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Abstract

This online appendix provides the proofs for various theoretical results (Section A) as
well as additional information regarding the empirical estimation and the quantitative
exercises in the main paper (Section B).

A Proofs

A.1 Section 2.1

Additively Separable Utility. We first establish that our demand system under b = 0 en-
compasses the case of additively separable utility functions considered in Krugman (1979).
Using our notation, his model corresponds to a situation in which preferences are repre-
sented by a utility function, U =

´
w2W u(q

w

)dw. The first-order conditions associated with
utility maximization imply u0 (q

w

) = lp
w

, where l is the Lagrangian multiplier associated
with the budget constraint. Inverting the first-order conditions implies

q
w

= u0�1 (lp
w

) , (A.1)

together with the budget constraint,
ˆ

w2W
p

w

q
w

dw = y. (A.2)

Under b = 0, equations (2) and (3) in the main text are equivalent to equation (A.2) and
Q = 1, respectively. In turn, equation (1) in the main text and Q = 1 imply q

w

= D (p
w

/P).
Thus, setting P ⌘ 1/l and D (·) ⌘ u0�1 (·), we see that if utility functions are additively
separable, then the associated demand must satisfy equations (1)-(3) in the main text.

When b = 0, one can further show that the converse also holds. That is, if the demand
system satisfies equations (1)-(3) in the main text, then the utility function of the representa-
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tive agent must be additively separable. To see this, note that since D (·) is strictly decreas-
ing, equation (1) in the main text implies

p
w

= PD�1(q
w

).

From the first-order conditions associated with utility maximization we know that

dU/dq
w

= lp
w

.

The two previous expressions imply that for any pair of goods, w1and w2,

dU/dq
w1

dU/dq
w2

=
D�1(q

w1)

D�1(q
w2)

.

Thus the Leontief-Sono condition for separability (Blackorby et al. (1978), p.53) is satisfied:

d
dq

w3

✓

dU/dq
w1

dU/dq
w2

◆

= 0 for any w3 6= w1, w2.

The fact that U is additively separable, up to a monotonic transformation, then follows from
the Representation Theorem 4.8 in Blackorby et al. (1978), p. 136.

Kimball Preferences. We now show that our demand system under b = 1 encompasses the
case of Kimball preferences. Under Kimball preferences, utility Q from consuming {q

w

}
w2W

is implicitly given by ˆ
U
✓

q
w

Q

◆

dw = 1, (A.3)

for some function U that satisfies U0 > 0 and U00 < 0. The utility maximization program of
the consumer is to maxQ,{q

w

} Q subject to equations (A.3) and (A.2). Let g and l denote
the Lagrange multipliers associated with these two constraints. Manipulating the first-order
conditions of this problem we get

q
w

= QU0�1

0

@

l

´
q

w

U0
⇣

q
w

Q

⌘

dw

Q
p

w

1

A for all w. (A.4)

The demand system under Kimball preferences is characterized by equations (A.2)-(A.4).
Under b = 1, equations (2) and (3) in the main text are equivalent to

´
w2W H (p

w

/P) dw =

1 and equation (A.2), respectively. Thus, setting P ⌘ Q/
⇣

l

´
q

w

U0
⇣

q
w

Q

⌘

dw

⌘

, D(·) ⌘
U0�1 (·), and H(·) ⌘ U(D (·)), our demand system with b = 1 replicates the demand system
under Kimball preferences.
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QMOR Expenditure. Finally, we show that our demand system under b = 1 also en-
compasses the demand system corresponding to QMOR expenditure functions in Feenstra
(2014). The QMOR demand system entails q

w

= QD(p
w

/P) with

D (x) ⌘
(

Vxr�1 ⇥1 � x�r/2⇤ i f x  1
0 i f x > 1

, (A.5)

where P acts as a choke price defined implicitly by

P =

0

B

@

0

@

N

N �
⇣

eN � V/$

⌘

1

A

r/2 ˆ
p

w

P

1
N

pr/2
w

dw

1

C

A

2/r

, (A.6)

and where Q is determined such that the budget constraint (A.2) is satisfied.A.1 In the pre-
vious expressions, V and $ are parameters, eN ⌘

´
W dw is the measure of all possible goods,

N ⌘
´

p
w

P dw is the measure of the set of goods with prices equal or below the choke price
P. To proceed, note that equation (A.6) can be rearranged as

1 =
1

N �
⇣

eN � V/$

⌘

ˆ
p

w

P

⇣ p
w

P

⌘r/2
dw. (A.7)

To conclude, let us show that this is equivalent to equation (2) in the main text under b = 1
if one sets

H
⇣ p

w

P

⌘

⌘ 1

V

⇣

V/$ � eN
⌘

⇣ p
w

P

⌘1�r/2
D
⇣ p

w

P

⌘

.

Together with the definition of D(·) in equation (A.5), the previous definition implies

ˆ
W

H
⇣ p

w

P

⌘

dw =
1

V/$ � eN

ˆ
p

w

P



⇣ p
w

P

⌘r/2
� 1
�

dw.

Thus, as argued above,
´

W H
� p

w

P
�

dw = 1 is equivalent to equation (A.7).A.2

A.1Equations (A.5) and (A.6) are the counterparts of equations (7) and (2) in Feenstra (2014), respectively.
A.2Since the translog expenditure system is a special case of QMOR expenditure functions, as shown in Feen-

stra (2014), this establishes that our demand system encompasses the translog case. But it is useful to show
directly that our demand system leads to translog demand if we set D(x) ⌘ zx�1 ln x�1 for x  1 and D(x) = 0
otherwise, with z some positive constant, and H(x) ⌘ xD(x). Equation (2) in the main text with b = 1 then
implies

´
p

w

P z ln(p
w

/P)�1dw = 1, which is equivalent to

ln P =
1

zN
+

1
N

ˆ
p

w

P
ln p

w

dw,

which is the condition that determines P in the translog demand; see equation (8) in Feenstra (2014). Equa-
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Homothetic Preferences. In Section 2.1 we have also argued that if D (·) satisfies Assump-
tion A1, then consumers have homothetic preferences if and only if b = 1. We now establish
this result formally. Throughout this proof we will repeatedly use the fact that preferences
are homothetic if and only if the income elasticity, ∂ ln q

w

(p, y)/∂ ln y, is equal to one for all
goods w 2 W.

Suppose first that b = 1. Then equation (2) in the main text implies
´

w2W H (p
w

/P) dw =

1, so P(p, y) is independent of y. Differentiating equation (1) in the main text, we therefore
get:

∂ ln q
w

(p, y)
∂ ln y

=
∂ ln Q(p, y)

∂ ln y
.

But Equation (3) in the main text implies ∂ ln Q(p,y)
∂ ln y = 1, hence the income elasticity is equal

to one for all goods w 2 W, so preferences are homothetic.
Now suppose that b = 0. As established above, this requires additively separable utility

functions. From Bergson (1936), we also know that such functions are homothetic only if
they are CES. Since Assumption A1 rules out the CES case, we conclude that preferences
cannot be homothetic if b = 0.

A.2 Section 3.1

In Section 3.1 we have argued that more efficient firms charge higher markups, µ

0 > 0, if
and only if #

0
D > 0.

Suppose first that #

0
D > 0. Let f (m, v) ⌘ m � #D(m/v)

#D(m/v)�1 . Equation (5) in the main text
entails f (m, v) = 0. Differentiating with respect to m and v, we obtain

∂ f (m, v)
∂m

= 1 +
#

0
D(m/v)

(#D(m/v)� 1)2
1
v
> 0,

∂ f (m, v)
∂v

= � #

0
D(m/v)

(#D(m/v)� 1)2
m
v2 < 0,

where the two inequalities derive from #

0
D > 0. By the Implicit Function Theorem, equation

(5) therefore implies µ

0(v) = � (∂ f (m, v)/∂v) / (∂ f (m, v)/∂m) > 0.
Now suppose that µ

0 > 0. We proceed by contradiction. If #

0
D  0, then µ

0(v) =

� (∂ f (m, v)/∂v) / (∂ f (m, v)/∂m) > 0 implies

1 +
#

0
D(m/v)

(#D(m/v)� 1)2
1
v
< 0.

tion (3) in the main text with b = 1 is just the budget constraint, which given equation (2) in the main text
immediately implies Q = w/P.
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Using the fact that m = #D(m/v)
#D(m/v)�1 , this can be rearranged as

#D(m/v) (#D(m/v)� 1) + (m/v)#0D(m/v) < 0.

By definition, #D(x) = �xD0(x)/D(x), which implies

#

0
D(x) = �D00(x)x

D(x)
� D0(x)

D(x)
+

(D0(x))2 x
(D(x))2 , for all x.

Using this expression, we can rearrange the above inequality as

2
�

D0(m/v)
�2 � D(m/v)D00(m/v) < 0.

From the second-order condition of the firm’s profit maximization problem, we know that

2(∂q(p, Q, P)/∂p) + (p � c)(∂2q(p, Q, P)/∂p2)  0

Together with the first-order condition, (p � c)/p = �1/(∂ ln q(p, Q, P)/∂ ln p), this implies

2 (∂q(p, Q, P)/∂p)2 � q(p)(∂2q(p, Q, P)/∂p2) � 0.

Using equation (4) in the main text, m = p/c, and v = P/c, we therefore have

2
�

D0 (m/v)
�2 � D (m/v) D00 (m/v) � 0,

a contradiction.

A.3 Section 3.3

In Section 3.3, we have argued that once models with variable markups considered in this
paper are calibrated to match the trade elasticity q and the observed trade flows

�

Xij
 

, they
must predict the exact same changes in wages and trade flows for any change in variable
trade costs as gravity models with CES utility, such as Krugman (1980), Eaton and Kortum
(2002), Anderson and Van Wincoop (2003), and Eaton et al. (2011). We now establish this
result formally.

Relative to ACR, their restriction R1 follows from equation (15), R2 from equation (10),
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and R3’ from equation (16) in the main text. Combining these three conditions, we obtain

lij =
Nibq

i
�

witij
��q

Âk Nkbq

k
�

wktkj
��q

,

wiLi = Â
j

lijwjLj,

with Ni invariant to changes in trade costs, as established in equation (12) in the main text.
These are the same equilibrium conditions as in gravity models with CES utility in ACR.
To show that counterfactual changes in wages and trade flows only depend on trade flows
and expenditures in the initial equilibrium as well as the value of the trade elasticity, we can
use the same argument as in the proof of Proposition 2 in ACR. Consider a counterfactual
change in variable trade costs from t⌘

�

tij
 

to t

0⌘
n

t

0
ij

o

. Let x̂ ⌘ x0/x denote the change
in any variable x between the initial and the counterfactual equilibrium. Since Ni is fixed for
all i, one can show that {ŵi}i 6=j are implicitly given by the solution of

ŵi = Ân
j0=1

lij0ŵj0Yj0
⇣

ŵit̂ij0
⌘�q

Yi Ân
i0=1 li0 j0

⇣

ŵi0 t̂i0 j0
⌘�q

. (A.8)

where ŵj = 1 by choice of numeraire. Given changes in wages, {ŵi}, changes in expenditure
shares are then given by

l̂ij =

�

ŵit̂ij
��q

Ân
i0=1 li0 j

⇣

ŵi0 t̂i0 j

⌘�q

. (A.9)

Equations (A.8) and (A.9) imply {ŵi} and
�

l̂ij
 

only depend on the value of trade flows
and expenditures in the initial equilibrium as well as the trade elasticity. Once changes in
expenditure shares,

�

l̂ij
 

, are known, changes in bilateral trade flows can be computed
using the identity, X̂ij = l̂ijŵj. Thus the same observation applies to changes in bilateral
trade flows, which concludes the argument.

A.4 Section 4.2

Invariance of Distribution of Markups. In Section 4.2, we have argued that if markups are
an increasing function of firm-level productivity, then the univariate distribution of markups
is independent of the level of trade costs. We now establish this result formally. Let Mij(m; t)

denote the distribution of markups set by firms from country i in country j in a trade equi-
librium if trade costs are equal to t⌘

�

tij
 

. Since firm-level markups only depend on the
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relative efficiency of firms, we can express

Mij(m; t) = Pr {µ (v)  m|v � 1} ,

where the distribution of v depends, in principle, on the identity of both the exporting and
the importing country. Recall that v ⌘ P/c and c = cij/z. Thus for a firm with productivity
z located in i and selling in j, we have v = Pjz/cij = z/z⇤ij. Combining this observation with
Bayes’ rule, we can rearrange the expression above as

Mij(µ; t) =
Pr
n

µ(z/z⇤ij)  m, z⇤ij  z
o

Pr
n

z⇤ij  z
o .

Using Assumption A2 and the fact that µ (·) is monotone, we can rearrange the previous
expression as

Mij(m; t) =

´ z⇤ijµ
�1(m)

z⇤ij
dGi(z)´ •

z⇤ij
dGi(z)

= 1 �
⇣

µ

�1 (m)
⌘�q

.

Since the function µ (·) is identical across countries and independent of t, by equation (5) in
the main text, this establishes that for any exporter i and any importer j, the distribution of
markups Mij(·; t) is independent of the identity of the exporter i, the identity of the importer
j, and the level of trade costs t. As a result, the overall distribution of markups in any
country j is also invariant to changes in trade costs.

Domestic Markups and Misallocation. In Section 4.2, we have argued that changes in do-
mestic markups, rljjd ln Pj, are proportional to the opposite of the covariance between firm-
level markups on the domestic market and changes in firm-level employment shares for that
market. We now establish this result formally.

Let us denote by Ljj (z) the number of workers allocated by a firm with productivity z in
country j to production of goods for market j. We must have

Ljj (z) = tjjqjj (z) /z,

where qjj (z) is such that

qjj (z) = QjD
⇣

z⇤jjµ(z/z⇤jj)/z
⌘

.

Similarly, let us denote by sjj (z) ⌘ Ljj (z) /Ljj denote the employment share that goes to a
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firm with productivity z. We have

sjj (z) =
D
⇣

z⇤jjµ(z/z⇤jj)/z
⌘

/z
´ •

z⇤jj
NjD

⇣

z⇤jjµ(z0/z⇤jj)/z0
⌘

/z0dGj (z0)
.

Let us now compute the average of markups, m̄jj ⌘
´ •

z⇤jj
mjj (z) sjj (z) NjdGj (z), for firms

from country j selling in country j weighted by employment. We have:

m̄jj =
ˆ •

z⇤jj
mjj (z)

D
⇣

z⇤jjmjj(z)/z
⌘

/z
´ •

z⇤ij
D
⇣

z⇤jjmjj(z0)/z0
⌘

/z0dGj (z0)
dGj (z) .

Under Assumption A2, we can rearrange the previous expression as

m̄jj =
ˆ •

1
µ (v)

D (µ (v) /v) v�q�2dv´ •
1 D (µ (v0) /v0) (v0)�q�2 dv0

.

This implies

dm̄jj

dz⇤jj
=
ˆ •

z⇤jj

dmjj (z)
dz⇤jj

sjj (z) NjdGj (z) +
ˆ •

z⇤jj
mjj (z)

dsjj (z)
dz⇤jj

NjdGj (z) = 0,

where we have used the fact that sjj

⇣

z⇤jj
⌘

= 0. The first term can be rearranged as

ˆ •

z⇤jj

dmjj (z)
dz⇤jj

sjj (z) NjdGj (z) = �
rm̄jj

z⇤jj
.

By construction,
´ •

z⇤jj
sjj (z) NjdGj (z) = 1. Using again sjj

⇣

z⇤jj
⌘

= 0, we therefore have
´ •

z⇤jj

dsjj(z)
z⇤jj

NjdGj (z) = 0. Thus the second term can be rearranged as

ˆ •

z⇤jj
mjj (z)

dsjj (z)
dz⇤jj

NjdGj (z) =
ˆ •

z⇤jj

�

mjj (z)� m̄jj
�

 

dsjj (z)
dz⇤jj

� 0

!

NjdGj (z) ,

Combining the three previous expressions we therefore get

rm̄jj

z⇤jj
=
ˆ •

z⇤jj

�

mjj (z)� m̄jj
�

 

dsjj (z)
dz⇤jj

� 0

!

NjdGj (z) .

To conclude note that z⇤jj = 1/Pj, by our choice of numeraire. Thus the previous expression
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implies

rljjd ln Pj = �
 

ljj

m̄jj

! ˆ •

z⇤jj

�

mjj (z)� m̄jj
� �

dsjj (z)� 0
�

NjdGj (z)

!

,

where the integral on the right-hand side is equal to the covariance between firm-level
markups on the domestic market and changes in firm-level employment shares for that mar-
ket.

Pro-Competitive Effects in Krugman (1979). In Section 4.2, we have argued that, ceteris
paribus, the pro-competitive effects in Krugman (1979) are positive if an increase in country
size raises output per firm, and firms were producing too little before market integration, or
it lowers output, and they were producing too much. We now establish this result formally.

Consider a closed economy with a measure L of identical agents with additively separa-
ble preferences over a continuum of symmetric varieties,

U = Nu(q/L)

where N is the measure of available varieties and q is total output per variety. Let c(q) denote
the total labor cost of producing q units of a given variety. In Krugman (1979), c(q) = f + q
if q > 0 and zero otherwise. Let p(q, L) denote the profit of a representative firm given total
output, q, and market size, L. In Krugman (1979), p(q, L) = eD(q/L)

eD(q/L)�1 c0(q)q � c(q), where

eD(q/L) ⌘ � u0(q/L)
(q/L)u00(q/L) denotes the elasticity of demand faced by each firm as a function

of consumption per capita, q/L.A.3

To study the welfare implications of an increase in market size, it is convenient to focus
on the following constrained planning problem:

V(L, W) = max
N,q

Nu(Wq/L)

subject to

Nc(q) = L, (A.10)

p(q, L) = 0 (A.11)

Equations (A.10) and (A.11) correspond to the resource constraint and the free entry con-
dition, respectively. By construction, (q, N) in the decentralized equilibrium is equal to the
solution to the constrained planning problem for W = 1.

A.3By definition, we have eD(q/L) = #D(u0(q/L)), where #D is the elasticity of demand as function of price
used in the main text.
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We are interested in computing the percentage change in income, d ln W, equivalent to a
percentage change in market size, d ln L, i.e.,

d ln W = (
L
W

dV/dL
dV/dW

)W=1d ln L.

Let q(L) denote the output level that solves equation (A.11). By the Envelope Theorem, we
have

dV
dL

= �NWq(L)u0(Wq(L)/L)
L2 + l + q0(L)(

NWu0(Wq(L)/L)
L

� lNc0(q(L)))

dV
dW

=
Nq(L)u0(Wq(L)/L)

L
,

where l is the Lagrange multiplier associated with equation (A.10). This leads to

d ln W =

0

@�1 +

⇣

l + q0(L)
⇣

NWu0(Wq(L)/L)
L � lNc0(q(L))

⌘⌘

L2

Nq(L)u0(q(L)/L)

1

A d ln L. (A.12)

The first-order condition with respect to N, evaluated at W = 1, further implies u(q/L) =

lc(q). Together with the resource constraint, we therefore have l = Nu(q(L)/L)/L. Substi-
tuting for the Lagrange multiplier, l, in equation (A.12), we therefore obtain, after simplifi-
cations,

d ln W =

✓

1 � eu
eu

+ eqJ

◆

d ln L, (A.13)

where eu(x) ⌘ ( d ln u
d ln x )x=q(L)/L, eq ⌘ d ln q(L)

d ln L , and J = u0(q(L)/L)�Nu(q(L)/L)c0(q(L))
u0(q(L)/L) captures the

wedge between the marginal benefit of increasing output per variety, (N/L)u0(q(L)/L), and
its marginal cost, lc0(q(L)) = (N2/L)u(q(L)/L)c0(q(L)).

In the case with constant markups and CES utility considered by Krugman (1980), the
decentralized equilibrium is efficient, J = 0. Thus gains from market integration only re-
flects gains from new varieties, as captured by (1 � eu)/eu.A.4 Accordingly, we can express
the pro-competitive effects from trade, defined as the differential impact of trade liberaliza-
tion on welfare when markups vary and when they do not, as D(1�eu

eu
) + eqJ, where D(1�eu

eu
)

denotes the difference between the welfare gains from new varieties in models with and
without variable markups (a difference that depends, in general, on which moments one
chooses to hold fix when comparing these models). For a given value of D(1�eu

eu
), the pre-

vious analysis establishes that welfare gains from market integration will be higher if an
increase in market size raises output per firm, eq > 0, and firms were producing too little

A.4In the CES case, one can also check that eu = eD�1
eD

. Thus, the gains from market integration can be
rearranged in a familiar way as d ln W = d ln L/(eD � 1).
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before market integration, J > 0, or it lowers output,eq < 0, and they were producing too
much, J < 0.

A.5 Section 4.3

In the multi-sector case, and ignoring for now the country sub-index, the expenditure mini-
mization problem of the representative consumer is given by

e(p, U) ⌘ min
q Â

k

ˆ
Wk

pk(w)qk(w)dw

s.t. U(C1(q1), ..., CK(qK)) � U.

Since preferences are weakly separable, the solution to the previous problem can be com-
puted in two stages. At the lower stage, the optimal consumption of varieties within each
sector solves

ek(pk, Ck) ⌘ min
qk

ˆ
Wk

pk(w)qk(w)dw

s.t. Ck(qk) � Ck.

At the upper stage, the optimal level of consumption between sectors solves

e(p, U) ⌘ min
C1,...,CK Â

k
ek(pk, Ck)

s.t. U(C1, ..., CK) � U.

We are interested in d ln W = d ln y � d ln e, with y being per-capita income. By Shephard’s
lemma, we know that a foreign shock implies that

d ln e = Â
k

skd ln ek. (A.15)

To compute d ln y and d ln ek, we consider separately the cases of restricted and free entry.

Restricted entry. Under restricted entry equation (17) in the main text remains valid at the
sector level. So we can use the exact same approach as in the one-sector case to derive

d ln ek
j =

⇣

1 � r

k
⌘

Â
i

l

k
ijd ln ck

ij + r

kd ln Pk
j . (A.16)

To compute d ln Pk
j , we use the sector-level counterpart of equations (22)-(23) in the main
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text, which imply

k

k
⇣

Qk
j

⌘1�b

k
⇣

Pk
j

⌘

q

k+1�b

k
 

Â
i

Nk
i

⇣

bk
i

⌘

q

k
⇣

ck
ij

⌘�q

k
!

=
⇣

yk
j

⌘1�b

k

,

⇣

c

k
⌘

b

k

Qk
j

⇣

Pk
j

⌘

b

k(1+q

k)
 

Â
i

Nk
i

⇣

bk
i

⌘

q

k
⇣

ck
ij

⌘�q

k
!

b

k

=
⇣

yk
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,
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k

k ⌘ q

k
ˆ •

1
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Hk
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µ

k(v)/v
⌘i

b

k
h⇣

µ

k(v)/v
⌘

Dk(µk(v)/v)
i1�b

k
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dv,

c

k ⌘ q

k
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⇣

µ
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⌘

Dk(µk(v)/v)v�q

k�1dv.

From the two previous equations, we obtain

Pk
j =

0

B

B

@

k

k Âi Nk
i
�

bk
i
�

q

k ⇣

ck
ij

⌘�q

k

⇣

yk
j

⌘1�b

k

1

C

C

A

�1/(q

k+1�b

k)

, (A.17)

and in turn, under restricted entry,

d ln Pk
j =

q

k

q

k + 1 � b

k Â
i

l

k
ijd ln ck

ij +
1 � b

k

q

k + 1 � b

k d ln yk
j .

Together with equations (A.15) and (A.16), the previous expression yields

d ln ej = Â
i,k

sk
j l

k
ij

⇣

1 � h

k
⌘

d ln ck
ij + Â

k
sk

j h

kd ln yk
j ,

with h

k ⌘ r

k �(1 � b

k)/(1 � b

k + q

k)
�

. Using the fact that yk
j = sk

j yj, we can rearrange the
second term on the right-hand side as

Â
k

sk
j h

k
⇣

d ln sk
j + d ln yj

⌘

= Â
k

h

kdsk
j + hjd ln yj,

with hj ⌘ Âk sk
j h

k. Since d ln Wj = d ln yj � d ln ej, we get

d ln Wj =
�

1 � hj
�

d ln yj � Â
i,k

⇣

1 � h

k
⌘

sk
j l

k
ijd ln ck

ij � Â
k

h

kdsk
j . (A.18)
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Proceeding as in the one sector case, one can show that Âi l

k
ijd ln ck

ij is equal to d ln l

k
jj/q

k.
To establish equation (30) in the main text, we therefore only need to solve for d ln yj. Under
restricted entry, per-capita income in country j is given by yj = 1 + Âi,k Pk

ji/Lj, where we
have set wj = 1 by choice of numeraire. As in the one-sector case, sector-level profits are
such that Pk

ji = z

kXk
ji, with

z

k ⌘ p

k/c

k,

p

k ⌘ q

k
ˆ •

1

⇣

µ

k(v)� 1
⌘

Dk(µk(v)/v)v�q

k�2dv > 0.

As in the one-sector case, under restricted entry and with wj = 1, sector-level employment
is such that Lk

j = (1 � z

k)(Âi Xk
ji). Combining the previous observations, we obtain

d ln yj = d ln(Â
k

Lk
j /(1 � z

k)).

Plugging into (A.18), we obtain equation (30) in the main text. Proposition 2 derives from
this expression and the joint observation that h

k = h for all k implies Âk h

kdsk
j = h Âk dsk

j = 0
whereas z

k = z for all k implies d ln yj = d ln Lj/(1 � z) = 0.

Free Entry. Under free entry, equation (17) in the main text is no longer valid since we
may have d ln Nk

i 6= 0 for some i and k. To capture the welfare implications of the previous
changes, we restrict ourselves to the three examples of demand functions discussed in Sec-
tion 2.1: (i) additively separable utility functions; (ii) quadratic mean of order r (QMOR)
expenditure functions; and (iii) Kimball preferences.

We first consider the case of additively separable utility functions and Kimball prefer-
ences. Under both cases, using Assumption A2, we can write the sector-level expenditure
function as

ek
j = min

qk
j

Â
i

ˆ •

bk
i

pk
ij(z)q

k
ij(z)q

k
⇣

bk
i

⌘

q

k

Nk
i z�q

k�1dz

s.t. Â
i

ˆ •

bk
i

Yk
j

✓

qk
ij(z)/

⇣

Ck
j

⌘

b

k◆

q

k
⇣

bk
i

⌘

q

k

Nk
i z�q

k�1dz �
⇣

Ck
j

⌘1�b

k

,

where pk
ij(z) is the price in country j of a variety with productivity z in sector k produced in

country i and qk
ij(z) is the corresponding quantity. In the case of additively separable utility

functions, we have b

k
j = 0 and the function Yk

j is country j0s sub-utility function uk
j , while

in the case of Kimball preferences we have b

k
j = 1 and the function Yk

j is the sector-level

counterpart of the function U in Appendix A.1. Using the change of variable z̃ = Nk
i (b

k
i /z)q

k
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and letting Ñk
i ⌘ Nk

i
�

bk
i
�

q

k
, we now have

ek
j = min
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Ñk
i /z̃

⌘1/q

k◆

qk
ij

✓

⇣

Ñk
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.

Applying the Envelope Theorem and using the fact that demand is zero for the least pro-
ductive firm, we get

d ln ek
j = Â

i

ˆ (z̃k
ij)

⇤

0
l

k
ij
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Ñk
i /z̃
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Ñk
i /z̃

⌘1/q

k◆

dz̃, (A.19)

where (z̃k
ij)

⇤ = Ñk
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⇣

(zk
ij)

⇤
⌘�q

k

is the (rank) productivity cut-off; l

k
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k
◆

is the total derivative of the log price, including both the change

in the price schedule conditional on productivity and the change in the normalized measure
of entrants, Ñk

i . To compute the latter, note that pk
ij(z) = (ck

ij/z)µk(z/zk⇤
ij ), which implies
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and, in turn,
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into equation (A.19), we get
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with
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Note that in line with equation (20) in Section 4.1, a simple change of variable, v =
⇣
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and zk⇤
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ij/Pk
j , equation (A.20) further implies
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To compute d ln Pk
j , we can start from equation (A.17), which remains valid under free entry.

Log-differentiation yields
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Combining the two previous expressions, we obtain
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Combined with equations (A.15) and (A.22), we then have

d ln Wj = d ln yj � Â
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Under free entry, we know that yj = 1, where we have again set wj = 1 by choice of nu-
meraire. This immediately implies d ln yj = 0. Given that yk

j = sk
j yj, this further implies that

Âk sk
j h

kd ln yk
j = Âk h
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j , and hence

d ln Wj = �Â
i,k

sk
j

⇣

1 � h

k
⌘

l

k
ijd ln

✓

ck
ij

⇣

Ñk
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To conclude, note that sector-level trade flows still satisfy gravity,

l

k
ij =

Ñk
i

⇣

ck
ij

⌘�q

k

Âl Ñk
l
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ck
lj

⌘�q

k ,

which implies
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Ñk
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ck
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⌘�q

k◆

= d ln Ñk
j � d ln l

k
jj. (A.24)

Combining this result with equation (A.23) and noting that Nk
j = z

k(Lk
j /Fk

j ) implies d ln Ñk
j =

d ln Nk
j = d ln Lk

j , we get

d ln Wj = �Â
k

sk
j

⇣

1 � h

k
⌘ ⇣

d ln l

k
jj � d ln Lk

j

⌘

/q

k � Â
k

h

kdsk
j .

If h

k = h for all k, this simplifies into equation (31) in the main text.
Finally, consider the case of the QMOR expenditure functions analyzed by Feenstra

(2014). Lemma 1 in Feenstra (2014) and the fact that the Herfindahl index is constant when
productivity is distributed Pareto together imply that (in our notation) d ln ek

j = d ln Pk
j .

Combining this observation with equations (A.21) and (A.24), which remain valid in this
case, and using the fact that b

k = 1 and h = 0 for this case, we again obtain equation (31)
from the main text.

B Estimation and quantitative exercises

B.1 Section 5.1

This section describes a number of details behind the procedure used to estimate h from
micro trade data that was described in Section 5.1.

From theory to data. We aim to estimate a parametric demand system that satisfies equa-
tions (1)-(3) in the main text. Our choice of a particular parameterization is motivated by
parsimony, as well as the two following considerations. First, we want to nest the case of
CES demand because of its prominence in prior work and because it provides a reference
point in which markups will be constant under monopolistic competition. And second, we
want to allow the average elasticity of markups—and hence h—to be positive or negative,
so that data can speak to whether the existence of variable markups increases or decreases
the gains from trade liberalization. In order to achieve these goals, we restrict attention to
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additively separable preferences in the “Pollak family”; see Pollak (1971) and Mrazova and
Neary (2016a). This implies the following parametric restriction on D(·):

D(p
w

/P) = (p
w

/P)1/g � a,

where a and g are the two structural parameters to be estimated.B.1 In turn, the parameter
b in equations (2) and (3) in the main text is equal to 0 if a 6= 0 and to either 0 or 1 if
a = 0. Assumption A1 is only satisfied if a > 0 but we do not impose this restriction on the
estimation.

When a = 0, the previous demand system reduces to the CES case, with elasticity of
substitution given by �1/g. In this case, trade liberalization has no effects on markups
and h = 0. In contrast, when a > 0, the demand elasticity is decreasing with the level of
consumption, and hence increasing with the level of prices, #

0
D > 0, which implies r > 0

and h = r/(1 + q) > 0. Finally, when a < 0, the opposite happens, and hence #

0
D < 0 and

r < 0.
Our estimation of this demand system draws on detailed data on bilateral U.S. mer-

chandise imports within narrowly defined product codes to estimate the representative U.S.
consumer’s demand parameters. In particular, we use annual data (from 1989-2009) at the
10-digit HS level.B.2 In mapping these data to our model we assume that a variety w in
the model corresponds to a particular 10-digit HS product, indexed by g, from a particular
exporting country, indexed by i; that is, a “variety” w in the model is a “product-country”
pair gi in the data.B.3 There are 13,746 unique products and 242 unique exporters. Because
the demand system in equation (4) in the main text is intended to represent demand for
varieties within a differentiated sector, we assume that a “sector”, which we index by k, in
the data is a level of product aggregation that is higher than the 10-digit level and in practice
take this to be the 4-digit HS category (of which there are 1387) level . In what follows, we

B.1Simonovska (2015) uses the log-version of this demand system to analyze the relationship between income
and prices across countries.

B.2We download this dataset from Peter Schott’s homepage and use the concordances provided in Pierce and
Schott (2009) to adjust for changes in 10-digit HS codes over this time period. The July 2015 version of this
paper reported results from an earlier dataset spanning 1989-2005 only.

B.3While this practice is standard in the literature (e.g. Broda and Weinstein 2006), we note that the issue
of “hidden varieties” is more problematic here than in the CES case. Under the assumption of CES demand,
the fact that an unobserved number of firms from the same country may be producing a particular 10-digit
HS product simply acts as an unobserved quality shifter. This is no longer true if a 6= 0. We are unaware of
a study that documents the extent of firm-level concentration at the country-HS10-digit level for US imports.
But Feenstra and Weinstein (2017) estimate that for US imports in 1998 (the closest among their tabulated years
to the mid-point of our sample) the trade-weighted average of the Herfindahl index within exporter-HS 4-digit
product groups was 0.190. This would imply, for equally sized firms, about five firms per exporting country
within each 4-digit industry. By comparison, on average there are approximately ten 10-digit HS products
within each 4-digit group. There is therefore ample scope for the possibility that most exporter-HS10-digit
product cells are served by only one firm.
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let the price aggregator Pk
t vary across sectors and over time, but restrict (in our baseline

analysis) the demand parameters a and g to be common across all sectors.
We focus on the following empirical demand equation:

qk
git =

⇣

#

k
git pk

git/Pk
t

⌘1/g

� a, (B.1)

where pk
git is the price paid by U.S. importers when buying quantity qk

git for a product g
in sector k from an exporting country i in year t. The import data contain measures of
total (that is, aggregated across all importers) expenditure, i.e., the empirical analogue of
qk

git ⇥ pk
git, and measures of total quantities purchased, which we take as our measure of

qk
git. To construct a measure of prices pk

git we therefore simply use the ratio of expenditure to
quantity. The variety-specific demand shifter, #

k
git, captures the fact that physical units in the

data may differ from the choice of units in Section 2, under which all varieties are implicitly
assumed to enter utility in a symmetric fashion. Such differences in units of account can be
interpreted as unobserved quality differences; see e.g. Baldwin and Harrigan (2011).

Estimation procedure. There are two key challenges involved in estimating equation (B.1):
(i) the price aggregator Pk

t is unobserved and correlated with pk
git; and (ii) the demand

shifter #

k
git is unobserved and correlated with pk

git. We describe below, in turn, a procedure
to estimate the demand parameters, a and g, that overcomes these challenges.

First, consider the problem that the price aggregator Pk
t is unobserved and correlated

with pk
git. The key restriction imposed in equation (B.1), however, is that the demand for

all varieties depends symmetrically on this aggregator; that is, the price aggregator does not
vary across products g and exporters i within sector k. This suggests that identification of the
demand parameters, a and g, can be achieved through a differencing procedure designed to
eliminate the unobserved and endogenous Pk

t term in equation (B.1). Specifically, inverting
our demand function and taking logs, we have

ln pk
git = g ln(qk

git + a)� ln Pk
t + ln #

k
git.

Taking differences with respect to one reference product-country within the same sector k,
we then obtain

Dgi ln pk
git = gDgi ln(qk

git + a) + Dgi ln #

k
git, (B.2)

where Dgi denotes the corresponding difference operator. While in principle the difference
Dgi could be taken across any two product-country gi observations within a sector-year kt,
we use the convention of mean differencing such that, for any variable Z, DgiZk

git = Zk
git �
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1
Mkt

Âgi2Ikt
Zk

git where Ikt is the set of product-country pairs gi in sector k and year t and Mkt

is the number of observations in this set.
Second, consider the problem posed by the correlation between pk

git and the unobserved
demand-shifter, #

k
git. We first follow the literature on demand system estimation using inter-

national trade data—e.g. Broda and Weinstein (2006) and Feenstra and Weinstein (2017)—and
decompose this demand-shifter into two terms:

ln #

k
git = ln d

k
gi + ln e

k
git.

In this decomposition, the first term, ln d

k
gi, reflects systematic differences in quality or units

of account across products from different countries within a sector, whereas the second term,
ln e

k
gct, reflects idiosyncratic determinants of demand that are free to vary over time. To elim-

inate systematic unobserved differences in quality, we take a second difference of equation
(B.2), now across time periods, to obtain

DtDgi ln pk
git = gDtDgi ln(qk

git + a) + DtDgi ln e

k
git, (B.3)

where Dt denotes the corresponding difference operator. Again, while the difference Dt

could be taken across any two time periods we use mean differencing, as in Dgi defined
above. While this double-differencing procedure will remove cross-sectional sources of
bias due to unobserved quality shifters, endogeneity bias concerns due to potentially time-
varying quality shifters (or measurement error in prices) remain. A natural solution is to use
an instrumental variable (IV) approach, where here the instrument must be exogenous with
respect to the error term DtDgc ln e

k
git and must be correlated with the endogenous variable,

i.e. the double-demeaned quantity DtDgi ln(qk
git + a), for any value of a. In our model a

natural candidate for such an instrument is trade costs. For this purpose we use the (log of
one plus the) value of tariff duties charged, expressed as a percentage of import value, as a
measure of trade costs; this variable is reported in the US 10-digit HS imports data. This pro-
cedure of using trade costs as exogenous demand shifters in an international trade setting is
commonly employed in the empirical gravity literature; see e.g. Head and Mayer (2014).

Since the estimating equation (B.3) is linear in g, but non-linear in a, we separate our
estimation procedure into an inner-loop and an outer-loop. In the inner-loop, we take the
value of a as given and compute ĝ(a) as the IV estimator of g with DtDgi ln(tk

git + a) the
instrumental variable for DtDgi ln(qk

git + a), where tk
git denotes the tariff rate charged by the

United States on imports of product g in sector k from country i in year t. In the outer-loop,
we then search for the value of a that minimizes the sum of the squared residuals across
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g a

Panel A: CES demand
�0.206⇤⇤⇤
(0.036)

Panel B: Generalized CES demand
�0.347⇤⇤⇤ 3.053⇤⇤⇤

[�0.373,�0.312] [0.633, 9.940]

Table 2: Demand Estimates. Panel A reports IV estimates of equation (B.3) with a = 0 and standard
errors clustered at the exporter level. Panel B reports IV estimates of equation (B.3) without restrictions and
with 95 percent confidence intervals from a block-bootstrap procedure, with blocks at the exporter level. The
number of observations in both panels is 3,563,993. *** indicates p<0.05.

all linear IV regressions, and denote this value â.B.4 Our estimator of g is finally given by
ĝ = ĝ(â).

Demand estimation and welfare implications. We begin by estimating the demand sys-
tem in equation (B.3) under the restriction that a = 0. This reduces equation (B.3) to the
CES case, in which the estimating equation is linear. Our results are reported in Panel A
of Table 2. In this restricted (CES) case, our IV estimate is bg = �0.206 with a standard er-
ror—clustered at the exporting country level to account for serial correlation over time and
across products within exporters—that implies that the point estimate is statistically sig-
nificantly different from zero at the 95% confidence level. This finding corresponds to an
elasticity of substitution equal to 1/bg = �4.854, which is in line with typical estimates of
the CES demand parameter in international trade settings. This suggests that our particular
instrumental variable, based on the reported value of tariff duties charged, isolates exoge-
nous variation in trade costs that is similar to that used in the literature. Reassuringly, the
F-statistic (again adjusted for clustering at the exporter level) on the instrumental variable in
the first-stage is 27.28, implying that finite-sample bias due to a weak instrument is unlikely
to be a first-order concern here.

We then estimate equation (B.3) without any restriction on a—this corresponds to esti-
mating unrestricted Pollak (rather than CES) demand. These results are reported in Panel B
of Table 2. Our non-linear IV estimate of equation (B.1) results in estimates of bg = �0.347
and ba = 3.053, with 95% confidence intervals, block-bootstrapped at the exporting coun-
try level, with 200 bootstrap replications, shown in parentheses in the table. Notably, this

B.4In practice we conduct a grid search over a subject to the restriction that qk
git + a must be strictly positive

for ln(qk
git + a) to be well-defined. Namely, we require a to be greater than minus the lowest value of qk

git in
our dataset, which is equal to 1 in all years. After first verifying with a coarse grid that the best-fitting value of
a lies below 10, we consider a grid of 400 evenly-spaced values between �1 and 10.
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estimate of a has a 95% confidence interval that excludes zero, suggesting that the depar-
ture from CES that is modeled in equation (B.1) is a statistically significant feature of these
data.B.5 Furthermore, â is positive. As argued above, this implies that h must be positive
as well. So, regardless of the value of other structural parameters, Proposition 1 establishes
that there cannot be any pro-competitive effect of trade in the sense that welfare gains from
trade liberalization must be lower than those predicted by a model with constant markups.

As discussed in Section 5.1, the demand parameter estimates reported in Table 2, Panel
B imply that r̂ = 0.36 and in turn ĥ = r̂/(1 + q) = 0.06.B.6

B.2 Section 6.3

All models that we consider are calibrated so that the trade elasticity for a 1% change in trade
costs is equal to 5 in the initial equilibrium. Except when the distribution of productivity is
Pareto, however, this elasticity will vary with the level of trade costs. Figure 6 plots the
trade elasticity as a function of trade costs in the case of Pareto, log-normal and bounded
Pareto distributions. In both the log-normal and bounded Pareto cases, we see that the trade
elasticity increases, in absolute value, with the level of trade costs, as noted in Section 6.3.

B.5We have also explored this by HS “section”, the coarsest level of disaggregation for which the HS system
is designed. Across 22 such sections (two of which we do not include since they do not have the required
tariff variation), the median estimates are bg = �0.321 [�0.358,�0.210] and ba = 0.898 [�0.999, 20], the 25th
percentile estimates are bg = �0.372 [�0.530,�0.211] and ba = �0.729 [�0.999,�0.143], and the 75th percentile
estimates are bg = �0.200 [�0.326,�0.168] and ba = 6.153 [1.490, 23.898]. For two sections the estimates fail to
reject the null hypothesis of g = 0, whereas for six sections the estimates reject the null of a = 0 (two of which
have a point estimate in the a < 0 region). Because of the imprecision of many of these estimates, and in line
with the theoretical analysis of Section 4.3, we abstract from misallocations associated with heterogeneity in
the values of a, g, and, in turn, h across sectors.

B.6Since we focus on non-zero trade flows, one may be concerned that the previous estimates are subject
to selection bias. To explore the potential importance of the previous concern, we have rerun our baseline
estimation on a subsample that only includes bilateral trade flow observations at or above the 15th percentile
value. We find (with 95% confidence intervals given in brackets) bg = �0.287 [�0.304,�0.236] and ba = 6.212
[1.305, 16]. This implies that bh = 0.05, only slightly lower than our baseline estimate.
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Figure 6: Trade elasticity

22


