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Abstract

We study a dynamic general equilibrium model where innovation takes the form of the introduction of
new goods whose production requires skilled workers. Innovation is followed by a costly process of stan-
dardization, whereby these new goods are adapted to be produced using unskilled labor. Our framework
highlights a number of novel results. First, standardization is both an engine of growth and a potential
barrier to it. As a result, growth is an inverse U-shaped function of the standardization rate (and of com-
petition). Second, we characterize the growth and welfare maximizing speed of standardization. We show
how optimal protection of intellectual property rights affecting the cost of standardization vary with the
skill-endowment, the elasticity of substitution between goods and other parameters. Third, we show that,
depending on how competition between innovating and standardizing firms is modelled and on parameter
values, a new type of multiplicity of equilibria may arise. Finally, we study the implications of our model
for the skill premium and we illustrate novel reasons for linking North–South trade to intellectual property
rights protection.
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1. Introduction

The diffusion of new technologies is often coupled with standardization of product and pro-
cess innovations. New technologies, when first conceived and implemented, are often complex
and require skilled personnel to operate. At this stage, their use in the economy is limited both by
the patents of the innovator and the skills that these technologies require. Their widespread adop-
tion and use necessitates the tasks involved in these new technologies to become more routine
and standardized, ultimately enabling their cheaper production using lower-cost unskilled labor.
However, such standardization not only expands output but also implies that the rents accruing
to innovators will come to an end. Therefore, the process of standardization is both an engine
of economic growth and a potential discouragement to innovation. In this paper, we study this
interplay between innovation and standardization.

The history of computing illustrates the salient patterns of this interplay. The use of silicon
chips combined with binary operations were the big breakthroughs, starting the information and
communication technology (ICT) revolution. During the first 30 years of their existence, com-
puters could only be used and produced by highly skilled workers. Only a lengthy process of
standardization made computers and silicon chips more widely available and more systematically
integrated into the production processes, to such a degree that today computers and computer-
assisted technologies are used at every stage of production with workers of very different skill
levels. At the same time that the simplification of manufacturing processes allowed mass produc-
tion of electronic devices and low prices, competition among ICT firms intensified enormously,
first among few industry leaders and then more broadly at a global scale.

More generally, the business literature has documented a common pattern in the life-cycle of
industries. New industries are often highly concentrated due to the complexity of their products.
Over time, both entry and process innovation intensify until the introduction, often by newcom-
ers, of a “dominant standard” facilitates more standardized, large-scale production and erodes
the monopoly advantage of incumbent firms. For instance, in the early 1960s the American cal-
culator industry consisted of five major companies producing complex and expensive electronic
machines with more than 2300 parts. These companies lost most of their market share after
the introduction, in 1971, of the calculator on a chip, which made the assembly of units ex-
tremely simple—merely piecing together the chip, display device and keyboard [55]. Similarly,
although the production of transistors was initiated in 1947 by Bell Laboratories, the first in-
dustry standard, the planar transistor, was introduced in 1959 by the newly founded company
Fairchild Semiconductor. The great advantage of this design was its flat surface, on which elec-
trical connections could be achieved by depositing an evaporated metal film; previously this
process required skilled manual work on the irregular surface of the mesa transistor [55]. An-
other example is provided by the introduction of the Banbury Mixer in the tire industry, which
eliminated the slow and hazardous process of mixing rubber with other compounds, paving the
way for mass production and forcing many incumbent firms to exit [40].
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In our model, new products are invented via costly R&D and can first be produced only
by skilled workers. This innovation process is followed by a costly process of standardization,
whereby the previously new goods are adapted to be produced using unskilled labor.1 Free entry
into standardization makes it a competing process; due to the familiar Arrow effect, standard-
ization will be undertaken by newcomers, which may then displace incumbent producers. By
shifting some technologies to low-skill workers, standardization alleviates the pressure on scarce
high-skill workers, thereby raising aggregate demand and fostering incentives for further innova-
tion. Yet, the anticipation of standardization also reduces the potential profits from new products,
discouraging innovation. This implies that while standardization—and the technology adoption
that it brings—is an engine of economic growth, it can also act as a barrier to growth by poten-
tially slowing down innovation.

Our baseline framework provides a simple model for the analysis of this interplay. Under
some relatively mild assumptions, we establish the existence of a unique balanced growth path
equilibrium that is saddle-path stable. We show that equilibrium growth is an inverse U-shaped
function of the “extent of competition” captured by the cost of standardization. When standard-
ization is very costly, growth is relatively slow because new products use skilled workers for a
long while and this reduces their scale of production and profitability. On the other hand, when
standardization is very cheap, growth is again relatively slow, this time because innovators enjoy
ex post profits only for a short while. This inverse U-shaped relationship between competition and
growth is consistent with the empirical findings in [9], and complements the theoretical channel
highlighted in [9,10], which is driven by the interplay of their “escape competition” mechanism
and the standard effects of monopoly profits on innovation.

In our model, the laissez-faire equilibrium is inefficient for two reasons. First, as in many
models of endogenous technology, there is an appropriability problem: both innovating and stan-
dardizing firms are able to appropriate only a fraction of the gain in consumer surplus created by
their investment and this makes the growth rate too low. Second, there is a new form of “business
stealing” effect, whereby the costly standardization decisions reduce the rents of innovators.2

The possibility that the laissez-faire equilibrium is inefficient and growth is maximized by in-
termediate levels of competition implies that welfare and growth maximizing policies are not
necessarily those that provide maximal intellectual property rights (IPR) protection to innova-
tors. Under the assumption that a government can affect markups and the cost of standardization
by regulating IPR protection, we characterize growth and welfare maximizing combinations of
IPR and competition policies.3 In contrast to most of the literature, the optimal policy is not the
result of a trade-off between the static cost of monopoly power and dynamic gains. Rather, in
our model an excess of property right protection may harm growth by increasing the overload on
skilled workers, which are in short supply.

1 This view has a clear antecedent in [49], which we discuss further below. See also [15] on the comparative advantage
of unskilled workers in routine, or in our language “standardized,” tasks. We can also interpret innovation as product
innovation and standardization as process innovation. Evidence that firms engaging in product innovation are smaller
and more skill intensive than firms engaging in process innovation (e.g., [25]) is consistent with our assumptions.

2 Another form of business stealing, studied extensively in Schumpeterian models of vertical innovation (e.g., [11]),
is when a monopoly is destroyed by new firms introducing a “better” version of an existing products. We suggest that
standardization is also an important source of business stealing.

3 In contrast to [48] and [51], we do not assume that patents protect monopoly rents forever. Instead, as in Schumpete-
rian models such as [11] and [35], we assume that monopoly power is eroded over time through imitation and further
innovation (in particular, standardization). In this context, it is also natural to model IPR protection as a barrier to entry
against standardization.
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When the discount rate is small, we find that growth and welfare maximizing IPR policy in-
volves lower protection when R&D costs (for new products) are lower, when markups for new
products are higher and when the ratio of skilled to unskilled labor supply is greater. The latter
comparative static result is a consequence of the fact that when there is a large supply of unskilled
labor, standardization becomes more profitable and thus innovators require greater protection
against standardization. We also show that when competition policy as well as IPR policy can be
used, the optimal combination of policies involves no limits on monopoly pricing for new prod-
ucts, increased competition for standardized products, and lower IPR protection than otherwise.
Intuitively, lower IPR protection minimizes wasteful entry costs, but this may lead to excessive
standardization and weak incentives to innovate. To maximize growth or welfare, this latter effect
needs to be counteracted by lower markups for standardized products. We also show that trade
liberalization in less-developed countries may create negative effects on growth by changing the
relative incentives to innovate and standardize. However, if increased trade openness is coupled
with optimal IPR policy, it always increases welfare and growth.

Finally, we show that under different assumptions on competition between innovators and
standardizers, a new type of multiplicity of equilibria (of balanced growth paths) arises. When
too much of the resources of the economy are devoted to standardization, expected returns
from innovation are lower and this limits innovative activity. Expectation of lower innovation
reduces interest rates and encourages further standardization. Consequently, there exist equi-
libria with different levels (paths) of innovation and standardization. It is noteworthy that this
multiplicity does not rely on technological complementarities (previously studied and empha-
sized in the literature); instead, it has much more of the flavor of “self-fulfilling equilibria,”
whereby the relative prices change in order to support equilibria consistent with initial expecta-
tions.

Our paper is related to several different literatures. In addition to the endogenous growth and
innovation literatures (e.g., [11,35,51,52,54]), there are now several complementary frameworks
for the analysis of technology adoption. These can be classified into three groups. The first in-
cludes models based on Nelson and Phelps’s [49] important approach, with slow diffusion of
technologies across countries (and across firms), often related to the human capital of the work-
ers employed by the technology adopting firms. This framework is incorporated into different
types of endogenous growth models, for example, in [38], [6], and [5, Chapter 18]. Several pa-
pers provide more microeconomic foundations for slow diffusion. These include, among others,
[41,24,42,39,30], which model either the role of learning or human capital in the diffusion of
technologies. The second group includes papers emphasizing barriers to technology adoption.
Ref. [50] is a well-known example. Acemoglu [4] discusses the political economy foundations
of why some societies may choose to erect entry barriers against technology adoption. The final
group includes models in which diffusion of technology is slowed down or prevented because of
the inappropriateness of technologies invented in one part of the world to other countries (see,
e.g., [8,14,16,26]). Gancia and Zilibotti [32] and Gancia et al. [31] build and estimate a unified
framework for studying technology diffusion in models of endogenous technical change. Our
emphasis on standardization, rather than learning or other barriers to adoption, is different from,
though complementary to, all three groups of papers.

Our paper is also related to Krugman’s [44] model of North–South trade and technology dif-
fusion, whereby the South adopts new products with a delay. Krugman, in turn, was inspired by
Vernon’s [56] model of the product cycle and his approach has been further extended by Gross-
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man and Helpman [35] and Helpman [37].4 Our approach differs from all these models because
innovation and standardization make different use of skilled and unskilled workers and because
we focus on a closed economy general equilibrium setup rather than the interactions between
technologically advanced and backward countries as in these papers. A new implication of our
alternative set of assumptions is that, differently from previous models, growth is an inverse-U
function of standardization. More importantly, none of the above paper characterizes the optimal
IPR policy and how it varies with skill abundance.

Our paper is also related to the literature on IPR policy (see, e.g., [33,43,53], as well as [17,18],
for more recent contributions). In contrast to much of the existing literature, we focus on gen-
eral equilibrium effects. Refs. [36] and [19] are also related as they analyze the incentives that
governments have to protect intellectual property in a trading economy, but do not study stan-
dardization.

Finally, our emphasis on the role of skilled workers in the production of new goods and
unskilled workers in the production of standardized goods makes our paper also related to the lit-
erature on technological change and wage inequality; see, among others, [1,3,12,22,29,34,45].
The approach in [29] is particularly related, since their notion of ability-biased technological
change also generates predictions for wage inequality similar to ours, though the economic mech-
anism and other implications are very different.

The rest of the paper is organized as follows. Section 2 builds a dynamic model of endoge-
nous growth through innovation and standardization. It provides conditions for the existence,
uniqueness and stability of a dynamic equilibrium with balanced growth and derives an inverse-U
relationship between the competition from standardized products and growth. Section 3 presents
the welfare analysis. After studying the first best allocation, it characterizes growth and welfare
maximizing IPR and competition policies as functions of the parameters. As an application of
these results, we discuss how trade liberalization in less developed countries affects innovation,
standardization and optimal policies. Section 4 shows how a version of our baseline model with
a different assumption on competition between incumbents and entrants may generate multiple
equilibria and poverty traps. Section 5 concludes.

2. A model of growth through innovation and standardization

2.1. Preferences

The economy is populated by infinitely-lived households who derive utility from consumption
Ct and supply labor inelastically. Households are composed by two types of agents: high-skill
workers, with aggregate supply H , and low-skill workers, with aggregate supply L. The utility
function of the representative household is:

U =
∞∫

0

e−ρt logCt dt,

where ρ > 0 is the discount rate. The representative household sets a consumption plan to max-
imize utility, subject to an intertemporal budget constraint and a No-Ponzi game condition. The
consumption plan satisfies the standard Euler equation:

4 Similar themes are also explored in [20,13,27,28,46,57].
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Ċt

Ct

= rt − ρ, (1)

where rt is the interest rate. Time-indexes are henceforth omitted when this causes no confusion.

2.2. Technology and market structure

Aggregate output, Y , is a CES function defined over a measure A of goods available in
the economy. As in [51], the measure of goods A captures the level of technological knowl-
edge that grows endogenously through innovation. However, we assume that, upon introduction,
new goods involve complex technologies that can only be operated by skilled workers. After a
costly process of standardization, the production process is simplified and the good can then be
produced by unskilled workers too. Despite this change in the production process, good charac-
teristics remain unaltered so that all varieties contribute to final output symmetrically. Thus, Y is
defined as:

Y = Z

( A∫
0

x
ε−1
ε

i di

) ε
ε−1

= Z

( AL∫
0

x
ε−1
ε

L,i di +
AH∫
0

x
ε−1
ε

H,i di

) ε
ε−1

, (2)

where AH is the measure of hi-tech goods, AL is the measure of low-tech (standardized) goods

and A = AH + AL. ε > 1 is the elasticity of substitution between goods. The term Z ≡ A
ε−2
ε−1

introduces an aggregate externality that ensures the existence of a balanced growth path. In par-
ticular, this term ensures that output is linear in technology A. To see this, suppose that xi = X/A,

then Y = A
ε−2
ε−1 × A

1
ε−1 × X = AX. When ε = 2, this externality disappears. Note that other en-

dogenous growth models that do not feature the Z term and allow for ε �= 2 (e.g., [35]) instead
impose a similar externality in the R&D technology (i.e., in the innovation possibilities frontier).
Having the externality in the production good function instead of the R&D technology is no less
general and simplifies our analysis.

From (2), the relative demand for any two goods i, j ∈ A is:

pi

pj

=
(

xi

xj

)−1/ε

. (3)

We choose Y to be the numeraire, implying that the minimum cost of purchasing one unit
of Y must be equal to one:

1 = A−1

(
1

A

A∫
0

(pi)
1−ε di

)1/(1−ε)

. (4)

Each hi-tech good is produced by a monopolist with a technology that requires one unit of
skilled labor per unit of output. Each low-tech good is produced by a monopolist with a technol-
ogy that requires one unit of labor per unit of output. Thus, the marginal cost is equal to the wage
of skilled workers, wH , for hi-tech firms and the wage of unskilled workers, wL, for low-tech
firms. Since high-skill worker can be employed by both high- and low-tech firms, in equilibrium
we must have wH � wL.

When standardization occurs, there are two potential producers (a high- and a low-tech one)
for the same variety. The competition between these producers is described by a sequential entry-
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exit game.5 In stage (i) a low-tech firm can enter and produce a standardized version of the
intermediate variety. Then in stage (ii), the incumbent decides whether to exit or fight the en-
trant. Exit is assumed to be irreversible, which implies that after leaving the market, a hi-tech
firm cannot return and the low-tech entrant becomes a monopolist. If the incumbent does not
exit, the two firms compete à la Bertand (stage (iii)). We assume that all firms entering stage (iii)
must incur a “minimum cost” ξ > 0, because they are committed to producing a small amount.
Without this assumption, stage (ii) would be vacuous, as incumbents would have a “weakly dom-
inant” strategy of staying in and producing x = 0 in stage (iii).6 The presence of this minimum
cost ensures that the dominant firm will be able to charge a monopoly (rather than limit) price,
simplifying the analysis. Provided that ξ is sufficiently low, the presence of the minimum cost
has no other consequences for the equilibrium.

Regardless of the behavior of other producers or other prices in this economy, a subgame-
perfect equilibrium of this game must have the following features: standardization in sector j

will be followed by the exit of the high-skill incumbent whenever wH > wL. If the incumbent
did not exit, competition in stage (iii) would result in all of the market being captured by the
low-tech firm due to its cost advantage and the incumbent would make a loss (as ξ > 0). Thus, as
long as the skill premium is positive, firms contemplating standardization can ignore any compe-
tition from incumbents. However, if wH < wL (although this case cannot happen in equilibrium)
incumbents would fight entrants and can dominate the market. Anticipating this, standardiza-
tion is not profitable in this case and will not take place. Finally, in the case where wH = wL,
there is a potential multiplicity of equilibria, where the incumbent is indifferent between fight-
ing and exiting. In what follows, we will ignore this multiplicity and adopt the tie-breaking
rule that in this case the incumbent fights. This tie-breaking rule ensures that entry only takes
place when it is strictly profitable. It is a useful starting point because it enables us to derive our
main results in the most transparent way. In Section 4, we will explore what happens when the
tie-breaking rule is changed, and show that this introduces the possibility of multiple equilib-
ria.

We summarize the main results of this discussion in the following proposition.

Proposition 1. Let us impose the tie-breaking rule that whenever wH = wL, the incumbent fights
in stage (ii) of the sequential entry-exit game. Then in any subgame-perfect equilibrium of the
entry-and-exit game described above, there is only one active producer in equilibrium. When
wH > wL, all hi-tech firms facing the entry of a low-tech competitor exit the market. When
wH � wL (where wH < wL never occurs in equilibrium), hi-tech incumbents would fight entry,
and no standardization occurs.

Since in equilibrium there is only one active producer, the price of each good will be a markup
over the marginal cost:

5 We assume that, as in Schumpeterian models of technological change, standardization does not infringe upon ex-
isting patents. Instead, we assume below that stricter IPR protection directly increases the cost of standardization (see
Section 3).

6 Such a cost of staying in business can be given various different interpretations. For instance, each firm that decides
to stay in the market in stage (ii) may be committed to produce ξ ≡ Ξ/A units of output. We could alternatively assume
that each active firm must incur a fixed cost of operations. In this case, we must assume the cost to be infinitesimal
(ξ → 0)—otherwise the equilibrium expressions would need to be modified to incorporate this non-infinitesimal fixed
cost.
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pH =
(

1 − 1

ε

)−1

wH and pL =
(

1 − 1

ε

)−1

wL. (5)

Symmetry and labor market clearing pin down the scale of production of each firm:

xL = L

AL

and xH = H

AH

, (6)

where recall that H is the number of skilled workers employed by hi-tech firms and L is the
remaining labor force. Markup pricing implies that profits are a constant fraction of revenues:

πH = pH H

εAH

and πL = pLL

εAL

. (7)

At this point, it is useful to define the following variables: n ≡ AH /A and h ≡ H/L. Here, n

is the fraction of hi-tech goods over the total and h is the relative endowment of skilled workers.
Then using demand (3) and (6), we can solve for relative prices as:

pH

pL

=
(

xH

xL

)−1/ε

=
(

h
1 − n

n

)−1/ε

(8)

and

wH

wL

= pH

pL

=
(

h
1 − n

n

)−1/ε

. (9)

Intuitively, the skill premium wH /wL depends negatively on the relative supply of skill (h =
H/L) and positively on the relative number of hi-tech firms demanding skilled workers. Note
that wH = wL at:

nmin ≡ h

h + 1
.

For simplicity, we restrict attention to initial states of technology such that n > nmin. As an
implication of Proposition 1, if we start from n > nmin, the equilibrium will always remain in
the interval n ∈ [nmin,1]. We can therefore restrict attention to this interval, over which skilled
workers never seek employment in low-tech firms.

Using (7) and (8) yields relative profits:

πH

πL

=
(

h
1 − n

n

)1−1/ε

. (10)

This equation shows that the relative profitability of hi-tech firms, πH /πL, is increasing in the
relative supply of skill, H/L, because of a standard market size effect and decreasing in the
relative number of hi-tech firms, AH /AL. The reason for the latter effect is that an increase in
the number of firms of a given type increases the competition for the corresponding type of labor
and reduces the equilibrium size of firms of that type.

Next, to solve for the level of profits, we first use symmetry into (4) to obtain:

pH

A
=

[
(1 − n)

(
pL

pH

)1−ε

+ n

]1/(ε−1)

, and

pL =
[

1 − n + n

(
pH

)1−ε]1/(ε−1)

. (11)

A pL
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Combining these expressions with (7) and (8) yields:

πH = H

ε

[
1 +

(
1

n
− 1

) 1
ε

h
1−ε
ε

] 1
ε−1

n
2−ε
ε−1 , and

πL = L

ε

[
1 +

(
1

n
− 1

)− 1
ε

h
ε−1
ε

] 1
ε−1

(1 − n)
2−ε
ε−1 . (12)

Note that, for a given n, profits per firm remain constant. The following lemma formalizes some
important properties of the profit functions:

Lemma 1. Assume ε � 2. Then, for n ∈ [nmin,1]:
∂πH

∂n
< 0 and

∂πL

∂n
> 0. (13)

Moreover, πL is a convex function of n.

Proof. See Appendix A. �
The condition ε � 2 is sufficient—though not necessary—for the effect of competition for

labor to be strong enough to guarantee that an increase in the number of hi-tech (low-tech) firms
reduces the absolute profit of hi-tech (low-tech) firms. In the rest of the paper, we assume that
the restriction on ε in Lemma 1 is satisfied.7

2.3. Standardized goods, production and profits

Substituting (6) into (2), the equilibrium level of aggregate output can be expressed as:

Y = A
[
(1 − n)

1
ε L

ε−1
ε + n

1
ε H

ε−1
ε

] ε
ε−1 , (14)

showing that output is linear in the overall level of technology, A, and is a constant-elasticity
function of H and L. From (14), we have that

∂Y

∂n
= A1− 1

ε Y
1
ε

ε − 1

[(
H

n

) ε−1
ε −

(
L

1 − n

) ε−1
ε

]
, (15)

which implies that aggregate output is maximized when n/(1 −n) = h. Intuitively, production is
maximized when the fraction of hi-tech products is equal to the fraction of skilled workers in the
population, so that xL = xH and prices are equalized across goods. Eq. (14) is important in that it
highlights the value of technology diffusion: by shifting some technologies to low-skill workers,
standardization “alleviates” the pressure on scarce high-skill workers, thereby raising aggregate
demand. It also shows that the effect of standardization on production, for given A, disappears as
goods become more substitutable (high ε). In the limit as ε → ∞, there is no gain to smoothing
consumption across goods (xL = xH ) so that Y only depends on aggregate productivity A.

Finally, to better understand the effect of technology diffusion on innovation, it is also useful

to express profits as a function of Y . Using (2)–(4) to substitute pH = A
ε−2
ε (Y/xH )1/ε into (7),

7 An elasticity of substitution between products greater than 2 is consistent with most empirical evidence in this area.
See, for example, [21].
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profits of a hi-tech firm can be written as:

πH = (Y/A)1/ε

ε

(
H

n

) ε−1
ε

. (16)

A similar expression holds for πL. Notice that profits are proportional to aggregate demand, Y .
Thus, as long as faster technology diffusion (lower n) through standardization raises Y , it also
tends to increase profits. On the contrary, an increase in n � nmin reduces the instantaneous profit
rate of hi-tech firms, i.e.,

∂πH

∂n

n

πH

= 1

ε

∂Y

∂n

n

Y
− ε − 1

ε
< 0. (17)

2.4. Innovation and standardization

We model both innovation, i.e., the introduction of a new hi-tech good, and standardization,
i.e., the process that turns an existing hi-tech product into a low-tech variety, as costly activities.
We follow the “lab-equipment” approach and define the costs of these activities in terms of
output, Y . In particular, we assume that introducing a new hi-tech good requires μH units of the
numeraire, while standardizing an existing hi-tech good costs μL units of Y . We may think of
μL as capturing the technical cost of simplifying the production process plus any policy induced
costs due to IPR regulations restricting the access to new technologies.

Next, we define VH and VL as the net present discounted values of firms producing hi-tech
and low-tech goods, respectively. These are given by the discounted value of the expected profit
stream earned by each type of firm and must satisfy the following Hamilton–Jacobi–Bellman
equations:

rVL = πL + V̇L, rVH = πH + V̇H − mVH , (18)

where m is the arrival rate of standardization, which is endogenous and depends on the intensity
of investment in standardization. These equations require that the instantaneous profit from run-
ning a firm plus any capital gain or losses must be equal to the return from lending the market
value of the firm at the risk-free rate, r . Note that, at a flow rate m, a hi-tech firm is replaced by
a low-tech producer and the value VH is lost.

Free-entry in turn implies that the value of innovation and standardization can be no greater
than their respective costs:

VH � μH and VL � μL.

If VH < μH (VL < μL), then the value of innovation (standardization) is lower than its cost and
there will be no investment in that activity.

2.5. Dynamic equilibrium

A dynamic equilibrium is a time path for (C,xi,A,n, r,pi) such that monopolists maximize
the discounted value of profits, the evolution of technology is determined by free entry in inno-
vation and standardization, the time path for prices is consistent with market clearing and the
time path for consumption is consistent with household maximization. We will now show that a
dynamic equilibrium can be represented as a solution to two differential equations. Let us first
define:
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χ ≡ C

A
; y ≡ Y

A
; g ≡ Ȧ

A
.

The first differential equation is the law of motion of the fraction of hi-tech goods, n. This is
the state variable of the system. Given that hi-tech goods are replaced by low-tech goods at the
endogenous rate m, the flow of newly standardized products is ȦL = mAH . From this and the
definition n = (A − AL)/A we obtain:

ṅ = (1 − n)g − mn. (19)

The second differential equation is the law of motion of χ . Differentiating χ and using the
consumption Euler equation (1) yields:

χ̇

χ
= r − ρ − g. (20)

Next, to solve for g, we use the aggregate resource constraint. In particular, consumption is
equal to production minus investment in innovation, μH Ȧ, and in standardization, μLȦL. Noting
that Ȧ/A = g and ȦL/A = mn, we can thus write:

χ = y − μH g − μLmn.

Substituting for g from this equation (i.e., g = (y − μLmn − χ)/μH ) into (19) and (20) gives
the following two equation dynamical system in the (n,χ) space:

χ̇

χ
= r − ρ − y − μLmn − χ

μH

, (21)

ṅ

n
=

(
1 − n

n

)
y − χ

μH

− m

(
1 + (1 − n)

μL

μH

)
. (22)

Note that y is a function of n (see Eq. (14)). Finally, r and m can be found as functions of n

from the Hamilton–Jacobi–Bellman equations. First, note that, if there is positive standardization
(m > 0), then free-entry implies VL = μL. Given that μL is constant, VL must be constant too,
V̇L = 0. Likewise, if there is positive innovation (g > 0), then V̇H = 0. Next, Eqs. (18) can be
solved for the interest rate in the two cases:

r = πL

μL

if m > 0, (23)

r = πH

μH

− m if g > 0. (24)

We summarize these findings in the following proposition.

Proposition 2. A dynamic equilibrium is characterized by (i) the autonomous system of differen-
tial equations (21)–(22) in the (n,χ) space where

y = y(n) = [
(1 − n)

1
ε L

ε−1
ε + n

1
ε H

ε−1
ε

] ε
ε−1 ,

r = r(n) = max

{
πL(n)

μL

,
πH (n)

μH

− m

}
,

m = m(n) =
⎧⎨
⎩

0 if r >
πL(n)
μL

,

y(n)−χ if r >
πH (n) − m,
nμL μH
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and πH (n) and πL(n) are given by (12); (ii) a pair of initial conditions, n0 and A0; and (iii) the
transversality condition limt→∞[exp(− ∫ t

0 rs ds)
∫ At

0 Vi di] = 0.

2.6. Balanced growth path

A Balanced Growth Path (BGP) is a dynamic equilibrium such that ṅ = ṁ = 0. In a BGP,
the skill premium and the interest rate are at a steady-state level. An “interior” BGP is a BGP
where, in addition, m > 0 and g > 0. Eq. (19) implies that an interior BGP must feature mss =
g(1 − n)/n = (r − ρ)(1 − n)/n. To find the associated BGP interest rate, we use the free-entry
conditions for standardization and innovation. Using (12), the following equation determines the
interest rate consistent with m > 0:

rL(n) ≡ πL

μL

= L

μLε

[
1 +

(
1

n
− 1

)− 1
ε

h
ε−1
ε

] 1
ε−1

(1 − n)
2−ε
ε−1 . (25)

Next, the free-entry condition for hi-tech firms, conditional on the BGP standardization rate,
determines the interest rate consistent with the BGP:

rss
H (n) ≡ πH

μH

− mss = n
πH

μH

+ (1 − n)ρ

= H

μH ε

[
1 +

(
1

n
− 1

) 1
ε

h
1−ε
ε

] 1
ε−1

n
1

ε−1 + (1 − n)ρ. (26)

The curves rss
H (n) and rL(n) can be interpreted as the (instantaneous) return from innovation

(conditional on ṅ = 0) and standardization, respectively. In the space (n, r), the BGP value of n

can be found as the crossing point of these curves: in other words, along a BGP, both innovation
and standardization must be equally profitable.8 We summarize the preceding discussion in the
following proposition:

Proposition 3. An interior BGP is a dynamic equilibrium such that n = nss where nss satisfies

rL
(
nss

) = rss
H

(
nss

)
, (27)

and rL(nss) and rss
H (nss) are given by (25) and (26), respectively. Given nss , the BGP interest

rate is rss = πL(nss)/μL, and the standardization rate is mss = (rss − ρ)(1 − nss)/nss , where
πL is as in (12) [evaluated at n = nss ]. Finally, AH , AL, Y and C all grow at the same rate,
gss = rss − ρ.

To characterize the set of BGPs, we need to study the properties of rL(n) and rss
H (n). Due

to the shape of πL, rL(n) is increasing and convex. Provided that ρ is not too high, rss
H (n) is

non-monotonic (first increasing and then decreasing) and concave in n.9 The intuition for the
non-monotonicity is as follows. When n is high, competition for skilled workers among hi-tech
firms brings πH down and this lowers the return to innovation. Moreover, when n is higher than
h/(h+ 1), aggregate productivity and Y are low, because skilled workers have too many tasks to
perform, while unskilled workers too little. This tends to reduce πH even further. When n is low,

8 It can also be verified straightforwardly that the allocation corresponding to this crossing point satisfies the transver-
sality condition.

9 A formal argument can be found in the proof of Proposition 4.
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Fig. 1. Solid = rss
H

(n), dashed = rL(n).

πH is high, but the flow rate of standardization is high as well (since, recall, mss = g(1 − n)/n)
and this brings down the return to innovation.

Fig. 1 shows the BGP relationship between r and n. Note that, as long as m > 0, the equilib-
rium must lie on the (dashed) rL(n) curve. An interior BGP must also lie on the (solid) rss

H (n)

curve. Thus, the interior BGP value of n is identified by their intersection. The following as-
sumptions guarantee the existence and uniqueness of a BGP, and that such BGP is interior.

Assumption 1. 0 < ρ < H/(μH ε).

This condition is standard: it guarantees that innovation is sufficiently profitable to sustain
endogenous growth and that the transversality condition is satisfied.

Assumption 2. μH < μL
h

1+h−ερμL/(H+L)
.

Assumption 2 ensures that rss
H (nmin) > rL(nmin), ruling out the uninteresting case in which

standardization is always more profitable than innovation when n is expected to stay constant,
and guarantees that the BGP is interior and unique. We state the existence and uniqueness of the
BGP in a formal proposition.

Proposition 4. Suppose Assumptions 1–2 hold. Then there exist a unique BGP equilibrium.

Proof. See Appendix A. �
Proposition 4 establishes the existence and uniqueness of a BGP equilibrium, denoted by

(nss, χss). Our next goal is to prove the (local) existence and uniqueness of a dynamic equilib-
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rium converging to this BGP. Unfortunately, the analysis of dynamics is complicated by several
factors. First, the dynamical system (21)–(22) is highly nonlinear. Second, it may exhibit dis-
continuities in the standardization rate (and thus in the interest rate) along the equilibrium path.
Intuitively, at (nss, χss) there is both innovation and standardization (otherwise we could not
have ṅ = 0). It is relatively easy to prove that, similar to models of directed change (e.g., [2,8]),
there exists a dynamic equilibrium converging to the BGP featuring either only innovation (when
n < nss ) or only standardization (when n > nss ). This implies that when the economy approaches
the BGP from the left, the standardization rate and the interest rate both jump once the BGP is
reached. In particular, when n < nss , there is no standardization, thus, m = 0, while in BGP
we have m > 0. Since throughout there is innovation, the value of hi-tech firms must remain
constant at VH = μH and thus there can be no jump in r + m. Consequently, there must be an
exactly offsetting jump in interest rate r when the BGP is reached and the standardization rate,
m, jumps.10

However, it turns out to be more difficult to prove that there exist no other dynamic equi-
libria. In particular, we must rule out the existence of equilibrium trajectories (solutions to
(21)–(22)) converging to (nss, χss) with both innovation and standardization when the econ-
omy is away from the BGP. Numerical analysis suggests that no such trajectory exists as long
as Assumptions 1 and 2 are satisfied. In particular, the system (21)–(22), under the condition
that m = πH (n)/μH − πL(n)/μL (i.e., under the condition that there is both innovation and
standardization), is globally unstable around (nss, χss). However, we can only prove this an-
alytically under additional conditions. In particular, we must impose the following parameter
restriction11:

ε − 1

ε
(h + 2) + ε >

2h + 1

h(h + 1)
. (28)

Proposition 5. Suppose that Assumptions 1 and 2 and (28) hold. Then there exists ρ̄ > 0 such
that, for ρ < ρ̄, the interior BGP is locally saddle-path stable. In particular, if nt0 is in the
neighborhood of its BGP value, nss , and nt0 > nss [resp., nt0 < nss ], then there exists a unique
path converging to the BGP such that for some finite t̄ > t0, we have τ ∈ [t0, t̄], mτ > 0, gτ = 0
and ṅτ < 0 [resp., mτ = 0, gτ > 0 and ṅτ > 0], and the economy attains the BGP at t̄ (i.e., for
all τ � t̄ , we have nτ = nss , mτ = mss , and gτ = gss ).

Proof. See Appendix A. �
2.7. Growth and standardization: an inverse-U relationship

How does the cost of standardization, μL, affect the BGP growth rate, gss? Answering this
question is important from both a normative and a positive perspective. First, policies such as
IPR protection are likely to have an impact on the profitability of standardization. Therefore,
knowing the relationship between standardization and growth is a key step for policy evaluation.
Second, the difficulty of standardization and hence its costs may vary across technologies and
over time.

10 Note that the discontinuous behavior of the standardization rate and the interest rate does not imply a jump in the
asset values, VH and/or VL. Rather, the rate of change of these asset values may jump locally.
11 This restriction, which ensures that nmin = h/(1 + h) is not too small, is used in Appendix A. For example, when
ε = 2, it requires nmin = h/(1 + h) > 0.28 and when ε = 3, nmin = h/(1 + h) > 0.21.
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The cost of standardization affects rL(n), but not rss
H (n). Thus, increasing the cost of standard-

ization amounts to shifting the rL(n) curve in Fig. 1 and therefore the intersection form n = nmin

(low μL) to n → 1 (high μL). The effect on the growth rate depends in turn on the relationship
between gss and n:

gss(n) = rss
H (n) − ρ = n

(
πH (n)

μH

− ρ

)
.

This expression highlights the trade-off between innovation and standardization: a high stan-
dardization rate (and thus a low n) increases the instantaneous profit rate πH (n), but lowers the
expected profit duration. Taking the derivative and using (17) yields:

∂gss(n)

∂n
= πH (n)

μH

− ρ + n

μH

∂πH (n)

∂n

= πH (n)

εμH

(
1 + ∂Y (n)

∂n

n

Y (n)

)
− ρ.

From (15), ∂Y (n)/∂n = 0 at n = nmin. For n > nmin, we have ∂Y (n)/∂n < 0 with limn→1 ∂Y (n)/

∂n = −∞. Thus:

∂gss(n)

∂n

∣∣∣∣
n=nmin

= H + L

μH ε2
− ρ and lim

n→1

∂gss(n)

∂n
= −∞.

Provided that ρ < H+L

μH ε2 , gss(n) is an inverse-U function of n. Intuitively, at n = 1 the wage of
unskilled workers is zero and hence the marginal value of transferring technologies to them (in
terms of higher aggregate demand and thus also profits) is infinite. Instead, at n = nmin, aggre-
gate output Y is maximized and marginal changes in n have second order effects on aggregate
production. Moreover, given that future profits are discounted, the impact of prolonging the ex-
pected profit stream (high n) on innovation vanishes if ρ is high. When ρ < H+L

μH ε2 , growth is

maximized at n∗ ∈ (nmin,1) that solves:

1 − ρ
εμH

πH (n∗)
= −∂Y (n∗)

∂n∗
n∗

Y(n∗)
. (29)

The condition ρ < H+L

μH ε2 is satisfied whenever Assumption 1 holds (which we imposed above
and which guarantees g > 0) and ε < 1 + 1/h, i.e., if skilled workers are sufficiently scarce. It is
also satisfied when ρ and μH are sufficiently low. Now recalling that in BGP n is an increasing
function of μL, we have the following result (proof in the text):

Proposition 6. Let gss be the BGP growth rate and suppose that ρ < H+L

μH ε2 . Then, gss is an
inverse U-shaped function of the cost of standardization.

Fig. 1 provides a geometric intuition. Starting from a very high μL such that rss
H (n) is in

its decreasing portion, a decrease in μL moves the equilibrium to the left along the schedule
rss
H (n). This yields a lower nss and thus higher growth. Therefore, in this region, a decrease

in μL increases growth. However, after the maximum of the rss
H (n) schedule is passed, further

decreases in μL reduce n and growth.
Proposition 6 also has interesting implications for the skill premium. Recall that, in this model,

the skill premium is the market value of being able to operate new technologies and produce hi-
tech goods. For this reason, it is increasing in the fraction of hi-tech firms (see Eq. (9)). Since
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Fig. 2. Growth and the skill premium.

growth is an inverse-U function of n, the model also predicts an inverse U-shaped relationship
between growth and wage inequality, as shown in Fig. 2. Intuitively, a very high skill premium
could be a sign that standardization is so costly that growth has slowed down. A very low skill
premium, on the other hand, might be a sign of excessive standardization, weakening innovation
incentives and slowing down growth.

3. Welfare analysis and optimal policies

We now turn to the normative analysis. We start by characterizing the Pareto optimal alloca-
tion for a given μL, representing the technical cost of standardization. This allows us to identify
the inefficiencies that are present in the decentralized equilibrium. Next, we focus on the con-
strained efficient allocation that a government could achieve with a limited set of instruments.
In particular, we allow the government to increase the cost of standardization above μL through
IPR regulations and to influence the level of competition. Finally, we briefly discuss how North–
South trade affects the optimal policies.

3.1. Pareto optimal allocation

The Pareto optimal allocation is the one chosen by a social planner seeking to maximize the
utility of the representative agent, subject to the production function (14) and for given costs of
innovation, μH , and standardization, μL. The current value Hamiltonian for the problem is:

H = ln(Y − IH − IL) + ξH

IH + ξL

IL
μH μL
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where IH and IL are investment in innovation and standardization, respectively. The control
variables are IH and IL, while the state variables are A and AL, with co-state variables ξH

and ξL, respectively. From the first order conditions, the Pareto optimal n solves:

∂Y

∂A

1

μH

= ∂Y

∂AL

1

μL

. (30)

That is, the planner equates the marginal rate of technical substitution between hi-tech and low-
tech products to their relative development costs. The Euler equation for the planner is:

Ċ

C
= ∂Y

∂A

1

μH

− ρ.

By comparing these results to those in the previous section, we can see that the decentralized
equilibrium is inefficient for two reasons.

First, there is a standard appropriability problem whereby firms only appropriate a fraction
of the value of innovation/standardization so that R&D investment is too low. To isolate this
inefficiency, consider the simplest case L = 0, so that there is no standardization and Y = AH ,
πH = H/ε. In this case, the social return from innovation is H while the private return is only
r = H/ε < H . The same form of appropriability effect also applies when L > 0.

Second, there is too much standardization relative to innovation due to a business stealing
externality: the social value of innovation is permanent while the private benefit is temporary.
A particularly simple case to highlight this inefficiency is when ε = 2 so that (30) simplifies to:

n

1 − n
= h

(
μL + μH

μH

)2

.

In the decentralized equilibrium, instead, the condition rL(n) = rss
H (n) yields:

n

1 − n
= h

[(
r

m + r

)
μL

μH

]2

.

Clearly, n is too low in the decentralized economy.
To correct the first inefficiency, subsidies to innovation (and standardization) are needed. On

the other hand, the business stealing externality can be corrected by introducing a licensing policy
requiring low-tech firms to compensate the losses they impose on hi-tech firms. In particular,
suppose that firms that standardize must pay a one-time licensing fee μlic

L to the original inventor.
In this case, the free-entry conditions together with the Hamilton–Jacobi–Bellman equations (18)
become:

VL = πL

r
= μlic

L + μL, VH = πH − m(VH − μlic
L )

r
= μH .

Clearly, the business stealing effect is removed when μlic
L = μH , that is, when low-tech firms

compensate the hi-tech produces for the entire capital loss μH . We summarize these results in
the proposition (proof in the text).12

Proposition 7. The Pareto optimal allocation can be decentralized using a subsidy to innovation
and a license fee imposed on firms standardizing new products.

12 Note that there is no static distortion due to monopoly pricing. This is because in our model all firms only use
inelastically supplied factors (skilled and unskilled labor). Thus, markups do not distort the allocation. In a more general
model, subsidies to production would also be needed to correct for the static inefficiency.
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3.2. Constrained efficiency: optimal μL

Proposition 7 shows how the Pareto optimal allocation can be decentralized. However, the
subsidies to innovation require lump-sum taxes and in addition, the government would need to
set up and operate a system of licensing fees. In practice, both of these might be difficult.13

Motivated by this reasoning, we now analyze a constrained efficient policy, where we limit the
instruments of the government. In particular, we assume that the government can only affect the
standardization cost through IPR regulations restricting the access to new technologies, and ask
what would the optimal policy be in this case.14 More precisely, we find the (constant) μ∗

L that
maximizes BGP utility:

max
μL

ρW = ρ

∞∫
0

[
ln

(
C

A

)
+ ln

(
A0e

gt
)]

e−ρtdt = ln
(
χss

) + gss

ρ
. (31)

The optimal policy maximizes a weighted sum of the consumption level and its growth rate. In
turn, gss(μL) = n[πH (n)/μH − ρ] evaluated at the n(μL) that solves (27) and χss = y(n) −
g(μL)[μH + μL(1 − n)], evaluated at the same n. In general, problem (31) does not have a
closed-form solution. Nonetheless, we can make progress by considering two polar cases.

3.2.1. Optimal/growth maximizing policy: ρ → 0
As ρ → 0, the optimal policy is to maximize gss . For this case, we have simple analytic

results. Manipulating the first order condition (29), the optimal n∗ is implicitly defined by:

(
1 − n∗

n∗ h

) ε−1
ε = 1 − 1

n∗

(
1 − 1

ε

)
. (32)

Note that the LHS is decreasing in n, from infinity to zero, while the RHS is increasing in n,
ranging from minus infinity to 1/ε. Thus, the solution n∗ is always interior and unique. Using
the implicit function theorem yields:

∂n∗

∂ε

ε

n∗ = ε(1 − n∗)
ε − 1

> 0 and
∂n∗

∂h

h

n∗ = (
1 − n∗)(1 − ε + n∗ε

)
> 0 (33)

because, from (32), εn∗ − ε + 1 = ε(n∗) 1
ε (1 − n∗) ε−1

ε h
ε−1
ε > 0. That is, the optimal fraction of

hi-tech goods is increasing in the relative skill-endowment and in the elasticity of substitution
across products.

Once we have n∗, we can use the indifference condition between innovation and standardiza-
tion, VH

VL
= μH

μL
, to solve for the μ∗

L that implements n∗. When ρ → 0 and m = g(1 − n)/n we

13 Licensing may fail in practice because of incompleteness of contracts or because of asymmetric information
(e.g., [17]). See also [23] on the difficulties of using market signals to determine the value of existing innovations.
14 We do not consider patent policies explicitly because we view them as only one source of competitive advantage for
incumbents. In particular, patents are generally thought to be less important than lead time and learning-curve advantage
in preventing duplication. Their utility might often be limited by the fact that they require disclosure of information,
which would otherwise remain trade secret, and the application process is often lengthy and cannot prevent competitors
from “inventing around” patents. Overall, Levin et al. [47] found that patents increase imitation costs by 7–15%. This
supports both our approach of modeling IPR protection as an additional cost of standardization and the notion that patents
are only one of the many factors making standardization costly.
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obtain:

πH

πL

= μH

μL

1

n
→

(
1 − n

n
h

) ε−1
ε = μH

μL

1

n
. (34)

The equilibrium fraction of hi-tech goods, n, depends on relative profits (πH /πL), relative R&D
costs (μH /μL), and the standardization risk faced by hi-tech firms (captured by the factor 1/n).
Note that a decline in the relative skill supply, h, leads to a more than proportional fall in n

because πH /πL falls and m rises. Substituting ( 1−n∗
n∗ h)

ε−1
ε from (32) we can find the optimal

standardization cost as:

μ∗
L = μH

(
n∗ − 1 + 1

ε

)−1

= μH ε

1 − ε + n∗ε
. (35)

This expression has the advantage that it only depends on h through n∗ and can be used to
study the determinants of the optimal policy. Differentiating (35) and using (33), we obtain the
following proposition (proof in the text).

Proposition 8. Consider the case ρ → 0. BGP welfare and growth are maximized when the cost
of standardization μL satisfies (35) and n∗ is the solution to (32). The following comparative
static results hold:

∂μ∗
L

∂μH

μH

μ∗
L

= 1,

∂μ∗
L

∂h

h

μ∗
L

= −εn∗(1 − n∗) < 0,

∂μ∗
L

∂ε

ε

μ∗
L

= n∗ε − 1

ε − 1
> 0.

The results summarized in this proposition are intuitive. Changes in the cost of innovation
should be followed by equal changes in the cost of standardization, so as to keep the optimal
n constant. A decline in the relative supply of skilled workers makes technology diffusion rela-
tively more important. However, the incentive to standardize increases so much (both because of
the change in instantaneous profits and because the equilibrium m increases too) that the optimal
policy is to make standardization more costly. Thus, somewhat surprisingly, a higher abundance
of unskilled worker calls for stronger IPR protection. Finally, given that ε � 2, a lower elastic-
ity of substitution makes the diffusion of technologies to low-skill workers more important for
aggregate productivity and reduces the optimal IPR, μ∗

L.15

3.2.2. Optimal policy: high ρ

To understand how the optimal policy changes with the discount rate, we consider the other
polar case. In particular, assume that ρ → H+L

μH ε
. As we will see, this is the highest ρ compatible

with positive growth. In this case, Section 2.7 shows that g is maximized at the corner nmin =
h/(h + 1). Moreover, for n → nmin we have πH = L+H

ε
and g = H+L

μH ε
− ρ → 0 (since ρ →

H+L
μH ε

). Next, the result that g must be close to zero yields χss = y, which is also maximized

15 To see this, recall that εn∗ − ε + 1 > 0. Then, ε � 2 implies (εn∗ − 1)/(ε − 1) > 0.
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at nmin. Thus, with high discounting the optimal policy is the same as the one that maximizes
static output (and consumption) only. Reaching this point requires setting μ∗

L = μH . Note that,
in this extreme scenario, the optimal policy becomes independent of h and other parameters.
Comparing the policy μ∗

L = μH to (35) shows, not surprisingly, that high discounting implies a
lower optimal protection of IPR.

3.3. Other competition policies

In practice, several other competition policies, besides licensing fees and intellectual property
rights, are used in order to affect the profitability of standardization. We now briefly discuss
the implications of such policies. Suppose that the government can directly affect markups in
the hi-tech and the low-tech sectors. In particular, it can set εH � ε and εL � ε in the pricing
equations (5).

When markups vary across firms, profits (16) become:

πL = y1/ε

εL

(
L

1 − n

) ε−1
ε

and πH = y1/ε

εH

(
H

n

) ε−1
ε

. (36)

From rL(n) = πL/μL and the above expressions, it is immediate to see that the BGP n only
depends on the product μLεL. This result highlights that competition policy (εL) and IPR pro-
tection (μL) are substitutes. Intuitively, with lower mark-ups (high εL) for low-tech firms, there
is less entry in the L-sector. Yet, the government can offset this effect by reducing μL, so that it
becomes easier to standardize. On the contrary, gss(n) does not depend on εL, so that n∗ is as
before. Given that intervening on μL or εL is equally effective to implement a desired n∗, the
optimal mix depends on the relative costs of the two policies.

Now when we also have ρ → 0, Eq. (35) becomes:

μL = εH

εL

· μH ε

1 − ε + n∗ε
. (37)

Then, under the assumptions that εL can be changed at no cost, it is easy to see that the optimal
policy is:

εH = ε,

μ∗
L = μmin

L ,

εL = εH

μmin
L

· μH ε

1 − ε + n∗ε
,

where μmin
L � 0 is the minimum “technical” cost of standardization (i.e., with no IPR protection).

Intuitively, full monopoly among hi-tech firms ensures high innovation; μ∗
L = μLmin minimizes

the resources spent on standardization; high competition among low-tech firms yields the opti-
mal n∗. If the desired level of competition εL cannot be achieved, then μ∗

L should be adjusted
upward accordingly.16

16 Another way to highlight the same result is that policy does not affect markups, but rather patent duration in the low-
tech sector. In the model considered so far, patent length is infinite in the low-tech sector. Suppose, however, that patent
duration is finite and, once the patent expires, the good is produced by unskilled workers under competitive conditions.
Here, the key trade-off is between the cost of standardization and the duration of the subsequent monopoly position in
the low-tech sector. The gist of the argument is that the best combination is, in a sense, low IPR everywhere (low μL and
short patents). However, it has to be carefully tailored, since the cost-relative-to-duration must be pinned down so as to
get the right n.



590 D. Acemoglu et al. / Journal of Economic Theory 147 (2012) 570–601.e3
3.4. North–South trade and IPR policy

We now ask how trade opening in countries with a large supply of unskilled workers affects the
optimal IPR policy. This question is interesting because there is an unsettled debate on whether
trade liberalization in less developed countries should be accompanied by tighter IPR protection,
as implied by the TRIPS Agreement, or by less strict IPR policies, which serve to encourage tech-
nology diffusion to less advanced economies. We can investigate this question using our model.

Consider an integrated world economy (the North), described by the model in Section 2.
For simplicity, let us also assume that there is a single large developing country endowed with
unskilled workers only (the South). Without trade, we assume that Northern technologies are
copied at no cost by competitive firms in the South. However, this form of technology transfer
is imperfect: when a low-tech good is introduced in the South, labor productivity there is only a
fraction ϕ ∈ (0,1]. There is no innovation in the South.

Now imagine that the South opens its economy to trade. We assume that economic integration
allows Northern firms to produce in the South. In the new integrated equilibrium factor prices are
equalized (or else firms would relocate to the country where labor is cheaper) and Southern firms
are replaced by their Northern counterpart. This result stems from the fact that Northern firms
are more productive and can capture the entire market by charging a price equal to or lower than
the marginal cost of the Southern imitators, pL � wL/ϕ. However, if ϕ > (1 − 1/ε), Northern
firms must compress their markup to keep Southern imitators out.

In sum, the effect of trade opening in the South is isomorphic to an increase in the world
endowment of L and possibly a reduction in the markup and profit margins of low-tech firms
(higher εL). What are the implications for the BGP growth rate and the optimal IPR policy? The
change in L and εL have opposite effects on πL (see Eq. (36)) and hence on the return from
standardization, so the rL(n) curve in Fig. 1 may either shift up or down. The rss

H (n) curve,
instead, always shifts up because the greater supply of low-tech goods increases the price and
thus the profitability of hi-tech products. As a result, in the new BGP, nss and gss may be higher
or lower. Despite this ambiguity, it is easy to see that trade opening is necessarily growth (and
welfare) enhancing if IPR policy, μL, is correctly adjusted. This follows immediately from the
upward shift of the rss

H (n) curve, implying that the maximum attainable r must be higher.
The crucial question, then, is how μL should be changed. As already seen, a lower h increases

the optimal level of IPR protection, μ∗
L. On the other hand, higher competition among low-

tech firms, εL, calls for a reduction in μL, to compensate for the fall in profit margins (see
Eq. (37)). The net effect depends on which force dominates. If the liberalizing country is large
and inefficient (low ϕ), the competitive pressure posed by imitators on low-tech firms is weak,
while the threat to hi-tech firms, due to the increased incentives to standardize, is high. In this
case, integration should be followed by a tightening of IPR policies.17

4. Multiple equilibria and poverty traps

We have so far imposed a specific tie-breaking rule, assuming that when wH = wL the incum-
bent will fight the entrance (not existing at stage (ii) of the entry-exit game). This assumption

17 These are the policies that a world planner would choose starting from the optimum. Yet, governments of individual
countries face different incentives, because an increase in μL leads to a higher skill premium and redistributes income
toward skill-abundant countries. This conflict of interests between the North and the South is studied, among others, by
Grossman and Lai [36].
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implies that standardization only takes place when it is strictly profitable and therefore, n nec-
essarily stays in the range (nmin,1), since at n = nmin we would have wH = wL and given
incumbent behavior, standardization would lead to negative profits. Under this tie-breaking rule,
Proposition 4 established the uniqueness of a BGP equilibrium. In this section, we show that
under the alternative tie-breaking rule, whereby at wH = wL incumbents facing the entry of
a low-tech competitor exit, the model may generate multiple equilibria and potential poverty
traps.18

Throughout this section, we assume a different tie-breaking rule, by which competition be-
tween hi-tech incumbents and entrants at wH = wL is resolved by incumbents exiting at stage
(ii) of the entry-exist game. Clearly, even under this alternative tie-breaking rule, equilibrium
must involve wH � wL for any n ∈ [0,1] since skilled worker can always take unskilled jobs.
But in contrast to Proposition 1 now standardization may continue even at n � nmin.

As a first step in the analysis of this case, we characterize the static equilibrium for low levels
of n. Recall that wH = wL at n = nmin. For n � nmin, the skill premium is constant at wH = wL

and some high skill workers are employed in low-tech firms. In this case, the allocation of labor
between the two type of firms, h, is determined endogenously by Eq. (9) after setting wH = wL.
This yields h = n/(1 − n) and a profit rate of πH = πL = L+H

ε
. In other words, for sufficiently

low n, it is as if workers were perfect substitutes, prices are equalized pH = pL, and so are
profits.

To find the steady states, we draw the rL(n) and rss
H (n) schedules over the entire domain

n ∈ [0,1]. Fig. 3 shows the determination of nss for two possible rL(n) schedules, corresponding
to different values of μL. Compared to Fig. 1, the first part of both schedules is a straight line, as
there the skill premium is constant and equal to one. The interior BGPs are again the intersections
between the rss

H (n) (solid line) and rL(n) (dashed line) schedules.
In addition to balanced growth equilibria, now there might exist “corner steady-states” such

that n = g = m = 0 and r = ρ. A corner steady state can arise in two different circumstances:
(i) at n = 0, there is no incentive to innovate nor to standardize, i.e., ρ > πL

μL
= H+L

μLε
and ρ >

πH

μH
= H+L

μH ε
; (ii) at n = 0, firms have an incentive to standardize, i.e., ρ < H+L

μLε
, but there are no

goods to standardize, since n = 0. Moreover, innovation is discouraged by the expectation that
new hi-tech goods would trigger a high standardization rate. Formally, innovating firms expect
that m > H+L

μH ε
−ρ whenever n > 0. This conjecture does not violate the resource constraint since

the absolute investment in standardization would be infinitesimal when n = 0 even though the
standardization rate is very high. The uninteresting case in which rL(n) lays above rss

H (n) for all
n is still ruled out by Assumption 2.

As shown in Fig. 3, depending on the standardization cost, there are two regimes:

High μL: For μL > (H +L)/(ρε) (lower rL(n) schedule in Fig. 3), there is a unique steady state
(BGP) corresponding to the unique crossing point of the rL(n) and rss

H (n) schedules.
Low μL: For μL < (H + L)/(ρε) (upper rL(n) schedule) there are two interior and a corner

steady state. The two interior steady states can be seen in Fig. 3. In this case, a corner
steady state also exists, since rss

H (0) = ρ < rL(0) = (H + L)/(μLε). Hence, standard-
ization is profitable at n = 0.

18 Multiple equilibria can also arise if we relax Assumption 2, while maintaining the same tie-breaking rule as in the
analysis so far. However, this happens for a smaller set of parameter values. We therefore focus on relaxing the tie-
breaking rule while maintaining Assumption 2.
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Fig. 3. Solid = rss
H

(n), dashed = rL(n).

The reason for the potential multiplicity is a complementarity between investment decisions
of firms. If firms expect n to be high in the BGP, they also anticipate a low standardization rate,
m, and this encourages further innovation. Greater innovation in turn increases the demand for
resources (i.e., the demand for “investment” rather than consumption) and raises the interest
rate. A greater interest rate reduces the value of standardization more than the value of innova-
tion, confirming the expectation of a low m. In contrast, when a large fraction of the resources of
the economy are devoted to standardization, expected returns from innovation decline and this
limits innovation. Expectation of lower innovation reduces the interest rates, leading to reverse
reasoning— i.e., encouraging standardization (more than innovation) and confirming the expec-
tation of a high m.19 Note that this complementarity was also present in the model analyzed in
the previous sections, but, it did not give rise to multiplicity because Assumption 2 guaranteed
that the other candidate steady states involved levels of n below nmin, which were ruled out by
Proposition 1 under our baseline tie-breaking rule. Thus, the fact that standardization was prof-
itable only when unskilled labor was strictly cheaper than skilled labor prevented the economy
from falling to low-growth traps where innovation is discouraged by the expectation of a very
fast standardization rate.

19 To see the role of the interest rate in this reasoning, consider a more general formulation of preferences where θ is the
inverse of the intertemporal elasticity of substitution. In this case, the Euler equation takes the form Ċ/C = (r − ρ)/θ .
Using this, Eq. (26) becomes:

rss
H (n) = θn

nθ + 1 − n

πH

μH
+ ρ

(
1 − n

nθ + 1 − n

)
.

Note that, as θ → 0 the rss (n) curve becomes flat and the BGP is necessarily unique.

H
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We summarize the characterization of the set of steady-state equilibria in the following propo-
sition (proof in the text).

Proposition 9. Suppose that Assumptions 1 and 2 hold and adopt the tie-breaking rule that when
wH = wL, incumbents exit in state (ii) of the sequential entry-exit game. Then:

1. If μL > (H + L)/(ρε), there exists a unique BGP which is interior.
2. If μL < (H + L)/(ρε), there exist two interior BGP equilibria and a corner steady state.

It is also noteworthy that the non-monotonic relationship between the gss and μL and the
policy analysis derived in the previous sections now apply to the higher interior BGP. The main
novelty, however, is that too low a cost of standardization may lead to multiple steady states,
one of them in fact corresponding to stagnation, and the exact equilibrium path is determined by
self-fulfilling expectations.

5. Concluding remarks

New technologies often diffuse as a result of costly adoption and standardization decisions.
Such standardization also creates cheaper ways of producing new products, for example, substi-
tuting cheaper unskilled labor for the more expensive skilled labor necessary for the production of
new complex products. This process endogenously generates competition to original innovators.
In this paper, we studied the implications of this costly process of standardization, emphasizing
both its role as an engine of growth and its potential negative effects on innovation (because of
the “business stealing” effect that it creates).

Our analysis has delivered a number of new results. First, the tension between innovation and
standardization generates an inverse U-shaped relationship between competition and growth.
Second, while technology diffusion is potentially beneficial, it can also have destabilizing ef-
fects. Standardization can open the door to multiple equilibria (multiple growth paths). Finally,
we characterized the optimal competition and IPR policy and how it depends on endowments
and other parameters, such as the elasticity of substitution between products. We found that in-
novation rents should be protected more when skilled workers are perceived as scarcer, that is,
when they are in short supply and when the elasticity of substitutions between goods is high. We
also showed that these results provide new reasons for linking North–South trade to intellectual
property rights protection.

It is also worth noting that a key feature of our analysis is the potential competition between
standardized products and the original hi-tech products. We believe that this is a good approx-
imation to a large number of cases in which standardization takes place by different firms (and
often in the form of slightly different products). Nevertheless, the alternative, in which standard-
ization is carried out by the original innovator, is another relevant benchmark. In our follow-up
work [7], we study a model of offshoring, where offshoring can be viewed as a costly process of
standardization carried out by the original innovator to make goods producible in less developed
countries with cheaper labor.

Our model yields a number of novel predictions that can be investigated empirically. In par-
ticular, it suggests that competition and IPR policy should have an impact on skill premia.
Furthermore, data on product and process innovation might be used to test the existence of a
trade-off between innovation and standardization at the industry level. These seem interesting
directions for future work.
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Appendix A

A.1. Proof of Lemma 1

Recall πH = pH H
εH AH

= pH H
εH nA

. From (11) it is immediate to see that ∂πH

∂n
< 0 if pH � pL, which

is true in equilibrium. To establish the properties of πL, note that:

∂(ε − 1) lnπL

∂n
=

1
ε
( n

1−n
)

ε+1
ε ( 1

n2 )h
ε−1
ε

1 + ( n
1−n

)
1
ε h

ε−1
ε

+ ε − 2

1 − n
> 0 if ε > 2 −

1
ε

1
n
h

ε−1
ε

( 1−n
n

)
1
ε + h

ε−1
ε

.

For ε � 2, lim n→1
∂πL

∂n
= ∞. Convexity of πL follows immediately because the function ∂πL

∂n
has

no critical point.

A.2. Notes on figures

The benchmark economy used to draw all figures has the following parameter values:

ρ = 0.02; ε = 2; μH = 22.7, μL = 59.1; H = 1; L = 3

implying in steady state:

g = 0.02; r = 0.02; m = 0.02; n = 0.5; wH

wL

= 1.5.

A.3. Proof of Proposition 4

A BGP must be a rest point of the dynamical system (21)–(22). We first note that there cannot
be a rest point at the boundaries n = nmin and n = 1 in view of Proposition 1. Thus any BGP must
be interior as defined in Proposition 3, or equivalently, it must be a zero of the dynamical system
(21)–(22). We denote such a zero by (nss, χss), where nss satisfies rL(nss) = rss

H (nss) (see again
Proposition 3). We prove the existence of a unique interior BGP by showing that there is a unique
value nss ∈ (nmin,1) such that rL(nss) = rss

H (nss), that there is a unique corresponding value of
χss and that at (nss, χss) the transversality condition is satisfied.

We prove the first step by establishing that rss
H (nss) is a continuous inverse U-shaped function

whereas rL(nss) is a continuous, increasing and convex function. Moreover rss
H (nmin) > rL(nmin)

(from Assumption 2) and limn→1(rL(nss) − rss
H (nss)) = ∞. Then, the intermediate value the-

orem establishes the existence of such a BGP, while the shape of the two functions implies

uniqueness. Let φ(x) ≡ [x +x( 1
x

−1)
1
ε h

1−ε
ε ] 1

ε−1 where ε � 2 and h � 0. Standard algebra estab-
lishes that φ(x) is a continuous inverse U-shaped concave function, such that limx→0 φ′(x) = ∞
and limx→1− φ′(x) = −∞. Thus, φ(x) has a unique interior maximum in the unit interval.
Next, note that rss

H (nss) = φ(nss) · H/(μH ε) + (1 − nss)ρ. Since rss
H (nss) is a linear trans-

formation of φ(nss), it is also a continuous inverse U-shaped concave function, with a unique
interior maximum in the unit interval. Consider now rL(nss). Since rL(nss) = πL(nss)/μL,
Lemma 1 establishes that rL(nss) is increasing and convex, with limnss→1 rL(nss) = ∞ (thus,
limnss→1[rL(nss) − rss

H (nss)] = ∞).
Next, straightforward algebra immediately implies that, conditional on n = nss and m =

m(nss), there exists a unique value χ = χss that yields a zero of the dynamical system (21)–
(22). Finally, since in BGP r = ρ + g > g (from (1) and Assumptions 1–2), the transversality
condition is satisfied in the unique candidate BGP.
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A.4. Proof of Proposition 5

Recall that dynamic equilibria are given by solutions to dynamical system (21)–(22) with
boundary conditions given by the initial condition n = n0 and the transversality condition. By
the same argument as in the proof of Proposition 4, there cannot be any dynamic equilibrium
path where n → nmin and n → 1. Any dynamic equilibrium must thus either converge to the
unique (interior) BGP (nss, χss) or involves cycles. We will show in this proof that starting
from any initial condition n = n0 in the neighborhood of nss (the BGP), there exists a unique
path converging to (nss, χss) and that there cannot be cycles, thus establishing local saddle-path
stability of the dynamic equilibrium.

Because there are two sources of technical change (innovation and standardization), we first
distinguish between three possible types of potential dynamic equilibria (which may converge to
the BGP, (nss, χss)).

Case 1. VH = μH and VL < μL (⇒ m = 0 and g = (y(n) − χ)/μH ). In this case, from Propo-
sition 3 the dynamics are governed by the following system of ordinary differential equations:

χ̇

χ
= πH (n)

μH

− ρ − y(n) − χ

μH

, ṅ = (1 − n)
y(n) − χ

μH

. (38)

Case 2. VH < μH and VL = μL (⇒ m = (y(n) − χ)/(nμL) and g = 0). In this case, again
from Proposition 3 the dynamics are governed by the following system of ordinary differential
equations:

χ̇

χ
= πL(n)

μL

− ρ, ṅ = −
(

y(n) − χ

μL

)
. (39)

Case 3. VH = μH and VL = μL (⇒ m = πH (n)/μH −πL(n)/μL and g = (y(n)−μLmn−χ)/

μH ). In this case, the dynamics are governed by the following system of ordinary differential
equations:

χ̇

χ
= πL(n)

μL

− ρ − y(n) − μLmn − χ

μH

,

ṅ = (1 − n)
y(n) − χ

μH

− mn

(
1 + (1 − n)

μL

μH

)
. (40)

In all three cases, the differential equations are defined over the region χ ∈ [0, y(n)], n ∈
[nmin,1]. Recall that in the BGP m > 0 and g > 0. This implies that VH = μH and VL = μL.

Therefore, (nss, χss) is a zero of the dynamical system (40), but it is not a zero either of (38) or
of (39). Nevertheless, we will show that Case 3 cannot describe dynamic equilibrium behavior
at any point with (n,χ) �= (nss, χss). Instead, the equilibrium dynamics will be given by either
Case 1 or Case 2 (depending on whether n is above or below nss ) and will be unique. Then
under the equilibrium dynamics, the economy will converge in finite time to (nss, χss), and then
a jump in m and r will create a switch to Case 3 at that point. Since (nss, χss) is a zero of (40),
the economy will have reached the BGP and will stay at (nss, χss) thereafter.

We prove the result by first establishing several lemmas. First, Lemma 2 establishes that, if
n < nss, there exists a unique trajectory converging to (nss, χss) (it is immediate that, if n < nss ,
there exists no trajectory converging to (nss, χss) following the dynamics (39), since these would
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imply ṅ � 0). Second, Lemma 3 establishes that, if n > nss, there exists a unique trajectory
converging to (nss, χss) following the dynamics (39) (it is immediate that, if n > nss , there exists
no trajectory converging to (nss, χss) following the dynamics given by (38), since these imply
ṅ � 0). Third, Lemma 4 provides a complete characterization of equilibrium dynamics when the
transition involves either only innovation or only standardization, followed by a jump in either
the innovation or the standardization rate as the economy reaches (nss, χss), but continuous
changes in asset values. Fourth, Lemma 5 establishes that (under the sufficient conditions of
the proposition) there exists no trajectory converging to (nss, χss) following the dynamics (40).
Finally, Lemma 6 rules out transitional dynamics in the neighborhood of the BGP in which there
is a jump from Case 3 to either Case 1 or Case 2 or between Cases 1 and 2. These lemmas
together establish local saddle-path stability.

Lemma 2. Suppose n0 < nss. Then, there exists a unique trajectory attaining (nss, χss) in finite
time following the dynamics of Case 1, (38). This trajectory features monotonic convergence in
n (ṅ > 0).

Proof. Consider the system of differential equations (38). This system has no zero over the feasi-
ble region [nmin,1]×[0, y(n)]. In particular, in the interior of the region [nmin,1]×[0, y(n)], and
hence at (nss, χss), ṅ > 0 and χ̇ � 0 ⇔ χ � χ̂(n), where χ̂(n) = μH ρ + y(n) − πH (n) < y(n).

The last inequality follows from Assumption 1. Although whether χ̂ (nss) � χ(nss) is in general
ambiguous, there is a unique trajectory (and a unique initial level of the control variable, χ0) con-
verging in finite time to (nss, χss). In particular, since (nss, χss) is not a zero of the system (38),
the determination of the converging trajectory can be expressed as an initial value problem with
(nss

T ,χss
T ) being the boundary (terminal) condition. From the standard result of existence and

uniqueness of solutions for systems of ordinary differential equations, this initial value problem
has a unique solution. Fixing the initial condition n0 yields a unique solution for T (the length of
the transition) and χ0. The monotonicity of the dynamics of n ensures that this solution is unique,
i.e., there does not exist two solutions (n0, T ,χ0) and (n0, T

′, χ ′
0) with T �= T ′ and χ0 �= χ ′

0. This
argument also proves that convergence is attained in finite time. �
Lemma 3. Suppose n0 > nss. Then, there exists a unique trajectory attaining (nss, χss) in finite
time following the dynamics of Case 2, (39). This trajectory features monotonic convergence
(ṅ < 0 and χ̇ > 0).

Proof. The proof is similar to that of Lemma 2. The dynamical system again has no zero over the
feasible region [nmin,1] × [0, y(n)]. In particular, for n0 � nss , ṅ > 0 and χ̇ > 0. The latter fol-
lows from the observation that χ̇ � 0 ⇔ πL(n)/μL � ρ, where π ′

L(n) < 0 and πL(nss)/μL > ρ,

implying that πL(n)/μL > ρ for all n � nss . Standard properties of systems of ordinary differ-
ential equations establish that there is a unique trajectory converging in finite time to (nss, χss)

and this trajectory features monotonic dynamics. �
The previous two lemmas together imply our key characterization result.

Lemma 4. There exists equilibrium dynamics with the following characteristics.
If n0 < nss, the economy converges in finite time to (nss, χss) following the system of

differential equations (38), with monotonic convergence in n. Throughout this convergence,
VH = μH , VL < μL, m = 0 and g = (y(n) − χ)/μH . When the economy reaches (nss, χss),

there is a discrete increase in standardization offset by a fall in the interest rate such that
r(nss) = r ′(nss) + m(nss). Thereafter, VH = μH and VL = μL.
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If n0 > nss the economy converges in finite time to (nss, χss) following the system of differ-
ential equations (39), with monotonic convergence in n and χ. Throughout this convergence,
VH < μH , VL = μL, m = (y(n) − χ)/(nμL) > 0 and g = 0. When the economy reaches
(nss, χss), there is a discrete fall in standardization offset by an increase in innovation such
that y(nss) − χ remains constant. Thereafter, VH = μH and VL = μL.

Proof. The proof follows from Lemmas 2 and 3 combined with the following observations. Sup-
pose we start with n0 < nss , then the dynamic equilibrium is given by the system of differential
equations (38), so from Lemma 2 until T , we have m = 0. At T , we reach (nss, χss) and m

jumps from zero to its steady state, mss . This is offset by an equal jump down in r implying
that VH does not change (i.e., it remains at VH = μH ). Moreover, at T , VL attains its steady
state (BGP) value, VL = μL. Note that there is no discontinuity in the asset value VL, since the
change in r and m are perfectly anticipated, causing a continuous change in the value VL before
the actual change occurs to reach VL = μL exactly at T (the continuity of VL ensures that there
is no arbitrage opportunity in buying and selling shares of L-sector firms). Thus at this point, the
dynamics switch to those given by the system of differential equations (40) with both innovation
and standardization. Since (nss, χss) is a zero of (40), the economy stays at (nss, χss) thereafter.
The fact that this path satisfies the transversality condition follows by the same argument as in
the proof of Proposition 4.

Next, suppose that we start with n0 > nss . Then the dynamic equilibrium is given by the
system of differential equations (39) and from Lemma 3, until T , g = 0. At T , investment in
standardization and mT fall discretely (the latter declining to mss ), and investment in innovation
and g jumps up (the latter increasing to gss ). There is no change in overall investment and thus
neither r , nor consumption nor VL change at T . As m jumps down, VH attains its stead state
value, VH = μH exactly at T (note that the path of VH is continuous at T , as the change in
m is perfectly anticipated by investors). As a result, again at T , the dynamics switch to those
given by the system of differential equations (40) with both innovation and standardization. Since
(nss, χss) is a zero of (40), the economy stays at (nss, χss) thereafter. The fact that this path
satisfies the transversality condition again follows by the same argument. �

We next show that transitional dynamics converging to (nss, χss) cannot feature both
VH = μH and VL = μL since the system (40) is unstable in the neighborhood of (nss, χss).

Lemma 5. Suppose n0 �= nss. Then, under the (sufficient) conditions of the proposition, there
exists no trajectory converging to (nss, χss) following the dynamical system (40).

Proof. The proof of this lemma, which is long, is presented in Appendix B, which is available
online. �

Lemmas 2–5 establish that in the neighborhood of (nss, χss), we must have either VH < μH

or VL < μL, implying that there is either only innovation or only standardization. However, the
results established so far do not rule out “switches” between different regimes while nt �= nss ,
and thus cycles. Moreover, with such switches, the equilibrium might also be indeterminate,
with multiple paths starting from some initial n0 converging to the BGP. Lemma 6 rules out
all of these possibilities by showing that in the neighborhood of the BGP, there cannot be a
switch from the dynamics given by any one of (38), (39) and (40) to one of the other two. (For
notational convenience, in this lemma, we write VH,t = μH to mean that VH,t ′ = μH for t ′ in a
neighborhood of t .)
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Lemma 6. Consider an equilibrium trajectory in the neighborhood of the BGP, (nss, χss). Then,
there cannot be a switch from any one of (38), (39) and (40) to one of the other two, i.e., if at t0 in
the neighborhood of (nss, χss), we have VH,t0 = μH and VL,t0 = μL, then an equilibrium cannot
involve VH,t < μH and/or VL,t < μL for t > t0; if we have VH,t0 = μH and VL,t0 < μL, then an
equilibrium cannot involve VH,t < μH and/or VL,t = μL for t > t0; and if we have VH,t0 < μH

and VL,t0 = μL, then an equilibrium cannot involve VH,t = μH and/or VL,t < μL for t > t0.

Proof. We will prove that if in the neighborhood of (nss, χss), we have VH,t0 = μH and
VL,t0 = μL, then an equilibrium cannot involve VH,t = μH and VL,t < μL for t > t0. The other
cases are analogous.

Suppose to obtain a contradiction that this is the case and denote the last instance where
VL = μL by T (i.e., VL,T +ε < μL for ε > 0). We need to distinguish two cases. First, VL,t ′ < μL

for all t ′ > t , and second, there exists T ′ > t , such that we again have VL,T ′ = μL.

Case 1. The fact that VL,t ′ < μL for all t ′ > t contradicts the hypothesis that the equilibrium
path will converge to the BGP.

Case 2. We write VL,T as follows:

VL,T =
∞∫

T

exp

(
−

τ∫
T

r(nν) dν

)
πL(nτ ) dτ

=
T ′∫

T

exp

(
−

τ∫
T

r(nν) dν

)
πL(nτ ) dτ + exp

(
−

T ′∫
T

r(nτ ) dτ

)
μL,

where the equality exploits the fact that by hypothesis VL,T ′ = μL. Moreover, we also have,
again by hypothesis, that VL,T = μL, which implies

T ′∫
T

exp

(
−

τ∫
T

r(nν) dν

)
πL(nτ ) dτ =

(
1 − exp

(
−

T ′∫
T

r(nτ ) dτ

))
μL. (41)

Suppose next that nT > nss . By the instability result in Lemma 5, this implies ṅT > 0 and thus
nτ > nss for all τ ∈ [T ,T ′]. But then from Lemma 1, πL(nτ ) > πL(nss) for all τ ∈ [T ,T ′].
Moreover, since VH,τ = μH and VL,τ < μL, we also have that for all τ ∈ [T ,T ′],

r(nτ ) = πH (nτ )

μH

>
πL(nτ )

μL

>
πL(nss)

μL

= r
(
nss

)
,

where the second inequality again follows from Lemma 1 in view of the fact that nτ > nss for all
τ ∈ [T ,T ′]. But then,

T ′∫
T

exp

(
−

τ∫
T

r(nν) dν

)
πL(nτ ) dτ <

( T ′∫
T

exp

(
−

τ∫
T

r(nν) dν

)
dτ

)
πL(nss)

<

(
1 − exp

(
−

T ′∫
r(nτ ) dτ

))
μL,
T
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where the second inequality follows from the fact that r(nτ ) < r(nss) for all τ ∈ [T ,T ′]. This
inequality contradicts (41).

Suppose instead that nT < nss . By the instability result in Lemma 5, ṅT < 0 and thus nτ < nss

for all τ ∈ [T ,T ′]. Moreover, by the same reasoning for all τ ∈ [T ,T ′], πH (nτ ) > πH (nss) and
since VL,τ < μL, m(nτ ) = 0. Therefore,

VH,T =
∞∫

T

exp

(
−

τ∫
T

(
r(nν) + m(nν)

)
dν

)
πH (nτ ) dτ

=
T ′∫

T

exp

(
−

s∫
T

r(nν) dν

)
πH (nτ ) dτ + exp

(
−

T ′∫
T

r(nτ ) dτ

)
μH . (42)

But since for all τ ∈ [T ,T ′]

r(nτ ) = πH (nτ )

μH

>
πH (nss)

μH

the first term in (42) is strictly greater than (1 − exp(− ∫ T

t
r(nτ ) dτ))μH and thus contradicts

VH,T = μH . �
Lemmas 2–6 establish the results of the proposition. In particular, Lemmas 5 and 6 imply that

starting at nt �= nss in the neighborhood of the BGP we must have VH < μH or VL < μL. If
VH = μH and VL = μL, either we diverge from the BGP in view of 5, or we have to switch to
a regime where VH < μH or VL < μL, which is ruled out by Lemma 6. If we have VH < μH

or VL < μL in the neighborhood of the BGP, then Lemmas 2–4 imply that there exists a unique
path converging to the BGP. This completes the proof of the proposition. �
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Appendix B. Proof of Lemma 5

We take a linear approximation of the dynamical system (40) around (nss, χss):

χ̇

χ
� Fχ

(
χss, nss

) · (χ − χss
) + Fn

(
χss, nss

) · (n − nss
)
,

ṅ

n
� Gχ

(
χss, nss

) · (χ − χss
) + Gn

(
χss, nss

) · (n − nss
)
,

where subscripts denote partial derivatives and

F(χ,n) ≡ r(n) − ρ − y(n) − μLm(n)n − χ

μH

,

G(χ,n) ≡
(

1 − n

n

)
y(n) − χ

μH

− m(n)

(
1 + (1 − n)

μL

μH

)
.

Thus, Fχ(χ,n) = 1
μH

> 0 and Gχ(χ,n) = −( 1−nss

nss ) 1
μH

< 0. Solving for the schedules such
that, respectively, χ̇ = 0 and ṅ = 0 yields:

χ(n)|χ̇=0 = y(n) − μLm(n)n − μH

(
r(n) − ρ

)
,

χ(n)|ṅ=0 = y(n) − μLm(n)n − μH m(n)

(
n

1 − n

)
,

with slopes:

χ ′(n)|χ̇=0 = − Fn(χ
ss, nss)

Fχ(χss, nss)
and χ ′(n)|ṅ=0 = − Gn(χ

ss, nss)

Gχ(χss, nss)
.

Suppose there were trajectories featuring both innovation and standardization converging to
(nss, χss). Then, either one or both eigenvalues of the linearized system would be negative.
We show that this is impossible and that under the sufficient conditions of the proposition both
eigenvalues must be positive. Let the two eigenvalues of the linearized system be denoted by λ1
and λ2. We know that

λ1 + λ2 = Fχ

(
χss, nss

) + Gn

(
χss, nss

)
,

λ1 · λ2 = Fχ

(
χss, nss

) · Gn

(
χss, nss

) − Fn

(
χss, nss

) · Gχ

(
χss, nss

)
.

Claim 1. The following inequality holds

− Fn(χ
ss, nss)

Fχ(χss, nss)
< − Gn(χ

ss, nss)

Gχ(χss, nss)
.

Hence, λ1 · λ2 > 0.

Proof. We need to show that χ ′(nss)|χ̇=0 < χ ′(nss)|ṅ=0. Define �(n) = χ(n)|χ̇=0 −χ(n)|ṅ=0 =
μH m(n)( n

1−n
) − μH (r(n) − ρ). We know that m(n) = 0 for n � nmax > nss. Thus, at n = nmax

we have:

�
(
nmax) = −μH

(
r(n) − ρ

) = −μH

(
πH (n) − ρ

)
< 0
μH
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by Assumption 1. Next, recall that at nmin = H
H+L

we have y(n) = H + L, m(n) =
H+L

ε
( 1
μH

− 1
μL

) and r(n) = H+L
εμL

. Thus:

�
(
nmin) = μH

H + L

ε

(
1

μH

− 1

μL

)
h − μH

(
H + L

εμL

− ρ

)
> 0

by Assumption 2. Moreover, we know that nss is unique. Thus, χ(nss)|χ̇=0 = χ(nss)|ṅ=0 for
a unique value of nss . Then, by the intermediate value theorem, χ(n)|χ̇=0 > χ(n)|ṅ=0 for all
n < nss and χ(n)|χ̇=0 < χ(n)|ṅ=0 for all n > nss. �

Since we know that λ1 · λ2 > 0, showing that λ1 + λ2 > 0 establishes that the system has two
positive eigenvalues and is therefore unstable. The condition λ1 + λ2 > 0 can be written as:

χ ′(n)|ṅ=0 = − Gn(χ
ss, nss)

Gχ(χss, nss)
>

Fχ(χss, nss)

Gχ(χss, nss)
= −

(
n

1 − n

)
1

μH

. (43)

A sufficient condition for (43) to be satisfied is that the locus ṅ = 0 be upward sloping in a
neighborhood of the BGP. Let us first consider the case where ρ → 0. Using y(n) = ε[nπH (n)+
(1 − n)πL(n)] and m(n) = πH (n)

μH
− πL(n)

μL
into χ(n)|ṅ=0:

χ(n)|ṅ=0 = y(n) − m(n)

(
n

1 − n
μH + nμL

)
= [

πH (n)n
] · A(n)

where A(n) ≡ [ μL

μH
+ πL(n)

πH (n)
(1+ ε

n
)+ 1

1−n
(

πL(n)
πH (n)

μH

μL
−1)]. We know that the factor πH (n)n is in-

verted U-shaped, with a maximum at n∗ > nmin (it corresponds to the maximum g characterized
in Section 2.7). Thus, for n ∈ [nmin, n

∗] a sufficient condition for χ ′(n)|ṅ=0 > 0 is ∂A(n)
∂n

> 0:

∂A(n)

∂n
= ∂

∂n

(
πL(n)

πH (n)

)(
1 + ε

n

)
− πL(n)

πH (n)

ε

n2
+ 1

(1 − n)2

(
πL(n)

πH (n)

μH

μL

− 1

)

+ ∂

∂n

(
πL(n)

πH (n)

)
1

1 − n
.

For ρ → 0, in the BGP we have πL(n)
πH (n)

= μL

μH
n and ∂

∂n
(

πL(n)
πH (n)

) = ε−1
ε

πL(n)
πH (n)

1
(1−n)n

= ε−1
ε(1−n)

μL

μH
.

Thus:

∂A(n)

∂n
= μL

(1 − n)μH

[
ε − 1

ε
+ ε − 1

n
+ ε − 1

ε(1 − n)
+ μH

μL

]
. (44)

A sufficient condition for χ ′(n)|ṅ=0 > 0 is then: ε−1
ε

+ ε − 1
n

+ ε−1
ε(1−n)

+ μH

μL
> 0. Noting that in

the BGP πL(n)
πH (n)

= μL

μH
n → μH

μL
= ( 1−n

n
h)

ε−1
ε n, the sufficient condition becomes:

ε − 1

ε
+ ε − 1

n
+ ε − 1

ε(1 − n)
+

(
1 − n

n
h

) ε−1
ε

n > 0.

Since this expression is increasing in n, we only need to verify that it is positive at nmin. At nmin

we have ( 1−n
n

h)
ε−1
ε = 1 and the condition becomes:

ε − 1

ε
+ ε − 1

n
+ ε − 1

ε(1 − n)
+ n > 0. (45)

Substituting nmin = h/(1 + h) yields (28) in the text.
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Finally, for n > n∗, rewrite the necessary condition as:

χ ′(n)|ṅ=0

χ(n)|ṅ=0
= π ′

H (n)

πH (n)
+ 1

n
+ ∂A

∂n

1

A
> −

(
n

1 − n

)
1

μH χ(n)|ṅ=0
.

From Eqs. (16) and (17):

π ′
H (n)

πH (n)
+ 1

n
= 1

ε

[y(n)] 1−ε
ε

ε − 1

(
H

n

) ε−1
ε − 1

ε

[y(n)] 1−ε
ε

ε − 1

(
L

1 − n

) ε−1
ε + 1

nε
.

Substituting [y(n)] ε−1
ε = (1 − n)

1
ε L

ε−1
ε + n

1
ε H

ε−1
ε into this expression, we have

− 1

ε(ε − 1)

(1 − n)−1

1 + ( n
1−n

)
1
ε h

ε−1
ε

<
π ′

H (n)

πH (n)
+ 1

n
.

This implies that ∂A(n)
∂n

1
A(n)

> 1
ε(ε−1)

1
1−n

1+( n
1−n

)
1
ε h

ε−1
ε

is a sufficient condition for χ ′(n)|ṅ=0 > 0.

Using (44) and the fact that in BGP πL(n)
πH (n)

= μL

μH
n, it can be verified that this condition is satis-

fied when (45) holds, for any n ∈ [n∗,1]. In sum, (45) is sufficient to prove that the dynamical
system with both innovation and standardization is locally unstable in the limit where ρ → 0. By
continuity, the same result applies for ρ < ρ̄ for some ρ̄ > 0 sufficiently small.
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