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Philipp Strack is creative, insightful, and skillful, which has allowed him to make

major contributions to many areas of microeconomic theory, including behavioral

economics, information acquisition and learning, and mechanism design. He is also

extraordinarily productive: As of June 2024 he had 37 published papers and several

others that were forthcoming. Some of these papers provide a new understanding of

important economics phenomena, others introduce results and techniques that will

be used for years to come, and some of the papers do both.

Philipp was born in Bonn, Germany to a Greek mother (Nora Andrikopoulou,

an archeologist) and a German father (Ulrich Strack, a lawyer.) In high school,

he took college-level math classes at the University of Bonn. He then matriculated

there, where he was greatly influenced by Paul Heidhues and Benny Moldovanu.

Philipp earned diploms (roughly equivalent to a master’s degree) in both economics

and mathematics at Bonn and then started Ph.D. work there in both disciplines

simultaneously. Luckily for us, he subsequently decided to focus on economics and

completed his economics Ph.D. in 2013.

I was very impressed by Philipp when he was on the junior job market after his

Ph.D., and I began working with him then. He started his career at U.C. Berkeley,

where he was promoted to tenure before moving to Yale in 2019. In 2023, Philipp won

the Bodossaki Distinguished Young Scientist Award, which is given every two years

∗I thank Roberto Corrao, Yifan Dai, David Kreps, Annie Liang, Giacomo Lanzani, Benny
Moldovanu, Xiaosheng Mu, Luciano Pomato, Larry Samuelson, and Omer Tamuz for helpful com-
ments.
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to young Greek scientists whose “outstanding performance has already significantly

contributed to the advancement of science.” As I show below, this accolade was

well-deserved, as was the Clark medal.

Mechanism Design

Mechanism design and its applications have been one of the great successes of

mordern economic theory. Its initial wave focused on static settings and “ratio-

nal” agents with expected utility preferences, but dynamic issues and/or other forms

of preferences are relevant in many settings of interest. Philipp’s work here has

provided useful new tools for mechanism design, and applied them to develop new

insights into a number of important applications.

Inducing Optimal Stopping Philipp’s job market paper, Kruse and Strack [2015],

studies the optimal contract for a principal to give an agent who privately observes

the value of a Markov chain until they stop and obtain a reward that depends on

the current level of the chain and on the stopping time.1 The principal can give the

agent a transfer that depends only on the time the agents stops. The paper develops

a very nice dynamic generalization of the usual single-crossing condition, and shows

it implies that a stopping rule is implementable if and only if it takes the form of a

cutoff rule, i.e. “Stop if the current value is at least the cutoff value.”

Majorization Kleiner, Moldovanu, and Strack [2021] provides two powerful tech-

nical results that both highlight a connection between many already-studied problems

of mechanism and/or information design and can be used to analyze new ones. The

key observation is that many such problems reduce to selecting a best element from

1Much of Strack’s early work was on related topics in dynamic mechanism design, e.g., Berge-
mann and Strack [2015] which studies a model where the preferences of consumers follow a mean-
reverting Markov process instead of the usual assumptions of fixed or i.i.d. preferences, and Ger-
shkov, Moldovanu, and Strack [2018] which supposes that consumers can strategically time their
purchases and that neither the time that they arrive in the marketplace nor the process that gen-
erates arrivals is known by the seller.
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a constraint set that is given by a “majorization” condition. Hardy, Littlewood, and

Polya [1929] said that real-valued function f majorizes another real-valued function

g if they both have the same domain and same mean and the integral of f from any

point in the domain to its upper limit exceeds that of g. For example, one prob-

ability distribution second-order stochastically dominates another if and only if its

cumulative distribution majorizes the other one.2 In many economic applications,

the functions in question are monotone, which leads Kleiner, Moldovanu, and Strack

[2021] to study the sets of monotone functions that either majorize or are majorized

by a given function. They characterize the extreme points of these sets with a gener-

alization of Myerson [1981]’s ironing procedure: Any extreme point is characterized

by a collection of intervals on which the extreme point is piecewise constant, while

outside the collection it coincides with the given function.

One application is to feasible symmetric allocations in independent private value

allocation problems, where all agents agree on the rankings of the objects but some

agents value every object more. The paper shows that the feasible allocations are

described by a majorization condition, as in Border [1991]’s analysis of the case

of 1 object. The paper then notes that the extreme points of the feasible set are

all dominant-strategy incentive compatible and weakly monotone, as they involve

either an efficient or a random allocation. Thus all Bayesian incentive compatible

allocations, which must be feasible and so are integrals of the extreme points, can be

implemented in dominant strategies, as in Gershkov, Goeree, Kushnir, Moldovanu,

and Shi [2013].

Next, the paper analyzes the maximization of linear functionals given a ma-

jorization constraint, and applies these results to study revenue maximization in

ranked-value auctions and Bayesian persuasion, as well as to optimal delegation and

matching. This approach sheds new light on these widely-studied applications, while

providing shorter and more revealing proofs.

Applications of Majorization In work with Alex Gershkov, Benny Moldovanu,

and Mengxi Zhang, Philipp used majorization and the extreme points approach to

2Blackwell [1951] and Strassen [1965] show that any feasible posterior belief majorizes the prior.
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extend classical methods of mechanism design to frameworks that allow agents to be

risk aversion and/or have non-expected utility preferences. Gershkov, Moldovanu,

Strack, and Zhang [2022] derives the optimal auction when bidders have non-expected

utility preferences that exhibit constant risk aversion, which covers loss aversion

(Kőszegi and Rabin [2006]), disappointment aversion (Gul [1991]), and dual prefer-

ences (Yaari [1987]). The paper shows that in the optimal mechanism, each agent’s

utility is independent of other agents’ reports, even though Maskin and Riley [1984]

shows is not generally the case with expected utility bidders who are strictly risk

averse. In another application of majorization techniques, Gershkov, Moldovanu,

Strack, and Zhang [2023] solves the optimal insurance design problem for agents

that face a loss of random magnitude and have dual preferences a la Yaari. The

paper shows that the optimal contracts are menus of deductibles when agents have

private information about the probability of losses, and menus of coverage limits

when the private information is about the magnitude of losses. Coverage limits are

often observed in practice, yet they are not explained by the classic insurance model.

Gershkov, Moldovanu, Strack, and Zhang [2021] shows that auctions where ex-ante

symmetric bidders with i.i.d. valuations can make an investment after learning their

type but before bidding in the auction, can be viewed as auctions with a form of

non-expected utility that lets them apply majorization techniques. Here, unlike in

standard auctions with symmetric bidders, asymmetric auctions may maximize the

seller’s expected revenue. The paper shows when symmetry is revenue-maximizing

and that when it is, the optimal mechanism can be implemented as either a uniform-

price auction or a discriminatory pay-your-bid auction with reserve prices that de-

pend on the number of bidders and the number of units for sale. In addition to

these applications, the paper’s extreme-points approach provides a unified perspec-

tive on other analyses of mechanism design problems, such as mechanism design

with redistributive concerns (Akbarpour, Dworczak, and Kominers [2024]), selling

hard information (Ali, Haghpanah, Lin, and Siegel [2022]), and non-linear pricing by

a seller who maximizes their worst-case profit (Bergemann, Heumann, and Morris

[2023]).
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Information Economics

The study of asymmetric information and adverse selection has shed light on many

economic phenomena and institutions since it took off in the 1960s, but much of

this work takes the information the agents have as given, despite Arrow [1996]’s

complaint that “Not enough weight has been given to the possibility that information

can be... altered by economic decisions.” Philipp’s work on sequential sampling,

the comparison of experiments, and social learning has illuminated some important

effects of endogenous information, and rekindled interest in these topics He has also

made important contributions to the study of how to reveal useful information while

respecting privacy constraints.

Of course, studying the choice of information structure requires specifying what

sort of information can be obtained and what the cost of obtaining it is. Arrow [1985]

proposes a few examples of information costs, including the Shannon entropy that has

become popular following the work of Sims [2003]. However, the optimal allocation

of attention can depend crucially on the specification of its cost, and the question of

which cost functions are reasonable has remained underexplored. Philipp’s work has

shed important light on this.

The drift-diffusion model A large literature in neuroscience and psychology uses

the drift-diffusion model (“DDM”) to explain the joint distribution of choices and

decision times in laboratory experiments. This model is a continuous-time version

of the hypothesis-testing problem in Wald [1947], where an agent gathers costly

samples before stopping and either accepting or rejecting the null hypothesis. The

classic DDM also assumes there are only two states, but now the agent observes a

diffusion process with known volatility and uncertain drift until they take one of two

possible actions, where the payoff and the drift of the signal are both determined by

the unknown state of the world.3

3The DDM was first proposed as a model of choice processes in perception tasks, where the
subjects are asked to correctly identify visual or auditory stimuli. DDM-style models were sub-
sequently applied to choice experiments, where subjects are choosing from a set of consumption
goods presented to them. e.g. Roe, Busemeyer, and Townsend [2001]; Krajbich, Armel, and Rangel
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The two-state model is analytically tractable (unlike the three-state model in Ar-

row, Blackwell, and Girshick [1949]), but it predicts that the agent stops and makes a

decision whenever the state of the diffusion process reaches a time-invariant stopping

boundary, which implies that the accuracy of the agent’s choices is uncorrelated with

when they stop. However, in a fixed experiment, earlier decisions are more likely to

be correct.4 To better understand this regularity, Fudenberg, Strack, and Strzalecki

[2018] proposes a variant of the DDM where the agent has normally distributed in-

dependent priors on the utility of each choice, and the drift of the signal depends on

the difference in the utilities. In this model, unlike the classic DDM, signal strength

depends on the utility difference or on the ease of the perceptual task. Here, unlike

with a two-state prior, beliefs update more slowly as data accumulates. Thus if the

agent has been observing the process for a long time and the posterior means of

the two choices are close, there are two reasons to stop sampling that aren’t present

in the binomial model: The agent doesn’t expect to learn much more, and the two

actions are probably about as good.

The paper first shows that an arbitrary stopping rule in a DDM with a fixed drift

leads to a negative correlation between accuracy and stopping time if the value of

the diffusion that makes the agent want to stop, i.e. the “stopping boundary,” is

decreasing in time. Intuitively, in this case when the agent stops quickly, it is because

they received a very strong signal. Moreover, accuracy can be decreasing in decision

time even if the stopping boundary on each trial is not monotone decreasing when

the data consists of trials with randomly drawn values of the drift, because averaging

over trials creates an additional selection effect beyond the one that occurs when the

value of the drift is fixed: When the boundary does not increase “too quickly,” the

selection effect implies that in trials where the agent chose quickly, the drift was

probably larger than usual, so the agent received sharper signals and is more likely

to be correct. Finally, the paper shows that the aggregate data has a speed-accuracy

complementarity when the agent uses an optimal stopping rule and their prior over

[2010]; Krajbich and Rangel. [2011]; Krajbich, Lu, Camerer, and Rangel [2012]; Milica, Jonathan,
Huth, Koch, and Antonio [2010]; Reutskaja, Nagel, Camerer, and Rangel [2011].

4See e.g. Churchland, Kiani, and Shadlen [2008]; Ditterich [2006].
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the states is correct.5 The paper also considers the case where the agent has a fixed

amount of attention and decides how much to focus on each signal. The optimum

is to devote equal attention to both signals at every point in time, which reduces to

the main mode.

Many experimental studies of accuracy and decision time fit the data with arbi-

trary stopping boundaries instead of boundaries that are derived with a theoretical

foundation. Fudenberg, Newey, Strack, and Strzalecki [2020] characterizes the choice

probabilities that can be generated by any stopping boundary and then shows how

to estimate the drift and the boundary and construct a test statistic.6

The comparison of experiments One information structure (a map from states

to signals) is a garbling of another if it can be generated by adding noise to it. Black-

well [1951] proves that signal structure K is (weakly) preferred to signal structure

K 1 for all decision problems if and only if K 1 is a garbling of K; in this case, we say

that K Blackwell dominates K 1. This dominance notion has been very influential

and has led to insights into mechanism design (e.g. Grossman and Hart [1983]), ac-

counting (Demski [1973]), game theory (Kandori [1992]), and “Bayesian persuasion”

(Kamenica and Gentzkow [2011]).

Experiments are often not done in isolation. Blackwell [1953] asks whether there

are experiments that aren’t ranked by garbling, but become ranked when many

samples are taken from each, and Torgersen [1970] gives an example. Mu, Pomatto,

Strack, and Tamuz [2021] characterizes when this occurs in the case of binary states.

Their very clever proof uses the idea of the Renyi divergence, which is an easily-

computed parametric measure of informativeness that extends the Blackwell order:

If K Blackwell dominates K 1, it dominates K 1‘ in the Renyi order for any parameter

t.7 Importantly, the Renyi divergence of n independent trials is simply n times the

5Alternative explanations for this complementarity include time-varying costs Drugowitsch,
Moreno-Bote, Churchland, Shadlen, and Pouget [2012] and endogenous time variation in signal
intensity Woodford [2014].

6Subsequent work on optimal stopping and stochastic choice includes Liang, Mu, and Syrgkanis
[2022], Hébert and Woodford [2023], Gonçalves [2024], and Che and Mierendorff [2019].

7This Renyi order is also used in Frick, Iijima, and Ishii [2023].
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t-divergence of one trial, so if n draws from K Blackwell-dominates n draws from K 1,

K Reny-dominates K 1. Mu, Pomatto, Strack, and Tamuz [2021] shows that under

mild technical complications, the converse holds as well when n is sufficiently large,

so if K Renyi-dominates K 1, every decision maker prefers a large sample from K to

a large sample from K. The proof starts from the fact that the posterior belief after

a sequence of i.i.d. experiments is a function of the prior and the product of the

likelihood ratios for each observation, or equivalently the sum of the log-likelihoods.

It then shows that two experiments are Blackwell ordered if and only if one of the

associated “perfected log-likelihood ratios” first-order stochastically dominates the

other.8 To complete the proof, the paper uses a sharp large deviations bound to

relate the Renyi order to the perfected log-likelihood ratios.

This beautiful result raises interesting open questions such as when will n draws

from K and m draws from L be preferred to n draws from K 1 and m draws from

L1? And what can be said about comparing large experiments when there are more

than two states, and the Blackwell order is not the same as first-order stochastic

dominance?

Social Learning Most of the social learning literature assumes either that each

agent only acts once, as in Banerjee [1992] and Bikhchandani, Hirshleifer, and Welch

[1992], or that the agents use a boundedly rational heuristic, as in DeGroot [1974] and

Ellison and Fudenberg [1993]. Harel, Mossel, Strack, and Tamuz [2021] and Huang,

Strack, and Tamuz [2024] study social learning by long-lived Bayesian agents in a

setting where each agent receives an exogenous i.i.d. signal and so will eventually

learn the state whether or not they observe the actions of others. Both papers focus

on the rate of social learning and show that the speed is bounded above regardless

of how many players there are, even though the rate is proportional to the number

of players when all signals are public. The intuition is reminiscent of the Grossman-

Stiglitz paradox in the rational expectations literature: If individuals learned quickly

they would quickly reduce the amount they update their beliefs based on their private

8The perfected ratios are the sum of the log-likelihood ratios of the two experiments and a
carefully chosen independent random variable.
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signals, so that little or no new social information could be gained.

Harel, Mossel, Strack, and Tamuz [2021] studies a model with two states, myopic

agents, and a fully connected social network, i.e. each agent observes the actions

of all others. Huang, Strack, and Tamuz [2024] generalizes this to allow any finite

number of states, non-myopic agents, and more general networks, though the main

result is for the strongly connected case where there is an observational path between

every pair of agents. As in most of the social learning literature, both papers assume

that the agents’ payoff functions do not depend on the actions of the other agents.

Both papers also assume that there is a unique optimal action in each state and an

upper bound on the informativeness of any signal.9

The first steps in Huang, Strack, and Tamuz [2024] are to show that after some

random time T all agents behave myopically, and that in every strongly connected

network all agents learn at the same rate, so the asymptotic learning rate is the same

as with myopic agents and a fully connected network.10 Lemma 3 then shows that

this outside observer must learn at least as quickly as the society does, and Lemma 4

upper-bounds the private likelihoods by twice the maximum informativeness of any

agent’s signal. The main theorem then follows from the fact that if the equilibrium

speed of learning were higher than this maximal private rate, an outside observer

would know what action an agent would take before seeing it and so not learn

anything more from that agent’s actions. This would imply that the agents also

stop learning from their private signals, a contradiction.11

Privacy constraints In some settings, there are legal or ethical constraints on

revealing information such as a person’s race or gender. Strack and Yang [2024]

9I.e. a bound on the absolute value of the log-likelihood ratio any signal gives to any pair of
states. Harel, Mossel, Strack, and Tamuz [2021] allows for a continuum of signals, Huang, Strack,
and Tamuz [2024] assumes the set of signals is finite.

10To prove this main result, the paper writes the log-likelihood ratios for each player and pair of
states as the sum of the player’s log-likelihood of the states and a “public” term that sums the prior
log-likelihood and the history of actions the player has observed, where the public term describes
the posterior log-likelihood of an observer who has the same prior and observes the same actions.

11Interested readers should know that the proofs in this paper are particularly short and clear,
perhaps because they proceed from first principles. The “heaviest” result used is the classic large-
deviations argument that the learning rate for a single agent is well-defined.
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characterizes the experiments that are privacy preserving with respect to a collec-

tion of “privacy sets,” meaning that after every realization of the experiment’s signal,

the posterior probability of each privacy set is the same as its prior. For example,

if there are three possible states t1, 2, 3u and a uniform prior, then a general ex-

periment l could lead to any distribution over posteriors that averages out to the

prior, but if information about state 1 is protected, then every signal the experi-

ment can generate must also satisfy the constraint that the posterior probability of

state 1 is 1{3. In general, privacy sets need not simply be a collection of states, but

Strack and Yang [2024] shows it is without loss of generality to assume that they are,

which greatly simplifies the analysis. The paper shows that when the state is one-

dimensional, a signal is privacy-preserving if and only if it is Blackwell-dominated

by some “reordered quantile” signal12 and that every reordered quantile signal is

Blackwell-undominated among privacy-preserving signals. It then proves a version

of the same result for general state spaces, e.g. to cases where the state includes

both a measure of ability or fitness for a position and information about protected

characteristics. This is an important generalization of the two-state case analyzed

in He, Sandomirskiy, and Tamuz [2022], both conceptually and for applications to

“algorithmic fairness.”

The cost of information Pomatto, Strack, and Tamuz [2023] provides an ax-

iomatic characterization of information cost functions in a setting with a finite num-

ber of possible states of the world where the likelihood ratios for each pair of states

are finite almost surely. It shows that a cost function that satisfies four axioms must

be a LLR cost, which means that it is a weighted sum of the expected log-likelihood

ratios between pairs of states, where the weight on the log-likelihood between state

i and state j can depend on the prior probability of state i.

The axioms are that (1) Two experiments that are Blackwell equivalent have the

same cost; (2) The cost of running two independent experiments is the sum of their

costs; (3) If an experiment either succeeds (and produces an informative signal) or

12The reordered quantile reduces to the usual quantile function when the cumulative distribution
function is continuous.
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fails and yields no information, the marginal cost of increasing the probability of suc-

cess is constant, and (4) The cost function is continuous in the total variation norm.

In addition, the setup of the model assumes that the cost is always finite. Axiom

1 is automatically satisfied when experiments are chosen optimally, as all decision-

makers prefer the Blackwell-equivalent experiment with the lowest cost. Axiom 2

is implicit in the sequential-sampling models discussed above; in that context, it is

important that the time taken to gather information has no cost beyond the number

of samples. In the presence of Axiom 2, Axiom 3 is satisfied if the agent can create

“diluted” experiments that randomize between a fixed signal structure and an unin-

formative signal, and the cost of an experiment is not greater than the expected cost

of performing its diluted version until an informative signal is generated. Moreover,

Axiom 3 is satisfied by any cost function that is posterior separable in the sense of

Caplin and Dean [2013], including the widely-used entropy cost function, although

LLR costs are not posterior separable.

To illustrate the differences between LLR cost functions and entropy, consider an

agent who sees red and blue dots on a video screen and is uncertain whether there

are x red dots and 100 ´ x blue dots or 100 ´ x red dots and x blue dots. Here

the entropy cost of a symmetric binary signal that either says “there are more red

dots” or “there are more blue dots” is independent of x, while the LLR cost need

not be. Next, suppose the agent thinks both states are equally likely, and consider

the two costs as functions of the binary signal’s precision, i.e. the probability that it

reports the correct state. Both costs are 0 for the completely uninformative signal

that reports “more red” with probability 1{2 regardless of the state, and both are

increasing and convex, but as the probability the signal reports the true state goes to

1, the LLR cost goes to infinity, while the entropy cost converges to 1{2: LLR’s use

of log likelihood ratios instead of the log-likelihood used in entropy places a greater

penalty on very accurate signals.

Finally, with entropy, the marginal cost of a more accurate binary signal does not

depend on the agent’s prior, while with the LLR cost it does, because the weights in

LLR cost are inversely proportional to the prior probabilities.13

13See Denti [2022] for reasons posterior separability may be too strong a condition.
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Imperfect Learning and Behavioral Economics

A standard approach in behavioral economics is to modify one or two assumptions

of a standard theory in the direction of greater psychological realism (Camerer,

Loewenstein, and Rabin [2004]). However, as I noted in Fudenberg [2006], factors

that support one modification from the standard model may also argue for additional

modifications. Moreover, the great multiplicity of behavioral theories can make it

difficult to know which ones to apply in a given situation or how they interact.

As I argued, both of these problems could be mitigated if the many assumptions of

behavioral economics were integrated into a few more general models. Philipp’s work

on imperfect learning has provided a major step in this direction. It has had two main

focuses: learning by agents who have perfect memory but whose prior prevents them

from learning the truth, and agents whose main difficulties in learning come from

their imperfect memory. In both cases, Philipp develops models that link learning

directly with belief and behavior, and generate realistic and interesting behavioral

biases.

Misspecification and Learning Economists typically assume that agents are

correctly specified, meaning that their prior beliefs do not rule out the truth. Such

agents will eventually learn the consequences of any action they play infinitely often

although, although they need not learn the consequences of actions they rarely or

never play. Yet people sometimes seem to have incorrect beliefs despite having an

abundance of relevant data, such as a belief that taxes are linear in income when

they are not, or “causation neglect” about the impact of actions on outcomes. One

explanation for this is that they may be misspecified, and have prior beliefs that

rule out the true state of the world. Such misspecification is especially relevant for

parametric learning models, since any parametric prior (such as the assumption of

a linear demand curve with unknown slope and intercept) assigns probability 0 to

“most” data-generating processes.

To understand the effect of misspecified priors, recall that the posterior likeli-

hood of two states under Bayesian updating is their prior probability multiplied by
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the likelihood ratio they assign to the empirical distribution. Thus when agents are

correctly specified and their data identifies the true data-generating process, their

beliefs converge to the truth, as it is the only model that maximizes the empirical

likelihood. Berk [1966] shows that the beliefs of a misspecified agent asymptotically

concentrate on the set of models that maximize the likelihood of the observed data

when the data-generating process is exogenous and sufficient to identify the true

data generating process. However, in many economic applications, actions and asso-

ciated signal distributions depend on the action taken by the agent, and knowing the

probability distribution over outcomes that one action generates may not identify

the probability distributions generated by others. This interdependence between the

agent’s misspecification, beliefs, and long-run actions makes the dynamics of mis-

specified learning much richer. Arrow and Green [1973] develops a general model of

learning by misspecified agents who learn “passively,” and always play the myopic

best response to their current beliefs.14 Esponda and Pouzo [2016] defines Berk–Nash

equilibrium and relates it to the asymptotic behavior of passive misspecified learning

by combining ideas from Berk [1966] and Fudenberg and Kreps [1993]. This led to a

resurgence of interest in misspecified learning and helped inspire several of Philipp’s

papers.

Learning by Overconfident Agents Heidhues, Kőszegi, and Strack [2018] stud-

ies passive learning by an agent who is uncertain about a “fundamental” parameter

but is certain that they know their own ability even though their true ability is lower

than they think. Given the observed relatively low performance, the agent’s overcon-

fidence in their own ability leads them to underestimate the level of the fundamental

and draw incorrect inferences regarding the fundamental. Over time the agent’s be-

liefs become monotonically farther from the truth, and their action gets farther from

optimal. As the paper notes, this provides another illustration of how assuming that

the overconfident agent is otherwise “classical” can be misleading. To prove that

beliefs and actions converge, the paper develops a version of the martingale law of

14Passive learning is optimal if agents do not care about their future payoffs or if the information
they observe does not depend on their actions.
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large numbers for Markov chains that replaces the usual square-integrability condi-

tion with a restriction to real-valued chains that grow sub-linearly almost surely, a

result that will be useful more generally.

Convergence in One-Dimensional Models Heidhues, Kőszegi, and Strack [2021]

modifies the observation structure of Heidhues, Kőszegi, and Strack [2018] so that

the agent’s inferences do not depend on their actions, which ensures that passive

learning is optimal even if the agent is not myopic.15 The paper then uses stochastic

approximation to show that beliefs and actions converge. Unlike Heidhues, Kőszegi,

and Strack [2018], it allows for multiple steady states, so even if the system almost

surely converges, what it converges to may be stochastic.

Excessive experimentation Fudenberg, Romanyuk, and Strack [2017] was the

first study of the dynamics of learning by a misspecified agent who is patient and

thus is willing to engage in “active learning” by experimenting with actions that do

not maximize their expected current payoff. When agents are correctly specified and

very patient, with high probability they eventually stop “experimenting” and play a

myopic best response, because additional information will have little impact on their

beliefs and future play. Fudenberg, Romanyuk, and Strack [2017] shows this need

not be the case when players are misspecified, which can lead actions to cycle instead

of converge in a setting where they would converge with either correctly specified

priors or with myopic optimization.

Convergence Fudenberg, Lanzani, and Strack [2021] provides a sharp general

characterization of the limit outcomes of misspecified learning in single-player de-

cision problems when models in the support of the agent’s prior are mutually ab-

solutely continuous with respect to the true data-generating process and the prior

has sub-exponential decay in the sense of Fudenberg, He, and Imhof [2017].16 It

15This is technically not a generalization as the models aren’t quite nested.
16Other results on convergence to Berk-Nash equilibria require that the agents are myopic and

assume either i.i.d. payoff shocks as in Fudenberg and Kreps [1993], a finite-support prior (Esponda
and Pouzo [2016], Frick, Iijima, and Ishii [2020], and Bohren and Hauser [2021]), which rules out e.g.
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first shows that any limit point must be a uniform Berk-Nash equilibrium, which

strengthens Berk-Nash equilibrium by requiring that the action is a best reply to

any mixture over the models that maximize the empirical likelihood over the models

in the support of the agent’s prior. To do this, the paper shows that the agent’s

beliefs concentrate on the distributions that maximize the empirical likelihood at an

exponential rate that is uniform over the sample realizations. It then shows that if

play converges to a particular action, the empirical outcome frequencies converge to

the corresponding data-generating process with oscillations that die out more slowly

than the exponential concentration of beliefs so that beliefs concentrate around every

maximizer infinitely often. Thus if the limit action were not a best reply to one of the

maximizers, the agent would switch to another action when the beliefs concentrate

on that maximizer.

The paper then establishes that an action has a high probability of being the

limit outcome for “nearby” beliefs if and only if it is a uniformly strict Berk-Nash

equilibrium, meaning that is a strict best reply to every mixture over the relevant

maximizers. The key step here is showing that if beliefs initially assign a very high

probability to models that make the limit action optimal, they are unlikely to drop

below the threshold that makes it suboptimal.17

Finally, equilibria are positively attractive if they have positive probability of

being the long-run outcome from any starting belief. Uniformly strict Berk-Nash

equilibria are positively attractive under various types of misspecification, including

various forms of incorrect perceptions of how actions influence the distribution of

outcomes, such as a belief that outcomes are exogenous when they are not, or that

outcome distribution under one action is uncorrelated with that under another. The

paper uses this to show that there can be a positive probability that a patient but

misspecified agent will fall into an “underinvestment trap” when a correctly specified

agent would not.

a uniform prior over the probability that a coin lands on heads. Esponda, Pouzo, and Yamamoto
[2021] proves a related result about the convergence of action frequencies.

17The proof generalizes an upcrossing argument of Fudenberg and Levine [1992] to misspecified
beliefs and then strengthens a bound from Frick, Iijima, and Ishii [2020] to hold uniformly.
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Selective Memory Most people’s memory is both limited and selective: They

don’t remember everything, and are more likely to remember some things than oth-

ers.18 Fudenberg, Lanzani, and Strack [2024] studies the long implications of selective

memory when a myopic agent chooses actions that maximize their expected utility.

It assumes that agents compute their beliefs from their prior and remembered expe-

riences, as opposed to updating their posterior belief, and that agents are unaware

of their selective memory. Thus they update their beliefs as if the experiences they

remember are the only ones that occurred.19 The paper also assumes that agents

choose actions that maximize the current period’s expected payoff.

Fudenberg, Lanzani, and Strack [2024] shows that if the agent eventually always

plays a given action a, the action is a selective memory equilibrium, meaning that

the action is a best response to a belief that maximizes the likelihood of a version of

the outcome distribution that gives more weight to the outcomes the agent is more

likely to remember. Using stochastic approximation results from Benaim, Hofbauer,

and Sorin [2005], Esponda, Pouzo, and Yamamoto [2021], and a result on the rate

that beliefs converge from Fudenberg, Lanzani, and Strack [2023], the paper shows

that every limit strategy is a selective memory equilibrium. It also provides a suf-

ficient condition for beliefs and actions to converge. Selective memory equilibrium

resembles Berk-Nash equilibrium. Indeed, the paper shows that every long-run out-

come that can be achieved as the result of misspecified learning can also be derived

as a consequence of a selective memory and vice-versa.20 Importantly, the form of

misspecification that would lead to the same behavior as a given form of selective

memory depends on the environment. That is, particular forms of misspecification

and selective memory that coincide under one information structure can respond very

differently to changes in what the agent observes. For example, combining positive

and negative feedback has different effects on agents with ego-boosting memory than

18See e.g. Shadlen and Shohamy [2016], Schacter [2008], and Kahana [2012].
19d’Acremont, Schultz, and Bossaerts [2013] and Sial, Sydnor, and Taubinsky [2023] provide

evidence that agents access their accumulated evidence each period when updating beliefs. Reder
[2014], Zimmermann [2020], and Gödker, Jiao, and Smeets [2022] provide evidence of partial or
complete unawareness of memory biases. Fudenberg, Lanzani, and Strack [2024]’s results extend
to this partial unawareness.

20There are some subtleties involved when the equilibria in question are not uniformly strict.
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on agents who are mistakenly sure that they have high ability. The paper shows that

“associativeness” has no effect on long-run outcomes and that ego-boosting memory

bias leads agents to underestimate the ability of their coworkers.

Risk Preferences

Risk preferences are a key factor in the insurance and investment markets and also

matter for decisions related to health, job choice, and retirement. The risk attitudes

of expected utility agents depend on the totality of risks they face as opposed to

the properties of each risk in isolation, so it is important to understand how risk

preferences change as additional risks are added. It is also important to understand

the behavior of agents who do not maximize expected utility, but instead evaluate

risks using non-linear functions of their probabilities. Philipp has done impressive

work on both topics.

Adding Noise The concepts of first-order and second-order stochastic dominance

play a key role in the economics of risk and insurance.21 Adding noise to lotteries

preserves stochastic dominance: If p first or second order stochastically dominates q,

the same is true for the compound lotteries p ` r and q ` r for any lottery r that is

independent of p and q. However, the converse is not true: Even if p does not first

or second order dominate q, there can be an independent lottery r such that p ` r

does dominate q ` r. More strongly, Pomatto, Strack, and Tamuz [2020] shows that

if the expected value of a random variable x is higher than that of y, there is an

independent random variable r such that x ` r first-order stochastically dominates

y ` r, and that if p and q have the same mean and the variance of p is strictly less

than that of q then there is an independent lottery r such that p ` r second-order

21Recall that real-valued lottery p first-order stochastically dominates lottery q if p is more likely
than q to be above any fixed z, and that this is equivalent to the statement that the expected
utility of p is (weakly) higher than that of q for all weakly increasing utility functions (provided
these expectations exist.) Similarly, lottery p second-order stochastically dominates lottery q if and
only if it is weakly preferred by all agents with weakly increasing and weakly concave preferences.
When p and q in addition have the same mean, q is a mean-preserving spread of p (Rothschild and
Stiglitz [1978]) and an example of the majorization relation discussed above.
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stochastically dominates q ` r, 22 It is important here that r can take on arbitrarily

large and small values, but they argue that the required standard deviations need

not be implausibly large. For example, if p pays 12 and ´10 with probability 1{2

each, then it does not first-order stochastically dominate 0, but there is an r with

large standard deviation (3, 525!q such that p` r first order stochastically dominates

0 ` r.

The idea of the proof for first-order dominance is as follows. The assumption

that the expected value of x is higher than that of y implies that the cumulative

distribution function (cdf) of y is on average above that of x. This suggests that

adding a lottery r with a “sufficiently diffuse” distribution will lead to the cdf of

y ` r being above that of x ` r at least at most points. To show there is a lottery r

that makes the cdf of y ` r everywhere above that of x` r they make clever use of a

result of Ruzsa and Szekely [1988], which shows that a signed measure that assigns

total mass 1 to R can be “smoothed” into a probability measure by convolving it

with an appropriately chosen probability measure.

Background Risk An immediate corollary of Pomatto, Strack, and Tamuz [2020]

is that for each finite set of gambles, there is a background risk such that any agent

whose preferences are monotone with respect to first order stochastic dominance will

rank gambles by their expected value. Mu, Pomatto, Strack, and Tamuz [2024a]

proves a related result: an agent who has background risk with full support on the

reals (and in particular can be arbitrarily large or small) will accept any gamble that

has positive expectation and whose riskiness in the sense of Aumann and Serrano

[2008] is less than a measure of the “size” of the background risk. It uses this to

argue that under plausible levels of background risk, expected utility theory, prospect

theory, and rank-dependent utility all imply that agents who account for background

risk and respect stochastic dominance are risk-neutral over small gambles.

22Tarsney [2018] independently found an example of this for first-order dominance. Mu, Pomatto,
Strack, and Tamuz [2024b] generalizes Pomatto, Strack, and Tamuz [2020] to other statistics than
moments, and provides a sharper result for the case where the added random variable is required
to be bounded.
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Cumulative Prospect Theory in A Dynamic Setting Cumulative prospect

theory (Tversky and Kahneman [1992]) is the most widely used generalization of ex-

pected utility theory. It supposes that outcomes are evaluated relative to a “reference

point” that separates outcomes into gains and losses, and the agent distorts cumu-

lative probabilities as in rank-dependent utility (Quiggin [1982]). Most applications

of cumulative prospect theory further assume that the agent overweights extremely

unlikely gains and underweights extremely likely losses.

Ebert and Strack [2015] points out that under fairly general conditions, an agent

who distorts probabilities in this way will accept some small binomial gambles with

negative expected payoff provided their loss aversion is not too strong.23 Ebert

and Strack [2015] uses this fact about static choice to study an agent who needs

to decide when to stop a diffusion process with a known negative drift and claim

the current state as their payoff. A risk averse expected utility maximizer would

stop immediately, but Ebert and Strack [2015] shows that a “näıve” agent with

cumulative prospect theory preferences will never stop, because a simple stopping rule

with asymmetric upper and lower boundaries can generate negative-expected-value

binary lotteries that the agent finds appealing.24 Conversely, Ebert and Strack [2018]

shows that a “sophisticated” cumulative prospect theory agent who is aware their

future selves will have different preferences but cannot commit to future behavior,

may never start a diffusion with high positive drift because they are afraid that the

future selves will stop too soon. It concludes that in dynamic settings, prospect

theory needs to be modified to yield more realistic predictions.

23Azevedo and Gottlieb [2012] shows this is true for sufficiently large gambles.
24Here “näıve” means that the agent chooses their stopping rule believing it will be carried out,

when in fact at subsequent periods they will choose to continue. This makes the agent dynamically
inconsistent in the sense of Strzalecki [2024]. The main model uses continuous time to ensure there
is a rich enough set of possible gambling strategies, but the paper shows the result holds in many
discrete-time settings.
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Conclusion

Philipp has developed substantial extensions of classic results in mechanism design,

and helped spark what his Clark citation calls a “new wave of information eco-

nomics.” This work on its own is arguably Clark-worthy, but he is also one of

the leaders in the push to provide foundations for various behavioral models and

build bridges between mordern economic theory and fields such as behavioral eco-

nomics, computer science, neuroscience, and psychology. In addition, Philipp has

made contributions to the study of market design (Leshno and Strack [2020], Nikzad

and Strack [2023]), contests (Fang, Noe, and Strack [2020], Seel and Strack [2013]),

present bias (Heidhues and Strack [2019]), and epidemics (Kruse and Strack [2020]).

All of his work is clear and insightful, and its influence seems sure to expand.

Philipp is also one of the most cheerful and friendly people I know. I have greatly

enjoyed working with and learning from him.
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