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A recent comment submitted to Econometrica by Mudit Kapoor and Arkodipta Sarkar
concerns an error in Proposition 1 (i) in Chattopadhyay and Duflo 2004. The source of
the contradiction is not an inconsistency in the model but a failure to understand that
the model must be simplified in cases, and a lack of attention to the boundaries of the
particular case examined in the proof. This note provides a correction and a full proof.

The proof in Chattopadhyay and Duflo is incomplete, and Proposition 1 (i) as stated
is wrong because it fails to understand that the marginal male entrant of the particular
case they examine lies on the boundary of the case. Kapoor and Sarkar offer an alterna-
tive condition to Proposition 1 (i), but their condition also fails to pay attention to the
boundaries of the case, and is also incomplete. The correct condition for Proposition 1
(i) is derived in this note.

1 Statement of Revised Proposition 1 (i)

If wj < µ′, M < µ′ and x̃k ≥ m ≥ x̃j, then no woman can run unopposed if

min
[
µ′,max

[
xM , α

δm + (1− α)µ′ + min[x̄W , µ′ − δw]
(2− α) + (1− α)µ′

]]
≤ 2m−min[x̄W , µ′ − δw].

2 Proof of Revised Proposition 1 (i)

We proceed by finding the most man-friendly woman (ie the highest wj) who is willing
to run unopposed, and then find the most woman-friendly man (ie the lowest wk) who is
willing to enter against this marginal woman. If this marginal man can win against this
marginal woman, then no woman can run unopposed.

2.1 When does a woman "wj" run uncontested?

A woman of type wj runs uncontested iff

−|xj − wj| − δw ≥ −|µ′ − wj|.

Where xj = αwj + (1 − α)µ′, reflecting policy capture by community elites who prefer
policy outcome µ′. This condition can be simplified in two cases.
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Case 1: µ′ ≥ wj. This implies xj ≥ wj, which is why there are only two cases for
this expression. In this case, the expression simplifies to µ′ − xj ≥ δw. The highest
possible value of xj for which a woman runs uncontested is either xj = µ′ − δw or the
upper boundary of the set of xj values to which this case applies. This upper bound
is xW = αW + (1 − α)µ′. Call this upper bound of the set x̄W . Therefore, the most
man-friendly woman who will run is x̃j = min[x̄W , µ′ − δw].

Case 2: µ′ ≤ wj. This implies xj ≤ wj. In this case, the expression simplifies to
xj−µ′ ≥ δw. In this case the highest possible xj value for which a woman runs uncontested
is x̃j = xW . This is not a very useful demarcation though, since the woman is more right-
leaning than the elites in this case anyhow.

Case 2 is not relevant to the situation that Chattopadhyay and Duflo 2004 seeks to
explain, so we will discard it. The remainder of the proof is completed assuming that
wj < µ′. Note that in the algebra that follows, if the calculated value of the marginal
female entrant lies below 0 then no female enters, and if the calculated value for the
marginal male entrant lies above 1 then no male enters. In what follows we assume it is
not the case.

2.2 When does a man "wk" run against a woman "wj"?

A man of type wk runs against a woman of type wj iff

−|xk − wk| − δm ≥ −|xj − wk|

and

|xk −m| ≤ |xj −m|.

The first condition ensures it is worth his while to run and win; the second condition
ensures he will win if he runs. Therefore, even the most man-friendly woman will face
entry from a man iff there exists a wk such that:

−|xk − wk| − δm ≥ −|x̃j − wk|

and

|xk −m| ≤ |x̃j −m|.

That is, if there exists any man wk for whom both of these conditions hold, then he wants
to enter even against the most man-friendly woman, so no woman can run unopposed.

The first of the two conditions can be simplified in four cases as follows.

Case 1: µ′ ≥ wk and x̃j ≥ wk. This implies µ′ ≥ xk ≥ wk. The equation simplifies to
x̃j − xk ≥ δm. This is certainly possible but as it requires wj ≥ µ′ it is not relevant for
Chattopadhyay and Duflo 2004.
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Case 2: µ′ ≥ wk and x̃j ≤ wk. This implies µ′ ≥ xk ≥ wk. The equation simplifies to
2wk − xk − x̃j ≥ δm. This is certainly possible. In this case we must have w̃j ≤ µ′ so this
simplifies to

2wk − αwk − (1− α)µ′ −min[x̄W , µ′ − δw] ≥ δm

(2− α)wk ≥ δm + (1− α)µ′ + min[x̄W , µ′ − δw]

wk ≥
δm + (1− α)µ′ + min[x̄W , µ′ − δw]

(2− α)

This provides an interior lower bound, that is, the most woman-friendly man who will
run against a woman with wj < µ′. Denote the man for whom this holds with equality
w∗k and his implemented policy x∗k. The lower boundary of the set of xk to which this
case applies is xM = αM + (1 − α)µ′. So the most woman-friendly man who enters is
x̃∗k = max[x∗k, xM ]. But note that if this cutoff lies above µ′, no men in this group run
against the most man-friendly woman.

Case 3: µ′ ≤ wk and x̃j ≥ wk. This implies µ′ ≤ xk ≤ wk. This again requires wj ≥ µ′

so it is not relevant.

Case 4: µ′ ≤ wk and x̃j ≤ wk.This implies µ′ ≤ xk ≤ wk. The entry condition simplifies
to xk− x̃j ≥ δm. The smallest such xk, which is the most woman-friendly man who would
still run, is either xk = x̃j + δm or the lower bound of the set of xk to which this case
applies, which is xM = µ′ if M ≤ µ′, or xM = αM + (1 − α)µ′ if M ≥ µ′ . Call this
lower bound of the set xM . Then the most woman-friendly man who runs produces the
outcome x̃k = max[x̃j + δm,xM ].

Since we assumed wj < µ′, only cases 2 and 4 are possible. The original paper discards
case 2 (without making it explicit), and instead works on case 4. As we will see, this is
the source of the original problem: both case 2 and 4 should be examined for Proposition
1 (i). We proceed in case 4, and return to case 2 later.

The second condition for male entry requires that the man producing x̃k only runs
against the woman producing x̃j if he can win. We are in a case where x̃k ≥ µ′ ≥ x̃j.
Chattopadhyay and Duflo 2004 assume µ′ ≥ m so we know x̃k ≥ m, but we may have m
larger or smaller than x̃j. Suppose m ≥ x̃j. Then the man in question will always run
against the woman iff

x̃k −m ≤ m− x̃j

which "simplifies" to:

2m ≥ max[min[x̄W , µ′ − δw] + δm,xM ]+ min[x̄W , µ′ − δw].
Now, we show that the supposed interior male cutoff x̃k = x̃j + δm for this case is not

"interior" at all, and should be discarded. First, consider the highest possible value for
the marginal woman, x̃j = µ′ − δw (if she hits the boundary of her case, she lies below
this value). Substituting this highest possible value into the expression for the interior
marginal man x̃k = x̃j+δm produces the implication that x̃k = µ′−δw+δw. Since δw > δm
this implies that µ′ ≥ x̃k. Hence, this "interior" marginal man must lie below µ′: but then
he is not in the set of men to whom this case applies, the rules derived for case 4 do not
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apply to him. This tells us that any man with wk > µ′ enters against any woman with
wj < µ′ for sure in the model: the marginal male entrant for case 4 is on the boundary,
µ′.

What is the intuition for why the most woman-friendly man who runs is always found
at or below µ′ in the case where the most man-friendly woman is below µ′? This stems
from the fact that δm < δw. If it is worth it for a woman to enter and win against the
default outcome of µ′, she must be very far from µ′, because it costs her a lot to run. But
since she is so far from µ′, she must be relatively extreme (geared towards women) in her
position, so therefore it is certainly worth it for some man just below µ′ to enter against
her, as long as he can win - both because he can get a final outcome very close to his
actual preference, and because it costs him less to run in the first place.

We now derive the true, global cutoff condition for the case where wj < µ′. Since we
know we hit the boundary of case 4 for the male entry condition, we now need to examine
case 2 from the man’s entry condition derived earlier, which encompasses men for whom
wk < µ′. Notice that we must have M ≤ µ′ for this to be a relevant case. If we have this,
then the true cutoff is the x̃∗k derived in case 2: the most woman-friendly man who runs
is either M or δm+(1−α)µ′+min[ ¯xW ,µ′−δw]

(2−α) , whichever is larger. But this had better be below
µ′ or else we hit the upper bound of the case, and since we know from case 4 that the
man at µ′ enters, the cutoff becomes µ′. Therefore, the global cutoff condition should be:

x̃k = min
[
µ′,max

[
xM , α

δm + (1− α)µ′ + min[x̄W , µ′ − δw]
(2− α) + (1− α)µ′

]]
.

From this cutoff, one can proceed to derive the conditions under which this marginal
male entrant can win, and therefore, the conditions under which no woman can run
unopposed, as we did before. He can win if

|x̃k −m| ≤ |x̃j −m|.

Notice that there are three possible cases here, even when we confine ourselves to the
world in which w̃j ≤ µ′. We know xk ≥ x̃j since we are in case 2. They might both be
above m, both be below m, or we may have x̃k ≥ m ≥ x̃j. Simplifying in each case leads
to a condition under which no woman can enter unopposed, for each case. The third case
is the most interesting, so we will proceed with case 3. The condition becomes

x̃k −m ≤ m− x̃j

which is fully written out as

min
[
µ′,max

[
xM , α

δm + (1− α)µ′ + min[x̄W , µ′ − δw]
(2− α) + (1− α)µ′

]]
≤ 2m−min[x̄W , µ′ − δw].

As mentioned previously, it is also necessary for the calculated value for the marginal
female entrant to lie above zero, otherwise no woman will enter even if the above condition
does not hold.
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