
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATION, 1

Efficiency and Braess’ Paradox under Pricing in
General Networks

Xin Huang, MIT, Asuman Ozdaglar,Member, IEEE,, and Daron Acemoglu, MIT

Abstract— We study the flow control and routing decisions
of self-interested users in a general congested network where a
single profit-maximizing service provider sets prices for different
paths in the network. We define an equilibrium of the user
choices. We then define the monopoly equilibrium (ME) as the
equilibrium prices set by the service provider and the corre-
sponding user equilibrium. We analyze the networks containing
different types of user utilities: elastic or inelastic. For a network
containing inelastic user utilities, we show the flow allocations at
the ME and the social optimum are the same. For a network
containing elastic user utilities, we explicitly characterize the ME
and study its performance relative to the user equilibrium at 0
prices and the social optimum that would result from centrally
maximizing the aggregate system utility. We also define Braess’
Paradox for a network involving pricing and show that Braess’
Paradox does not occur under monopoly prices.

Index Terms— Service provider, pricing, efficiency, Braess’
paradox.

I. I NTRODUCTION

DESPITE the significant increase in bandwidth, manage-
ment of congestion is still a major problem in commu-

nication networks. Such management typically involves two
elements: flow control, i.e., the control of the amount of
data sent by various users, and routing, i.e., the control of
the route choices of data transmitted in the network. The
standard approach to both flow control and routing is the
regulation of network traffic in a centralized manner by a
network manager (planner) with complete information about
user needs and command over user actions, resulting in
the so-calledsystem or social optimum. Todays’s networks
emerged from interconnection of privately owned networks
and serve heterogeneous users with different service needs.
This motivated the need for the analysis of resource allocation
in the presence of agents with multitude of economic interests
and service requirements. Consequently, a recent theoretical
literature considers a distributed control paradigm in which
some network control functions are delegated to users and
studies the selfish flow choices and routing behavior of users
in the absence of central planning (see, among others, [2]-
[10]). These models show that selfish behavior typically leads
to allocations that are highly inefficient from a system point
of view (e.g., too much flow or the wrong routing choices).
The reason for this divergence between system optimum and
user equilibrium is that users do not take into account the
congestion that they cause for other users.

The fact that selfish behavior leads to inefficiency in perfor-
mance has been well-recognized since the early work of Pigou
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[38]. There is a recent interest for quantifying this inefficiency,
referred to as theprice of anarchy (POA), which is defined as
the ratio of the performance of user equilibrium to the social
optimum. In [34], Koutsoupias and Papadimitriou consider
a two-link network with users that have fixed demands and
study the performance of selfish routing. They provide a
tight analysis of the ratio of the worst-case user equilibrium
and the social optimum. The tight analysis of a parallel-link
network with arbitrary number of links is given by Czumaj
and Vöcking [35]. A recent paper by Roughgarden and Tardos
[8] studies the POA for selfish routing for a general topology
network. They show that when the latency functions are affine,
the total latency of a user equilibrium is at most 4/3 of the
minimum total latency (that is achieved at the social optimum).
However, for more general convex latency functions, the total
latency at the user equilibrium can be arbitrary large. The POA
has also been studied for other types of resource allocation
problems, such as resource allocation by market mechanisms
(Johari and Tsitsiklis [10], Sanghavi and Hajek [42]) and
network design (Anshelevich et. al. [43]).

In many real world networks, information is indeed decen-
tralized and users are selfish, but they do also face prices and
restrictions set by the service provider in the network. In most
game-theoretic analysis of networking problems, pricing has
been used as a means to cope with the inefficiency created by
selfish users. In [4], Kelly shows that the network manager
can use implicit prices (congestion signals) to induce the rate
allocation that maximizes the total user utility. Similar results
are given by Low and Lapsley in [5], Yaı̈che, Mazumdar, and
Rosenberg in [36], and Korilis, Lazar, and Orda in [41]. There
are many other works that study pricing as a tool to achieve
efficiency. (see [36],[37] and the references therein) However,
with a few exceptions ([7], [13], [14], [15]), the game-theoretic
interaction between users and service providers have largely
been neglected. In [7], Basar and Srikant analyze monopoly
pricing under specific assumptions on the utility and latency
functions. In [15], He and Walrand propose a fair revenue
sharing scheme for multiple service providers under specific
demand models. In [13], Acemoglu and Ozdaglar analyze
equilibrium flows and routing in a parallel-link network and
show how profit-maximizing prices from the viewpoint of
the service provider typically also play the role of efficiently
regulating data transmission.

In this paper, we analyze the equilibrium of a model that
incorporates a self-interested service provider and study the
performance gap between the equilibrium and the system
optimum in a network with a general topology. Analysis
of a general network is considerably more difficult than
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networks with parallel links. For a given price, we provide
a characterization of the user equilibrium of flow rates and
routing decisions under the standard Wardrop assumption that
each user is small (thus ignores the effect of their decisions
on aggregate congestion). Furthermore, we provide a full
characterization of the “monopoly equilibrium”, i.e., profit-
maximizing prices from the viewpoint of service provider
and the resulting allocations. We show that for the case of
routing with participation control (see Sec. III, which natu-
rally corresponds to the inelastic user utilities), the monopoly
equilibrium achieves the system optimum. This result contrasts
with pervasive inefficiencies in the routing models with selfish
agents, for example, as in [8]. For the case of elastic user
utilities, monopoly pricing introduces a distortion and induces
users to reduce their flow rates. The performance of the
monopoly equilibrium relative to a situation without prices and
to the social optimal depends on the extent of the congestion
effects (externalities). When these are important, the monopoly
equilibrium, which forces users to internalize these effects,
performs relatively well.

An important problem in general network topologies is the
potential for network performance to deteriorate as a result
of increasing network resources, which is also referred to as
Braess’ paradox [16]. A simple example of this is the possi-
bility of the addition of a new link to increase congestion on
all links in the network. Previous research has focused on the
detection of Braess’ paradox on specific network topologies
and restrictions on methods of network upgrade for preventing
it. We study the effects of profit-maximizing prices on Braess’
paradox, and show that at the monopoly prices, there can never
be Braess’ paradox, so for-profit incentives appear sufficient
to eliminate this type of paradoxical outcomes.

The rest of the paper is organized as follows. Section II
describes the network topology and user preferences, provides
the definition of a user equilibrium, and monopoly equilibrium.
Section III shows the efficiency of the monopoly equilibrium
in the case of users with inelastic utility. Section IV discusses
the monopoly equilibrium in the case of users with elastic
utility. It first analyzes the sensitivity of the equilibrium alloca-
tions to prices. Then, it defines and characterizes the monopoly
equilibrium, and provides a comparison of the monopoly equi-
librium with the social optimum. Finally, Section V discusses
Braess’ paradox under pricing.

II. M ODEL: USEREQUILIBRIUM , MONOPOLY

EQUILIBRIUM , AND SOCIAL OPTIMUM

We consider a directed networkG = (V, E) where V
denotes the set of nodes andE denotes the set of links. We
assume that there arem origin-destination (OD) node pairs
{s1, t1}, ..., {sm, tm}, and we denote the set of OD pairs by
W. For each OD pair{sk, tk} ∈ W, there areJk users,
belonging to setJk, that send data from nodesk to node
tk through paths that connectsk and tk. We also denote the
set of paths betweensk andtk by Pk and the set of all paths
in the network byP = ∪k∈WPk. We say a linke ∈ p when
the link lies along the pathp.

To facilitate our analysis, we first introduce some of the
notations that we will use in the discussion. We denotefp

k,j to

be the flow1 of userj of OD pair k on pathp wherej ∈ Jk

andp ∈ Pk. We then use

fp =
∑

j∈Jk

fp
k,j

to represent the total flow on pathp and

fe =
∑

k

∑

j∈Jk

∑

{p|e∈p,p∈Pk}
fp

k,j =
∑

k

∑

{p|e∈p,p∈Pk}
fp (1)

to represent the total flow (link load) on linke. We also use
the following notation to represent different flow vectors:

g : [fe]e∈E , vector of link loads. (2)

h : [fp]p∈P , vector of path flows. (3)

f k : [fp]p∈Pk
, vector of path flows of OD pairk. (4)

f k,j : [fp
k,j ]p∈Pk

, vector of path flows of userj. (5)

f : [fp
k,j ]p∈Pk,j∈Jk,k∈W , vector of flows of all (6)

users.

Finally, we denote

Γk,j =
∑

p∈Pk

fp
k,j .

to be the total flow rate of userj.
In the absence of central regulation, we assume that each

user in the network is interested in his own payoff. This payoff
should reflect the tradeoff between the utility of sending data
and the disutility of incurred delays and monetary costs during
transmission. We next formalize the user payoff function.

We assume each userj ∈ Jk receives a utility ofuk,j(Γk,j).
Depending on the application service requirements, the utility
function takes different forms. Shenker [9] categorized ap-
plications into two main classes based on their service re-
quirements:inelastic and elastic applications. Real-time voice
and video applications require a fixed amount of bandwidth
for adequate QoS, hence are inelastic in their demand for
bandwidth. Therefore, it is reasonable to model their utility as
a step function, see Figure 1(a). On the other hand, traditional
applications such as e-mail and file transfer are elastic; they are
tolerant of delay and can take advantage of even the minimal
amounts of bandwidth. The utility function in this case can
be represented as a nondecreasing and concave function, see
Figure 1(b). We assume that each user is using only one
application. A user who is using multiple applications can be
viewed as multiple users, each using one application. Different
users might have different utility functions even though they
are using the same type of application, representing different
preferences. We say that a user with an inelastic (elastic) ap-
plication has an inelastic (elastic) utility function. Both utility
classes can be analyzed within the framework introduced here.

To model delays incurred during transmission, we assume
that each linke has a flow-dependent latency functionle(fe)
wherefe is link load on linke [cf. Eq. (1)]. The latency cost
of sending one unit of flow on pathp is then given by

∑
e∈p

le(fe) (7)

1We use the term flow to represent the data stream that the user sends.
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Fig. 1. a) Inelastic utility as a function of flow rate. b) Elastic utility as a
function of flow rate.

and the latency of sendingfp
k,j units of flow along pathp is

given by ∑
e∈p

le(fe)fp
k,j .

The additive latency cost is an assumption that is used ex-
tensively in communication and transportation literature. In
practice, the end-to-end delay encountered by the flows may
depend on other factors than the link loads. For example, in the
Internet, there is a processing delay on each node associated
with the total flow entering the node (see [41]). The end-to-
end delay may also have more complicated structures than the
additive structure defined in Eq. (7). Nevertheless, our model
provides a tractable framework for capturing the essential
aspects of queueing delay and is a good approximation to
delay costs in real networks (see [39]).2

For the cost of services, we assume that the service provider
charges a priceqp per unit of bandwidth for pathp. We denote
q to be the price vector[qp]p∈P . Given the prices set by the
service provider, the goal of each user in the network is to
maximize his own payoff. Note that an alternative model is one
in which the service provider charges prices for links rather
than paths. However, it can be seen that the service provider
can make more profit by charging prices for the paths.

2Qiu et. al. have discussed some representative link latency functions for
the Internet in [39].

We will adopt the following assumptions on utility and link
latency functions.

Assumption 1: Assume that for each userj ∈ Jk, the
utility function uk,j is nondecreasing. For elastic user utility
functions, we further assume that the functions are strictly
concave, continuously differentiable, and0 < u′k,j(0) < ∞.
We also assume that for each linke, the latency functionle is
continuous and strictly increasing.

We next define the user payoff function: For a given price
q, each userj chooses his path flowsf k,j to maximize his
payoff function

vk,j(f k,j ; g, q) = uk,j(Γk,j)−
∑

p∈Pk

(∑
e∈p

le(fe)

)
fp

k,j

−
∑

p∈Pk

qpfp
k,j . (8)

whereg is defined in (2).
As is common in traffic equilibrium models used in trans-

portation and communication networks, we assume that each
user is small, thus focus on Wardrop Equilibria, where the
individual user does not anticipate the effect of his flow
on the total level of congestion. [1, 8, 13] This appears as
a realistic assumption in today’s large-scale data networks
such as the Internet and transportation networks. Standard
arguments establish that Wardrop equilibria are obtained as
estimates of Nash equilibria as the number of users go to∞
(see [18]).

Definition 1: Let f be the vector of flows of all users in the
network that is defined in (6). For a given price vectorq≥ 0,
a flow vectorf∗ is a Wardrop equilibrium (WE) of the user
game if

f∗k,j ∈ arg max
f

k,j
≥0

vk,j(fk,j ; g, q), ∀ j ∈ Jk, k ∈ W,

fe =
∑

k

∑

j∈Jk

∑

p|e∈p,p∈Pk

(f∗)p
k,j , ∀ e ∈ E .

Hence, each price vector induces a WE among the users.
The service provider (monopolist) chooses the price vector to
maximize his profit. The maximization problem can be written
as:

max
q≥0

∑
p

qpfp(q), (9)

wherefp(q) is the flow on pathp at a WE for a given price
vectorq. We will show in later sections that under Assumption
(1), Problem (9) has an optimal solution, which we denote by
q∗. We refer toq∗ as themonopoly price. Let f ∗ = f (q∗) be
the flow vector at a WE for priceq∗. Then we call(q∗, f ∗)
the monopoly equilibrium(ME) of the problem.

To study the performance of the ME, we compare the total
system utility at the equilibrium with the total system utility at
the network’s social optimum. A flow f is a social optimum
if it maximizes the total system utility:

∑

k∈W

∑

j∈Jk


uk,j(Γk,j)−

∑

p∈Pk

(∑
e∈p

le(fe)

)
fp

k,j


 . (10)
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We can view the social optimum as the allocation that would
be chosen by a network planner, which has full information
and control over the network. The allocation at an ME is not
necessarily the same as the social optimum. In the following,
we analyze the performance of the ME relative to the social
optimum for both inelastic and elastic user utilities. The
different structure of the utility functions introduces significant
differences in the analysis and the resulting performances of
these utility classes.

III. I NELASTIC USERUTILITY (ROUTING WITH

PARTICIPATION CONTROL)

We first analyze a network containing users with inelastic
utility functions. When a user has an inelastic utility function,
it can be seen from Eq. (8) that at a given price vector, he either
sends a fixed amount of data or decides not to participate in the
network. Hence, the problem with inelastic utility functions is
a routing problem, where userj is interested in choosing the
paths to send his fixed amount of data, saytk,j units; but he
also has the option of not sending any data when it is costly
to do so. This is also a natural model to study the routing
problem in the presence of service providers since it prevents
the service provider from charging infinite prices. We refer to
this problem asthe routing problem with participation control.
This problem was studied for parallel link networks in [13].
Here, we extend this analysis to general networks.

The problem can be modelled using the following utility
function for userj

uk,j(x) =
{

0, if 0 ≤ x < tk,j ,
tk,j , if x ≥ tk,j ,

(11)

together with binary variableszk,j which indicate whether user
j chooses to participate or not, i.e.,zk,j = 1 if user j decides
to sendtk,j units of data, andzk,j = 0 if he decides not to
send any data. Denotez to be the vector[zk,j ]j∈Jk,k∈W . The
user equilibrium of this problem can be defined as follows.

Definition 2: For a given price vectorq ≥ 0, a vector
(f∗, z∗), is a WE of the routing problem with participation
control if for all k and all j ∈ Jk,

(f∗k,j , z
∗
k,j) ∈ arg max

f
k,j
≥0,zk,j∈{0,1}


uk,j(Γk,jzk,j)−

∑

p∈Pk

(∑
e∈p

(le(fe)) + qp

)
fp

k,j



 , (12)

fe =
∑

k

∑

j∈Jk

∑

p|e∈p,p∈Pk

(f∗)p
k,j , ∀ e ∈ E ,

whereuk,j is given by Eq. (11).
Since the utility function [Eq. (11)] is not concave, we

cannot guarantee the existence of a WE for any price vector. In
fact, a WE may not exist for some price vectors. For example,
consider a network that consists of one directed link where
two users,A andB, send data through this link. Assume that
tA = 1, tB = 1.5, l(x) = 1

2x. It can be seen that if the price
of the link is 0, a WE does not exist. In the same example,
however, one can also show that the profit-maximizing price
set by the monopolist is 0.5, and at this price, there exists

a WE in which A sends his data and B does not. In the
following, we show that at the monopoly price, there exists a
WE, which moreover achieves the social optimum. (i.e., the
flow allocations at any ME and the social optimum are the
same). For consistency, we define the social optimum for the
inelastic utility case as a vector(f , z) that maximizes the total
system utility:

∑

k∈W

∑

j∈Jk


uk,j(Γk,jzk,j)−

∑

p∈Pk

(∑
e∈p

le(fe)

)
fp

k,j


 .

(13)
Proposition 1: Consider a routing problem with participa-

tion control.

1) There exists a monopoly priceq, and a WE(f, z) at price
q.

2) A vector(f, z) is a social optimum if and only if there
exists a price vectorq such that(q, (f, z)) is an ME.

Proof: To establish this proposition, we first prove two
lemmas. The first lemma gives a characterization of a WE
at any price vector and the second one gives an explicit
characterization of the monopoly price. The first lemma is
proved by exploiting the linear structure of problem (12).

Lemma 1:For a given price vectorq ≥ 0, a vector(f, z),
with fk,j ≥ 0, zk,j ∈ {0, 1} ∀ k, j, is a WE if and only if it
satisfies the following conditions:

1) fe =
∑

k

∑
j∈Jk

∑
p|e∈p,p∈Pk

fp
k,j , ∀ e ∈ E .

2) If zk,j = 1,
∑

p∈Pk
fp

k,j = tk,j .
3) If zk,j = 0, fp

k,j = 0 for all p ∈ Pk.
Define the set

Pk =

{
p | p ∈ Pk and

∑
e∈p

le(fe) + qp ≤

min{1, min
m∈Pk

{
∑
e∈m

le(fe) + qm}}
}

.

4) If p /∈ Pk, thenfp
k,j = 0, ∀ j ∈ Jk.

5) If minm∈Pk
{∑e∈m le(fe) + qm} < 1, thenzk,j =

1 for all j ∈ Jk and k.

Proof: The proof of the necessity of conditions (1) - (5)
is immediate. We show that these conditions are sufficient. We
rewrite problem (12) as:

(f ∗k,j , z
∗
k,j) ∈ arg max

f
k,j
≥0,zk,j∈{0,1}


tk,jzk,j −

∑

p∈Pk

(∑
e∈p

le(fe) + qp

)
fp

k,j



 (14)

s.t.
∑

p∈Pk

fp
k,j = tk,j , if zk,j = 1. (15)

Let (f̄ , z̄) be a vector satisfying conditions (1) - (5). To show
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that this vector is a WE, we show that for allj,


tk,j z̄k,j −

∑

p∈Pk

(∑
e∈p

le(fe) + qp

)
f̄p

k,j





>



tk,jzk,j −

∑

p∈Pk

(∑
e∈p

le(fe) + qp

)
fp

k,j



 , (16)

where

fe =
∑

k

∑

j∈Jk

∑

p|e∈p,p∈Pk

f̄p
k,j , ∀ e ∈ E ,

and(f k,j , zk,j) is any feasible solution of problem (14). Note
that thefe on the both sides of inequality (16) are the same
for all e since each user is small and does not anticipate the
effect of his flow on the total level of congestion. Now, we
consider an arbitrary userj ∈ Jk. There are two cases:
Case 1: zk,j 6= z̄k,j .

First consider the casēzk,j = 0 andzk,j = 1. By condition
(3), z̄k,j = 0 implies that f̄p

k,j = 0 ∀ p. Therefore, userj’s
payoff is 0 at(f̄ k,j , z̄k,j). By condition (5), we further have

min
m∈Pk

{∑
e∈m

le(fe) + qm

}
≥ 1.

Since zk,j = 1, this shows that userj’s payoff is less than
or equal to 0 at(f k,j , zk,j). Next assume that̄zk,j = 1 and
zk,j = 0. Condition (4) implies that userj’s payoff is greater
than or equal to 0 at(f̄ k,j , z̄k,j). However,zk,j = 0 implies
by problem (14) that userj’s payoff is less than or equal to
0 at (f k,j , zk,j). Therefore, for both cases, userj’s payoff at
(f̄ k,j , z̄k,j) is greater than or equal to his payoff at(f k,j , zk,j).
Case 2: zk,j = z̄k,j .

For the case wherezk,j = z̄k,j = 0, userj’s payoff is 0 at
(f̄ k,j , z̄k,j) [cf. condition (3)] and is less than or equal to 0
at (f k,j , zk,j). Next, we look at the case wherezk,j = z̄k,j =
1. By condition (4), it follows that for all pathsp such that
f̄p

k,j > 0, we have

∑
e∈p

le(fe) + qp = min

{
1, min

m∈Pk

{
∑
e∈m

le(fe) + qm}
}

.

In view of the linear structure of the problem, this shows that
user j’s payoff at (f̄ k,j , z̄k,j) is greater than or equal to his
payoff at (f k,j , zk,j). Q.E.D.

For the second lemma, we consider the monopoly problem
for the routing problem with participation control,

max
∑

p∈P
qpfp (17)

subject to fp =
∑

j∈Jk

fp
k,j , ∀ p ∈ P ,

q≥ 0,

(f , z) ∈ G(q),

whereG(q) is the set of vectors(f , z) that satisfy conditions
(1)-(5) of Lemma 1.

Lemma 2:Let (q, (f, z)) be an ME. Then, for allp with
fp > 0, we have

qp = 1−
∑
e∈p

le(fe). (18)

Proof: Since(f , z) is a feasible solution of problem (17),
(f , z) is a WE. Letp be a path inPk with positive flow (fp >
0). By condition (4) in Lemma 1, we havep ∈ Pk. Therefore,
by condition (3) we have

qp +
∑
e∈p

le(fe) ≤ 1.

Now, assumeqp +
∑

e∈p le(fe) < 1, then for everyp′ ∈ Pk

with fp′ > 0 we have

qp +
∑
e∈p

le(fe) = qp′ +
∑

e∈p′
le(fe)

< min

{
1, min

m/∈Pk

∑
e∈m

le(fe) + qm

}
,

∀ p′ ∈ Pk.

Hence, there exists someε > 0 such that

qp′ +
∑

e∈p′
le(fe) + ε <

min

{
1, min

m/∈Pk

∑
e∈m

le(fe) + qm

}
, ∀ p′ ∈ Pk.

Now, let q′ = q + em, whereem is a |P|-dimensional vector
with value ε in the mth component if m ∈ Pk, and 0
otherwise. We can verify that, given price vectorq′, (f , z)
satisfies all of the conditions in Proposition 1. Therefore,(f , z)
is a WE at priceq′. However,(q′, (f , z)) has a strictly higher
objective value than(q, (f , z)), which contradicts the fact that
(q, (f , z)) is an ME. Therefore,qp = 1 − ∑

e∈p le(fe) for
every p with fp > 0. Now if fp = 0, condition (5) implies
qp ≥ 1−∑

e∈p le(fe). Q.E.D.
We now return to the proof of Proposition 1. We first

consider the following problem.

max
∑

p∈P
qpfp (19)

subject to fp =
∑

j∈Jk

fp
k,j , ∀ p ∈ P,

qp = 1−
∑
e∈p

le(fe), if fp = 0,

qp ≥ 0, if fp > 0,

(f , z) ∈ G(q),

whereG(q) is the set of vectors(f , z) that satisfy conditions
(1)-(5) of Lemma 1. It can be shown that(q, (f , z)) is an
optimal solution of problem (17) if and only if there exists a
price q̄ such that(q̄, (f , z)) is an optimal solution of problem
(19).
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Now, we can rewrite problem (19) as

max
∑

p∈P
(1−

∑
e∈p

le(fe))fp

subject to fp =
∑

j∈Jk

fp
k,j , ∀ p ∈ P

∑

p∈Pk

fp
k,j = tk,j , if zk,j = 1,

fp
k,j = 0, ∀ p ∈ Pk, if zk,j = 0,

f k,j ≥ 0, zk,j ∈ {0, 1}, ∀ j ∈ Jk, ∀ k,

or equivalently,

max
f

k,j
≥0,zk,j∈{0,1}

∑

k

∑

j∈Jk

(
zk,jtk,j −

∑

p∈Pk

∑
e∈p

le(fe)fp
k,j

)
(20)

subject to fp =
∑

j∈Jk

fp
k,j , ∀ p ∈ P,

∑

p∈Pk

fp
k,j = tk,j , if zk,j = 1

f k,j ≥ 0, zk,j ∈ {0, 1}, ∀ j ∈ Jk,∀ k.

This problem has an optimal solution (since for eachz,
the objective function is continuous and the constraint set is
compact). This proves part (1) of Proposition 1. For part (2),
we notice that problem (20) is the same as the social problem
that maximizes the aggregate system utility as defined by Eq.
(13). Hence, the result in part (2) of Proposition 1 follows.
Q.E.D.

IV. ELASTIC USERUTILITY

In this section, we study a network containing users with
elastic utility functions.

A. Existence, Essential Uniqueness, and Price Sensitivity

Each price vectorq defines a user subgame. Given the price
vector, users play this subgame by choosing the flow rates and
path flows that maximize their payoffs. If a WE exists, then at
this WE, no user can increase his payoff by any deviation, so
he does not have any incentive to deviate. We make a further
assumption on link latency functions:

Assumption 2: Assumele(fe) → ∞ as fe → Ce, where
Ce denotes the available capacity on linke.

This assumption on the latency functions serves to guarantee
that no individual has an infinite demand. This assumption
could be relaxed by assuming that, for eachj, there exists a
nonzero scalarBj such thatu′j(Bj) = 0, which holds for the
inelastic utility case.

Proposition 2: (Existence-Essential Uniqueness)Let As-
sumptions (1) and (2) hold. For a given price vectorq, let the
payoff function for each user in the network be defined as Eq.
(8). Then for anyq≥ 0, the user game has a WE. Moreover,
the user flow rates and link loads at any WE are unique.

The proof uses standard arguments used in transportation
and communication networks literature (see [19,20]), and is

therefore omitted. Essential uniqueness of a WE is important
for our analysis, since it implies that total flows on each path
are uniquely defined. This result does not, however, imply
the uniqueness of a WE. In fact, it is easy to establish that
when there is one OD pair with at least two users with
positive equilibrium flows and at least two paths with positive
total flows, then there are infinitely many WEs.3We use this
property of a WE in proving the following result, which will
be essential in our subsequent analysis.

Lemma 3:Let Assumptions (1) and (2) hold. Given any
price q ≥ 0, let f be a WE, andΓ be the flow rate at price
q. Let fp be the flow on pathp. Also definePk = {p | fp >
0, p ∈ Pk} and Jk = {j | Γk,j > 0, j ∈ Jk} for everyk.
Then

1) For everyk, if p ∈ Pk and j ∈ Jk,

u′k,j(Γk,j)−
∑
e∈p

le(fe)− qp = 0.

2) There exists a WEf such thatfp
k,j > 0 for all p ∈ Pk ,

j ∈ Jk, and for all k.
Proof: 1) Let p ∈ Pk, andj ∈ Jk. SinceΓk,j > 0, there

exists some paths such thatfs
k,j > 0, which implies by the

first order conditions that

u′k,j(Γk,j)−
∑
e∈s

le(fe)− qs = 0 (21)

and

u′k,j(Γk,j)−
∑

e∈s′
le(fe)− qs′ ≤ 0, ∀ s′ ∈ Pk.

Combining the preceding two relations, we obtain
∑

e∈s′
le(fe) + qs′ ≥

∑
e∈s

le(fe) + qs, ∀ s′ ∈ Pk.

Therefore,

∑
e∈s

le(fe) + qs = min
s′∈Pk

{∑

e∈s′
le(fe) + qs′

}
. (22)

Now, sincefp > 0, there exists somej′ such thatfp
k,j′ > 0.

Then,
u′k,j′(Γk,j′)−

∑
e∈p

le(fe)− qp = 0

and

u′k,j′(Γk,j′)−
∑

e∈s′
le(fe)− qs′ ≤ 0, ∀ s′ ∈ Pk.

So, we have

∑
e∈p

le(fe) + qp = min
s′∈Pk

{∑

e∈s′
le(fe) + qs′

}
. (23)

From equations (22) and (23), we get
∑
e∈p

le(fe) + qp =
∑
e∈s

le(fe) + qs. (24)

3This is because, for such user game, we can construct a new WE from a
given WE by interchangingε units of userj1’s flow on pathp1 with ε units
of userj2’s flow on pathp2 (wherep1 andp2 belong to the same OD pair
andε is less than or equal to the minimum ofj1’s flow on pathp1 andj2’s
flow on pathp2).
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Fig. 2. A network that violates the monotonicity of flow rates and the
monotonicity of link loads.

Substituting equation (24) into equation (21) yields the result

u′k,j(Γk,j)−
∑
e∈p

le(fe)− qp = 0.

2) Let f be a WE at the priceq. We construct a new flow
f̃ in the following way: If j /∈ Jk or p /∈ Pk, set f̃p

k,j = 0.
Otherwise, set

f̃p
k,j =

Γk,jf
p

∑
p∈Pk

fp

which is > 0 becausej ∈ Jk andp ∈ Pk. Now, since

f̃p =
∑

j∈Jk

f̃p
k,j = fp, ∀ p ∈ P

and
Γ̃k,j =

∑

p∈Pk

f̃p
k,j = Γk,j , ∀ j ∈ Jk, k ∈ W.

f̃ is a WE such that̃fp
k,j > 0 for all p ∈ Pk , j ∈ Jk, and for

all k. Q.E.D.

It is informative to understand how link loads and users’
flow rates change with prices. There are two natural conjec-
tures in this context: As the price of a particular path increases,
the amount of data transmitted on the other paths increase.
Similarly, the flow rate of each user is a nondecreasing
function of the price vector. These results were proven for
networks with parallel links in [13]. The same results do not
generalize to a general network topology, however.

In a general network where there are no prices and users
have fixed demands, improving the latency function of one link
(i.e., replacingle(x) with le(x) such thatle(x) ≤ le(x) ∀ x
for some linke) while keeping the rest unchanged, may cause
all users to encounter higher latency costs. This phenomenon
is known as the Braess’ Paradox. We next demonstrate such
a counterintuitive phenomenon in a network with users with
elastic utilities. Consider the example in Figure 2, where a
single user sends flow from node 1 to node 4. Assume that
the user’s utility function isu(Γ) = 184

√
8Γ0.5, and the link

latency functions are given by

la(fa) = 10fa, lb(f b) = f b, lc(fc) = f c,

ld(fd) = 10fd, le(fe) = fe, lg(fg) = fg.

Given the price vectorq, where q{a,c} = 50, q{b,d} =
50, q{a,e,d} = 10, q{g} = 90, the path flows at the WE
are f{a,c} = f{b,d} = f{a,e,d} = f{g} = 2. Consider
another price vectorq where we increase the price of path
{a, e, d} to 14. Given q, the path flows at the new WE are

f
{a,c}

= f
{b,d} ≈ 3.032, f

{a,e,d} ≈ 0.792, f
{g} ≈ 1.2721.

However,

f
{g}

< f{g} = 2, andΓ ≈ 8.1281 > Γ = 8.

This shows that at a higher price vector, the flow on an
alternative path decreases and the total flow rate of the user
increases. We will study Braess’ paradox in general networks
in more detail in Sec. V.

B. Monopoly Price, Social Optimum, and Performance

In this section, we provide an explicit characterization of
the monopoly price and compare the system performance at
the monopoly equilibrium with the social optimum. Recall that
the monopoly problem is

max
q≥0

∑
p

qpfp(q),

wherefp(q) is the flow on pathp at a WE for a given price
vectorq. Under Assumptions 1 and 2, we can assume

0 ≤ qp ≤ min
j∈Jk

u′k,j(0), ∀ p ∈ Pk, k,

and by an argument similar to the one given in [13], we
can show thatfp(q) is continuous inq for all p. Therefore,
problem (9) has an optimal solution. We now look at the
following proposition which is essential to our analysis.

Proposition 3: Let Assumptions (1) and (2) hold, and let
(q, f) be an ME. LetP = ∪kPk wherePk = {p|p ∈ Pk, fp >
0}. Thenqp > 0, ∀ p ∈ P.

Proof: To arrive at a contradiction, we assume that there
exists a pathp′ ∈ Pk′ andqp′ = 0. From Lemma 3, we know
that sincep′ ∈ Pk, there exists some WE such that for all
j ∈ Jk′ , fp′

k′,j > 0. Sinceuk′,j is strictly concave andu′k′,j is
continuous, we can pick anε > 0 such that for everyj ∈ Jk′ ,
there exist a0 < δj < fp′

k′,j satisfies the following equation.

u′k′,j(Γk′,j − δj)− u′k′,j(Γk′,j) = ε

Notice that for everye ∈ p′, fe >
∑

j∈Jk′
δj . We define a

new price vectorq as

qp = qp +
∑

e|e∈p,e∈p′


le(fe)− le(fe −

∑

j∈Jk′

δj)


 + ε,

if p ∈ Pk′ ;

qp = qp +
∑

e|e∈p,e∈p′


le(fe)− le(fe −

∑

j∈Jk′

δj)


 ,

otherwise. (25)
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Sincel is strictly increasing,qp > qp if p ∈ Pk′ andqp ≥ qp

otherwise. Now consider the flowf that satisfies the following
conditions:

f
p′

k′,j = fp′

k′,j − δj , ∀ j ∈ Jk′

f
p

k,j = fp
k,j , otherwise. (26)

Now, we will show f is a WE for the price vectorq. From
Eqs. (26), we have

f
e

= fe −
∑

j∈Jk′

δj , if e ∈ p′;

f
e

= fe, otherwise

Γk′,j = Γk′,j − δj , ∀ j ∈ Jk′ ;
Γk,j = Γk,j , otherwise. (27)

From Eqs. (25) and (27), we see that for everyp ∈ Pk′ and
j ∈ J k′

u′k′,j(Γk′,j)
= u′k′,j(Γk′,j − δj)
= u′k′,j(Γk′,j) + ε

≤
∑
e∈p

le(fe) + qp + ε

=
∑
e∈p

le(fe)−

∑

e|e∈p,e∈p′


le(fe)− le(fe −

∑

j∈Jk′

δj)


 + qp

=
∑
e∈p

le(fe)−
∑

e|e∈p,e∈p′

(
le(fe)− le(f

e
)
)

+ qp

=
∑
e∈p

le(f
e
) + qp. (28)

We know f
p

k′,j > 0 iff fp
k′,j > 0. Hence, the equality of Eq.

(28) holds iff
p

k′,j > 0. Similarly, for everyp ∈ Pk, j ∈ J k,
andk 6= k′

u′k,j(Γk,j)
= u′k,j(Γk,j)

≤
∑
e∈p

le(fe) + qp

=
∑
e∈p

le(fe)−

∑

e|e∈p,e∈p′


le(fe)− le(fe −

∑

j∈Jk′

δj)


 + qp

=
∑
e∈p

le(f
e
) + qp. (29)

Again, the equality of Eq. (29) holds iff
p

k,j > 0. For priceq,
Eqs. (28) and (29) show thatf satisfies the first order necessary
and sufficient conditions:

u′k′,j(Γk′,j)−
∑
e∈p

le(f
e
)− qp

{
= 0, if f

p

k,j > 0;
≤ 0, if f

p

k,j = 0.

Therefore,f is a WE with priceq. However, sinceqp′ > q

andf
p′

> 0
f

p′
qp′ > 0. (30)

Then equation (30) together withq≥ q andqp′ = 0
∑

p∈P
f

p
qp = f

p′
qp′ +

∑

p6=p′
f

p
qp >

∑

p6=p′
fpqp =

∑

p∈P
fpqp.

Therefore,(f , q) is not an ME and this yields a contradiction.
Hence, the result follows. Q.E.D.

Now, we can derive an explicit characterization of the
monopoly prices. Let(f , q) be a ME and for eachk, let Ik =
{1, · · · , |Pk|} be the set of indices ofPk and {1, · · · , |Jk|}
be the set of indices ofJk. We also denotepi

k to be theith

path for OD pairk. Without loss of generality, we assume that
user1 ∈ Jk and path1 ∈ Pk for everyk such thatJk 6= Ø.
Using the necessary and sufficient optimality conditions of a
WE at a price vectorq together with Lemma 3, we can see
that if (f , q) is a ME, then([fp]p∈P , [Γj ]j∈J , q) is an optimal
solution of the following problem.

maximize
∑

p∈P
qpfp (31)

subject to u′k,1(Γk,1)−
∑

e∈pi
k

le(
∑

p|e∈p

fp)− qpi
k = 0,

∀ pi
k ∈ Pk, k ∈ W (32)

u′k,1(Γk,1)−
∑

e∈pi
k

le(
∑

p|e∈p

fp)− qpi
k ≤ 0,

∀ pi
k /∈ Pk, k ∈ W (33)

u′k,j(Γk,j)−
∑

e∈p1
k

le(
∑

p|e∈p

fp)− qp1
k = 0,

∀ j ∈ Jk − {1}, k ∈ W (34)

u′k,j(Γk,j)−
∑

e∈p1
k

le(
∑

p|e∈p

fp)− qp1
k ≤ 0,

∀ j /∈ Jk,∀ k ∈ W (35)∑

p∈Pk

fp =
∑

j∈Jk

Γk,j , ∀ k ∈ W (36)

Γk,j ≥ 0, ∀ j ∈ Jk, k ∈ W,

fp ≥ 0, ∀ p ∈ P,

qp ≥ 0, ∀ p ∈ P.

Note that we use the necessary and sufficient optimal-
ity conditions for a WE to write problem (31) in vari-
ables ([fp]p∈P , [Γj ]j∈J , q) instead of variables(f , q) and
use Lemma 3 to eliminate the redundant constraints. This
reduction in the dimension of the feasible set allows us to show
that the regularity constraint qualification is satisfied (i.e., the
constraint gradients of problem (31) are linearly independent
at the optimal solution). Thus, the nonconvex problem (31)
admits Lagrange multipliers, which will be the key in proving
the subsequent proposition. This is stated in the following
Lemma. The proof can be found in Appendix A.

Lemma 4:The constraint gradients of problem (31) at any
feasible solution([fp]p∈P , [Γj ]j∈J , q) are linearly indepen-
dent.
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Proposition 4: Let Assumptions (1) and (2) hold. Assume
further thatuk,j is twice continuously differentiable for each
j and k, and le is continuously differentiable for eache. Let
(f, q) be an ME, then for every pathp in Pk, we have

qp =

(∑
e∈p

fe(le)′(fe)

)
+

∑
p∈Pk

fp

−∑
j∈Jk

1
u′′

k,j
(Γk,j)

. (37)

Proof: Let ([fp]p∈P , [Γj ]j∈J , q) be an optimal solution
of problem (31). DefineIk to be the set of the indices of the
paths inPk andIk to be the set of indices of the paths inPk.
By Lemma 4, there exist Lagrange Multipliers for problem
(31). We assignλi

k to the constraints (32) and (33),µk,j to
the constraints (34) and (36), and finallyξk,j to the constraints
(35). The Lagrangian functionL(q, f , λ, µ, ξ) can be written
as

L(q, f, λ, µ, ξ) =∑

p∈P
qpfp +

∑

k

∑

i∈Ik

λi
k[u′k,1(Γk,1)−

∑

e∈pi
k

le(fe)− qpi
k ]

+
∑

k

∑

j∈Jk−{1}
µk,j [u′k,j(Γk,j)−

∑

e∈p1
k

le(fe)− qp1
k ]

+
∑

k

∑

j /∈Jk

ξk,j [u′k,j(Γk,j)−
∑

e∈p1
k

le(fe)− qp1
k ]

+
∑

k

µk,1[
∑

p∈Pk

fp −
∑

j∈Jk

Γk,j ].

If the monopoly price vectorq is not greater than0, we can
find another monopoly price vectorq′ such that

(q′)p = qp, if p ∈ P; but (q′)p > 0, ∀ p.

Therefore, without loss of generality we can assume that the
ME price vectorq satisfiesq > 0. So, for each OD pairk,

∂L

∂qp1
k

= 0 → fp1
k = λ1

k +
∑

j∈Jk−{1}
µk,j +

∑

j /∈Jk

ξk,j ,

(38)
∂L

∂qpi
k

= 0 → fpi
k = λi

k, ∀ i ∈ Ik, i 6= 1, (39)

∂L

∂qpi
k

= 0 → 0 = λi
k, if i /∈ Ik. (40)

Recall thatP = {p | p ∈ P, fp > 0} and problem (31) is
defined onP but notP. Therefore, for eachfp ∈ P, we have

∂L

∂fpi
k

= 0 →

qpi
k −

∑
m


 ∑

n∈Im

λn
m


 ∑

e|e∈pi
k
,e∈pn

m

(le)′(fe)





−

∑
m


 ∑

j∈Jm−{1}
µm,j +

∑

j /∈Jm

ξm,j





 ∑

e|e∈pi
k
,e∈p1

m

(le)′(fe)




+µk,1 = 0.

Simplifying the preceding equation, we get

qpi
k −

∑
m


 ∑

n∈Im−1

λn
m


 ∑

e|e∈pi
k
,e∈pn

m

(le)′(fe)


 +


λ1

m +
∑

j∈Jm−{1}
µm,j +

∑

j /∈Jm

ξm,j


 ∑

e|e∈pi
k
,eıp1

m

(le)′(fe)




+µk,1 = 0.

Substituting Eqs. (40) into the equation above, we have

qpi
k −

∑
m


 ∑

n∈Im−1

fpn
m


 ∑

e|e∈pi
k
,e∈pn

m

(le)′(fe)


+

fp1
m


 ∑

e|e∈pi
k
,e∈p1

m

(le)′(fe)





 + µk,1 = 0

and then

qpi
k −

∑

e∈pi
k





∑

m

∑

{n|n∈Im,e∈pn
m}

fpn
m


 (le)′(fe)




+µk,1 = 0.

Therefore,

qpi
k −

∑

e∈pi
k

fe(le)′(fe) + µk,1 = 0, ∀ k, i ∈ Ik. (41)

Also for the set of flow rate variables, we have:

∂L

∂Γk,1
= 0 → u′′k,1(Γk,1)

(∑

i

λi
k

)
− µk,1 = 0, ∀ k, (42)

∂L

∂Γk,j
= 0 → µk,ju

′′
k,j(Γk,j)− µk,1 = 0, ∀ j ∈ Jk − 1, k,

(43)
∂L

∂Γk,j
= 0 → ξk,ju

′′
k,j(Γk,j) ≤ 0, ∀ j /∈ Jk, ∀ k. (44)

Sinceξk,j ≤ 0 for all k and j, andu′′k,j(Γk,j) ≤ 0 for all k
andj, Eq. (44) implies thatξk,j = 0 for all k andj. Therefore,
summing all the equations in (43), we get

∑

j∈Jk−1

µk,j = µk,1

∑

j∈Jk−1

1
u′′k,j(Γk,j)

, ∀ k. (45)

From Eqs. (42) and (45), we obtain

∑

j∈Jk−1

µk,j +

(∑

i

λi
k

)
= µk,1

∑

j∈Jk

1
u′′k,j(Γk,j)

, ∀ k. (46)

Eqs. (38), (39), (40), and (46) imply that
∑

p∈Pk

fp = µk,1

∑

j∈Jk

1
u′′k,j(Γk,j)

, ∀ k. (47)

Substituting Eq. (47) into Eq. (41) we

qp =

(∑
e∈p

fe(le)′(fe)

)
+

∑
p∈Pk

fp

−∑
j∈Jk

1
u′′

k,j
(Γk,j)

.

Q.E.D.
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Fig. 3. A simple general network
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Fig. 4. a) Performance of ME over WE at price 0 b) Performance of ME
over Social Optimum

This proposition shows that the monopoly price is given
by two terms: The first term is the “marginal congestion
cost” (which corresponds to a Pigovian tax on the externality
created by the users [11]). This amounts to charging every
user the marginal increase in congestion by sending an extra
unit of data. It is well-known that this is the price that a net-
work planner maximizing the total system performance would
charge in order to force users to internalize the congestion
effects (resulting in the social optimum) [12, 13]. The second
term is a markup above this given by the profit-maximizing
objective of the service provider. Which of these two terms
is dominant will determine the relative performance of the
monopoly equilibrium compared to a situation without prices
and to the social optimum.

Example 1: We consider a simple general network as
given in Figure (3). We have two users (A and B) and
4 paths({h, c}, {a, b, c}, {d, b, g}, {e}) in the network. The
utility functions of the users and the latency functions of the
links are given by

uA(ΓA) = 200(ΓA)α, uB(ΓB) = 200(ΓB)α,

le(fe) = (fe)β , ∀ e ∈ E .

Let Ume, Usocial, andU0 be the total system utility,

∑

k


 ∑

j∈Jk

uk,j(Γk,j)−
∑

p∈Pk

(∑
e∈p

le(fe)

)
fp




at the monopoly equilibrium, social optimum, and at the WE
at 0 prices, respectively. The plot of the ratiosUme/U0 and
Ume/Usocial as a function of different values ofα andβ are
given in Figures 4(a) and (b), respectively.

The results shown in Figure 4 are intuitive. The first panel
shows that asβ increases, performance of the monopoly
equilibrium improves relative to an equilibrium without any
prices (e.g., as in [13]). This is because higher values ofβ
imply that latencies are more sensitive to link load and thus
correspond to greater congestion effects (externalities), which
are internalized in the monopoly equilibrium, but not in the
equilibrium without prices. It also shows that performance
improves asα increases. Greaterα corresponds to a more
linear utility function, and as Eq. (37) shows the markup is
smaller when the utility function is less concave, reducing the
monopoly distortions. The second panel is similar, however, it
shows that the performance of the monopoly equilibrium rela-
tive to social optimal with respect toα is non-monotonic. The
reason why values ofα close to 1 improve the performance of
the monopoly equilibrium is the same as above. However, the
monopoly equilibrium also performs relatively well for very
small values ofα. This is because, in this case, even though the
markup is substantial, individuals have a very high marginal
utility of data transmission at low flow rates and choose not to
reduce their flow rates much in response to this high markup,
thus system performance does not suffer much.

V. BRAESS’ PARADOX

Braess’ Paradox, first defined by Braess in 1968 [16], states
the counterintuitive fact that adding a link to a network might
cause all users to be worse off than in the previous equilibrium.
This phenomenon is due to the non-cooperative nature of
the selfish users, as each user only wants to minimize his
travel cost without considering the travel costs of other users.
Braess’ Paradox has been recognized and studied in differ-
ent kinds of networks. For example, Hagstrom and Abrams
[28] outlined a characterization of Braess’ Paradox in traffic
networks. Steinberg and Zangwill [32] gave necessary and
sufficient conditions for the existence of Braess’ Paradox in a
transportation network under limited assumptions. Cohen and
Kelly [26] also studied an example of Braess’ Paradox in a
queueing network. A detailed survey of research on Braess’
Paradox can be found in [23] and [20].
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Fig. 5. An example of Braess’ Paradox under pricing

The observation of Braess’ Paradox motivated research in
methods of upgrading the network capacity without degrading
network performance. Some proposed methods were:

1) Multiplying the capacity of each link by some constant
factor α > 1 [29, 30] or a link dependent factorαl >
number of users [30].

2) Adding a direct link between the source and the desti-
nation [29, 30, 31].

3) Increasing the capacity of a direct link [30].

These methods emerged as results of studies in sensitivity
analysis. In particular, methods (1)-(2) are motivated by the
sensitivity result that states that the equilibrium cost of an
OD pair is a monotone non-decreasing function of the cor-
responding demand [22, 30, 33]. Method (3) is motivated by
the sensitivity result that states that improving the link latency
function on only one link results in a decrease of the latency
on that link [22]. The methods proposed above are constrained
by assumptions on link latency functions or users. However,
whether any assumption has been made or not, we can see
that these methods are limited.

Braess’ Paradox can be arbitrarily severe in many networks
[23]. Most of the network design problems related to Braess’
Paradox, such as the ones mentioned above, focus on find-
ing ways to avoid this undesired but common phenomenon.
Therefore, in the remainer of this section, we will examine the
implications of profit maximizing prices on Braess’ Paradox.

Hagstrom and Abrams [28] gave a definition of Braess’
Paradox in a network without pricing: A Braess’ Paradox
occurs if there exists some other distribution of flows for
which some flow have improved travel costs and no flow
has worse travel cost than in the equilibrium. This is a
generalization of the classical Braess’ Paradox which refers
to change in network performance by adding/deleting a link.
In [28], Hagstrom and Abrams showed a network which
experiences a generalized Braess’ Paradox but no classical
Braess’ Paradox.

In a network without pricing, at a WE, all flows on the paths
that belong to the same OD pair experience the same latency
cost. Therefore we can restate the generalized definition of
Braess’ Paradox given above as: A Braess’ Paradox occurs in
a network if there exists some other distribution of flows for
which some pathshave improved latency costs andno path
has a worse latency cost than in the equilibrium. At a WE
with prices, flows on different paths may have different latency
costs. Therefore, there might exist some other flow distribution

for which some paths have improved latency costs and no
path has worse latency cost, but some flow which switched
from one path to another has worse latency cost than in the
equilibrium. Such a situation should not be considered as a
Braess’ Paradox. For an example, let’s consider the network
in Figure (5). A single user sends data from node 1 to node
4.

u(Γ) = 368
√

6Γ0.5

The link latency functions and path prices are as follows:

la(fa) = (fa)2, lb(f b) = 5f b, lc(f c) = 5f c,

ld(fd) = (fd)2, le(fe) = 0, q{a,c} = 182.5619,

q{b,d} = 182.5619, q{a,e,d} = 193.5619

The path flows at the WE are

f{a,c} = f{b,d} = 2, f{a,e,d} = 1.

The latency costs of the paths are

l{a,c} = l{b,d} = 19, l{a,e,d} = 18.

We next consider moving 0.5 units of flow from path{a, e, d}
to paths{a, c} and{b, d}. The resulting path flows are

f{a,c} = f{b,d} = 2.5, f{a,e,d} = 0,

and the corresponding latency costs are

l{a,c} = l{b,d} = 18.75, l{a,e,d} = 12.5.

Hence, the flow that is moved from{a, e, d} to alternative
paths experiences a higher latency cost. It can be seen that
there is no flow distribution in which all flows experience
improved latency costs.

We next give two alternative definitions of Braess’ Paradox
under pricing. The following notation will be useful in the
definitions. Consider two feasible flow distributionsf and f
such that

Γk,j = Γk,j , ∀ k, j.

Let h be the path flow vector defined in (3) and∆ be a
transformation matrix such that

∆ · h = h. (48)

Hence,∆i,jf
j represents the amount of flow that is moved

from path j to path i. Note that there are infinitely many
transformation matrices∆ satisfying Eq. (48).

Definition 3: (Strong Braess’ Paradox): Let G be a
general network. Given a priceq, let f be a WE. Letlp(h) be
the latency cost of routing one unit of flow on pathp as defined
in Eq. (7). A Strong Braess’s Paradox occurs if there exists
some other distribution of path flows,h, and a transformation
∆ such that

∆ · h = h

Γk,j = Γk,j , ∀ k, j

lp(h) ≥ lp
′
(h), for all p, p′ with ∆p′,p 6= 0, (49)

with strict inequality for somep, p′, where∆p′,p is the(p′, p)
entry of matrix∆.
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Under condition (49), no flow experiences a higher latency
cost than in the WE. For a price vector in which the prices of
all the paths that belong to an OD pair are the same, Definition
(3) is consistent with the definition of Braess’ Paradox in a
network without pricing. For an example of Strong Braess’
Paradox, we can consider the same network shown in Figure
(5). The user sends data from node 1 to node 4. The user’s
utility function, link latency functions, and path prices are
given as:

Γ = 184
√

6Γ0.5, la(fa) = 10fa, lb(f b) = f b,

lc(fc) = f c, ld(fd) = 10fd, le(fe) = fe,

q{a,c} = 50, q{b,d} = 50, q{a,e,d} = 10.

The path flows at the WE are

f{a,c} = f{b,d} = f{a,e,d} = 2.

The latency costs of the paths are

l{a,c} = l{b,d} = 42; l{a,e,d} = 82.

We move one unit of flow from path{a, e, d} to each of
paths{a, c} and{b, d} in order to get a new flow distribution:
f{a,c} = f{b,d} = 3 andf{a,e,d} = 0. In this flow distribu-
tion, the latency costs of the paths are

l{a,c} = l{b,d} = 33.

Each unit of flow experiences a latency cost equal to 33, which
is less than the latency cost at the WE. Note that this price
vector is not a monopoly price vector. Later, we will show
that under monopoly prices, Strong Braess’ Paradox does not
occur.

Conditions in Definition (3) state that when Strong Braess’
Paradox occur, at the new flow distribution, some flows have
lower latency cost and no flow has a higher latency cost.
We will next relax these conditions so that some flow may
encounter higher latency costs at the new flow distribution,
but on average the latency encountered by the total flow will
decrease. This leads to the following definition.

Definition 4: (Weak Braess’ Paradox): Let G be a gen-
eral network. Given a priceq, let f be a WE. Letlp(h)
be the latency cost of routing one unit of flow on pathp
under a path flowh and l(h) = [lp(h)]p∈P be the path
latency vector. A Weak Braess’s Paradox occurs if there exists
some other distribution of path flows,h, under priceq and a
transformation∆ such that

∆ · h = h

Γk,j = Γk,j ,∀ k, j (50)

for some p’
lp(h) ≥ ∆′

p · l(h), ∀ p, (51)

with strict inequality for somep′, where∆p is thepth column
of ∆.

Condition (49) in Definition (3) imply Condition (51) in
Definition (4). Therefore, if Strong Braess’ Paradox occurs,

then Weak Braess’ Paradox also occurs. The following exam-
ple shows that the reverse implication is not true. Consider the
network in Figure (5) with different functions:

Γ = 368
√

6Γ0.5, la(fa) = (fa)2, lb(f b) = 3f b,

lc(f c) = 5f c, ld(fd) = (fd)2, le(fe) = 0,

q{a,c} = 193.4649, q{b,d} = 201.7149, q{a,e,d} = 197.2149

The path flows at the WE aref{a,c} = 2, f{b,d} =
1.5, f{a,e,d} = 1 and the path latency costs are:

l{a,c} = 19; l{b,d} = 10.75; l{a,e,d} = 15.25.

Next, we move 0.5 units of flow from path{a, e, d} to each
of the paths{a, c} and{b, d} to get a new flow distribution:
f{a,c} = 2.5, f{b,d} = 2 andf{a,e,d} = 0. In this flow
distribution, the latency costs of the paths are

l{a,c} = 18.75; l{b,d} = 10; l{a,e,d} = 10.25.

We see that

18.75 < 19; 10 < 10.75

0.5× 18.75 + 0.5× 10 = 14.375 < 15.25.

Therefore, in this example, Weak Braess’ Paradox occurs.
However, it can be seen that there exists no flow distribution
in which all flows will encounter lower latencies than at the
WE. Therefore, Strong Braess’ Paradox does not occur.

We next show that under monopoly prices, Weak Braess’
Paradox does not occur, which also implies that under
monopoly prices, there can be no Strong Braess’ Paradox.

Proposition 5: Weak Braess’ Paradox does not occur under
monopoly prices.

Proof: We consider a general networkG. Let (f , q) be
an ME. Suppose that Weak Braess’ Paradox occurs under the
monopoly priceq. Then there exists another flow distribution
f satisfying Conditions (50) - (51). Now let us consider the
price vectorq defined by

qp = u′k,j′(Γk,j′)− lp(h) for somej′ ∈ Jk, if p ∈ P

qp = ∞, if p /∈ P.

It can be seen thatf is a WE at priceq. In the following, we
will examine the profit that the service provider makes under
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price q.
∑

p

f
p
qp

=
∑

k

∑

p∈Pk

f
p
qp

=
∑

k

∑

p∈Pk

f
p (

u′k,j′(Γk,j′)− lp(h)
)

=


∑

k

u′k,j′(Γk,j′)
∑

p∈Pk

f
p


−

∑

k

∑

p∈Pk

f
p
lp(h)

=


∑

k

u′k,j′(Γk,j′)
∑

j∈Jk

Γk,j




−
∑

k

∑

p∈Pk





 ∑

p′∈Pk

∆p,p′f
p′


 lp(h)




=


∑

k

u′k,j′(Γk,j′)
∑

j∈Jk

Γk,j




−
∑

k

∑

p′∈Pk


fp′


 ∑

p∈Pk

∆p,p′ l
p(h)







=


∑

k

u′k,j′(Γk,j′)
∑

j∈Jk

Γk,j




−
∑

k

∑

p′∈Pk

(
fp′∆′

p′ · l(h)
)

>


∑

k

u′k,j′(Γk,j′)
∑

j∈Jk

Γk,j




−
∑

k

∑

p′∈Pk

(
fp′ lp

′
(h)

)

=


∑

k

u′k,j′(Γk,j′)
∑

p′∈Pk

fp′


−

∑

k

∑

p′∈Pk

fp′ lp
′
(h)

=
∑

k

∑

p′∈Pk

fp′
(
u′k,j′(Γk,j′)− lp

′
(h)

)

=
∑

p′
fp′qp′

The inequality follows from Eqs. (50)-(51). The service
provider can make more profit by setting priceq than q.
Therefore,(f , q) is not an ME, which is a contradiction and
shows that Braess’ Paradox does not occur under monopoly
prices. Q.E.D.

APPENDIX I
PROOF OFLEMMA (4)

Proof: Let ([fp]p∈P , [Γj ]j∈J , q) be a feasible solution
of problem (31). LetCk be the set of constraints gradients for
OD pair k at ([fp]p∈P , [Γj ]j∈J , q), andC = ∪kCk. We first
show that the vectors inCk are linearly independent. Consider
the matrixR, where each row corresponds to a vector inCk

(for simplification, we do not include the entries that are 0 in
all rows).



u′′k,1 · · · 0 S1×|P| −1 · · · 0
u′′k,1 · · · 0 0 · · · 0

...
...

... M(|Pk|−1)×|P|
...

...
...

u′′k,1 · · · 0 0 · · · −1
· · · 0 −1 · · · 0

...
. ..

... N|Jk|×|P|
...

...
...

0 · · · u′′k,|Jk| −1 · · · 0
−1 · · · −1 T1×|P| 0 · · · 0




Let ri be theith row vector ofR and ri(x) be the entry inri

corresponding to variablex. Note thatM can be a arbitrary
matrix, butN is a matrix with each of its row equal to vector
S.

We first show that the vectors{r1, · · · , r|Pk|+|Jk|} are
linearly independent. Letri ∈ {r2, · · · , r|Pk|+|Jk|}, then there
existsx such thatri(x) 6= 0 but rj 6= 0 for all j 6= i. Therefore,
{r2, · · · , r|Pk|+|Jk|} are linearly independent. Suppose that
r1 can be written as a linear combination of vectors in
{r2, · · · , r|Pk|+|Jk|}. Again, we letri ∈ {r2, · · · , r|Pk|+|Jk|},
then there existsx such thatri(x) 6= 0 but rj(x) = 0 for all
j 6= i. Therefore,r1 = 0. However, r1 6= 0 and therefore
it cannot be written as a linear combination of vectors in
{r2, · · · , r|Pk|+|Jk|}. As a result, vectors{r1, · · · , r|Pk|+|Jk|}
are linearly independent.

We then consider the last row,r|Pk|+|Jk|+1, of R. We
assume it can be written as a linear combination of the vectors
in {r1, · · · , r|Pk|+|Jk|}:

r|Pk|+|Jk|+1 = y1r1 +
|Pk|∑

i=2

yiri +
|Jk|∑

j=1

tjr|Pk|+j .

For eachri′ ∈ {r2, · · · , r|Pk|}, ∃ x such thatri′(x) 6= 0 but
rj′(x) = 0 for all i′ 6= j′. Therefore,yi is 0 for all i =
2, · · · , |Pk| and

r|Pk|+|Jk|+1 = y1r1 +
|Jk|∑

j=1

tjr|Pk|+j .

We also see that

r|Pk|+|Jk|+1(qp1
k) = 0, and

rk,i(qp1
k) = −1, if i = 1, |Pk|+ 1, · · · , |Pk|+ |Jk|.

Therefore,

y1 +
|Jk|∑

j=1

tj = 0 (52)

However, since each row ofN is identical to S, Eq. (52)
implies all entries inT are 0. This yields a contradiction.
Therefore,r|Pk|+|Jk|+1 can not be written as a linearly com-
bination of the vectors in{r1, · · · , r|Pk|+|Jk|}. As a result, the
vectors inCk are linearly independent.

We next show that the vectors inC are linearly independent.
Let Wk be the subspace spanned by the vectors inCk. We
will show Wk ∩ Wk′ = {0} for k 6= k′. Assume there exist
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a vectorw ∈ Wk,Wk′ , andw 6= 0. SinceJk ∩ J ′k = Ø and
Pk ∩ P ′k = Ø if k 6= k′. Therefore,

w(u′′k,j) = 0, ∀ j; w(u′′k,j′) = 0,∀ j′; w(qp) = 0, ∀ p. (53)

Now, we writew as a linear combination of the gradients of
Ck:

w = y′1r1 +
|Pk|∑

i=2

y′iri +



|Jk|∑

j=1

t′jr|Pk|+j


 + t′0r|Pk|+|Jk|+1.

For eachri′ ∈ {r2, · · · , r|Pk|}, ∃ x such thatri′(x) 6= 0 but
rj′(x) = 0 for all i′ 6= j′. Therefore,y′i is 0 for all i =
2, · · · , |Pk|. Therefore,

w = y′1r1 +



|Jk|∑

j=1

t′jr|Pk|+j


 + t′0r|Pk|+|Jk|+1.

Also, since

w(qp1
k) = rk,|Pk|+|Jk|+1(qp1

k) = 0;

rk,i(qp1
k) = −1, for i = 1, |Pk|+ 1, · · · , |Pk|+ |Jk|

then,

y′1 +
|Jk|∑

j=1

t′j = 0 (54)

From (53), (54) and the fact that each row ofN is identical
to S, we can see

w = [0, · · · , 0, T, 0, · · · , 0]

By applying the same argument to OD pairk′, we also have

Sw = [0, · · · , 0, T′, 0, · · · , 0]

However, sincek 6= k′, T 6= T′. So by contradiction,Wk ∩
Wk′ = {0} for k 6= k′. Since the vectors inCk form a basis of
Wk, we conclude that the vectors inC are linearly independent.
Q.E.D.
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