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CAUSAL EFFECTS OF MONETARY SHOCKS: SEMIPARAMETRIC
CONDITIONAL INDEPENDENCE TESTS WITH A MULTINOMIAL

PROPENSITY SCORE

Joshua D. Angrist and Guido M. Kuersteiner*

Abstract—We develop semiparametric tests for conditional independence
in time series models of causal effects. Our approach is motivated by empir-
ical studies of monetary policy effects and is semiparametric in the sense
that we model the process determining the distribution of treatment—the
policy propensity score—but leave the model for outcomes unspecified.
A conceptual innovation is that we adapt the cross-sectional potential out-
comes framework to a time series setting. We also develop root-T consistent
distribution-free inference methods for full conditional independence test-
ing, appropriate for dependent data and allowing for first-step estimation of
the (multinomial) propensity score.

I. Introduction

THE causal connection between monetary policy and real
economic variables is one of the most important and

widely studied questions in macroeconomics. Most of the
evidence on this question comes from regression-based sta-
tistical tests. That is, researchers regress an outcome variable
such as industrial production on measures of monetary policy,
while controlling for lagged outcomes and contemporaneous
and lagged covariates, with the statistical significance of pol-
icy variables providing the test results of interest. Two of the
most influential empirical studies in this spirit are by Sims
(1972, 1980), who discusses conceptual as well as empirical
problems in the money-income nexus.

The foundation of regression-based causality tests is a
simple conditional independence assumption. The core null
hypothesis is that conditional on lagged outcomes and an
appropriate set of control variables, the absence of a causal
relationship should be manifest in a statistically insignificant
connection between policy surprises and contemporaneous
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and future outcomes. In the language of cross-sectional pro-
gram evaluation, policy variables are assumed to be as good
as randomly assigned after appropriate regression condition-
ing, so that conditional effects have a causal interpretation.
This is obviously a strong assumption, yet it seems a nat-
ural place to begin empirical work, at least in the absence
of a randomized trial or compelling exclusion restrictions.
The conditional independence assumption is equivalent to
postulating independent structural innovations in a struc-
tural vector autoregression (SVAR), a tool that has taken
center stage in the analysis of monetary policy effects.
Recent contributions to this literature include Bernanke and
Blinder (1992), Christiano, Eichenbaum, and Evans (1996,
1999), Gordon and Leeper (1994), Sims and Zha (2006), and
Strongin (1995).

While providing a flexible tool for the analysis of causal
relationships, an important drawback of regression-based
conditional independence tests, including those based on
SVARs, is the need for an array of auxiliary assumptions
that are hard to assess and interpret, especially in a time
series context. Specifically, regression tests rely on a model
of the process determining GDP growth or other macroeco-
nomic outcomes. Much of the recent literature in monetary
macroeconomics has focused on dynamic stochastic gen-
eral equilibrium (DSGE) models for this purpose. Sims
and Zha (2006) noted that SVARs can be understood as
first-order approximations to a potentially nonlinear DSGE
model. Moreover, the SVAR framework for hypothesis test-
ing implicitly requires specification of both a null and an
alternative model.

The principal contribution of this paper is to develop an
approach to time series causality testing that shifts the focus
away from a model of the process determining outcomes
toward a model of the process determining policy decisions.
In particular, we develop causality tests that rely on a model
for the conditional probability of a policy shift, which we
call the policy propensity score, leaving the model for out-
comes unspecified. In the language of the SVAR literature,
our approach reduces the modeling burden to the specifica-
tion, identification, and estimation of the structural policy
innovation, while leaving the rest of the system unspecified.
This limited focus should increase robustness. For example,
we do not need to specify functional form or lag length in
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a model for GDP growth. Rather, we need to be concerned
solely with the time horizon and variables relevant for Federal
Open Market Committee (FOMC) decision making, issues
about which there is some institutional knowledge. More-
over, the multinomial nature of policy variables such as the
one we study provides a natural guide as to the choice of
functional form for the policy model.

A second contribution of our paper is the outline of
a potential-outcomes framework for causal research using
time series data. In particular, we show that a general-
ized Sims-type definition of dynamic causality provides a
coherent conceptual basis for time series causal inference
analogous to the selection-on-observables assumption widely
used in cross-section econometrics. The analogy between a
time series causal inquiry and a cross-sectional selection-
on-observables framework is even stronger when the policy
variable can be coded as a discrete treatment-type variable. In
this paper, therefore, we focus on the causal effect of changes
in the federal funds target rate, which tends to move up or
down in quarter-point jumps. Our empirical work is motivated
by Romer and Romer’s (2004) analysis of the FOMC deci-
sions regarding the intended federal funds rate. This example
is also used to make our theoretical framework concrete. In an
earlier paper, Romer and Romer (1989) described monetary
policy shocks using a dummy variable for monetary tighten-
ing. An application of our framework to this binary-treatment
case appears in our working paper (Angrist & Kuersteiner,
2004). Here we consider a more general model of the policy
process where federal funds target rate changes are modeled
as a dynamic multinomial process.

Propensity score methods, introduced by Rosenbaum and
Rubin (1983), are now widely used for cross-sectional causal
inference in applied econometrics. Important empirical
examples include Dehejia and Wahba (1999) and Heckman,
Ichimura, and Todd (1998), both concerned with the eval-
uation of training programs. Heckman, Ichimura, and Todd
(1997), Heckman et al. (1998), and Abadie (2005) develop
propensity score strategies for differences-in-differences esti-
mators. The differences-in-differences framework often has
a dynamic element since these models typically involve
intertemporal comparisons. Similarly, Robins, Greenland,
and Hu (1999), Lok et al. (2004), and Lechner (2004) have
considered panel-type settings with time-varying treatments
and sequential randomized trials. At the same time, few, if
any, studies have considered propensity score methods for
a pure time series application in spite of the fact that the
dimension-reducing properties of propensity score estima-
tors would seem especially attractive in a time series context.
Finally, we note that Imbens (2000) and Lechner (2000) gen-
eralize the binary propensity score approach to allow ordered
treatments, though this work has not yet featured widely in
applications.

Implementation of our semiparametric test for condi-
tional independence in time series data generates a num-
ber of inference problems. First, as in the cross-sectional
and differences-in-differences settings discussed by Hahn

(1998), Heckman et al. (1998), Hirano, Imbens, and Rid-
der (2003), Abadie (2005), and Abadie and Imbens (2009),
inference should allow for the fact that the propensity score
is unknown and must be estimated. First-step estimation
of the propensity score changes the limiting distribution of
our Kolmogorov-Smirnov (KS) and von Mises (VM) test
statistics.

A second and somewhat more challenging complication
arises from the fact that nonparametric tests of distributional
hypotheses such as conditional independence may have a
nonstandard limiting distribution, even in a relatively sim-
ple cross-sectional setting. For example, in a paper closely
related to ours, Linton and Gozalo (1999) consider KS- and
VM-type statistics, as we do, but the limiting distributions
of their test statistics are not asymptotically distribution free,
and must therefore be bootstrapped.1 More recently, Su and
White (2003) have proposed a nonparametric conditional
independence test for time series data based on orthogonality
conditions obtained from an empirical likelihood specifica-
tion. This procedure converges at a less-than-standard rate
due to the need for nonparametric density estimation. In
contrast, we present new KS and VM statistics that provide
distribution-free tests for full conditional independence, are
suitable for dependent data, and converge at the standard rate.

The key to our ability to improve on previous tests of con-
ditional independence, and an added benefit of the propensity
score approach, is that we are able to reduce the problem of
testing for conditional distributional independence to a prob-
lem of testing for a martingale difference sequence (MDS)
property of a certain functional of the data. This is related
to the problem of testing for the MDS property in simple
stochastic processes, a problem analyzed by, among others,
Bierens (1982, 1990), Bierens and Ploberger (1997), Chen
and Fan (1999), Stute, Thies, and Zhu (1998), and Koul
and Stute (1999). Our testing problem is more complicated
because we simultaneously test for the MDS property of a
continuum of processes indexed in a function space. Earlier
contributions propose a variety of schemes to find critical val-
ues for the limiting distribution of the resulting test statistics,
but most of the existing procedures involve nuisance param-
eters.2 Our work extends Koul and Stute (1999) by allowing
more general forms of dependence, including mixing and
conditional heteroskedasticity. These extensions are impor-
tant in our application because even under the null hypothesis
of no causal relationship, the observed time series are not
Markovian and do not have a martingale difference struc-
ture. Most important, direct application of the Khmaladze
(1988, 1993) method in a multivariate context appears to
work poorly in practice. We therefore use a Rosenblatt (1952)

1 See also Abadie (2002), who proposes a bootstrap procedure for nonpara-
metric testing of hypotheses about the distribution of potential outcomes,
when the latter are estimated using instrumental variables.

2 In light of this difficulty, Bierens and Ploberger (1997) derive asymptotic
bounds, Chen and Fan (1999) use a bootstrap, and Koul and Stute (1999)
apply the Khmaladze transform to produce a statistic with a distribution-
free limit. The univariate version of the Khmaladze transform was first used
in econometrics by Bai (2003) and Koenker and Xiao (2002).
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transformation of the data in addition to the Khmaladze trans-
formation.3 This combination of methods seems to perform
well, at least for the low-dimensional multivariate systems
explored here.

The paper is organized as follows. The next section out-
lines our conceptual framework, while section III provides
a heuristic derivation of the testing strategy. Section IV dis-
cusses the construction of feasible critical values using the
Khmaladze and Rosenblatt transforms, as well as a bootstrap
procedure. Finally, the empirical behavior of alternative test
statistics is illustrated through a re-analysis of the Romer and
Romer (2004) data in section V.4 As an alternative to the
Romers’ approach and to illustrate the use of our framework
for specification testing, we also explore a model for mone-
tary policy based on a simple Taylor rule. Appendix A extends
the tests of section III to a general testing framework. Appen-
dix B provides detailed descriptions on how to implement the
test statistics. Appendix C summarizes theoretical results and
technical assumptions.5 Appendixes D and E contain model
and data definitions for the empirical work in section V.
An auxiliary appendix with data and additional informa-
tion is available online at http://www.mitpressjournals.org
/doi/suppl/10.1162/REST_a_00109.

II. Notation and Framework

Causal effects are defined here using the Rubin (1974)
notion of potential outcomes. The potential outcomes concept
originated in randomized trials but is now widely used in
observational studies. Our definition of causality relies on the
distinction between potential outcomes that would be realized
with and without a change in policy. In the case of a binary
treatment, these are denoted by Y1t and Y0t . The observed
outcome in period t can then be written Yt = Y1tDt + (1 −
Dt)Y0t , where Dt is treatment status. In the absence of serial
correlation or covariates, the causal effect of a treatment or
policy action is defined as Y1t − Y0t . Since only one or the
other potential outcome can ever be observed, researchers
typically focus on the average causal effect, E(Y1t − Y0t), or
the average effect in treated periods, E(Y1t − Y0t|Dt = 1).
When Dt takes on more than two values, there are multiple
incremental average treatment effects (for example, the effect
of going up or down). This is spelled out further below.

Time series data are valuable in that, by definition, a time
series sample consists of repeated observations on the sub-
ject of interest (typically a country or economy). At the

3 In recent work, independent of ours, Delgado and Stute (2008) dis-
cuss a specification test that also combines the Khmaladze and Rosenblatt
transforms. Song (2009) considers a nonparametric test (as opposed to
our semiparametric test) of conditional independence using the Rosenblatt
transform. In Song’s setup, parameter estimation involving conditioning
variables does not affect the limiting distribution of test statistics. This
eliminates the need for the Khmaladze transform.

4 A small Monte Carlo study can be found in our NBER working paper:
Angrist and Kuersteiner (2004).

5 Proofs are available in the online appendix.

same time, time series application poses special problems
for causal inference. In a dynamic setting, the definition of
causal effects is complicated by the fact that potential out-
comes are determined not just by current policy actions but
also by past actions, lagged outcomes, and covariates. To
capture dynamics, we assume the economy can be described
by an observed vector stochastic process, χt = (Yt , Xt , Dt),
defined on the probability space (Ω, F , P), where Yt is a vec-
tor of outcome variables, Dt is a vector of policy variables,
and Xt is a vector of other exogenous and (lagged) endoge-
nous variables that are not part of the null hypothesis of no
causal effect of Dt . Let X̄t = (Xt , . . . , Xt−k , . . .) denote the
covariate path, with similar definitions for Ȳt and D̄t . For-
mally, the relevant information is assumed to be described
by Ft = σ(zt), where zt = Πt(X̄t , Ȳt , D̄t−1) is a sequence of
finite-dimensional functions of the entire observable history
of the joint process. For the purposes of our empirical work,
the mapping Πt and zt are assumed to be known.

A key to identification in our framework is the distinction
between systematic and random components in the process
by which policy is determined. Specifically, decisions about
policy are assumed to be determined in part by a possibly
time-varying but nonstochastic function of observed ran-
dom variables, denoted D(zt , t). This function summarizes
the role played by observable variables in the policymak-
ers’ decision-making process. In addition, policymakers are
assumed to react to idiosyncratic information, represented by
the scalar εt , that is not observed by researchers and therefore
modeled as a stochastic shock. The policy Dt is determined
by both observed and unobserved variables according to
Dt = ψ(D(zt , t), εt , t), where ψ is a general mapping. With-
out loss of generality, we can assume that εt has a uniform
distribution on [0, 1]. This is because ψ(a, b, t) can always
be defined as ψ̃(a, F−1(b), t), where F is any parametric or
nonparametric distribution function. We assume that ψ takes
values in the set of functions, Ψt . A common specification
in the literature on monetary policy is a Taylor (1993) rule
for the nominal interest rate. In this case, ψ is usually linear,
while zt is lagged inflation and unemployment (see Rotem-
berg & Woodford, 1997). A linear rule implicitly determines
the distribution of εt .

A second key assumption is that the stochastic compo-
nent of the policy function, εt , is independent of potential
outcomes. This assumption is distinct from the policy model
itself and therefore discussed separately below. Given this
setup, we can define potential outcomes as the possibly coun-
terfactual realizations of Yt that would arise in response to
a hypothetical change in policy as described by alternative
realizations for ψ(D(zt , t), εt , t). Our definition of poten-
tial outcomes allows counterfactual outcomes to vary with
changes in policy realizations for a given policy rule or for a
changing policy rule:

Definition 1. A potential outcome, Yψ

t,j(d), is defined as the
value assumed by Yt+j if Dt = ψ(D(zt , t), εt , t) = d, where d
is a possible value of Dt and ψ ∈ Ψt .
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The random variable Yψ

t,j(d) depends in part on future pol-
icy shocks such as εt+j−1, that is, random shocks that occur
between time t and t + j. When we imagine changing d or ψ

to generate potential outcomes, this sequence of intervening
shocks is held fixed. This is consistent with the tradition of
impulse response analysis in macroeconomics. Our setup is
more general, however, in that it allows the distributional
properties of Yψ

t,j(d) to depend on the policy parameter d
in arbitrary ways. In contrast, traditional impulse response
analysis looks at the effect of d on the mean of Yψ

t,j(d) only.6
It also bears emphasizing that both the timing of policy

adoption and the horizon matter for Yψ

t,j(d). For example,

Yψ

t,j(d) and Yψ

t+1,j−1(d) may differ even though both describe

outcomes in period t + j. In particular, Yψ

t,j(d) and Yψ

t+1,j−1(d)

may differ because Yψ

t,j(d) measures the effect of a policy

change at time t on the outcome in time t + j and Yψ

t+1,j−1(d)

measures the effect of period t + 1 policy on an outcome at
time t + j.

Under the null hypothesis of no causal effect, potential
and realized outcomes coincide. This is formalized in the
next definition:

Definition 2. The sharp null hypothesis of no causal effects
means that Yψ′

t,j (d ′) = Yψ

t,j(d), j > 0, for all d, d ′ and for all
policy functions ψ, ψ′ ∈ Ψt . In addition, under the no-effects
null hypothesis, Yψ

t,j(d) = Yt+j for all d, ψ, t, and j.

In the situation that Rubin (1974) studied, the no-effects null
hypothesis states that Y0t = Y1t .7

Our approach to causality testing leaves Yψ

t,j(d) unspeci-
fied. In contrast, it is common practice in econometrics to
model the joint distribution of the vector of outcomes and
policy variables (χt) as a function of lagged and exogenous
variables or innovations in variables. It is therefore worth
thinking about what potential outcomes would be in this case.

We begin with an example based on Bernanke and Blin-
der’s (1992) SVAR model of monetary transmission (see
also Bernanke & Mihov, 1998). This example illustrates how
potential outcomes can be computed explicitly in simple
linear models and the link between observed and potential
outcomes under the no-effects null.

Example 1. The economic environment is described by an
SVAR of the form Γ0χt = −Γ(L)χt + (η′

t , εt)
′, where Γ0

6 White (2006, 2009) develops a potential outcomes model for causal
effects in a dynamic context. In contrast to our approach, White is concerned
with the causal effect of policy sequences rather than individual policy
shocks. White also discusses estimation of policy effects (as opposed to our
focus on testing), but imposes stronger assumptions on the model-relating
outcomes and policies than we do.

7 In a study of sequential randomized trials, Robins, Greenland, and Hu
(1999) define potential outcome Y (0)

t as the outcome that would be observed
in the absence of any current and past interventions, that is, when Dt =
Dt−1 = . . . = 0. They denote by Y (1)

t the set of values that would be
observed if for all i ≥ 0, Dt−i = 1. This approach seems too restrictive to
fit the macroeconomic policy experiments we have in mind.

is a matrix of constants conformable to χt and Γ(L) =
Γ1L + . . . + ΓpLp is a lag polynomial such that C(L) ≡
(Γ0 + Γ(L))−1 = ∑∞

k=0 CkLk exists. Policy innovations are
denoted by εt , and other structural innovations are called ηt .
Then, χt = C(L)(η′

t , εt)
′, such that Yt has a moving average

representation,

Yt =
∑∞

k=0
cyε,kεt−k +

∑∞
k=0

cyη,kηt−k ,

where cyε,k and cyη,k are blocks of Ck partitioned conformably
to Yt, εt , and ηt . In this setup, potential outcomes are defined
as

Yψ

t,j(d)=
∑∞

k=0,k �=j
cyε,kεt+j−k +

∑∞
k=0

cyη,kηt+j−k + cyε,jd.

These potential outcomes answer the following question:
Assume that everything else equal, which in this case means
keeping εt+j−k and ηt+j−k fixed for k �= j, how would the
outcome variable Yt+j change if we change the period-t pol-
icy innovation from εt to d? The sharp null hypothesis of no
causal effect holds if and only if cyε,j = 0 for all j. This is
the familiar restriction that the impulse response function be
identically equal to 0.8

When economic theory provides a model for χt , as in
DSGE models, there is a direct relationship between poten-
tial outcomes and the solution of the model. As in Blanchard
and Kahn (1980) or Sims (2001), a solution χ̃t = χ̃t(ε̄t , η̄t) is
a representation of χt as a function of past structural innova-
tions ε̄t = (εt , εt−1, . . .) in the policy function and structural
innovations η̄t = (ηt , ηt−1, . . .) in the rest of the economy.
Further assuming that ψ(D(zt , t), εt , t) = d can be solved
for εt such that for some function ψ∗, εt = ψ∗(D(zt , t), d, t),
we can then partition χ̃t = (Ỹt , X̃t , D̃t) and focus on Ỹt =
Ỹt(ε̄t , η̄t). The potential outcome Yψ

t,j(d) can now be written

as Yψ

t,j(d) = Ỹt+j(εt+j, . . . εt+1, ψ∗(D̃t , d, t), ε̄t−1, η̄t+j).9 It is
worth pointing out that the solution χ̃t , and thus the potential
outcome, Yψ

t,j(d), depend both on D(., .) and on the distribu-
tion of εt . With linear models, a closed form for χ̃t can be
derived. Given such a functional relationship, Yψ

t,j(d) can be
computed in a straightforward manner.10

Definition 1 extends the conventional potential outcome
framework in a number of important ways. A key assumption

8 In this example, Yψ

t+1,j−1(d) typically differs from Yψ

t,j(d) except under
the null hypothesis of no causal effects.

9 When Dt = D(zt , t) + εt , ψ∗(D(zt , t), d) = d − D(zt , t). However,
the function ψ∗ need not exist. Then it may be more convenient to index
potential outcomes as functions of εt rather than d. In this case, one could
define Yψ

t,j(e) = Ỹt+j(εt+j , . . . εt+1, e, ε̄t−1, η̄t), where we use e instead of d
to emphasize the difference in definition. This distinction does not matter
for our purposes, so we focus on Yψ

t,j(d).
10 New Keynesian monetary models have multiple equilibria under certain

interest rate targeting rules. Lubik and Schorfheide (2003) provide an algo-
rithm to compute potential outcomes for linear rational expectations models
with multiple equilibria. Multiplicity of equilibria is compatible with defi-
nition 2 as long as the multiplicity disappears under the null hypothesis of
no causal effects. Moreover, uniqueness of equilibria under the no-effects
null need hold only for the component Ỹt(ε̄t , η̄t) of χ̃t = (Ỹt , X̃t , D̃t).
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in the cross-sectional causal framework is noninterference
between units, or what Rubin (1978) calls the stable unit treat-
ment value assumption (SUTVA). Thus, in a cross-sectional
context, the treatment received by one subject is assumed to
have no causal effect on the outcomes of others. The over-
all proportion treated is also taken to be irrelevant. For a
number of reasons, SUTVA may fail in a time series setup.
First, because the units in a time series context are serially
correlated, current outcomes depend on past policies. This
problem is accounted for here by conditioning on the his-
tory of observed policies, covariates, and outcomes, so that
in practice, potential outcomes reference alternative states
of the world that might be realized for a given history.
Second, and more important, since the outcomes of inter-
est are often assumed to be equilibrium values, potential
outcomes may depend on the distribution—and hence all pos-
sible realizations—of the unobserved component of policy
decisions, εt . The dependence of potential outcomes on the
distribution of εt is captured by ψ. Finally, the fact that poten-
tial outcomes depend on ψ allows them to depend directly on
the decision-making rule policymakers use even when pol-
icy realizations are fixed. Potential outcomes can therefore
be defined in a rational-expectations framework where both
the distribution of shocks and policymakers’ reaction to these
shocks matter.

The framework up to this point defines causal effects in
terms of unrealized counterfactual outcomes. In practice,
of course, we obtain only one realization each period and
cannot directly test the noncausality null. Our tests there-
fore rely on the identification condition below, referred to
in the cross-section treatment effects literature as “ignora-
bility” or “selection-on-observables.” This condition allows
us to establish a link between potential outcomes and the
distribution of observed random variables.

Assumption 1. Selection on observables:

Yψ

t,1(d), Yψ

t,2(d), . . . ⊥Dt|zt , for all d and ψ ∈ Ψt .

The selection on observables assumption says that poli-
cies are independent of potential outcomes after appropri-
ate conditioning. Note also that assumption 1 implies that
Yψ

t,1(d), Yψ

t,2(d), . . . ⊥εt|zt . This is because, conditional on zt ,
randomness in Dt is due exclusively to randomness in εt . We
think of εt as shorthand for idiosyncratic factors such as those
detailed for monetary policy by Romer and Romer (2004).
These factors include variation over time in policymakers’
beliefs about the workings of the economy, decision makers’
tastes and goals, political factors, the temporary pursuit of
objectives other than changes in the outcomes of interest (for
example, monetary policy that targets exchange rates instead
of inflation or unemployment), and harder-to-quantify factors
such as the mood and character of decision makers. Condi-
tional on observables, this idiosyncratic variation is taken to
be independent of potential future outcomes.

The sharp null hypothesis in definition 2 implies Yψ′
t,j (d ′) =

Yψ

t,j(d) = Yt+j. Substituting observed for potential outcomes
in assumption 1 produces the key testable conditional inde-
pendence assumption:

Yt+1, . . . , Yt+j, . . . ⊥ Dt|zt . (1)

In other words, conditional on observed covariates and lagged
outcomes, there should be no relationship between treatment
and outcomes.

Assumption 1 plays a central role in the applied litera-
ture on testing the effects of monetary policy. For example,
Bernanke and Blinder (1992), Gordon and Leeper (1994),
Christiano et al. (1996, 1999), and Bernanke and Mihov
(1998) assume a block recursive structure to identify policy
shocks. In terms of example 1, this is equivalent to imposing
a set of zero restrictions on the coefficients in Γ0 correspond-
ing to the policy variables Dt in the equations for Yt and Xt

(see Bernanke & Mihov, 1998). Together with the assump-
tion that εt and ηt are independent of each other and over
time, this implies assumption 1. To see this, note that condi-
tional on zt , the distribution of Dt depends only on εt , which
is independent of the history of shocks that determine poten-
tial outcomes. Christiano et al. (1999) discuss a variety of
SVAR specifications that use recursive identification. The key
assumption here is that an instantaneous response of condi-
tioning variables to policy shocks can be ruled out a priori.

Tests based on equation (1) can be seen as testing a restric-
tion similar to the generalized version of Sims causality
introduced by Chamberlain (1982). A natural question is
how this relates to the Granger causality tests widely used in
empirical work. Note that if Xt can be subsumed into the vec-
tor Yt , Sims noncausality simplifies to Yt+1, . . . , Yt+k , . . . ⊥
Dt|Ȳt , D̄t−1. Chamberlain (1982) and Florens and Mouchart
(1982, 1985) show that under plausible regularity conditions,
this is equivalent to generalized Granger noncausality:

Yt+1 ⊥ Dt , D̄t−1|Ȳt . (2)

In the more general case, however, Dt potentially causes Xt+1,
so X̄t cannot be subsumed into Ȳt . Therefore, equation (1)
does not imply

Yt+1 ⊥ Dt , D̄t−1|X̄t , Ȳt . (3)

The fact that Sims and Granger causality are not gener-
ally equivalent was shown for the case of linear processes by
Dufour and Tessier (1993).11 We summarize the nonequiv-
alence of Sims and Granger causality in the following
theorem:

11 The relationship between Granger- and Sims-type conditional inde-
pendence restrictions is also discussed by Dufour and Renault (1998),
who consider a multistep-forward version of Granger causality testing, and
Robins et al. (1999), who state something like our theorem 1 without proof.
Robins et al. also present restrictions on the joint process of wt under which
equation (1) implies equation (3), but these assumptions seem unrealistic
for applications in macroeconomics.
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Theorem 1. Let χt be a stochastic process defined on a
probability space (Ω, F , P) as before, assuming also that
conditional probability measures Pr(Yt+1, Dt|zt) are well
defined ∀t except possibly on a set of measure zero. Then
equation (1) does not imply equation (3), and equation (3)
does not imply equation (1).

The intuition for the Granger/Sims distinction is that
while Sims causality looks forward only at outcomes, the
Granger causality relation conditions on potentially endoge-
nous responses to policy shocks and other disturbances.
Even if the conditional independence assumption holds, the
Granger test can be systematically misleading for the same
reason that control for endogenous variables (that is, other
outcomes) complicates any kind of causal inference.12

Is the distinction between Granger and Sims causality
empirically relevant in the money and income context? In
research on monetary policy, Shapiro (1994) and Leeper
(1997) argue that lagged inflation should be in the condition-
ing set in attempts to isolate the causal effect of monetary
policy innovations. Suppose Yt is output, Xt is inflation, and
Dt is a proxy for monetary policy. Suppose also that infla-
tion is the only reason money affects output. In this case,
Granger tests may fail to detect a causal link between mon-
etary policy and output, while Sims tests should detect this
relationship. One way to understand this difference is through
the impulse response function, which shows that Sims looks
for an effect of structural innovations in policy (εDt). In con-
trast, Granger noncausality is formulated as a restriction on
the relation between output and all lagged variables, includ-
ing covariates like inflation that themselves have responded to
the policy shock of interest. Granger causality tests therefore
give the wrong answer to a question that Sims causality tests
answer correctly: Will output change in response to random
manipulation of monetary policy?

The nonequivalence of Granger and Sims causality has
important operational consequences: equation (3) is easily
tested by regressing Yt+1 on lags of Dt , Yt , and Xt , at least
when functional form assumptions are imposed. While some
implications of equation (1) can also be tested relatively eas-
ily with parametric models, full testing equation (1) can be
more challenging unless Dt , Yt , and Xt can be nested in a
linear dynamic model such as an SVAR. One of the main
contributions of this paper is to relax linearity assumptions
implicitly imposed on Yψ

t,j(d) by SVAR or regression models
and allow unrestricted nonlinearities in the policy function.

In the remainder of the paper, we assume the policy vari-
able of interest is multinomial. This is in the spirit of research
focusing on Federal Reserve decisions regarding changes in
the federal funds rate, which are by nature discrete (Hamilton
& Jordà, 2002). Typically changes come in widely publicized
movements up or down, usually in multiples of 25 basis points
if nonzero. As Romer and Romer (2004) noted, the Federal

12 See, for example, section 3.2.3 in Angrist and Pischke (2009) on “bad
control.”

Reserve has set interest rate targets for most of the period
since 1969, even when targeting was not as explicit as it
is today. The discrete nature of monetary policy decisions
leads naturally to a focus on the propensity score, the condi-
tional probability of a rate change (or a change of a certain
magnitude or sign).13

Under the noncausality null hypothesis, it follows that
Pr(Dt|zt , Yt+1, . . . , Yt+j, . . .) = Pr(Dt|zt). A Sims-type test of
the null hypothesis can therefore be obtained by augmenting
the policy function p(zt , θ0) with future outcome variables.
This test has the correct size, though it will not have power
against all alternatives. Below, we explore simple parametric
Sims-type tests constructed by augmenting the policy func-
tion with future outcomes. Our main objective, however, is
the use of the propensity score to develop a flexible class of
semiparametric conditional independence tests that can be
used to test both specific and general alternatives.

A natural substantive question at this point is what should
go in the conditioning set for the policy propensity score and
how this should be modeled. In practice, Fed policy is com-
monly modeled as being driven by a few observed variables
like inflation and lagged output growth. Examples include
Romer and Romer (1989, 2000, 2004) and others inspired by
their work.14 The fact that Dt is multinomial in our applica-
tion also suggests that multinomial logit and probit provide
a natural functional form. A motivating example that seems
especially relevant in this context is Shapiro (1994), who
developed a parsimonious probit model of Fed decision mak-
ing as a function of net present value measures of inflation
and unemployment.15 Importantly, while it is impossible to
know for sure whether a given set of conditioning variables
is adequate, our framework suggests a simple diagnostic test
that can be used to decide when the model for the policy
propensity score is consistent with the data.

III. Semiparametric Conditional Independence Tests
Using the Propensity Score

We are interested in testing the conditional independence
restriction yt⊥Dt|zt , where yt takes values in R

k1 and zt

takes values in R
k2 with k1 + k2 = k. Typically yt =

(Y ′
t+1, . . . , Y ′

t+m)′, but we can also focus on particular future
outcomes, say, yt = Yt+m, when causal effects are thought to
be delayed by m periods. Let v ∈ R

k , where v = (v′
1, v′

2)
′ is

partitioned conformingly with (y′
t , z′

t)
′. We assume that Dt is

13 Much of the empirical literature on the effects of monetary policy
has focused on developing policy models for the federal funds rate. See
Bernanke and Blinder (1992), Christiano et al. (1996), and Romer and
Romer (2004). In future work, we hope to develop an extension for
continuous causal variables.

14 Stock and Watson (2002a, 2002b) propose the use of factor analysis
to construct a low-dimensional predictor of inflation rates from a large-
dimensional data set. This approach has been used in the analysis of
monetary policy by Bernanke and Boivin (2003) and Bernanke, Boivin,
and Eliasz (2005).

15 Also related are Eichengreen, Watson, and Grossman (1985), Hamilton
and Jordà (2002), and Genberg and Gerlach (2004), who use ordered probit
models for central bank interest rate targets.
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a discrete variable taking on M + 1 distinct values. Because∑M
i=0 1(Dt = i) = 1 and

∑M
i=0 Pr(Dt = i|zt) = 1, the condi-

tional independence hypothesis can be written as a collection
of M nonredundant moment conditions:

Pr(yt ≤ v1, Dt = i|zt) = Pr(yt ≤ v1|zt) Pr(Dt = i|zt)

for i = {1, . . . , M}. (4)

We use the shorthand notation pi(zt) = Pr(Dt = i|zt) and
assume that pi(zt) = pi(zt , θ) is known up to a parameter
θ. This is the policy propensity score. We also assume that
p(zt , θ0) does not depend on t (in practice, zt might include
time dummies). In an SVAR framework, p(zt , θ0) corresponds
to the SVAR policy determination equation. In the recursive
identification schemes discussed earlier, this equation can be
estimated separately from the system. Our method differs in
two important respects: we do not assume a linear relationship
between Dt and zt , and we do not need to model the elements
of zt as part of a larger system of simultaneous equations. This
increases robustness and saves degrees of freedom relative to
a conventional SVAR analysis.

A convenient representation of the hypotheses we are
testing can be obtained by noting that under the null,

Pr(yt ≤ v1, Dt = i|zt) − Pr(yt ≤ v1|zt)pi(zt)

= E[1(yt ≤ v1)(1(Dt = i) − pi(zt))|zt] = 0. (5)

These moment conditions can be written compactly in vec-
tor notation. We define M×1 vectors Dt = (1(Dt =
1), . . . , 1(Dt = M))′ and

p(zt) = (p1(zt), . . . , pM(zt))
′,

so that the moment conditions (5) can be expressed as

E[1(yt ≤ v1)(Dt − p(zt))|zt] = 0. (6)

This leads to a simple interpretation of our test statistics as
looking for a relation between policy innovations, Dt −p(zt),
and the distribution of future outcomes. Note also that like
the Hirano et al. (2003) and Abadie (2005) propensity-
score-weighted estimators and the Robins, Mark, and Newey
(1992) partially linear estimator, test statistics constructed
from moment condition (5) work directly with the propen-
sity score; no matching step or nonparametric smoothing is
required once estimates of the score have been constructed.

We define Ut = (y′
t , z′

t)
′ so that equation (6) can be

expressed in terms of a collection of unconditional moment
conditions. Thus, testing equation (6) is equivalent to test-
ing the unconditional moment condition E[1(Ut ≤ v)(Dt −
p(zt))] = 0 over all possible values of v. Appendix A presents
a more general class of tests based on general test functions,
φ(Ut , v) and not just indicators.

In our empirical application, Dt indicates situations where
the Fed raises, lowers, or leaves the interest rates unchanged.
Note that in our framework, interest rate increases may have

causal effects, even if decreases do not (and vice versa).
This possibility is explored by looking at individual moment
conditions,

E[1(yt ≤ v1)((Dt = i) − pi(zt))|zt] = 0,

for specific choices of i.
An implication of equation (6) is that the average policy

effect is 0:

E[E[1(yt ≤ v1)(Dt − p(zt))|zt]]
= E[1(yt ≤ v1)(Dt − p(zt))] = 0. (7)

In practice, the unconditional moment restriction (7) may
be of greater interest than full conditional independence.
Tests based on an unconditional restriction may also be more
powerful.

The framework outlined here produces a specification
test for the policy model. In particular, if the specifica-
tion of p(zt) is correct, the conditional moment restriction
E[(Dt − p(zt))|zt] = 0 holds, implying

E[1(zt ≤ v2)(Dt − p(zt))] = 0. (8)

We use tests based on equation (8) to validate the empirical
specification of p(zt).

Equation (5) shows that the hypothesis of conditional inde-
pendence, whether formulated directly or for conditional
moments, is equivalent to an MDS hypothesis for a cer-
tain empirical process. The moment condition in equation
(5) implies that for any fixed v1, 1(yt ≤ v1)(Dt − p(zt)) is
an MDS. Our test is a joint test of whether the set of all pro-
cesses indexed by v1 ∈ R

k1 has the MDS property. We call
this a functional martingale difference hypothesis. The func-
tional MDS hypothesis test extends an idea in Koul and Stute
(1999). One way in which our more general null hypothesis
differs from their MDS test is that the dimension k of v is at
least 2, while their simple MDS hypothesis is formulated for
scalar v.16

To move from population moment conditions to the
sample, we start by defining the empirical process,

Vn(v) = n−1/2
n∑

t=1

m(yt , Dt , zt , θ0; v),

with

m(yt , Dt , zt , θ; v) = 1{Ut ≤ v}[Dt − p(zt , θ)],
where Ut = (y′

t , z′
t)

′.
Under regularity conditions that include stationarity of the

observed process, we show in an online appendix that Vn(v)

16 Another important difference is that in our setup, the process 1(yt ≤
y)(Dt −p(zt)) is not Markovian even under the null hypothesis. This implies
that the Koul and Stute results do not apply directly to our case.
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converges weakly to a limiting mean-zero Gaussian process
V(v) with covariance function Γ(v, τ),

Γ(v, τ) = lim
n→∞ E[Vn(v)Vn(τ)

′],

where v, τ ∈ R
k .17 Using the fact that under the null,

E[Dt|zt , yt] = E[Dt|zt] = p(zt) and partitioning u = (u′
1, u′

2)
′

with u2 ∈ [−∞, ∞]k2 , we define H(v) such that

H(v) =
∫ v

−∞
(diag(p(u2)) − p(u2)p(u2)

′)dFu(u), (9)

where diag(p(u2)) is the diagonal matrix with diagonal ele-
ments pi(zt), Fu(u) is the cumulative marginal distribution
function of Ut . It follows that Γ(v, τ) = H(v ∧ τ), where
∧ denotes the element-by-element minimum. Let ‖m‖2 =
tr(mm′) be the usual Euclidean norm of a vector m. The statis-
tic Vn(v) can be used to test the null hypothesis of conditional
independence by comparing the value of KS = supv ‖Vn(v)‖,
or

VM =
∫

‖Vn(v)‖2dFu(v), (10)

with the limiting distribution of these statistics under the null
hypothesis.

Implementation of statistics based on Vn(v) requires a set of
appropriate critical values. Construction of critical values is
complicated by two factors affecting the limiting distribution
of Vn(v). One is the dependence of the limiting distribution
of Vn(v) on Fu(v), which induces data-dependent correlation
in the process Vn(v). Hence, the nuisance parameter Γ(v, τ)
appears in the limiting distribution. This is handled in two
ways. First, critical values for the limiting distribution of
Vn(v) are computed numerically, conditional on the sample
in a way that accounts for the covariance structure Γ(v, τ).
(We discuss this procedure in section IV C). An alternative
to numerical computation is to transform Vn(v) to a standard
Gaussian process on the k-dimensional unit cube, follow-
ing Rosenblatt (1952). The advantage of this approach is
that asymptotic critical values can be based on standardized
tables that depend on only the dimension k and the function
φ, but not on the distribution of Ut and thus not on the sam-
ple. We discuss how to construct these tables numerically in
section V.

The second factor that affects the limiting distribution of
Vn(v) is the fact that the unknown parameter θ needs to be
estimated. We use the notation V̂n(v) to denote test statis-
tics that are based on an estimate, θ̂. Section IV discusses a

17 It seems likely that stationarity can be relaxed to allow some distribu-
tional heterogeneity over time. But unit root and trend nonstationarity are
not easily accommodated in our framework because the martingale trans-
formations in section IVA rely on Gaussian limit distributions. Park and
Phillips (2000) develop a powerful limiting theory for the binary choice
model when the explanatory variables have a unit root. Hu and Phillips
(2002a, 2002b) extend Park and Phillips to the multinomial case and apply
it to the federal. The question of how to adapt these results to the problem
of conditional independence testing is left for future work.

martingale transform proposed by Khmaladze (1988, 1993)
to remove the effects of variability in V̂n(v) stemming from
estimation of θ. The corrected test statistic has the same lim-
iting distribution as Vn(v). Thus, in a second step, critical
values that are valid for Vn(v) can be used to carry out tests
based on the transformed version of V̂n(v).

The combined application of the Rosenblatt and Khmal-
adze transforms leads to an asymptotically pivotal test.
Pivotal statistics have the practical advantage of compara-
bility across data sets because the critical values for these
statistics are not data dependent. In addition to these practical
advantages, bootstrapped pivotal statistics usually promise an
asymptotic refinement (see Hall, 1992).

IV. Implementation

As a first step, let V̂n(v) denote the empirical process of
interest where p(zt , θ) is replaced by p(zt , θ̂) and the estimator
θ̂ is assumed to satisfy the following asymptotic linearity
property:

n1/2(θ̂ − θ0) = n−1/2
n∑

t=1

l(Dt , zt , θ0) + op(1). (11)

More detailed assumptions for the propensity score model
are contained in conditions 5 and 6 in appendix C. In our
context, l(Dt , zt , θ) is the score for the maximum likeli-
hood estimator of the propensity score model. To develop
a structure that can be used to account for the variability
in V̂n(v) induced by the estimation of θ, define the function
m̄(v, θ) = E[m(yt , Dt , zt , θ; v)] and let

ṁ(v, θ) = −∂m̄(v, θ)

∂θ′ .

It therefore follows that V̂n(v) can be approximated by
Vn(v) − ṁ(v, θ0)n−1/2 ∑n

t=1 l(Dt , zt , θ0). The empirical pro-
cess V̂n(v) converges to a limiting process V̂(v) with covari-
ance function

Γ̂(v, τ) = Γ(v, τ) − ṁ(v, θ0)L(θ0)ṁ(τ, θ0)
′,

with L(θ0) = E[l(Dt , zt , θ0)l(Dt , zt , θ0)
′], as shown in the

online appendix. Next we turn to details of the transforma-
tions. First we outline a Khmaladze-type martingale transfor-
mation that corrects V̂(v) for the effect of estimation of θ. We
then discuss the problem of obtaining asymptotically distri-
bution free limits for the resulting process. This problem is
straightforward when v is a scalar, but extensions to higher
dimensions are somewhat more involved.

A. Khmaladze Transform

The object here is to define a linear operator T with the
property that the transformed process, W(v) = TV̂(v), is a
mean zero Gaussian process with covariance function Γ(v, τ).
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While V̂(v) has a complicated data-dependent limiting distri-
bution (because of the estimated θ), the transformed process
W(v) has the same distribution as V(v) and can be han-
dled more easily in statistical applications. Khmaladze (1981,
1988, 1993) introduced the operator T in a series of papers
exploring limiting distributions of empirical processes with
possibly parametric means.

When v ∈ R, the Khmaladze transform can be given
some intuition. First, note that V(v) has independent incre-
ments ΔV(v) = V(v + δ) − V(v) for any δ > 0. But,
because V̂(v) depends on the limit of n−1/2 ∑n

t=1 l(Dt , zt , θ0),
this process does not have independent increments. Defin-
ing Fv = σ(V̂(s), s ≤ v), we can understand the Khmaladze
transform as being based on the insight that because V̂(v)
is a Gaussian process, ΔW(v) = ΔV̂(v) − E(ΔV̂(v)|Fv)

has independent increments. The Khmaladze transform thus
removes the conditional mean of the innovation ΔV̂ . When
v ∈ R

k with k > 1 as in our application, this simple con-
struction cannot be trivially extended because increments of
V(v) in different directions of v are no longer independent.
Khmaladze (1988) showed that careful specification of the
conditioning set Fv is necessary to overcome this problem.

Following Khmaladze (1993), let {Aλ} be a family of mea-
surable subsets of [−∞, ∞]k , indexed by λ ∈ [−∞, ∞],
such that A−∞ = ∅, A∞ = [−∞, ∞]k , λ ≤ λ′ =⇒
Aλ ⊂ Aλ′ and Aλ′\Aλ → ∅ as λ′ ↓ λ. Define the projec-
tion πλf (v) = 1{v ∈ Aλ}f (v) and π⊥

λ = 1 − πλ such that
π⊥

λ f (v) = 1{v /∈ Aλ}f (v). We then define the inner product,

〈f (.), g(.)〉 ≡
∫

f (u)′dH(u)g(u), (12)

and, for

l̄(v, θ) = (diag(p(v2)) − p(v2)p(v2)
′)−1 ∂p(v2, θ)

∂θ′ ,

define the matrix:

Cλ = 〈
π⊥

λ l̄(., θ), π⊥
λ l̄(., θ)

〉 = ∫
π⊥

λ l̄(u, θ)′dH(u)π⊥
λ l̄(u, θ).

(13)

We note that the process V(v) can be represented in terms of
a vector of Gaussian processes b(v) with covariance function
H(v∧τ) as V(1{. ≤ v}) = V(v) = ∫

1{u ≤ v}db(u) and simi-
larly V(l(., θ0)) = ∫

l(u, θ0)db(u) such that V̂(f ) = V(f (.))−
〈f (.), l̄(., θ0)〉Σ−1

θ V(l̄(., θ0)
′). The transformed statistic W(v)

is then given by

W(v) ≡ TV̂(v)

= V̂(v) −
∫

〈1{. ≤ v}, d(πλ l̄(., θ))〉C−1
λ V̂

(
π⊥

λ l̄(., θ)′),

(14)

where d(πλ l̄(., θ)) is the total derivative of πλ l̄(., θ) with
respect to λ.

We show in the online appendix that the process W(v) is
zero mean Gaussian and has covariance function Γ(v, τ).

The transform above differs from that in Khmaladze (1993)
and Koul and Stute (1999) in that l̄(v, θ) is different from the
optimal score function that determines the estimator θ̂. The
reason is that here, H(v) is not a conventional cumulative
distribution function as in these papers. Also, unlike Koul
and Stute (1999), we make no conditional homoskedasticity
assumptions.18

Khmaladze (1993, lemma 2.5) shows that tests based on
W(v) and V(v) have the same local power against a cer-
tain class of local alternatives that are orthogonal to the
score process l(., θ0). The reason for this result is that T is
a norm-preserving mapping (see Khmaladze, 1993, lemmas
3.4 and 3.10). The fact that local power is unaffected by the
transformation T also implies that the choice of {Aλ} has
no consequence for local power as long as Aλ satisfies the
regularity conditions outlined above.

To construct the test statistic proposed in the theoretical
discussion, we must deal with the fact that the transformation
T is unknown and needs to be replaced by an estimator Tn.
This is obtained by replacing p(u2) with p(u2, θ̂), H(u) with
Ĥn(u), Cλ with Ĉλ, and V̂ with V̂n in equation (14). Then Tn

can be written as

Ŵn(v) ≡ TnV̂n(v) = V̂n(v)

−
∫

d

(∫
u≤v

dĤn(u)(πλ l̄(u, θ̂))

)
Ĉ−1

λ V̂n
(
π⊥

λ l̄(., θ̂)′), (15)

with V̂n(π
⊥
λ l̄(., θ̂)′) = n−1/2 ∑n

s=1 π⊥
λ l̄(Us, θ̂)′(Ds − p(zs, θ̂))

and the empirical distribution Ĥn(u) and Ĉλ are defined in
appendix B.

The transformed test statistic depends on the choice of the
sets Aλ although, as we have pointed out, the choice of Aλ

does not affect local power. Computational convenience thus
becomes a key criterion in selecting Aλ. Here we focus on
sets

Aλ = [−∞, λ] × [−∞, ∞]k−1, (16)

which lead to test statistics with simple closed-form expres-
sions. Denote the first element of yt by y1t . Then equation
(15) can be expressed more explicitly as

Ŵn(v) = V̂n(v) − n−1/2
n∑

t=1

[
1{Ut ≤ v}∂p(zt , θ̂)

∂θ′ Ĉ−1
y1t

× n−1
n∑

s=1

1{y1s > y1t}l̄(Us, θ̂)
′(Ds − p(zs, θ̂))

]
. (17)

In theorem 2 of Appendix C, we show that Ŵn(v) converges
weakly to W(v). In the next section, we show how a further

18 Stute et al. (1998) analyze a test of conditional mean specification in an
independent sample allowing for heteroskedasticity by rescaling the equiv-
alent of our m(yt , Dt , zt , θ0; v) by the conditional variance. Here the relevant
conditional variance depends on the unknown parameter θ. Instead of cor-
recting m(yt , Dt , zt , θ0; v), we adjust the transformation T in the appropriate
way.
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transformation can be applied that leads to a distribution-free
limit for the test statistics.

B. Rosenblatt Transform

The implementation strategy discussed above has
improved operational characteristics when the data are mod-
ified using a transformation that Rosenblatt (1952) proposed.
This transformation produces a multivariate distribution that
is i.i.d. on the k-dimensional unit cube and therefore leads
to a test that can be based on standardized tables. Let
Ut = [Ut1, . . . , Utk], and define the transformation w =
TR(v) component wise by w1 = F1(v1) = Pr(Ut1 ≤ v1),
w2 = F2(v2|v1) = Pr(Ut2 ≤ v2|U1t = v1), . . . , wk =
Fk(vk|vk−1, . . . , v1), where Fk(vk|vk−1, . . . , v1) = Pr(Utk ≤
vk|Utk−1 = vk−1, . . . , Ut1 = v1). The inverse v = T−1

R (w) of
this transformation is obtained recursively as v1 = F−1

1 (u1):

v2 = F−1
2

(
w2

∣∣F−1
1 (w1)

)
, . . .

Rosenblatt (1952) shows that the random vector wt =
TR(Ut) has a joint marginal distribution that is uniform and
independent on [0, 1]k .

Using the Rosenblatt transformation, we define

mw(wt , Dt , θ|v) = 1{wt ≤ w}[Dt − p
([

T−1
R (wt)

]
z
, θ

)]
,

where w = TR(v) and zt = [T−1
R (wt)]z denotes the

components of T−1
R corresponding to zt .

The null hypothesis is now that E[1{wt ≤ w}Dt|zt] =
E[1{wt ≤ w}|zt]p(zt , θ) or, equivalently,

E[mw(wt , Dt|v)|zt] = 0.

Also, the test statistic Vn(v) becomes the marked process:

Vw,n(w) = n−1/2
n∑

t=1

mw(wt , Dt , θ|w).

Rosenblatt (1952) notes that tests using TR are generally
not invariant to the ordering of the vector wt because TR is
not invariant under such permutations.19

We denote by Vw(v) the limit of Vw,n(v) and by V̂w(v) the
limit of V̂w,n(v), which is the process obtained by replacing
θ with θ̂ in Vw,n(v). Define the transform TwV̂w(w) as before
by20

Ww(w) ≡ TwV̂w(w) = V̂w(w)

−
∫

〈1{. ≤ w}, dπλ l̄w(., θ)〉C−1
w,λV̂w

(
π⊥

λ l̄w(., θ)′). (18)

19 In the working paper (Angrist & Kuersteiner, 2004), we discuss ways to
resolve the problem of the ordering in wt . Of course, the general form of our
test statistic also depends on the choice of φ(., .), as outlined in appendix A.
This sort of dependence on the details of implementation is a common
feature of consistent specification tests. From a practical point of view, it
seems natural to fix φ(., .) using judgments about features of the data where
deviations from conditional independence are likely to be easiest to detect
(for example, moments). In contrast, the wt ordering is inherently arbitrary

20 For a more detailed derivation, see appendix B.

Finally, to convert Ww(w) to a process that is asymptotically
distribution free, we apply a modified version of the final
transformation proposed by Khmaladze (1988) to the pro-
cess W(v). In particular, using the notation Ww(1{. ≤ w}) =
Ww(w) to emphasize the dependence of W on 1{. ≤ w} and
defining

hw(.) = (
diag

(
p
([

T−1
R (.)

]
z

)) − p
([

T−1
R (.)

]
z

)
p
([

T−1
R (.)

]
z
)′),

it follows from the previous discussion that

Bw(w) = Ww(1{. ≤ w}(hw(.))−1/2)

is a Gaussian process with covariance function w ∧ w′.
In practice, wt = TR(Ut) is unknown because TR depends

on unknown conditional distribution functions. In order to
estimate TR, we introduce the kernel function Kk(x) where
Kk(x) is a higher-order kernel satisfying condition 8 in
appendix C. A simple way of constructing higher-order ker-
nels is given in Bierens (1987). For ω ≥ 2, let Kk(x) =
(2π)−k/2 ∑ω

j=1 θj|σj|−k exp(−1/2x′x/σ2
j ), with

∑ω
j=1 θj = 1

and
∑ω

j=1 θj|σj|2� = 0 for � = 1, 2, . . . , ω − 1. Let mn =
O(n−(1−κ)/2k) for some κ with 0 < κ < 1 be a bandwidth
sequence and define

F̂1(x1) = n−1
n∑

t=1

1{Ut1 ≤ x1}
...

F̂k(xk|xk−1, . . . , x1)

= n−1 ∑n
t=1 1{Utk ≤ xk}Kk−1((xk− − Utk−)/mn)

n−1
∑n

t=1 Kk−1((xk− − Utk−)/mn)
,

where xk− = (xk−1, . . . , x1)
′ and Utk− = (Utk−1, . . . , Ut1)

′.
An estimate ŵt of wt is then obtained from the recursions

ŵt1 = F̂1(Ut1)

...

ŵtk = F̂k(Utk|Utk−1, . . . , Ut1).

We define Ŵw,n(w) = Tw,nV̂w,n(w) where Tw,n is the empirical
version of the Khmaladze transform applied to the vector wt .
Let Ŵŵ,n(w) denote the process Ŵw,n(w) where wt has been
replaced with ŵt . For a detailed formulation of this statistic,
see appendix B. An estimate of hw(w) is defined as

ĥw(.) = (diag(p(., θ̂)) − p(., θ̂)p(., θ̂)′).

The empirical version of the transformed statistic is

B̂ŵ,n(w) = Ŵŵ,n(1{. ≤ w}ĥw(.)−1/2)

= n−1/2
n∑

t=1

1{ŵt ≤ w}ĥ(zt)
−1/2[Dt − p(zt , θ̂) − Ân,t]

(19)
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where Ân,s = n−1 ∑n
t=1 1{ŵt1 > ŵs1} ∂p(zs,θ̂)

∂θ′ Ĉ−1
ŵ1s

l̄(zt , θ̂)′(Dt −
p(zt , θ̂)). Finally, theorem 3 in appendix C formally estab-
lishes that the process B̂ŵ,n(v) converges to a Gaussian process
with covariance function equal to the uniform distribution on
[0, 1]k .

Note that the convergence rate of B̂ŵ,n(v) to a limiting ran-
dom variable does not depend on the dimension k or the
bandwidth sequence mn. Theorem 3 shows that B̂ŵ,n(w) ⇒
Bw(w), where Bw(w) is a standard Gaussian process. The set
Υ[0,1] is defined as Υ[0,1] = {w ∈ Υε|w = πxw}, where Υε is
a compact subset of the interior of [0, 1]k with volume 1 − ε

for some ε > 0, πxw = 1(w ∈ Ax)w for some fixed x ∈ R

and Ax is the set defined in equation (16). The restriction to
Υ[0,1] is needed to avoid problems of invertibility of Ĉ−1

w . It
thus follows that transformed versions of the VM and KS
statistics converge to functionals of Bw(w). These results can
be stated formally as

VMw =
∫

Υ[0,1]
‖B̂ŵ,n(w)‖2dw ⇒

∫
Υ[0,1]

‖Bw(w)‖2dw (20)

and

KSw = sup
w∈Υ[0,1]

‖B̂ŵ,n(w)‖ ⇒ sup
w∈Υ[0,1]

‖Bw(w)‖. (21)

Here VMw and KSw are the VM and KS statistics after both
the Khmaladze and Rosenblatt transforms have been applied
to V̂n(v). In practice the integral in equation (20) and the
supremum in equation (21) can be computed over a discrete
grid. The asymptotic representations (20) and (21) make it
possible to use asymptotic statistical tables. For the purposes
of the empirical application below, we computed critical val-
ues for the VM statistic. These critical values depend only on
the dimension k and are thus distribution free.

C. Bootstrap-Based Critical Values

In addition to tests based on critical values computed
using asymptotic formulas, we also experimented with boot-
strap critical values for the raw statistic, V̂n(v), and the
transformed statistic, B̂ŵ,n(w). This provides a check on the
asymptotic formulas and gives some independent evidence
on the advantages of the transformed statistic. Also, because
the transformed statistic has a distribution-free limit, we can
expect an asymptotic refinement: tests based on bootstrapped
critical values for this statistic should have a more accurate
size than bootstrap tests using V̂n(v).

Our implementation of the bootstrap is similar to a proce-
dure described by Chen and Fan (1999) and Hansen (1996), a
version of the wild bootstrap called conditional Monte Carlo.
This procedure seems especially well suited to time series
data since it provides a simple strategy to preserve depen-
dent data structures under resampling. Following Mammen
(1993), the wild bootstrap error distribution is constructed

by sampling ε∗
t,s for s = 1, . . . , S bootstrap replications

according to

ε∗
t,s = ε∗∗

t,s/
√

2 + ((
ε∗∗

t,s

)2 − 1
)
/2, (22)

where ε∗∗
t,s ∼ N(0, 1) is independent of the sample. Let the

moment condition underlying the transformed test statistic
(19) be denoted by

mT ,t(v, θ̂) = 1{ŵt ≤ w}ĥ(zt)
−1/2[Dt − p(zt , θ̂) − Ân,t]

and write

B̂∗
ŵ,n;s(w) = n−1/2

n∑
t=1

ε∗
t,s(mT ,t(v, θ̂) − m̄n;T (v, θ̂)) (23)

to denote the test statistic in a bootstrap replication, with
m̄n;T (v, θ̂) = n−1 ∑n

t=1 mT ,t(v, θ̂). The distribution of ε∗
t,s

induced by equation (22) guarantees that the first three empir-
ical moments of mT ,t(v, θ̂) − m̄n;T (v, θ̂) are preserved in
bootstrap samples. Theorem 4 in appendix C shows that the
asymptotic distribution of B̂ŵ,n(w) under the null hypothesis
is the same as the asymptotic distribution of B̂∗

ŵ,n(w) condi-
tional on the data. This implies that critical values for B̂ŵ,n(w)

can be computed as follows:

1. Draw s = 1, . . . S samples ε∗
1,s, . . . , ε∗

n,s independently
from the distribution (22).

2. Compute VMs = ∫
Υ[0,1] ‖B̂∗

ŵ,n;s(w)‖2dw for s =
1, . . . , S.

3. Obtain the desired empirical quantile from the dis-
tribution of VMs, s = 1, . . . , S. The empirical
quantile then approximates the critical value for∫
Υ[0,1] ‖B̂ŵ,n(w)‖2dw.

Bootstrap critical values for the untransformed statistic are
based in an equivalent way on S bootstrap samples of

V̂∗
n;s(v) = n−1/2

n∑
t=1

ε∗
t,s(m(yt , Dt , zt , θ̂; v) − m̄n(v, θ̂)),

(24)

where m̄n(v, θ̂) = n−1 ∑n
t=1 m(yt , Dt , zt , θ̂; v) and ε∗

t,s is
generated in the same way as before.

V. Causal Effects of Monetary Policy Shocks Revisited

We use the machinery developed here to test for the effects
of monetary policy with data from Romer and Romer (2004).
The monetary policy variable in this context is the change
in the FOMC’s intended federal funds rate. This rate is
derived from the narrative record of FOMC meetings and
internal Federal Reserve memos. The conditioning variables
for selection-on-observables identification are derived from
Federal Reserve forecasts of the growth rate of real GDP, the
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GDP deflator, and the unemployment rate, as well as a few
contemporaneous variables and lags. The relevant forecasts
were prepared by Federal Reserve researchers and are called
Greenbook forecasts.

The key identifying assumption in this context is that,
conditional on Greenbook forecasts and a handful of other
variables, including lagged policy variables, changes in the
intended federal funds target rate are independent of poten-
tial outcomes (in this case, the monthly percentage change in
industrial production). Romer and Romer’s (2004) detailed
economic and institutional analysis of the monetary policy-
making process makes their data and framework an ideal
candidate for an investigation of causal policy effects using
the policy propensity score.21 In much of the period since the
mid-1970s, and especially in the Greenspan era, the FOMC
targeted the funds rate explicitly. Romer and Romer argue,
however, that even in the pre-Greenspan era, when the FOMC
targeted the funds rate less closely, the central bank’s inten-
tions can be read from the documentary record. Moreover, the
information that the FOMC used to make policy decisions is
now available to researchers. The propensity score approach
begins with a statistical model predicting the intended federal
funds rate as a function of the publicly available information
that the FOMC used.

The propensity score approach contrasts with SVAR-type
identification strategies of the sort used by (among oth-
ers) Bernanke and Blinder (1992), Bernanke, Boivin, and
Eliasz (2005), Christiano et al. (1996), Cochrane (1994), and
Leeper, Sims, and Zha (1996). In this work, identification
turns on a fully articulated model of the macroeconomy, as
well as a reasonably good approximation of the policymak-
ing process. One key difference between the propensity score
approach developed here and the SVAR literature is that in
the latter, policy variables and covariates entering the pol-
icy equation may also be endogenous variables. Identifying
assumptions about how policy innovations are transmitted are
then required to disentangle the causal effects of monetary
policy from other effects.

Our approach is closer in spirit to the recursive identifi-
cation strategy that Christiano et al. (1999), used (hereafter
CEE). Like ours, the CEE study makes the central bank’s
policy function a key element in an analysis of monetary
policy effects. Important differences, however, are that CEE
formulate a monetary policy equation in terms of the actual
federal funds rate and nonborrowed reserves and that they
include contemporaneous values of real GDP, the GDP defla-
tor, and commodity prices as covariates. These variables are
determined in part by market forces and are therefore poten-
tially endogenous. For example, Sims and Zha (2006) argue
that monetary aggregates and the producer price index are
endogenous because of an immediate effect of monetary pol-
icy shocks on producer prices. In contrast, the intended funds

21 Romer and Romer (2004) can be seen as a response to critiques of
Romer and Romer (1989) by Leeper (1997) and Shapiro (1994). These
critics argued that monetary policy is forward-looking in a way that induces
omitted variables bias in the regressions of Romer and Romer (1989).

rate used here is determined by forecasts of market conditions
based on predetermined variables and is therefore sequen-
tially exogenous by construction. Finally, the CEE approach
is parametric and relies on linear models for both outcomes
and policy variables.

The substantive identifying assumption in our framework
(as in Romer & Romer, 2004) is that, conditional on the
information used by the FOMC and now available to outside
researchers (such as Greenbook forecasts), changes in the
intended funds rate are essentially idiosyncratic or “as good
as randomly assigned.” At the same time, we do not really
know how best to model the policy propensity score; even
maintaining the set of covariates, lag length is uncertain, for
example. We therefore experiment with variations on Romer
and Romer’s original specification. We also consider an alter-
native somewhat less institutionally grounded model based
on a simple Taylor rule. Our Taylor specification is motivated
by Rotemberg and Woodford (1997).

Our reanalysis of the Romer data uses a discretized version
of changes in the intended federal funds rate. Specifically,
to allow for asymmetric policy effects while keeping the
model parsimonious, we treat policy as having three values:
up, down, or no change. The change in the intended federal
funds rate is denoted by dfft and the discretized change by
dDfft . For 29% of the monthly observations in our data, the
intended funds rate fell, for 32% it rose, and the rest of time
the intended rate was unchanged.22 Following Hamilton and
Jordà (2002), we fit ordered probit models with dDfft as the
dependent variable; this formulation can be motivated by a
linear latent-index model of central banker intentions.

The first specification we report on, which we call baseline
Romer model (a), uses the variables from Romer and Romer’s
(2004) policy model as controls, with the modifications that
the lagged level of the intended funds rate is replaced by
the lagged change in the intended federal funds rate and the
unemployment level is replaced by the unemployment inno-
vation.23 Our modifications are motivated in part by a concern
that the lagged intended rate and the unemployment level are
nonstationary. In addition, the lagged change in the intended
federal funds rate captures the fact that the FOMC often acts
in a sequence of small steps. This results in higher predicted
probabilities of a change in the same direction conditional on
past changes. A modified specification, constructed by drop-
ping regressors without significant effects, leads to restricted
Romer model (b). To allow for nonlinear dynamic responses,
lag-quadratic Romer model (c) adds a quadratic function of
past intended changes in the federal funds rate to restricted

22 We use the data set available via the Romer and Romer (2004) AER
posting. Our sample period starts in March 1969 and ends in December
1996. Data for estimation of the policy propensity score are organized by
meeting month: only observations during months with Federal Open Mar-
ket meetings are recorded. In the early part of the sample, the committee
met twice in a month on occasion. These instances are treated as separate
observations.

23 The unemployment innovation is the Romer and Romer’s ũm0, the
Greenbook forecast for the unemployment rate in the current quarter, minus
the unemployment rate in the previous month.
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Romer model (b). We also consider versions of models (a)
to (c) using a discretized variable for the lagged change in
the intended federal funds rate. Romer models with discrete
baseline are labeled (d), (e), and (f).

As an alternative to the policy model based on Romer and
Romer (2004), we consider a Taylor-type model similar to
the one that Rotemberg and Woodford (1997) used. The Tay-
lor models have dDfft as the dependent variable in an ordered
probit model, as before. The covariates in this case consist of
two lags of dfft , nine lags of the growth rate of real GDP, and
nine lags of the monthly inflation rate.24 This baseline Taylor
specification is labeled model g. We also consider a modifica-
tion replacing dfft−2 with (dff t−1)

2 to capture nonlinearities
in lag-quadratic Taylor model (h). Finally, we look at Tay-
lor models with discrete baseline controls, replacing lags of
dfft with the corresponding lags of dDfft . These versions of
models (g) and (h) are labeled models (i) and (j).

As a benchmark for our semiparametric analysis, we begin
with parametric Sims-type causality tests. These are simple
parametric tests of the null hypothesis of no causal effect of
monetary policy shocks on outcome variables, constructed by
augmenting ordered probit models for the propensity score
with future outcome variables. Under the null hypothesis
of no causal effect, future outcome variables should have
insignificant coefficients in the policy model. This is the
essence of equation (1) and assumption 1.

Table 1 reports results from parametric Sims tests for the
effect of policy on industrial production. The table shows
t-statistics and significance levels for the coefficient on the
cumulated change in the log of the nonseasonally adjusted
index of industrial production, cIPt+k , up to three years
ahead. More specifically, each row in table 1 corresponds
to separately estimated augmented ordered probit models
p((zt , cIPt+k), θ) for values of k up to twelve quarter leads.
The variables zt are the covariates specified for models (a)
to (j), as defined in appendix D. The models with lagged
dDfft on the right-hand-side point to a significant response
to a change in monetary policy at a 5% significance level at
eight or more quarters lead. This result is robust in Romer
models (d) to (f) and Taylor models (i) and (j). There is also
isolated evidence of a response (at the 10% level) at earlier
leads using models (e) to (j) in panel b of table 1. For models
with dfft on the right-hand side, the lag pattern is more mixed.
The baseline and restricted Romer models (a) and (b) and the
lag-quadratic Taylor model (h) predict a response after seven
quarters, while the lag-quadratic Romer model (c) predicts a
response after eight quarters and the baseline Taylor model
(g) predicts a response after six quarters. The lag-quadratic
Taylor model (h) generates an isolated initial impact of the
monetary policy shock, but this does not persist at longer hori-
zons. Tests at the 10% level generally show earlier effects at

24 Monthly GDP is interpolated from quarterly using a program developed
by Mönch and Uhlig (2005). We thank Emanuel Mönch and Harald Uhlig
for providing the code for this. The inflation rate is calculated as the change
in the log of the seasonally unadjusted CPI of urban consumers, less food
and energy.

Table 1.—Parametric Causality Tests for Models Using Lagged Dff
t

and Lagged dDfft

Model

Lead (a) (b) (c) (g) (h)

A. Models Using Lagged dfft
1 1.08 0.99 1.50 1.64 2.34∗∗
2 0.25 0.17 0.73 0.60 1.45
3 −0.40 −0.48 0.04 −0.37 0.36
4 −1.30 −1.55 −0.40 −1.40 −0.15
5 −0.93 −1.16 −0.23 −1.32 −0.32
6 −1.42 −1.69∗ −0.89 −2.06∗∗ −1.27
7 −2.21∗∗ −2.45∗∗ −1.66∗ −2.69∗∗∗ −1.97∗∗
8 −3.67∗∗∗ −3.84∗∗∗ −3.19∗∗∗ −4.16∗∗∗ −3.45∗∗∗
9 −3.92∗∗∗ −4.01∗∗∗ −3.36∗∗∗ −4.72∗∗∗ −3.97∗∗∗
10 −3.86∗∗∗ −3.98∗∗∗ −3.41∗∗∗ −4.82∗∗∗ −4.20∗∗∗
11 −4.03∗∗∗ −4.12∗∗∗ −3.66∗∗∗ −4.82∗∗∗ −4.34∗∗∗
12 −4.02∗∗∗ −4.03∗∗∗ −3.90∗∗∗ −4.93∗∗∗ −4.70∗∗∗

Model

Lead (d) (e) (f) (i) (j)

B. Models Using Lagged dDfft
1 1.18 1.04 0.98∗ 1.88 1.92∗
2 0.94 0.96 0.92 1.41 1.50
3 −0.37 −0.30 −0.40 0.05 0.14
4 −0.94 −0.92 −0.99 −0.49 −0.42
5 −0.49 −0.52 −0.60 −0.34 −0.27
6 −0.62 −0.63 −0.71 −0.85 −0.72
7 −1.59 −1.55∗ −1.65∗ −1.65∗ −1.49
8 −2.78∗∗∗ −2.70∗∗∗ −2.78∗∗∗ −2.75∗∗∗ −2.55∗∗
9 −3.02∗∗∗ −2.97∗∗∗ −3.05∗∗∗ −3.29∗∗∗ −3.05∗∗∗
10 −2.83∗∗∗ −2.81∗∗∗ −2.83∗∗∗ −3.32∗∗∗ −3.02∗∗∗
11 −3.28∗∗∗ −3.23∗∗∗ −3.25∗∗∗ −3.53∗∗∗ −3.27∗∗∗
12 −3.37∗∗∗ −3.26∗∗∗ −3.27∗∗∗ −3.62∗∗∗ −3.45∗∗∗

The table reports t-statistics for parametric Sims causality tests for the response of the change in the
log of the nonseasonally adjusted index of industrial production to monetary policy shocks. Columns
report results using alternative models for the policy propensity score. Model details are summarized in
appendix D. ∗Significant at 10%. ∗∗Significant at 5%. ∗∗∗Significant at 1%.

six to seven quarters out for the restricted and lag-quadratic
Romer models (b) and (c).

While easy to implement, the parametric Sims causality
tests do not tell us about differences in the effects of rate
increases and decreases and may not detect nonlinearities in
the relationship between policy and outcomes or effects of
policy on higher-order moments. The semiparametric tests
developed in sections III and IV do all this in an internally
consistent way without the need for an elaborate model for
outcomes. Semiparametric tests can also be used to explore
possible misspecification of the propensity score. This is done
by substituting 1{z̃ti ≤ v2i} for 1{zt ≤ v2} in equation (8),
where z̃it denotes all the covariates that appear in models a
through j.

The specification tests reported in table 2 suggest the base-
line Romer model (a), and modifications (c) and (e) fit well.25

The Taylor models fit less well, with moment restrictions
violated most notably for the innovation in the Greenbook
forecast for the percentage change in GDP. This suggests
that the Taylor models do not fully account for all the infor-
mation the Federal Reserve seems to rely on in its policy

25 We show only results based on the VM statistic defined in equation (20)
and bootstrap p-values. Results based on asymptotic p-values are similar
and available on request.
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Table 2.—Specification Tests for Models Using Lagged dfft and Lagged dDfft

Model

Variable (a) (b) (c) (g) (h)

A. Models Using Lagged dfft
dfft 0.235 0.167 0.557 0.000∗∗∗ 0.120
graymt 0.655 0.346 0.880 0.844 0.578
gray0t 0.118 0.696 0.515 0.660 0.090∗
gray1t 0.522 0.666 0.867 0.824 0.305
gray2t 0.203 0.437 0.856 0.975 0.645
igrymt 0.509 0.703 0.439 0.631 0.727
igry0t 0.609 0.908 0.915 0.004∗∗∗ 0.001∗∗∗
igry1t 0.231 0.627 0.868 0.117 0.100
igry2t 0.209 0.472 0.621 0.033∗∗ 0.006∗∗∗
gradmt 0.626 0.574 0.472 0.143 0.673
grad0t 0.176 0.721 0.882 0.297 0.631
grad1t 0.505 0.394 0.060∗ 0.478 0.349
grad2t 0.362 0.431 0.111 0.268 0.432
igrdmt 0.496 0.713 0.397 0.615 0.705
igrd0t 0.789 0.652 0.704 0.836 0.645
igrd1t 0.185 0.299 0.510 0.536 0.594
igrd2t 0.089∗ 0.265 0.248 0.087∗ 0.132
innovationt 0.535 0.043∗∗ 0.687 0.451 0.581
gdpt−1 0.167 0.134 0.272 0.385 0.450
gdpt−2 0.715 0.219 0.302 0.614 0.308
gdpt−3 0.950 0.295 0.653 0.135 0.800
gdpt−4 0.592 0.644 0.235 0.922 0.791
gdpt−5 0.060∗ 0.320 0.508 0.613 0.539
gdpt−6 0.538 0.760 0.386 0.540 0.163
gdpt−7 0.738 0.588 0.371 0.646 0.820
gdpt−8 0.737 0.663 0.872 0.604 0.228
gdpt−9 0.311 0.306 0.358 0.535 0.656
Inft−1 0.744 0.760 0.649 0.609 0.800
Inft−2 0.823 0.829 0.802 0.699 0.929
Inft−3 0.866 0.571 0.337 0.495 0.338
Inft−4 0.318 0.262 0.094∗ 0.585 0.431
Inft−5 0.407 0.731 0.704 0.215 0.547
Inft−6 0.128 0.460 0.327 0.136 0.772
Inft−7 0.721 0.290 0.682 0.429 0.985
Inft−8 0.093∗ 0.273 0.187 0.118 0.652
Inft−9 0.736 0.502 0.617 0.394 0.897

(Continued)

decisions. The Taylor models also generate some rejections
of moment conditions related to lagged dDfft , an indication
that they do not fully account for the dynamic pattern of Fed-
eral Reserve policy actions. The Romer models appear to
implicitly account for lagged real GDP growth and inflation
in spite of the fact that these variables are not included in the
Romer propensity score.

We now turn to the semiparametric causality tests based on
the unconditional moment conditions in equation (7). All p-
values reported in tables 3 to 5 are based on the VM statistic
defined in equation (20). In the first implementation, Dt is
a bivariate vector containing dummy variables for an up or
down movement in dDfft . This amounts to a joint test of the
overall effect of a monetary policy shock.

The first set of semiparametric test results are reported in
table 3. As in table 2, table 3 shows p-values and starred
significance levels. These tests look simultaneously at the
significance of up and down movements in a single test
statistic, in a manner analogous to the parametric tests in
table 1.

The results in table 3 show significant effects at the 5%
level starting ten quarters ahead. The baseline Taylor model
also generates significant effects as early as in quarter 7. The
lag-quadratic Taylor model (h), and the Taylor models with
discrete baseline (i) and (j) also generate significant effects
starting in quarter 8. The restricted and lag-quadratic Romer
models, (b), (c), (e), and (f), generate the longest lag in policy
effects at about ten quarters, although the restricted and lag-
quadratic Romer models with discrete baseline, (e) and (f),
also show weaker significance at the 10% level as early as
three quarters ahead.

We also considered the effects of positive and negative
monetary shocks separately. The asymmetric tests again use
moment condition (7), but the tests in this case are constructed
from Dt = dDffUt , indicating upward movements in the
intended funds rate and Dt = dDffDt , indicating decreases in
the intended funds rate. Ordered probit models for the policy
propensity score generate the conditional expectation of both
dDffDt and dDffUt and can therefore be used to construct the
surprise variable at the core of our testing framework. The
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Table 2.—(Continued)

Model

Variable (d) (e) (f) (i) (j)

B. Models Using Lagged dDfft
dDfft 0.028∗∗ 0.133 0.000∗∗∗ 0.197 0.013∗∗
graymt 0.762 0.547 0.750 0.848 0.850
gray0t 0.031∗∗ 0.114 0.230 0.135 0.135
gray1t 0.285 0.548 0.974 0.358 0.343
gray2t 0.183 0.664 0.622 0.529 0.502
igrymt 0.539 0.138 0.502 0.287 0.371
igry0t 0.580 0.454 0.745 0.010∗∗ 0.009∗∗∗
igry1t 0.212 0.570 0.686 0.035∗∗ 0.033∗∗
igry2t 0.278 0.124 0.422 0.007∗∗∗ 0.008∗∗∗
gradmt 0.738 0.145 0.613 0.806 0.851
grad0t 0.295 0.563 0.272 0.703 0.834
grad1t 0.682 0.151 0.636 0.381 0.345
grad2t 0.412 0.172 0.220 0.371 0.361
igrdmt 0.507 0.136 0.492 0.316 0.371
igrd0t 0.651 0.600 0.352 0.785 0.788
igrd1t 0.220 0.395 0.558 0.358 0.408
igrd2t 0.034∗∗ 0.162 0.081∗ 0.091∗ 0.093∗
innovationt 0.642 0.190 0.492 0.654 0.747
gdpt−1 0.143 0.198 0.174 0.439 0.511
gdpt−2 0.740 0.252 0.246 0.720 0.676
gdpt−3 0.967 0.909 0.697 0.410 0.332
gdpt−4 0.526 0.599 0.532 0.805 0.858
gdpt−5 0.071∗ 0.460 0.228 0.601 0.714
gdpt−6 0.556 0.403 0.757 0.741 0.683
gdpt−7 0.787 0.168 0.623 0.812 0.821
gdpt−8 0.823 0.815 0.852 0.264 0.285
gdpt−9 0.197 0.304 0.144 0.647 0.660
Inft−1 0.533 0.607 0.705 0.838 0.832
Inft−2 0.638 0.840 0.582 0.619 0.793
Inft−3 0.861 0.566 0.740 0.857 0.801
Inft−4 0.253 0.096∗ 0.148 0.769 0.768
Inft−5 0.204 0.882 0.310 0.151 0.203
Inft−6 0.150 0.318 0.279 0.198 0.340
Inft−7 0.718 0.464 0.417 0.737 0.903
Inft−8 0.068∗ 0.415 0.138 0.278 0.325
Inft−9 0.755 0.686 0.775 0.648 0.778

The table reports p-values for the semiparametric VM causality tests defined in equation (20) and based on the moment condition 8 with φ(zti , v2) equal to 1{zti < v2}. Each line uses the specified variable as zti .
Variables are defined in appendix E. Columns report results using alternative models for the policy propensity score. Model details are summarized in appendix D. P-values are from a bootstrap of the transformed test
statistic. See text for details. ∗Significant at 10%. ∗∗Significant at 5%. ∗∗∗Significant at 1%.

asymmetric results are shown only for models that do well in
the model specification tests in table 2. These are the base-
line and lag-quadratic Romer models (a) and (c), the restricted
Romer model with discrete baseline (e), and the lag-quadratic
Taylor model (h).

The picture that emerges from table 4 is mostly one of
insignificant responses to a surprise reduction in the intended
federal funds rate. In particular, the only models to show
a statistically significant response to a decrease at the 5%
level are the baseline Romer model (a) and the lag-quadratic
Romer model (c), where a response appears after ten quarters.
Results for Taylor model, (h) generate an isolated significant
test two-and-a-half years out. There is a less significant (10%
level) response in the lag-quadratic Romer model with dis-
crete baseline (e) and the lag-quadratic Taylor model (h) at a
ten- or eleven-quarter lead as well.

The results in table 5 contrast with those in table 4, showing
significant effects of an increase in the funds rate after six
quarters for Romer specification (a) and after three quarters
for Romer specification (e). Taylor specification h also shows

a strongly significant effect somewhere between quarter 7 or
8. Models (a) and (h) generate a less significant early response
at quarters 4 and 5. Also in contrast with table 4, some of the
results in table 5 are significant at the 1% level.

The results in table 5 shed some light on the findings in
table 3, which pool up and down policy changes. The pooled
results suggest a more immediate response for the baseline
Romer specification (a) than for the lag-quadratic Taylor
specification (h). This is consistent with the results in table 5,
where Romer model (a) uncovers a more immediate response
to interest rate increases with a particularly strong response
at a lead of seven quarters, but generates less significant test
results than the Taylor models at leads farther out.

VI. Conclusion

This paper develops a causal framework for time series
data. The foundation of our approach is an adaptation of
the potential-outcomes and selection-on-observables ideas
widely used in cross-sectional studies. This adaptation leads
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Table 3.—Semiparametric Causality Tests Using Lagged dff, and Lagged dDfft for Up and Down Policy Changes

Model

Lead (a) (b) (c) (g) (h)

A. Using Lagged dfft
1 0.616 0.748 0.398 0.902 0.850
2 0.731 0.888 0.611 0.544 0.780
3 0.325 0.500 0.500 0.853 0.533
4 0.109 0.247 0.275 0.462 0.200
5 0.141 0.450 0.548 0.560 0.216
6 0.127 0.347 0.726 0.428 0.125
7 0.040∗∗ 0.158 0.697 0.205 0.094∗
8 0.053∗ 0.116 0.144 0.094∗ 0.005∗∗∗
9 0.124 0.157 0.063∗ 0.044∗∗ 0.010∗∗
10 0.092∗ 0.048∗∗ 0.020∗∗ 0.038∗∗ 0.006∗∗∗
11 0.025∗∗ 0.008∗∗∗ 0.019∗∗ 0.018∗∗ 0.002∗∗∗
12 0.062∗ 0.042∗∗ 0.020∗∗ 0.021∗∗ 0.001∗∗∗

Model

Lead (d) (e) (f) (i) (j)

B. Using Lagged dDfft
1 0.552 0.555 0.461 0.645 0.613
2 0.561 0.740 0.674 0.299 0.313
3 0.150 0.177 0.143 0.371 0.403
4 0.100 0.108 0.096∗ 0.070∗ 0.092∗
5 0.100 0.180 0.166 0.255 0.317
6 0.085∗ 0.175 0.158 0.167 0.241
7 0.054∗ 0.117 0.125 0.066∗ 0.074∗
8 0.047∗∗ 0.083∗ 0.079∗ 0.014∗∗ 0.020∗∗
9 0.114 0.097∗ 0.064∗ 0.014∗∗ 0.016∗∗
10 0.167 0.100 0.026∗∗ 0.025∗∗ 0.026∗∗
11 0.054∗ 0.030∗∗ 0.020∗∗ 0.012∗∗ 0.013∗∗
12 0.065∗ 0.032∗∗ 0.013∗∗ 0.005∗∗∗ 0.008∗∗∗

The table reports p-values for the semiparametric VM causality tests defined in equation (20) and based on the moment condition 7 with φ(Ut , v) equal to 1{yt < v1}. In this implementation, Dt is a bivariate vector
containing dummy variables for an up-or-down movement of dDfft . Columns report results using alternative models for the policy propensity score. Model details are summarized in appendix D. ∗Significant at 10%.
∗∗Significant at 5%. ∗∗∗Significant at 1%.

Table 4.—Effects of a Surprise Decrease in the Federal Funds

Target Rate

Model

Lead (a) (c) (e) (h)

1 0.417 0.210 0.398 0.597
2 0.740 0.395 0.520 0.775
3 0.896 0.420 0.654 0.618
4 0.209 0.212 0.274 0.264
5 0.508 0.470 0.491 0.681
6 0.673 0.824 0.527 0.638
7 0.393 0.675 0.523 0.665
8 0.315 0.166 0.404 0.398
9 0.743 0.092∗ 0.603 0.115
10 0.095∗ 0.020∗∗ 0.100 0.052∗
11 0.036∗∗ 0.022∗∗ 0.072∗ 0.069∗
12 0.176 0.044∗∗ 0.105 0.178

The table reports p-values for the semiparametric VM causality tests defined in equation (20) and based
on the moment condition 7 with φ(Ut , v) equal to 1{yt ≤ v1}. In this implementation, Dt is a dummy variable
that indicates intended federal funds rate decreases. Columns report results using alternative models for
the policy propensity score. Model details are summarized in appendix D. P-values use a bootstrap of the
transformed test statistic. See text for details. ∗Significant at 10%. ∗∗Significant at 5%. ∗∗∗Significant at
1%.

to a definition of causality similar to that proposed by
Sims (1972). For models with covariates, Sims causality
differs from Granger causality, which potentially confuses
endogenous system dynamics with the causal effects of iso-
lated policy actions. In contrast, Sims causality hones in on
the effect of isolated policy shocks relative to a well-defined
counterfactual baseline.

Table 5.—Effects of a Surprise Increase in the Federal Funds

Target Rate

Model

Lead (a) (c) (e) (h)

1 0.582 0.610 0.484 0.874
2 0.503 0.778 0.681 0.494
3 0.154 0.407 0.093∗ 0.336
4 0.082∗ 0.398 0.066∗ 0.169
5 0.086∗ 0.401 0.098∗ 0.079∗
6 0.046∗∗ 0.361 0.078∗ 0.052∗
7 0.020∗∗ 0.466 0.068∗ 0.027∗∗
8 0.026∗∗ 0.169 0.041∗∗ 0.004∗∗∗
9 0.043∗∗ 0.167 0.044∗∗ 0.007∗∗∗
10 0.114 0.349 0.136 0.013∗∗
11 0.037∗∗ 0.084∗ 0.036∗∗ 0.001∗∗∗
12 0.027∗∗ 0.040∗∗ 0.041∗∗ 0.000∗∗∗

The table reports p-value for the semiparametric VM causality tests defined in equation (20) and based on
the moment condition 7 with φ(Ut , v) equal to 1{yt ≤ v1}. In this implementation, Dt is a dummy variable
that indicates intended federal funds rate increases. Columns report results using alternative model for
the policy propensity score. Model details are summarized in appendix D. P-values use a bootstrap of the
transformed test statistic. See text for details. ∗Significant at 10%. ∗∗Significant at 5%. ∗∗∗Significant at
1%.

Causal inference in our framework is based on a multino-
mial model for the policy assignment mechanism, a model
we call the policy propensity score. In particular, we develop
a new semiparametric test of conditional independence that
uses the policy propensity score. This procedure tests the
selection-on-observables null hypothesis that lies at the heart
of much of the empirical work on time series causal effects.
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A major advantage of our approach is that it does not require
researchers to model the process determining the outcomes
of interest. The resulting test has power against all alterna-
tives but can be finely tuned to look at specific questions,
such as mean independence or a particular type of causal
response. Our testing framework can also be used to evaluate
the specification of the policy propensity score.

Our approach is illustrated with a reanalysis of the data
and policy model in Romer and Romer (2004), along with
a simple Taylor model. Our findings point to a significant
response to monetary policy shocks after about seven quar-
ters. These results are broadly in line with those in Romer
and Romer (2004), who report the strongest response to a
monetary shock after about two years with continued effects
for another year. On the other hand, an investigation allowing
different responses to rate increases and decreases shows an
early and significant response to rate increases without much
of a response to rate decreases. This result has not featured in
most previous discussions of the causal effects of monetary
shocks.

In contrast with the Romer and Romer (2004) findings
and those reported here, SVAR studies generally report more
immediate responses to a monetary shock. For example,
Christiano et al. (1999) report a decline in real GDP two quar-
ters after a policy shock with the impulse response function
showing a hump-shaped pattern and a maximal decline one to
one and half years after the shock. Sims and Zha (2006) also
find a statistically significant decline of real GDP in response
to a money supply shock, with most of the effect occurring
in the first year after the shock. SVAR analysis of Taylor-
type monetary policy functions in Rotemberg and Woodford
(1997) similarly suggests a response after two quarters and
a rapidly declining hump-shaped impulse response function.
Thus, while SVAR findings similarly suggest that monetary
policy matters, some of the early impact that crops up in the
SVAR literature may be generated in part by the structural
assumptions used to identify these models.

An important topic for future research is the estimation
of causal effects in situations where our tests reject the null
hypothesis of no causal effect. We are currently exploring
estimation strategies using a propensity score framework.
The resulting estimators are similar in spirit to propensity
score estimators for cross-sectional causal effects. However,
a complication relative to the cross-sectional literature is the
dynamic nature of responses to a policy shock. We are devel-
oping simple strategies to summarize and do inference for
these dynamics.
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APPENDIX A: GENERAL TEST STATISTICS

This appendix shows how to extend the statistics from test
functions 1{Ut ≤ v} to general functions φ(Ut , v). The null
hypothesis of conditional independence can be represented
very generally in terms of moment conditions for functions
of Ut . Let φ(., .) : R

k ×R
k → H be a function of Ut and some

index v where H is some set. Our development below allows
φ(Ut , v) to be an M × M matrix of functions of Ut and v
such that H = R

M × R
M. However, it is often sufficient to

consider the case where φ(., .) is scalar valued with H = R, a
possibility that is also covered by our theory. Under the null,
we then have E[φ(Ut , v)(Dt − p(zt))|zt] = 0. Examples of
functions φ(., .) are φ(Ut , v) = exp(iv′Ut) where i = √−1,
as suggested by Bierens (1982) and Su and White (2003), or
φ(Ut , v) = 1{Ut ≤ v}, the case considered in section III.
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While omnibus tests can detect departures from the null
in all directions, this is associated with a loss in power and
may not shed light on specific alternatives of interest. Addi-
tional tests of practical relevance therefore focus on specific
alternatives. An example is the test of the moment condi-
tion E[yt(Dt − p(zt))|zt] = 0, which is rejected if there
is correlation between yt and the policy innovation condi-
tional on zt . Such a test can be implemented by choosing
φ(Ut , v) = yt1{zt ≤ v2}. Generalizations to the effects on
higher moments can be handled similarly.

To specify the generalized tests, we extend the definition
of Vn(v) = n−1/2 ∑n

t=1 m(yt , Dt , zt , θ0; v) by setting

m(yt , Dt , zt , θ; v) = φ(Ut , v)[Dt − p(zt , θ)].
It follows that

Γ(v, τ) = lim
n→∞ E[Vn(v)Vn(τ)

′] =
∫

φ(u, v)dH(u)φ(u, τ)′,

where H(v) is defined in equation (9). The transformation T
now is given by

W(v) ≡ TV̂(v) = V̂(v)

−
∫

〈φ(., v)′, d(πλ l̄(., θ))〉C−1
λ V̂

(
π⊥

λ l̄(., θ)′), (A1)

where Cλ, V̂(.), and π⊥
λ l̄(., θ) are defined as before. In the

same way, define an estimator Tn where

Ŵn(v) ≡ TnVn(v) = V̂n(v)

−
∫ (∫

φ(u, v)dĤn(u)d(πλ l̄(u, θ̂))

)
Ĉ−1

λ V̂n
(
π⊥

λ l̄(., θ̂)′),

(A2)

with V̂n(π
⊥
λ l̄(., θ̂)′), and Ĥn(v) as in section IVA. For Aλ =

[−∞, λ] × [−∞, ∞]k−1, one obtains

Ŵn(v) = V̂n(v) − n−1/2
n∑

t=1

[
φ(Ut , v)

∂p(zt , θ̂)

∂θ′ Ĉ−1
y1t

× n−1
n∑

s=1

1{y1s > y1t}l̄(Us, θ̂)
′(Ds − p(zs, θ̂))

]
. (A3)

The Rosenblatt transform for Ŵn(v) based on general func-
tions φ(., .) is obtained by extending equation (18) to

Ww(w) ≡ TwV̂w(w) = V̂w(w)

−
∫

〈φ(., w)′, dπλ l̄w(., θ)〉C−1
w,λV̂w

(
π⊥

λ l̄w(., θ)′), (A4)

and

Bw(w) = Ww(φ(., w)(hw(.))−1/2)

is a Gaussian process with covariance function
E

[
Bw(w)Bw(w′)′] = ∫ 1

0 · · · ∫ 1
0 φ(u, w)φ(u, w′)′du.

The empirical version of the transformed statistic is

B̂ŵ,n(w) = Ŵŵ,n(φ(., w)ĥw(.)−1/2)

= n−1/2
n∑

t=1

φ(ŵt , w)ĥ(zt)
−1/2[Dt − p(zt , θ̂) − Ân,t],

(A5)

where Ân,s is as defined before. For the bootstrapped statistic
B̂∗

ŵ,n;s(w), replace mT ,t(v, θ̂) with

mT ,t(v, θ̂) = φ(ŵt , w)ĥ(zt)
−1/2[Dt − p(zt , θ̂) − Ân,t]

in equation (23).

APPENDIX B: IMPLEMENTATION DETAILS

B.1. Details for the Khmaladze Transform. To construct
the test statistic proposed in the theoretical discussion, we
must deal with the fact that the transformation T is unknown
and needs to be replaced by an estimator. In this section, we
discuss the details that lead to the formulation in equation
(17). We also present results for general sets Aλ. We start by
defining the empirical distribution

F̂u(v) = n−1
n∑

t=1

{Ut ≤ v}, (B1)

and let

Hn(v) =
∫ v

−∞
(diag(p(u2, θ0)) − p(u2, θ0)p(u2, θ0)

′)dF̂u(u)

= n−1
n∑

t=1

(diag(p(zt , θ0))

− p(zt , θ0)p(zt , θ0)
′)1{Ut ≤ v},

as well as

Ĥn(v) =
∫ v

−∞
(diag(p(zt , θ̂)) − p(zt , θ̂)p(zt , θ̂)

′)dF̂u(u)

= n−1
n∑

t=1

(diag(p(zt , θ̂))

− p(zt , θ̂)p(zt , θ̂)
′)1{Ut ≤ v}.

We now use the sets Aλ and projections πλ as defined in
section IV A. Let

Ĉλ =
∫

π⊥
λ l̄(v, θ̂)dĤn(v)π

⊥
λ l̄(v, θ̂)′

= n−1
n∑

t=1

(1 − 1{Ut ∈ Aλ})l̄(Ut , θ̂)
′(diag(p(zt , θ̂))

− p(zt , θ̂)p(zt , θ̂)
′)l̄(Ut , θ̂),
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such that

TnV̂n(v) = V̂n(v) −
∫

d

(∫
φ(u, v)dĤn(u)πλ l̄(u, θ̂)

)
× Ĉ−1

λ V̂n
(
π⊥

λ l̄(u, θ̂)
)
,

where∫
φ(u, v)dĤn(u)πλ l̄(., θ̂)

= n−1
n∑

t=1

1{Ut ∈ Aλ}φ(Ut , v)
∂p(zt , θ̂)

∂θ′ .

Finally, write

V̂n(π
⊥
λ l̄(u, θ̂))

= n−1/2
n∑

t=1

(1 − 1{Ut ∈ Aλ})l̄(Ut , θ̂)
′(Dt − p(zt , θ̂)).

We now specialize the choice of sets Aλ to Aλ = [−∞, λ]×
[−∞, ∞]k−1. Denote the first element of yt by y1t . Then

Ĉλ = n−1
n∑

t=1

1{y1t > λ}l̄(zt , θ̂)(diag(p(zt , θ̂))

− p(zt , θ̂)p(zt , θ̂)
′)l̄(zt , θ̂)

′, (B2)

V̂n(π
⊥
λ l̄(u, θ̂)) = n−1/2

n∑
t=1

1{y1t

> λ}l̄(Ut , θ̂)
′(Dt − p(zt , θ̂)) (B3)

and∫
φ(u, v)dĤn(u)πλ l̄(u, θ̂)

= n−1
n∑

t=1

1{y1t ≤ λ}φ{Ut , v}∂p(zt , θ̂)

∂θ′ . (B4)

Combining equations (B2–B4) then leads to the formulation
(17).

B.2. Details for the Rosenblatt Transform

As before, implementation requires replacement of θ with
an estimate. We therefore work with the process V̂w,n(v) =
n−1/2 ∑n

t=1 mw(wt , Dt , θ̂; w). Define

E[mw(wt , Dt , θ); w)] =
∫ 1

0
· · ·

∫ 1

0
φ(u, w)

(
p
([

T−1
R (u)

]
z
, θ0

)
− p

([
T−1

R (u)
]

z
, θ

))
du

such that ṁ(w, θ) evaluated at the true parameter value θ0 is

ṁw(w, θ0) = E[φ(Ut , w)∂p(zt , θ0)/∂θ′]

=
∫

[0,1]k
φ(u, w)

∂p
([

T−1
R (u)

]
z
, θ0

)
∂θ′ du.

It therefore follows that V̂w,n(v) can be approximated by
Vw,n(v)−ṁw(w, θ0)

′n−1/2 ∑n
t=1 l(Dt , zt , θ0). This approxima-

tion converges to a limiting process V̂w(v) with covariance
function

Γ̂w(w, τ) = Γw(w, τ) − ṁw(w, θ0)
′L(θ0)ṁw(τ, θ0),

where

Γw(w, τ) =
∫

[0,1]k
φ(u, w)hw(u)φ(u, τ)′du,

where hw(., θ) = (diag(p([T−1
R (.), θ]z)) − p([T−1

R (.), θ]z)

×p([T−1
R (.)]z, θ)′) and hw(.) ≡ hw(., θ0).

We represent V̂w in terms of Vw. Let Vw(lw(., θ0)) =∫
lw(w, θ0)bw(dv), where bw(v) is a Gaussian process on

[0, 1]k with covariance function Γw(v, τ) as before, for any
function lw(w, θ). Also, define

l̄w(w, θ) = hw(w, θ)−1
∂p

([
T−1

R (w)
]

z
, θ

)
∂θ′ ,

such that V̂w(w) = Vw(w)−ṁw(w, θ0)Vw(l̄w(w, θ)) as before.
Let {Aw,λ} be a family of measurable subsets of [0, 1]k ,

indexed by λ ∈ [0, 1] such that Aw,0 = ∅, Aw,1 = [0, 1]k ,
λ ≤ λ′ =⇒ Aw,λ ⊂ Aw,λ′ and Aw,λ′\Aw,λ → ∅ as
λ′ ↓ λ. We then define the inner product 〈f (.), g(.)〉w ≡∫
[0,1]k f (w)′dHw(w)g(w) where

Hw(w) =
∫

u≤w
hw(u)du

and the matrix

Cw,λ = 〈
π⊥

λ l̄w(., θ), π⊥
λ l̄w(., θ)

〉
w

=
∫

π⊥
λ l̄w(w, θ)′dHw(w)π⊥

λ l̄w(w, θ)

and define the transform TwVw(w) as before by

Ww(w) ≡ TwV̂w(w) = V̂w(w)

−
∫

〈φ(., w)′, dπλ l̄w(., θ)〉C−1
w,λV̂w

(
π⊥

λ l̄w(., θ)′).

Finally, to convert Ww(w) to a process that is asymptotically
distribution free, we apply a modified version of the final
transformation proposed by Khmaladze (1988) to the process
W(v). In particular, using the notation Ww(φ(., w)) = Ww(w)

to emphasize the dependence of W on φ, it follows from the
previous discussion that

Bw(w) = Ww(φ(., w)(hw(.))−1/2),

where Bw(w) is a Gaussian process on [0, 1]k with covariance
function E

[
Bw(w)Bw(w′)′] = ∫ 1

0 · · · ∫ 1
0 φ(u, w)φ(u, w′), du.
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The empirical version of Ww(w), denoted by Ŵw,n(w) =
T̂wV̂w,n(w), is obtained as before from

Ŵw,n(w) = n−1/2
n∑

t=1

[
mw(wt , Dt , θ̂|w)

− φ(wt , w)
∂p(zt , θ̂)

∂θ′ Ĉ−1
wt1

× n−1
n∑

s=1

1{ws1 > wt1}l̄(zs, θ̂)
′(Ds − p(zs, θ̂))

]

where Ĉws1 = n−1 ∑n
t=1 1{wt1 > ws1}l̄(zt , θ̂)′h(zt , θ̂)l̄(zt , θ̂).

APPENDIX C: FORMAL RESULTS

This appendix provides formal results on the distribution
of the test statistics defined in equations (20) and (21). Let
χt = [y′

t , z′
t , Dt]′ be the vector of observations. Assume that

{χt}∞t=1 is strictly stationary with values in the measurable
space (Rk+1, Bk+1), where Bk+1 is the Borel σ-field on R

k+1

and k is fixed with 2 ≤ k < ∞. Let Al
1 = σ(χ1, . . . , χl) be

the sigma field generated by χ1, . . . , χl. The sequence χt is
β mixing or absolutely regular if

βm = sup
l≥1

E

[
sup

A∈A∞
l+m

∣∣ Pr
(
A|Al

1

) − Pr(A)
∣∣]→0 as m→∞.

(C1)

Condition 1. Let χt be a stationary, absolutely regu-
lar process such that for some 2 < p < ∞, the β-
mixing coefficient of χt defined in equation (C1) satisfies
m(p+δ)/(p−2)(log m)2(p−1)/(p−2)βm → 0 for some δ > 0.

Condition 2. Let Fu(u) be the marginal distribution of Ut.
Assume that Fu(.) is absolutely continuous with respect to
Lebesgue measure on R

k and has a density fu(u) with fu(u) >

0 for all u ∈ R
k.

Condition 3. The matrix of functions φ(., .) belongs to a VC
subgraph class of functions (see Pollard, 1984) with envelope
M(χt) such that E‖M(χt)‖p+δ < ∞ for the same p and δ as
in condition 1.

Condition 4. Let H(v) be as defined in equation (9).
Assume that H(v) is absolutely continuous in v with respect
to Lebesgue measure and for all v, τ such that v ≤ τ

with vi < τi for at least one element vi of v, it follows
that H(v) < H(τ). Let the M × M matrix of derivatives
h(v) = ∂kH(v)/∂v1, . . . , ∂vk and assume that det(h(v)) > 0
for all v ∈ R

k.

Condition 5. Let θ0 ∈ Θ where Θ ⊂ R
d is a compact set

and d < ∞. Assume that E[Dt|zt] = p(zt|θ0) and for all
θ �= θ0, it follows E[Dt|zt] �= p(zt|θ). Assume that p(zt|θ)
is differentiable almost surely for θ ∈ {θ ∈ Θ|‖θ − θ0‖ ≤

δ} ≡ Nδ(θ0) for some δ > 0. Let N(θ0) be a compact subset
of the union of all neighborhoods Nδ(θ0) where ∂p(zt|θ)/∂θ,
∂2p(zt|θ)/∂θi∂θj exists and assume that N(θ0) is not empty.
Let ∂pi(zt|θ)/∂θj be the i, jth element of the matrix of partial
derivatives ∂p(zt|θ)/∂θ′ and let l̄i,j(zt , θ) be the i, jth element
of l̄(zt , θ). Assume that there exists a function B(x) and a
constant α > 0 such that

|∂pi(x|θ)/∂θj − ∂pi(x|θ′)/∂θj| ≤ B(x)‖θ − θ′‖α,

|∂2pk(x|θ)/∂θi∂θj − ∂2pk(x|θ)/∂θi∂θj| ≤ B(x)‖θ − θ′‖α and

|∂ l̄i,j(x|θ)/∂θk − ∂ l̄i,j(x|θ′)/∂θk| ≤ B(x)‖θ − θ′‖α

for all i, j, k and θ, θ′ ∈ intN(θ0), E|B(zt)|2+δ < ∞,
E|∂pi(zt|θ0)/∂θj|4+δ < ∞, E[pi(zt , θ0)

−(4+δ)] < ∞ and
E[|∂pi(zt|θ0)/∂θj| 4+δ

2 ] < ∞ for all i, j and some δ > 0.

Condition 6. Let l(Dt , zt , θ) = Σ−1
θ

∂p′(zt ,θ)
∂θ

h(zt , θ)−1(Dt −
p(zt , θ)),

h(zt , θ) = (diag(p(zt , θ)) − p(zt , θ)p(zt , θ)
′),

and

Σθ = E

[
∂p′(Dt|zt , θ)

∂θ
h(zt , θ)

−1 ∂p(Dt|zt , θ)

∂θ′

]
. (C2)

Assume that Σθ is positive definite for all θ in some neigh-
borhood N ⊂ Θ such that θ0 ∈ intN and 0 < ‖Σθ‖ < ∞
for all θ ∈ N. Let li(Dt , zt , θ) be the ith element of l(Dt , zt , θ)
defined in equation (11). Assume that there exists a function
B(x1, x2) and a constant α > 0 such that

‖∂li(x1, x2, θ)/∂θj − ∂li(x1, x2, θ′)/∂θj‖
≤ B(x1, x2)‖θ − θ′‖α

for all i and θ, θ′ ∈ intN, E[B(Dtzt)] < ∞ and
E|l(Dt , zt , θ)| < ∞ for all i.

Condition 7. Let {Aλ} be a family of measurable subsets of
[−∞, ∞]k, indexed by λ ∈ [−∞, ∞] such that A−∞ = ∅,
A∞ = [−∞, ∞]k, λ ≤ λ′ =⇒ Aλ ⊂ Aλ′ and Aλ′\Aλ →
∅ as λ′ ↓ λ. Assume that the sets {Aλ} form a V-C class
(polynomial class) of sets as defined in Pollard (1984). Define
〈f (.), g(.)〉 as in equation (12) and Cλ as in equation (13).
Assume that 〈f (v), πλg(v)〉 is absolutely continuous in λ, and
Cλ is invertible for λ ∈ [−∞, ∞).

Condition 8. The density fu(u) is continuously differen-
tiable to some integral order ω ≥ max(2, k) on R

k with
supx∈Rk |Dμfu(x)| < ∞ for all |μ| ≤ ω where μ =
(μ1, . . . , μk) is a vector of nonnegative integers, |μ| =∑k

j=1 μj , and Dμfu(x) = ∂ |μ|fu(x)/∂xμ1
1 , . . . , ∂xμk

k is the
mixed partial derivative of order |μ|. The kernel K(.) satisfies
(i)

∫
K(x)dx = 1,

∫
xμK(x)dx = 0 for all 1 ≤ |μ| ≤ ω − 1,∫ |xμK(x)|dx < ∞ for all μ with |μ| ≤ ω, K(x) → 0
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as ‖x‖ → ∞ and supx∈ R
k max(1, ‖x‖)|Dei K(x)| < ∞

for all i ≤ k and ei is the ith elementary vector in R
k.

(ii) K(x) is absolutely integrable and has Fourier trans-
form K(r) = (2π)k

∫
exp(ir′x)K(x)dx that satisfies

∫
(1 +

‖r‖) supb≥1 |K(br)|dr < ∞ where i = √−1.

Our main results are stated next. All proofs are available in
the online appendix. In what follows, assumption 1 and the
null hypothesis of no causal effects (definition 2) are assumed
to hold.

Theorem 2. Assume conditions 1 to 7 are satisfied. Fix
x < ∞ arbitrary, and define

Υx = {v ∈ [−∞, ∞]k|v = πxv}.
Then for Tn defined in equation (15), supv∈Υx

|TnV̂n(v) −
W(v)| = op(1).

Theorem 3. Assume conditions 1 to 8 are satisfied. Fix
x < 1 arbitrary, and define

Υ[0,1] = {w ∈ Υε|w = πxw},
where Υε is a compact subset of the interior of [0, 1]k with
volume 1 − ε for some ε > 0. Then

sup
w∈Υ[0,1]

|B̂ŵ,n(w) − Bw(w)| = op(1).

Theorem 4. Assume conditions 1 to 8 are satisfied. For
B̂∗

ŵ,n(w) defined in equation (23), it follows that B̂∗
ŵ,n(w) con-

verges on Υ[0,1], defined as in theorem 3 to a Gaussian process
Bw(w).

APPENDIX D: MODEL DEFINITIONS

The model names in this appendix summarize variation
in control sets across propensity score specifications. All
models fit ordered probit specifications to the change in the
discretized intended federal funds rate (dDfft).

Models (a)–(f), Romer Specifications:

• Romer baseline: Baseline specification (a) uses the
covariates included in Romer and Romer’s (2004) equa-
tion (1), with two modifications: we use the change in
the lagged intended federal funds rate instead of the
lagged level of the intended federal funds rate, and we
use the innovation in the unemployment rate, defined
as the Greenbook forecast for the unemployment rate
in the current quarter minus the unemployment rate
in the previous month, instead of the unemployment
level that Romer and Romer used. These modifications
are meant to eliminate possibly nonstationary regres-
sors. The complete conditioning list includes the lagged
change in the intended federal funds rate, plus the
covariates graymt , gray0t , gray1t , gray2t , igrymt , igry0t ,

igry1t , igry2t , gradmt , grad0t , grad1t , grad2t , igrdmt ,
igrd0t , igrd1t , igrd2t , and our constructed unemploy-
ment innovation. For variable names, see appendix E.

• Restricted Romer: Specification (b) modifies our base-
line specification by eliminating variables with very
low significance levels in the multinomial probit model
for the intended rate change. Specifically, we dropped
variables with low significance subject to the restric-
tion that if a first-differenced variable from the Romer
and Romer list is retained, then the undifferenced ver-
sion should appear as well. The retained variable list
includes the lagged intended rate change, gray0t , gray1t ,
gray2t , igry0t , igry1t , igry2t , grad2t , and our constructed
unemployment innovation.

• Romer lag-quadratic: Specification (c) adds a quadratic
term in the lagged intended federal funds rate change to
the restricted model (b).

• Romer-discrete baseline/restricted/quadratic: Specifi-
cations (d) to (f) are versions of specifications (a) to (c),
which use a discretized variable for the lagged change
in the intended federal funds rate.

Models (g) to (j), Taylor Specifications:

• Taylor baseline: Specification (g) uses two lags of dfft ,
nine lags of the growth rate of real GDP, and nine lags
of the monthly inflation rate as covariates.

• Taylor lag quadratic: Specification (h) replaces dfft−2

with (dfft−1)
2 in specification (g).

• Taylor-discrete baseline/lag quadratic: Specifications
(i) and (j) are versions of (g) and (h), where covariates
based on dfft are replaced by covariates based on dDfft .

APPENDIX E: VARIABLE NAMES

dfft Change in the intended federal funds rate

Dfft Discretized intended federal funds rate

dDfft Change in the discretized intended federal
funds rate

innovationt Unemployment innovation

dDffUt A dummy indicating increases in the
intended federal funds rate

dDffDt A dummy indicating decreases in the
intended federal funds rate

gdpt−k kth lag of GDP growth

inf t−k kth lag of inflation

dIPt Change of log of nonseasonally adjusted
index of industrial production

cIPt+k
∑k

j=1 dIPt+j; cumulative change in dIPt .

The following names are from Romer and Romer (2004):

graymt Greenbook forecast of the percentage
change in real GDP/GNP (at an annual rate)
for the previous quarter.
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gray0t Same as above, for current quarter.

gray1t Same as above, for one quarter ahead.

gray2t Same as above, for two quarters ahead.

igrymt The innovation in the Greenbook forecast
for the percentage change in GDP (at an
annual rate) for the previous quarter from
the meeting before. The horizon of the
forecast for the meeting before is adjusted
so that the forecasts for the two meetings
always refer to the same quarter.

igry0t Same as above, for current quarter.

igry1t Same as above, for one quarter ahead.

igry2t Same as above, for two quarters ahead.

gradmt Greenbook forecast of the percentage
change in the GDP deflator (at an annual
rate) for the previous quarter.

grad0t Same as above, for current quarter.

grad1t Same as above, for one quarter ahead.

grad2t Same as above, for two quarters ahead.

igrdmt The innovation in the Greenbook fore-
cast for the percentage change in the
GDP deflator (at an annual rate) for
the previous quarter from the meet-
ing before. The horizon of the fore-
cast for the meeting before is adjusted
so that the forecasts for the two
meetings always refer to the same
quarter.

igrd0t Same as above, for current quarter.

igrd1t Same as above, for one quarter ahead.

igrd2t Same as above, for two quarters
ahead.


