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Daron Acemoglu and Asuman Ozdaglar, Member, IEEE

Abstract— We study the efficiency implications of competition
among profit-maximizing service providers in communication
networks. Service providers set prices for transmission of flows
through their (sub)network. The central question is whether the
presence of prices will help or hinder network performance. We
investigate this question by considering the difference between
users’ willingness to pay and delay costs as the efficiency metric.
Previous work has demonstrated that in networks consisting of
parallel links, efficiency losses from competition are bounded.
Nevertheless, parallel-link networks are special, and in most
networks, traffic has to simultaneously traverse links (or subnet-
works) operated by independent service providers. The simplest
network topology allowing for this feature is the parallel-serial
structure, which we study in this paper. In contrast to existing
results, we show that in the presence of serial links, the efficiency
loss relative to the social optimum can be arbitrarily large.
The reason for this degradation of performance is the double
marginalization problem, whereby each serial provider charges
high prices not taking into account the effect of this strategy on
the profits of other providers along the same path. Nevertheless,
when there are no delay costs without transmission (i.e., latencies
at zero are equal to zero), irrespective of the number of serial and
parallel providers, the efficiency of strong oligopoly equilibria
can be bounded by 1/2, where strong oligopoly equilibria are
equilibria in which each provider plays a strict best response
and all of the traffic is transmitted. However, even with strong
oligopoly equilibria, inefficiency can be arbitrarily large when the
assumption of no delay costs without transmission is relaxed.

Index Terms— Pricing, competition, congestion externalities,
Wardrop equilibrium, social optimum, oligopoly equilibrium,
efficiency, price of anarchy.

I. INTRODUCTION

THERE HAS been growing interest in pricing as a method
of allocating scarce network resources. The standard

approach assumes that prices may used as control parameters
to achieve a system optimum in a decentralized manner (see,
e.g., [1], [2], [3]). Nevertheless, in practice many prices are
controlled by for-profit service providers, whose objective is,
at least in part, to increase their revenues and profits. A
central question is whether prices chosen to maximize service
provider revenues will also play a useful role in the allocation
of network resources across users.

Research to date suggests that profit-maximizing pricing
may improve the allocation of resources in communication
networks with self-interested users. Let the metric of efficiency
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be the difference between users’ willingness to pay and delay
costs in the decentralized equilibrium relative to that in the
social optimum (which would be chosen by a network planner
with full information and full control over users). In the
absence of prices, the decentralized equilibrium can be highly
inefficient (see [4]). In contrast, Acemoglu and Ozdaglar [5]
show that with inelastic and homogeneous users, pricing by
a monopolist controlling all links in a parallel-link network
always achieves efficiency (i.e., the efficiency metric is equal
to 1). Huang, Ozdaglar and Acemoglu [6] extend this result
to a general network topology. More recently, Acemoglu and
Ozdaglar [7] show that in a parallel-link network with inelastic
and homogeneous users, the efficiency metric with an arbitrary
number of competing network providers is always greater than
or equal to 5/6.

Most communication networks cannot be represented by
parallel-link topologies, however. A given source-destination
pair will typically transmit through multiple interconnected
subnetworks (or links), potentially operated by different ser-
vice providers. Existing results on the parallel-link topology
do not address how the cooperation and competition between
service providers will impact on efficiency in such general
networks.

In this paper, we take a step in this direction by considering
the simplest network topology that allows for serial intercon-
nection of multiple links/subnetworks, which is the parallel-
serial topology. We focus on a single source-destination pair,
with flows choosing one of multiple parallel paths. We allow
each path to consist of multiple links/subnetworks operated
by independent service providers. Our main results show that
that the efficiency losses resulting from competition are con-
siderably higher with this topology. The source of additional
inefficiency is the presence of serial service providers and
will thus be present in more general network topologies.
This suggests that unregulated competition in general com-
munication networks may have considerable costs in terms
of the efficiency of resource allocation and certain types of
regulation may be necessary to make sure that service provider
competition does not lead to significant degradation of network
performance.

In our model, an origin-destination pair is linked by multiple
parallel paths, each potentially consisting of an arbitrary
number of serial links. Congestion costs are captured by link-
specific non-decreasing convex latency functions, denoted by
li (·) for link i. Each link is owned by a different service
provider. All users are inelastic and homogeneous.

This environment induces the following two-stage game:
each service provider simultaneously sets the price for trans-
mission of bandwidth on its link, denoted by pi. Observing all
the prices, in the second stage users route their information
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through the path with the lowest effective cost, where effective
cost consists of the sum of prices and latencies of the links
along a path [i.e., sum of pi+li (·)’s over the links comprising
a path]. Our objective is to study the efficiency properties of
the subgame perfect equilibria of this game.

The main novel aspect of this model compared to the
parallel-link topology is the pricing decisions of different
(serial) service providers along a single path. When a par-
ticular provider charges a higher price, it creates a negative
externality on other providers along the same path, because
this higher price reduces the transmission that all the providers
along this path receive. This is the equivalent of the double
marginalization problem in economic models with multiple
monopolies and is the source of the significant degradation in
the efficiency performance of the network.

In its most extreme form, the double marginalization prob-
lem leads to a type of “coordination failure”, whereby all
providers, expecting others to charge high prices, also charge
prohibitively high prices, effectively killing all data transmis-
sion on a given path. Such coordination failures can lead to
arbitrarily low efficiency. This type of pathological behavior
can happen in subgame perfect equilibria (what we refer to as
oligopoly equilibria, OE), but we show that it cannot happen
in strict subgame perfect equilibria, strict OE, which follows
the notion of strict equilibrium introduced in Harsanyi [8]. In
strict OE, each service provider must play a strict best response
to the pricing strategies of other service providers. We show
that this requirement is sufficient to rule out the pathological
coordination failures mentioned above.

Nevertheless, we show that strict OE can also have ar-
bitrarily large efficiency losses again owing to the double
marginalization problem. Even in a strict OE, serial providers
ignore the negative externality they create on other providers
along the same path and charge too high prices, which can
once again prevent any transmission on a particular path, even
when such transmission is socially optimal.

Interestingly, however, these extreme inefficient outcomes
occur when high prices on a particular path prevent the entire
available traffic from being transmitted. To investigate impli-
cations of price competition when all traffic is transmitted,
we define an even stronger notion of equilibrium, strong OE,
as a strict OE in which all traffic is transmitted.1 We show
that when latency without any traffic is equal to zero [i.e.,
li (0) = 0], there is a tight bound of 1/2 on the efficiency
of strong OE irrespective of the number of paths and service
providers in the network. This bound is reached by simple
examples. In strong OE, the double marginalization problem
is still present, and this is the reason why the bound of 1/2 is
lower than the 5/6 bound in our previous work, [7].

However, the assumption that li (0) = 0 is important for
this result. We show that when this assumption is relaxed, the
efficiency loss of strong OE relative to the social optimum can
be again arbitrarily large.

These results shed doubt on the conjecture that unregulated
competition among service providers might lead to prices

1Models of selfish routing without prices, e.g., [4] or [9], assume that all
traffic is always transmitted. Our model incorporates a reservation utility for
users, so that this is not necessarily the case. All traffic will be transmitted
in equilibrium when this reservation utility is sufficiently large.

approximating those that would be set as control parameters
by a centralized network operator. Instead, they show that
competition among service providers with general network
topologies can lead to significant degradation of network
performance (Example 3 below can be part of any network
topology and cause arbitrary efficiency losses). Nevertheless,
it has to be borne in mind that the examples that have
very poor performance relative to the social optimum are
somewhat pathological, and this begs the question of whether
better performance bounds could be obtained in more realistic
topologies, which is an area left for future work.

Work related to our paper includes studies quantifying
efficiency losses of selfish routing without prices (e.g., Kout-
soupias and Papadimitriou [10], Roughgarden and Tardos [4],
Correa, Schulz, and Stier-Moses [9], and Friedman [11]);
of resource allocation by different market mechanisms (e.g.,
Johari and Tsitsiklis [12], Sanghavi and Hajek [13]); and
of network design (e.g., Anshelevich et. al. [14]). Basar
and Srikant [15] analyze monopoly pricing in a network
context under specific assumptions on the utility and latency
functions, while He and Walrand [16] study competition and
cooperation among Internet service providers under specific
demand models. Most closely related to the current paper
are our previous work [7], where we study the existence and
efficiency of oligopoly equilibria in parallel-link networks, as
well as Hayrapetyan, Tardos, and Wexler [17] and Ozdaglar
[18], who study pricing in a parallel-link network with elastic
demand. No other paper has investigated price competition in
the presence of serial providers or more general topologies.

The rest of the paper is organized as follows. Section II out-
lines the basic environment. It defines the concept of Wardrop
equilibrium for the routing of flows given prices set by service
providers. Section III defines the concept of equilibrium in
the game among the service providers and establishes the
existence of a pure strategy equilibrium with linear latency
functions, and the existence of a mixed strategy equilibrium
more generally. Section IV focuses on the efficiency analysis
of oligopoly equilibrium and contains the main results of the
paper. This section first shows that an oligopoly equilibrium
can be arbitrarily inefficient because of the coordination fail-
ures resulting from double marginalization. It then introduces
the concepts of strict and strong oligopoly equilibria, and
provides a characterization of equilibrium prices in strict
oligopoly equilibria. This section also establishes the existence
of a unique strong oligopoly equilibrium with linear latencies
and a sufficiently high reservation utility, and presents bounds
on the inefficiency of strong oligopoly equilibria. It concludes
by showing how even strong oligopoly equilibria can be
arbitrarily inefficient when latencies at zero congestion are
positive. Section V concludes, while the Appendices contain
some of the proofs not provided in the text.

II. MODEL

We consider a network with I parallel paths that connect a
single source-destination pair. Each path i consists of ni links.
Let I = {1, . . . , I} denote the set of paths and Ni denote the
set of links on path i. Let xi denote the flow on path i, and
x = [x1, . . . , xI ] denote the vector of path flows. Each link
in the network has a flow-dependent latency function li(xi),
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Fig. 1. A network with serial and parallel links.

which measures the delay as a function of the total flow on link
i (see Figure 1). We denote the price per unit flow (bandwidth)
of link j by pj . Let p = [pj ]j∈Ni,i∈I denote the vector of
prices.

We are interested in the problem of routing d units of
flow across the I paths. We assume that this is the aggregate
flow of many “small” users and thus adopt the Wardrop’s
principle (see [19]) in characterizing the flow distribution
in the network; i.e., the flows are routed along paths with
minimum effective cost, defined as the sum of the latencies
and prices of the links along that path (see the definition
below). Wardrop’s principle is used extensively in modelling
traffic behavior in transportation networks ( [20], [21], [22])
and communication networks ( [4], [9]). We also assume
that users have a reservation utility R and decide not to
send their flow if the effective cost exceeds the reservation
utility. This implies that user preferences can be represented
by the piecewise linear aggregate utility function u (·) depicted
in Figure 2. This assumption also implies that all users
are “homogeneous” since they all have the same reservation
utility, R.2

Definition 1 For a given price vector p ≥ 0, a vector xWE ∈
R

I
+ is a Wardrop equilibrium (WE) if

∑
i∈I xWE

i ≤ d and
for all i with xWE

i > 0,∑
j∈Ni

(
lj(xWE

i ) + pj

)
= min

k∈I

{ ∑
j∈Nk

(
lj(xWE

k ) + pj

)}
,(1)

∑
j∈Ni

(
lj(xWE

i ) + pj

)
≤ R,

with
∑

i∈I xWE
i = d if mink∈I

{∑
j∈Nk

lj(xWE
k ) + pj

}
<

R. We denote the set of WE at a given p by W (p).

We adopt the following assumption on the latency functions
throughout the paper except in Section IV-F.

Assumption 1 For each i ∈ I, the latency function li :
[0,∞) �→ [0,∞) is convex, continuously differentiable, non-
decreasing, and satisfies li(0) = 0.

Proposition 1 (Existence and Continuity) Let Assumption
1 hold. For any price vector p ≥ 0, the set of WE, W (p), is
nonempty. Moreover, the correspondence W : R

I
+ ⇒ R

I
+ is

upper semicontinuous.

2We discuss potential issues in extending this work to users with elastic
demands and heterogeneous quality-of-service requirements in the concluding
section.
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Fig. 2. Aggregate utility function.

Proof sketch: Given any p ≥ 0, the proof is based on using
Assumption 1 (in particular the nondecreasing assumption on
the latency functions) to show that the set of WE is given
by the set of optimal solutions of the following optimization
problem

max
x≥0

∑
i∈I

((R −
∑
j∈Ni

pj)xi −
∫ xi

0

∑
j∈Ni

lj(z)dz) (2)

s.t.
∑
i∈I

xi ≤ d.

Q.E.D.

For a given price vector p, the WE need not be unique in
general. Under further restrictions on the li, we obtain:

Proposition 2 (Uniqueness) Let Assumption 1 hold. Assume
further that for all i ∈ I, there exists some j ∈ Ni, such that
lj is strictly increasing. Then, for any price vector p ≥ 0,
the set of WE, W (p), is a singleton. Moreover, the function
W : R

I
+ �→ R

I
+ is continuous.

Proof: Under the given assumptions, for any p ≥ 0, the objec-
tive function of problem (2) is strictly convex, and therefore
has a unique optimal solution. This shows the uniqueness of
the WE at a given p. Since the correspondence W is upper
semicontinuous from Proposition 1 and single-valued, it is
continuous. Q.E.D.

We next define the social problem and the social optimum,
which is the routing (flow allocation) that would be chosen by
a central network planner that has full control and information
about the network.

Definition 2 A flow vector xS is a social optimum if it is an
optimal solution of the social problem

maximizex≥0

∑
i∈I

(
R −

∑
j∈Ni

lj(xi)
)
xi (3)

subject to
∑
i∈I

xi ≤ d.

By Assumption 1, the social problem has a continuous
objective function and a compact constraint set, guaranteeing
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the existence of a social optimum, xS . Moreover, using the
optimality conditions for a convex program, we see that a
vector xS ∈ R

I
+ is a social optimum if and only if

∑
i∈I xS

i ≤
d and there exists a λS ≥ 0 such that λS

( ∑I
i=1 xS

i − d
)

= 0
and for each i ∈ I,

R −
∑
j∈Ni

lj(xS
i ) − xS

i

∑
j∈Ni

l′j(x
S
i ) ≤ λS if xS

i = 0,

= λS if xS
i > 0. (4)

For a given vector x ∈ R
I
+, we define the value of the

objective function in the social problem,

S(x) =
∑
i∈I

(
R −

∑
j∈Ni

lj(xi)
)
xi, (5)

as the social surplus, i.e., the difference between the users’
willingness to pay and the total latency.

III. OLIGOPOLY PRICING AND EQUILIBRIUM

We assume that there are multiple service providers, each
owning one of the links on the paths in the network. Each
link may represent a more general subnetwork operated by
independent service providers.3 Service provider j charges
a price pj per unit bandwidth on link j ∈ Ni. Given the
vector of prices of links owned by other service providers,
p−j = [pk]k �=j , the profit of service provider j with j ∈ Ni is

Πj(pj , p−j , x) = pjxi,

where x ∈ W (pj , p−j).
The objective of each service provider is to maximize

profits. Because their profits depend on the prices set by other
service providers, each service provider forms conjectures
about the actions of other service providers, as well as the
behavior of users, which they do according to the notion
of subgame perfect Nash equilibrium. We refer to the game
among service providers as the price competition game.

Definition 3 A vector (pOE , xOE) ≥ 0 is a (pure strategy)
Oligopoly Equilibrium (OE) if xOE ∈ W

(
pOE

j , pOE
−j

)
and for

all i ∈ I, j ∈ Ni, and pj ≥ 0, x ∈ W (pj , p
OE
−j ),

Πj(pOE
j , pOE

−j , xOE) ≥ Πj(pj , p
OE
−j , x). (6)

We refer to pOE as the OE price.

The next proposition shows that for linear latency functions,
there exists a pure strategy OE. The proof relies on the explicit
characterization of the OE prices (see Proposition 4 below),
and therefore is provided in Appendix B.

Proposition 3 Let Assumption 1 hold and assume that the
latency functions are linear. Then the price competition game
has a pure strategy OE.

The existence result cannot be generalized to general convex
latency functions as shown in the following example.

3This is because users care about the overall latency of a subnetwork,
not about patterns of routing flows within the subnetwork operated by a
service provider. The possibility of service providers operating multiple paths
is considered in [7] and is ruled out here to simplify the notation.

Example 1 Consider a two path network with one link on
each path. Let the total flow be d = 1. Assume that the latency
functions are given by

l1(x) = 0, l2(x) =
{

0 if 0 ≤ x ≤ δ
x−δ

ε x ≥ δ,

for some ε > 0 and δ > 1/2, with the convention that when
ε = 0, l2(x) = ∞ for x > δ. It can be easily verified that there
exists no pure strategy OE for small ε (see [7] for details).

Nevertheless, it can be shown that the price competition
game always has a mixed strategy OE (see the analysis for a
parallel link network in [7]).

IV. EFFICIENCY ANALYSIS

A. Inefficiency of OE

In this section, we study the efficiency properties of OE,
and strict and strong OE (defined below). We consider price
competition games that have pure strategy OE or strict OE
(this set includes, but is larger than, networks with linear
latency functions covered by Proposition 3). Given a parallel-
link network with I paths, ni links on path i, and latency
functions {lj}(j∈Ni,i∈I), let

−−→
OE({lj}) denote the set of flow

allocations xOE = [xOE
i ]i∈I at an OE (or strict OE depending

on the context).
We define the efficiency metric at some xOE ∈ −−→

OE({lj})
as

rI({lj}, xOE) =
S(xOE)
S(xS)

, (7)

where xS is a social optimum given the latency functions
{lj} [cf. Eq. (5)]. We adopt the convention that for the
efficiency metric 0/0 = 1. Following the literature on the
“price of anarchy,” (see [10]), we are interested in the worst
performance of an oligopoly equilibrium, so we look for a
lower bound on

inf
{lj}

inf
xOE∈−−→

OE({lj})
rI({lj}, xOE).

We first show that the performance of an OE can be
arbitrarily bad.

Example 2 Consider a two path network, which has 3 links
on path 1 with identically 0 latency functions and one link on
path 2 with latency function l(x2) = kx2, where k ≥ 1/2. Let
the total flow be d = 1 and the reservation utility be R = 1.

The unique social optimum for this example is xS = (1, 0).
Now consider the following strategy combination. Each of
the three service providers on path 1, denoted by i = 1, 2,
and 3, charge price pi

1 = 1, while the service provider on
path 2 charges p2 = 1/2. It can be verified that there is no
deviation that is profitable for any of the service providers.
First, consider the serial providers on path 1; given the prices
of two of the serial service providers, there will always be zero
traffic on path 1, so the remaining service provider is playing
a best response (since any price for this provider would lead to
zero profits). Moreover, it can be verified that these strategies
are not weakly dominated, since if i = 1, 2 were to play
pi
1 = 0 and the provider on path 2 were to set a high enough
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p2, i = 3 would choose to play p3
1 = 1. (This also establishes

that the OE will be trembling hand perfect, see [23], pp. 351-
356 for a definition). Finally, let us consider the provider on
path 2. Given the strategies of the serial providers on path 1
and a fixed k > 0, it can be verified that the optimal strategy
of this provider is to set p2 = 1/2. The resulting equilibrium
flow allocation is

xOE =
[
0,

1
2k

]
,

which involves routing all the admitted traffic on path 2
(though not all of the traffic is necessarily admitted). There-
fore, the efficiency metric for this example is

r2({lj}, xOE) =
∑2

i=1 xOE
i − l2(xOE

2 )xOE
2

1
=

1/4k

1
,

which goes to 0 as k → ∞.

Example 2 establishes that pure strategy OE with the
parallel-serial link topology can be arbitrarily inefficient. This
result is at some level pathological, however. The reason
for the arbitrary inefficiency of the pure strategy OE is the
“unreasonably” high prices charged by the service providers
along path 1. It is a best response (even weakly undominated)
strategy for them to do so, because other providers also charge
unreasonably high prices, so there is no transmission on this
path and they suffer no adverse consequences from charging
unreasonable prices.

We may expect this pathological situation not to arise
in practice for a number of reasons. First, firms may not
coordinate on such an equilibrium (especially when other
equilibria exist). In this case, for example, we may expect
them to realize that if they all reduced their prices, they would
all make higher profits and would still be playing equilibrium
actions. Second and relatedly, we may expect providers on
a path to form a “coalition” and coordinate their pricing
decisions (at least within some bounds). The coalition-proof
Nash equilibrium concept of Bernheim, Peleg and Whinston
[24] naturally leads to such an outcome and can be shown to
rule out the situation in Example 2. The application of this
concept to the current setup is further discussed in Section V.
Finally, an application of the stronger concept of equilibrium
introduced by Harsanyi, the strict equilibrium (see [8], or
[23], pp. 11-12), will be shown to rule out the pattern in
Example 2. In the current paper, we pursue this last approach
and strengthen the concept of equilibrium to strict oligopoly
equilibrium.

B. Strict OE and Price Characterization

Harsanyi’s concept of strict equilibrium requires each
player’s best response to be unique. Recall that the standard
Nash equilibrium and our OE concept only require each
player, in particular each service provider, to play a weak best
response. We now strengthen this condition.

Definition 4 A vector (pOE , xOE) ≥ 0 is a strict OE
(Oligopoly Equilibrium) if xOE ∈ W

(
pOE

j , pOE
−j

)
and for

all i ∈ I, j ∈ Ni, and for all pj ≥ 0, pj �= pOE
j , ∀ x ∈

W (pj , p
OE
−j ),

Πj(pOE
j , pOE

−j , xOE) > Πj(pj , p
OE
−j , x). (8)

We refer to pOE as the strict OE price.

In the remainder of this paper, we focus on strict OE and we
use the notation

−−→
OE({lj}) to denote the set of flow allocations

xOE = [xOE
i ]i∈I at a strict OE for a network with latency

functions {lj}(j∈Ni, i∈I).
The difference between Definitions 3 and 4 is obvious.

The latter requires service providers to play a strict best
response, while the former does not. Notice that in both
equilibria, we have not changed the behavior of the users
given by the WE (as in Definition 1). Notice also that we have
removed the qualifier “pure strategy,” since as is well known,
strict equilibria always have to be pure strategy (because
mixed strategy equilibria, by definition, involve players being
indifferent among the strategies over which they are mixing).
Therefore, there are situations in which a mixed strategy OE
exists, but strict OE does not. Moreover, it can be verified that
there are also situations in which a pure strategy OE exists,
but a strict OE does not.

We do not view this as a serious shortcoming, however,
since, as Example 1 above showed, even pure strategy OE do
not always exist. Moreover, Proposition 5 below establishes
that when latency functions are linear, a unique strong OE
(which is a stronger version of strict OE) exists.

We next provide an explicit characterization of the strict OE
prices, which will be essential for the subsequent efficiency
analysis. The following lemma establishes that all path flows
are positive at a strict OE.

Lemma 1 Let (pOE , xOE) be a strict OE. Let Assumption 1
hold. Then pOE

j xOE
i > 0 for all i ∈ I and j ∈ Ni.

Proof: Assume to arrive at a contradiction that pOE
j xOE

i = 0
for some i ∈ I and j ∈ Ni. Then, at any price p̄j with
p̄j > pOE

j , we have

Πj(p̄j , p
OE
−j , x) = Πj(pOE

j , pOE
−j , xOE),

contradicting the definition of the strict OE (cf. Definition 8).
Q.E.D.

As shown in Example 2, the result of the preceding lemma
does not extend to non-strict OE prices, i.e., there may be
OE in which some of the providers make zero profit while
others are making positive profits. We have shown in [7] that
for parallel-link topology, if at any OE one of the providers
makes positive profit, all of the providers make positive profits
(see [7], Lemma 4). Example 2 shows that this result no longer
holds for non-strict OE for the parallel-serial topology. Lemma
1, on the other hand, ensures that it holds for strict OE and
allows us to write the optimization problems for each provider
in terms of equality and inequality constraints. We can then
use the first order optimality conditions to obtain an explicit
characterization of the strict OE prices (see Appendix A for
the proof).

Proposition 4 Let (pOE , xOE) be a strict OE. Let Assump-
tion 1 hold. Then, for all i ∈ I, j ∈ Ni, we have
(a)

pOE
j ≥ xOE

i

∑
k∈Ni

l′k(xOE
i ).
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(b) pOE
j =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xOE
i

∑
k∈Ni

l′k(xOE
i ),

if l′k(xOE
s ) = 0,

for some s �= i, for all k ∈ Ns,

min

{
1
ni

[
R − ∑

k∈Ni
lk(xOE

i )
]
,

xOE
i

[∑
k∈Ni

l′k(xOE
i ) + 1P

s �=i
1

P
k∈Ns

l′
k
(xOE

s )

]}
,

otherwise.

(9)

In particular, for two links, when the minimum effective
cost is less than R, for i = 1, 2, j ∈ Ni, the strict OE prices
are given by

pOE
j = xOE

i

[ ∑
k∈N1

l′k(xOE
1 ) +

∑
k∈N2

l′k(xOE
2 )

]
.

The price characterization in Proposition 4 is a generaliza-
tion of the price characterization in [7], and as in that paper, it
will be useful in providing bounds on the inefficiency of price
competition. However, the next example shows that even with
strict OE, efficiency losses can be arbitrarily large.

C. Inefficiency of Strict OE

Example 3 Consider a one path network, which has n links
with identical latency functions l(x) = x/n. Let the total flow
be d = 1 and the reservation utility be R = 1.

For any n, the unique social optimum for this example is
xS = 1/2, with a corresponding social surplus S(xS) = 1/4.
Using the price characterization given in Proposition 4 and the
definition of a WE, it follows that there exists a unique strict
OE, in which all providers charge the price pOE = 1/(n+1),
and the equilibrium flow is xOE = 1/(n + 1). The efficiency
metric for this example is therefore

r1({lj}, xOE) =

(
1 − 1

n+1

)
1

n+1(
1 − 1

2

)
1
2

=
4n

(n + 1)2
,

which goes to 0 as n → ∞.

This example establishes that even with strict OE, which
rules out the pathological coordination failures discussed
above, efficiency losses can be arbitrarily large. The reason
for this is again the double marginalization problem, which
increases the cost of transmission so much that there is no
transmission in equilibrium along certain paths (e.g., along
the single path in the example as n → ∞). It is also evidence
that the structure depicted in Example 3 can be part of any
general network topology, and thus establishes that strict OE
can be arbitrarily inefficient in general networks.

Despite this simplicity and potential generality, the behavior
in Example 3 is still somewhat pathological, since it relies on
the double marginalization problem reducing the transmission.
This may be thought to be unlikely particularly in networks
where the reservation utility, R, of users is high enough. This

leads us to define an even stronger notion of equilibrium,
strong OE.4

Definition 5 A vector (pOE , xOE) ≥ 0 is a strong OE
(Oligopoly Equilibrium) if it is a strict OE, and

∑
i∈I xOE

i =
d. In this case, we refer to pOE as the strong OE price and
denote the set of strong OE flow allocations in a network with
latency functions by {lj} by

−−→
OEd({lj}).

The only difference between Definition 4 and Definition 5
is that in the latter we require all of the potential flow, d,
to be transmitted. This will be the case when the reservation
utility, R, of users is large enough. The following proposition
establishes that this is indeed the case and in fact when R is
large enough there exists a unique strong OE. The proof of
the proposition is provided in Appendix C.

Proposition 5 Let Assumption 1 hold. Assume further that
the latency functions are linear, i.e., lj(x) = ajx for all j ∈
Ni, and all i ∈ I. Define the set

I0 =
{
i ∈ I |

∑
j∈Ni

aj = 0
}
.

Let I0 denote the cardinality of set I0 and assume that I0 ≤ 1.
Then, there exists some R̄, such that for all reservation utilities
R ≥ R̄, the price competition game has a unique strong OE.

Note that the assumption I0 ≤ 1 in the preceding proposi-
tion cannot be dispensed with, i.e., without this assumption,
we can have situations in which there exists a pure strategy
OE, but no strict OE. To see this, consider a two-link parallel
network where both latency functions are identically equal
to zero [i.e., li(x) = 0, for i = 1, 2 and for all x]. In this
case, there exists a unique pure strategy OE, identical to the
standard Bertrand equilibrium, where both service providers
charge p1 = p2 = 0. It can be verified, however, that this is
not a strict best response for either of them, thus a strict OE
does not exist (there are no other pure strategy OE and mixed
strategy OE cannot be strict).

D. Efficiency of Strong OE with Two Paths

We now characterize the efficiency properties of strong OE.
We start with a two path network, with ni links on path i =
1, 2, where each link is owned by a different provider. First,
consider the following example, which illustrates that even
with strong OE the efficiency loss can be worse than that in
parallel link networks (which was shown to be bounded below
by 5/6 in [7]).

Example 4 Consider a two path network, which has n links
on path 1 with identically 0 latency functions and one link on
path 2 with latency function l(x2) = x2/2. Let the total flow
be d = 1 and the reservation utility be R = 1.

4Note that this notion is unrelated to Aumann’s notion of “strong equi-
librium,” which requires a Nash equilibrium to have the property that no
coalition of players should be able to jointly deviate, taking the actions of
all other players as given, and increase the payoffs to all the members of
the coalition (see [25], [24]). The notion of coalition-proof Nash equilibrium
discussed in Section V is a weaker version of Aumann’s strong equilibrium.
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The unique social optimum for this example is xS = (1, 0).
Using Proposition 4 and the definition of a WE, OE flows xOE

must satisfy∑
j∈N1

lj(xOE
1 ) + xOE

1

[ ∑
j∈N1

l′j(x
OE
1 ) +

∑
j∈N2

l′j(x
OE
2 )

]

=
∑

j∈N2

lj(xOE
2 ) + xOE

2

[ ∑
j∈N1

l′j(x
OE
1 ) +

∑
j∈N2

l′j(x
OE
2 )

]
.

Substituting for the latency functions and solving the above
together with xOE

1 + xOE
2 = 1 shows that unique strong OE

involves
xOE =

( 2
n + 2

,
n

n + 2

)
,

which goes to (0, 1) as n → ∞. The social surplus at the
social optimum is 1, while the social surplus at the strong OE
goes to 1/2 as n → ∞.

We next present two lemmas, which will be useful in
providing a bound on the efficiency metric for strong OE.
Note that these lemmas are valid for all OE. The first lemma
is straightforward and allows us to assume without loss of
generality that R

∑I
i=1 xS

i − ∑I
i=1 li(xS

i )xS
i > 0 in the

subsequent analysis.

Lemma 2 Given a set of latency functions {lj}j∈Ni, i∈I ,
assume that ∑

i∈I

( ∑
j∈Ni

lj(xS
i )

)
xS

i = R
∑
i∈I

xS
i ,

for some social optimum xS . Then every xOE ∈ −−→
OE({lj}) is

a social optimum, implying that rI({lj}, xOE) = 1.

The following lemma provides a relation between the total
flow admitted at an OE and at a social optimum.

Lemma 3 For a set of latency functions {lj}(j∈Ni, i∈I), let
Assumption 1 hold. Let (pOE , xOE) be an OE and xS be a
social optimum. Then∑

i∈I
xOE

i ≤
∑
i∈I

xS
i .

Proof: Assume to arrive at a contradiction that
∑

i∈I xOE
i >∑

i∈I xS
i . This implies that xOE

i > xS
i for some i. Hence,

lj(xOE
i ) ≥ lj(xS

i ), ∀ j ∈ Ni.

We also have lj(xOE
i ) > lj(xS

i ) for some j ∈ Ni. [Otherwise,
we would have lj(xS

i ) = l′j(x
S
i ) = 0 for all j ∈ Ni, which

yields a contradiction by the optimality conditions (4) and the
fact that

∑
i∈I xS

i < d.] Using the definition of the WE and
the optimality conditions (4), we obtain

R−
∑
j∈Ni

(
lj(xOE

i )−pOE
j

)
≥ R−

∑
j∈Ni

(
lj(xS

i )−xS
i l′j(x

S
i )

)
.

Combining the preceding with lj(xOE
i ) ≥ lj(xS

i ) for all j ∈
Ni, with strict inequality for some j, and

pOE
j ≥ xOE

i l′j(x
OE
i ) ≥ xS

i l′j(x
S
i ),

[using Proposition 4(a) and the fact that xl′(x) is nondecreas-
ing, cf. Assumption 1], we obtain a contradiction. Q.E.D.

The next theorem provides a tight lower bound on
r2({lj}, xOE) [cf. (7)] for a strong OE. In the following, we
assume without loss of generality that d = 1.

Theorem 1 Consider a two path network, with ni links on
path i = 1, 2, where each link is owned by a different provider,
and link j ∈ Ni has a latency function lj . Suppose that
Assumption 1 holds and the price competition game has a
strong OE. Then

r2({lj}, xOE) ≥ 1
2
, ∀ xOE ∈ −−→

OEd({lj}). (10)

Moreover, the bound is tight, i.e., there exists {lj} and xOE ∈−−→
OEd({lj}) that attains the lower bound in (10).

Proof: The proof follows a number of steps:

Step 1: We are interested in finding a lower bound for the
problem

inf
{lj}

inf
xOE∈−−→

OEd({lj})
r2({lj}, xOE). (11)

Given {lj}, let xOE ∈ −−→
OE({lj}) and let xS be a social

optimum. By Lemma 3 and the fact that xOE ∈ −−→
OEd({lj})

(i.e., it is a strong OE), we have

2∑
i=1

xOE
i =

2∑
i=1

xS
i = 1.

This implies that there exists some i such that xOE
i < xS

i .
Since the problem is symmetric, we can restrict ourselves to
{lj} for which xOE

1 < xS
1 . We claim that

inf
{li}∈L2

inf
xOE∈−−→

OEd({li})
r2({li}, xOE) ≥ rOE

2 , (12)

where problem (E) is given by
rOE
2 =

min lS
i,j

,(lS
i,j

)′≥0

li,j ,l′
i,j

≥0

yS
i

,yOE
i

≥0

R − yOE
1

(∑
j∈N1

l1,j

)
− yOE

2

(∑
j∈N2

l2,j

)
R − yS

1

(∑
j∈N1

lS1,j

)
− yS

2

( ∑
j∈N2

lS2,j

)

subject to

lSi,j ≤ yS
i (lSi,j)

′, i = 1, 2, j ∈ Ni, (13)( ∑
j∈N2

lS2,j

)
+yS

2

( ∑
j∈N2

(lS2,j)
′
)

=
( ∑

j∈N1

lS1,j

)
+yS

1

( ∑
j∈N1

(lS1,j)
′
)
,

(14)( ∑
j∈N1

lS1,j

)
+ yS

1

( ∑
j∈N1

(lS1,j)
′) ≤ R,

2∑
i=1

yS
i = 1,

l1,j + l′1,j(y
S
1 − yOE

1 ) ≤ lS1,j , ∀ j ∈ N1, (15)

li,j ≤ yOE
i l′i,j , i = 1, 2, j ∈ Ni, (16)
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2∑
i=1

yOE
i = 1,

+ Strict OE Constraints.

Problem (E) can be viewed as a finite dimensional problem
that captures the equilibrium and social optimum character-
istics of the infinite dimensional problem given in (11). This
implies that instead of optimizing over the entire function lj
for some j ∈ Ni, i ∈ I, we optimize over the possible values
of lj(·) and l′j(·) at the equilibrium and the social optimum,
which we denote by li,j , l

′
i,j, l

S
i,j , (l

S
i,j)

′. The constraints of the
problem guarantee that these values satisfy the necessary opti-
mality conditions for a social optimum and a strict OE (which
are the same as the conditions for a strong OE). In particular,
conditions (13) and (16) capture the convexity assumption on
lj(·) by relating the values li,j , l

′
i,j and lSi,j , (l

S
i,j)

′ [note that
the assumption lj(0) = 0 is essential here]. Condition (14)
is the optimality condition for the social optimum. Condition
(15) uses the nondecreasing and the convexity assumption on
the latency functions; since we are focusing on {lj(·)} such
that xOE

1 ≤ xS
1 , we must have

l1,j + l′1,j(y
S
1 − yOE

1 ) ≤ lS1,j,

for all j ∈ N1. Finally, the last set of constraints are the
necessary conditions for a pure strategy OE. In particular,
for a two path network, using Proposition 4, the Strict OE
Constraints are given by

n1y
OE
1

[ ∑
j∈N1

l′1,j +
∑

j∈N2

l′2,j

]
+

∑
j∈N1

l1,j

= n2y
OE
2

[ ∑
j∈N1

l′1,j +
∑

j∈N2

l′2,j

]
+

∑
j∈N2

l2,j ,

[and therefore n1 and n2 are also decision variables in problem
(E)]. Note that given any feasible solution of problem (11),
we have a feasible solution for problem (E) with the same
objective function value. Therefore, the optimum value of
problem (E) is indeed a lower bound on the optimum value
of problem (11).

Step 2: Consider the following change of variables for
problem (E)

lS1 =
∑

j∈N1

lS1,j, lS2 =
∑

j∈N2

lS2,j

l1 =
∑

j∈N1

l1,j , l2 =
∑

j∈N2

l2,j,

(lS1 )′ =
∑

j∈N1

(lS1,j)
′, (lS2 )′ =

∑
j∈N2

(lS2,j)
′,

l′1 =
∑

j∈N1

l′1,j , l′2 =
∑

j∈N2

l′2,j,

and rewrite problem (E) as

rOE
2 = minimize lS

i
,(lS

i
)′≥0

li,l′
i
≥0

yS
i

,yOE
i

≥0

R − l1y
OE
1 − l2y

OE
2

R − lS1 yS
1 − lS2 yS

2

(E′)

subject to
lSi ≤ yS

i (lSi )′, i = 1, 2,

lS2 + yS
2 (lS2 )′ = lS1 + yS

1 (lS1 )′,

lS1 + yS
1 (lS1 )′ ≤ R,

2∑
i=1

yS
i = 1,

l1 + l′1(y
S
1 − yOE

1 ) ≤ lS1 ,

li ≤ yOE
i l′i, i = 1, 2,

2∑
i=1

yOE
i = 1,

+ Strict OE Constraints.

Note that this problem has a very similar structure
to the finite-dimensional problem considered in the proof
of Theorem 1 of [7] for parallel-link networks. Let
(l̄Si , (l̄Si )′, l̄i, l̄′i, ȳ

S
i , ȳOE

i ) denote the optimal solution of prob-
lem (E’). We have shown in [7] that l̄Si = 0 for i = 1, 2.

Step 3: Using l̄Si = 0 for i = 1, 2, and l̄1 = 0, l̄′1 = 0, we
see that

rOE
2 = min

l2,l′2
yOE
1 , yOE

2 ≥0
n1, n2≥1

1 − l2y
OE
2

R
(17)

subject to l2 ≤ yOE
2 l′2,

l2 + n2y
OE
2 l′2 = n1y

OE
1 l′2,

n1y
OE
1 l′2 ≤ R.

2∑
i=1

yOE
i ≤ 1.

Next, using the transformation m1 = n1y
OE
1 and m2 =

n2y
OE
2 to write:

rOE
2 = min

l2,l′2
yOE
1 , yOE

2 ≥0
m1, m2≥0

1 − l2y
OE
2

R
(18)

subject to l2 ≤ yOE
2 l′2,

l2 + m2l
′
2 = m1l

′
2,

m1l
′
2 ≤ R.

2∑
i=1

yOE
i = 1,

though we also have to ensure that the solution to this program
ensures that n1 and n2 are integers.

Now it can verified that (l̄2, l̄′2, ȳOE
1 , ȳOE

2 , m̄1, m̄2) =
(R

2 , R
2 , 0, 1, 2, 1) is an optimal solution to the program (18),

and moreover, it satisfies n1, n2 ≥ 1, thus it is also a solution
to (17). The corresponding optimum value is rOE

2 = 1/2. By
(12), this implies that

inf
{lj}

inf
xOE∈−−→

OE({lj})
r2({lj}, xOE) ≥ 1

2
.

Finally, Example 4 shows that this bound is tight, i.e.,

min
{lj}

min
xOE∈−−→

OE({lj})
r2({lj}, xOE) =

1
2
.
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Q.E.D.

This theorem shows that there exists a tight bound of 1/2
for strong OE under the assumption of zero latency without
any congestion [li(0) = 0]. In contrast to the case in Example
3, strong OE ensures that all of the traffic is transmitted in
equilibrium, which is the key to the existence of a bound on
the inefficiency of equilibrium.

The bound with strong OE is nonetheless worse than the
efficiency bound in the parallel-link topology considered in
[7]. This is again because of the double marginalization
problem: each provider along path 1 has a greater incentive to
increase its price (relative to the benchmark where all these
links are owned by the same provider), because it does not
internalize the reduction in the profits of the other link owners
along the same path. Consequently, in Example 4, there are
higher prices along path 1, and this induces greater fraction
of users to choose path 2, increasing inefficiency. To see the
role of serial links more clearly, consider a modified version
of Example 4, where all n links along path 1 are owned
by the same service provider. This would make the example
equivalent to a parallel-link topology. In this case the unique
strict OE flows are given by xOE

1 = 2/3 and xOE
2 = 1/3,

and this example reaches the 5/6 bound of [7] rather than 1/2
bound of Example 4.

E. Efficiency of Strong OE with Multiple Paths

We next consider a more general network consisting of I
paths, with ni links on path i, where each link is owned
by a different provider. The following example illustrates the
efficiency properties of a strong OE in an I path network.

Example 5 Consider an I path network, which has n links
on path 1 with identically 0 latency functions and one link
on each of the paths 2, . . . , I with the same latency function
l(x) = x(I − 1)/2. Let the total flow be d = 1 and the
reservation utility be R = 1.

Clearly, the unique social optimum for this example is xS =
[1, 0, . . . , 0]. Using Proposition 4 and the definition of a WE, it
can be seen that the flow allocation at the unique strict (strong)
OE is

xOE =
[ 2/n

1 + 2/n
,

1
(I − 1)(1 + 2/n)

, . . . ,
1

(I − 1)(1 + 2/n)

]
.

Hence the efficiency metric for this example is

rI({lj}, xOE) = 1 − 1
2

(
1

1 + 2/n

)2

,

which goes to 1/2 as n → ∞.

The next theorem generalizes Theorem 1. The proof is
similar to that of Theorem 1 and is omitted.

Theorem 2 Consider a general I path network, with ni links
on path i ∈ I, where each link is owned by a different
provider, and link j, j ∈ Ni, has a latency function lj . Suppose
that Assumption 1 holds and the price competition game has
a strong OE. Then

rI({lj}, xOE) ≥ 1
2
, ∀ xOE ∈ −−→

OEd({lj}). (19)

Moreover, the bound is tight, i.e., there exists {lj} and xOE ∈−−→
OEd({lj}) that attains the lower bound in (19).

An important implication of this theorem and of Example
5 is that the bound of 1/2 is tight even with an arbitrarily
large number of paths. Naturally, such a tight bound could be
obtained trivially when all paths except two have arbitrarily
high latencies. Nevertheless, Example 5 shows that this bound
is reached with positive flows on all paths for arbitrarily large
networks. This result is interesting in part because models
where a large number of oligopolists compete often converge
to a competitive and efficient equilibrium, and yet this example
shows this not to be the case in our model. It is important to
note, however, that such a convergence result would apply as
n → ∞ when a given network is replicated n times. Instead,
in examples where the metric of efficiency remains at 1/2, the
network in question is not a n-replication of another network.

F. Positive Latency at 0 Congestion

Interestingly, the bound on the efficiency loss of strong OE
does not generalize once we relax the assumption that li(0) =
0.

Example 6 Consider a two path network, which has n links
on path 1 with identically 0 latency functions and one link
on path 2 with latency function l(x2) = εx2 + b for some
scalars ε > 0 and b > 0. Again the unique social optimum
is x̄S = (1, 0). The flows at the unique strict (strong) OE are
given by

x̄OE =
(

2ε + b

ε(n + 2)
,

εn − b

ε(n + 2)

)
.

Let ε = b/
√

n. Then, as b → 1 and n → ∞, we have that
x̄OE → (0, 1), and the efficiency metric r2({lj}, xOE) → 0.

This example shows that the efficiency loss could be arbi-
trarily high even at a strong OE for a network that involves
parallel and serial links if the assumption li(0) = 0 is relaxed.
This establishes:

Proposition 6 In the presence of positive latency at zero
congestion, strong OE with the parallel-serial topology can
be arbitrarily inefficient.

It is useful to note that in the same example with the
parallel-link topology (i.e., all n links along path 1 owned
by the same provider), we would have

xOE =
{ (

b+2ε
3ε , ε−b

3ε

)
, if ε ≥ b,

(1, 0), otherwise.

Consequently, b → 1 and ε → 0, we have that xOE → (1, 0),
and r2({lj}, xOE) → 1. Therefore, the highly inefficient
equilibrium is a result of the parallel-serial topology, not of
the assumption that there is positive latency at 0 congestion. In
fact, [7] shows that with parallel topology, but positive latency
at 0 congestion, there is again a tight bound of 2

√
2 − 2 on

efficiency, which is quite close to, but slightly lower than 5/6.
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V. CONCLUSIONS

In this paper, we presented an analysis of price competition in
communication networks with congestion. The focus has been
the efficiency implications of price competition in networks
with the serial-parallel topology.

Our major result is that contrary to the case of parallel-
link topology studied in [7], the parallel-serial topology leads
to significant efficiency losses relative to the social optimal.
In particular, OE can now be arbitrarily inefficient. This
is partly due to an extreme (pathological) form of double
marginalization, whereby all serial providers on a particular
path charge prohibitively high prices expecting others on that
path to do so as well.

We showed that the concept of strict OE, which requires all
service providers to play strict best responses, removes this
pathological behavior, but the efficiency loss of strict OE is
also unbounded because of the related double marginalization
problem. In particular, the total cost of transmission on a path
consisting of many serial providers can be prohibitively high
that most of the users do not transmit in equilibrium, even
though transmission of all the traffic is socially optimal.

Yet, when users value transmission sufficiently, we may
expect them to transmit even with high costs. Motivated by
this, we defined a stronger notion of equilibrium, strong OE,
which is a strict OE with all of the traffic transmitted in
equilibrium. For strong OE, we showed that as long as there
is zero latency at zero congestion, there is a tight bound of
1/2 on the inefficiency resulting from price competition.

Once the zero latency at zero congestion assumption is
removed, however, there is no such tight bound even with
strong OE, and the equilibrium can once again be arbitrarily
inefficient.

The results in this paper add to the growing literature
on the impact of game-theoretic interactions between service
providers and users in communication networks. A number of
questions in this area require further analysis:

1) All the examples of arbitrarily high inefficiency pre-
sented in this paper are under extreme configurations.
Therefore, we suspect that these worst-case results may
not be informative about the extent of degradation of
performance in real-world network structures. An open
area for further study is the quantification of inefficiency
arising from price competition in “average” or “typical”
networks. The methods used by Friedman in his analysis
of genericity of inefficiency of selfish routing are likely
to be useful in this context as well (see [11]).

2) Our results suggest that competition between service
providers can have significant costs in more general
topologies, as long as these include serial service
providers, causing the double marginalization problem.
In fact, Example 3, which shows the possibility of
arbitrarily large inefficiencies, can be part of any general
network topology. Nevertheless, a characterization of
the structure of networks that would lead to worst-case
scenarios is an area for future research.

3) The most important simplifying feature of our analysis
is the assumption that users are “homogeneous” in the
sense that the same reservation utility, R, applies to

all users. It is possible to conduct a similar analysis
with elastic and heterogeneous users (or traffic) as in
[17], [18], assuming that service providers are restricted
to charge uniform prices to all users. Perhaps a more
attractive alternative is to allow non-linear pricing and
price differentiation, whereby service providers may
charge different prices for different qualities of service
and different delay guarantees (and let users sort be-
tween different types of services or contracts). This is
an important research area for understanding equilibria
in communication networks, where users often have
heterogeneous quality of service requirements.

4) All of our efficiency bounds concern pure strategy equi-
librium. Possible bounds for mixed strategy oligopoly
equilibria is another open research question.

5) As discussed above, another interesting equilibrium no-
tion to consider in models of competition in parallel-
serial or more general topologies would be the coalition-
proof Nash equilibrium concept of Bernheim, Peleg
and Whinston, [24]. It can be shown that the pure
strategy oligopoly equilibrium in Example 2 where all
serial service providers charge prohibitively high prices
is not coalition proof. In particular, in that game, the
coalition consisting of all the serial providers along path
1 would have a “self-enforcing” deviation that would
increase the payoff to each of them (this would be
simply to reduce their prices simultaneously to allow
positive transmission through path 1). The concept of
coalition-proof Nash equilibrium may be attractive in
the context of competition in general communication
networks, since we may expect self-enforcing agree-
ments between providers that are both cooperating and
competing to emerge. The problem with coalition-proof
Nash equilibria, however, is that such equilibria often
fail to exist. Despite this potential shortcoming, an
investigation of the structure and efficiency of coalition-
proof Nash equilibria in communication networks with
general topologies would be an interesting area for
further study.

VI. APPENDIX A: PROOF OF PROPOSITION 4

Since (pOE , xOE) is a strict OE, it follows by Lemma 1 that
pOE

j xOE
i > 0 for all i ∈ I and j ∈ Ni. Using the definition

of a Wardrop equilibrium (cf. Definition 1), we have that for
all i ∈ I and j ∈ Ni, (pOE

j , xOE) is an optimal solution of
the problem

max
(pj ,x)≥0

pjxi (20)

subject to

pj +
∑
k∈Ni
k �=j

pOE
k +

∑
k∈Ni

lk(xi) =
∑

k∈Ns

pOE
k + lk(xs),

∀ s �= i,

pj +
∑
k∈Ni
k �=j

pOE
k +

∑
k∈Ni

lk(xi) ≤ R, (21)

∑
s∈I

xs ≤ d.
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Using the first order optimality conditions of the preceding
problem, we obtain

pOE
j = xOE

i

∑
k∈Ni

l′k(xOE
i ) − θ, (22)

where

θ =

⎧⎪⎨
⎪⎩

0, if l′k(xOE
s ) = 0 for some s �= i,

for all k ∈ Ns,
−xOE

i −ξ
P

s �=i
1

P
k∈Ns

l′
k
(xOE

s )
, otherwise,

and ξ ≥ 0 is the Lagrange multiplier associated with constraint
(21). Since θ ≤ 0, Eq. (22) yields part (a) of the proposition.

If mins∈I
{∑

k∈Ns
pOE

k +lk(xOE
s )

}
= R, then, in view of

the symmetry of the optimization problems of each provider
on a serial link, it follows that

pOE
k =

1
ni

[
R −

∑
k∈Ni

lk(xOE
i )

]
, ∀ k ∈ Ni, ∀ i ∈ I. (23)

Assume next that mins∈I
{∑

k∈Ns
pOE

k + lk(xOE
s )

}
< R.

This implies that the constraint in Eq. (21) is slack, and
therefore ξ = 0. Combining Eq. (22) with the relation in (23)
yields the desired result. Q.E.D.

VII. APPENDIX B: PROOF OF PROPOSITION 3

Let lj(x) = ajx for some aj ≥ 0. Define the set

I0 =
{
i ∈ I |

∑
j∈Ni

aj = 0
}
,

(or equivalently, I0 is the set of i ∈ I such that aj = 0 for
all j ∈ Ni). Let I0 denote the cardinality of set I0. There are
two cases to consider:

Case 1: I0 ≥ 2. In this case, it is evident that a vector
(pOE , xOE) with pOE

j = 0 for all i ∈ I0, j ∈ Ni and xOE ∈
W (pOE) is an OE.

Case 2: I0 ≤ 1. In this case, for some j ∈ Ni, let Bj(pOE
−j )

be the set of pOE
j such that

(pOE
j , xOE) ∈ arg max

pj≥0

x∈W (pj,pOE−j
)

pjxi. (24)

Let B(pOE) = [Bj(pOE
−j )]. By Berge’s Theorem of the

Maximum (see [26]), it follows that B(pOE) is an upper semi-
continuous correspondence. We next show that it is convex-
valued.

Lemma 4 For all i ∈ I, j ∈ Ni, and pOE
−j ≥ 0, the set

Bj(pOE
−j ) is a convex set.

Proof: Let pj ∈ Bj(pOE
−j ) and p̄j ∈ Bj(pOE

−j ). Consider
x ∈ W (pj , p

OE
−j ) and x̄ ∈ W (p̄j , p

OE
−j ) such that (pj , x)

and (p̄j , x̄) are optimal solutions of problem (24). If pjxi =
p̄j x̄i = 0, then γpj + (1− γ)p̄j ∈ Bj(pOE

−j ) for all γ ∈ [0, 1],
establishing convexity.

Assume next that pjxi = p̄j x̄i > 0. Assume to arrive at a
contradiction that

pj > p̄j, (25)

which implies that xi < x̄i. There are two cases to consider:

• pj +
∑

k∈Ni
k �=j

pOE
k +

∑
k∈Ni

akxi < p̄j +
∑

k∈Ni
k �=j

pOE
k +∑

k∈Ni
akx̄i :

Since pj +
∑

k∈Ni
k �=j

pOE
k +

∑
k∈Ni

akxi < R, it follows by

the definition of a Wardrop equilibrium that
∑

s∈I xs =
d. Moreover, in view of the relation between the effective
costs, it can be seen that xs ≤ x̄s, for all s �= i,
which combined with xi < x̄i, implies that

∑
s∈I xs <∑

s∈I x̄s, yielding a contradiction.
• pj +

∑
k∈Ni
k �=j

pOE
k +

∑
k∈Ni

akxi ≥ p̄j +
∑

k∈Ni
k �=j

pOE
k +∑

k∈Ni
akx̄i :

If both effective costs are equal to R, i.e.,

pj+
∑
k∈Ni
k �=j

pOE
k +

∑
k∈Ni

akxi = p̄j+
∑
k∈Ni
k �=j

pOE
k +

∑
k∈Ni

akx̄i = R,

then the optimization problem of provider j [cf. Problem
20] can be shown to have a strictly concave objective
function over polyhedral constraints, thus implying that
pj = p̄j .
Assume next that pj +

∑
k∈Ni
k �=j

pOE
k +

∑
k∈Ni

akxi ≤ R,

and p̄j +
∑

k∈Ni
k �=j

pOE
k +

∑
k∈Ni

akx̄i < R. Define the
sets

L =
{
s ∈ I | pj +

∑
k∈Ni
k �=j

pOE
k +

∑
k∈Ni

akxi <
∑

k∈Ns

pOE
k

}
,

and

L̄ =
{
s ∈ I | p̄j +

∑
k∈Ni
k �=j

pOE
k +

∑
k∈Ni

akx̄i <
∑

k∈Ns

pOE
k

}
.

Following the line of proof of Proposition 4 (see Ap-
pendix A), we can show that

pj ≤ xi

[ ∑
k∈Ni

ak +
1∑

s �=i
s/∈L

1P
k∈Ns

ak

]
,

p̄j = x̄i

[ ∑
k∈Ni

ak +
1∑

s �=i

s/∈L̄
1P

k∈Ns
ak

]
.

Moreover, in view of the relation between the effective
costs, it can be seen that L ⊂ L̄. Since xi < x̄i, the
preceding implies that pj < p̄j , yielding a contradiction
[cf. Eq. (25)].

Q.E.D.

Next, in view of the fact that B(pOE) is upper semicontinu-
ous, convex-valued and maps a compact set into a compact set,
we can use Kakutani’s fixed point theorem (e.g., [26])to assert
the existence of a pOE such that B(pOE) = pOE . To complete
the proof, it remains to show that there exists xOE ∈ W (pOE)
such that (6) holds.

If I0 = ∅, we have by Proposition 2 that W (pOE) is a
singleton, and therefore (6) holds and (pOE , W (pOE)) is an
OE.

Assume finally that I0 = 1, and that without loss of
generality 1 ∈ I0. We show that for all x̄, x̃ ∈ W (pOE),
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we have x̄i = x̃i, for all i �= 1. Let

EC(x, pOE) = min
k∈I

{ ∑
j∈Nk

lj(xk) + pOE
j

}
.

If at least one of the following inequalities

EC(x̃, pOE) < R, or EC(x̄, pOE) < R

holds, then one can show that
∑I

i=1 x̃i =
∑I

i=1 x̄i = d.
Substituting x1 = d − ∑

i∈I, i�=1 xi in problem (2), we
see that the objective function of problem (2) is strictly
convex in x−1 = [xi]i�=1, thus showing that x̃ = x̄. If both
EC(x̃, pOE) = R and EC(x̄, pOE) = R, then∑

j∈Ni

lj(x̄i) =
∑
j∈Ni

lj(x̃i),

which, by the assumption that lj is strictly increasing for some
j ∈ Ni, implies that x̄i = x̃i for all i �= 1, establishing our
claim.

For some x ∈ W (pOE), consider the vector xOE =(
d − ∑

i�=1 xi, x−1

)
. Since x−1 is uniquely defined and x1

is chosen such that the providers on link 1 have no incentive
to deviate, it follows that (pOE , xOE) is an OE. Q.E.D.

VIII. APPENDIX C: PROOF OF PROPOSITION 5

For brevity, we provide a sketch of this proof. The proof
relies on the price characterization provided in Appendix A.
Consider the following system of linear equations:

xi

[
2

∑
k∈Ni

ak +
1∑

s�=i
1P

k∈Ns
ak

]
(26)

= xh

[
2

∑
k∈Nh

ak +
1∑

s�=h
1P

k∈Ns
ak

]
, ∀ h ∈ I, h �= i,

and ∑
i∈I

xi = d. (27)

It is straightforward to see that, under the assumption I0 ≤ 1,
the preceding set of equations has a unique solution, which
we denote by x̄, that satisfies x̄i > 0 for all i. Consider some
j ∈ Ni, i ∈ I. For all l ∈ Nh, h ∈ I with l �= j, define

p̄l = x̄h

[ ∑
k∈Nh

ak +
1∑

s�=h
1P

k∈Ns
ak

]
.

Consider the optimization problem

max
(pj ,x)≥0

pjxi (28)

subject to

pj +
∑
k∈Ni
k �=j

p̄k +
∑

k∈Ni

lk(xi) =
∑

k∈Ns

p̄k + lk(xs), ∀ s �= i,

∑
s∈I

xs ≤ d.

An argument analogous to that in the proof of Proposition 4
in Appendix A immediately establishes that the vector (p̄j , x̄)
such that

p̄j = x̄i

[ ∑
k∈Ni

ak +
1∑

s�=i
1P

k∈Ns
ak

]

is the unique optimal solution of problem (28). It also follows
from Proposition 4 that for R sufficiently large, (p̄, x̄) satisfies
the necessary conditions for a strict OE and

∑
i x̄i = d. It

therefore follows that there exists some R̄ < ∞, such that for
all R ≥ R̄, (p̄, x̄) is a strong OE.

To see that this is the unique strong OE for R ≥ R̄, note that
any strong OE is also a strict OE, and Lemma 1 establishes
that (p, x) with pjxi = 0 for some j and i cannot be a strict
OE. Moreover, for R ≥ R̄ problem (28) has a unique solution,
given by the unique solution to Equations (26) and (27), which
is the unique candidate for a strong OE, thus completing the
proof. Q.E.D.
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