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Abstract

We analyze the problem of fully implementing a social choice function when the planner
does not know the agents’ beliefs about other agents’ types.

We identify an ex post monotonicity condition that is necessary and - in economic environ-
ments - sufficient for full implementation in ex post equilibrium; we also identify an ex post
monotonicity no veto condition that is sufficient. These results are the ex post equilibrium
analogues of Jackson’s (1991) results about Bayesian implementation.

We show by example that ex post monotonicity implies neither Maskin monotonicity (neces-
sary and almost sufficient for complete information implementation) nor - for some type spaces
- interim monotonicity (i.e., the Bayesian monotonicity condition that is necessary and almost
sufficient for Bayesian implementation). We identify a robust monotonicity condition that is
equivalent to interim monotonicity on all type spaces; robust monotonicity implies both Maskin
monotonicity and ex post monotonicity.

These results follow the implementation literature in focussing on pure strategy equilibria
and allowing a finite mechanism to be chosen after the finite type space is chosen. We say
that there is uniform implementation if there exists a finite mechanism that fully implements
a social choice function for every finite type space that could be constructed for a fixed set
of payoff types (under this concept there can be no gap between pure and mixed strategy
implementation). We show that uniform implementation is equivalent to an ex post version of
dominance solvability and show by example that uniform implementation may be impossible
even though implementation is possible on every type space.
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1 Introduction
This paper looks at the problem of fully implementing a social choice function when agents have
interdependent values. Thus each agent has a payoff type. The agents have preferences over outcomes
that depend on the profile of payoff types. The planner does not know the agents’ types but must
choose a mechanism such that in every equilibrium of the mechanism, agents play of the game results
in the outcome specified by the social choice function at every payoff type profile. This problem
has been analyzed under the assumption of complete information, i.e., there is common knowledge
among the agents of their payoff types (e.g., Maskin (1999)). It has also been analyzed under the
assumption of incomplete information, on the assumption that there is a fixed type space and there
is common knowledge among the agents of the prior (or the priors) according to which agents form
their beliefs (e.g., Jackson (1991)). We want to analyze the problem of full implementation under
the assumption that the planner knows nothing about what agents know or believe about other
agents’ payoff types, or their higher order beliefs. We believe that by fixing a small type space and
assuming common knowledge among the agents of the type space and agents’ beliefs on the type
space, researchers have been making very strong implicit assumptions. We would like to relax those
assumptions.
There has recently been much interest in the literature on using the concept of ex post equilibrium

since it seems unrealistic to allow the mechanism to depend on the planner’s knowledge of the type
space (e.g., Dasgupta and Maskin (2000)). We provide a complete analysis of full implementation
in ex post equilibrium. We introduce an ex post monotonicity condition that - along with ex
post incentive compatibility - is necessary for ex post implementation. We show that a slight
strengthening of ex post monotonicity - the ex post monotonicity no veto condition - is sufficient
for implementation with at least three agents. The latter condition reduces to ex post monotonicity
in economic environments. These results are the ex post analogues of the Bayesian implementation
results of Jackson (1991), and we employ similar arguments to establish our results.
However, for full implementation using a strong solution concept does not necessarily imply

stronger results: the fact that non truth-telling behavior may fail the stringent requirement of
being an ex post equilibrium may make implementation easier. We show in an economic example
that ex post monotonicity may hold even when both Maskin monotonicity (the necessary condition
for complete information implementation) and interim monotonicity on a fixed type space (the
necessary condition for interim implementation) fail. Thus ex post implementation is possible even
when complete information implementation and interim incomplete information implementation are
impossible.
We therefore find a condition - robust monotonicity - that is equivalent to requiring interim

monotonicity on every type space. Suppose that we fix a "deception" specifiying, for each payoff
type of each agent, a set of types that he might misreport himself to be. We require that for some
agent i and a type misreport of agent i under the deception, for every misreport θ0−i that that the
other agents might make under the deception, there exists an outcome y which is strictly preferred
by agent i to the outcome he would receive under the social choice function for every possible payoff
type profile that might misreport θ0−i; where this outcome y satisfies the extra restriction that no
payoff type of agent i prefers outcome y to the social choice function if the other agents were really
types θ0−i. This condition - while a little convoluted - is a somewhat easier to interpret than the
interim (Bayesian) monotonicity conditions. It is very strong and implies both Maskin monotonicity
and ex post monotonicity conditions (but is strictly weaker than dominant strategies).
All the results reported thus far maintain two standard assumptions from the implementation

literature. There is a restriction to pure strategies and the finite mechanism was chosen after the
type space was fixed. We next examine the uniform implementation problem. Suppose that we fix
the environment consisting of finite payoff types, outcomes, agent payoff functions and social choice
function. We ask if there exists a finite mechanism such that every equilibrium of every possible
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type space implies that the social choice function is realized. In other words, the finite mechanism is
chosen after the finite type space is fixed. It does not matter for uniform implementability whether
there is a pure strategy restriction. We show that uniform implementation is possible if and only if
it is possible to implement the social choice function using an ex post iterative deletion procedure:
we fix a mechanism and iteratively delete messages for each payoff type that are strictly dominated
by another message for each payoff type profile and message profile that has survived the procedure.
We show by example that this requirement is strictly stronger than robust monotonicity and thus
uniform implementation is strictly stronger than interim implementation on every type space.
This last result about uniform implementation illustrates a general point well-known from the

literature on epistemic foundations of game theory (e.g., Brandenburger and Dekel (1987), Battigalli
and Siniscalchi (2003)): equilibrium solution concepts only have bite if we make strong assumptions
about type spaces, i.e., we assume small type spaces where the common prior assumption holds.
Our uniform implementation result says that equilibrium has no bite (relative to iterated deletion
of strictly dominated strategies) if we allow for sufficiently rich type spaces.
The results in this paper concern full implementation. An earlier companion paper of ours (Berge-

mann and Morris (2003)) addresses the analogous questions of robustness to rich type spaces, but
looking at the question of partial implementation, i.e., does there exist a mechanism such that some
equilibrium implements the social choice function. We showed that ex post (partial) implementation
of the social choice function is a necessary and sufficient condition for partial implementation on
all type spaces. This paper establishes that an analogous result does not hold for full implementa-
tion. In that paper, we also looked at the partial implementation of social choice correspondences,
but showed that partial implementation on all type spaces was sometimes easier than ex post par-
tial implementation. We leave for future work the question of full implementation of social choice
correspondences on large type spaces.
In the special case of private values, ex post incentive compatibility is equivalent to dominant

strategies incentive compatibility and thus partial implementation on all type spaces implies dom-
inant strategy implementation. But strictly dominant strategy implementation is a sufficient con-
dition for full implementation. Thus in the private values case, moving to the stronger solution
concept of ex post equilibrium / dominant strategies is always (up to the dominant / strictly dom-
inant strategies distinction) a more stringent requirement. This paper shows that this well known
observation does not translate to an interdependent values setting.
The paper is organized as follows. Section 2 describes a simple example that illustrates some of the

key points in the paper. Section 3 describes the formal environment and solution concepts. Section
4 reports our analysis of the ex post implementation problem. Section 5 reports on the connection
between our ex post monotonicity and earlier notions of monotonicity. Section 6 introduces our
notion of robust monotonicity and shows that it is equivalent to interim monotonicity on all type
space. Section 7 reports results on uniform implementability. Section 8 concludes.

2 Example A
Consider the following interdependent values social choice setting. There are two agents 1 and 2.
Each agent has two possible payoff types, Θ1 =

©
θ11, θ

2
1

ª
and Θ2 =

©
θ12, θ

2
2

ª
. There are four possible

social outcomes, A = {a, b, c, d}. The payoffs of the two agents are given by:

a θ12 θ22
θ11 3, 3 0, 0

θ21 0, 0 1, 1

b θ12 θ22
θ11 0, 0 3, 3

θ21 1, 1 0, 0

c θ12 θ22
θ11 0, 0 1, 1

θ21 3, 3 0, 0

d θ12 θ22
θ11 1, 1 0, 0

θ21 0, 0 3, 3
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Notice that the agents have identical interests and, for each payoff type profile, have a unique
preferred outcome. The social choice function will select that outcome:

θ12 θ22
θ11 a b

θ21 c d

We are interested in a setting where all this information is common knowledge among the agents
and the planner, but the planner knows nothing about the agents’ beliefs and higher order beliefs
about each others’ types. What can the planner do? First, observe that the social choice function is
ex post incentive compatible. Thus if the planner simply invites the agents to announce their payoff
types, they will have an incentive to tell the truth as long as they expect others to do so. Thus truth
telling is an ex post equilibrium of the game where agents’ types are just their payoff types. It is
also an interim (Bayesian) equilibrium of the game played on a richer type space.
However, this game also has another ex post equilibrium where each type of each agent always

misreports his type. This is also thus an interim equilibrium on any richer type space. However, it
is easy to augment the simple mechanism to one where all (pure strategy) ex post equilibria yield
desirable outcomes. Consider the mechanism where agent 2 simply announces his payoff type; and
agent 1 announces his payoff type and also announces either "truth" or "lie" (with the interpretation
that the latter announcement is agent 1’s announcement about whether he believes agent 2 has told
the truth). This mechanism can be represented by the following table:

θ12 θ22
(θ11, truth) a b

(θ21, truth) c d

(θ11, lie) b a

(θ21, lie) d c

(1)

What are the (pure strategy) ex post equilibria of this game? In any ex post equilibrium, type θ12
of agent 2 must announce θ12 or θ

2
2. If type θ

1
2 of agent 2 announces θ

1
2, then type θ

1
1 of agent 1

must announce (θ11, truth) and type θ
2
1 of agent 1 must announce (θ

2
1, truth); so type θ

2
2 of agent 2

must announce θ22. On the other hand, if type θ
1
2 of agent 2 announces θ

2
2, then type θ

1
1 of agent 1

must announce (θ11, lie) and type θ
2
1 of agent 1 must announce (θ

2
1, lie); so type θ

2
2 of agent 2 must

announce θ12. Thus there are two possible ex post equilibria and both implement the social choice
function.1

Thus for this example, we have shown the possibility of ex post implementation. Theorem 1 in
Section 4 identifies an ex post monotonicity condition that is necessary for ex post implementation;
we also show that this condition is sufficient if there are at least three agents in an economic
environment and that a slightly stronger ex post monotonicity no veto condition is sufficient in
non-economic environments.
We can also analyze whether interim implementation is possible on different type spaces. Suppose

that agents had the following type space:

t12 t22 t32 t42
t11

1
8 (1− ε) 1

8 (1− ε) 1
8ε

1
8ε θ11

t21
1
8 (1− ε) 1

8 (1− ε) 1
8ε

1
8ε θ21

t31
1
8ε

1
8ε

1
8 (1− ε) 1

8 (1− ε) θ11
t41

1
8ε

1
8ε

1
8 (1− ε) 1

8 (1− ε) θ21
θ12 θ22 θ12 θ22

1Mechanisms of this form - where the augmented mechanism contains a copy of the direct mechanism - are common
in the implementation literature; Mookerjee and Reichelstein (1990) refer to them as "augmented direct mechanisms."
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where ε < 1
2 . The four types of agent 1 are represented as rows, the four types of agent 2 are

represented as columns and the numbers represent the prior on type profiles. The payoff type of a
given type is recorded at the end of his row/column. If this is the true type space and agents are
invited to play the augmented mechanism (1), then there is clearly a strict pure strategy interim
equilibrium where agents follow strategies:

s1 (·) =


(θ11, truth) if t11
(θ21, truth) if t21
(θ11, lie) if t31
(θ21, lie) if t41

and

s2 (·) =


θ12 if t12
θ22 if t22
θ22 if t32
θ12 if t42

To see why this is an equilibrium, note that if ε = 0, then we have disjoint type spaces consisting of
types

¡
t11, t

2
1; t

1
2, t

2
2

¢
; and types

¡
t31, t

4
1; t

3
2, t

4
2

¢
, respectively and the above type space reduces to:

t12 t22 t32 t42
t11

1
8

1
8 0 0 θ11

t21
1
8

1
8 0 0 θ21

t31 0 0 1
8

1
8 θ11

t41 0 0 1
8

1
8 θ21

θ12 θ22 θ12 θ22

In this new type space, the first disjoint type space
¡
t11, t

2
1; t

1
2, t

2
2

¢
play according to one ex post equi-

librium of the augmented mechanism (1), whereas the second disjoint type space
¡
t31, t

4
1; t

2
2, t

4
2

¢
play

according to the other ex post equilibrium. Given the strict incentives, allowing ε to be positive
but small does not stop these strategies being an equilibrium. But now, with probability ε, there is
miscoordination.
This example illustrates one important message of this paper: there is a significant gap between

ex post implementation and interim implementation. It may be easier to ex post implement than
to interim implement. Later in the paper, we will give an example where it is possible to ex post
implement on any type space but it is not possible to interim implement on some type space. We
will also give an example where is possible to interim implement on any full support type space but
not possible to ex post implement.2

It also turns out that in this example, there is no single finite mechanism that interim implements
the social choice function on every type space. We return to this point in section 7.

3 The Implementation Problem
We consider a finite set of agents, 1, 2, ..., I. Agent i’s payoff type is θi ∈ Θi, where Θi is a finite
set. We write θ ∈ Θ = Θ1 × ... × ΘI . There is a set of outcomes A. Each individual has utility
function ui : A×Θ→ R. Thus we are in the world of interdependent types, where an agent’s utility
depends on other agents’ payoff types. A social choice function is a mapping f : Θ→ A. If the true

2 In this example, we could already sustain equilibria which do not implement the social choice function for some
priors over the payoff types provided that we consider strategies which with partial lying (misreporting only for some,
but not all types).
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payoff type profile is θ, the planner would like the outcome to be f (θ). In this paper, we restrict our
analysis to the implementation of a social choice function rather than a social choice correspondence
or set.
We are interested in analyzing behavior in a variety of type spaces, many of them with a richer

set of types than payoff types. For this purpose, we shall refer to agent i’s type as ti ∈ Ti, where Ti is
a finite set. A type of agent i must include a description of his payoff type. Thus there is a functionbθi : Ti → Θi with bθi (ti) being agent i’s payoff type when his type is ti. A type of agent i must
also include a description of his beliefs about the types of the other agents; thus there is a functionbπi : Ti → ∆ (T−i) with bπi (ti) being agent i’s belief type when his type is ti. Thus bπi (ti) [t−i] is
the probability that type ti of agent i assigns to other agents having types t−i. A type space is a
collection:

T =
³
Ti,bθi, bπi´I

i=1
.

A planner must choose a game form or mechanism for the agents to play in order the determine
the social outcome. LetMi be the finite set of messages available to agent i. Let g (m) be the outcome
if action profile m is chosen. Thus mechanisms that do not involve randomization contingent on the
message profile. But randomization can be built into the outcome space A. Thus a mechanism is a
collection

M = (M1, ...,MI , g (·)) ,
where g :M → A. Note that finiteness is built into the definition of a mechanism.
Now holding fixed the payoff environment, we can combine a type space T with a mechanism

M to get an incomplete information game (T ,M).
We are interested in a setting where the planner does not know the payoff types of the agents

and knows nothing about agents’ beliefs and higher order beliefs about other agents’ types. Two
approaches to this problem are to look at ex post equilibria of the game with payoff types; or we
can look at interim (Bayesian Nash) equilibria on a variety of richer type spaces. We consider each
in turn.

3.1 Ex Post Equilibrium

Consider the "payoff types game" where each agent’s possible types are Θi. Thus we have an
incomplete information game where agent i’s payoff if message profile m is sent and payoff type
profile θ is realized is

ui (g (m) , θ) .

A pure strategy in this game is a function si : Θi →Mi.

Definition 1 (Ex post equilibrium)
A pure strategy profile s = (s1, ..., sI) is an ex post equilibrium of the payoff types game if

ui (g (s (θ)) , θ) ≥ ui (g ((mi, s−i (θ−i))) , θ)

for all i, θ and mi.3

Definition 2 (Ex post implementation)
Social choice function f is ex post implementable if there exists a mechanism M such that every
(pure strategy) ex post equilibrium s of the gameM satisfies

g (s (θ)) = f (θ) .
3Ex post incentive compatibility was discussed as "uniform incentive compatibility" by Holmstrom and Myerson

(1983). Ex post equilibrium is increasingly studied in game theory (see Kalai (2002)) and is often used in mechanism
design as a more robust solution concept (Cremer and McLean (1985), Dasgupta and Maskin (2000), Perry and Reny
(2002), Bergemann and Valimaki (2002)).



Robust Implementation December 19, 2003 8

As is standard in this literature, we restrict attention to pure strategy equilibria for most of the
paper. The importance of this restriction is discussed in detail in section 7.

3.2 Interim Equilibrium

Next we consider an incomplete information game with an arbitrary type space T and a mechanism
M. The payoff of agent i if message profile m is chosen and type profile t is realized is then given
by

ui

³
g (m) ,bθ (t)´ .

A pure strategy for agent i in the incomplete information game (T ,M) is given by

si : Ti →Mi.

Pure strategy (interim, or Bayesian Nash) equilibria are defined in the usual way.

Definition 3 (Interim equilibrium)
A pure strategy profile s = (s1, ..., sI) is an interim equilibrium of the game (T ,M) ifX

t−i∈T−i
ui

³
g (s (t)) ,bθ (t)´ bπi (ti) [t−i] ≥ X

t−i∈T−i
ui

³
g ((mi, s−i (θ−i))) ,bθ (t)´ bπi (ti) [t−i]

for all i, ti and mi.

Definition 4 (Interim Implementation)
Social choice function f is interim implementable on type space T if there exists a mechanism M
such that every (pure strategy) equilibrium s of the game (T ,M) satisfies

g (s (t)) = f
³bθ (t)´

for all t.

4 Ex Post Implementation
We present necessary and sufficient conditions for a social choice function f to be ex-post equilib-
rium implementable in the payoff type space. Our results extend the work of Maskin (1999) for
complete information implementation and Jackson (1991) on Bayesian implementation (i.e., interim
implementation on a fixed type space) to the notion of ex post equilibrium. We start with a brief
review of the notion of Maskin monotonicity.

4.1 Maskin Monotonicity

Maskin (1999) introduced a celebrated monotonicity notion for the complete information environ-
ment which constitutes a necessary and (almost) sufficient condition for complete information im-
plementation.

Definition 5 (Maskin monotonicity)
Social choice function f is (Maskin) monotone, if for all θ, θ0 and

∀i,∀y : ui
¡
f
¡
θ0
¢
, θ0
¢
≥ ui

¡
y, θ0

¢
⇒ ui

¡
f
¡
θ0
¢
, θ
¢
≥ ui (y, θ)

then
f
¡
θ0
¢
= f (θ) .
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“In words, monotonicity requires that if alternative x is f optimal with respect to some profile
of preferences and the profile is then altered so that, in each individual’s ordering a does not fall
below any alternative that it was not below before, then x remains f optimal with respect to
the new profile.” (Maskin (1999)). Maskin monotonicity is necessary for complete information
implementation and, when there are at least three agents and the no veto hypothesis holds, also
sufficient.
For our purposes, it will be useful to state the above definition in its contrapositive form. In

addition, it will be convenient to interpret θ0 as the reported payoff profile of the agents when the
true type profile is given by θ.
We call a non truth-telling strategy of the agents in the direct mechanism a deception. We recall

that in the complete information environment, every agent i is informed about the entire vector
of payoff types, θ. A successful deception by the agents relative to the principal (in the direct
mechanism) therefore requires that they all report the same payoff profile. We thus focus on the
case where all agents follows a common deception strategy:

α : Θ→ Θ.

The notion of a deception is meant to represent the possibility of multiple equilibria, in which agents
do not necessarily report truthfully, but rather misreport systematically as represented by α.

Definition 6 (Maskin monotonicity)
Social choice function f is (Maskin) monotone, if either of the following equivalent conditions holds:

1. If f (θ) 6= f
¡
θ0
¢
, then there exists i and y such that

ui
¡
f
¡
θ0
¢
, θ0
¢
≥ ui

¡
y, θ0

¢
,

and
ui (y, θ) > ui

¡
f
¡
θ0
¢
, θ
¢
.

2. For all deceptions α : Θ→ Θ, if f ◦ α 6= f , then there exists i, θ, and y such that

ui (y, θ) > ui (f (α (θ)) , θ) , (2)

while
ui (f (α (θ)) , α (θ)) ≥ ui (y, α (θ)) . (3)

The first version of the definition is simply the original definition in its contrapositive form. The
equivalence between the first and the second version can be obtained by considering a pair θ and θ0

with f (θ) 6= f
¡
θ0
¢
and define the deception α by setting θ0 = α (θ).

The second version of the definition suggests a rather intuitive description why monotonicity is
a necessary condition for implementation. Suppose that f is complete information implementable.
Then if the agents were to deceive the designer by misreporting α (θ) rather than reporting truthfully
θ and if the deception α (θ) would lead to a different allocation, i.e. f (α (θ)) 6= f (θ), then the
designer should be able to fend off the deception. This requires that there is some agent i and
profile θ such that the designer can offer agent i a reward y for denouncing the deception α (θ) by
the agents if the true type profile is θ. Yet, at the same time, the designer has be aware that the
reward could be used in the wrong circumstances, namely when the true payoff type profile is α (θ)
and it is indeed reported to be α (θ). The first strict inequality (2) then guarantees the existence of
a whistle-blower, whereas the second weak inequality (3) guarantees incentive compatible behavior
by the whistle-blower.
The ex post and interim monotonicity conditions to be presented shortly will all have these

two components of “incentive compatible” “whistle-blower”, but reflect the incomplete information
environment and the different informational requirements of interim and ex post equilibrium.
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4.2 Ex Post Monotonicity

If we were just interested in partially implementing f - i.e., constructing a mechanism with an ex
post equilibrium achieving f - then by the revelation principle we could restrict attention to direct
mechanisms and a necessary and sufficient condition is the following ex post incentive compatibility
condition.

Definition 7 (Ex Post Incentive Compatible)
Social choice function f is ex post incentive compatible (EPIC) if

ui (f (θ) , θ) ≥ ui
¡
f
¡
θ0i, θ−i

¢
, θ
¢

for all i, θ and θ0i.

However, there might exist multiple ex post equilibria in the direct mechanism. As before, we
call a non truth-telling strategy in the direct mechanism a deception, with α = (α1, ..., αI), each
αi : Θi → Θi and

α (θ) = (α1 (θ1) , ..., αI (θI)) .

In a direct revelation game αi would indicate i’s reported type as a function of his true type. For
a direct revelation mechanism, if agents report the deception α rather than truthfully, then the
resulting social outcome is given by f (α (θ)) rather than f (θ). We write f ◦ α (θ) ≡ f (α (θ)).

Definition 8 (Ex-post monotonicity)
Social choice function f satisfies ex post monotonicity (EM) if for every deception α with f 6= f ◦α,
there exists i, θ and y : Θ→ A such that

ui (y, θ) > ui (f (α (θ)) , θ) , (4)

and
ui
¡
f
¡
θ0i, α−i (θ−i)

¢
,
¡
θ0i, α−i (θ−i)

¢¢
≥ ui

¡
y,
¡
θ0i, α−i (θ−i)

¢¢
, ∀θ0i ∈ Θi. (5)

The notions of Maskin and ex post monotonicity differ due to the informational assumptions
inherent to each notion. In the complete information environment, every agent has complete infor-
mation about the entire type profile. For this reason, the deception by every agent i is a mapping
αi : Θ→ Θ. Moreover as it is a complete information environment, agent i cannot credibly issue a
report distinct from the other agents in equilibrium. For this reason every agent has to report the
same deception and it suffices to consider all common deceptions, dropping the index i completely.
In the incomplete information environment, agent i has a private information about θi, his deception
occurs only with respect to Θi and hence αi : Θi → Θi.
The synchronicity in the complete information deception α and the asynchronicity in the incom-

plete information deception αi affect the notions in two different ways. As the agents can synchronize
their deception it is strictly harder to find a reward y with Maskin monotonicity than it is with ex
post monotonicity. On the other hand, with complete information, there is no private information to
agent i and it is strictly harder to satisfy the ex post incentive constraints. For this reason, neither
one of the conditions implies the other, as will be demonstrated by Examples B and C.
For f to be ex-post implementable, it has to be that for every deception α, there exists an agent

i and a type profile θ, such that at type profile θ agent i has a strict incentive to denounce the
deception by choosing an alternative allocation.
However it has to be guaranteed that this particular agent i doesn’t denounce the remaining

agents when their announced type profile α−i (θ−i) is in fact their true type profile. The later
incentive constraint is represented by the second set of (weak) inequalities.
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We next present an equivalent, but slightly more compact definition which we use in subsequent
proofs. Let

Yi (θ−i) ≡
©
y : ui

¡
f
¡
θ0i, θ−i

¢
,
¡
θ0i, θ−i

¢¢
≥ ui

¡
y,
¡
θ0i, θ−i

¢¢
, ∀θ0i ∈ Θi.

ª
The set Yi (θ−i) comprises all allocations such that at every true profile

¡
θ0i, θ−i

¢
, the social choice

function f
¡
θ0i, θ−i

¢
weakly dominates every y in the set for every true type profile θ0i of agent i. The

following definition is equivalent to the above definition.

Definition 9 (Ex-post monotonicity)
f satisfies ex post monotonicity (EM) if for every deception α with f 6= f ◦ α, there exists i, θ and
y ∈ Yi (α−i (θ−i)) such that

ui (y, θ) > ui (f (α (θ)) , θ) . (6)

In the second version of ex post monotonicity the set of incentive compatibility conditions is
simply represented through the requirement that the allocation y is in the set Yi (θ−i). We next
demonstrate that ex post incentive and monotonicity conditions are necessary conditions for ex post
implementation.

Theorem 1 (Necessity)
If f is ex post implementable, then it satisfies (EPIC) and (EM).

Proof. Let (M, g) implement f with equilibrium strategies si : Θi → Mi. Consider any i, θ0i ∈
Θi. Since s is an equilibrium,

ui (g (s (θ)) , θ) ≥ ui
¡
g
¡
si
¡
θ0i
¢
, s−i (θ−i)

¢
, θ
¢

for all θ ∈ Θ. Noting that g
¡
si
¡
θ0i
¢
, s−i (θ−i)

¢
= f

¡
θ0i, θ−i

¢
establishes (EPIC).

Suppose that for some deception α, f 6= f ◦ α. It must be that s ◦ α is not an equilibrium at some
θ ∈ Θ. Therefore there exists i and mi ∈Mi such that we have

ui (g (mi, s−i (α−i (θ−i))) , θ) > ui (g (s (α (θ))) , θ)

Let y , g (mi, s−i (α−i (θ−i))). Then, from above,

ui (y, θ) > ui (f (α (θ)) , θ) .

But since s is an equilibrium it follows that

ui
¡
f
¡
θ0i, α−i (θ−i)

¢
,
¡
θ0i, α−i (θ−i)

¢¢
= ui

¡
g
¡
s
¡
θ0i, α−i (θ−i)

¢¢
,
¡
θ0i, α−i (θ−i)

¢¢
≥ ui

¡
g (mi, s−i (α−i (θ−i))) ,

¡
θ0i, α−i (θ−i)

¢¢
= ui

¡
y,
¡
θ0i, α−i (θ−i)

¢¢
,∀θ0i ∈ Θi.

This establishes that y ∈ Yi (θ−i).

We proceed by showing that in a wide class of environments, to be referred to as economic
environments, ex post incentive and monotonicity condition are also sufficient conditions for ex post
implementation.

Definition 10 (Economic environment)
An environment is economic at state θ ∈ Θ if, for every allocation a ∈ A, there exist i 6= j and
allocations x and y respectively such that

ui (x, θ) > ui (a, θ)

and
uj (y, θ) > uj (a, θ) .
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The environment is said to be non-economic if it is not economic.
We shall prove the sufficiency of the ex post monotonicity condition by using the following

augmented mechanism. It is similar to mechanisms used to establish sufficiency in the complete
information implementation literature (e.g., Maskin (1999)). The message space of each agent is
given by:

Mi ≡ Θi × {0, 1} ×A× {1, 2, ..., I}
with typical element:

mi ≡ (θi, xi, yi, zi) .
Thus a message profile is a vector

m ≡ (θi, xi, yi, zi)Ii=1 .
The mechanism is described by three rules.

1. If xi = 0 for all i, then outcome f (θ) is chosen.

2. If xj = 1 and xi = 0 for all i 6= j, then outcome yj is chosen if yj ∈ Y ∗j (θ−j); otherwise
outcome f (θ) is chosen.

3. In all other cases, yi is chosen where the identity of agent i is determined by the following
modulo construction:

i (z) =

 IX
j=1

zj


mod I

.

More formally, we can describe the outcome function g (·) :

g (θ, x, y, z) =


f (θ) , if xi = 0 for all i
yj , if xj = 1, xi = 0 for all i 6= j and yj ∈ Y ∗j (θ−j)

f (θ) , if xj = 1, xi = 0 for all i 6= j and yj /∈ Y ∗j (θ−j)
yi(z), if # {i : xi = 1} ≥ 2

. (7)

A strategy profile in this game is a collection s = (s1, ..., sI), with si : Θi →Mi and we write

si (θ) =
¡
s1i (θ) , s

2
i (θ) , s

3
i (θ) , s

4
i (θ)

¢
∈ Θi × {0, 1} ×A× {1, 2, ..., I} ;

and sk (θ) =
¡
ski (θ)

¢I
i=1
. We shall refer to this mechanism as the augmented mechanism.

For comparison, in the mechanism suggested by Maskin (1999) for complete information imple-
mentation, the message space of each agent is given by:

Mi = R×A×N ,

where R is the set of preference profiles and N the set of natural numbers. In the complete infor-
mation environment, each agent knows the entire preference profile and therefore each agent can
indicate by his suggestion of an allocation a ∈ A whether the agents are reporting truthfully and
choose a = f (R) or whether the agents deceive and then report some a /∈ f (R). For this reason,
the additional binary element {0, 1} in the message of each agent is not necessary in the complete
information environment. In the mechanism offered by Maskin (1999), agents play an integer game,
which we replace by a finite modulo game.

Theorem 2 (Economic Environment)
If I ≥ 3 and f satisfies ex post incentive compatibility and ex post monotonicity and the economic
condition (at all θ), then f is ex post implementable.
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Proof. The proposition is proved in three steps, using the above mechanism.
Step 1. There is an ex post equilibrium s with g (s (θ)) = f (θ) for all θ. Any strategy profile s

of the following form is an ex post equilibrium:

si (θi) = (θi, 0, ·, ·) .

Suppose agent i thinks that his opponents are types θ−i and deviates to a message of the form

si (θi) =
¡
θ0i, xi, yi, ·

¢
;

if either xi = 0 or xi = 1 but yi /∈ Yi (θ−i), then the payoff gain is

ui
¡
f
¡
θ0i, θ−i

¢
, f (θi, θ−i)

¢
− ui (f (θi, θ−i) , f (θi, θ−i)) ,

which is non-positive by (EPIC); if xi = 1 and yi ∈ Yi (θ−i), then the payoff gain is

ui (yi, (θi, θ−i))− ui (f (θi, θ−i) , f (θi, θ−i)) ,

which is non-positive by the definition of Yi (θ−i).
Step 2. In any ex post equilibrium, s2i (θi) = 0 for all i and θi. Suppose that rule 2 or rule 3

applies to the message profile sent at payoff type profile θ, so that there exists i such that s2i (θi) = 1.
Given the strategies of the other agents, any agent j 6= i who thought his opponents were types θ−j
could send any message of the form·, 0, yj ,

j +
X
k 6=j

(I − zk)


mod I


and obtain utility uj (yj , θ). Thus we must have uj (g (s (θ)) , θ) ≥ uj (a, θ) for all a and all j 6= i.
This contradicts the economic environment assumption.
Step 3. In any ex post equilibrium with s2i (θi) = 0 for all i and θi, f ◦ s1 = f . Suppose that

f ◦ s1 6= f . By (EPM), there exists i, θ and y ∈ Yi
¡
s1−i (θ−i)

¢
such that

ui (y, θ) > ui
¡
f
¡
s1 (θ)

¢
, θ
¢
.

Now suppose that type θi of agent i believes that his opponents are of type θ−i and sends message
mi = (·, 1, y, ·), while other agents send their equilibrium messages, then from the definition (7) of
g (·) :

g (mi, s−i (θ−i)) = y,

so that

ui (g (mi, s−i (θ−i)) , θ) = ui (y, θ)

> ui
¡
f
¡
s1 (θ)

¢
, θ
¢

= ui (g (s (θ)) , θ) ,

and this completes the proof of sufficiency.

The economic environment condition was used to show that in the augmented mechanism in
equilibrium, the binary reports xi ∈ {0, 1} all have to say xi = 0, or else any agent j could profitably
change his binary report xi and choose a modulo number zi to obtain a more desirable allocation to
f (·), where the economic environment guaranteed the existence of agent j with a preferred allocation.
We now proceed to establish sufficient conditions for ex post implementation outside of economic

environments. We begin by establishing an implication of non-economic environments.
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Lemma 1 The environment is non-economic at θ if and only if there exists j and b ∈ A such that
ui (b, θ) ≥ ui (a, θ) for all a ∈ A and i 6= j.

Proof. The environment is non-economic (by definition) if and only if there exists an allocation
b, such that if uj (y, θ) > uj (b, θ) for some j, y ∈ A, then there does not exist i 6= j and a ∈ A such
that ui (a, θ) > ui (b, θ). Thus ui (b, θ) ≥ ui (a, θ) for all a ∈ A and i 6= j.

The ex post analogue of Jackson’s "no veto hypothesis" is simply the requirement that the state
be non-economic.

Definition 11 (No Veto Power)
Social choice function f satisfies no veto power at θ if ui (b, θ) ≥ ui (a, θ) for all a ∈ A and all i 6= j
implies that f (θ) = b.

Definition 12 (Ex Post Monotonicity No Veto (EMNV))
A social choice function f satisfies ex post monotonicity no veto if the following is true. Fix any
deception α and sets Φi ⊂ Θi (write Φ = ×I

i=1Φi). Suppose that the environment in non-economic
at each θ /∈ Φ. Suppose also that either f (α (θ)) 6= f (θ) for some θ ∈ Φ or the no veto power
property fails for some θ /∈ Φ. Then there exists i, θ ∈ Φ and y ∈ Yi (α−i (θ−i)) such that

ui (y, θ) > ui (f (α (θ)) , θ) .

In the special case where Φi = Θi for all i, the EMNV reduces to the ex post monotonicity
condition. In the special case where Φi = ∅ for all i, the EMNV requires if the environment is
non-economic everywhere, then the no veto condition must hold everywhere. In the special case
where α is the truth-telling deception and, for some i, Φi = Θi\ {θ∗i } and Φj = Θj for all j 6= i, then
EMNV requires that if the environment is non-economic whenever θi = θ∗i , then the environment
satisfies no veto power whenever θi = θ∗i . If ex post monotonicity holds and no veto power holds
at every type profile, then EMNV is satisfied. Finally, observe that in an economic environment
EMNV is equivalent to ex post monotonicity.

Theorem 3 (Sufficiency)
For I ≥ 3, f satisfies (EPIC) and (EMNV ), then it is ex post implementable.

Proof. We use the same mechanism as before. The argument that there exists an ex post
equilibrium s with g (s (θ)) = f (θ) for all θ is the same as before. Now we establish three claims
that hold for all equilibria.
Claim 1. In any ex post equilibrium, the environment is non-economic for all θ /∈ Φ. Let

Φi = {θi : si (θi) = (·, 0, ·, ·)}

First, observe that for each θ /∈ Φ, there exists i such that s2i (θi) = 1. Given the strategies of the
other agents, any agent j 6= i who thought his opponents were types θ−j could send any message of
the form ·, 0, yj ,

j +
X
k 6=j

zk


mod I


and obtain utility uj (yj , θ). Thus we must have uj (g (m (θ)) , θ) ≥ uj (a, θ) for all a and all j 6= i.
Thus the environment is non-economic for all θ /∈ Φ.
Claim 2. In any ex post equilibrium, for all θ ∈ Φ,

ui
¡
f
¡
s1 (θ)

¢
, θ
¢
≥ ui (y, θ)
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for all y ∈ Yi
¡
s1−i (θ−i)

¢
. Suppose that y ∈ Yi

¡
s1−i (θ−i)

¢
and that type θi of agent i believes that

his opponents are of type θ−i and sends message mi = (·, 1, y, ·), while other agents send their
equilibrium messages. Now

g (mi, s−i (θ−i)) = y;

so ex post equilibrium requires that

ui (g (s (θ)) , θ) = ui
¡
f
¡
s1 (θ)

¢
, θ
¢

≥ ui (g (mi, s−i (θ−i)) , θ)
= ui (y, θ) .

Claim 3. If EPMV is satisfied, then Claim 1 and 2 imply that g (s (θ)) = f (θ) for all θ.
Fix any equilibrium. Note that Claim 1 establishes that the environment is non-economic at

all θ ∈ Φ. Suppose g (s (θ)) 6= f (θ) for some θ ∈ Φ. Since EPMV implies that there exists i,
θ ∈ Φ and y ∈ Yi (α−i (θ−i)) such that ui (y, θ) > ui (f (α (θ)) , θ), contradicting Claim 2. Suppose
g (s (θ)) 6= f (θ) for some θ /∈ Φ. This establishes that no veto power fails at θ. So again EPMV
implies that there exists i, θ ∈ Φ and y ∈ Yi (α−i (θ−i)) such that ui (y, θ) > ui (f (α (θ)) , θ),
contradicting Claim 2.
The structure of the proof is similar to Jackson (1991). The mechanism used to prove sufficiency

is simpler as we require the strategies to be in an ex-post rather than an interim equilibrium. The
entire argument is more compact due to the simplifying assumption of a social choice function rather
than social choice set.
A brief comparison between the proof strategy for the economic environment and the general

monotonicity no veto condition elucidates the role of the no veto condition. In the economic en-
vironment, we proceed directly to eliminate message profiles x 6= 0 by using the hypothesis of an
economic environment. With the general no veto monotonicity condition, we first split the type
space θ into two complimentary subsets, Φ and Θ−Φ. On the subset Φ, the message profiles satisfy
x = 0 and it is on the restricted domain Φ that we will eventually apply the monotonicity condition.
On the remaining set Θ − Φ, we do not attempt to eliminate the message profile x 6= 0 as part of
possible equilibrium strategy, but rather argue that if these message profiles are to be part of an
equilibrium, then the implied social choice function g (s) has to satisfy the no veto condition. The
proof then uses the no veto condition to show that without the no veto condition, m, could not
be part of an equilibrium. More precisely, if the no-veto condition fails at θ, then it follows that
m at θ has to satisfy # {xi = 1} > 1. But if the no veto condition fails and # {xi = 1} > 1, then
there are is at least one agent which would prefer zj to g (s) which he could force to be realize as
# {xi = 1} > 1, and this contradicts the fact that s is an ex post equilibrium.
In either case, the condition of no veto or of an economic environment allows us to address type

profiles θ with associated messages # {xi = 1} > 1. The hypothesis of ex post monotonicity by itself
is sufficient to address all message profiles except {xi = 1} = 1 yet yi /∈ Yi (θ−i).The proofs show
that the economic environment does not allow equilibrium messages # {xi = 1} > 1 whereas the no
veto hypothesis forces the ex post monotonicity to operate on a smaller set of type profiles.

5 Comparing Monotonicity Conditions
In the previous section, we introduced the notions of Maskin and ex post monotonicity. We then
identified ex post monotonicity as a necessary and (almost) sufficient condition for ex post imple-
mentation in incomplete information environments. In this section we begin to relate ex post and
interim monotonicity conditions. In Subsection 5.1 we briefly state the interim monotonicity condi-
tion developed in the literature on Bayesian implementation. We then show that if the social choice
function f satisfies interim monotonicity on all common prior type spaces, then it guarantees that f
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satisfies ex post and Maskin monotonicity. We then illustrate the limitations of this result by means
of two examples. In Subsection 5.2, we present Example B, in which interim monotonicity is satisfied
for all common prior payoff type spaces, but ex post monotonicity fails. This is meant to illustrate
the role (of the size) of the type space for the relation between ex post and interim monotonicity. In
Subsection 5.3, Example C then shows that the converse of the result fails to hold. Namely, in the
example ex post and Maskin monotonicity are satisfied yet interim monotonicity fails for a uniform
prior over the payoff type space.

5.1 Interim Implementation

A deception for a type space T is a collection α = (α1, ..., αI), with

αi : Ti → Ti.

Definition 13 (Interim Monotonicity)
Social choice function f satisfies interim monotonicity on type space T if, for every deception α and
f 6= f ◦ α, there exists i, ti and y : T → A such thatX

t−i∈T−i
ui

³
y (α (t)) ,bθ (t)´ bπi (ti) [t−i] > X

t−i∈T−i
ui

³
f
³bθ (α (t))´ ,bθ (t)´ bπi (ti) [t−i] , (8)

and X
t−i∈T−i

ui

³
f
³bθ (t0i, t−i)´ ,bθ (t0i, t−i)´ bπi (t0i) [t−i] (9)

≥
X

t−i∈T−i
ui

³
y (αi (ti) , t−i) ,bθ (t0i, t−i)´ bπi (t0i) [t−i] , ∀t0i.

Postlewaite and Schmeidler (1986) showed that such an interim monotonicity condition is nec-
essary and sufficient for full implementation in an exchange economy with nonexclusive information
and at least three agents. Palfrey and Srivastava (1989) provide separate necessary and sufficient
conditions for interim implementation when there is exclusive information. Jackson (1991) showed
that interim monotonicity is necessary and sufficient for interim implementation in economic envi-
ronments and that a slightly strengthened property (Bayesian monotonicity no veto) is sufficient.

Theorem 4
If f satisfies interim monotonicity on all common prior type spaces then

1. it satisfies Maskin monotonicity;

2. it satisfies ex post monotonicity.

Proof. (1.) The proof is by contrapositive. Suppose then that f is not Maskin monotone, and
hence there exists bα : ΘI → ΘI such that for all i, θ, with f (bα (θ)) 6= f (θ), and all h such that

ui (h (bα (θ)) , θ) > ui (f (bα (θ)) , θ) ,
we have

ui (f (bα (θ)) , bα (θ)) < ui (h (bα (θ)) , bα (θ)) .
Consider then the complete information type space Ti = Θ. For every i, let αi = bα. To obtain the
contradiction, let us then suppose that there exists i and ti such thatX

t−i∈T−i
ui (h (α (t)) , t) pi (t−i |ti ) >

X
t−i∈T−i

ui (f (α (t)) , t) pi (t−i |ti ) (10)
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whileX
t−i∈T−i

ui (f (t
0
i, t−i) , (t

0
i, t−i)) pi (t−i |t0i ) ≥

X
t−i∈T−i

ui (h (αi (ti) , t−i) , t) pi (t−i |t0i ) , ∀t0i 6= ti. (11)

With the complete information type space and the symmetric deception strategy, the inequalities
(10) and (11) reduce to

ui (h (bα (θ)) , θ) > ui (f (bα (θ)) , θ) (12)

and
ui
¡
f
¡
θ0
¢
, θ0
¢
≥ ui

¡
h
¡bα (θ) , θ0, ..., θ0¢ , θ0¢ , ∀θ0 6= θ, (13)

but naturally there exists θ0 = bα (θ), and for this profile, the above inequality reads
ui (f (bα (θ)) , bα (θ)) ≥ ui (h (bα (θ)) , bα (θ)) , θ0 = bα (θ) ,

which leads to the desired contradiction with Maskin monotonicity.
(2.) We proceed by contrapositive. Suppose that f is not ex post monotone. Then there exists

α such that for all i, θ and y if
ui (y, θ) > ui (f (α (θ)) , θ) (14)

then there exists θ0i such that

ui
¡
f
¡
θ0i, α−i (θ−i)

¢
,
¡
θ0i, α−i (θ−i)

¢¢
< ui

¡
y,
¡
θ0i, α−i (θ−i)

¢¢
. (15)

We consider the following full support common prior type space: Ti = T 1i ∪ T 2i with

π (t) =

 γ, if t ∈ T 1

ε, if t /∈ T 1, ∃i, t−i ∈ T 1−i
0, if otherwise

¯̄̄̄
¯̄ (16)

with γ À ε. The first subset of the type space satisfies T 1i = Θi with the following uniform belief
property over the payoff types: bψi (ti) [θ−i] = 1

#Θ−i

and a bijection bθi : T 1i → Θi. The second subset of the type space satisfies T 2i = Θ with the belief
property: bπi (ti) [t−i] = ½ 1, if t−i = θ−i

0, if t−i 6= θ−i

¯̄̄̄
For this type space we then consider a deception βi : Ti → Ti which replicates the deception α on
which f failed to display ex post monotonicity

∀ti ∈ T 1i : βi (ti) = βi (θi) = αi (θi)

and
∀ti ∈ T 2i : βi (ti) = βi

³bθi (ti)´ = αi (θi) .

The deception is a pooling deception in so far that all types with the same payoff type, irrespective
of their belief type, choose the same deception. For this deception, we can then represent the interim
monotonicity condition as follows. We start with the reward inequality. For all ti ∈ T 1i :X

θ−i∈Θ−i
ui (y (α (θ)) , θ) >

X
θ−i∈Θ−i

ui (f (α (θ)) , θ) (17)
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and for all ti ∈ T 2i :
ui (y (α (θ)) , θ) > ui (f (α (θ)) , θ) (18)

The incentive inequalities are for ti ∈ T 1iX
θ−i∈Θ−i

ui (f (θ) , θ) ≥
X

θ−i∈Θ−i
ui (y (αi (θi) , θ−i) , θ) (19)

and for ti ∈ T 2i :

ui
¡
f
¡¡
θ0i, α−i (θ−i)

¢¢
,
¡
θ0i, α−i (θ−i)

¢¢
≥ ui

¡
y (α (θ)) ,

¡
θ0i, α−i (θ−i)

¢¢
. (20)

It is now immediate to verify that if ex post monotonicity is violated at α, interim monotonicity
will be as well. Observe first that clearly, the reward cannot be offered for ti ∈ T 2i without violating
the corresponding incentive compatibility conditions (20). Suppose then that we seek to satisfy the
reward inequality for some ti ∈ T 1i , then it follows that there must exist some y (α (θ)) and θ where
reward is provided, but by the hypothesis of failure of ex post monotonicity, we can then find a
violation of (20).
While Maskin monotonicity is implied by interim monotonicity on common prior type spaces,

we do not have an argument implying ex post monotonicity or robust monotonicity using type
spaces that have a common prior, full support or common support. Because the strict inequalities
in the definition of interim monotonicity give rise to a non-compact set, it is not clear that such an
argument is possible. The following example shows how it is possible to have interim monotonicity
satisfied for every type space with a sequence of full support priors, but fail in the limit.

5.2 Example B

The example satisfies Maskin monotonicity and interim monotonicity for all common priors over the
payoff type space. Yet it fails to satisfy ex post monotonicity. There are three agents, i = 1, 2, 3 and
each agent has a binary payoff type space θi ∈ Θi = {0, 1}. The entire payoff type space is given
by Θ = ×3i=1Θi. For simplicity of the example, the allocation space is identical to the payoff type
space, or A = Θ and the social choice function f : Θ→ A is given by the identity mapping f (θ) = θ
for all θ ∈ Θ.
The payoff matrices below represent the payoffs of the agents in each true state {θ} when the

allocation changes due to changes in its first, second or third entry. It is convenient to vary the
allocation and holding the true state constant as this represents the ex post strategic opportunities
for every agent given the true state of the world.

{000}
0 0 1
0 1, 1, 1 1 + ε, 0, 1 + δ
1 0, 1 + δ, 1 + ε 0, 0, 0

{000}
1 0 1
0 1 + δ, 1 + ε, 0 0, 0, 0
1 0, 0, 0 1, 1, 1

The payoffs in the remaining states are simple permutations of the payoffs in state θ = 000. The
payoff state space of every agent is binary. Every permutation σi : Θi → Θi can therefore simply be
thought of as an instruction to either keep the state or change the state of agent i. A permutation
profile is σ = (σ1, σ2, σ3). The payoffs of the agents have the following symmetry property: for all i
and all σ:

ui (a, θ) = ui (σ (a) , σ (θ)) .

We list the payoffs in the remaining states for completeness:

{001}
0 0 1
0 1 + δ, 1 + ε, 0 0, 0, 0
1 0, 0, 0 1, 1, 1

{001}
1 0 1
0 1, 1, 1 1 + ε, 0, 1 + δ
1 0, 1 + δ, 1 + ε 0, 0, 0
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{010}
0 0 1
0 1 + ε, 0, 1 + δ 1, 1, 1
1 0, 0, 0 0, 1 + δ, 1 + ε

{010}
1 0 1
0 0, 0, 0 1 + δ, 1 + ε, 0
1 1, 1, 1 0, 0, 0

{011}
0 0 1
0 0, 0, 0 1 + δ, 1 + ε, 0
1 1, 1, 1 0, 0, 0

{011}
1 0 1
0 1 + ε, 0, 1 + δ 1, 1, 1
1 0, 0, 0 0, 1 + δ, 1 + ε

{100}
0 0 1
0 0, 1 + δ, 1 + ε 0, 0, 0
1 1, 1, 1 1 + ε, 0, 1 + δ

{100}
1 0 1
0 0, 0, 0 1, 1, 1
1 1 + δ, 1 + ε, 0 0, 0, 0

{101}
0 0 1
0 0, 0, 0 1, 1, 1
1 1 + δ, 1 + ε, 0 0, 0, 0

{101}
1 0 1
0 0, 1 + δ, 1 + ε 0, 0, 0
1 1, 1, 1 1 + ε, 0, 1 + δ

{110}
0 0 1
0 0, 0, 0 0, 1 + δ, 1 + ε
1 1 + ε, 0, 1 + δ 1, 1, 1

{110}
1 0 1
0 1, 1, 1 0, 0, 0
1 0, 0, 0 1 + δ, 1 + ε, 0

{111}
0 0 1
0 1, 1, 1 0, 0, 0
1 0, 0, 0 1 + δ, 1 + ε, 0

{111}
1 0 1
0 0, 0, 0 0, 1 + δ, 1 + ε
1 1 + ε, 0, 1 + δ 1, 1, 1

We assume that 0 < ε < δ ¿ 1. The parameters ε and δ are assumed to be distinct solely to
guarantee that the environment is an ex post economic environment for which ex post monotonicity
is a necessary as well as sufficient condition. With a direct mechanism the game displays two
symmetric pure strategy ex post equilibria. The first symmetric equilibrium is the truthtelling
equilibrium, or

si (θi) = θi for all i and θi,

whereas the second symmetric equilibrium is the misreporting equilibrium:

si (θi) 6= θi for all i and θi.

Naturally, these ex post equilibria are also interim equilibria.

5.2.1 Ex Post Monotonicity Fails

We first show that this example fails ex post monotonicity by showing that for the “complete”
deception αi (θi) 6= θi for all i and θi the social choice function does not satisfy ex post monotonicity.
By symmetry, it is sufficient to consider agent 1 and true state θ = 000. The complete deception
leads to the allocation α (000) = 111. The only allocations which would improve the utility of agent
1 are a ∈ {010, 001} and we shall argue next that neither of these allocations satisfies the incentive
compatibility conditions of the monotonicity condition. Consider first the reward y = 010, for which
ex post incentive compatibility would have to satisfy:

1 = u1 (111, 111) ≥ u1 (010, 111) = 0
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as well as
1 = u1 (011, 011) ≥ u1 (010, 011) = 1 + δ,

but obviously the second inequality is violated. Similarly, we observe that for the reward y = 001,
the ex post incentive compatibility conditions are:

1 = u1 (111, 111) ≥ u1 (001, 111) = 0

as well as
1 = u1 (011, 011) ≥ u1 (001, 011) = 1 + ε,

and again the second inequality is violated. Thus we conclude that we can not find an allocation
which acts as a reward, yet leads to an incentive compatible denouncement strategy.

5.2.2 Maskin Monotonicity Holds

With respect to the “complete” deception: αi (θi) 6= θi for all i and θi, the above discussion of
ex post monotonicity already allows us to conclude that Maskin monotonicity is satisfied. The
violation of the ex post incentive compatibility condition for either reward y ∈ {010, 001} occurred
at θ = 011, but not at the deception α (000) = 111 which is the only profile to be verified with
Maskin monotonicity. For all other deceptions, it suffices to observe that at most two agents benefit
from the deception f (α (θ)) relative to the social choice f (θ) and hence there is always a third agent
who can be rewarded by simply offering him the allocation y = f (θ) at θ, which also guarantees the
incentive compatibility of the reward.

5.2.3 Interim Monotonicity Holds for all Payoff Common Priors

We start by considering the “complete” deception: αi (θi) 6= θi for all i and θi and then extend the
argument to all deceptions. We first suggest a reward rule y : Θ→ A which will work for agent 1 at
θ1 = 0 provided that p (00 |0) > 0 and p (11 |0) ≤ 1

1+ε . We offer the following contingent reward to
agent 1:

y =

½
001 if θ = 111
f if θ 6= 111 (21)

The reward condition at θ1 = 0 then reduces to, after eliminating terms on both sides of the
inequality by using (21):

u1 (001, 000) p (00 |0) > u1 (111, 000) p (00 |0) (22)

and the interim incentive compatibility conditions for θ1 = 0 is, after inserting the corresponding
utilities,

1 ≥ (1 + ε) · p (11 |0) (23)

and for θ1 = 1:
1 ≥ 1− p (11 |1) (24)

We observe that (22) is satisfied by hypothesis of p (00 |0) > 0, inequality (23) by hypothesis of
p (11 |0) ≤ 1

1+ε and inequality (24) is always satisfied.
For the instance of p (00 |0) > 0 but p (11 |0) > 1

1+ε , we can offer a modified reward rule:

y =

½
010 if θ = 100
f if θ 6= 100 (25)

which differs from the reward rule (21) only by the type profile at which it offers a reward. With
this modified rule can then write the reward condition as:

u1 (010, 011) p (11 |0) > u1 (100, 011) p (11 |0) (26)
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and the incentive compatibility conditions for θ1 = 0 again after insert the utilities,

1 ≥ (1 + ε) · p (00 |0) (27)

and for θ1 = 1 :
1 ≥ 1− p (00 |0) (28)

By the hypothesis of p (11 |0) > 1
1+ε , it follows that (26) and (27) holds, and (28) is always satisfied.

We can thus conclude that we can satisfy interim monotonicity for the “complete” deception for all
priors.
Consider finally all deceptions which are not complete in the above sense. In this case, there

exists at least some agent i and some state θi where he reports the truth. It is also true that every
deception must involve at least two agents who misreport for some types. (Observe that otherwise,
we could simple replace the deception by a single agent with the true state which would strictly
improve the welfare of the agent in question.) But at any type profile θ at which exactly two agents
misreport, the payoff for every agent is 0, whereas it is 1 if we were to choose the corresponding
social choice f (θ), which then provides the reward and guarantees ex post incentive compatibility.
We would like to point out that all of the above arguments did not depend on a common prior

nor did we need to make any full support assumption. The only necessary ingredient to demonstrate
the success of interim implementation was the fact that every payoff type has exactly one belief type
generate by the conditional belief, derived from a common prior or not.

5.3 Example C

There are three agents, i = 1, 2, 3 and each agent has a binary payoff type space Θi =
©
θ1i , θ

2
i

ª
. The

allocation space is given by A = {a, b, c, d, z1, z2, z3}. The social choice function f : Θ→ A is given
by:

θ13 θ12 θ22
θ11 a b

θ21 b c

θ23 θ12 θ22
θ11 b c

θ21 c d

The payoffs of the agents are identical for every allocation which appears at least once in the social
choice function. It therefore suffices to represent the payoff of agent 1 for each of these four allocations
{a, b, c, d}

a :
θ13 θ12 θ22
θ11 1 0

θ21 0 0

θ23 θ12 θ22
θ11 0 0

θ21 0 0

b :
θ13 θ12 θ22
θ11 −1 ε

θ21 ε −1

θ23 θ12 θ22
θ11 ε −1
θ21 −1 −1

c :
θ13 θ12 θ22
θ11 −1 −1
θ21 −1 ε

θ23 θ12 θ22
θ11 −1 ε

θ21 ε −1

d :
θ13 θ12 θ22
θ11 −1 −1
θ21 −1 −1

θ23 θ12 θ22
θ11 −1 −1
θ21 −1 ε

The allocation a is efficient if all agents are of type θ1i and d is efficient if all agents are of type θ
2
i . In

the remaining case the allocation b is efficient if a majority of agents is of type θ1i and the allocation
c is efficient if a majority of agents is of type θ2i . The difference between allocation a and b, c, d is
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that if a is efficient it has a strongly positive payoff 1 À ε > 0 and if a is inefficient, then it has a
0 payoff, but not a strongly negative payoffs as the other allocations. For this reason, receiving the
allocation a even if it is not efficient is not damaging as receiving any other inefficient allocation.
The allocations z1, z2, z3 are not called upon by the social choice function and they are merely

introduced to turn the environment into an economic environment. We specify the payoffs as

ui (θ, zi) = x, ∀i,∀θ

and
ui (θ, zj) = −x, ∀i 6= j, ∀θ

The allocation zi is thus the most preferred alternative for agent i in all states and for this rea-
son cannot be used as a reward as it would immediately violate the incentive constraints in the
monotonicity condition.
In the game induced by the direct mechanism there exists only one ex post equilibrium, namely

truthtelling, whereas depending on the priors over the payoff type space there may be many in-
terim equilibria. We shall now briefly argue that the social choice function indeed satisfies ex post
monotonicity and then display uniform and independent priors over the payoff types for which
interim monotonicity fails.

5.3.1 Ex Post Monotonicity

The social choice function is efficient at every type profile θ. Thus if a deception α generates a
different social outcome at θ than f (θ), or f (α (θ)) 6= f (θ), then we can always offer the reward
y = f (θ) following the report α (θ) to anyone of the three agents. Since the social choice function is
ex post incentive compatible and efficient we satisfy the reward as well as the incentive constraints.
This establishes ex post monotonicity.

5.3.2 Maskin Monotonicity

The same reward strategy to elicit the use of deceptions by the agents also establishes that the
social choice function satisfies Maskin monotonicity. Yet if we change the payoffs for all the agents
resulting from allocation a at θ = θ21θ

2
2θ
2
3 and increase it from 0 to ui

¡
a, θ21θ

2
2θ
2
3

¢
= 2ε, then f

no longer satisfies Maskin monotonicity for the deception α
¡
θ21θ

2
2θ
2
3

¢
= θ11θ

1
2θ
1
3 as we cannot offer

a suitable reward to elicit the denunciation. Yet, the social choice function f preserves ex post
monotonicity in this modified environment as the incomplete information deception αi

¡
θ2i
¢
= θ1i for

all i leads has type profiles, say θ11θ
2
2θ
2
3, where the misreports by agent 2 and agent 3 lead the social

choice function to select either a or b when c is the efficient choice and indeed can be used as a
reward to eliminate the possibility of deceptive equilibrium. Thus this example shows that a social
choice function may satisfy ex post environment, yet display or not display Maskin monotonicity.

5.3.3 Interim Monotonicity

Finally consider the notion of interim monotonicity with a uniform prior over the payoff type space:

p (θ) =
1

8
, ∀θ.

For this type space we analyze the following “pooling” deception in which every agent always
reports his type to be θ1i :

αi (·) = θ1i , ∀i,∀θi,
Under this deception, the social choice function recommends to select allocation a for all true payoff
type profiles. As the designer attempts to identify a reward allocation y : Θ → A, he faces the
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problem that all types report identically θ1i , and he has to offer a single allocation regardless of the
true type profile. Thus he is necessarily forced to select an allocation, different from a, at payoff
type profiles where it is not efficient. With the given payoffs this will lead to substantial utility
losses whereas the allocation a, even if it is not efficient, only leads to a small payoff loss. With the
uniform prior, the best possible reward structure relative to the equilibrium utility is to offer c to
an agent i of type θ2i , yet when we evaluate the reward inequality:X

θ−i∈Θ−i
ui (y (α (θ)) , θ) p (θ−i |θi ) >

X
θ−i∈Θ−i

ui (f (α (θ)) , θ) p (θ−i |θi )

we obtain

ε

µ
1

4
+
1

4

¶
+ (−1)

µ
1

4
+
1

4

¶
> 0

which is clearly violated for small ε and hence interim monotonicity will be violated for a large sets
of priors over the payoff type space.

6 Robust Monotonicity
The results presented in the previous section show that interim monotonicity on all common prior
type spaces imply ex post and Maskin monotonicity. Yet, Example C showed that ex post monotonic-
ity does not even imply interim monotonicity on all common prior payoff type spaces. We therefore
propose a stronger and novel monotonicity notion, to be called robust monotonicity, which is nec-
essary and sufficient for interim monotonicity on all type spaces. If the designer does not know the
true type space, i.e. the agent’s beliefs and higher order beliefs about other agents’ types, then he
might want to find a mechanism that works for every type space. We show that robust monotonicity
achieves this objective and that it is strictly stronger than both Maskin and ex post monotonicity.

6.1 Definition

The new requirement precisely addresses the gap that appeared between ex post and interim
monotonicity in Example C. The failure of interim monotonicity in Example C came from a pool-
ing deception in which different payoff types generated the same deceptive report and the designer
failed to find a reward which would work across the different true type profiles, even though for every
particular profile, such a reward existed by ex post monotonicity. The strengthening of the reward
inequality then asks that we can find a reward in response to a report θ0−i which could have been
generated by an arbitrary distribution over true types θ−i rather than a fixed given type profile θ−i.
In defining robust monotonicity, we therefore formalize a deception as a point-to-set mapping.

A deception is a collection β = (β1, ..., βI) with βi : Θi → 2Θi and θi ∈ βi (θi). The interpretation
is that βi (θi) is the collection of correct or incorrect reports that payoff type θi might send. A
deception is acceptable if θ0 ∈ β (θ) ⇒ f

¡
θ0
¢
= f (θ). A deception is unacceptable if it is not

acceptable.

Definition 14 (Robust Monotonicity)
Social choice function f satisfies robust monotonicity if one of the following equivalent conditions
holds:

1. For every unacceptable deception β, there exist i, θi, θ
0
i ∈ βi (θi) such that, for all θ

0
−i ∈ Θ−i

and for all ψi, where
ψi ∈ ∆

¡©
θ−i ∈ Θ−i : θ0−i ∈ β−i (θ−i)

ª¢
,
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there exists y such thatX
θ−i∈Θ−i

ψi (θ−i)ui (y, (θi, θ−i)) >
X

θ−i∈Θ−i
ψi (θ−i)ui

¡
f
¡
θ0i, θ

0
−i
¢
, (θi, θ−i)

¢
(29)

and
ui

³
f
³eθi, θ0−i´ ,³eθi, θ0−i´´ ≥ ui

³
y,
³eθi, θ0−i´´ , (30)

for all eθi.
2. Fix a deception β. If for all i, θi,θ

0
i ∈ βi (θi), there exist θ

0
−i and ψi with

ψi ∈ ∆
¡©
θ−i ∈ Θ−i : θ0−i ∈ β−i (θ−i)

ª¢
such that

ui

³
f
³eθi, θ0−i´ ,³eθi, θ0−i´´ ≥ ui

³
y,
³eθi, θ0−i´´ , for all eθi, (31)

implies X
θ−i∈Θ−i

ψi (θ−i)ui
¡
f
¡
θ0
¢
, (θi, θ−i)

¢
≥

X
θ−i∈Θ−i

ψi (θ−i)ui (y, (θi, θ−i)) ; (32)

then β is acceptable.

The second version of the definition is simply the contrapositive statement of the first version.
We use the first version to show that robust monotonicity implies interim monotonicity, and the
second version to show that interim monotonicity on all type spaces implies robust monotonicity.
The notion of robust monotonicity shares many features with the ex post monotonicity condi-

tion. We shall use the first version of Definition 14 for comparison here. As the notion of ex post
monotonicity, robust monotonicity refers only to payoff types and does not refer to priors or poste-
riors over payoff types nor does it refer to any general type spaces. Robust monotonicity shares the
ex post incentive compatibility conditions (30) with ex post monotonicity. The reward inequality
(29) on the other hand is a stronger version of the ex post notion. We first observe that the reward
inequality takes expectation over payoff types θ−i which could lead to a deception profile θ0−i for a
given deception β, which is incorporated in the restriction that ψi satisfies:

ψi ∈ ∆
¡©
θ−i ∈ Θ−i : θ0−i ∈ β−i (θ−i)

ª¢
.

The second observation is that we evaluate the social choice function f and the reward function
y only at the reported payoff type profile θ0−i. This leads to apparent discrepancy with respect to
the interim notion, as the interim notion takes expectations over all possible deceptions generated
by the entire set of payoff type profiles. However, we can easily bring the reward inequality of the
robust notion closer to the interim notion by defining y to be equal to the social choice function for
all reported profiles different than θ0−i.
Finally we would like to emphasize that the allocation y is allowed to depend on the misreport

θ0−i and the distribution ψi.

6.2 Equivalence

Next we establish the equivalence between robust monotonicity and interim monotonicity on all type
spaces.

Theorem 5
If f satisfies interim monotonicity on every type space, then f satisfies robust monotonicity.
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Proof. Fix a deception β. Suppose that the premise of the definition of robust monotonicity (in
its second version) holds. Thus for all i, θi, θ

0
i ∈ βi (θi), there exists a payoff profile θ

0
−i ∈ Θ−i, to

be denoted by:
ζi
¡
θi, θ

0
i

¢
,
¡
ζij
¡
θi, θ

0
i

¢¢
j 6=i ∈ Θ−i

and a conditional probability distribution ψi over true payoff profiles θ−i which can generate
ζi
¡
θi, θ

0
i

¢
under β−i:

ψi
¡
·|θi, θ0i

¢
∈ ∆

¡©
θ−i ∈ Θ−i : ζi

¡
θi, θ

0
i

¢
∈ β−i (θ−i)

ª¢
such that

ui

³
f
³eθi, ζi ¡θi, θ0i¢´ ,³eθi, ζi ¡θi, θ0i¢´´ ≥ ui

³
y,
³eθi, ζi ¡θi, θ0i¢´´ , (33)

for all eθi implies X
{θ−i∈Θ−i:ζi(θi,θ0i)∈β−i(θ−i)}

ψi
¡
θ−i|θi, θ0i

¢
ui
¡
f
¡
θ0i, ζi

¡
θi, θ

0
i

¢¢
, (θi, θ−i)

¢
(34)

≥
X

{θ−i∈Θ−i:ζi(θi,θ0i)∈β−i(θ−i)}
ψi
¡
θ−i|θi, θ0i

¢
ui (y, (θi, θ−i)) .

Now we construct a type space based on the deception β such that if the social choice function
satisfies interim monotonicity on this type space, then β must be acceptable.
First, agent i has a set of "deception" types T 1i which are isomorphic to

Ψi =
©¡
θi, θ

0
i

¢
: θi ∈ Θi and θ0i ∈ βi (θi)

ª
and for simplicity we identify every type ti ∈ T 1i simply by such a pair of payoff types

¡
θi, θ

0
i

¢
, or

T 1i , Ψi. The type
¡
θi, θ

0
i

¢
has payoff type θi and assigns probability ψi

¡
θ−i|θi, θ0i

¢
to the event

that each agent j is type
¡
θj , ζij

¡
θi, θ

0
i

¢¢
.

Second, agent i has a set of "pseudo-complete information types" T 2i , which are isomorphic to
Θ, and for simplicity, again let T 2i = Θi. The type corresponding to θ has payoff type θi and he is
convinced that each other agent j is type θ.
More formally, we have

Ti = T 1i ∪ T 2i .
If ti ∈ T 1i and ti =

¡
θi, θ

0
i

¢
, then bθi (ti) = θi

and bπi (ti) [t−i] = ½ ψi
¡
θ−i|θi, θ0i

¢
, if tj =

¡
θj , ζij

¡
θi, θ

0
i

¢¢
for each j 6= i

0, otherwise;

if ti ∈ T 2i and ti = θ, then bθi (ti) = θi, (35)

and bπi (ti) [t−i] = ½ 1, if tj = (θj , θj) for each j 6= i
0, otherwise.

(36)

Now we prove the proposition, by showing that interim monotonicity on this type space implies the
deception β we started with must be acceptable. Consider the deception αi on the constructed type
space where each type

¡
θi, θ

0
i

¢
reports himself to be type

¡
θ0i, θ

0
i

¢
, and all other types report their

types truthfully. Thus:

αi (ti) =

½ ¡
θ0i, θ

0
i

¢
, if ti =

¡
θi, θ

0
i

¢
ti, otherwise

.
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Notice that type ti = (θi, θi) reports his type truthfully under this deception αi for all i. Now we
apply the interim monotonicity condition as presented in Definition 13 to this deception. For any type
ti ∈ T 2i , the deception αi changes neither his action nor his beliefs about his opponents’ reporting
behavior. Thus he cannot be the critical type ti in the definition who "reports the deception". More
formally, for any type ti = θ ∈ T 2i , the interim monotonicity conditions reduce to, after using (35)
and (36):

ui (y (θ) , θ) > ui (f (θ) , θ)

and for all t0i = θ0 ∈ T 2i , we would have

ui
¡
f
¡
θ0
¢
, θ0
¢
≥ ui

¡
y
¡
θ, θ0−i

¢
, θ0
¢
,

which clearly leads to a contradiction for t0i = θ. Thus there must exist i, ti ∈ T 1i and y : T → A
such that (8) and (9) hold. Letting bti = ¡θi, θ0i¢, (8) becomes:X

{θ−i∈Θ−i:ζi(θi,θ0i)∈β−i(θ−i)}
ψi
¡
θ−i|θi, θ0i

¢
ui

³
y
³¡
θ0i, θ

0
i

¢
,
¡
ζij
¡
θi, θ

0
i

¢
, ζij

¡
θi, θ

0
i

¢¢
j 6=i

´
, (θi, θ−i)

´
> (37)X

{θ−i∈Θ−i:ζi(θi,θ0i)∈β−i(θ−i)}
ψi
¡
θ−i|θi, θ0i

¢
ui
¡
f
¡
θ0i, ζi

¡
θi, θ

0
i

¢¢
, (θi, θ−i)

¢
.

In the special case of the pseudo complete information types with t0i =
³eθi, ζi ¡θi, θ0i¢´, the interim

incentive compatibility condition (9) becomes

ui

³
f
³eθi, ζi ¡θi, θ0i¢´ ,³eθi, ζi ¡θi, θ0i¢´´

≥ (38)

ui

³
y
³¡
θ0i, θ

0
i

¢
,
¡
ζij
¡
θi, θ

0
i

¢
, ζij

¡
θi, θ

0
i

¢¢
j 6=i

´
,
³eθi, ζi ¡θi, θ0i¢´´ , ∀eθi.

But now (33), (34) and (38) implies that (37) fails. Thus interim monotonicity on this type space
requires that

f
³bθ (t)´ = f

³bθ (α (t))´ for all t.
This requires β is acceptable. This completes the proof of robust monotonicity.

The proof may appear rather intricate in its details and we give a brief outline of the basic steps
next. We start with an arbitrary deception β which satisfies the inequalities (31) and (32) and,
crucially, do not insist on β being acceptable. For the given deception β, we then create a type
space, consisting of two components for every agent i. The first component for agent i is created by
the set of pairs of payoff types

¡
θi, θ

0
i

¢
, where the first entry is the true payoff type and the second

entry is a feasible deception (under β), or θ0i ∈ βi (θi). For this reason, we refer to these types as
“deception types.” For every such pair

¡
θi, θ

0
i

¢
there exists one particular payoff profile θ0−i which is

“salient” for agent i of type
¡
θi, θ

0
i

¢
, as the deception β satisfies (31) and (32). Under the deception

β, this payoff profile could have been reported by all true payoff profiles which are in the support
of ψi. Consequently, the belief component of type

¡
θi, θ

0
i

¢
is given by simply adopting ψi

¡
·
¯̄
θi, θ

0
i

¢
.

The second component are “pseudo complete information types”, described by ti = θ ∈ Θ, which
have a probability one belief that the true payoff profile is given by θ and that all other agents report
the deception type (θj , θj), and hence the “pseudo” in the labelling.
Given this type space Ti, we then consider a particular deception αi : Ti → Ti. The deception

αi is localized around the “deception types” and the “pseudo complete information types” report
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thruthfully. The deception αi consists of agent i always reporting his deception type rather than
his true type, or αi

¡
θi, θ

0
i

¢
=
¡
θ0i, θ

0
i

¢
. We then verify whether f is interim monotone under α.

The existence of the pseudo complete information types θ forces the interim incentive compatibility
conditions to reduce to ex post incentive compatibility conditions. This guarantees the hypothesis
in the robust monotonicity notion, namely inequality (31), and thus leads to the conclusion in form
of the inequalities (32). But then we obtain a contradiction to the reward condition of interim
monotonicity, unless the hypothesis for the interim monotonicity condition, namely f 6= f ◦α, is not
satisfied, i.e. f = f ◦ α holds, but of course this implies that β is acceptable.

Theorem 6
If f satisfies robust monotonicity, then f satisfies interim monotonicity on every type space.

Proof. Suppose f satisfies robust monotonicity. Fix any type space T and any deception α with
f
³bθ (t)´ 6= f

³bθ (α (t))´ for some t. Define β by:
βi (θi) =

n
θ0i : ∃ti such that bθi (ti) = θi and bθi (αi (ti)) = θ0i

o
.

For every θi, βi (θi) is the collection of payoff types θ
0
i which will be reported by some type ti when

he is using the deception αi and has a true payoff type θi. Deception β is unacceptable, so by robust
monotonicity, there exist i, θi, θ

0
i ∈ βi (θi) such that, for all θ

0
−i ∈ Θ−i and for all ψi with

ψi ∈ ∆
¡©
θ−i ∈ Θ−i : θ0−i ∈ β−i (θ−i)

ª¢
,

there exists y
¡
θ0−i, ψi

¢
such that X
{θ−i∈Θ−i:θ0−i∈β−i(θ−i)}

ψi (θ−i)ui
¡
y
¡
θ0−i, ψi

¢
, (θi, θ−i)

¢
(39)

>
X

{θ−i∈Θ−i:θ0−i∈β−i(θ−i)}
ψi (θ−i)ui

¡
f
¡
θ0i, θ

0
−i
¢
, (θi, θ−i)

¢
and

ui

³
f
³eθi, θ0−i´ ,³eθi, θ0−i´´ ≥ ui

³
y
¡
θ0−i, ψi

¢
,
³eθi, θ0−i´´ , (40)

for all eθi. We emphasize that the distribution ψi only generates positive probabilities over θ−i ∈ Θ−i
which could lead to a deception θ0−i for some types t−i ∈ T−i. Thus in the following we omit the set
specification

©
θ−i ∈ Θ−i : θ0−i ∈ β−i (θ−i)

ª
in the summation whenever we take expectations with

respect to ψi (θ−i) as profiles θ
00
−i with θ

0
−i /∈ β−i

¡
θ00−i
¢
receive probability zero anyhow. Now choose

any ti such that bθi (ti) = θi and bθi (αi (ti)) = θ0i. Let

ξi
¡
θ0−i
¢
,

X
{t−i∈T−i:bθ−i(α−i(t−i))=θ0−i}

bπi (ti) [t−i] (41)

and

ψi
¡
θ−i|θ0−i

¢
,
P
{t−i∈T−i:bθ−i(t−i)=θ−i and bθ−i(α−i(t−i))=θ0−i} bπi (ti) [t−i]P

{t−i∈T−i:bθ−i(α−i(t−i))=θ0−i} bπi (ti) [t−i] . (42)

For a given type space T and type ti, ξi
¡
θ0−i
¢
is the probability that agent i attaches to a payoff

type report θ0−i given the deception α−i. Consequently, ψi
¡
θ−i|θ0−i

¢
is the conditional probability

that the true payoff type profile is θ−i if the announced type profile is θ0−i.
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We construct a reward function y (t) on the type space T by setting:

y (αi (ti) , t−i) , y
³bθ−i (t−i) , ψi ³· ¯̄̄bθ−i (t−i)´´ . (43)

Using the probabilities distributions defined in (41) and (42), and the reward function defined in
(43) we have the following equalities useful to establish the interim reward inequality:X

t−i∈T−i
ui

³
y (α (t)) ,bθ (t)´ bπi (ti) [t−i] (44)

=
X

θ0−i∈Θ−i

X
θ−i∈Θ−i

ui
¡
y
¡
θ0−i, ψi

¡
·|θ0−i

¢¢
, θ
¢
ψi
¡
θ−i|θ0−i

¢
ξi
¡
θ0−i
¢

and X
t−i∈T−i

ui

³
f
³bθ (α (t))´ ,bθ (t)´ bπi (ti) [t−i] (45)

=
X

θ0−i∈Θ−i

X
θ−i∈Θ−i

ui
¡
f
¡
θ0
¢
, θ
¢
ψi
¡
θ−i|θ0−i

¢
ξi
¡
θ0−i
¢
.

As the inequality (39) holds for every θ0−i, we can infer from (39) thatX
θ0−i∈Θ−i

X
θ−i∈Θ−i

ui
¡
y
¡
θ0−i, ψi

¡
·
¯̄
θ0−i

¢¢
, θ
¢
ψi
¡
θ−i|θ0−i

¢
ξi
¡
θ0−i
¢

>
X

θ0−i∈Θ−i

X
θ−i∈Θ−i

ui
¡
f
¡
θ0
¢
, θ
¢
ψi
¡
θ−i|θ0−i

¢
ξi
¡
θ0−i
¢

holds when we take the expectation with respect to ξi
¡
θ0−i
¢
. By appealing to the equalities (44)

and (45), we establish that: X
t−i∈T−i

ui

³
y (α (t)) ,bθ (t)´ bπi (ti) [t−i] (46)

>
X

t−i∈T−i
ui

³
f
³bθ (α (t))´ ,bθ (t)´ bπi (ti) [t−i] .

Using again the probabilities distributions defined in (41) and (42), the reward function defined
in (43), we have the following equalities useful to establish the interim incentive inequalities:X

t−i∈T−i
ui

³
f
³bθ (t0i, t−i)´ ,bθ (t0i, t−i)´ bπi (t0i) [t−i] (47)

=
X

θ0−i∈Θ−i

X
θ−i∈Θ−i

ui

³
f
³bθi (t0i) , θ−i´ ,³bθi (t0i) , θ−i´´ψi ¡θ−i|θ0−i¢ ξi ¡θ0−i¢

and X
t−i∈T−i

ui

³
y (αi (ti) , t−i) ,bθ (t0i, t−i)´ bπi (t0i) [t−i] (48)

=
X

θ0−i∈Θ−i

X
θ−i∈Θ−i

ui

³
y (θ−i, ψi (· |θ−i )) ,

³bθi (t0i) , θ−i´´ψi ¡θ−i|θ0−i¢ ξi ¡θ0−i¢ , ∀t0i.
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By appealing the ex post incentive inequalities of robust monotonicity, (40), we know that

ui

³
f
³bθi (t0i) , θ−i´ ,³bθi (t0i) , θ−i´´ ≥ ui

³
y
¡
θ0−i, ψi (· |θ−i )

¢
,
³bθi (t0i) , θ−i´´ , (49)

for all t0i. The inequalities (49) then remain valid when we take expectations with respect to the
conditional and marginal distributions ψi

¡
θ−i|θ0−i

¢
and ξi

¡
θ0−i
¢
respectively. By using the equalities

(47) and (48) we can then establish the interim incentive compatibility conditions:X
t−i∈T−i

ui

³
f
³bθ (t0i, t−i)´ ,bθ (t0i, t−i)´ bπi (t0i) [t−i] (50)

≥
X

t−i∈T−i
ui

³
y (αi (ti) , t−i) ,bθ (t0i, t−i)´ bπi (t0i) [t−i] , ∀t0i.

But by (46) and (50), we have confirmed interim monotonicity on this type space.

The proof of the above theorem uses the full strength of robust monotonicity to establish interim
monotonicity. We start out with a deception α on an arbitrary type space T such that f ◦ α 6= f .
We then extract from given type ti and associated belief type πi (ti) [t−i] a conditional distribution
over payoff types ξi (ti) [θ−i]. For this conditional distribution, we can then construct a reward by
the robust monotonicity hypothesis, which we then employ for construct a reward allocation offer
to induce type ti to denounce the deception α.
The following property is a simple implication of robust monotonicity.

Definition 15 (Pairwise Robust Monotonicity)
If f (θ) 6= f

¡
θ0
¢
, then there exist i and y such that

ui (y, θ) > ui
¡
f
¡
θ0
¢
, θ
¢

and
ui

³
f
³eθi, θ0−i´ ,³eθi, θ0−i´´ ≥ ui

³
y,
³eθi, θ0−i´´ , ∀eθi.

The pairwise notion shares the requirement that a reward can be offered for every pair θ, θ0 of
payoff profiles, where θ is true payoff profile and θ0 is the deception, but then requires that the ex
post incentive constraints are satisfied for all possible misreports regarding payoff types of agent i.
The reward inequality is thus identical to the one imposed by Maskin monotonicity (see Definition
6.1) but the incentive constraints are extended to the private information of agent i, as opposed
to the complete information assumption inherent to Maskin monotonicity. It is easy to verify that
Example C satisfies pairwise robust monotonicity, but not robust monotonicity. The next result
relates robust, pairwise robust, ex post and Maskin monotonicity.

Proposition 1 (Pairwise Robust Monotonicity)

1. If f satisfies robust monotonicity, then f satisfies pairwise robust monotonicity;

2. If f satisfies pairwise robust monotonicity, then f satisfies Maskin monotonicity;

3. If f satisfies pairwise robust monotonicity, then f satisfies ex post monotonicity.

Proof. (1.) Suppose that f (θ) 6= f
¡
θ0
¢
and consider the unacceptable deception where

βi

³eθi´ = (
neθio , if eθi 6= θi©
θi, θ

0
i

ª
, if eθi = θi

.
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By the second definition of robust monotonicity, there exists i such that for all θ0−i ∈ Θ−i and
ψi ∈ ∆

¡©
θ−i ∈ Θ−i : θ0−i ∈ β−i (θ−i)

ª¢
, there exists y such thatX

{θ−i∈Θ−i:θ0−i∈β−i(θ−i)}
ψi (θ−i)ui (y, (θi, θ−i))

>
X

{θ−i∈Θ−i:θ0−i∈β−i(θ−i)}
ψi (θ−i)ui

¡
f
¡
θ0i, θ

0
−i
¢
, (θi, θ−i)

¢
and

ui

³
f
³eθi, θ0−i´ ,³eθi, θ0−i´´ ≥ ui

³
y,
³eθi, θ0−i´´ ,

for all eθi. Letting ψi put mass 1 on θ−i, we have

ui (y, (θi, θ−i)) > ui
¡
f
¡
θ0
¢
, θ
¢

and
ui

³
f
³eθi, θ0−i´ ,³eθi, θ0−i´´ ≥ ui

³
y,
³eθi, θ0−i´´ .

(2.) Restricting eθi to be equal to θ0i in the pairwise robust monotonicity condition, we get the
second definition of Maskin monotonicity.
(3.) Fix any ex post deception α with f (θ) 6= f (α (θ)) for some θ. Letting θ0 = α (θ) in the

definition of pairwise robust monotonicity, we have that there exist i and y such that

ui (y, θ) > ui (f (α (θ)) , θ)

and
ui

³
f
³eθi, α−i (θ−i)´ ,³eθi, α−i (θ−i)´´ ≥ ui

³
y,
³eθi, α−i (θ−i)´´ , ∀eθi.

But this is just the second definition of ex post monotonicity.

6.3 Dominant Strategies

We conclude this section by noting the connection between robust monotonicity and dominant
strategies.

Definition 16 Social choice function f satisfies strict dominant strategies incentive compatibility if
for all i, θ, θ0 with θ0i 6= θi,

ui
¡
f
¡
θi, θ

0
−i
¢
, θ
¢
> ui

¡
f
¡
θ0i, θ

0
−i
¢
, θ
¢
.

Definition 17 Social choice function f satisfies dominant strategies incentive compatibility if for
all i, θ, θ0,

ui
¡
f
¡
θi, θ

0
−i
¢
, θ
¢
≥ ui

¡
f
¡
θ0i, θ

0
−i
¢
, θ
¢
.

Definition 18 Social choice function f satisfies selective dominant strategies incentive compatibility
if f satisfies dominant incentive compatibility and, for all unacceptable deceptions β, there exists i,
θi and θ0i ∈ βi (θi) such that

ui
¡
f
¡
θi, θ

0
−i
¢
, (θi, θ−i)

¢
> ui

¡
f
¡
θ0i, θ

0
−i
¢
, (θi, θ−i)

¢
for all θ−i and θ0−i ∈ β−i (θ−i).
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Clearly, strict dominant implies selective dominant which in turn implies dominant strategies in-
centive compatibility. The relationship between selective dominant strategies incentive compatibility
and robust monotonicity is established next.

Proposition 2 (Selective Dominance)

1. If social choice function f satisfies selective dominance incentive compatibility then f satisfies
robust monotonicity.

2. If social choice function f satisfies private values and robust monotonicity then f satisfies
selective dominance incentive compatibility.

Proof. (1.) If f satisfies selective dominance, then f satisfies robust monotonicity, since for any
β and any θ0i ∈ βi (θi) with θ0i 6= θi, we will have

ui
¡
f
¡
θi, θ

0
−i
¢
, (θi, θ−i)

¢
> ui

¡
f
¡
θ0i, θ

0
−i
¢
, (θi, θ−i)

¢
for all θ−i and θ0−i ∈ β−i (θ−i) and

ui

³
f
³eθi, θ0−i´ ,³eθi, θ0−i´´ ≥ ui

³
f
¡
θi, θ

0
−i
¢
,
³eθi, θ0−i´´ ,

for all
³eθi, θ0−i´ ∈ Θ.

(2.) The social choice environment satisfies private values if

ui (y, (θi, θ−i)) = bui (y, θi)
for all i, y, θi and θ−i. If there are private values, then the robust monotonicity condition implies
that for every unacceptable deception β, there exist i, θi, θ

0
i ∈ βi (θi) and y : Θ−i → A such that

bui ¡y ¡θ0−i¢ , θi¢ > bui ¡f ¡θ0i, θ0−i¢ , θi¢
for all θ−i and θ0−i ∈ β−i (θ−i) and

bui ³f ³eθi, θ0−i´ ,eθi´ ≥ bui ³y ¡θ0−i¢ ,eθi´ ,
for all

³eθi, θ0−i´ ∈ Θ. Setting eθi = θi in the latter condition, we have

bui ¡f ¡θi, θ0−i¢ , θi¢ ≥ bui ¡y ¡θ0−i¢ , θi¢ > bui ¡f ¡θ0i, θ0−i¢ , θi¢ .
Thus for every unacceptable deception β, there exist i, θi, θ

0
i ∈ βi (θi) such thatbui ¡f ¡θi, θ0−i¢ , θi¢ > bui ¡f ¡θ0i, θ0−i¢ , θi¢ .

for all θ−i and θ0−i ∈ β−i (θ−i).

7 Uniform Implementation
The notion of interim implementation allowed us to specify a distinct mechanism for every type
space. Combined with restriction to finite mechanisms, this is restrictive. It is then natural to ask
whether we can specify a single mechanism which interim implements the social choice function for
all (finite) type spaces. We refer to this as uniform implementation. In this section we establish
the relation between uniform implementation and implementation in strategies surviving iterated
deletion of strictly dominated strategies, where we refer to the later as iterative implementation.
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7.1 Iterative Implementation

We begin by setting the notation for iterated deletion of strictly dominated strategies. For a fixed
mechanismM = (M1, ...,MI , g), we define the set of surviving reports for agent i of payoff type θi
after k rounds

©
Mk

i (θi)
ª
i,θi∈Θi recursively as follows. Let M

0
i (θi) =Mi and define recursively:

Mk+1
i (θi) =

mi ∈Mk
i (θi)

¯̄̄̄
¯̄̄ @µi ∈ ∆ (Mi) s.th.P
m0
i

µi (m
0
i)ui (g (m

0
i,m−i) , (θi, θ−i)) > ui (g (mi,m−i) , (θi, θ−i))

∀θ−i ∈ Θ−i and ∀m−i ∈Mk
−i (θ−i)

 .
We write

M∞i (θi) =
\
k≥0

Mk
i (θi) and M∞ (θ) = {M∞i (θi)}Ii=1 .

Definition 19 Social choice function f is iterative implementable if there exists a mechanism M
such that

m ∈M∞ (θ)⇒ g (m) = f (θ) .

We refer to iterative implementable rather than the more exhaustive implementable in strategies
surviving iterated deletion of strict dominated strategies. We next present two examples to illustrate
this definition. The first example augments the introductory example by two additional outcomes
which are not called upon by the social choice function f . This example has the feature that the
social choice function is iterative implementable, yet not dominant strategy implementable. We show
iterative implementability by explicitly constructing the mechanism. The second example exactly
reprises the introductory example and shows that even though there the social choice function f is ex
post implementable, there does not exist a mechanism which would make f iterative implementable.

7.2 Example D

The introductory Example A had two agents, i = 1, 2 with binary payoff types: Θ1 =
©
θ11, θ

2
1

ª
,

Θ2 =
©
θ12, θ

2
2

ª
. The only variation is in the allocation space A = {a, b, c, d, z1, z2} which contains

the additional elements z1 and z2 . The social choice function is still given by:

f θ12 θ22
θ11 a b

θ21 c d

and the payoffs of the agents remain identical for the original allocations {a, b, c, d}:
a θ12 θ22
θ11 3, 3 0, 0

θ21 0, 0 1, 1

b θ12 θ22
θ11 0, 0 3, 3

θ21 1, 1 0, 0

c θ12 θ22
θ11 0, 0 1, 1

θ21 3, 3 0, 0

d θ12 θ22
θ11 1, 1 0, 0

θ21 0, 0 3, 3

and for z1 and z2 are given by:

z1 θ12 θ22
θ11 2, 2 2, 0

θ21 2, 2 2, 0

z2 θ12 θ22
θ11 2, 0 2, 2

θ21 2, 0 2, 2

Consider the following augmented mechanism in which agent 1 can report besides his payoff type
also a third message φ whereas agent 2 is again restricted to report his payoff type:

θ12 θ22
θ11 a b

θ21 c d
φ y z
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The corresponding incomplete information game has the following payoffs:

type θ12 θ22
type report θ12 θ22 θ12 θ22
θ11 θ11 3, 3 0, 0 0, 0 3, 3

θ21 0, 0 1, 1 1, 1 0, 0
φ 2, 2 2, 0 2, 0 2, 2

θ21 θ11 0, 0 1, 1 1, 1 0, 0

θ21 3, 3 0, 0 0, 0 3, 3
φ 2, 2 2, 0 2, 0 2, 2

If we perform iterated deletion of ex post dominated strategies, then we arrive in four steps at a
singleton for every type of every agent:

M0
1

¡
θ11
¢
=

©
θ11, θ

2
1, φ
ª
, M0

1

¡
θ21
¢
=
©
θ11, θ

2
1, φ
ª
, M0

2

¡
θ12
¢
=
©
θ12, θ

2
2

ª
, M0

2

¡
θ22
¢
=
©
θ12, θ

2
2

ª
M1
1

¡
θ11
¢
=

©
θ11, φ

ª
, M1

1

¡
θ21
¢
=
©
θ21, φ

ª
, M1

2

¡
θ12
¢
=
©
θ12, θ

2
2

ª
, M1

2

¡
θ22
¢
=
©
θ12, θ

2
2

ª
M2
1

¡
θ11
¢
=

©
θ11, φ

ª
, M2

1

¡
θ21
¢
=
©
θ21, φ

ª
, M2

2

¡
θ12
¢
=
©
θ12
ª
, M2

2

¡
θ22
¢
=
©
θ22
ª

M3
1

¡
θ11
¢
=

©
θ11
ª
, M3

1

¡
θ21
¢
=
©
θ21
ª
, M3

2

¡
θ12
¢
=
©
θ12
ª
, M3

2

¡
θ22
¢
=
©
θ22
ª

7.3 Example A Revisited

We now return to the original example and simply omit the allocations z1 and z2. Here we will
prove that the social choice function is not iterative implementable. We argue by contradiction.
Thus suppose that there is a finite mechanismM such that

m ∈M∞ (θ)⇒ g (m) = f (θ) .

Let
M∗i (θi) = {mi : g (mi,mj) = f (θi, θj) for some mj , θj} .

By induction, M∗i (θi) ⊆ Mk
i (θi) for all k. Suppose that this is true for k. Then for any mi ∈

M∗i (θi) ⊆ Mk
i (θi), there exists mj ∈ M∗j (θj) ⊆ Mk

j (θj) such that g (mi,mj) = f (θi, θj). Thus
there does not exist µi ∈ ∆ (Mi) such thatX

m0
i

µi (m
0
i)ui (g (m

0
i,mj) , (θi, θj)) > ui (g (mi,mj) , (θi, θj)) = 3.

So mi ∈Mk+1
i (θi).

Thus we must have that (m1,m2) ∈M∗1 (θ1)×M∗2 (θ2) implies g (m1,m2) = f (θ1, θ2). Let m∗i (·)
be any selection from M∗i (·). Now let k∗ be the lowest k such that, for some i,

m∗i
¡
θ0i
¢
/∈Mk

i (θi) .

Without loss of generality, let i = 1. Note m∗2
¡
θ02
¢
∈Mk−1

2 (θ2) by assumption. If agent 1 was type
θ1 and was sure his opponent were type θ2 and choosing action m∗2

¡
θ02
¢
, we know that he could

guarantee himself a payoff of 1 by choosing m∗1
¡
θ01
¢
. Since m∗1

¡
θ01
¢
is deleted for type θ1 at round

k, we know that there exists µ1 ∈ ∆ (M1) such thatX
m0
1

µ1 (m
0
1) g1

¡
m0
1,m

∗
2

¡
θ02
¢¢

> 1
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and thus there exists m0
1 such that g1

¡
m0
1,m

∗
2

¡
θ02
¢¢
= f (θ1, θ2). This implies that m∗2

¡
θ02
¢
∈

M∗2 (θ2), a contradiction.
Both examples use the fact that the social choice function always selects an outcome that is

strictly Pareto-optimal and - paradoxically - it this feature which inhibits iterative implementation
in the current example.4 Borgers (1995) proves the impossibility of complete information implemen-
tation of non-dictatorial social choice functions in iteratively undominated strategies when the set
of feasible preference profiles includes such unanimous preference profiles and the argument here is
reminiscent of Borgers’ argument.
It will be useful to report an alternative characterization of M∞ (θ) based on the classical du-

ality argument relating iterated deletion of strictly dominated strategies to rationalizability (Pearce
(1984)).

Mk+1
i (θi) =

mi ∈Mk
i (θi)

¯̄̄̄
¯̄ ∃λki ∈ Λki s.t.
mi ∈ argmax

m0
i

P
θ−i,m−i

λki (θ−i,m−i)ui (g (m0
i,m−i) , (θi, θ−i))

 ,

where

Λki =
n
λki ∈ ∆ (Θ−i ×M−i)

¯̄̄
λki (θ−i,m−i) = 0 if mj /∈Mk

j (θj) for some j 6= i
o
.

The equivalence of this definition follows immediately from the well known equivalence between an
action being strictly dominated and being never a weak best response. Now the mechanism is finite,
we know that there exists K such thatMk

i (θi) =M∞i (θi) for all k ≥ K. Thus we have the following
crucial lemma concerning iterative implementation.

Lemma 2 For each mi ∈M∞i (θi), there exists λi ∈ ∆ (Θ−i ×M−i) such that:

1. λi (θ−i,m−i) = 0 if mj /∈M∞j (θj) for some j 6= i;

2. mi ∈ argmax
m0
i

P
θ−i,m−i λi (θ−i,m−i)ui (g (m

0
i,m−i) , (θi, θ−i)).

7.4 Characterization

With this background material, we can proceed to define and analyze uniform implementation.

Definition 20 Social choice function f is uniformly implementable if there exists a mechanismM
such that for every finite type space T , every (pure strategy) interim equilibrium s of the game
(T ,M) satisfies

g (s (t)) = f
³bθ (t)´ .

We then use the alternative characterization of iterative implementation provided by Lemma 2
to relate uniform and iterative implementation.

Theorem 7 Social choice function f is uniformly implementable if and only if it is iterative imple-
mentable.

4 In this context, it is worthwhile to observe that the social choice function f in Example A satisfies robust
monotonicity. Yet, as the environment is distinctly non-economic, monotonicity is only a necessary but not sufficient
condition for interim implementation. More precisely, in this example any attempt to create a reward allocation has
to rely on the use of the efficient allocations, and this necessarily creates mutliple equilibria, not all of them implement
the social choice function f .
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Proof. First, suppose that f is iterative implementable. Fix any type space T . Choose a
mechanismM that iterative implements f . Fix any equilibrium s of the game (T ,M) and let

cMi (θi) =
n
mi : si (ti) = mi and bθi (ti) = θi

o
.

By induction, cMi (θi) ⊆Mk
i (θi) for all k, and thus cMi (θi) ⊆M∞i (θi). Now g (s (t)) = f

³bθ (t)´.
Now suppose that f is not iterative implementable. Then for any mechanismM, there exists m∗

such that m∗ ∈ M∞ (θ∗) but g (m∗) 6= f (θ∗). Recall from Lemma 2 that for each mi ∈ M∞i (θi),
there exists λi (· |mi ) ∈ ∆ (Θ−i ×M−i) such that:

1. λi (θ−i,m−i) = 0 if mj /∈M∞j (θj) for some j 6= i;

2. mi ∈ argmax
m0
i

P
θ−i,m−i λi (θ−i,m−i)ui (g (m

0
i,m−i) , (θi, θ−i)) .

Now we construct a type space where

Ti = {(θi,mi) ∈ Θi ×Mi : mi ∈M∞i (θi)}bθi ((θi,mi)) = θibπi ((θi,mi))
h
(θj ,mj)j 6=i

i
= λi (θ−i,m−i|mi) .

By construction, there is an equilibrium s of the game (T ,M) with

si ((θi,mi)) = mi.

But now g (s (θ∗,m∗)) = g (m∗) 6= f (θ∗), while bθ (θ∗,m∗) = θ∗.
This argument is a straightforward application of a more general game theoretic argument.

Brandenburger and Dekel (1987) showed that the following result. Fix a complete information game
and a type space. Since there is complete information, all types are identical in terms of payoffs, but
may differ in their beliefs over others’ types. Ask which actions may be played in a Bayesian Nash
equilibrium of this rather degenerate incomplete information game on any type space (including
those where agents’ beliefs are not derived from a common prior). This is equivalent to asking which
actions may be played in a subjective correlated equilibrium of the underlying complete information
game. Brandenburger and Dekel show that the answer is the set of all actions which survive iterated
deletion of strictly dominated strategies.
This result can be extended to an incomplete information setting as follows. Let each agent i

have one of a finite set of payoff types, Θi. Fix an incomplete information payoff function, where
agents’ payoffs depend on the profile of actions chosen and the profile of payoff types. Take any rich
type space of the form we defined in Section 3.2, where an agent’s type includes a description of his
payoff type and his beliefs about others’ types. Ask which actions might be played by a given payoff
type in any equilibrium of the resulting game, for any type space. The answer is the set of actions
that survive iterated deletion of strictly dominated actions, where an action is dominated for a payoff
type if there is a mixed strategy that gives a strictly higher payoff for every action/payoff type profile
of the remaining players that has not yet been deleted. Proposition 7 is direct application of this
result. Battigalli and Siniscalchi (2003) have reported incomplete information generalizations of the
Brandenburger and Dekel (1987) that can incorporate the argument here as a special case.

7.5 The Not-So-Universal Type Space

We do not know how big is the gap between "implementation on all type spaces" (for which robust
monotonicity is a necessary and - in economic environments with full support type spaces - a sufficient
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condition) and "uniform implementability" (for which iterative implementation is necessary and
sufficient). But in this section, we speculate on where the gap comes from.
The traditional approach in the incomplete information implementation literature - which we

followed in Sections 4 through 6 - is to fix a type space and ask if we can construct a mechanism
such that every pure strategy equilibrium delivers the social desirable outcomes at every state. The
pure strategy restriction is an ad hoc restriction that is made for reasons of tractability and has
been much criticized (see, for example, Jackson (1992) and Abreu and Matsushima (1992)).
The fixed type space is rarely questioned. We conjecture that this is because of the following

"folk" argument that fixing the type space is without loss of generality. If there was uncertainty
about the true type space, we could always incorporate that uncertainty into a larger type space and
implement on that larger type space. If there was still not common knowledge of the type space,
we could construct a yet bigger type space. We know this process constructing larger and larger
type space is guaranteed to terminate because of the universal type space construction of Harsanyi
(1967/68) and Mertens and Zamir (1985).
The pure strategy restriction only has bite, however, if the type space is fixed. If we are allowed to

add payoff irrelevant types to purify mixed strategies, then mixed strategy implementation becomes
necessary for pure strategy purification. Thus the ad hoc pure strategy results depend on the fixed
type space assumption. But we will argue the folk argument in support of fixing the type space is
wrong.
To make this argument, we first report how the standard construction of the universal type space

would work in this setting. The only non-standard feature of this construction is that we want to
assume that it is common knowledge that each agent knows his own payoff type. We will build
this feature into the construction (Neeman (2001) and Heifetz and Neeman (2003) report similar
constructions). Agent i’s 0-th level type is his payoff type t0i = θi ∈ Θi. Let T 0i ≡ Θi be agent
i’s set of 0-th level types. agent i’s 1st level type must specify his payoff type and his belief about
other agents’ 0th level types. Thus t1i ∈ T 1i ≡ Θi ×∆

¡
T 0−i

¢
. agent i’s 2nd level type must specify

his payoff type and his belief about other agents’ 1st level types. Thus t2i ∈ T 2i ≡ Θi × ∆
¡
T 1−i

¢
.

Iterating this construction, we have tki ∈ T k
i ≡ Θi ×∆

¡
T k−1
−i

¢
, and we obtain an infinite hierarchy

of beliefs
¡
t0i , t

1
i , t

2
i , ....

¢
. We want to require that high level types, which intuitively contain more

information than lower level types, are consistent with lower levels. Formally, an infinite hierarchy is
coherent if all higher level types have the same payoff type as lower level types and if the projection
of their beliefs over other agents’ types onto lower level type spaces is consistent with lower level
types’ beliefs. Now if we impose some topological structure on the belief spaces, we can let agent i’s
possible types, Ti, be the set of all infinite hierarchies of beliefs. The crucial property of such type
spaces is that the set of types, constructed as infinite hierarchies, can be identified with pairs of payoff
types and beliefs types, so that, for each i, there exists a homeomorphism hi : Ti → Θi ×∆ (T−i).
For example, Brandenburger and Dekel (1993) show that if we topologize the belief spaces with a
complete separable metric, then this follows from Kolmogorov’s Existence Theorem. Now letting bθi
be the projection of hi onto Θi and letting bπi be the projection of hi onto ∆ (T−i), this canonical
universal type space fits (apart from the infinite set of types) into the language for type spaces
described in section 3.2.
Now we could ask if it is possible to pure (or mixed) strategy implement social choice function

f : Θ→ A on this universal type space. Since this type space is infinite, we would presumably want
to allow for infinite mechanisms, perhaps with messages at least as rich as the already rich type
space. While the exact answer to the question of whether f could be implemented on the universal
type space might be sensitive to assumptions such as the richness of the type space, the question
could certainly be precisely posed (we haven’t done it and would be interested to see it done!).
However, even if f could be implemented on the universal type space, it would not prove that

f could be implemented on all type spaces. It is a misunderstanding of what was proved in the
universal type space construction to believe that this is so. To illustrate this point, consider the
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following type space:

T1 = {t1, t01} ,
T2 = {t2, t02} ,

with a single payoff type for each agent:

bθ1 (t1) = bθ1 (t01) = θ1,bθ2 (t2) = bθ2 (t02) = θ2,

and the following associated belief types

bπ1 (t1) [t2] = 2

3
,

bπ1 (t01) [t2] = 1

3
,

bπ2 (t2) [t1] = 2

3
,

bπ2 (t02) [t1] = 1

3
.

Since all types have the same payoff type, the infinite hierarchy of beliefs is degenerate. I.e., each
type of agent i is sure that he has payoff type θi, he is sure that his opponent j has payoff type θj ,
and so on. However, because of the opportunities for correlation, rational strategic behavior on this
type space may be very different from the type space where each agent has only a single possible
type.
Similarly, suppose we constructed a mechanism that implemented f on the universal type space,

with message spaces even richer than the (large) set of types. Then we could always add some extra
payoff irrelevant types to reflect players’ strategic uncertainty about how others were playing the
game. If the implementation of the social choice function uses the equilibrium assumption (rather
than just iterated deletion), then we can add types in a way that undermines the implementation of
the social choice function. This is a general lesson from the literature on the epistemic foundations
of game theoretic solution concepts (e.g., Brandenburger and Dekel (1987)) and it was a general
lesson from Proposition 7.

8 Conclusion
This paper examined the robustness of the classical implementation problem. We formalized robust-
ness by requiring that the implementation problem remains solvable as we gradually relax common
knowledge among the agents and the designer. The weakening of common knowledge was achieved
by considering large type spaces in which the private information of the individual agents becomes
more prominent.
Motivated by the recent literature on mechanism design with interdependent valuations which

focuses on the notion of ex post equilibrium we presented initially necessary and sufficient conditions
for ex post implementation. We then proceeded to relate interim implementation on large type spaces
to ex post and complete information implementation. The obtained results point to the essential role
of type spaces and the representation of private information in the implementation problem. While
interim implementation on all common prior type spaces implies ex post and complete information
implementation, the implication fails to hold if we were to consider only all common prior payoff
type spaces, wherein the canonical model of the mechanism design literature resides. Moreover, and
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in contrast to our earlier results on truthful implementation (Bergemann and Morris (2003)) ex post
implementation does not imply interim implementation even when we consider only common prior
payoff type spaces. The analysis thus suggests that the ex post equilibrium notion may not capture
robustness and concerns about detail free solutions as well for implementation as it does for truthful
implementation problems.
We establish equivalence between ex post implementation and interim implementation on all

type spaces provided that the social choice function satisfies the new notion of robust monotonicity.
We finally extend the line of argument and ask when a given mechanism can interim implement the
social choice function for every (finite) type spaces and relate uniform implementation to the notion
of iterated deletion of strictly dominated strategies.
The robustness results are all derived for general environment and exact implementation. It

remains an open question whether more detailed relationships between these notions arise in specific
environments such as single crossing or supermodular environments. Likewise it would be interesting
to purse to the robustness analysis for virtual rather than exact implementation.
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9 Appendix: Full Support Uniform Implementation
The arguments for our characterization of uniform implementation clearly rely on allowing for type
spaces where beliefs do not have full support and, in particular, agents’ beliefs’ supports may be
inconsistent. In this appendix, we discuss how important this issue might be.
First, note that by imposing a full support assumption, we will clearly move from a characteriza-

tion corresponding to iterated deletion of strictly dominated strategies to one which allows deletion
of at least some weakly dominated strategies. On the one hand, this suggests that we would be able
to obtain much more permissive results, since we know that there is sometimes much to be gained in
the full implementation literature by allowing the deletion of weakly dominated strategies (give refs).
On the other hand, we are interested in robust implementation. We are maintaining the assumption
that there is common knowledge of the set of possible payoff types, even as we allow for a rich set
of higher order belief or payoff irrelevant types. Clearly, if there is behavior that can be supported
on non-full support type spaces then, by adding payoff perturbations to the payoff types, we could
support this behavior on full support type spaces. While this type of small payoff perturbation is
not formally part of our model, it would be easy to add on in a way that destroys the prior of weak
dominance. For example, Chung and Ely (2003) give an argument that small uncertainty about
payoff types in a complete information setting destroys the ability of weak dominance arguments to
dispense with Maskin monotonicity.
However, it is nonetheless natural to ask the attempt to characterize the following natural full

support uniform implementation concept:

Definition 21 Social choice function f is full support uniformly implementable if there exists a
mechanism M such that for every full support finite type space T , every (pure strategy) interim
equilibrium s of the game (T ,M) satisfies

g (s (t)) = f
³bθ (t)´ .

Note that as in the case of uniform implementation, the pure strategy restriction is without loss
of generality here: if mixed strategy implementation was impossible on some full support type space,
we could construct another larger full support type space where pure strategy implementation was
impossible.
Here, we are able to present a characterization although we do not know much about its proper-

ties. We first give an alternative fixed point characterization of ex post rationalizable implementation
that extends more easily to the full support case.

9.1 Fixed Point Characterization of Uniform Implementation

Fix a mechanismM = (M1, ...,MI , g). Let Si : Θi → 2Mi
±
∅ and S = (S1, ..., SI).

Definition 22 S satisfies the ex post best response property if for all i, θi and mi ∈ Si (θi), there
exists λi ∈ ∆ (Θ−i ×M−i) such that:

1. λi (θ−i,m−i) > 0⇒ mj ∈ Sj (θj) for all j 6= i;

2. mi ∈ argmax
m0
i

P
θ−i,m−i λi (θ−i,m−i)ui (g (m

0
i,m−i) , (θi, θ−i)).

By standard arguments, we know that the set of strategies surviving iterated deletion satisfies
the best response property, and every S satisfying the best response property is contained in the set
of strategies surviving interated deletion, i.e., if S satisfies the best response property, then

Si (θi) ⊆M∞i (θi)
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for all i and θi. So f is iteratively implementable (and thus uniformly implementable) if and only if
for every S satisfy the best response property,

m ∈ S (θ)⇒ g (m) = f (θ) .

We will generalize this characterization of uniform implementability to the full support case.

9.2 Fixed Point Characterization of Full Support Uniform Implementa-
tion

Definition 23 S satisfies the ex post full support best response property if for all i, θi and mi ∈
Si (θi), there exists λi ∈ ∆ (Θ−i ×M−i) such that:

1. λi (θ−i,m−i) > 0 if and only if mj ∈ Sj (θj) for all j 6= i;

2. mi ∈ argmax
m0
i

P
θ−i,m−i λi (θ−i,m−i)ui (g (m

0
i,m−i) , (θi, θ−i)).

Definition 24 Social choice function f is full support iteratively (FSI) implementable if for every
S satisfying the ex post full support best response property, m ∈ S (θ)⇒ g (m) = f (θ).

Proposition 3 Social choice function f is full support uniformly implementable if and only if f is
FSI implementable.

Proof. First, suppose that f is FSI implementable. Then m ∈ S (θ) ⇒ g (m) = f (θ) for every
S satisfying the ex post full support best response property. Fix any full support type space T .
Choose a mechanismM that FSI implements f . Fix any equilibrium s of the game (T ,M) and let

Si (θi) =
n
mi : si (ti) = mi and bθi (ti) = θi

o
.

By construction, S satisfies the ex post full support best response property. Thus g (s (t)) = f
³bθ (t)´.

Now suppose that f is not FSI implementable. Then for any mechanism M, there exists S
satisfying (1) the ex post full support best response property and (2) g (m∗) 6= f (θ∗) for some θ∗

and m∗ ∈ S (θ∗). Recall from Definition 23 that for each mi ∈ Si (θi), there exists λi (·|mi) ∈
∆ (Θ−i ×M−i) such that

1. λi (θ−i,m−i) > 0 if and only if mj ∈ Sj (θj) for all j 6= i;

2. mi ∈ argmax
m0
i

P
θ−i,m−i λi (θ−i,m−i)ui (g (m

0
i,m−i) , (θi, θ−i)).

Now construct the type space where

Ti = {(θi,mi) ∈ Θi ×Mi : mi ∈ Si (θi)}bθi ((θi,mi)) = θibπi ((θi,mi))
h
(θj ,mj)j 6=i

i
= λi (θ−i,m−i|mi) .

By construction, there this is a full support type space and there is an equilibrium s of the game
(T ,M) with

si ((θi,mi)) = mi.

But now g (s (θ∗,m∗)) = g (m∗) 6= f (θ∗), while bθ (θ∗,m∗) = θ∗.
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To understand the significance of the full support best response property, consider the special
case where each agent has only one type. In this case, we are looking at a complete information
solution concept that refines the set of rationalizable actions. Sets of actions satisfying the full best
response property have the additional property that each action for each player is admissible with
respect to the strategies of other players in that set.
This is related to the self-admissible sets of Brandenburger and Friedenberg (2003). They show

that an action is consistent with "common assumption of rationality" if and only if it is included
in some self-admissible set. They impose the additional requirement that strategies that are inad-
missible with respect to the whole strategy set cannot be included. And they have the additional
requirement that strategies whose payoffs are a convex combinations of other strategies must also
be included in a self-admissible set. In any case, the set of actions that are included in some self-
admissible set include all strategies surviving iterated deletion of weakly dominated strategies and
is included in the set of strategies surviving iterated deletion of strictly dominated strategies. The
complete information analogue of our solution concept would be similarly situated.5

5We are grateful to Amanda Friedenberg for explaining this connection.
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