢) + pra =0, Vkjic€T,  (41)
S mal S = 3 Tl
PPk i€k Also for the set of flow rate variables, we have:
If the monopoly price vectoq is not greater tha®, we can oL ;
find another monopoly price vectof such that T, =0 — uj 1 (Tka) Z Ne | =tk =0, VE, (42)
NP — P D. \p
g =¢" if peP; but(¢)? >0, Vp. oL .=
() () . 0 — pyjuy ;(Trg) — pren =0, ¥V j € Jp — Lk,
Therefore, without loss of generality we can assume that the (43)
i isfi i oL , p—
ME price vectorq satisfiesq > 0. So, for each OD paik, = 0 — §kju1£j(rk,j) <0, V¢ Tk (44)
oL S "
JaPE = 0= =X+ Z HEk,j + Z €k, Since¢ ; < 0 for all £ and j, andugd(l“k,j) < 0 for all k
e €T} €T and;j, Eq. (44) implies thag;, ; = 0 for all k and;j. Therefore,
(38) summing all the equations in (43), we get
oL i , _
— L fPL — )\ ; ; 1
i 0— fPe =X\, VieTl,, i#1, (39) Z [hj = [k 1 Z ) Vk  (45)
oL L j€Te—1 JET—1 I
gtk 0=0=AX, if i ¢ Zp. “9 Erom Egs. (42) and (45), we obtain
Recall thatP = {p | p € P, f? > 0} and problem (31) is ir A = v k. (46)
defined orP but notP. Therefore, for eachi” € P, we have Z it Z g ! z; Z,j ki)
JE€ET—1 i€Tk
oL Egs. (38), (39), (40), and (46) |mply that

o fri
! Z fP = hga Z ) v k. (47)
cxlme( g o) L 5

m | n€l, ele€pi ecpn, Substituting Eq. (47) into Eq. (41) we

Z( 2 “TWZ&M)( 2 <l€>’<fe>) qf’=(Zfe<ze>’<f€>>+ _Zfﬁfl

m \j€Tm—{1} J€Tm eleept ,e€pl, ecp ZJEJk up (Tk.5)
gt = 0. Q.E.D.
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Example 1: We consider a simple general network as
given in Figure (3). We have two usersi (and B) and
4 paths({h,c},{a,b,c},{d,b,g},{e}) in the network. The
utility functions of the users and the latency functions of the
links are given by

UA(FA) = QOO(FA)Q, UB(FB) = QOO(FB)Q,

1°(f¢) = (f9)°, Yeeck.

Fig. 3. A simple general network Let Upne, Usocial, @aNdUy be the total system utility,

S wi(Ty) = > (ZF(f@)) 7

o k |j€ETk pEPr \e€p

at the monopoly equilibrium, social optimum, and at the WE
at O prices, respectively. The plot of the ratitg,./U, and
Unme/Usocial @s a function of different values ef and 5 are
given in Figures 4(a) and (b), respectively.

The results shown in Figure 4 are intuitive. The first panel
shows that ass increases, performance of the monopoly
equilibrium improves relative to an equilibrium without any
prices (e.g., as in [13]). This is because higher valueg of
imply that latencies are more sensitive to link load and thus
correspond to greater congestion effects (externalities), which
are internalized in the monopoly equilibrium, but not in the
equilibrium without prices. It also shows that performance
improves asa increases. Greate corresponds to a more
linear utility function, and as Eq. (37) shows the markup is
smaller when the utility function is less concave, reducing the
monopoly distortions. The second panel is similar, however, it
shows that the performance of the monopoly equilibrium rela-
tive to social optimal with respect i@ is non-monotonic. The
reason why values af close to 1 improve the performance of

P the monopoly equilibrium is the same as above. However, the
ooz monopoly equilibrium also performs relatively well for very
P small values ofv. This is because, in this case, even though the

o : \ ) \ \ \ \ \ markup is substantial, individuals have a very high marginal
utility of data transmission at low flow rates and choose not to
(b) reduce their flow rates much in response to this high markup,

Fig. 4. a) Performance of ME over WE at price 0 b) Performance of MHﬁUS system performance does not suffer much.
over Social Optimum

V. BRAESS PARADOX

Braess’ Paradox, first defined by Braess in 1968 [16], states
This proposition shows that the monopoly price is givethe counterintuitive fact that adding a link to a network might
by two terms: The first term is the “marginal congestiocause all users to be worse off than in the previous equilibrium.
cost” (which corresponds to a Pigovian tax on the externalifyhis phenomenon is due to the non-cooperative nature of
created by the users [11]). This amounts to charging evahe selfish users, as each user only wants to minimize his
user the marginal increase in congestion by sending an extael cost without considering the travel costs of other users.
unit of data. It is well-known that this is the price that a netBraess’ Paradox has been recognized and studied in differ-
work planner maximizing the total system performance woukht kinds of networks. For example, Hagstrom and Abrams
charge in order to force users to internalize the congestif#8] outlined a characterization of Braess’ Paradox in traffic
effects (resulting in the social optimum) [12, 13]. The secometworks. Steinberg and Zangwill [32] gave necessary and
term is a markup above this given by the profit-maximizingufficient conditions for the existence of Braess’ Paradox in a
objective of the service provider. Which of these two termsansportation network under limited assumptions. Cohen and
is dominant will determine the relative performance of thKelly [26] also studied an example of Braess’ Paradox in a
monopoly equilibrium compared to a situation without pricegueueing network. A detailed survey of research on Braess’
and to the social optimum. Paradox can be found in [23] and [20].
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for which some paths have improved latency costs and no
path has worse latency cost, but some flow which switched

a from one path to another has worse latency cost than in the

. equilibrium. Such a situation should not be considered as a

o @ o Braess’ Paradox. For an example, let's consider the network
A - Iz? Figure (5). A single user sends data from node 1 to node

u(T) = 36860
The link latency functions and path prices are as follows:
() = (f)%, 1°(f°) = 5f°, 1°(f¢) = 5¢°,
E(Y = (2, 19(f°) = 0,41 = 182.5619,

Fig. 5. An example of Braess’ Paradox under pricing

The observation of Braess' Paradox motivated research in (0.} (are.d)
methods of upgrading the network capacity without degrading gt = 1825619, ¢'""7 = 193.5619
network performance. Some proposed methods were: The path flows at the WE are

1) Multiplying the capacity of each link by some constant

a,ct __ b,d} __ a,e,d} __
factor o > 1 [29, 30] or a link dependent facter; > f{ b= f{ b=2, f{ b=t

number of users [30]. The latency costs of the paths are
2) Adding a direct link between the source and the desti- bd p
nation [29, 30, 31]. ptoch = ik = 19, tecdt = 18,

3) Increasing the capacity of a direct link [30]. We next consider moving 0.5 units of flow from pdth, ¢, d}

These methods emerged as results of studies in sensiti§ypaths{a, ¢} and{b,d}. The resulting path flows are
analysis. In particular, methods (1)-(2) are motivated by the

sensitivity result that states that the equilibrium cost of an floch = ptod =95, flaed =,
OD pair is a monotone non-decreasing function of the cog,q the corresponding latency costs are
responding demand [22, 30, 33]. Method (3) is motivated by

the sensitivity result that states that improving the link latency flact = jtbdh — 18,75, [{aedh — 195,

funcnon_on only one link results in a decrease of the Iatel_ww nce, the flow that is moved frorfu, ¢, d} to alternative
on that link [22]. The methods proposed above are constraine hs experiences a higher latency cost. It can be seen that

: . ; a
by assumptions on link latency functions or users. Howev%f . 2 4 )

: ere is no flow distribution in which all flows experience
whether any assumption has been made or not, we can see

- improved latency costs.
that these methods are limited. . . _— )
. o . We next give two alternative definitions of Braess’ Paradox
Braess’ Paradox can be arbitrarily severe in many networks o ) . i .
. under pricing. The following notation will be useful in the
[23]. Most of the network design problems related to Braesa finiti . : o z
. definitions. Consider two feasible flow distributiohsand f
Paradox, such as the ones mentioned above, focus on flng-
. . . . such that
ing ways to avoid this undesired but common phenomenon.
Therefore, in the remainer of this section, we will examine the
implications of profit maximizing prices on Braess’ ParadoX.et h be the path flow vector defined in (3) and be a
Hagstrom and Abrams [28] gave a definition of Braesstansformation matrix such that
Paradox in a network without pricing: A Braess’ Paradox _
A-h=h. (48)

occurs if there exists some other distribution of flows for

which some flow have improved travel costs and no f|0Wence,Ai,jfj represents the amount of flow that is moved
has worse travel cost than in the equilibrium. This iS fom path j to pathi. Note that there are infinitely many
generalization of the classical Braess’ Paradox which refefansformation matriced satisfying Eq. (48).

to Change in network performance by addlng/deletlng a link. Definition 3: (Strong Braess’ Paradox): Let G be a

In [28], Hagstrom and Abrams showed a network whicheneral network. Given a price, let f be a WE. Let?(h) be
experiences a generalized Braess’ Paradox but no classtfgl|atency cost of routing one unit of flow on patas defined
Braess’ Paradox. in Eq. (7). A Strong Braess’s Paradox occurs if there exists

In a network without pricing, at a WE, all flows on the pathgome other distribution of path flowss, and a transformation
that belong to the same OD pair experience the same laten¢ys,ch that

Iy;= fk,j,v k,j.

cost. Therefore we can restate the generalized definition of A-h=h

Braess’ Paradox given above as: A Braess’ Paradox occurs in _ .

a network if there exists some other distribution of flows for Lrj=TrjV K J

which some pathshave improved latency costs amd path 17 (h) > » (R), forall p,p’ with Ay, £0,  (49)

has a worse latency cost than in the equilibrium. At a WE
with prices, flows on different paths may have different latenayith strict inequality for some, p’, whereA,, ,, is the (p', p)
costs. Therefore, there might exist some other flow distributi@mtry of matrixA.
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Under condition (49), no flow experiences a higher latendiilen Weak Braess’ Paradox also occurs. The following exam-
cost than in the WE. For a price vector in which the prices @ie shows that the reverse implication is not true. Consider the
all the paths that belong to an OD pair are the same, Definitiaetwork in Figure (5) with different functions:

(3) is consistent with the definition of Braess’ Paradox in a

network without pricing. For an example of Strong Braess’ _ 0.5 ja(gay _ (pa\2 7b( b\ _ orb
Paradox, we can consider the same network shown in Figure L= 368V6D"?, 1°(f) = (£)% I°(/*) = 37"
(5). The user sends data from node 1 to node 4. The user's

utility function, link latency functions, and path prices are o re . o re
given as: 1°(£9) = 5%, 14(f%) = (£, 1°(f°) = 0,

I'= 184\/6110.57 la(fa) =10/, lb(fb) = fb7
() = 17, 1 = 107, () = £,

g\t =50, ¢\»4 =50, gledt = 10. The path flows at the WE arg{ect = 2, flbdl =
1.5, fleedt —1 and the path latency costs are:

glo°t =193.4649, ¢4 = 201.7149, ¢l =197.2149

The path flows at the WE are
floch = flodh = plaed =9 Hoct = 19; 1{0dr = 10.75; ({0} = 15.25,

The latency costs of the paths are ]
Next, we move 0.5 units of flow from patfu, e, d} to each

ptoeh = 00t = g9, leedt = g9, of the paths{a,c} and {b,d} to get a new flow distribution:
flact = 25 flbdd — 9 and fleedt = 0. In this flow

We move one unit of flow from pata,e,d} t0 each of G wion the latency costs of the paths are

paths{a, c} and{b, d} in order to get a new flow distribution:
flact = flbdt — 3 and fleedt = 0. In this flow distribu-

tion, the latency costs of the paths are iteeh =18.75; 114 = 10; 1toedt = 10.25.
Hlact — {b.d} _ 33
33 We see that
Each unit of flow experiences a latency cost equal to 33, which
is less than the latency cost at the WE. Note that this price 18.75 < 19; 10 < 10.75

vector is not a monopoly price vector. Later, we will show

that under monopoly prices, Strong Braess’ Paradox does not

occur. 0.5 x 18.75+ 0.5 x 10 = 14.375 < 15.25.
Conditions in Definition (3) state that when Strong Braess’

Paradox occur, at the new flow distribution, some flows ha"ﬁlerefore in this example, Weak Braess' Paradox occurs.
lower latency cost and no flow has a higher latency cogigyever, it can be seen that there exists no flow distribution
We will next relax these conditions so that some flow may, \yhich all flows will encounter lower latencies than at the

encounter higher latency costs at the new flow distributiofyg Therefore Strong Braess’ Paradox does not occur.
but on average the latency encountered by the total flow W|IIWe next show that under monopoly prices, Weak Braess’

decrease. This leads to the following definition. . T
o ) ) i Paradox does not occur, which also implies that under
Definition 4: (Weak Braess’ Paradox): Let G be a gen- ) ,
monopoly prices, there can be no Strong Braess’ Paradox.

eral network. Given a price, let f be a WE. Leti?(h) o _ ,
be the latency cost of routing one unit of flow on path Proposition 5: Weak Braess’ Paradox does not occur under

under a path flowh and I(h) = [i?(h)],cp be the path MONOPoly prices. _
latency vector. A Weak Braess’s Paradox occurs if there exists Proof: We consider a general network. Let (f,q) be
some other distribution of path flows, under priceq and a an ME. Suppose that Weak Braess’ Paradox occurs under the

transformationA such that [nonopoly priceq. Then there exists another flow distribution
_ f satisfying Conditions (50) - (51). Now let us consider the
A-h=h price vectorqg defined by
Fk:,j :fk,jav k7] (50)

7" = uj, j(Crj7) — 1P (h) for somej’ € J, if peP
for some p’ '

with strict inequality for some’, whereA,, is thepth column @ =o0, if pg P
of A.
Condition (49) in Definition (3) imply Condition (51) in It can be seen thdtis a WE at priceq. In the following, we

Definition (4). Therefore, if Strong Braess' Paradox occurill examine the profit that the service provider makes under
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price Q. (for simplification, we do not include the entries that are 0 in
b all rows).
27T )
uy, e 0 Six|P| -1 - 0
_ ZZ? uy e 0 0O --- 0
e B P MPw-1)x 7] -
— Z Z f Uk] ij)flp(h)> uk},l 0 O _]_
PR 0 -1 - 0
o 10 (R SR N\ 7l x|P| Lo
= U j o (Thjr) Zf *ZZfl(h) 0o .- ug\JkI -1 -+ 0
PEPk k pePy -1 ... -1 Tixip| 0O --- 0
_ (T Z T, Let r; be thei® row vector ofR andr,(z) be the entry irr;
g ) ie7. J corresponding to variable. Note thatM can be a arbitrary
matrix, butN is a matrix with each of its row equal to vector
/ — S.
_ P D .
Z Z Z App f7 | 17(D) We first show that the vectorgry,---,rp,|17,} are
kopePe [ \P'EPs linearly independent. Let; € {r2,---,rp, 47}, then there
existsz such that;(x) # 0 butr; # Ofor all j # 4. Therefore,
= D uk;(Try) D Ty {ra,---.rp+17,} are linearly independent. Suppose that
k JETk ri can be written as a linear combination of vectors in
, N {ra, .1 p 4|7 - Again, we letr; € {ra, - |4 7}
- fP Z A, 1P (h) then there exists: such thatr;(z) # 0 butr;(z) = 0 for all
p pEP: j # i. Therefore,r; = 0. However,r; # 0 and therefore
it cannot be written as a linear combination of vectors in
_ Z o (Thgr) Z Ty, {rQ,-_- -,r|pk‘_+wk‘}. As a result, vectorgry, - -, rp, |17}
i7. are linearly independent.
C We then consider the last row,p, 1|7, +1, of R. We
Z fp Ay |(h)) assume it can be written as a linear combination of the vectors
k P n {rlv"'ar\Pkl-i-\jH}:
[Pk [Tk
> i (T v Ty
(Z g’ ];k 2J r\Pk|+\Jk|+1 =yl +Zyiri+2tjr‘pk|ﬂ-.
i=2 j=1
p’ P
Z f ; )) For eachr; € {ra,---,rp, |}, 3 @ such thatr; (z) # 0 but
k pEP ry(z) = 0 for all i’ # j'. Therefore,y; is 0 for all i =
, 2,---,|Px| and
ol LD SR B SO SR "
k

k p'€PL k p'€Pk . . + Zt )
! |Pe|+|Te|+1 = Y161 AT
ST (e ) >

’ p/e/pk We also see that
- pr ¢ ;
v [ Pe)+|7e)+1(¢7) = 0, and

The inequality follows from Egs. (50)-(51). The service rk,i(qpi) =—1, ifi=1,|Pk|+ 1, -, |Px| + | Txl
provider can make more profit by setting prigethan g.
Therefore,(f, q) is not an ME, which is a contradiction angTherefore, 7l
shows that Braess’ Paradox does not occur under monopoly
t; =0 52
prices. Q.E.D. o +Z ! (52)

However, since each row dfl is identical toS, Eqg. (52)
implies all entries inT are 0. This yields a contradiction.
Thereforer|p, |+|7,.1+1 can not be written as a linearly com-
Proof: Let ([f] 5. [I';];e7,q) be a feasible solution bination of the vectors ifry, - -, I\p, |+ |7, }. As aresult, the
of problem (31). LeC;, be the set of constraints gradients fowectors inC, are linearly independent.
OD pair k at ([f*],, [['j]jer,d), andC = UyCy. We first We next show that the vectors ¢hare linearly independent.
show that the vectors i are linearly independent. ConsidelLet W, be the subspace spanned by the vector§iinWe
the matrixR, where each row corresponds to a vectoCin will show W, N W, = {0} for k # k’. Assume there exist

APPENDIXI
PROOF OFLEMMA (4)



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATION,

a vectorw € Wy, Wy, andw # 0. Since 7, N J, = @ and [10]
P NP, =0 if k# k. Therefore, 1]
Wy ;) = 0. ji w(u ;1) = 0.Y 5 w(g”) =0.¥p. (53)
Now, we writew as a linear combination of the gradients 0{13]
Ck:
[P | Tkl 4
W=yl + Zyéfi + Zt}f\mm + QT 1Py | 1 T |1+
=2 j=1 [15]
For eachry € {ra,---,rp,}, 3 = such thatry (z) # 0 but [16]
ri(z) = 0 for all i' # j'. Therefore,y; is 0 for all i =
2,--+,|Px|. Therefore, [17]
| T
W=yir [ DG p | TPl (el
j=l1 [19]
Also, since 20]
1 1
W(g" ) = Th Py |+ 7 41 (¢7) = 0; [21]
(ri(qP%) = —1, for i =1, |Pe| + 1, |Pe| + | Tkl [22]
then,
| Tk | [23]
v+ =0 (54)
j=1 [24]
From (53), (54) and the fact that each row Mfis identical
to S, we can see
[25]
w = [07"'7071-’0’"'70]
[26]
By applying the same argument to OD péait we also have 271
Sw=1[0,---,0,T",0,---,0]
[28]

However, sincek # k', T # T'. So by contradiction\V), N
Wy = {0} for k # k’. Since the vectors iffy, form a basis of

Wi, we conclude that the vectorsdhare linearly independent. [29]

Q.E.D.
[30]
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