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Abstract

An uninformed decision maker repeatedly receives advice from a good
informed advisor; that is, the advisor’s information is valuable and she
only cares about the utility of the decision maker. But the decision maker
attaches positive probability to the advisor being stupid or having other
objectives. The good advisor has a current incentive to truthfully reveal
her information; but she may have a reputational incentive to lie (in order to
separate herself from possible “bad” advisors). If the possible bad advisor
is informed but biased, and if the current decision problem is relatively
unimportant compared to future ones (for the decision maker and thus for
the good advisor) this reputational cost of telling the truth ensures that no
information is transmitted by either type of advisor in equilibrium. This
paper also explores when truth-telling is equilibrium behavior for different
kinds of possible bad advisors.
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PRELIMINARY (and should not be referred to w/o permission). In particular, I have not
converged on the appropriate notation for making comparisons across a number of models: 1
hope that ambiguity in notation will eventually be cleared up. I have benefited from valuable
conversations on this material with Stephen Coate, George Mailath and Andrew Postlewaite.
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1. Introduction

An uninformed decision maker repeatedly receives advice from an advisor. The
advisor is of one of two types. A “good” advisor is well (but not perfectly)
informed and cares only about the discounted future utility of the decision maker.
A “bad” advisor may or may not be informed and has different preferences from
the decision maker. Not surprisingly, the bad advisor will lie to the decision
maker. But the good advisor may have incentives to lie also. Although telling the
truth maximizes the current utility of the good advisor (since it leads to the best
decision for the decision maker), the good advisor will also be concerned about
her reputation (the probability the decision maker attaches to her being good).
Telling the truth need not maximize her reputation, as the following example
illustrates.

Consider a social scientist who (repeatedly) advises an uninformed policy
maker on alternative social policies. Suppose that the social scientist is not racist,
but, on one issue, her policy recommendation coincides with that of many racists.
Telling the truth will improve the policy maker’s current choice of action (since
the policy maker attaches positive probability to the social scientist not being
racist). But it would (in equilibrium) increase the policy maker’s probability that
the social scientist is racist. This is true independent of whether the policy turns
out to be a success. This means that less weight would be placed on her future
advice. Thus she might (in the interests of the policy maker) lie about her current
policy recommendation.

The same logic will apply in many contexts. Suppose an investment advisor
may either be exclusively concerned with her clients’ welfare (good) or may be
trying to off-load excess stocks (bad). The good advisor will forego recommending
profitable trades in order to enhance her reputation. An academic referee may
either be exclusively concerned with the intellectual merits of the work to be
refereed (good) or may seek only to enhance her research agenda (bad). The
good referee will lie about research that enhances her own agenda.

In all the above examples, the “bad” advisor has some bias in her preferences.
Consider instead cases where the bad advisor tells the truth but is stupid (i.e.,
has noisy signals). An investment advisor is either competent (good) or stupid
(bad). The good investment advisor hears good things (i.e., observes a positive
signal) about a crazy sounding scheme (i.e., an investment with a low ex ante
probability of success). Should she pass on this (useful) information to her client?



On average, people with noisier signals are more likely to hear good things about
crazy schemes. The investment advisor may forego passing on the good advice
in order to have more conservative future advice taken seriously. Again, this
reputational incentive effect works even if the client learns the outcome of the crazy
scheme. Finally, a scientist is either competent (good) or stupid (bad). Suppose
the competent scientist observes something really surprising in her laboratory. If
she reports it, her future observations may not be taken seriously. It is better to
establish a reputation with more conservative findings before revealing any radical
observations.

The purpose of this paper is to characterize in which circumstances truth-
telling is optimal for a “good” advisor and in which circumstances the reputational
concerns cited above ensure that no information is conveyed in equilibrium. We
address these questions in a repeated cheap talk game, extending the framework
of Sobel (1985) and Benabou and Laroque (1992). In particular, suppose that
in each period a binary state of the world, 0 or 1, is realized. The advisor ob-
serves a noisy signal of that state and may (costlessly) announce that signal to
a decision maker. The decision maker chooses an action from a continuum. His
optimal action is a continuous increasing function of the probability he attaches
(in equilibrium) to state 1. The state is realized (and publicly observed) after the
decision maker’s action is chosen. In each period, there is a new, independent,
state and a new decision to be made. Another independent random variable in
each period determines the weight (importance) of the current decision problem;
the decision maker maximizes his discounted expected weighted utility from de-
cisions. The good advisor maximizes the same expression. The paper considers
alternative specifications of the bad advisor.

I analyze in detail the case where bad advisor and good advisor are equally
well-informed but the bad advisor always prefers higher actions, independent of
the state of the world. (Recall that the good advisor, like the decision maker,
would like a high action in state 1 and a low action in state 0). It is useful to first
analyze what might happen in any individual decision problem if we exogenously
fix an increasing, continuous, value function in the probability of being good for
each advisor. It is possible to provide a general characterization of equilibria in
this reduced form game (propositions 1 and 2). There always exist “babbling”
equilibria, where no information about the state or the type of advisor is revealed.
In addition, there may exist informative equilibria. In such equilibria, the bad
advisor always announces signal 1 more often than the good advisor. So indepen-



dent of the state realized, announcing 1 decreases her reputation and announcing
0 increases her reputation. Thus each advisor always has a reputational incen-
tive to announce 0; the bad advisor always has a current incentive to announce
1 (since she wants a high action realized); while the good advisor has a current
incentive to announce 1 only if she observes signal 1. One implication is that the
good advisor always announces 0 when she observes signal 0. Now consider what
happens to the set of equilibria as the importance of the current decision problem
(to the decision maker and thus the good advisor) is varied, holding fixed the
reputation value function of the good advisor (proposition 3). If the importance
of the current decision problem is sufficiently high, there is an equilibrium where
the good advisor always tells the truth. But if the importance of the current
decision problem is sufficiently low, no information is conveyed in any equilibrium
(i.e., only babbling equilibria exist).

Recall that the above results followed from the assumption that players have
continuous increasing valuations of reputation. I show that such value functions
can arise endogenously from a purely instrumental concern for reputation. In
particular, there exists a Markov equilibrium of the infinitely repeated advise game
with continuous increasing value functions (proposition 4). All the properties
described in the previous paragraph are inherited by this equilibrium.

The above results concerned a particular type of bad advisor (informed but
with a specific bias in preferences). We would like to characterize (more generally)
which preferences and competence of the bad advisor will lead the good advisor
to lie in equilibrium, and which are consistent with truth-telling by the good
advisor. However, it is hard to solve for all possible preferences and competences
of the bad advisors. Instead, there is a characterization (lemma 2) of which
strategies for the bad advisor are consistent with equilibrium truth-telling by the
good advisor (however small the importance of the current decision problem). This
characterization can be used to solve for various types of bad advisor preferences
and competence:

1. Smart Zealot: a bad advisor who is informed but has biased preferences.
This is the case we already described. The good advisor will always have a
reputational incentive to lie given such a bad advisor.

2. Honest Fool: a bad advisor who is uninformed but always tells the truth.
The good advisor will have a reputational incentive to lie against such an
advisor only if his signal is ex ante very surprising.

4



3. Foolish Zealot: a bad advisor who is uninformed and has a systematic bias in
preferences. The good advisor may have a reputational incentive to always
tell the truth if value functions are sufficiently aligned in equilibrium.

4. Smart Enemy: a bad advisor who is informed and has opposite preferences
(with no particular bias) from the decision maker. The good advisor will
have a reputational incentive to tell the truth.

This paper builds on a number of earlier literatures and it will be useful to put
it in context. The static cheap talk literature (Crawford and Sobel 1982) showed
that an advisor (sender) may tell the truth if she is good (her preferences are close
to those of the receiver) but must babble is she is bad (her preferences are different
from the receiver). Sobel (1985) and Benabou and Laroque (1992) considered
repeated cheap talk games with uncertainty about the type of the advisor. They
assumed that the good advisor tells the truth. They showed that a bad advisor
will not always babble. Rather, the bad advisor will sometimes tell the truth
(investing in reputation) and sometimes lie (exploiting that reputation). This
paper endogenizes the behavior of the good advisor in Benabou and Laroque
(1992). Just as the bad advisor’s current interests are sometimes reversed by
reputational concerns, so too for the good advisor. Just as the bad advisor has an
incentive to tell the truth (despite a current incentive to lie) in order to enhance
her reputation, so the good advisor may have an incentive to lie (despite a current
incentive to tell the truth) in order to enhance her reputation. The purpose of
this paper is to characterize when this occurs.

Loury (1994) has explored the more general question of “self-censorship in
public discourse” for strategic reasons; the classic example is that of so-called
political correctness but Loury argues the phenomenon is quite pervasive. Loury’s
explanation is that participants in public debate are influenced by concerns about
how their statements will change listeners’ views of their type. In particular,
speakers want to be perceived to be respectful of social norms and therefore make
statements that respect social norms for expression (he suggests that a formal
model along the lines of Bernheim (1994) would be relevant here). There are
two problems with this approach. First, there is no explanation of the origin of
social norms concerning expression. Second, the cost of the self-censorship is not
examined. The model presented here can be seen as a formalization of some of
Loury’s ideas, which in addition addresses these two problems. In this paper,
there is real information content in expression, and therefore social value is lost
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when self-censorship occurs. Speakers’ reputational concerns are not about some
reduced form feature such as “respect for social norms,” but rather about their
perceived preferences and ability. Furthermore, they care about the latter for
purely instrumental reasons. This foundation of the model in standard economic
and informational assumptions allows the possibility of explaining the origin of
socially acceptable forms of expression and conducting welfare analysis of political
correctness.

Reputational concerns for competence have appeared in a number of papers;
Prendergast and Stole (1996) is especially relevant. They consider a manager
who takes an investment decision and is concerned both about the output of
the investment decision and her reputation for competence. Absent reputational
concerns, competent managers would take more extreme investment decisions,
because they have more accurate information. Given the reputational concerns,
all managers will initially take excessively extreme decisions in order to signal
competence. On the other hand, if there is correlation across optimal decisions
through time, managers who have been in place for some time will excessively
reduce variability, in order to signal their faith in their earlier decisions, and
thus their competence. A number of features lead to the different reputation
for competence results in this paper. First, there is no correlation in decision
problems through time. Second, because advice is not costly, there is no ability
to separate by choosing some sufficiently costly action.!

2. Separating from a Smart Zealot: A Model of Political
Correctness

2.1. Exogenous Reputation

A decision maker’s optimal decision depends on the state of the world w € {0, 1}.
Each state occurs with probability % The decision maker has access to an advisor
who may be partially informed about the state of the world. The advisor observes
asignal s € {0, 1} that is correlated with the true state of the world. In particular,

the probability that the signal equals the true state is v € (%, 1).

!Following Milgrom and Roberts (1986), a number of authors examine incentives of interested
parties to reveal information (see also Dewatripont and Tirole (1995) and Shin (1996)). But
these are not cheap talk papers as interested parties can prove that their information is accurate
(if they choose to reveal it).



With probability A, the advisor is “good” (type ), and with probability
1 — A, the advisor is “bad” (type B). The type I advisor’s strategy is a function
or:{0,1} — [0, 1], where oy (s) is the probability of announcing message 1 when
her signal is s. Given the advisor’s message, the decision maker must choose an
action a € R. After the action is chosen, the state of the world w is publicly
observed.

The decision maker’s utility depends on his optimal action and the state of
the world: his utility from action a in state w is z.upy (a,w), where > 0 and
upyr (a,w) is differentiable and strictly concave in a and attains a maximum for

each w. Write a* (m) = argmax upy (a,w) and assume a* (1) > a*(0). The
ac
decision maker’s strategy is a function x : {0,1} — R; x (m) is his action if m is

the message from his advisor.

The advisor’s utility depends on the decision maker’s beliefs after observing
the state of the world. In particular, write A[og,05] (m,w) for the posterior
probability that the advisor is good if she sends message m and state w is realized.?

Then
Ape (m|w)
X (mw) + (L= N) o5 (m o)
1
1)) (¢B(mlw))’
L (5 (203)
where ¢ (m |w)is the probability that advisor I sends message m given state w,
Le ¢ (lw) = yoy(w) + (1 =7) 07 (1 —w) and ¢; (O|w) =1 — ¢; (1|w). (This
is well defined only if the denominator is non-zero. I adopt the convention that
Alog,05] (m,w) =Aif og(m|l) =05 (m|0) =0p(m|l) =0p(m|0) = 0. This
restriction does not effect the analysis of equilibria).

Alog,08] (m,w) =

The good advisor cares about the current utility of the DM and her ex post
reputation. Her payoff is

zupy (a,w) +vg [A[og, o8] (Mm,w)]

2A colleague advises me that distinguishing players by sex (the decision maker is male, the
advisor is female) will clarify my argument and not distract the reader. My colleague may
sincerely believe this. On the other hand, he knows that I would discount his future stylistic
advice if T thought it was motivated by sexism. It is possible that he does not believe his own
politically correct advice, but that he is sufficiently anxious that I take his future stylistic advice
that he is prepared to lie. In this scenario, he is lying precisely because he is concerned about
the clarity of my arguments. See proposition 3.
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where 2 > 0 and vg : [0,1] — % is a strictly increasing continuous function. The
bad advisor always wants action 1 chosen but also cares about her reputation. In
particular, her payoff is

yup (a) +vp[Alog, op] (m,w)]

where y > 0, up is a strictly increasing in a on the interval (a* (0),a* (1)) and
vp : [0,1] — R is a strictly increasing continuous function.

If the advisor follows strategy (0, 0p), write I [0, 0] (m) for the DM’s pos-
terior belief that the actual state is 1 if message 1 is announced. By Bayes’ rule,

_ Apg (m|1) 4+ (1= X) ¢ (m]1)
3 T T L= N éw (m 1) 1 30 0 [0) £ (L~ N (n0)"

(Again, this is well defined only if the denominator is non-zero. I adopt the conven-
tion that I' [og,0p] (m) = 5 if 06 (m|0) = 05 (Mm|0) = 0¢ (Mm|1) = o5 (m|1) =
0.)

Now (0¢,0p,X) is an equilibrium if the advisor’s action given his signal max-
imizes his utility given the decision maker’s strategy x and the type inference
function A [0, 0p]; and the decision maker’s action is optimal given the state in-

[[og, o8] (m)

ference function I' [0g,05]. A more formal statement of the equilibrium concept
is given in appendix A.
The decision maker’s best response is straightforward to characterize.

Lemma 1. In any equilibrium (0g,05,X), X = X [0c, 05| where
X log, o8] (m) = a (T log, 05] (m))

anda : [0,1] — [a* (0),a* (1)] is the unique continuous, strictly increasing function
solving

For example, if upy (a,w) = — (a —w)®, a*(0) =0, a* (1) = 1, and @ (q) = q.
Definition 1. (0¢,0p,X) is a babbling strategy profile if x (0) = x (1) = 3 and,
for some ¢ € [0,1], 04 (0) = 05(0) =05 (1) =05 (1) =c.

Any babbling strategy is uninformative in two senses: the decision maker
receives information neither about the true state of the world, nor about the type
of the advisor.



Proposition 1. Every babbling strategy profile is an equilibrium.

In analyzing non-babbling equilibria, we will focus on equilibria (og,05, X)
where the decision maker takes at least as large an action after state 1 as after
state 0, i.e., x (1) > x (0). This assumption is without loss of generality.

Proposition 2. For any (A, x,y), any non-babbling equilibrium (0g,0p,X) has
[1] the good advisor always telling the truth when she observes signal 0 (o (0) =
0); [2] strictly informative messages (x (1) > x (0)); and [3] a strict reputational
incentive for the advisor to announce 0 (A (0,1) > A(0,0) > A > A(1,1) >
A (1,0)). More specifically, there exist three types of non-babbling equilibria:

e Truthful (the good advisor always tells the truth): og (0) = 0, g (1) = 1,
op(0) > 0 and o (1) = 1. Such equilibria have A (0,1) = A(0,0) > A >
A(1,1) > A(1,0).

e Politically Correct (neither advisor says 1 when s = 0): 05 (0) =0, 05 (1) €
(0,1), o5 (0) = 0 and o5(1) > 0g(1). Such equilibria have A (0,1) >
A(0,0) > A >A(1,1) = A(1,0).

1) and op(1

e Full Support: o5(0) = 0, og(1) € (0,1), o5 (0) € (0, ) >
(0,1) > A(0,0) > A >

1—(1—-0g(1)) (1 —05(0)). Such equilibria have A (0,
A(1,1) > A(1,0).

In other words, the good advisor always tells the truth if she observes signal
0 (since announcing 0 tends to show that she is not the bad advisor). But she
may lie sometimes if she observes signal 1. The bad advisor may announce 1 all
the time, or she may announce 0 almost all the time. But she must announce
1 at least as often as the good advisor does. Under any strategies of this form,
announcing 0 always guarantees a reputation strictly greater than A (whatever the
realized state) while announcing 1 always gives the advisor a reputation strictly
less than A. The proof is presented in appendix B. It is clear from the proof that
for any strategies satisfying the necessary conditions of the proposition, we can
choose z, ¥, vg and vg such that those strategies are played in some equilibrium.

Proposition 3. There exist continuous functions T1,Zs : (0,1) x 14 — R4y
such that [1] ifx < Ty (\,y), all equilibria of the (\, x,y) game are babbling; and [2]
there exists a truthful equilibrium if and only if © > Ty (A, y); where the ¥; satisty
() 3 (\y) — 0as A — 1; (i) 71 (A ) — 0 as A — 0 T (Ary) — T3 (y) € (0,0)
as A — 0; (iii) Z; (A, y) — 0 asy — 0; and (iv) Z; (\,y) — T* (\) as y — 0.
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The proposition predicts that political correctness will be most prevalent when
the current decision problem is of small importance to the current decision maker.?

2.2. Endogenizing Reputation

Now consider the infinitely repeated game where there is a new decision prob-
lem in each period. Each period’s decision problem is parameterized by (z,%),
the importance of the problem for the decision maker (and good advisor) and
bad advisor respectively. Assume that x and y are drawn from X and Y respec-
tively, which are discrete subsets of %, ;; write ¢ € A (X x Y) for the probability
distribution on X x Y. Assume that ¢ has infinite support but that

> zg(zy)<occand > y.¢(z,y) < oo

(z,y)e X XY (z,y)e X XY

The discount rates of the decision maker and the bad advisor are épj; and 6p,
both elements of (0,1). A (Markov) advisor strategy is a pair (0g,0p), each
or: {0,1} x (0,1) x X xY — [0,1]; o7 (s; A, z,y) is the probability of sending
message 1 if the advisor is of type I, observes signals s, has reputation A and
(x,y) are the values of the current decision problem.

An advisor strategy is a function x : {0,1} x (0,1) x X x Y — R, where
X (m; A, x,y) is the decision maker’s action if he receives message m, the advisor
has reputation A and (z,%) are the values of the current decision problem.

Definition 2. A Markov equilibrium is characterized by a strategy profile (0¢,05, X)
and value functions vg and vp for the good and bad advisors such that [1] de-
cision maker strategy x is optimal given (0¢,0); [2] advisor strategy (og,0p)
maximizes current plus reputational utility (given by (vg,vg)) after every his-
tory; and [3] value functions (vg,vp) are generated by strategy profile (0,05, X).

A Markov equilibrium is a monotonic Markov [MM] if the value functions are
continuous and strictly increasing.

Although my analysis focuses on monotonic Markov equilibria, it is easy to
demonstrate the existence of other well-behaved Markov equilibria. Consider the
following construction. Suppose the good advisor always told the truth. By

3The reported prevalence of political correctness in academia might then be explained by
proposition 3 and the dictum (due to Bernard Shaw?) that academic disputes are so heated
precisely because there is so little at stake...
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a variation on an argument of Benabou and Laroque [1992|, there is a unique
best response (for any given 6p) for the bad advisor with a continuous strictly
increasing value function. If ép is sufficiently small, this best response will have
the bad advisor always lying for sufficiently high reputations but sometimes telling
the truth for lower reputations. Given this strategy, we can choose ép;; sufficiently
small such that truth telling is indeed a best response for the good advisor. Now
we can construct the value function for the good advisor corresponding to these
strategies. For 6pj; sufficiently small, the slope of the value function will be
determined by what happens next period. The good advisor will prefer the bad
advisor to have a low reputation (so she sometimes tells the truth) rather than a
high reputation (so she always lies).
Nonetheless, there do always also exist MM equilibria.

Proposition 4. A monotonic Markov equilibrium always exists.

The intuition for existence is straightforward. Suppose some pair of valuations
(x,y) occurs with very low probability . Consider the strategy profile where the
advisor always babbles after all histories where (z,y) is not drawn. If (z,y) is
drawn, the good advisor tells the truth and the bad advisor always announces 1.
If £ is sufficiently small, these strategies will be best responses to each other (as
reputational concerns will become insignificant). But we can choose ¢ sufficiently
small by our choice of (x,v).

Monotonic Markov equilibria inherit all the structure of propositions 1, 2 and
3. In particular, for any given A and vy, there exists z* such that for all z < x*,

Oag (1 ’)\,Q?,y) =0g (0 ’)\,Q?,y) =0B (1 ’)\,Q?,y) =0B (0 ’)\,Q?,y) :

3. Separating from Other Bad Advisors

Now complicate the model by first allowing bad advisors to be less accurate than
good advisors: % < 7 and % < v < 7g. Also allow the probability of state 1 to
be any 7 € (0,1).

3.1. General Truth-Telling Conditions

In order to deal with a wide range of alternative bad advisors, it is useful to focus
on a narrower question. Suppose we knew the bad advisor’s strategy (wherever it
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comes from). When is truth-telling a best response for the good advisor whatever
the importance of the current decision problem (i.e., in the model of the previous
section, no matter how small z)?

Thus we will write 3, for the probability that the bad advisor announces 1
when the true state is w (in the language of the previous section, 3, = ¢ (1|w)).
For which values of (o, 51, A, ) does the good advisor have a reputational incen-
tive to tell the truth? Clearly, this is a necessary condition for truth telling to be
optimal for all values of z. It will also be sufficient if 3; > fy.

We write T' (A, ) C [0, 1]2 for the set of such truth-telling inducing strategies.

Lemma 2.

[1] Bo>1—1c
[2] B < Ya
AM1-vg)
i< () () sl
Yo — \1-7

Mg _ A1) — l-g
UG(A’YQ‘F(lf)\)(l*ﬁo)) UG(A(177G)+(17)\)@0

The following example can be used to illustrate the shape of T (A, 7). Let

v (A) = — (%) In this case, condition [3] becomes

T()\,?T) = (ﬂo,ﬂl) .

1 —1e T Yo — B Ya
gle = (1—7T> (ﬂo—(l—ﬁc)> = 1—7e

Figure 1 illustrates the shape of this region when 5 = % and 7 = %; figure 2
illustrates the shape of this region when g = % and T = 19—0. In this particular

case, the region is independent of A. But the qualitative properties of this example

generalize. Thus as 7 tends to 1, T (\, 7) becomes very narrow: more generally,
the characterization implies that if (F5,07) € T (A, 7"). As 7" — 0, 57 — ~q; as
ﬂ_n_)laﬂ(?)l_)l_/yG'

3.2. Separating from a Smart Zealot (Revisited)

e Consider again the case from the last section, with v¢ = v = v, but
allowing 7 to take any value (not just %)

Generalizing the analysis of the previous section, one can show that if the good
advisor tells the truth after history (A, 7, z,y), we must have op (1 |\, 7, 2,y) =
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1 and op (1 |\, 7, z,y) > 0. Thus the corresponding (o, 1) satisfy 5 = v +

(1—y)vand By = (1—7)(1—v). Since §; > v and fo < 1 — 7, (fo,01) ¢

T (A, 7). Truth-telling is never optimal for small x. See figures 3 and 4 for the
3

1 and 7 equal to % and 19—0 respectively.

example with v =

3.3. Separating from an Honest Fool

e Suppose Vg < ¢ and the bad advisor always tells the truth.

Then 3y = 1 — g and 31 = yp. In this case, conditions [1] and [2] hold auto-
matically and condition [3] reduces to 7 € [1 — vg,7¢]. Thus the good advisor has
a reputational incentive to tell the truth only if the decision problem is sufficiently

3 and 7 equal to % and

symmetric. See figures 5 and 6 for the example with v = §

9 .
15 respectively.

3.4. Separating from a Foolish Zealot

e Suppose Vg = % and vg > %, and the bad advisor has the biased preferences
of the previous section.

In this case, the bad advisor will announce 1 more often that she will announce
0 but her stupidly introduces some slack in the definition of T" (A, 7).

Proposition 5. Consider the reduced form game where vg (A\) = cvg () for some
¢ > 0. Assume vp = % and g > % Fix \ and w. There exists y* such that if
y < y*, the (A, x,y) game has a truth-telling equilibrium (for all x).

3 1

See figures 7 and 8 for the example with v = 4 and 7 equal to ; and 4

respectively.

3.5. Separating from a Smart Enemy

e In the earlier analysis, the zealot was assumed to have a systematic bias in
his preferences. Consider the alternative case where the decision problem
is symmetric and the bad advisor always wants the exact opposite of the
decision maker. We focus again on the case where 7 = %, with 7¢ = v =

1
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Thus suppose now that ug (a,w) = we (Ja — w|), where we is some strictly
concave function, while the bad advisor’s utility from action a in state w is
up (a,w) = wp (Ja — (1 —w)|). Thus the decision maker (and good advisor) want
action 1 in state 1 and action 0 in state 0, while the bad advisor wants action 0
in state 1 and action 1 in state 0.

This is essentially the case studied by Benabou and Laroque (1982), building
on the perfect signals analysis of Sobel (1985). They consider what happens in
this setting assuming the good advisor always tells the truth (o5 (1) = 1 and
0g (0) = 0), and focussing on equilibria where the bad advisor always behaves
symmetrically (0g (1|A) = 1 — o5 (0|A) = £(A)). They show that there is a
unique monotonic Markov equilibrium within this class with £ () = 0 for all
A> A and £ (A) € (0,1) for all A < A*.

We can verify if it would in fact be optimal for the good advisor to tell the truth
if he cared only about the decision maker’s utility. In the symmetric equilibria
studied by Benabou and Laroque (with 7 = %), the answer is yes. The posterior
reputation in such symmetric equilibria would be

1
A(1,1) = A(0,0) =" = A
(1,1) (0,0) 1+<%)<§(A)+<1—;l)(1—5()\)>)>
A(1,0) = A0, 1)=X = 1 <A

L (52) (60 + (75) 1 =€)

Thus whatever signal is observed, the reputational value of telling the truth
is yug (AT) 4+ (1 — A) vg (A7), while the reputational value of lying is yvg (A7) +
(1 =N vg (AT). So there is always a reputational benefit of telling the truth.
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Appendix A: A Formal Definition of Equilibrium

To characterize equilibrium, write @; (m s, (6g,0p, %)) for the expected util-
ity of an advisor of type [ if she sends message m on observing signal s, given
strategy profile (0, 05, x); and Upa (z |m, (0g, 08, X)) for the expected utility of
an advisor who observes message m.

o 106, 750) = { 1 0 O e i O o |

e cwonn) = { S e o |

N e e

i (110, (70, 05,%)) {iv s (x(m). 1)+ o 8 e, o] (. 1) };
[

and Upy (a|m, (0g,08,x)) = Tlog,08] (M) .upy (a,1) + (1 =T [og,08] (m)) up (a,0).
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Definition 3. (04,05, ) is an equilibrium if for each [ = G| B,

or(s) >0=1€ argmaxus(m|s,(ocg,08,X))
me{0,1}

and oy (s) <1=0¢€ argmaxus(m|s,(oc,08,%));
me{0,1}

and x (m) €argmax Upy (a ’mu (06‘7 oB,X)) -
ac(0,1]

Formally, this reduced form game is equivalent to a psychological game in the
sense of Geanakoplos, Pearce and Stacchetti (1989).

Appendix B: Proofs

Some preliminary notation and results will be useful. Write 4g (g, s) for ex-
pected value of upy, for the good advisor if he has observed signal s and the
decision maker believes the true state is 1 with probability ¢,

e (g,1) = ~vupm(a(g),1)+(1—~)upm(@(qg),0)
and g (¢,0) = (I —7)upam(a(qg),1)+v.upnm (@a(qg),0).

Similarly, write g (q) for expected value of up for the bad advisor if the decision
maker believes the true state is 1 with probability ¢; note that this is independent
of the signal observed by the bad advisor:

ip(q) =us(a(q))-

We will use repeatedly the following properties of ug and up.

Lemma 3. g (q,1) is strictly increasing in q if ¢ € (1 — v,7); tg (q,0) is strictly
decreasing in q if ¢ € (1 —~y,7); tp (q) is strictly decreasing in q if g € (1 —,7).

The following notation will also be useful. Given (op,0¢,X), write II¢ (s) for
the net current expected gain to the type [ advisor choosing message 1, rather
than message 0, when she observes signal s, assuming the decision maker follows
his optimal strategy, i.e., IS (s) = z [tug (T'(1),s) — U (['(0),s)] and TG (s) =
y [t (T (1)) — 1 (T (0))]. Write ITE (s) for the net expected reputational gain to

16



the type I advisor of choosing message 0 rather than 1 when she observes signal
s, i.e.,

R Vr A 0,1 vr A 0,0
) = [—vf(A( i) ] - >[—w<<f\<<173;> ]

- vy (A (0,1 vr (A (0,
I(0) = (1-7) l _UI<(A<(1,R) ] 7 l —vz<(A<(1,()J;) ]

Thus an advisor of type I has a strict incentive to announce 1 when observing
signal s exactly if TI¢ (s) > TIE (s).

PROOF OF LEMMA 1

If the decision maker believes that the probability of state 1 is ¢, his expected
utility from action a is

g-upar (a,1) + (1 — @) upa (a,0).
This maximand is strictly convex in a and uniquely achieves a maximum when
qupy (@,1) + (1 = q) upy (a,0) =0.
PROOF OF PROPOSITION 2.
This will be proved via a pair of lemmas.

Lemma 4. In any equilibrium (0g,0p,X), we must have A (0,1) > A(1,1) and
A(0,0) > A(1,0).

Proof. We will show by contradiction that no other equilibria exist. Recall that
if (0¢, 0B, x) is an equilibrium, x = ¥ [0¢, 0], and that we are assuming (without
loss of generality) that x (1) > x (0).

Case 1. Suppose that A (1,1) > A(0,1) and A (1,0) > A (0,0). Now I1% (s) <
0 and TI (s) > 0 for each s = 0,1, we must have o (0) = o (1) = 1. But now if
0g(0) =06(1)=1,A(1,1) =A(0,1) = A(1,0) = A(0,0) = A, a contradiction.
Butif og (0) # 1 orog (1) # 1, then A (0,1) = A(0,0) = 1, another contradiction.

Thus there is no such equlhbrlum.
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Case 2. Suppose that A(1,1) > A (0,1) and A (1,0) < A (0,0). By definition

of A, we have
dc(1]1) > ¢p(1]1) (3.1)
da(1]0) < ¢p(1]0) (3.2)

Observe first that 1% (1) < I1%(0) and 11 (1) > TI¢ (0) for I = B,G. Thus
for each I, 0, (0) =0 or o7 (1) = 1 This implies four subcases:

(1) If 0 (0) = o5 (0) = 0, then (3.1) implies o5 (1) > op (1), while (3.2)
implies 0 (1) < o5 (1), a contradiction.

(i) f o5 (0) =0 and o (1) = 1, then (3.1) implies 0 (1) > 1, a contradiction.

(iii) If 0 (1) = 1 and 05 (0) = 0, then (3.2) implies 05 (1) = 1 and 04 (0) = 0,
which implies ¢¢ (1|1) > ¢p (1]1), contradicting (3.1).

(iv) If 0 (1) = op(1) = 1, then (3.1) implies o (0) > o5 (0), while (3.2)
implies 0 (0) < 05 (0), a contradiction.

Case 3. Suppose that A (1,1) < A(0,1) and A (1,0) > A (0,0). By definition

of A, we have

¢c (1[1) > ¢p (L[1) (3:3)
¢ (1]0) < ¢p (1 ! ) (34)
) and TI§ (1) = TI%(0), so either o5 (1) = 0 or

In this case, IT& (1) > HE(
OB (O) =1. Thus OB (1 ’1) <

0
¢p(1]0). By (3.3) and (3.4), this implies ¢¢ (1]1) <
¢c (1]0). But now X [0g,05] [1

| > % > X |0g,05][0], a contradiction. B

Lemma 5. In any non-babbling equilibrium, x (1) > x(0), A(0,1) > A(1,1)
and A (0,0) > A(1,0), with one of the latter two inequalities holding as a strict
inequality.

Proof. Lemma 4 implies the two weak inequalities. Suppose both held with
equality. Recall that we have x (1) > x (0) by assumption. If x (1) > x (0), the
bad advisor would have a strict incentive to choose 1 (whatever his signal), leading
to a contradiction. But if x (1) = x (0), we have a babbling equilibrium.

So assume at least one of the weak inequalities is strict. If x (1) = x (0), the
bad advisor would have a strict incentive to choose 0 (whatever his signal), leading
again to a contradiction. W

Lemma 5 proves part [2] of proposition 2. The rest of the proposition is proved

as follows. By lemma 5, TT¥ (s) > 0 for I = G, B and s = 0, 1. Since 11§ (0) < 0,
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we have ¢ (0) = 0, proving part [1] of proposition 2. Now observe that

A(1,1) =

v

— A(1,0)

Now consider three cases.

Case 1: A(0,0) > A(0,1); together with our earlier assumptions and results,
this implies A (0,0) > A (0,1) > A(1,1) > A(1,0) with at least one strict inequal-
ity. Now IE (0) > 0 = TIE (1) > 0, so either 05 (0) = 0 or o5(1) = 1. But

ST ¢5(00) ~ ¢5(01) : . ¢8(00) ~ $5(00)
A(0,0) > A(0,1) implies that ¢g(0‘0) < ¢CB;(0‘1), ie., ¢g(0\1) < ¢g(0\1)‘ But

06 (010) _ (1-N(1-0a(W)+7 _ 1

¢c(01)  y(l-oe()+1-7 ~ 1-7n

Now if o5 (0) = 0, then

¢5(0[0) (-7 -05(1)+~

¢ (0]1) y(1—op(1)+1—7~

which is less than or equal to zggg}?g only if 05 (1) < 05 (1). But this implies
o5 (1lw) < ¢g (1jw) for w = 1,2, a contradiction.

But if 05 (1) =1, then

¢p (0]0) _ v(1—05(0)) _ 7
5500~ T -0s@) 17

which is less than or equal to zggg}?g only if og (1) = 1. This gives our first

class of “truth-telling equilibria” with o5 (0) = 0, 05 (1) =1 and 05 (1) = 1. If
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op (0) =0, we have ¢ (1jw) < ¢ (1jw) for w = 1,2, a contradiction. Now

A(1,1) = — -
() <T> ~0)

A(1,0) =

o eI R PEY

AL = L+ (52 (1 —v)

A(0,0) = (ul) i

and A(0,1) =A(0,0) > A >A(1,1) > A(1,0).
Case 2: A(0,1) > A(0,0) and 05(0) = 0. If o (1) > o (1), we have
o5 (1lw) < ¢ (1jw) for w = 1,2, a contradiction. Thus og (1) < o (1) and

1
A(1,1) = —
)
1
A(1,0) = —~ 70
)
1
A(0,1) = — —
L+ (52) (5E)
1
A(0,0) = — ~
L+ (52) (=)
and A (0,1) > A (0,0) > A > A(1,1) = A(1,0).
Case 3: 05(0) > 0and A (0,1) > A(0,0). The latter requires zggg“gg > 2@8}3,
(1=9) (= 0p (1) +7(1 =0 ©) _ ¢n(00) _ do(00) _ (1=1)(1 =06 (1) +7
YA =)+ 1 =7 1=050) ¢5(01) ¢c(O01) ~y(l-0oec(l))+1-7y

This holds if and only if

-G+ | M= -0a()+9
v(E=H) +1-9 T(1—oc(1)+1-7

1-o5(0)
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& (%ﬁgé;) <1l—o0g(1)

54 O_B<1) > 1—<1—Ug<1>)<1—0'3<0)) |
PROOF OF PROPOSITION 3.

[1] Truth-Telling. By proposition 2 and the definition of a truth telling strategy,
we must have 05 (0) =0, 0¢ (1) =1, 05 (0) = v for some v > 0, 05 (1) =1, and
X = X (O_GJ O_B)'

Under these strategies,

1+(1-=Nv
o = 1-m
) = ST
ALO) = 1+(¥)(1+<1—%)”)7
A(0,1) = 1+<¥1)<1_V),
and A(0,0) = 1+<¥1)(1—1/)

Write g (v) for the utility gain to the bad advisor of announcing 1 (rather than 0)
when his signal is 0, i.e.,

v (5 (M) — i (1= 7)) + 70

+(1=7)vs

gv)=

1+<%>f+<ﬁ>v>}

1
1+(52)1-v)

=)

This expression is decreasing in v, since each term is weakly decreasing in v. Also
g(0) = y(up(y) —up (1 —+)) > 0. Thus there exists exactly one value of v
where either g (¥) = 0 or ¥ = 1 and g (v) > 0. This v thus parameterizes the
unique equilibrium.

Write 7 (A, y) for that unique value of v (for given A and y). Observe that
1] 7 (N y) = 0asy — 0 and [2] 7(A,y) = 1 for all sufficiently large y. Also [3]
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v (A, y) =1 for all A sufficiently close to 1. But what happens for small A? There
are two cases to consider. Either

y(a6 (3) s (=) > vp 1) - 05 0,

in which case U (A, y) = 1 for all sufficiently small A; or

y<@B <%> —p (1 —’7)> <wp[l] —vp[0],

and

1+ () (11 T & [UB O+ @B G) sl _wﬂ

as A — 0. Write

hi (y) = vg' <min {UB [1],v5[0] + ¥ <173 (%) —tp(l— W) })

1 o~
Now gty — e () and #(A.y) = 1as A0,

Now consider the good advisor’s incentive to tell the truth when she observes
signal 1 under strategy profile o (0) =0, 06 (1) = 1,05 (0) =0 (A, y), 05 (1) =1,
and x = X (0g,0p). She will tell the truth if and only if

» g <7+§1+(i)(i)uv();$ #.1) —iig (1= 7,1)

1

e | SEE ey | T v 1+<¥><1+<%>w,y>>} >0,
e [1+(¥)(11§(A,y))}
r 2 i2<)‘7y)
Rl I | el = | el e )

o (i L) — e (1= )]
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Now 7 (A,y) = 1 for all sufficiently large A, so Zy (A\,y) —0as A — 1. As A — 0,
P(\y) — Land (32) (1= 7(\y)) = hs (), s0

v [hp (y)] — ve [0]
(@6 (3.1) =i (1—7,1)]
ve [vg" (min{vs [1),v5 (0] + v (5 (3) — a5 (1= 7)) })] = ve [0]‘

f2 (Auy) -

Asy — 0,7 (A, y) — 0 and thus Ty (A, y) — 0; as y — oo, ¥ (A, y) — 1 and thus

vg [1] — yvg

ey~ (-

o (AR ) 5. 1)

[2] Babbling. This will be proved via a series of lemmas.

iQ <)\7 y) -

Lemma 6. In any non-babbling equilibrium, IIZ (1) < 114 (1) < z [tug (v,1) — e (1 — 7, 1)].
Definition 4. ¢ and ¢p are 6-close if for each w € {0, 1},
L ¢ (Olw) <1< ¢5 (1|w)

Now let f (A, 6) = (1 — v) min {UG (A) —vg <m> VG <m> —vg ()\)}

1+6

<1+6.

Lemma 7. IfTIZ (1) < f (A,§) in some equilibrium, then ¢y and ¢p are §-close.

Proof. Suppose ¢g and ¢p are not 6-close. Then ZZBEng >1406or ¢BE8“8 < 1—+5
for some w. So

R (Yel A 0,1
I (1) = l —UG<(A<(1, R

If Kk > vp (1) —vp(0), let g (A k) = o0; if kK < v (1) —wvp(0), let g(A k) be
the unique value of 6 solving

Y (H(é) (ﬁ)) o (1+(TA1)<1+6>)' -
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Lemma 8. Fix k > 0. If ¢ and ¢ are g (A, k)-close, then

Hﬁ(l)zvl v

Lemma 9. If ¢p and ¢¢ are 6-close, then I" (1) > Wm.

Proof. Write ¢ = 0 (1). Now:

¢c (1) = ¢
¢c (1)0) = (1=7)¢

¢p (1]1)
¢p (1/0)

¢ (1 +6)
(I-=7)¢(1+6)

¢
(1-7)¢

<
<

IAIA

Ao (1[1)+ (1 =N ¢p(1]1)

L) = Mo (L) + (1= X)) ¢p (1]1) + Xpe (1]0) + (1 — A) g5 (1]0)
¢
> A L—COr A=A (1+0)
= Y
v+ A=A+ 1= (149))
> Y
T+t +9)
Now define:
L E SR I CIER RAO)))),

a'G (771> _a'G (1 _771)

Suppose < Z; (A,y). The following claims must hold true of any non-
babbling equilibrium. By lemma 6,

(1) < f (A,min {%,9 (Aa %y (@B (7—1%) ~us (%))) })
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By lemma 7, ¢ and ¢p are

min{ ———, g | A, =
2(1=7)
By lemma 8, TIE (1) < %y <ﬁ3 <—71—

<
2L in lemma 9, T (1) > dp <_L> Thus TT5 (1) > y (aB <ﬁ_> g, <%)> .

contradiction. W

(NSRS
N
TN
)
3y]
TN
2
+ =
N [—=

)= () e

)) But I"(0) % and, setting § =

2
"
N———
|
)
ool
N
N~

PROOF OF PROPOSITION 4

Fix (z*,y*) and consider the following advisor strategy

L (2,y) # (27, )
Oa (8’)\,37;y) - { s, if (a;7y) = (aj*7y*)
L (2,y) # (27, )

and o5 (s|\, 2,y) = { Lif (z,y) = (2%, y")

The best response for the decision maker is

a %) Jf (z,y) # (2%, y%)
a ifg((i:;;) JAf (z,y) = (2%,y%) andm =1 .

a(1—7) 1t (2,9) = (@*,y") and m=0

x(mlAz,y) =

The value function for the good advisor must satisfy vg = T [vg] where

(1—2) [$ia (3.1) + 3ic (3.1) + dava (V)]

Te ve] (A) = Yo (Y1) + 3 (1—7,0)
+e s 1 Ay 1 1 A1—7) 1 1
+oc |37ve <A7+17)\) +3(1=7)ve ()\(177)4»17)\) + 30 ( ﬂ

The value function for the bad advisor must satisfy vg = T [vg] where

(1—¢) |up (%) + 6pup (V)
i () } N }

+= s (355y) + 08 508 (3ts) + 3ve (s

Tp [vp] (A) = {
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Each T} maps the set of strictly non-decreasing continuous functions on [0, 1] con-
tinuously onto itself. By construction, T; (v + ¢) = T} (v) + bc. So by Blackwell’s
contraction mapping theorem, each equation has a unique strictly increasing con-
tinuous fixed point.

Now we must verify optimality. Observe that

€ %(ﬁG (771) — Ug (1_771))

ve (1) —ve (0) < 1—6g | +1 (g (1—7,0) — g (v,0))

and vp (1) —vp (0) < g (v) — tp (1 =7)].
1—6p
Now suppose that each player follows the candidate strategies. Any strategy is
always a best response to babbling. We must check that it is optimal to follow
the proposed strategies when (x,y) = (z*,y*). Observe that the current expected
gains (to both types) from following the proposed strategies are bounded below

(independently of A), i.e.,

m50) = 150 - (35505 <m0

> @BG)—@BG—W)

ey v lEe (ST 1) — e (1= 1)]
and [T (1) = { +(1—7) [(aG Zﬂ;g;go) — i (1= 7,0)]
S {7{@@(%,?—@@(1—%1)] }

Thus we can choose ¢ sufficiently small to ensure optimality. B
PRrROOF OF LEMMA 2

The net reputational gain to the good advisor from announcing 0 (rather than
1) if her signal were 1 is
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AMl—ya)
Ya (A(lw)+(l—3)(l—ﬂl))

_ Ma
Ve Ave+(A-A)4

™G
- mye+(1-T)(1-7a) (
I (m|1) =

— Me

f_ume) %6 e )
e tI-m(1-a) | _,, ( A1-7g) )
¢ \sTarra—wm

The net reputational gain to the good advisor from announcing 0 (rather than 1)
if her signal were 0 is:

A=)
T(1-vg) Ve (A(lﬂc)Jr(lfi)(l*/ﬂ))
7(1-ve)+(1-7)ve

. —v6 (3aresm
II; (m]O) =

T — e e B—
+ ( (1;W)(7G ) ( G A7G+(;(*1>\)(1;/30)
w(1— +(1—m —
WG e\ ~ve (s

Now
T (A7) = {(Bo, B1) : TIE (m |0) > 0 and T1 (m 1) < 0}.
This requires first that
Mo >\(1 a’e)
”G(MG+<1—A><1—ﬂo>> - UG(Ml—vcH(l—A)ﬂo)
e >\(1 —Ye)
a“d“f"(ma+<1—x>ﬂ1> - UG(Ml—%H(l—A)(l—ﬂl))'

Thus fp > 1 - and f; <. B

PrROOF OF PROPOSITION 5

Assume the good advisor tells the truth and the bad advisor announces 1 with
probability p (i.e., p = %03 (1) + %03 (0)). The reputational gain to the bad
advisor of announcing 0 is

1
7T<UB T 1;\)\) T &

(1—m) <UB —_}

hm A\ p) =




Observe that h (7w, A, ) is strictly increasing in p with

1 1
e = o || )
1 1
and h(r. A7) = (1=7) ( () (17%)]_”3 (5 (1—%)])>0
If
b AL = U31<1) — B <1+ %) %)> <ylup(y) —up(1—7)],
_< —7T)UB W

set i1 (7, A\, y) = 1. Otherwise, let i (7, A, y) be the unique solution to

h(m A p) =ylis(y) —ap (1 —7)].
For the good advisor to always have incentive to tell the truth, we must have
1 —7e Yo
< Je(w) =7
Ya — Ya
Vg LG? — Vg — >‘(1*77G) -
where fg (p) = < T ) ( (Avc+(1 A)M) (A(l 1) +(I=N{ M))

_ A M1—va)
L=7/ \ve (A—chr(le;)(l:M))_UG</\(1*—VG)+87/\)M)

Now fo (2 (7, A,0)) = 1 and fg (7 (7, A, y)) is continuously decreasing in y. So for
any given 7 and A, we can choose y* such that fg (@ (7, \,y)) € (%GE, 1} for all
yel0,y] m
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