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1. Introduction

In aggregative games, each player’s payoff depends on her own actions and some aggregate of all players’ actions. Numer-
ous games studied in the literature can be cast as aggregative games, including models of competition (Cournot and Bertrand
with or without product differentiation), patent races, models of contests and fighting, public good provision games, and
models with aggregate demand externalities.! In this paper, we provide a simple general framework for comparative static
analysis in aggregative games (thus generalizing Corchén, 1994 which is discussed in greater detail below). Our approach
is applicable to a diverse set of applications that can be cast as aggregative games and enables us to provide sufficient
conditions for a rich set of comparative static results.

We present results for two sets of complementary environments. First, we focus on aggregative games with strategic sub-
stitutes. In games with strategic substitutes, each player’s payoff function is supermodular in her own strategy and exhibits
decreasing differences in her own strategy and the strategy vector of other players. Second, we turn to “nice” aggregative

* We would like to thank Roger Hartley, Jean-Francois Mertens, Alex Possajennikov, Burkhard Schipper, Xavier Vives, an Editor, and three anonymous
referees for their helpful remarks and suggestions. Thanks also to seminar participants at the University of Copenhagen, University of Manchester, and at
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T For a long list of examples of aggregative games see Alos-Ferrer and Ania (2005). For more specific applications, see e.g. Cornes and Hartley
(2005a, 2007), Kotchen (2007), and Fraser (2012). Issues of evolutionary stability (Alos-Ferrer and Ania, 2005; Possajennikov, 2003), evolution of prefer-
ences (Kockesen et al., 2000), existence and stability (Dubey et al., 2006; Jensen, 2010), and uniqueness of equilibrium (Cornes and Hartley, 2005b) have
also been studied fruitfully in the context of aggregative games.
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games, where payoff functions are continuous, concave (or pseudo-concave) in own strategies, and twice continuously dif-
ferentiable. For such games, we prove a number of results under a condition which we refer to as local solvability, which
ensures the local invertibility of the backward reply correspondence described further below.

An informal summary of our results from both aggregative games with strategic substitutes and from nice aggregative
games is that, under a variety of reasonable economic conditions, comparative statics are “regular” (for example, in Cournot
oligopoly, a reduction in the marginal cost increases a firm’s output). More precisely, in nice aggregative games with local
solvability, a “positive shock” to any subset of players — defined as a change in parameters that increase the marginal payoff
of the subset of players — increases the aggregate, and entry of a new player also increases the aggregate. In aggregative
games with strategic substitutes, a positive shock to a player increases that player’s strategy and reduces the aggregate of
the remaining players’ strategies, and entry of a new player reduces the aggregate of the strategies of remaining players. In
addition, in aggregative games with strategic substitutes, the aggregate varies monotonically with what we call “shocks that
hit the aggregator” which are changes in parameters that have a direct (positive) impact on the aggregator. In a separate
section (Section 5), we illustrate all of these results in a variety of economic models, highlighting the broad applicability of
the methods we propose and adding several new results and insights.

We should emphasize at this point that there is no guarantee in general that intuitive and unambiguous comparative
static results should hold in aggregative games. Take an increase in a player’s marginal payoff such as a reduction in an
oligopolist’s marginal cost: Even though the first-order effect of such a shock will of course be positive, it is possible that
higher-order effects go in the opposite direction so that in equilibrium, the player ends up lowering her strategy and the
aggregate falls (see Acemoglu and Jensen, 2011 for an example of this kind). In this light, a major contribution of our
paper is to provide minimal conditions to ensure that such higher-order effects do not dominate so that comparative statics
become “regular”. In particular, our first set of theorems shows that such “perverse” outcomes cannot arise in aggregative
games with strategic substitutes, and our second set of results establishes that they can be ruled out in nice aggregative
games by the local solvability condition mentioned above.

Our paper is related to a number of different strands in the literature. Comparative static results in most games are
obtained using the implicit function theorem. The main exception is for supermodular games (games with strategic comple-
ments). Topkis (1978, 1979), Milgrom and Roberts (1990) and Vives (1990) provide a framework for deriving comparative
static results in such games. These methods do not extend beyond supermodular games.

More closely related to our work, and in many ways its precursor, is Corchén (1994). Corchén (1994) provides compara-
tive static results for aggregative games with strategic substitutes, but only under fairly restrictive conditions, which, among
other things, ensure uniqueness of equilibria. In contrast, our comparative static results for aggregative games with strate-
gic substitutes are valid without any additional assumptions. Another similarity between our paper and Corchén (1994)
is that both make use of the so-called backward reply correspondence of Selten (1970). In an aggregative game, the back-
ward reply correspondence gives the (best-response) strategies of players that are compatible with a given value of the
aggregate.” In a seminal paper, Novshek (1985) used this correspondence to give the first general proof of existence of pure-
strategy equilibria in the Cournot model without assuming quasi-concavity of payoff functions (see also Kukushkin, 1994).
Novshek’s result has since been strengthened and generalized to a larger class of aggregative games (e.g., Dubey et al., 2006;
Jensen, 2010), and our results on games with strategic substitutes utilize Novshek’s (1985) construction in the proofs.> Our
results on nice aggregative games blend the backward reply approach with the equilibrium comparison results reported in
Milgrom and Roberts (1994) and Villas-Boas (1997).

An alternative to working directly with backward reply correspondences as we do, is to use “share correspondences”
introduced by Cornes and Hartley (2005a). The share correspondence is the backward reply correspondence divided by the
aggregate. This transformation of the problem is useful for questions related to uniqueness and existence and can be used
for explicitly characterizing the equilibrium and deriving comparative statics directly in certain cases. However, transforming
backward reply correspondences in this way does not simplify any arguments in this paper or strengthen any results.*

The rest of the paper is organized as follows. Section 2 defines aggregative games, equilibrium, and backward reply
correspondences. Section 3 provides the general comparative static results for aggregative games with strategic substitutes.

2 The first systematic study of aggregative games (German: aggregierbaren Spiele) can be found in Selten (1970). After defining aggregative games, Selten
proceeds to define what he calls the Einpassungsfunktion (Selten, 1970, p. 154), that is, the backward reply function of an individual player. As Selten
proves, the backward reply correspondence is single-valued (a function) provided that the player’s best-response function has slope greater than —1. The
assumptions imposed by Corchén (1994) imply that the slope of players’ best-response functions lie strictly between —1 and 0, so that the backward reply
correspondence is both single-valued and decreasing. Neither is necessarily the case in many common games and neither is imposed in this paper.

3 Novshek’s explicit characterization of equilibria is similar to the characterization of equilibrium in supermodular games that uses the fixed point
theorem of Tarski (1955). Both of these enable the explicit study of the behavior of “largest” and “smallest” fixed points in response to parameter changes.
Tarski’s result is used, for example, in the proof of Theorem 6 in Milgrom and Roberts (1990).

4 It is straightforward to recast Novshek’s original existence argument in terms of share correspondences (by simply dividing through everywhere by the
aggregate Q). Similarly one would be able to recast our proofs for games with strategic substitutes in terms of share correspondences, but this does not
lead to any simplification. As for our results on “nice” games, these are based on the idea that under the local solvability condition, the aggregate backward
reply correspondence will be a continuous single-valued function. This obviously holds for the aggregate backward reply correspondence if and only if it
holds for the associated share correspondence (since the latter’s values equal the former’s divided with Q). But this construction does not simplify or
enrich our analysis; it simply restates our results in a somewhat different language.
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Section 4 presents our results for nice games under the local solvability condition. Section 5 shows how the results from
Sections 3 and 4 can be used to obtain general characterization results in various applications, including games of pri-
vate provision of public goods, contests, Cournot competition and technology choice in oligopoly. Section 6 concludes and
Appendix A contains some proofs omitted from the text.

2. Aggregative games

In this paper we study non-cooperative games I = ((7j, Si)icz,t) with finite sets of players Z = {1,..., I}, finite-
dimensional strategy sets S; € RN, and payoff functions 7;: S x {t} > R. t € T CRM is a vector of exogenous parameters,
and the basic comparative statics question we wish to address is how the set of equilibria of I'; varies with t. As usual we
define S = ]_[{:1 Siand S_; = ]_[#i S with typical elements s € S and s_; € S_;. Throughout S is assumed to be compact
and each payoff function m;: S x T — R is assumed to be upper semi-continuous on S x T and continuous on S_; x T.
These assumptions ensure that the best-reply correspondences R;(s_;, t) = arg maxses; 7;(Si, S—i, t) will be non-empty, com-
pact valued, and upper hemi-continuous.

Recall, e.g., from Gorman (1968), that a function g : S — R is additively separable if there exist strictly increasing functions
H,hq,...,h; : R — R such that g(s) = H(Q ;.7 hi(s;)) for all s € S. The unweighted sum g(s) = ) ;.7 si and the mean
gs) =171 > icz Si are obvious examples. In fact all of the standard means, including the harmonic mean, the geometric
mean, and the power mean are additive separable functions (Jensen, 2010, Section 2.3.2). Two other important examples
are g(s) = (0{15’]3 + -~+oqs’,3)1/ﬁ, ScRY, and g(s) =[Ticzs;", S S RY,, where 8,a1,...,a; > 0, which are, respectively,
a CES function and a Cobb-Douglas function.’

Definition 1 (Aggregative games). The game I} = ((7;, Si)iez,t) is aggregative if there exists a continuous and additively
separable function g:S — X C R (the aggregator) and functions I7; : S; x X x {t} — R (the reduced payoff functions) such
that for each player i € Z:

Ti(si, S—i, t) = ITj(si, g(s),t) forallseS. (1)

Clearly, an aggregative game is fully summarized by the tuple ((IT;, Si)icz, g,t). The definition of an equilibrium is
standard:

Definition 2 (Equilibrium). Let ((IT;, Si)icz, &, t) be an aggregative game. Then s*(t) = (s](t),...,sj(t)) is a (pure-strategy
Nash) equilibrium if for each player i € Z,

s7(t) € argmax IT; (si, g(si, s*;). t).
S;i€S;

When s*(t) is an equilibrium, Q (t) = g(s*(t)) is called an equilibrium aggregate given t. And if smallest and largest
equilibrium aggregates exist, these are denoted by Q.(t) and Q *(t), respectively.

Aggregative games with additively separable aggregators are studied in detail in Cornes and Hartley (2012) and Sec-
tion 2.3.2 in Jensen (2010). This class is more general than that studied by Selten (1970) and Corchén (1994) who consider
only the case where g(s) =) ;s;. More general classes of aggregative games have also been proposed in the literature (e.g.
Jensen, 2010; Martimort and Stole, 2011) and questions related to existence, best-response potentials, and stability can be
addressed more generally than under Definition 1.° Aggregative games are also closely related to semi-anonymous games
which are games where each player’s payoff depends on his own strategy and the distribution of opponents’ strategies (see,
e.g., Kalai, 2004).”

Since opponents’ strategies enter player i's payoff function only through the aggregator g(s) = H(Q_; hi(si)), player i’s
best-reply correspondence can always be expressed as,

Ri(S_i,t)ZRi<Zhj(Sj),t>. (2)

J#i

3 In the first case h;(s;) =ot,-s§9 (with s; > 0) and H(z) =z'/P. In the second h;(s;) = o; log(s;) and H(z) = exp(z) (with s; > 0).

6 As shown by Cornes and Hartley (2012), Definition 1 represents the most general class of aggregative games that admits backward reply correspon-
dences when there are three or more players and the aggregator is strictly increasing. In the working paper version of this paper (Acemoglu and Jensen,
2011) we address the situation where the function H in the definition of an aggregator is merely assumed to be increasing (rather than strictly increasing)
which still allows for backward reply correspondences.

7 Clearly, an aggregative game is semi-anonymous if the aggregator g is symmetric. If g is not symmetric, an aggregative game will not be semi-
anonymous except in pathological cases (such as when payoff functions are constant in g(s)). Semi-anonymous games play a central role in the study of
large games, and not surprisingly, aggregative games similarly yield very nice results when there is a continuum of players (Acemoglu and Jensen, 2010).
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In words, a player’s best-replies will always be a function of the aggregate of the other players > i hj(s;), and the exogenous

parameter t. We refer to R; as the reduced best-reply correspondence. Now fix an aggregate, i.e., a value in the domain of the
aggregator, Q € X ={g(s): s € S}, and note that Q = g(s) & Z#i hj(sj) = H~1(Q) —h;(s;). Substituting into the right-hand
side of (2) we can find the set of best-replies, for each player i € Z, that are consistent with Q :

Bi(Q,t)={si € Sit sie Ri(H™'(Q) — hi(s), t)}. (3)

Bi : X x T — 25 U is the backward reply correspondence of player i. It is obvious that any value of the aggregator
Q (¢) for which Q (t) = g(s*(t)) and sj(t) € B;(Q (t),t) for all i, will induce an equilibrium in accordance with Definition 2.
Consequently Q (t) is an equilibrium aggregate given t if and only if Q (t) € Z(Q(t),t) where Z: X x T — 2X U@ is the
aggregate backward reply correspondence defined by:

Z(Q,t)={g(s) € X: s5; € B{(Q,t) foralli e Z}. (4)

As mentioned, the basic question we address in this paper is how the set of equilibria of I vary with t, and more
specifically our main focus is on how the equilibrium aggregates vary with t. Throughout, under the assumed conditions,
equilibria, and therefore equilibrium aggregates, will not be unique, and therefore our comparative static statements will
be similar in spirit to the results of Milgrom and Roberts (1994) and tell us that “the smallest and largest equilibrium
aggregates are increasing in t”. Intuitively, this means that the set of all equilibrium aggregates is contained in an interval
[Q.(t), Q*(t)] whose lower and upper bounds are increasing in t.® If additional conditions are imposed (or hold in a specific
application) which ensure that Q.(t) = Q*(t), then our results of course describe the behavior of this unique equilibrium
aggregate.

3. Aggregative games with strategic substitutes

In this section we show that if an aggregative game has strategic substitutes then regular comparative statics can be
obtained under the very weak compactness and continuity conditions introduced at the beginning of Section 2. So just
as in games with strategic complementarities (Vives, 1990; Milgrom and Roberts, 1990; Topkis, 1998), no differentiability,
quasi-concavity, or convexity conditions are needed to obtain comparative statics results. Note that the aggregative structure
is critical for this observation. In the general class of games with strategic substitutes, much more restrictive assumptions
are needed in order to obtain meaningful comparative statics results (see Roy and Sabarwal, 2010). Concrete applications of
the results can be found in Section 5, in particular that section contains an application to a game where strategy sets are
multidimensional, which illustrates the results’ full scope.

The definition of a game with strategic substitutes is standard.

Definition 3 (Strategic substitutes). The game I'; = ((7r, Si)icz, t) is a game with strategic substitutes if strategy sets are lattices
and each player’s payoff function m;(s;, s_j, t) is supermodular in s; and exhibits decreasing differences in s; and s_;.

Equivalently, we will also say that a game has (or features) strategic substitutes. S; is a lattice if s,s’ € S; implies s A S/,
svs €S; where s As’ and s Vv s’ denote, respectively, the infimum and supremum of s and §'. 7; : S; x S_i x T — R is
supermodular in s; if for all fixed (s_j,t) € S_; x T: mi(s; V s}, S_i, t) — wi(si, S_i, t) > 7i(s}, S_i, t) — i (s A s, s, t) for all
si,s; € Si. Finally, 7r; : S; x S_j x T — R exhibits decreasing differences in s; and s_; if for all t € T and s} > s;: 7;(s}, s_i, t) —
mi(si,S_i,t) is non-increasing in s_; (see e.g.,, Topkis, 1978 or Topkis, 1998). As we explain in a moment, all three are
normally straightforward to verify in aggregative games. It follows directly from Topkis’ theorem (Topkis, 1978) that in
a game of strategic substitutes, each player’s best-response correspondence will be decreasing in the strong set order in
opponents’ strategies. That best-response correspondences are decreasing is the essential property used in our proofs and
our results remain valid under any set of conditions that ensure this outcome.” For a detailed exposition of the general class
of games with strategic substitutes, see e.g. Roy and Sabarwal (2012).

A game that is both aggregative and has strategic substitutes is an aggregative game with strategic substitutes. Definition 3 is
usually straightforward to verify in aggregative games. Particularly simple is the case with a linear aggregator g(s) = 25.:1 Sj

where 7;(si, s_i, t) = T (i, Z§'=1 sj,t). If ; is twice differentiable, then decreasing differences is equivalent to non-positive

8 Pput differently, the set of fixed points of Z will be ascending in t (see e.g. Topkis, 1998). See also Milgrom and Roberts (1994) for a general method-
ological discussion.

9 As a consequence, instead of Definition 3 (supermodularity and decreasing differences), we could equivalently work with quasi-supermodularity and the
dual single-crossing property of Milgrom and Shannon (1994). Note also that since players do not take Q as given, there is no exact relationship between
strategic substitutes and the condition that I7;(s;, Q) exhibits decreasing differences in s; and Q. For example, suppose that N =1, g(s) = Z;:l sj, and
assume that payoff functions are twice differentiable. Then the requirement for strategic substitutes is Disq IT; (sq, Zﬁ-;l sj) = D%zﬂi (si, Q)+D%2Hi (i, Q) <

0 where Q = Z§:1 sj. Decreasing differences in s; and Q, on the other hand, requires that D%ZH,- (si, Q) < 0. Clearly neither condition implies the other.
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cross-partials, ie., to having Dfisjrr,- < 0 for all j#i. But since Disjm = D%zﬂi + D%zﬂi for all j #1i, we see that the
aggregative structure implies that decreasing differences hold for player i under the single condition that':

D%, IT; + D3,1T; < 0. (5)

Since a game with one-dimensional strategy sets automatically satisfies the lattice and supermodularity conditions of
Definition 3, a game with one-dimensional strategy sets and a linear aggregator will consequently be an aggregative game
with strategic substitutes if and only if (5) holds for all i € Z. The strict inequality version of (5) is part of what Corchén
(1994) calls “strong concavity” (Corchon, 1994, Assumption 2).

Theorem 1 (Existence). Let ((IT;, Si)icT, g, t) be an aggregative game with strategic substitutes. Then there exists an equilibrium
s*(t) € S, and also smallest and largest equilibrium aggregates Q. (t) and Q *(t). Moreover, Q, : T — R is a lower semi-continuous
function and Q* : T — R is an upper semi-continuous function.

Proof. Definition 1 is a special case of the class of quasi-aggregative games of Jensen (2010) (see Jensen, 2010, Section 2.3.2,
for an explicit verification of this claim). As a consequence, aggregative games as defined in this paper are either best-reply
potential games or best-reply pseudo-potential games when best-reply correspondences have decreasing selections, and
thus they have a pure-strategy Nash equilibrium (Jensen, 2010, Corollary 1).

To prove the claims concerning the smallest and largest equilibrium aggregates, first define Gr[R;]: T — 25 such that
Gr[R;]1(t) ={s € S: sj € Ri(s_;,t)} for each player i. This correspondence is upper hemi-continuous and has a closed graph
since if s" € R;(s™;,t™) for a convergent sequence (s™,t™) — (s,t), then by the fact that R; itself has a closed graph,
si € Ri(s—i, t). Let E(t) =(); Gr[R;1(t) denote the set of equilibria given t € T. Since E: T — 25 is defined as the intersection
of a finite number of upper hemi-continuous correspondences, it is itself upper hemi-continuous. Since E(t) C S, where S
is compact, E therefore also has compact values. The existence of the smallest and largest equilibrium aggregates, Q. (t) =
Mminscg () g(s) and Q *(t) = maxsep(r) &(S), therefore follows from Weierstrass’ theorem since g is continuous. Upper semi-
continuity of Q* : T — R follows directly from the fact that g is upper semi-continuous and E is upper hemi-continuous
(see Ausubel and Deneckere, 1993, Theorem 1). Lower semi-continuity of Q, follows by the same argument since Q. (t) =
—MmaXseg(r) —&(s) and g is also lower semi-continuous. O

Naturally, pure-strategy equilibria are not necessarily unique under the conditions of Theorem 1, so in general Q. (t) is
different from Q *(t). For conditions that guarantee uniqueness in games with strategic substitutes see e.g. Theorem 2.8 in
Vives (2000) or Corchon (1994). See also the discussion of uniqueness in Section 4.1.1.

Our first substantive result addresses the situation where an exogenous parameter t € T C R directly “hits” the aggregator
in the following sense:

Definition 4 (Shocks that hit the aggregator). Consider the payoff function 7; = m;(s;, S—i, t). Then an increase in t € T C R is
said to be a shock that hits the aggregator if (1) can be strengthened to:

i(s,t) = ITi(si, G(g(s),t)) forallses, (6)

where G = G(g(s),t) is continuous, increasing in t and additively separable in s and t.

Note that the terminology adopted here requires some care and elaboration. First, there is a direction of change in the
definition: a shock that hits the aggregator actually “hits it positively” as implied by the condition that G is increasing in t,
but we drop the “positively” qualifier to simplify the terminology. Of course, if G were decreasing in t, —t would be a shock
that hits the aggregator. Second, a shock that hits the aggregator does not change the aggregator g or the aggregate g(s), it
merely changes the aggregator directly in the payoff function. For example, if ;(s, t) = ITi(s;, t + Zj.:] sj), then an increase

in t is a shock that hits the aggregator as seen by taking G(g(s),t) =t + g(s) and g(s) = Z;zl sj. And clearly, changing t
does not change g or g(s). Examples of shocks that hit the aggregator include an increase in the state’s provision of the
public good in the public good provision model (Section 5.1), an increase in the discount factor in a contest/patent race
(Section 5.2), or a downwards shift in the demand curve in the Cournot model (Section 5.3).

Notice that when a shock hits the aggregator, the marginal payoff of each player decreases (provided that marginal payoffs
are defined).!’ Hence we would intuitively expect a shock that hits the aggregator to lead to a decrease in the aggregate.
The next theorem shows that in an aggregative game with strategic substitutes, this is indeed the case.

a2 7.
10 The derivatives in these statements are defined by D%zn,-(s,-,z#isj,t) = aIz;'fg'yy’t)I(x_y>=(sx,2j¢,-3j) and D%zm(s,-,z#isj',t) =

2T (x,y.0)

Ty =51, i 1)
11 By strategic substitutes, agent i’s marginal payoff must be decreasing in opponents’ strategies and hence, since G is increasing in s and t, an increase
in t must lead to a decrease in marginal payoff.
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Fig. 1. Constructing the aggregate “Novshek selection”.

Theorem 2 (Comparative statics of shocks that hit the aggregator). In an aggregative game with strategic substitutes, a shock that
hits the aggregator leads to a decrease in the smallest and largest equilibrium aggregates, i.e., the functions Q. (t) and Q *(t) will be
decreasingint € T.

Proof. Let t € T be a shock that hits the aggregator. In particular then m;(s, t) = IT;(s;, G(g(s), t)) for all i, where G(g(s),t) =
I:I(hT(t)+Z;-=] hi(s;)) and g(s) = H(Q ;7 hi(si)) is the aggregator. The reduced best-reply correspondence (2) can therefore
be written as: R;(s_i,t) = Ri(hr(t) + Z#i hj(sj)). In what follows we abuse notation slightly and define Q =}, .7 hi(si)
and speak of this as the aggregate. Since the true aggregate H(} ;.7 hi(s;)) increases if and only if ) ;7 hi(s;) increases,
the conclusion that Q decreases with t obviously implies that conclusion of the theorem. Given Q, define the following
correspondence for each i € Z:

Bi(Q.0) = {nehi(S): nehioRi(hr () + Q —n)}. (7)

If strategy sets are one-dimensional and the aggregator is linear, this is just the usual backward reply correspondence B;
as defined in Section 2 (in particular, ) ; 7 h;i(s;) is the true aggregate in this case). The corresponding aggregate backward
reply correspondence is then:

I
Z(Q,0=) Bi(Q.0. (8)

i=1

As explained in Section 2, Q will be an equilibrium aggregate given t if and only if Q is a fixed point for this correspondence
(Q €Z(Q.1)).

Let q(Q,t) € Z(Q,t) be the “Novshek-selection” shown as the thick segments in Fig. 1. Further details about this selec-
tion can be found in Appendix A.l. As it is clear from the figure, the Novshek selection has two key features in games with
strategic substitutes: Firstly, it will be decreasing in Q, ie., if Q" > Q then q(Q’,t) < q(Q,t). Secondly, its left end-point
Q™" will be an equilibrium aggregate, i.e., g(Q ™™, t) = Q™" The latter of these claims is proved in Novshek (1985) (see
also Kukushkin, 1994) in the case of a linear aggregator. Since their proofs carry over directly to our slightly more general
setting, we omit the details. It is clear that without strategic substitutes, one would generally not be able to find a selection
with these properties — in particular Q™™ might not be an equilibrium aggregate. Note also that as it is clear in the figure,
Q™ must necessarily be the largest equilibrium aggregate. The reason is that if Q* € Z(Q*,t) and Q* > Q ™™, Condition 1
in the definition of the Novshek selection (see Definition 10 in Appendix A for further details) would be violated.

We are now ready to prove the main claim of the theorem, namely that the largest equilibrium aggregate Q™" char-
acterized above, will be decreasing in t (for the case of the smallest equilibrium aggregate, see the end of the proof). To
make the proof more accessible, we first illustrate it graphically, followed by formal arguments in all cases. It is sufficient
to establish this result for all local changes in t since if a function is decreasing at all points, it is globally decreasing (of
course, the associated equilibrium aggregate may well jump — the argument is local only in regard to changes in t).

First, note that since hr is an increasing and continuous function, any selection ¢(Q , t) from Z will be locally decreasing
in Q if and only if it is locally decreasing in t (this is an immediate consequence of the separability assumptions — see
the definition of B; above). Likewise, such a selection G(Q,t) will be locally continuous in Q if and only if it is locally
continuous in t. Figs. 2-5 illustrate the situation for t’ < t”. The fact that the direction of the effect of a change in Q and t
is the same accounts for the arrows drawn. In particular, any increasing segment on the graph of Z will be shifted up when
t is increased, and any decreasing segment will be shifted down.

There are four cases: Either the graph of Z’s restriction to a neighborhood of Q™" is locally continuous and locally
decreasing in Q and t (Case I) or locally continuous and locally increasing in Q and t (Case II). Otherwise, continuity does
not obtain, which is the same as saying that the equilibrium aggregate must “jump” when t is either increased from t’ to
t” (Cases Il and 1V) or decreased from t” to t’. [If t is decreased, Case IIl reduces to Case I and Case IV reduces to Case II.]

Cases III and IV are easily dealt with: If the equilibrium aggregate jumps, it necessarily jumps down (and so is decreasing
in t). The reason is that an increase in t will always correspond to the graph of Z being shifted to “the left” (i.e., any
increasing segment will be shifted up, and any decreasing segment shifted down which was the formulation used above).
Hence no new equilibrium above the original largest one can appear, and the jump has to be to a lower equilibrium as is
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Fig. 7. The “Novshek selection” leading to the
smallest equilibrium aggregate.

also immediate in light of the figures. We now consider the more difficult Cases I and II in turn. Throughout the function q
denotes the restriction of Z to a neighborhood of Q™" and Q' and Q" refer to the equilibrium aggregate Q ™" associated
with t’ and t”, respectively.

Case I: In this case there exist Q < Q such that Q(g, t) — Q >0 and 4(Q,t) — Q <0, and such that the new equilibrium

aggregate Q” lies in the interval [Q, Q]. Since § is decreasing in t, it immediately follows that Q” < Q' as desired. Note
that this observation does not depend on continuity of § in Q, but merely on the fact that a new equilibrium aggregate
Q" exists and lies in a neighborhood of Q' in which ¢ is decreasing (in other words, given that ¢ is decreasing, it depends
solely on the fact that the aggregate does not “jump”).

Case II: When § is (locally) increasing, there must exist Q < Q' < Q such that Q —§(Q,t) >0 and Q — G(Q,t) <O0.
Intuitively, this means that the slope of § is greater than 1 at the point Q' as illustrated in Fig. 3. Formally, this can be
proved as follows: Assume that there exists Q° > Q' such that Q° — q(Q°,t) < 0 (intuitively this means that the slope
is below unity, see Fig. 6). Then since g(Q°,t) > Q° > Q’, no Novshek selection could have reached Q' and there would
consequently have to be a larger equilibrium Q *, which is a contradiction.

We now prove that the equilibrium aggregate is decreasing in t: Q” < Q’. As in the previous case, we prove this without
explicit use of continuity (the proof is straightforward if continuity is used directly as seen in Fig. 3). In particular, let us
establish the stronger statement that C(t) = hr(t) + Q (t) is decreasing in t where Q (t) is the largest equilibrium aggregate
given t (since hr(t) is increasing in t, it is obvious that Q (t) must be decreasing in t if C(t) is decreasing). Define the
following function: f(C,t) =C —hr(t) —q(C —ht(t),t). Clearly C(t) =hr(t) + Q (t) as defined with Q (t) is an equilibrium if
and only if f(C(t),t) =0.Let C=hr(t)+Q and C =hr(t)+ Q. From the previous paragraph, f(C,t) = Q —q(Q.t)>0and
f(C,)=Q —§(Q,t) <0. Since B;(C — hr(t),t) is independent of t (t cancels out in the definition of the backward reply
correspondence), q(C — hy(t), t) must be constant in t, ie., g(C — hr(t),t) = §(C) for some function § which is increasing
(since we are in Case II). So f can be written as f(C,t) =C — hr(t) — q(C) where q is increasing, and consequently f will
be decreasing in t and Q. Considering the solution to f(C,t) =0 given t, i.e.,, C(t), it immediately follows that if t increases
then C(t) must decrease. This finishes the proof of the claim in Case II.

Combining the previous observations, we conclude that the largest equilibrium aggregate is decreasing in t as claimed
in the theorem. None of the previous conclusions depend on continuity of q in Q, and it is straightforward to verify
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that the same conclusions hold regardless of whether Q lies in a convex interval or not (strategy sets could be discrete, see
Kukushkin, 1994 for the details of how the backward reply selection is constructed in such non-convex cases). The statement
for the smallest equilibrium aggregate can be shown by an analogous argument. In particular, instead of considering the
selection q(Q,t) one begins with Q sufficiently low and studies the backward reply correspondence above the 45° line,
now choosing for every Q the smallest best response (Fig. 7). This completes the proof of Theorem 2. O

Notice how the proof of Theorem 2 exploits the constructive nature of Novshek’s (1985) existence proof (suitably general-
ized to fit the present framework). This explicit description of the largest (and smallest) equilibrium aggregates is ultimately
what allows us to determine the direction of any change resulting from a shock that increases the aggregator.

Theorem 2 is also robust and global in the sense discussed by Milgrom and Roberts (1994) and Milgrom and Shannon
(1994). In particular, it imposes only minimal qualitative restrictions, and allows us to deal with situations where the
equilibrium aggregates “jump” when t is changed.

In many games — a classical example being that of Cournot oligopoly (e.g. Seade, 1980) — it is interesting to study what
happens to equilibria as additional players enter the game (see Alos-Ferrer and Ania, 2005 for a general discussion of these
issues in an aggregative games framework). To formalize this, consider initially a game with I players as studied above, and
now imagine that an additional player (the entrant) is added. The entrant player I + 1 is (by definition) assigned the “inac-
tion” strategy infS;;; before entry (e.g., when S;; =[O0, 5], inaction corresponds to “zero”, inf S;;1 = 0; zero production in
oligopoly, say, or zero contribution to the provision of a public good). If we take as aggregator g(s) = g(s1, ..., S, Sr+1), this
leads to a well-defined aggregative game both before and after entry: before entry there are I strategic players and syy1 is
just a constant, after entry this is an I + 1 player aggregative game in the usual sense.!?

Theorem 3 (Comparative statics of entry). In an aggregative game with strategic substitutes, entry of an additional player leads to a
decrease in the smallest and largest aggregates of the existing players in equilibrium.

Proof. This result follows from Theorem 2 by observing that the entry of an additional player corresponds to a shock that
hits the aggregator. To see this, let g/*1(sy,...,s;,s;41) be the aggregator in the game after entry. Since g/*! is additively
separable, we necessarily have g/*1(sq,...,s;,s111) =G(g'(s1,...,51),5141) (Vind and Grodal, 2003) where G and g' satisfy
the above requirements for an increase in s;1 to be a shock that hits the aggregator. Since g/(sq,...,s;) is the aggregate
of the existing players, the theorem’s conclusion follows from Theorem 2. O

Intuitively, Theorem 3 shows that in an aggregative game with strategic substitutes, entry “crowds out” existing players.
While intuition may suggest that entry should make the overall aggregate inclusive of the entrant increase, it is well known
from the Cournot model that this is not a general feature of games with strategic substitutes (see Seade, 1980; Corchon,
1994). We return to this topic in the next section.

The next theorem presents our most powerful result for games with strategic substitutes. This result can be viewed as
aggregative games with strategic substitutes’ counterpart to the well-known monotonicity results for games with strategic
complementarities (Vives, 1990; Milgrom and Roberts, 1990). One difference, however, is that with strategic substitutes, the
results apply only to shocks that are idiosyncratic, i.e., to changes in a parameter t; that affects a single player, i € Z. Note
that when T; € RM with M > 1, an increase in t; means that one or more of the coordinates of t; are increased.

Definition 5 (Positive idiosyncratic shocks). An increase in t; € T; is a positive idiosyncratic shock to player i if ; = m;(si, s_i, tj)
exhibits increasing differences in s; and t; and if 7;(s, t;) = mj(s) for all j#i.

The previous definition parallels standard definitions in games with strategic complementarities (e.g., Vives, 2000). When
7r; is twice differentiable, it will exhibit increasing differences in s; and t; if and only if the matrix of cross-partials is
nonnegative, i.e., Dfmm € RﬁXM for all s and t;. It should be mentioned that the single-crossing property of Milgrom and
Shannon (1994) can replace increasing differences in the previous definition without changing the following result. In the
following statement, the smallest and largest equilibrium strategies for player i are defined analogously to the smallest and
largest equilibrium aggregates.

Theorem 4 (Comparative statics of idiosyncratic shocks). In an aggregative game with strategic substitutes, a positive idiosyncratic
shock to player i € T leads to an increase in the smallest and largest equilibrium strategies for player i, and to a decrease in the
associated aggregates of the remaining players (which are, respectively, the largest and smallest such aggregates).

12 When the aggregator is a so-called generalized symmetric aggregator (Alos-Ferrer and Ania, 2005, see also Jensen, 2010, Section 2.3.1) it is possible to
define a game with an arbitrary number of players very elegantly. Unfortunately, that definition does not generalize to aggregators that are merely assumed
to be additively separable, which is why we have chosen to formulate entry as a situation with I + 1 players, one of whom is initially a “dummy” player.
Needless to say, our setting extends to the entry of any number of players by repeated application of Theorem 3.
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Proof. Let R; denote the reduced backward reply correspondence defined in Section 2. Assume without loss of generality
when the idiosyncratic shock affects the first player, in particular then R; is independent of the shock t; for all i # 1.
Any equilibrium will satisfy: s1 € Rl(zﬁél hj(sj),t1) and h;(s;) € hj o R,-(Z#ih(sj)) for i=2,...,1. Consider the last I — 1
inclusions, and rewrite these as:

hi(si) € hj o R,-(( Z h,-(s,-)) +h1(51)> fori=2,...,1. 9)
J#i,1
For any s; € Sq, Theorem 1 implies that there exist smallest and largest aggregates of players 2 to I, y.(s1) and y*(sy) such
that y.(s1) = Z#] hj(sj+) and y*(s1) = Z#] hj(s}f). where the strategies are solutions to the I — 1 inclusions in (9). And
by Theorem 2, y,, y*:S1 — R will be decreasing functions. Now replace s; with s; = —sj, and consider:

S1€ —Ri(y,t1)

and

y € {y«(=51), y* (=51}

This system is ascending in (51, y) and descending in t; in the sense of Topkis (1998), hence its smallest and largest fixed
points are decreasing in t;. Therefore, the smallest and largest equilibrium strategies for player 1 are increasing in t1, while
the associated aggregates of the remaining players are decreasing in t1. That the smallest and largest strategies for player 1
do in fact correspond to the smallest and largest strategies in the original game is easily verified: Clearly, y.(s1) and y*(s1)
are the smallest and largest aggregates of the remaining players across all strategy profiles compatible with an equilibrium
given sq. And since R; is descending in y, the corresponding equilibrium strategies of player 1 must therefore necessarily
be the largest and the smallest such strategies as well. O

Section 5 contains multiple applications of this result. It immediately follows, for example, that — assuming only strategic
substitutes — a decrease in the marginal cost of a firm in Cournot oligopoly will make that firm increase its output at the
expense of the other firms. Since the Cournot model has strategic substitutes if it is merely assumed that inverse demand
is concave and decreasing (Vives, 2000), this conclusion is valid for arbitrary cost functions. This shows that Theorem 4 is a
substantial generalization of existing results such as those of Corchén (1994).

We end this section with a simple corollary to Theorem 4, characterizing the effects of a positive shock on payoffs:

Corollary 1 (Payoff effects). Assume in addition to the conditions of Theorem 4 that all payoff functions are decreasing (respectively,
increasing) in opponents’ strategies and that player i’s payoff function is increasing (respectively, decreasing) in the idiosyncratic
shock t;. Then an increase in t; increases (respectively, decreases) player i’s payoff in equilibrium and decreases (respectively, increases)
the payoff of at least one other player.

Proof. Consider t/ <t in T; and let s’ be the equilibrium given t; corresponding to player i's smallest strategy and s” the
equilibrium given t!" corresponding to player i’s smallest strategy (the proof to follow is the same for the largest equilib-
rium strategies of player i). Under the assumptions of the corollary, (s}, g(s'), t}) < mi(s;, g(s;. s” ;. t])) < mi(s], g(s"), t]).
Since the strategy of at least one player j # i must decrease, the aggregate of opponents’ strategies faced by that player
Zk# hi(s;,) must increase (the best-response correspondences are decreasing in the strong set order). Consequently,

wj(s}, g(s") < 7j(sy, (s}, s ) <mj(s. g(s). O
4. Nice aggregative games

In the previous section we saw how a number of robust and global comparative statics results can be established for ag-
gregative games with strategic substitutes. From Vives (1990), Milgrom and Roberts (1990), and many others, we know that
robust and global results can similarly be established in games with strategic complementarities (and these results obviously
still apply if the game is aggregative). But of course, not all aggregative games feature strategic substitutes or complemen-
tarities, examples in this “neither-or” category being contests (Section 5.2) as well as public good provision models when
the private good is inferior for some levels of income (Section 5.1). In this section, we present a third alternative, named
the local solvability condition under which robust comparative statics statements can be derived in aggregative games. Unlike
results on strategic substitutes or complements, the local solvability condition only works in what we call nice games, which
are in essence games that satisfy a standard battery of differentiability, convexity, and boundary conditions.'® In nice games,
the local solvability condition places sufficient structure on the aggregate backward reply correspondence of Section 2 for

13 As we show below, boundary conditions are not needed when strategy sets are one-dimensional.
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the equilibrium comparison results of Milgrom and Roberts (1994) and Villas-Boas (1997) to apply. So just as in the pre-
vious section, we obtain global and robust results which could not have been obtained by purely local methods such as a
standard application of the implicit function theorem.

We begin by defining nice games. Recall that a differentiable function 7; is pseudo-concave (Mangasarian, 1965) in s; if
for all s;,s; € S;:

T
(si—si) Dsi(si,s—i,t) <O = mwi(s), s—i, t) < mwi(si, S—i ).

Naturally, any concave function is pseudo-concave.
Definition 6 (Nice aggregative games). An aggregative game ((I1;, Si)ic7, g,t) is said to be a nice aggregative game if:

1. The aggregator g is twice continuously differentiable.

2. Each strategy set S; is compact and convex, and every payoff function 7;(s,t) = IT;(s;, g(s),t) is twice continuously
differentiable, and pseudo-concave in the player's own strategies.

3. For each player, the first-order conditions hold whenever a boundary strategy is a (local) best response, i.e.,
Ds, I;(si, g(s), t) = 0 whenever s; € 9S; and (v —Sf)TDsiHi(Si, g(s),t) <0 for all v € S;.

Note that part 3 of this definition does not rule out best responses on the boundary of a player’s strategy set. Instead, it
simply requires first-order conditions to be satisfied whenever a best response is at the boundary. Consequently, it is weaker
than the standard “Inada-type” conditions ensuring that best responses always lie in the interior of strategy sets. We show
below that the boundary condition 3 can be dispensed with if the local solvability condition is strengthened (Definition 8).

The next theorem establishes the existence of an equilibrium and of smallest and largest equilibrium aggregates in any
nice aggregative game.

Theorem 5 (Existence). Let ((IT;, Si)icT, &, t) be a nice aggregative game. Then there exists an equilibrium s*(t) € S, and also smallest
and largest equilibrium aggregates Q .(t) and Q *(t). Moreover, Q, : T — R is a lower semi-continuous functionand Q* : T — R is
an upper semi-continuous function.

Proof. Existence follows straight from Kakutani’s fixed point theorem since best-reply correspondences will be upper hemi-
continuous and have convex values (any pseudo-concave function is quasi-concave). The claims concerning the smallest and
largest equilibrium aggregates follow from the same argument as in the proof of Theorem 1. O

Just as in the setting with strategic substitutes, uniqueness of equilibrium is not implied by any of this section’s condi-
tions (including the local solvability condition). If, however, uniqueness can be established so that Q.(t) = Q*(t) for all ¢,
the statements to follow will just refer to the unique equilibrium aggregate.

We are now ready to introduce the local solvability condition, which is the key assumption of this section. Using that g is
differentiable and additively separable so that g(s) =H(}_ i hj(s;)), the marginal payoff for player i can be expressed as,

Dy, i (s, t) = D1MT(si, g(5), t) + D21Ti(si, g(s), t)H'(H~ ' (g(s))) Dhi(si), (10)

where D ITi(si, &(5), ) = D, [Ti (X1, X2, D) (x1 x2)=(51.8(s))» M= 1, 2.

Eq. (10) shows that in an aggregative game, the marginal payoff is always a function of the player’s own strategy s;,
the aggregate g(s), and the exogenous parameters t. Define a function ¥; : S; x X x T — RN that makes this relationship
explicit'*:

Wi(si, Q. 1) = D1MTi(si, Q. £) + DaITi(si, Q. t)H'(H™'(Q)) Dhy(sy). (11)

In the special case where strategy sets are one-dimensional and g(s) =) ;s;, ¥; is precisely the function introduced by
Corchén (1994) in his analysis of aggregative games.'” Naturally ¥;(s;, Q) =0 < [Ds;mi(s,t) =0 and g(s) = Q], hence
when the game is nice so that first-order conditions are necessary and sufficient for an optimum:

sieBi(Q,) & V¥i(si,Q,t)=0, (12)

where B;: X x T — 25i is the backward reply correspondence of Section 2. It is this simple relationship between ¥; and
B; that makes the class of nice games valuable. If we fix Q and t and differentiate ¥; with respect to s;, we get an
N x N matrix D5 ¥i(si, Q,t) € RN*N_ The determinant of this matrix is denoted by |Ds;Wi(si, Q, t)| € R. If strategy sets are
one-dimensional, |Ds, ¥;(si, Q, t)| = Ds;¥;(si, Q,t) € R. We are now ready to define the local solvability condition.

14 Here the variables s; and Q are independent arguments in ¥;, so that Q is kept fixed when taking the derivative of ¥;. Hence, e.g., D ¥i(si, Q. 0) =
A (x1,Xx2,0) _
e I x)=(s1.0) When N=1.

15 Corchén denotes this function by T; (Corchén, 1994, p. 155). See also Section 2 in Cornes and Hartley (2012) for the general case considered here.
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Definition 7 (Local solvability). Player i € Z is said to satisfy the local solvability condition if ¥(s;, Q,t) =0 = |Ds;¥;(si, Q,1)|
#0forallsjeS;, QeX,andteT.

As mentioned above, the following stronger version of local solvability will allow us to dispense with any boundary
conditions if strategy sets are one-dimensional.

Definition 8 (Uniform local solvability). When S; C R, player i € 7 is said to satisfy the uniform local solvability condition if
Wi(si,Q,t) =0 = Dy ¥i(si, Q,t) <0 forall s;eS;, Q e X,and t e T.

Before discussing the interpretation of these conditions, it is useful to consider a concrete example. Take the Cournot
model where ITi(s) = siP(}_;sj) — ci(si) and so ¥i(si, Q) = P(Q) + siP’(Q) — ci(s;) (suppressing here exogenous pa-
rameters). Hence the local solvability condition will hold if either Dg¥i(si, Q) = P'(Q) — ¢/ (si) <0 or D5 ¥i(s;, Q) =
P’(Q) —c](si) > 0 whenever P(Q)+s;P'(Q) —c/(s;) =0. If the first of the two holds whenever P(Q)+s;P'(Q) —c/(s;) =0,
the uniform local solvability condition is satisfied. For example, this will be the case when costs are convex and inverse de-
mand is strictly decreasing (these conditions are clearly not necessary).'® Other examples where the uniform local solvability
condition is satisfied is in the public good provision model if the public good is strictly normal (Section 5.1), and in contests
if players’ cost functions have larger curvature than their success functions (Section 5.2).

The local solvability condition requires that the determinant of Dy, ¥; is nonzero on the subspace where ¥; = 0. This im-
plies that we can solve the equation ¥;(s;, Q) = 0 locally for s; given Q, hence its name. To be precise, when ¥;(s;, Q,t) =0,
the local solvability condition allows us to apply the implicit function theorem to conclude that there exist open neighbor-
hoods J\/s,- € Sijand Mg <€ X of s; and Q, respectively, and a continuous map b; : Mg — ./\/'Si such that for each Q e Mg,
bi(Q) is the unique solution to ¥;(s;, 0.t)=0in N,. In terms of backward replies, we see from (12) that this implies local
uniqueness as well as continuity of backward replies (in fact the function b; : Mg — A, will be such a local selection from
the backward reply correspondence). In each of the proofs below, this is the critical component and our results would go
through under any set of conditions that ensures this outcome.

If strategy sets are one-dimensional (S; C R for all i), and more generally if strategy sets are lattices and payoff func-
tions supermodular in own strategies, we can define positive shocks in the standard way known from games with strategic
complementarities (see e.g. Vives, 2000). Recall again that if t € T CRM, M > 1, then an increase in t means that at least
one of t’s coordinates increases.!”

Definition 9 (Positive shocks). Consider the payoff functions m; = mi(s;, s_j, t). Then an increase in t is called a positive shock
to t €T if each S; is a lattice, and 7; is supermodular in s; and exhibits increasing differences in s; and t. In particular, if
S; CR for all i, then t is a positive shock if each 7r; exhibits increasing differences in s; and t.

Notice that if an increase in ¢ is an idiosyncratic shock (7; = mi(s,t) and 7; =mj(s) for all j # i), Definition 9 trivially
holds for all j # i which brings us back to Definition 5 of the previous section. The discussion immediately prior to Theo-
rem 2 also implies that a shock that hits the aggregator is a negative shock to t (—t is a positive shock) if the game features
strategic substitutes, and by the same reasoning, t will be a positive shock if the game features strategic complementarities.
These observations clarify how the following theorem complements our findings from the previous section.

Theorem 6 (Aggregate comparative statics). Consider a nice aggregative game where each player’s payoff function satisfies the local
solvability condition. Then a positive shock to t € T leads to an increase in the smallest and largest equilibrium aggregates, i.e., the
functions Q. (t) and Q *(t) will be increasing in t. When strategy sets are one-dimensional and each player’s payoff function satisfies
the uniform local solvability condition, the result remains valid without imposing the boundary condition 3 of Definition 6.

Proof. See Appendix A.2. O

Theorem 6 is this section’s main result. Since the proof is rather long, it is relegated to Appendix A. The main idea
is to apply Theorem 1 of Milgrom and Roberts (1994) or Theorem 1 of Villas-Boas (1997) to the aggregate backward
reply correspondence which, crucially, can be shown to be continuous and single-valued when the local solvability condition

16 1t is worth noting that the condition P'(Q)—c{(si) <0 is one of Hahn (1962)'s two conditions for local stability of Cournot equilibrium (see Vives, 1990,
Chapter 4, for an extensive discussion of this and related conditions). The other condition is strategic substitutes, which is not needed for the following
results. As mentioned by Corchdn (1994, p. 156), Corchén’s “strong concavity condition” reduces precisely to the two Hahn conditions in the Cournot model
(except that strategic substitutes is strengthened to strict strategic substitutes). As a consequence, in Section 5.3 we generalize Crochon’s (1994) results for
the Cournot model. See also the discussion immediately prior to Theorem 1.

17" This definition uses the lattice and supermodularity conditions for clarity. Positive shocks can be defined more generally without necessitating any
modification in our results, but this would be at the expense of additional notation. See the working paper version of this paper (Acemoglu and Jensen,
2011).
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holds.’® As discussed at the beginning of this section, Theorem 6 is particularly useful in applications that feature neither
strategic substitutes or strategic complementarities such as contests or patent races. In Section 5.2 we present an application
of Theorem 6 to this class of models. Finally note that Theorem 6 — just as our results on strategic substitutes — is global
and robust in the sense of Milgrom and Roberts (1994). In particular, the theorem applies even if an equilibrium selection
“jumps” when t is raised.

Our next result is the analogue of Theorem 3 for nice aggregative games.

Theorem 7 (Comparative statics of entry). Under the conditions of Theorem 6 entry of an additional player increases the smallest and
largest equilibrium aggregates, i.e., if Q. (I) and Q *(I) denote the smallest and largest equilibrium aggregates in a game with I ¢ N
players then Q. (I) < Q4(I+1)and Q*(I) < Q*(I + 1) for all I € N. The previous inequalities will be strict if the entrant does not
choose the “inaction” strategy inf Sy 1.

Proof. The statement is proved only for the largest equilibrium aggregate (the proof for the smallest aggregate is simi-
lar). Consider the game with [ + 1 players but where player I 4+ 1 is a “dummy player” with a fixed strategy S;+1 € Si+1.
Since s;y1 is exogenous we can define the largest aggregate backward reply map g(Q,s;4+1) as in Appendix A.2 (so in
terms of that section’s notation, we have here taken t := s;;1). Note that q(Q,s;+1) must be strictly coordinatewise
increasing in s;;1. Let s} 1 denote the entrant’s strategy after entry in the equilibrium associated with the largest equi-
librium aggregate Q *(I + 1). Then Q*(I) and Q*(I + 1) are the largest solutions to Q (I) = f~1(G(f(Q (I)),infS;41)) and
QU+ =f"1qfQU+1), s}*ﬂ)), respectively (here f is the strictly increasing and continuous transformation defined
in the first paragraph of Appendix A.2). Since f~1(G(f(Q (I +1)), s;+1)) is strictly increasing in s;.1 and infS;41 < Sy, the
conclusion now follows immediately from Theorem 1 in Milgrom and Roberts (1994) or Theorem 1 in Villas-Boas (1997)
(again see Appendix A.2 for further details). Clearly, Q*(I) = Q*(I + 1) cannot hold unless s, ; =infS;;1, hence the aggre-
gate is strictly increasing whenever the entrant does not choose to be inactive. O

Our third and final result characterizes the comparative statics of individual strategies. Unlike any of our previous results,
this theorem directly uses the implicit function theorem. As such it is a local result and also requires that the strategies for
the equilibrium in question are interior. The idea here is very simple: Once we have established the effect of a change
in t on the aggregate Q, we can treat both t and Q as exogenous variables for any player i and address the individual
comparative statics effect through standard techniques. Here we use the implicit function theorem, but there is nothing in
the way of using more sophisticated methods such as those of Milgrom and Shannon (1994).

Theorem 8 (Individual comparative statics). Let the conditions of Theorem 6 be satisfied and consider player i’s equilibrium strategy
s{(t) associated with the smallest (or largest) equilibrium aggregate at some equilibrium s* = s*(t) given t € T. Assume that the
equilibrium s* lies in the interior of S and that t is a positive shock. Then the following results hold.

e s7(t) is (coordinatewise) locally increasing in t provided that

—[Ds. (s}, g(s%), t)]71 Do ¥i(sf, g(s*).t) > 0.

e Suppose that the shock t does not directly affect player i (i.e., w; = ;(s)). Then the sign of each element of the vector D;s (t) is
equal to the sign of each element of the vector —[Ds, W; (s}, g(s*N1! Dq Wi(s}, g(s™)). In particular, s} (t) will be (coordinatewise)
locally decreasing in t whenever:

-1
—[Dsi%i(s7. g(s7))] Do Wilsi, g(s™)) <0.
Proof. By the implicit function theorem, we have:
D, ¥i(si, Q. t)ds; = —DqWi(si, Q. 1)dQ — D [Ti(s;, Q. t)dt.
—[Ds; ¥i(si, Q,t)]‘lDfitH,-(si, Q,t) is equal to D¢b;(Q,t) where b; is player i’s backward reply function. From Lemma 5

(the proof) this matrix it nonnegative. The results therefore follow directly from the fact that Q increases with t when Q
is either the smallest or largest equilibrium aggregate. O

An application of this result to contests is given in Section 5.2.

18 without local solvability, the aggregate backward reply correspondence may easily fail to be single-valued. And more generally it may easily fail to
have selections that are “continuous but for jumps up” in the sense of Milgrom and Roberts (1994). Note that all of these statements remain valid even
if best-reply correspondences are continuous and single-valued, in particular, single-valued best-replies certainly does not imply single-valued backward
replies.
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4.1. Further remarks and extensions

4.1.1. Alternatives to local solvability

We can dispense with the differentiability requirements of nice games, and at the same time weaken the assumed
pseudo-concavity to quasi-concavity. The resulting conditions are interesting both for applications and because they allow
us to discuss the literature’s main results on uniqueness of equilibrium in aggregative games (Corchén, 1994; Cornes and
Hartley, 2005b).

Let us simplify the exposition by focusing on one-dimensional strategy sets. Recall that an aggregator always has a
representation of the form g(s) = H (Z§:1 hj(s;)), where H and hy, ..., h; are strictly increasing functions. Therefore, for

any Q in the range of g, we have Q = g(s) & s; = hl.”[H‘l(Q) — Z#,- hj(s;)]. Intuitively, this means that if we know
the aggregate Q and the aggregate of I — 1 players ) i hj(s;), we also know the strategy of the last player s;. Define a

function G;i(Q,y) = hlf] [H~1(Q) — y] that captures this feature of an aggregative game. Recall from Milgrom and Shannon
(1994) that a function f(Q, y) satisfies the single-crossing property in (Q, y) if, for all Q' > Q and y’ > y, we have

f(QLy)= > f@Q.» = FfQ.Y)= ) f(Q.Y)

Consider now an aggregative game that satisfies the general compactness and continuity conditions presented at the
beginning of Section 2, and in addition has convex strategy sets and payoff functions that are quasi-concave in own strate-
gies. It can then be shown that if I7;(G;(Q, y), Q,t) satisfies the single-crossing property in (Q, y) for each i € Z, then the
conclusions of Theorems 6 and 7 continue to hold. When payoff functions are twice differentiable and the equilibrium is
interior, the conclusions of Theorem 8 also carry over.'?

The previous observations provide a useful and simple alternative to the local solvability condition.

Theorem 9. Consider a nice aggregative game with linear aggregator g(s) = ) _; s; and one-dimensional strategy sets, and assume
that for each playeri e Z:

D, %i(si, Q,t) <0 forallsieS;, Q € X, andteT. (13)

Then the conclusions of Theorems 6, 7, and 8 hold (without any boundary conditions).

Proof. Since g is linear, G;(Q,y) = Q — y and I7;(G;i(Q, y), Q.,t) = I1;(Q — y, Q,t). The condition Dy ¥;(s;, Q) <0 is
equivalent to —Ds,¥; = —D%lﬂi — D%lﬂi >0 for all s; and Q. This is in turn equivalent to I7;(Q — y, Q,t) exhibiting
increasing differences in Q and y. Since increasing differences implies the single-crossing property, the result now follows
from the previous observations. 0O

Note that (13) is neither weaker or stronger than the local solvability condition which requires that Ds,¥;(s;, Q,t) #0
for all s;, Q, and t with ¥;(s;, Q,t) = 0.20 If (13) holds with strict inequality throughout, i.e., if,

D5 Wi(si, Q,t) <0 foralls;eS, Q X, andteT, (14)

then local solvability is implied in nice games (in fact this implies uniform local solvability). What Corchén (1994) calls
“strong concavity” is condition (14) together with the strict inequality version of the strategic substitutes condition (5) of
Section 3 (usually called strict strategic substitutes). “Strong concavity” is of course stronger than anything assumed in this
paper, in particular, it implies uniqueness of equilibrium (Corchén, 1994, p. 156).%!

4.1.2. Ordinality

It is useful to note that the local solvability condition is ordinal. Firstly, it is easily seen to be independent of strictly
increasing transformations of the payoff functions, i.e., the local solvability holds for the payoff function m;(s,t) if and
only if it holds for @;(s;(s,t)) where @; : R — R is any strictly increasing and twice continuously differentiable function,
with derivative denoted by &/ (where differentiability is needed here to ensure that the transformed payoff function is
also twice continuously differentiable). Secondly, local solvability holds for any choice of coordinate system allowing one to

19 For detailed proofs of these claims, see the working paper version of this paper (Acemoglu and Jensen, 2011).

20 Also note that Theorem 9 is valid even when the game is not nice as explained previously. In particular, pseudo-concavity of payoff functions in own
strategies may be replaced with quasi-concavity of payoff functions in own strategies.

21 An alternative, and weaker, set of conditions that imply uniqueness are the uniform local solvability condition together with the following condition:

Yisi, Q,t)=0 = 5;iDs¥(si, Q, ) + QDo ¥i(si, Q,t) <0 foralls;, Q, andt.

As explained by Cornes and Hartley (2005b), these conditions together imply that share functions are decreasing, which in turn implies that the equilibrium
aggregate must be unique. For details see Section 9.1 in Cornes and Hartley (2005b).



40 D. Acemoglu, M.K. Jensen / Games and Economic Behavior 81 (2013) 27-49

replace each strategy vector s; with a transformed vector §; = v;(s;) where v; : RN — RN is a diffeomorphism.?? Finally, if
local solvability holds for one aggregator g then it holds also for any aggregator that is a strictly increasing transformation
of g. The verification of this last claim is straightforward and is omitted.

Ordinality is important in understanding the condition’s content, for checking the local solvability condition in certain
applications, and plays a critical role in the proof of Theorem 6.

5. Applying the theorems

In this section, we study a number of applications and show that our methods allow very general comparative static
results in these widely used models. We begin with the public good provision model which, as we show is a game of
strategic substitutes if the private good is normal, and satisfies the uniform local solvability condition if the public good is
strictly normal. If the public good is merely assumed to be normal, the results from Section 4.1.1 apply. These observations
allow us to illustrate both our results on games with strategic substitutes and nice games under (uniform) local solvability.
We then turn to contests which feature neither strategic substitutes nor strategic complementarities, but, as we show, satisfy
the uniform local solvability condition if players’ cost functions have larger curvature than their contest success functions.
Our third application is the Cournot model where we focus on the case with strategic substitutes and present what we
believe are the literature’s first comparative statics results at the level of generality of Novshek (1985) and Kukushkin
(1994) — in particular, the results are valid without any quasi-concavity assumptions on firms’ profit functions thus allowing
for non-decreasing returns to scale. Finally, we illustrate how our results can be applied to games with multidimensional
strategies by looking at a model of technology choice in oligopolistic competition.

5.1. Private provision of public goods

Consider the workhorse model of public good provision originally studied by Bergstrom et al. (1986). There are I indi-
viduals, each making a voluntary contribution to the provision of a unique public good. Individual i maximizes her utility
function,

I
ui{ i Y sj+5), (16)
j=1

subject to the budget constraint ¢; + ps; = m;. Here m; > 0 is income, ¢; private consumption, and s; is agent i’s contribution

to the public good, so that 25.:1 sj+ 5 is total amount of the public good provided. The exogenous variable 5 > 0 can be

thought of as the state’s baseline provision of the public good that will be supplied without any private contributions.
Substituting for c;, this is seen to be an aggregative game with reduced payoff functions given by

I I
IT; s,-,Zsj,m,p,§ =1u; mi—pSi,ZSj+§ , forallieZ. (17)
j=1 j=1

The aggregator is simply g(s) = Z§=1 sj.23 When s* = (s])icz is an equilibrium, we refer to g(s*) = Z{zl s; as the
aggregate equilibrium provision. Let us simplify the exposition and notation here by assuming that u; is smooth and that
strategy sets are intervals of the type S; =[0,s;] € R. The private good is normal if the following condition holds for all
se S¥:

I I
—pD%zui m,-—psi,Zsj—l-E +D%2ui mi—pSi,ZSj+§ <0. (18)
j=1 j=1

22 In the new coordinate system, the local solvability condition reads:

Dy ' Gowi(v; ' G, Q) =0 = |Dz[Dy; Gy G, Q)] #0. (15)

But since Dy;'Gy) is a full rank matrix, (i) (¥, 'G).Q) = 0 & Dy 'GD¥%(¥ ' G, Q) = 0; and (i) D% G). Q) # 0 &
D5, [Dy GWi (¥ Gi), Q)11 = 1Dy Gi) D, Wi (W Gi), Q[P Gi)1T| # 0. It follows that the local solvability in the new coordinate system (15) holds
if and only if the local solvability condition holds in the original coordinate system.

23 Cornes and Hartley (2007) study a more general class of public good provision models where the aggregator is not necessarily linear. As their analysis
demonstrates, the resulting model is (still) an aggregative game, and it is therefore a straightforward exercise to extend the result below to it, which we do
not do to save on notation.

24 One way to verify this normality condition is by means of Topkis’ theorem: If we substitute for s; in (16) instead of for c;, (18) is precisely the condition
for the objective to exhibit increasing differences in ¢; and m;. Note that weaker but less standard conditions for normality are available. For example, we
could, instead of increasing differences in ¢; and m;, impose the single-crossing property in ¢; and m; (see footnote 9). Crucially, a normal private good is
equivalent to descending best-response correspondences regardless of which normality condition we settle on (again see footnote 9).
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Since the left-hand side of (18) is equal to D?,»sj”i- the private good is normal if and only if the game has strategic
substitutes (cf. Definition 3). The following results consequently follow directly from those in Section 3:

Proposition 1. Consider the public good provision game and assume that the private good is normal. Then there exists an equilibrium.
Furthermore:

1. Anincrease in the state’s baseline provision s leads to a decrease in the smallest and largest aggregate equilibrium provisions.

2. The entry of an additional agent leads to a decrease in the smallest and largest aggregate equilibrium provisions by existing agents.

3. A positive shock to agent i will lead to an increase in that agent’s smallest and largest equilibrium provisions and to a decrease in
the associated aggregate provisions of the remaining I — 1 players.

The observation that the public good provision model has a pure-strategy Nash equilibrium assuming merely that the
private good is normal appears to be new. The absence of any concavity assumptions highlights that the results of Proposi-
tion 1 could not have been derived using the implicit function theorem.2>

If instead we assume that the public good is strictly normal, we can obtain a number of results using the theorems from
Section 4. Indeed, suppose that the payoff function is pseudo-concave (which was not assumed for Proposition 1). Then the
public good will be strictly normal if the following condition holds for all s € 5?°:

D, ¥i(si, Q) = p*D1yui(m; — psi, Q) — pDaqui(m; — psi, Q) < 0. (19)

It is clear that (19) implies the uniform local solvability condition. In addition, it implies that an increase in m; or a
decrease in p constitute positive shocks, i.e., Dfiml'[i >0 and D?i pI1i < 0, respectively. The next proposition therefore follows
immediately from Theorems 6-8:

Proposition 2. Consider the public good provision game and assume that the public good is strictly normal, that payoff functions are
pseudo-concave in own strategies and that strategy sets are convex. Then there exists an equilibrium. Furthermore:

1. Any positive shock to one or more of the agents (e.g., a decrease in p, or increases in one or more income levels, my, ..., my) leads
to an increase in the smallest and largest aggregate equilibrium provisions.

2. The smallest and largest aggregate equilibrium provisions are increasing in the number of agents.

3. The changes in 1 and 2 above are associated with an increase in the provision of agent i if the private good is inferior for this agent,
and with a decrease in agent i’s provision if the private good is normal and the shock does not directly affect the agent.

Proposition 2 could also be obtained under weaker conditions by applying Theorem 9. Specifically, if the public good is
normal (condition (19) holding as weak inequality), the conditions of that theorem are satisfied and Proposition 2 remains
valid. Note also that if one imposes strict normality of the private and public goods simultaneously, then the equilibrium
will be unique as proved by Bergstrom et al. (1986).

5.2. Models of contests and fighting

Consider a contest where I agents are competing to obtain the prize (or fighting for victory). Agent i € Z's payoff function
s,
hi(si)
I
R + H(Zj:] hj(Sj))

where s; denotes agent i’s effort, ¢; : Ry — R4 his cost function, and V; > 0 his valuation of the prize. The contest success
functions h; : Ry — R4, i € Z, together with H : R, — R, and the parameter R > 0 specify the likelihood of winning
the prize. Throughout, all functions are assumed to be strictly increasing and twice continuously differentiable. In addition,
strategy sets are assumed to be compact intervals, S; = [0, 5;] for all i. The formulation chosen here is fairly general, and
allows not just for standard contests (where often R is taken equal to zero), but also includes models of rent-seeking such as
Dixit (1987) and Skaperdas (1992), as well as patent races in the spirit of Loury (1979). It is clear that this is an aggregative
game with the aggregator g(s) = H(Z}z1 hj(sj)).

Contests generally feature neither strategic substitutes nor strategic complements. Therefore, the results in Section 3
do no apply, nor do any of the well-known results on games with strategic complementarities. In this case, the most

mi(si,s—i) =Vi- —Ci(si), (20)

25 This statement also applies to Corchén (1994), whose comparative statics results on games with strategic substitutes are indeed based on the implicit
function theorem. But even ignoring this, it is easy to see that Corchén’s “strong concavity assumption” amounts to assuming that both the private and
public goods are strictly normal. This “double normality” assumption (as it is often called) dates all the way back to the original article of Bergstrom et al.
(1986) and is also in force in Cornes and Hartley (2007) mentioned above.

26 The equivalence between strict normality of the public good and (19) follows since ds;(m, p, Z#i sj)/om = a(pD%zui —p? Dﬁui) where o > 0 is a
constant.
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obvious strategy for deriving comparative static results is to use the implicit function theorem. Unfortunately, the implicit
function theorem approach yields ambiguous conclusions unless one imposes additional, strong assumptions. For this reason,
previous treatments have restricted attention to special cases of the above formulation. For example, Tullock (1980) studied
two-player contests, while Loury (1979) focused on symmetric contests under (ad hoc) stability conditions. The most general
comparative statics results available in the literature are to our knowledge those of Nti (1997) whose results apply to
symmetric equilibria (in particular, agents must be identical) under the additional assumptions that H = id (the identity
function), that h; = h for all i and concave (a symmetric, concave contest success function), and that costs are linear (c;j(s;) =
cs; for some constant ¢ > 0).

Using the results of Section 4, we can establish considerably more general and robust results on this important class of
models. In particular, no symmetry assumptions are imposed.?’” To apply the results of Section 4, we must verify the local
solvability condition. Direct calculations yield

his))  H'(H-'(Q)h(shi(s) .

lIII(SU Q)_VI[R+Q - (R+Q)2 i|_Ci(Sl)3
and

W (. I(: / -1 "¢ Vh:(s: / -1 e 2
Dy Wi(si, Q) = sz/li (si) [ hiGs)) ~ H'(H (Q))hl(zsl)hl(sl)} s — ViH (H (Q))(hz,(sz)) '

hi(si) R+Q (R+Q) (R+Q)

Therefore, when ¥;(s;, Q) =0, we have
n/(s) s HHTQ)Ns))?

DsiWi—WCi(Sz)—Ci (si) = V- R+ Q)2 .

Dividing both sides by c;(s;) > 0, we immediately see that Ds,¥; < 0 whenever ¥;(s;, Q) =0 and the following condition is
satisfied:

h? (s) 3 ¢/ (si)
hi(si) — cl(si)

for all s; € S;. (21)

hi(si)si _ ¢} (si)si
hiGsi) = cilsi)
larger curvature than the contest success function. Intuitively, this simply means that the cost function is “more convex”
than the success function (note that this statement does not imply that either function must be convex!). Parallel curvature
conditions play a central role in industrial organization, e.g., in the analysis of price discrimination (Schmalensee, 1981).

Note that since D, ¥; < 0, condition (21) implies the uniform local solvability condition. Hence the conclusions of The-
orem 6 are valid without any boundary conditions on payoff functions. 1 and 2 of the following proposition now follow
directly from Theorems 6 and 7. Part 3 of this proposition is a straightforward application of Theorem 8 (the algebraically
cumbersome details are placed in Appendix A along with a verification of the existence claim).

When s; > 0, this can also be written, for all s; € S;, which says that the cost function must have a

Proposition 3. Consider a contest with payoff functions (20) and suppose that H is strictly increasing and convex, h; and c; are strictly
increasing, that all of these functions are twice continuously differentiable, and that condition (21) is satisfied for each agent. Then
there exists an equilibrium. Furthermore:

1. The smallest and largest aggregate equilibrium efforts are increasing in any positive shock (e.g., a decrease in R or an increase in
Vi for one or more players).

2. Entry of an additional player increases the aggregate equilibrium effort.

3. Finally, the effects on the individual effort levels can be predicted as follows. Define the real-valued function n : R — R:

1(Q") = [ZH’(Hl(Q*)) ~ H”(Hl(Q*))]l
B (R+Q" H'(H=1(Q*) | ~
Then the changes in parts 1 or 2 above are associated with an increase in the effort of player i € Z at the corresponding equilibrium
aggregate Q * whenever player i is “dominant” in the sense that h,-(s;") > n(Q™). Conversely, if i is “not dominant”, i.e., h,-(s;*) <
n(Q™), then the changes in parts 1 and 2 decrease player i’s effort provided that the shock does not affect this player directly (e.g.,
corresponding to a decrease in another player’s costs).

27 Since we do not assume concavity of payoff functions, the following proposition also generalizes the existence result of Szidarovszky and Okuguchi
(1997). Note that when R =0, H(0) =0, and h;(0) =0 for all i (as assumed by Szidarovszky and Okuguchi, 1997), the payoff functions are not well-defined
when all agents choose zero effort. This poses a minor difficulty for the proof of existence, but it can be easily overcome: Simply consider a sequence of
games, all of which have R, > 0 but are otherwise identical, and use the result below. Letting R, — 0 we get for each n an equilibrium, and by the upper
hemi-continuity of the best-reply correspondences, the limit point of any convergent subsequence of equilibria will then be an equilibrium for the game
with R=0.
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Proof. Conditions 1 and 2 were verified above. For the remaining statements see Appendix A.3. O

Note that when H = h; =id (the identity function), and R =0, we have n(Q*) = Q*/2, and so player i is “dominant” in
the sense of 3 if and only if sf > Q*/2. In a two-player contest, this precisely means that she is the “favorite” to win the
prize in the sense of Dixit (1987). With I > 2 players, being “dominant” means that she is more likely to win the prize than
everybody else combined.

Also observe that the conditions of Proposition 3 are satisfied if H is the identity function, c; is convex, and h; is
concave.?® Proposition 3 also covers important cases where h; is not concave. For example, Hirshleifer (1989) proposes the
logit specification of the contest success function, with H = id (the identity function), and h;(s;) = eiSi (k; > 0), and studies
the special case where k; =k for all i under additional assumptions. In such cases, Proposition 3 continues to apply as long
as ¢; has larger curvature than h; at all s; € S;. For example if c;(s;) = ei where I; > k;, this will be the case.

5.3. Cournot oligopoly

Consider the Cournot model of quantity competition. There are I firms, each choosing s; € [0, 5;] to maximize profits:

I
mi(s, ) =siP D sj+E | —cisi, t). (22)
j=1

Here t; is a parameter that affects the cost ¢; of firm i, and t parameterizes shifts in direct demand (Q = D(p) — <
p = P(Q +1t), where D is the direct demand function and P the indirect demand function). It is clear that increases in ¢
(downward shifts in direct demand) are shocks that hit the aggregator in the sense of Definition 4. We assume throughout
Fhat D?iti ¢ <0, i.?., that an increase. in t; is a positive shock. Clearly, this game is aggregative with g(s) =)_ ;$j- Moreover,
it features strategic substitutes provided that

P'(Q +0 +siP"(Q +1) <0, (23)

where Q = Z;ﬂ sj. For example, this will hold if inverse demand is strictly decreasing and the elasticity of P/, ep(Q) =

P”(Q)Q/P’(Q) is less than 1 (naturally, concave inverse demand is in turn sufficient for this).”° Note that this condition is
completely independent of the cost function, hence the results to follow are valid if firms’ production technologies exhibit
non-decreasing returns to scale. It is also not required that strategy sets are convex.’? As in the previous applications, the
following is an immediate consequence of our results in Section 3:

Proposition 4. Consider the Cournot model and assume that (23) holds. Then this is a game with strategic substitutes and the following
comparative statics results apply:

1. Anincrease in t leads to a decrease in the smallest and largest aggregate equilibrium outputs.

2. The entry of an additional firm leads to a decrease in the smallest and largest aggregate equilibrium outputs of the existing firms.

3. A positive shock to firm i (an increase in t;) will lead to an increase in that firm’s smallest and largest equilibrium outputs and to
a decrease in the associated aggregate equilibrium outputs of the remaining I — 1 firms.

Notice that part 3 directly generalizes the duopoly result of Vives (1990) to any number of firms (in the duopoly case,
one can reverse the order on one of the firm’s strategy sets and obtain a game with strategic complementarities).

If instead we were to assume concavity (or pseudo-concavity), comparative statics can be obtained by use of the results
from Section 4. In the absence of strategic substitutes (e.g., Amir, 1996), the comparative statics results one obtains in
this way will be new. We omit the details, but see the paragraph after Definition 8 for conditions under which the local
solvability condition holds in the Cournot model.

5.4. Technology choice in oligopoly

As a final application, we consider games in which oligopoly producers make technology choices as well as setting
output. Thus strategy sets are of dimension 2, which allows us to illustrate how our results can be applied when strategy
sets are multidimensional. For a general and related discussion of models of technological choice and competition see Vives
(2008).

28 szidarovszky and Okuguchi (1997) prove that these conditions imply uniqueness of equilibrium if in addition R = 0 in (20). See also Cornes and Hartley
(2005a) for a very simple proof of this result based on the “share function approach” discussed in the Introduction and elsewhere. Such uniqueness is not
necessary or assumed in Proposition 3, but if it holds one of course gets “sharper” conclusions that refer to the unique equilibrium aggregate.

29 Amir (1996) studies conditions under which the Cournot model will be a game of strategic substitutes or complements (our results on strategic
substitutes are equally valid under the ordinal conditions of Milgrom and Shannon, 1994 which is what Amir focuses on).

30 To the best of hour knowledge, there are no existing comparative statics results for the Cournot model that hold at this level of generality.
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Consider a Cournot model with I heterogeneous firms. Let g = (q1, ..., q;) be the output vector and a = (ay, ..., aj) the
technology vector. Throughout, both are assumed to lie in compact sets. Let us define Q = Z;-Z] q;j as aggregate output.
Profit of firm i is

Ii(qi, a;, Q) = mi(q,a) =q;P(Q) — ¢i(qi, a;) — Ci(a;),

where P is the (decreasing) inverse market demand function, the cost function c¢; is a function of firm i's quantity and
technology choices, and C; is the cost of technology adoption. Assume that P, c¢; and C; are twice differentiable for all i, P
is strictly decreasing (P’(Q) < 0 for all Q), C; is convex, and dc;(q;, a;)/dq;da; < O (for each i), so that greater technology
investments reduce the marginal cost of production for each firm.

The first-order necessary conditions for profit maximization are

o aci(qi, aj

I P(Q)gi+ P(Q) — 2IED g
3 el

omi _ _9da(@ia) 9Gi(@) _

aa; - aa; aa; e

We assume that these first-order conditions hold at any optimum (including optima at the boundary, cf. part 3 of
Definition 6). Let us now consider the effect of a decline in the cost of technology investment by one of the firms (i.e.,
a shift in C;), which clearly corresponds to a positive shock. The results from Section 4 suggest that we should check the
local solvability condition. In particular, consider the matrix:

/ _ 32Ci _ 32C,’

D w PHQ) aq? aq;da;
@)™ = 9 2 9%
9gida; da?  da?

for each i, where in terms of the notation of Section 4 we have taken s; = (q;, a;). When c;(qj, a;) is convex, the matrix

_ 326,‘ _ 8261'
2 0a:

aq; 9q;9a;

_ 326,‘ _8261
dg;0a; da?

is negative semi-definite. Since P’(Q) < 0 and —82C,‘/8ai2 < 0, this is sufficient to guarantee that |DY;| < 0. Therefore,
whenever each c;(qj, a;) is convex, the local solvability condition is satisfied. Hence, a decline in the cost of technology
investments for one of the firms will necessarily increase total output. Similarly, the effects of an increase in demand
on output and technology choices can be determined robustly. The following proposition summarizes these results (proof
omitted):

Proposition 5. Consider the technology adoption game described above and assume that the cost functions ¢; = c;(q;, a;) (for each i)
are convex. Then the local solvability condition holds and as a consequence:

1. Any positive shock to one or more of the firms (e.g., a decrease in marginal costs parameterized via ¢; = c;(q;, a;, t)) will lead to
an increase in total equilibrium output.
2. Entry of an additional firm will lead to an increase in total output.

Note also that the oligopoly-technology game is a game with strategic substitutes when 82c;(q;, a;)/dq;da; < 0.' So
when technological development lowers the marginal cost of producing more input, the results from Section 3 will apply
and produce a parallel set of comparative statics results.

6. Conclusion

This paper presented robust comparative static results for aggregative games and showed how these results can be
applied in several diverse settings. In aggregative games, each player’s payoff depends on her own actions and on an ag-
gregate of the actions of all players (for example, sum, product or some moment of the distribution of actions). Many
common games in industrial organization, political economy, public economics, and macroeconomics can be cast as ag-
gregative games. Our results focused on the effects of changes in various parameters on the aggregates of the game. In most
of these situations the behavior of the aggregate is of interest both directly and also indirectly, because the comparative
statics of the actions of each player can be obtained as a function of the aggregate. For example, in the context of a Cournot

31 This condition ensures that payoff functions are supermodular in own strategies. It is easy to check that payoff functions also exhibit decreasing
differences in own and opponents’ strategies.
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model, our results characterize the behavior of aggregate output, and given the response of the aggregate to a shock, one
can then characterize the response of the output of each firm in the industry.

We focused on two classes of aggregative games: (1) aggregative games with strategic substitutes and (2) nice aggregative
games, where payoff functions are twice continuously differentiable, and (pseudo-)concave in own strategies. For instance,
for aggregative games with strategic substitutes, we showed that:

1. A change in a parameter that directly affects the aggregate — such as a negative shock to demand in the Cournot
model — will lead to a decrease in the aggregate (in the sense that the smallest and the largest elements of the set of
equilibrium aggregates increase).

2. Entry of an additional player decreases the (appropriately defined) aggregate of the existing players.

3. A “positive” idiosyncratic shock, defined as a parameter change that increases the marginal payoff of a single player,
leads to an increase in that player’s strategy and a decrease in the aggregate of other players’ strategies.

We also provided parallel results for nice games under a condition called the local solvability condition. Those results apply
to, for example, contests which are not games of strategic substitutes (nor are they games of strategic complementarities).

The framework developed in this paper can be applied to a variety of settings to obtain “robust” comparative static
results that hold without specific parametric assumptions. In such applications, our approach often allows considerable
strengthening of existing results and also clarifies the role of various assumptions used in previous analyses. We illustrated
how these results can be applied and yield sharp results using several examples, including public good provision games,
contests, and oligopoly games with technology choice.

Throughout this paper, the aggregate has been assumed to be one-dimensional. It is possible to extend the framework to
allow for multidimensional aggregates (Acemoglu and Jensen, 2011). Other restrictions of this paper are that strategy sets
are assumed to be finite dimensional and the set of players finite. We conjecture that the results presented in this paper can
be generalized both to games with infinitely many players and games with infinite-dimensional strategy sets. Indeed, with
the appropriate definition of an aggregator for a game with infinitely many players (e.g., along the lines of the separability
definitions in Vind and Grodal, 2003, Chapters 12-13), our main results and in fact even our proofs remain valid in this case.
Similarly, with the appropriate local solvability condition, all of our results on nice games appear to generalize to games
with infinite-dimensional strategy sets.

Appendix A
A.1. Details of the Novshek selection from the proof of Theorem 2

In this section we give a detailed exposition of the Novshek selection from the proof of Theorem 2. Note that the construc-
tion here is slightly different from the original one in Novshek (1985), but the basic intuition is the same. Aside from being
somewhat briefer, the present way of constructing the “Novshek selection” does not suffer from the “countability problem”
in Novshek’s proof pointed out by Kukushkin (1994), since we use Zorn's Lemma to construct the selection.

Definition 10 (Novshek selections). Let Q% Q2 e R, Q? < QP. A selection q:[Q% Q”] — R from Z (ie., a function with
q(Q,t) e Z(Q,t) forall Q €[Q%, QP]) is called a Novshek selection (on [Q?, QP]) if the following hold for all Q €[Q%, Q"]:

1. q(Q,t)>zforall ze Z(Q,t).

2.qQ,H<Q. ~

3. The backward reply selections b;(Q,t) € B;j(Q,t) associated with g (i.e., backward reply selections satisfying q(Q,t) =
Zj b;j(Q.,t) all Q) are all decreasing in Q on [QY, QP ie, Q7> Q' = b;(Q",t) <bi(Q',¢t).

Before we can construct a suitable Novshek selection, we need to establish the existence of an element Q™ > 0 as
in Fig. 1, with the property that g < Q™3 for all g € Z(Q™,t). This can be done by suitably modifying an argument of
Kukushkin (1994, p. 24, 1. 18-20).

Lemma 1. There exists an element Q ™3 > 0 such that g < Q™ forallq € Z(Q ™3, t).

Proof. Let D; denote the subset of R upon which h;oR; is defined, i.e., write y € D; if and only if h; oRi(y) # (). Since h;oR;
is upper hemi-continuous, D; is closed. It is also a bounded set since R; € S; and each S; is compact. Consequently, D; has
a maximum, which we denoted by d;. Then extend h; o R; from D; to D; U (d;, Q™*] by taking h; o Rj(d) = L; for all d €
(dj, Q™*]. Here L; can be any small enough element (for each player i € 7) such that > ; 1; < Q™*, 1; <minh;o Ri(d)),
and QM — | ; € (d;, Q™M3*]. With Z defined as above but based on the previous extension of h; o R; to D; U (d;, Q ™3], it is
clear that Z(Q™*,t) ={>_; Li} < Q™ which is what we wanted to show. O

Note that, strictly speaking, Z in the previous lemma refers to the aggregate backward reply correspondence after best-
response correspondences have been extended as in the proof. In particular, therefore Z(Q ™, t) # . Let D C (—o0, Q M¥]
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Ri(Q-n) (solid),
Ri(Q+A-n) (dashed)

'

e

- e
- A

Fig.8. n € Bi(Q) [n € Bi(Q + A)] if and only if the solid [dashed] curve intersects the diagonal at 7.

denote the subset of R upon which (the extended version of) Z(-,t) is well-defined. Abusing notation slightly, let
[Q,QM*X]=DN{Q: Q' <Q < QM&X}, Any such interval [Q’, Q™®*] will be compact because D is compact (see the
proof of the previous lemma for an identical argument).

Lemma 2. There exists an element Q™" < Q M and a well-defined Novshek selection q : [Q ™™, Q ™3] — R on [Q ™", Q ™3], The
element Q™" will be minimal in the sense that if Q" < Q ™1, then there will not exist a Novshek selection on [Q ', Q ™3],

Proof. Denote by 2 C 2R the set of all “intervals” [Q’, Q™*] upon which a selection with properties 1-3 exists. Notice
that {Q M} € 2 so £ is not empty. £2 is ordered by inclusion since for any two elements ', ®” in 2, @’ =[Q”, QM¥*] C
[Q/,QM*X]=w’ < Q” < Q’. A chain in £2 is a totally ordered subset (under inclusion). It follows directly from the upper
hemi-continuity of the backward reply correspondences that any such chain with an upper bound has a supremum in £
(i.e., £2 contains an “interval” that contains each “interval” in the chain). Zorn’s Lemma therefore implies that £2 contains
a maximal element, i.e., there exists an interval [Q ™M Q™3] ¢ 2 that is not (properly) contained in any other interval
from 2. O

A.2. Proof of Theorem 6

We begin by noting that there is no loss of generality in using the aggregator g(s) =) ; hi(s;) in the following, and
assuming that minges, hi(s;) =0 for all i. To see why, recall that the local solvability condition is independent of any
strictly increasing transformation of the aggregator as well as any coordinate shift (Section 4.1.2). Let the original aggrega-
tor be g(s) = H(}_; hi(s;)). We begin by transforming strategy vectors by multiplying with a positive constant such that
maxsleglh (si) — ming,cs; h (sj) = 1. Next, we use the transformation f(z) H Y(z) — > iminges; Fl,’(S,’) to get the new
aggregator g(s) = f(g(s)) = Y_; hi(si), where hi(s;) = h,(s,) — mmsiesih,(s,). Clearly, minges; hi(s;) =0 for all i with this
transformed aggregator.

Let Ri: S_i x T — S; be the best-response correspondence of player i and R; the transformed and reduced best-response
correspondence defined by R,-(Z#i hj(sj),t) = hj o Rij(s—i, ). Then define the (transformed) backward reply correspondence
B; of player i by means of:

ni€Bi(Q,t) & nieRi(Q—nb).

It is clear that Q is an equilibrium aggregate given t € T if and only if Q € Z(Q,t) =) ; Bi(Q,t) (the correspondence Z
is the aggregate backward reply correspondence already studied in the proof of Theorem 2).

We are going to suppress t to simplify notation in what follows. By definition, 1 € B;(Q) < 1 € R;(Q — ). Graphically,
n lies in B; if and only if the correspondence R;(Q — -) intersects with the diagonal/45°-line at 7. A crucial feature of the
graphs of R;j(Q — -) for different values of Q, is that these correspond to “horizontal parallel shifts” of each other. To be
precise, consider the solid curve in Fig. 1 which is the graph of R; i(Q —-) for some choice of Q. Now increase Q to Q + A,
A > 0. Because of the additive way in which 7 and Q enter into R;, the graph of R;(Q + A — -) will precisely be a parallel
right shift of the graph of R;(Q — -) with each point on the former laying precisely A to the right of each point on the
latter (the dashed curve in Fig. 8). Similarly, if A < 0, the graph will be shifted to the left in a parallel fashion. It is this
straightforward observation that drives essentially the entire proof. We begin with the following:

Lemma 3. When S; C R and the uniform local solvability condition holds, we may for each player i € T replace ¥; with a function
W; such that (i) n; € B;i(Q, t) if and only if ¥i(s;, Q, t) = 0 for some s; € S; with n; = h;(s;), and (ii) Ds;¥;(si, Q, t) < 0 whenever
i(si, Q, ) =0.

Proof. We suppress t in the following to simplify notation. Obviously, the statement is valid for any »; in the interior of S;
by assumption. So there is only something to prove when S; CR and n; € B;(Q") N {0, max S;} (i.e., is on the boundary) and
Yi(n;, Q") # 0. Consider here the case where n; =0 (the proof is the same when n; = maxS;). Let [Qq, Q5] be the maximal
interval (necessarily closed) for which {0} € B;(Q) for all Q €[Qg, Qp]. It is easy to show that we must have ¥;(0, Qq) =
¥;(0, Qp) = 0: by varying Q either below Q, [or above Q] we get a continuous, non-constant extension b;(Q) € B;i(Q)
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with bij(Qq) =0 [bi(Qp) = 0]. In particular, such an extension must lie in the interior of S; for Q # Q4 [Q # Qp]. But then
¥;(bi(Q),Q) =0 for all Q # Qg, and by continuity of b; and ¥; follows that ¥;(0, Qq) = 0 [¥;(0, Qp) = O respectively].
Importantly, by uniform local solvability ¥;(0, Qq) <0 and ¥;(0, Qp) < 0. We may therefore replace ¥; with a function 7
which equals ¥; outside any interval [Qg, Qp] and where: (i) ;(0,Q) =0 for all Q €[Qq, Qypl, and (ii) Dy ¥;(0,0) <0
for all Q € [Qq, Qp]. Clearly, we can also choose J; such that the resulting “replacement” of ¥; will be continuously
differentiable in s;. Observe that without uniform local solvability, we might not have been able to find a replacement
satisfying (ii) because we could have, say, D;;¥;(0, Qq) <0 and D5, ¥;(0, Q) > 0. O

Note that the conclusion of Lemma 3 is true by assumption if boundary conditions hold. Note also that in the multidi-
mensional case where boundary conditions are always in force, the statement remains valid by assumption if we replace
(ii) with |Ds ¥i(si, Q, t)| # 0 whenever ¥i(si, Q,t) = 0 (this is the local solvability condition). We can now prove a key
observation:

Lemma 4. B;(Q) consists of at most one element (hence B; is single-valued whenever it is well-defined).

Proof. As is clear graphically, if B;j(Q) is not single-valued for some Q, there must lie at least one point (x;, y;) on the
graph of R;j(Q — ) ((xi, yi), yi € Ri(Q —x;)) with the property that a line with slope +1 intersects the graph precisely at
(xi, yi) and in a neighborhood that either lies entirely below or entirely above the graph. Since y; € Ri(Q +yi— (i +yi), it
follows that x; + y; € B;(Q + y;). But either raising or lowering Q will now lead to two continuous selections from Bj, call

them b; and b; which take the same value at Q' + yi (ie, bi(Q' +yi) = bi(Q' + yi)) but take different values at all Q + y;
with Q # Q' and Q sufficiently close to Q’. We are now going to show that this is impossible under the local solvability
condition.

Begin by noting that in the one-dimensional case by Lemma 3 (denoting here ¥; of that lemma again by %), n; e
Bi(Q") = [¥i(s;, Q") =0 for some s} € S; with h;(s}) = n;]. And since then D5, ¥;(s;, Q") < 0, the implicit function theorem
implies the existence of a locally unique, differentiable function f;: (Q’—€, Q" +¢€) — S; such that ¥;(f;(Q), Q) =0 for all
Q €(Q'—€,Q' +¢), and such that f;(Q’) =s;. This clearly contradicts the existence of selections b; and b; as described
above and the proof is complete. In the multidimensional case, the implicit function theorem still applies due to the local
solvability condition, so we still get functions b; and b; as described. But things are complicated by the fact that we may
have two different solutions to ¥;(-, Q") = 0: ¥;(s;, Q') =0 and ¥;(5;, Q") =0, s; #5; with nj = h;(s;) = h;(5;). Intuitively,
the problem here is that local uniqueness in terms of s; does not (seem!) to imply local uniqueness in terms of 7; = h;(s;) as
stated in the lemma. Since s;,S; € R;i(Q" —n;), the above situation can of course only arise if R; is not single-valued at Q" —

i In fact, it can only happen if R; is not single-valued at Q' — n; since otherwise 1; = h;(s;) for all s; € R;(Q"—n;) (a convex
set), which definitely contradicts local uniqueness of solutions to ¥;(-, Q') = 0. Now, when such multiplicity in terms of s;
arises, the implicit function theorem will give us two functions f; and fl such that ¥;(fi(Q), Q) =0, tI/,(f,(Q) Q)=0,
and fi(Q) # f,(Q) for Q close to Q' (in addition, f;(Q’) =s; and fl(Q ) =5;). Since h;, f; and fl are differentiable at
Q’, Q —hi(fi(Q)) and Q — h; (fl(Q)) will obviously be differentiable at Q’. Neither term can be constant in Q: If this
were the case for, say, Q — h;(fi(Q)) we would have h;(fi(Q)).n; € Ri(Q — hi(fi(Q))) =Ri(Q’ — n;) where necessarily

hi(fi(Q)) # hi(fi(Q") =n; (for Q — hi(fi(Q)) to be locally constant at Q’, f;(Q) obviously cannot be locally constant at
Q'). But then we can for any Z close to Q" —»; find Q and Q such that Z=Q — hi(fi(Q)) = Q@ — hi(fi(Q)), and since

fi(Q), fi(Q) € Ri(2), R; must be multi-valued not just at Q" — n; but also at any Z close to Q" — n;. This again leads to a
contradiction and the proof is complete. O

In the following, let b; be the function such that B;(Q) = {bi(Q)} (of course, bi(Q) is only well-defined if B;(Q) # ).
Let §; = max R; (0) and p; = min R; (Xj) where x; = ZH&I MaX;es; hj(s;j). Since 6; € Ri(6; — 6;) and pi € Ri(xi + Pi — Pi), we
must have b;(6;) = 6; and b;(X; + p;) = p;. It can never be the case that X; + p; = 6;.> Hence the previous construction marks
two different points on the backward reply function b;. Assume first that 6; < x; 4+ ;. Then the graph of Ri(%i + Pi — 1) must
lie strictly below the 45°-line for all n > p; since if not it would lie everywhere above the diagonal, which would imply
that B;(6;) = @ (observe that we are here using that B; is single-valued since this implies that Ri(Q — ) cannot intersect
with the 45°-line twice). Likewise, the graph of R;(6; — n) must lie completely above the 45°-line for 1 < 6;, otherwise we
would have B;(x; + p;) = @. In case 6; > X; + p;, the “dual” conclusions apply for the same reasons (by “dual” we mean that
Ri(Xi + pi — n) lies above the 45°-line for n > p; and R;(6; — n) lies below the 45°-line for n < 6;). From now on we are
going to focus on the first of the above cases where 6; < ; + p;. But all arguments immediately carry over to the case where
0; > x; + p; so that b; will be defined on [x; + p;, 6;] instead of [6;, X; + p;] (simply interchange the left and right end-points
0; and x; + p; throughout the following arguments).

The next three conclusions follow immediately from the fact that a change in Q, from Q to Q + A, corresponds to an
exact parallel shift of the graph of R;(Q — ) either to the left A <0 or to the right A > 0. First, we see that B;(Q) =@ for

32 1f 9; = %; + p; then clearly p; < 6;. In addition, p; € R; (X + pi — i) = Ri; — pi) hence 6;, p; € Bj(6;) contradicting that B; is single-valued.
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all Q ¢ [6;, x; + pi]. Secondly, we see that B;(Q) # ¢ for all Q € [6;, x; + p;], so on this interval the function b; is actually

well-defined. Finally, we see that min Ri(Q — n;) > n; for n; <b;(Q) and max Ri(Q — n;) < n; for n; > b;(Q). Graphically,

this last observation means that b;(Q) corresponds to a point where R;(Q — -) intersects with the 45°-line “from above”.
Let & = max; 6; and § = min;[X; + p;]. It is clear that,

2(Q) =) _bi(Q),

is a well-defined and continuous function precisely on the interval [0, §] and that z(9) > 6 and z(8) < §. We have suppressed
t from the previous exposition. When t is included, all of the conclusions still hold of course only now we must write
z(Q,t)=>";bi(Q.t) and this will be well-defined for all Q € [6(t), §(t)], where both #(t) and §(t) are increasing in ¢ (that
these are increasing in t follow directly from the definition of these together with the definition of a positive shock). We
may without loss of generality assume that the increase in t takes place in just a single coordinate and, abusing notation
slightly, we then have t € T = [a, b] C R (if several of t’s coordinates are increased, simply repeat the argument for each
coordinate and use that in each case the aggregate will increase). It is convenient to extend z(-,t) such that this is defined
on [0(a),(b)] for all t. We do so simply by taking z(Q,t) = z(0(t),t) for all 8(a) < Q < O(t) and z(Q,t) = z(§(t), t) for
I —1+ p(b) > Q > 4(t). Crucially, this will not introduce any new equilibrium aggregates since z(Q,t) = z(6(t),t) > Q for
all Q <6(t),and Q <z(Q,t) =2z(8(),t) for all Q > &(t). We now have:

Lemma 5. z(Q , t) is increasing in t.

Proof. Due to the way the extension of z was made above (in particular, the fact that 6(t) and §(t) are both increasing
in t), the conclusion immediately follows if we can show that each b;(Q,t) is increasing in t. b;(Q, t) corresponds to the
intersection between R;(Q — -,t) and the 45°-line where R;(Q — n;) is strictly above (below) the 45°-line for n; < b;(Q)
(i > b;j(Q)). By assumption, t is a positive shock in the sense that the smallest and largest selections of R;(Q — n;,t) are
increasing in ¢t (for all fixed Q and ;). Moreover, as shown in the proof of Theorem 1, the smallest (respectively, the largest)
selection from an upper hemi-continuous correspondence with range R is lower semi-continuous (respectively, upper semi-
continuous). In particular, the least selection is “lower semi-continuous from above” and the greatest selection is “upper
semi-continuous from below”. Combining we see that the correspondence Ei(Q —nj, t) — {n;} satisfies all of the conditions
of Corollary 2 in Milgrom and Roberts (1994). This allows us to conclude that b;(Q,t) is increasing in t. O

To summarize, Q *(t) is an equilibrium aggregate given t if and only if z(Q *(t), t) = Q *(t). In addition, we have proved
that z(Q,t) is continuous in Q and increasing in t. Finally, recalling the definitions of #(a) and 6(b) from above, we have
that z:[0(a),5(b)] x T — R satisfies z(6(a),t) > 6(a) and z(5(b),t) < 8(b) for all t. The conclusion of the theorem now
follows from the same argument we used at the end of the proof of the previous lemma (alternatively, it also follows from
the simpler version of this result that applies to the continuous function z(Q,t) — Q, see e.g. Villas-Boas, 1997).

A.3. Proof of Proposition 3

Conditions 1 and 2 were verified in the main text, so only Condition 3 and existence of an equilibrium remain to be
addressed. To prove existence, consider the payoff function of player i after the change of coordinates s; — z; = h;(s;) (for
iel) mi(z) =Vizi[R + H(Z;:1 z]-)]_1 — Ci(z;). Since H is convex, it is straightforward to verify that 77; will be pseudo-
concave in z; under condition (21) (in particular, this condition implies that ¢; =c; o h;” T will be convex). Existence of an
equilibrium therefore follows from Theorem 5 (the often studied case where payoff functions are not well-defined at the
origin was dealt with in footnote 27). Note that a coordinate change as the one just considered does not affect any of our
comparative statics results since the local solvability is ordinal (Section 4.1.2). In particular, the (uniform) local solvability
will hold in this new set of coordinates if and only if it holds in the original coordinates. To prove 3 we use Theorem 8.
Note that theorem'’s condition for s (t) to be locally increasing in a positive shock ¢ is

(s (57 5(). 0] ' Do wi(s7. 5(7).6) > 0. @4

Since Ds;W¥i(s}, g(s*),t) < 0 under condition (21), (24) holds if and only if Dq ¥i(s}, Q*,t) > 0 where Q* = g(s*). For the
same reason, the condition for s7(t) to be decreasing in t when t does not directly affect player i (the second statement
of 3), is satisfied if and only if D ¥;(s}, Q*) < 0. Since Dq ¥i(s], Q*, t) equals:

_{_ hi(sp) HNHWQWW@mmﬁ_HWHWQmﬁiW@ﬂMWMMﬁ]
LR+ Q#2 (R+Q*? (R+Q*)? ’
it is immediately seen that (24) will hold if and only if h;(sf) > n(Q*) where 7 is the function defined in the theorem. By

Theorem 8 the player will then increase her effort. The case where Dq ¥i(s}, Q*) <0 and a non-affected player decreases
her strategy follows by the same reasoning.
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