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Abstract

We study the optimal design of unemployment insurance for workers sam-

pling job opportunities over time. We focus on the optimal timing of benefits

and the desirability of allowing workers to freely access a riskless asset. When

workers have constant absolute risk aversion preferences it is optimal to use a

very simple policy: a constant benefit during unemployment, a constant tax

during employment that does not depend on the duration of the spell, and

free access to savings using a riskless asset. Away from this benchmark, for

constant relative risk aversion preferences, the welfare gains of more elabo-

rate policies are minuscule. Our results highlight two largely distinct roles for

policy toward the unemployed: (a) ensuring workers have sufficient liquidity

to smooth their consumption; and (b) providing unemployment benefits that

serve as insurance against the uncertain duration of unemployment spells.

tion and the Sloan Foundation. Werning is grateful for the hospitality from the Federal Reserve
Bank of Minneapolis during which this paper was completed.



Section 1: Introduction Back 3

1. Introduction

There is wide variation in the duration of unemployment benefits across OECD

countries (Figure 1). In Italy, the United Kingdom, and the United States, benefits

last for six months. In Germany benefits lapse after one year and France after five

years. In Belgium they last forever. Which country has the right policy?

A standard argument for terminating benefits after a few quarters is that extend-

ing the duration of benefits lengthens the duration of jobless spells (Katz and Meyer,

1990). But benefits also provide insurance and help workers maintain smooth con-

sumption while unemployed (Gruber, 1997). Determining which policy is best re-

quires a dynamic model of optimal unemployment insurance. Shavell and Weiss

(1979) and Hopenhayn and Nicolini (1997) develop such models and show that

benefits should optimally decline during a jobless spell. Many economists have in-

terpreted these results as broadly supportive of the Italian, British, and American

version of unemployment insurance. But they hinge on some subtle assumptions,

notably a restriction that the unemployed can neither borrow nor save and so con-
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sume their benefits in each period. This means that unemployment benefits play a

dual role: they insure workers against uncertainty in the prospect of finding a job

and they provide workers with the ability to smooth consumption while unemployed.

In this paper, we reexamine the optimal timing of benefits, distinguishing the

two roles by allowing the worker to borrow and save. Our main conclusion is that

when workers have sufficient liquidity, in either assets or capacity to borrow, a

constant benefit schedule of unlimited duration is optimal or nearly optimal.1 The

constant benefit schedule insures against unemployment risk, while workers’ ability

to dissave or borrow allows them to avoid temporary drops in consumption.

Our results suggest two conceptually distinct roles for policy toward the unem-

ployed. First, ensuring workers have sufficient liquidity to smooth their consump-

tion; and second, providing constant unemployment benefits that serve as insurance

against the uncertain duration of unemployment spells. This dichotomy is consis-

1This does not necessarily imply that the Belgian policy is optimal. Policies differ along other
dimensions, notably in the maximum yearly benefit; see OECD Benefits and Wages 2002, Table
2.2. This paper focuses on the optimal duration of benefits. In ongoing work for a separate paper
we examine the determinants of the optimal level.
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tent with the spirit of Feldstein and Altman’s (1998) recent policy proposal for

unemployment insurance savings accounts (see also Feldstein, 2005).

We represent the unemployed worker’s situation using McCall’s (1970) model of

sequential job search. Each period, a risk-averse, infinitely-lived unemployed worker

gets a wage offer from a known distribution. If she accepts the offer, she keeps the

job at a constant wage forever. If she rejects it, she searches again the following

period.

Our main purpose is to compare two unemployment insurance policies. We

begin by considering a simple insurance policy, constant benefits, where the worker

receives a constant benefit while she is unemployed and pays a constant tax once

she is employed. The worker can borrow and lend using a riskless bond. We

show that the worker adopts a constant reservation wage although her assets and

consumption decline during a jobless spell. The reservation wage is increasing in

both the unemployment benefit and the employment tax, a form of moral hazard.

An insurance agency sets the level of benefits and taxes to minimize the cost of

providing the worker with a given level of utility.
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We then consider optimal unemployment insurance. An insurance agency dic-

tates a duration-dependent consumption level for the unemployed, funded by an

employment tax that depends on the length of the jobless spell. The worker has

no access to capital markets and so must consume her after-tax income in each

period. Absent direct monitoring of wage offers or randomization schemes, this is

the best insurance system possible. The path of unemployment consumption and

employment taxes determines the worker’s reservation wage, which the insurance

agency cannot directly control. It sets this path to minimize the cost of providing

the worker with a given level of utility.

Our main result is that with Constant Absolute Risk Aversion (CARA) pref-

erences and no lower bound on consumption, constant benefits and optimal unem-

ployment insurance are equivalent. That is, the cost of providing the worker with

a given level of utility is the same, her reservation wage is the same, and the path

of her consumption is the same under both insurance systems. In both cases con-

sumption falls by a constant amount each period that the worker is unemployed,

both during and after the unemployment spell. When the worker can borrow and
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save, this is consistent with a constant benefit and tax.

Our result that the optimal unemployment insurance can do no better than

constant benefits with borrowing and savings contrasts with a large literature on

the need for savings constraints in dynamic moral hazard models.2 Rogerson (1985)

considers an environment in which a risk-averse worker must make a hidden effort

decision that affects her risk-neutral employer’s profits. He proves that optimal

insurance is characterized by an “inverse Euler equation,”

1

u′(ct)
= Et

(

1

β(1 + r)u′(ct+1)

)

,

where Et is the expectation operator conditional on information available at date t.

2A recent example is Golosov, Kocherlakota and Tsyvinski (2003), who emphasize that capital
taxation may discourage saving. Allen (1985) and Cole and Kocherlakota (2001) provide a partic-
ularly striking example of the cost of unobserved savings in a dynamic economy with asymmetric
information. They prove that if a worker privately observes her income and has access to a hidden
saving technology, then no insurance is possible.
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In particular, since the function “1/x” is convex,

u′(ct) < Etβ(1 + r)u′(ct+1).

An individual facing this path of consumption would consume less today and more

tomorrow and hence is “savings-constrained” by optimal insurance. In contrast, in

our model a worker confronted with the optimal unemployment insurance policy

satisfies this Euler condition with equality.

We also explore optimal insurance with Constant Relative Risk Aversion (CRRA)

preferences. We do this for two reasons. First, CRRA preferences are theoretically

more appealing than CARA preferences. We want to explore the robustness of our

findings to this assumption. And second, this introduces a nonnegativity constraint

on consumption that limits a worker’s debt to the amount that she can repay even

in the worst possible state of the world, Aiyagari’s (1994) natural borrowing limit.

We highlight an interesting interaction between a worker’s ability to borrow and

optimal insurance.
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The perfect equivalence between optimal unemployment insurance and constant

benefits breaks down with CRRA preferences, but we find that our results with

CARA provide an important benchmark. As in the CARA case, optimal unemploy-

ment insurance dictates a declining path of consumption for unemployed workers

and an increasing tax upon reemployment. However, the implicit subsidy to unem-

ployment, the amount that a worker’s expected lifetime transfer from the insurance

agency rises if she stays unemployed for an additional period, increases very slowly

during a jobless spell.

By its very definition, constant benefits are always at least as costly as optimal

insurance. But if the worker has enough liquidity so as to have a minimal chance

of approaching any lower bound on assets, the additional cost of constant benefits

is minuscule, less than 10−7 weeks (or about 0.01 seconds) of income in our lead-

ing example. The difference between the optimal time-varying and time-invariant

subsidy is also very small.

If the worker is near her debt limit, the difference between constant benefits and

optimal unemployment insurance is larger. This is because benefits are forced to
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play the dual role of providing insurance and smoothing consumption. However,

using benefits to create liquidity in this indirect way is likely to be less efficient than

measures designed to address the liquidity problem directly.

The general message that emerges from our model is that unemployment insur-

ance policy should be simple—a constant benefit and tax, combined with measures

to ensure that workers have the liquidity to maintain their consumption level during

a jobless spell. Our intuition for these results is the following. With CARA util-

ity the fall in assets and consumption that occurs during an unemployment spell

does not affect attitudes toward risk; as a consequence, the optimal unemployment

subsidy is constant. With CRRA utility, the worker becomes more risk averse

as consumption falls; this explains why the optimal subsidy increases over time.

However, this wealth effect is small during a typical, or even relatively prolonged,

unemployment spell provided the worker is able to smooth her consumption.

Before proceeding, we note that our use of a sequential search model departs

from Hopenhayn and Nicolini (1997) and many others, which assumes that there is
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only a job search effort decision.3 There are three reasons for this modeling choice.

First, our model produces stark results on optimal policy in a straightforward way,

which we believe is intrinsically useful. On the other hand, the sequential search

model is not critical for these results. Indeed, the paper most closely related to

ours is Werning (2002), which introduces hidden borrowing and savings into the

Hopenhayn and Nicolini (1997) search effort model, and some of his results are

analogous to ones we report here. For example, he proves that constant benefits

and taxes are optimal under CARA preferences if the cost of search is monetary.

Despite this, and in contrast to our results here, in Werning (2002) constant benefits

are not equivalent to optimal unemployment insurance, even with CARA utility,

since it is always desirable to exclude the worker from the asset market.

Second, the sequential search model is empirically relevant. Starting with the

work of Feldstein and Poterba (1984), a number of authors have documented that

3Shavell and Weiss (1979) allow for both hidden search effort and hidden wage draws. See
also exercise 21.3 in Ljungqvist and Sargent (2004). However, both of these models assume that
employed workers cannot be taxed and neither examines optimal benefits when workers have access
to liquidity.
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an increase in unemployment benefits raises workers’ reservation wage and conse-

quently reduces the rate at which they find jobs. The sequential search model is

a natural one for thinking about this fact. Third, the sequential search model is

the backbone of most research on equilibrium unemployment. At the heart of the

Lucas and Prescott (1974) equilibrium search model and of versions of the Pissarides

(1985) matching model with heterogeneous firms are individual sequential search

problems. More recently, Ljungqvist and Sargent (1998) examine a large economy

in which each individual engages in sequential job search from an exogenous wage

distribution.

This paper proceeds as follows. Section 2 describes the model’s environment

and the two policies we consider. Section 3 then establishes the equivalence be-

tween the two systems under CARA preferences. Section 4 quantitatively evaluates

optimal unemployment insurance and optimal constant benefits with CRRA prefer-

ences, highlighting the relationship between unemployment insurance and liquidity.

Section 5 concludes.
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2. Two Policies for the Unemployed

We begin describing the common physical environment of the model. We then

discuss the two policies we consider, constant benefits and optimal unemployment

insurance.

2.1. The Unemployed Worker

There is a single risk averse worker who maximizes the expected present value of

utility from consumption,

E−1

∞
∑

t=0

βtu(ct),

where β < 1 represents the discount factor and u(c) is the increasing, concave period

utility function.

At the start of each period, a worker can be employed at a wage w or unemployed.

A worker employed at w produces w units of the consumption good in each period;

she never leaves her job. An unemployed worker receives a single independent wage
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draw from the cumulative distribution function F .4 Let w ≥ 0 denote the lower

bound of the wage distribution. The worker observes the wage and decides whether

to accept or reject it. If she accepts w, she is employed and produces w units of

the consumption good in the current and all future periods. If she rejects w, she

produces nothing and is unemployed at the start of the next period. In either case,

the worker decides how much to consume at the end of the period, after observing

the wage draw. The worker cannot recall past wage offers.

We assume that an unemployment agency only observes whether the worker

is employed or unemployed. In particular, it does not observe the worker’s wage,

even after she decides to take a job.5 The objective of the unemployment insurance

4We assume that F is continuous and has finite expectation and that there is some chance of
drawing a positive wage, so F (w) < 1 for some w > 0.

5If the wage were observable, an unemployment insurance agency could tax employed workers
100 percent and redistribute the proceeds as a lump-sum transfer. Workers would be indifferent
about taking a job and hence would follow any instructions on which wages to accept or reject. This
makes it feasible to obtain the first best, complete insurance with the maximum possible income.
Private information is a simple way to prevent the first best, but other modeling assumptions
could also make the first best unattainable, e.g. moral hazard among employed workers.
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agency is to minimize the cost of providing the worker with a given level of utility.

We assume costs are discounted at rate r = β−1 − 1.

2.2. Policy I: Constant Benefits

The policy we call constant benefits is defined by a constant unemployment benefit

b̄, a constant employment tax τ̄ , and perfect access to a riskless asset with net return

r = β−1 − 1, subject to a no-Ponzi-game condition.6

Since the worker’s problem is stationary we present it recursively. Start by

considering a worker who is employed at wage w and has assets a with budget

constraint a′ = (1 + r)a + w − τ̄ − c. Since β(1 + r) = 1, she consumes her after

tax-income plus the interest on her assets ce(a,w) = ra + w − τ̄ , so that assets are

6That is, debt must grow slower than the interest rate, limt→∞(1 + r)−tat ≥ 0, with proba-
bility one, where at denote asset holdings. Together with the sequence of intertemporal budget
constraints this is equivalent to imposing a present-value lifetime budget constraint, with proba-
bility one.
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kept constant, a′ = a. This means that her lifetime utility is

Ve(a,w; τ̄) =
u(ra + w − τ̄)

1 − β
. (1)

Next consider an unemployed worker with assets a and let Vu(a; b̄, τ̄) denote her

expected lifetime utility, given policy parameters b̄ and τ̄ . This must satisfy the

Bellman equation

Vu(a; b̄, τ̄) =

∫ ∞

w

max

{

max
c

(

u(c) + βVu(a′; b̄, τ̄)
)

,
u(ra + w − τ̄)

1 − β

}

dF (w), (2)

where a′ = (1+ r)a+ b̄− c. An unemployed worker chooses whether to accept a job

or not. If she does take the job, her utility is given by Ve(a,w; τ̄) in equation (1).

Otherwise, she collects unemployment benefits b̄, consumes c and saves a′ in the

current period, and remains unemployed into the next period, obtaining expected

continuation utility Vu(a′; b̄, τ̄).

The solution to the Bellman equation defines the worker’s unemployment con-
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sumption cu(a), reservation wage w̄(a), and next period’s assets a′(a), conditional

on this period’s assets. Given these objects, the cost of the unemployment insurance

system is defined recursively by

S(a; b̄, τ̄) =

(

b̄ +
S(a′(a); b̄, τ̄)

1 + r

)

F (w̄(a)) −
(1 + r)τ̄

(

1 − F (w̄(a))
)

r
. (3)

A worker with assets a fails to find a job with probability F (w̄(a)). In this event,

the cost of the unemployment insurance system is the unemployment benefit b̄ plus

the discounted continuation cost is S(a′). If she finds a job, the present value of her

tax payments is (1+r)τ̄
r

.

An unemployment insurance agency chooses b̄ and τ̄ to maximize the worker’s

utility given some available resources and an initial asset level. Equivalently, we

consider the dual of minimizing the total resource cost of delivering a certain

utility for the worker. The optimal constant benefit policy solves Cc(v0, a) ≡

minb̄,τ̄ S(a; b̄, τ̄) + (1 + r)a subject to Vu(a; b̄, τ̄) = v0.

Since there are no ad hoc constraints on borrowing, a standard Ricardian equiv-
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alence argument implies that: V (a; b̄, τ̄) = V (a+x; b̄−rx, τ̄ +rx). The same is true

with total cost, so it follows that Cc(v0, a) is independent of a. Abusing notation

we write Cc(v0).

2.3. Policy II: Optimal Unemployment Insurance

Under optimal unemployment insurance, a worker who is unemployed in period t

consumes bt, while a worker who finds a job in period t pays a tax τt, depending

on when she finds a job, for the remainder of her life. One can conceive of more

complicated insurance policies where the agency asks the worker to report her wage

draws, advises her on whether to take the job, and makes payments conditional

on the worker’s entire history of reports. That is, one can model unemployment

insurance as a revelation mechanism in a principal-agent problem. We prove in

Appendix A that the policy we consider here does as well as any deterministic

mechanism as long as absolute risk aversion is non-increasing.

Given {bt} and {τt}, consider a worker who chooses a sequence of reservation



Section 2: Two Policies for the Unemployed Back 19

wages {w̄t}. Her lifetime utility is

U
(

{w̄t, bt, τt}
)

=

∞
∑

t=0

βt

(

t−1
∏

s=0

F (w̄s)

)

(

u(bt)F (w̄t) +

∫ ∞

w̄t

u(w − τt)

1 − β
dF (w)

)

(4)

The worker is unemployed at the start of period t with probability
∏t−1

s=0 F (w̄s). If

she draws a wage below w̄t, she rejects it and her period utility is u(bt). If she draws

a wage above w̄t, she takes the job and gets utility u(w − τt) each period, forever.

Now consider an unemployment insurance agency that sets the sequence of un-

employment consumption and employment taxes {bt, τt} to minimize the cost of

providing the worker with utility v0:

C∗(v0) ≡ min
{w̄t,bt,τt}

∞
∑

t=0

(1+ r)−t

(

t−1
∏

s=0

F (w̄s)

)

(

btF (w̄t) −
1 + r

r
τt(1 − F (w̄t))

)

, (5)

subject to two constraints. First, the worker’s utility must equal v0 if she uses the

recommended reservation wage sequence, v0 = U
(

{w̄t, bt, τt}
)

. And second, she
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must do at least as well using the recommended reservation wage sequence as any

other sequence { ˆ̄wt}, U
(

{w̄t, bt, τt}
)

≥ U
(

{ ˆ̄wt, bt, τt}
)

. That is, the agency recog-

nizes that the worker will choose her reservation wage sequence {w̄t} to maximize

her utility given {bt, τt}. The solution to this problem describes optimal unemploy-

ment benefits.

It is useful to express this problem recursively. The cost function defined above

must solve the Bellman equation

C∗(v) = min
w̄,b,v′,τ

((

b +
C∗(v′)

1 + r

)

F (w̄) −
1 + r

r
τ(1 − F (w̄))

)

(6)

subject to

v = (u(b) + βv′)F (w̄) +

∫ ∞

w̄

u(w − τ)

1 − β
dF (w) (7)

u(b) + βv′ =
u(w̄ − τ)

1 − β
. (8)
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Moreover, the optimal sequence {w̄t, bt, τt} must be generated by the Bellman equa-

tion’s policy functions.

An unemployed worker starts the period with some promised utility v. The

agency chooses consumption for the unemployed b, the tax τ it will collect on workers

who become employed in the current period, the worker’s continuation utility if

she remains unemployed v′, and the reservation wage w̄ in order to minimize its

cost. If the worker gets an offer below the reservation wage then the cost is the

unemployment consumption b plus the discounted cost of delivering continuation

utility v′ in the next period. If instead the worker finds a job above the reservation

wage then the agency’s costs are reduced by the present value of taxes. Equation (7)

imposes that the policy must deliver utility v to the worker. Finally, equation (8)

is the incentive constraint, which incorporates the fact that the worker sets her

reservation wage at the point of indifference between accepting and rejecting the

wage.
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3. Equivalence for a Benchmark: CARA utility

There are two disadvantages to constant benefits relative to optimal unemployment

insurance. First, there is a restriction on the time path of unemployment benefits

and taxes, so bt and τt are constant. Second, the planner does not directly control

the worker’s consumption and so is constrained by her savings choices. This can

be thought of as an additional dimension of moral hazard. In general, constant

benefits are more costly than optimal unemployment insurance: Cc(v) ≥ C∗(v);

however, in this section we prove analytically that constant benefits achieve the same

outcome as optimal unemployment insurance for the case with CARA preferences,

u(c) = − exp(−ρc) with c ∈ R. A key feature is that there is no limit on the

amount of debt that workers can accrue and all workers have the same attitude

towards lotteries over future wages, which makes the model particularly tractable.

We later show that these results provide a good benchmark for other preference

specifications.
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For the results in this section it is convenient to define

CE(w̄) ≡ u−1

(
∫ ∞

w

u
(

max{w̄, w}
)

dF (w)

)

. (9)

the certainty equivalent for a worker of a lottery offering the maximum of w̄ and

w ∼ F . The CARA utility function has a convenient properties that we exploit

throughout this section, u(c1 + c2) = −u(c1)u(c2) for any c1 and c2.

3.1. Constant Benefits

We characterize constant benefits in two steps. First, we characterize individual

behavior given unemployment benefits b̄, employment taxes τ̄ , and assets a. Then

we discuss how to choose these parameters optimally. It is convenient to define the

net benefit or unemployment subsidy by B̄ ≡ b̄ + τ̄ .

The first step follows from solving the Bellman equation (2).

Proposition 1 Assume CARA preferences. The reservation wage, consumption
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and utility of the unemployed satisfy

(1 + r)w̄ = CE(w̄) + rB̄. (10)

cu(a) = ra + w̄ − τ̄ (11)

Vu(a) =
u(ra − τ̄ + CE(w̄))

1 − β
(12)

Proof. In Appendix B.

Equation (10) generalizes a standard equation for a risk-neutral worker’s reser-

vation wage, e.g. equation (6.3.3) in Ljungqvist and Sargent (2004), to an environ-

ment with risk aversion and savings. It can be reexpressed as the condition that a

worker is indifferent between accepting her net wage w̄ − τ̄ today and rejecting it,

getting her unemployment benefit today, and then earning the certainty equivalent

CE(w̄) − τ̄ thereafter:
w̄ − τ̄

1 − β
= b̄ + β

CE(w̄) − τ̄

1 − β
.

Equation (10) indicates that the reservation wage w̄ is increasing in the net
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unemployment subsidy B̄. This is the essence of the moral hazard problem in our

model—the more one tries to protect the worker against unemployment by raising

unemployment benefits and funding the benefits by an employment tax, the more

selective she becomes. The equation also shows that a worker’s assets a do not

affect her reservation wage, so it is constant during a spell of unemployment.

Consumption in equation (11) has a permanent income form with a constant

precautionary savings component. Assets fall by w̄ − B̄ > 0 as long as there is

some chance of getting a wage in excess of the unemployment subsidy, F (B̄) < 1.7

Consumption falls by CE(w̄)− w̄ each period that the worker remains unemployed.

Unemployed workers face uncertainty: a wage draw above CE(w̄) is good news

leading to an increase in consumption while a wage draw below CE(w̄) is bad news

leading to a decline in consumption.

The next step is to minimize the cost of providing the worker with utility v0.

7Substitute equation (11) into the unemployed worker’s budget constraint to get a′ = a+B̄−w̄.
If w̄ ≤ B̄, condition (10) implies w̄ ≥ CE(w̄). But the definition of the certainty equivalent (9)
implies this is possible only if F (w̄) = 1, a contradiction.
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Using the result that the reservation wage is constant, equation (3) becomes

S(a; b̄, τ̄) =
1 + r

r

(

rb̄F (w̄) − (1 + r)τ̄(1 − F (w̄))

1 + r − F (w̄)

)

. (13)

which is independent of a. Optimal constant benefit policy minimizes S(a; b̄, τ̄) +

(1 + r)a subject to (10) and (12).

Proposition 2 Assume CARA preferences. Then the optimal constant benefits

policy is independent of v0. The reservation wage satisfies w̄∗ ∈ arg maxw̄ Φ(w̄)

where

Φ(w̄) ≡
CE(w̄) − w̄F (w̄)

1 + r − F (w̄)
. (14)

and b̄ and τ̄ are then determined by equation (10) and (12). The minimum cost is

Cc(v0) =
1 + r

r

(

u−1((1 − β)v0) − (1 + r)Φ(w̄∗)
)

, (15)

independent of a.
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Proof. Use equations (10) and (12) to solve for b̄ and τ̄ as functions of w̄ and

v = Vu(a; b̄, τ̄). Substituting into the cost (13) delivers the desired result.

Our next result characterizes the worker’s allocation given optimal policy. We

take current unemployment utility v as a state variable, express the allocation as a

function of v, and describe the evolution of v.

Proposition 3 Assume CARA preferences. Let v denote the utility promised to the

unemployed at the beginning of a period. Then if the agent remains unemployed,

she consumes

cu(v) = w̄∗ − CE(w̄∗) + u−1
(

(1 − β)v
)

(16)

and her utility evolves to

v′(v) = −u(w̄∗ − CE(w̄∗))v. (17)

If she accepts a job at wage w, she forever after consumes

ce(v, w) = w − CE(w̄∗) + u−1
(

(1 − β)v
)

. (18)
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Proof. This follows directly by changing variables from a to v = Vu(a; b̄, τ̄) using

equations (11)–(12), ce(a,w) = ra + w − τ̄ , and the budget constraint a′ = (1 +

r)a + b − c.

This proposition will be useful when comparing constant benefits with optimal

unemployment insurance, which we turn to now.

3.2. Optimal Unemployment Insurance

We characterize optimal unemployment insurance using the Bellman equation (6)–

(8). To do so, it is convenient to first deduce the shape of the cost function directly

from the sequence problem.

Lemma 1 Assume CARA preferences. The cost function satisfies

C∗(v0) =
1 + r

r
u−1((1 − β)v0) + C∗

(

u(0)

1 − β

)

. (19)

Moreover, let {w̄∗
t , b∗t , τ

∗
t } denote the optimum for initial promised utility u(0)/(1−
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β). Then {w̄∗
t , b∗t + x, τ∗

t − x} with x ≡ u−1((1 − β)v0) is optimal for any other

initial promise v0.

Proof. Let b̂t ≡ bt + x and τ̂t ≡ τt − x for all t. Use equation (4) and CARA

preferences to show that adding a constant x to unemployment consumption in

each period and subtracting the same constant x from the employment tax simply

multiplies lifetime utility by the positive constant −u(x), that is U
(

{w̄t, bt, τt}
)

=

−u(x)U
(

{w̄, b̂, τ̂}
)

. The result follows immediately.

The optimal path for consumption shifts in parallel with promised utility, while

the path for the reservation wage is unchanged. The cost function reflects these

two features. Indeed, since promised utility is a state variable for the problem,

the lemma implies that the optimal reservation wage path will be constant. These

results are implications of the absence of wealth effects with CARA preferences.

To solve the agency’s problem further, we substitute the cost function from (19)

into (6) and use the incentive constraint (8) to eliminate the employment tax τ .
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The Bellman equation at v = u(0)/(1 − β) then becomes

C∗
(

u(0)

1 − β

)

= min
w̄,b,v′

((

b +
u−1((1 − β)v′)

r
+

1

1 + r
C∗
(

u(0)

1 − β

))

F (w̄)

−
1 + r

r

(

w̄ − u−1
(

(1 − β)(u(b) + βv′)
)

)

(1 − F (w̄))

)

(20)

subject to
u(0)

1 − β
= −(u(b) + βv′)u(CE(w̄) − w̄). (21)

The solution to this cost minimization problem must solve the subproblem of

minimizing the cost b+u−1((1−β)v′)/r of providing a given level of utility u(b)+βv′

to those remaining unemployed. The first order condition for this problem yields

(1 − β)v′ = u(b) (22)
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or equivalently u(b) + βv′ = u(b)/(1 − β). The promise keeping constraint (21) is

then equivalent to b = w̄ − CE(w̄). Substitute these conditions into the Bellman

equation to eliminate b and v′, and solve for C∗(u(0)/(1 − β)) to obtain

C∗
(

u(0)

1 − β

)

=
(1 + r)2

r
min

w̄

F (w̄)w̄ − CE(w̄)

1 + r − F (w̄)
= −

(1 + r)2

r
max

w̄
Φ(w̄), (23)

where Φ(w̄) is defined in by equation (14).

The optimal reservation wage w̄∗ is independent of promised utility and hence

constant over time. Substituting equation (23) into equation (19) proves that the

cost to the agency of providing a worker with utility v is identical to the cost with

constant benefits Cc(v) in equation (15).

Once we have found the optimal reservation wage w̄∗, the associated unemploy-

ment consumption, employment tax and continuation utility fall out using equa-

tions (7), (8), and (22) along with Lemma 1. The next proposition summarizes the

main result of this section.
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Proposition 4 Assume CARA preferences. Under optimal unemployment insur-

ance, the reservation wage is constant over time and maximizes Φ(w̄), given by

(14). If an agent has expected utility v and remains unemployed, she consumes cu(v)

(equation 16) and has continuation utility v′(v) (equation 17). If she accepts a job

at wage w, she consumes ce(v, w) (equation 18) forever. This is the same allocation

as under an optimal constant benefit and the cost is the same, Cc(v0) = C∗(v0).

Thus, when the worker can borrow and lend at the same rate as the agency, a

very simple policy attains the same allocation as optimal unemployment insurance.

Of course, Ricardian equivalence implies that the timing of transfers is not pinned

down, only the net subsidy to unemployment. If a worker takes a job in period t, she

must pay taxes equal to (1+r)τt

r
in present value terms. If she remains unemployed

for one more period, she receives a benefit bt and then pays taxes τt+1

r
in present

value terms. The sum of these is the unemployment subsidy, a measure of insurance:

Bt ≡ bt +
(1 + r)τt

r
−

τt+1

r
(24)
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Using bt = cu(vt) and τt = w − ce(vt, w) with equations (16)–(18), we find that

Bt = ((1 + r)w̄∗ −CE(w̄))/r. The unemployment subsidy is constant and the same

as B̄ in the problem with constant benefits, given by equation (10).

At the other end of the spectrum from Ricardian equivalence, imagine a worker

who can neither borrow nor save and so lives hand-to-mouth consuming current

income. In this extreme case, benefits and taxes are uniquely pinned down, as in

Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997). One interpretation

of this extreme case is that it calls for decreasing benefits and increasing taxes.

However, it is equivalent to think of the insurance agency simultaneously lending to

the worker and providing her with a constant unemployment subsidy. Conceptually,

even in this case, it remains useful to distinguish between these two components of

policy.
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4. Liquidity and Wealth Effects: CRRA utility

The sharp closed form results obtained so far were derived under an assumption

of CARA preferences and in particular allowed consumption to be negative. We

now turn to workers with constant relative risk aversion (CRRA) preferences with

nonnegative constraint on consumption. Let σ > 0 denote the coefficient of relative

risk aversion. Then the period utility function is u(c) = c1−σ

1−σ
for σ 6= 1, with

u(c) = log(c) corresponding to risk aversion of one.

We again consider our two alternative policies: optimal unemployment insurance

and constant benefits. The equivalence between these two policies breaks down with

CRRA preferences. Nevertheless, we find little welfare gain in moving from constant

benefits to optimal unemployment insurance. Moreover, we find that the optimal

policy and allocations obtained analytically with CARA provide an excellent ap-

proximation for our CRRA specifications. For both reasons, we conclude that the

CARA case is indeed a very useful benchmark.
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4.1. Optimal Unemployment Insurance

Optimal unemployment insurance solves the Bellman equation (6)–(8). The form of

the utility function is different with CRRA preferences than with CARA preferences

and so the analytical expression for the cost function in equation (19) no longer

holds. We therefore use numerical simulations to examine the economy.

To proceed we need to make choices for the discount factor β = (1 + r)−1,

the coefficient of relative risk aversion σ, and the wage distribution F (w). As in

Hopenhayn and Nicolini (1997), we view a period as representing a week and set

β = 0.999, equivalent to an annual discount factor of 0.949. We fix the coefficient

of relative risk aversion at σ = 1.5 but later consider the robustness of our results

to a higher value, σ = 6.8

8Hopenhayn and Nicolini (1997) use the much lower value of σ = 1/2 in their baseline calibra-
tion. They argue that over short horizons a high intertemporal elasticity of substitution may be
appropriate. In our view, this remark resonates introspectively, but is at the same time misleading
since it confounds attitudes regarding consumption and net income paths. In their model con-
sumption and net income were equivalent; but our model allows saving and borrowing, and as a
result a worker displays an infinite elasticity of substitution with respect to the timing of transfers.
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We adopt a Frechet wage distribution, F (w) = exp(−zw−θ) with support (0,∞),

and parameters z, θ > 0.9 With CRRA the parameter z acts as an uninteresting

scaling factor, so we normalize by setting z = 1. The mean log wage draw is then
γ
θ
, where γ ≈ 0.577 is Euler’s constant, and the standard deviation of log wages is
π√
6θ

≈ 1.28
θ

.

Following Hopenhayn and Nicolini (1997), we set θ so that the mean duration

of an unemployment spell is about ten weeks, consistent with evidence in Meyer

(1990) on a weekly job finding probability of ten percent for the United States.

This requires setting θ = 103.56, giving a standard deviation of log wages of about

1.2 percent.10 Figure 2 plots the density function F ′(w). We also consider the

9A Frechet distribution has some desirable properties in this environment. First, it displays
positive skewness. Second, suppose a worker receives n wage draws within a period from a Frechet
distribution with parameters (ẑ, θ), and must decide whether to accept the maximum of these
draws. The distribution of the maximum wage draw is also Frechet with the same θ and z = nẑ.
Thus there is no loss of generality in our assumption that the worker gets one wage draw per
period.

10Specifically, we chose θ so that a risk-neutral worker without unemployment insurance would
have exactly F (w̄) = 0.90, making use of equation (10).
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robustness of our results to changes in the wage distribution, in particular to a

substantial decrease in θ, which increases the dispersion in wages, raising the option

value of job search and the expected duration of unemployment.

It will be useful to have a way of comparing the cost or policy functions ob-

tained from our CRRA specification with those obtained from the CARA case. To

this end, note that a worker with a constant coefficient of relative risk aversion σ

who consumes c has local coefficient of absolute risk aversion equal to σ/c. This

suggests comparing the cost or policy functions obtained for a CRRA worker with

the approximation provided by those of a fictitious CARA worker with coefficient of

absolute risk aversion ρ = σ/u−1((1 − β)v), where we take the consumption equiv-

alent utility as a proxy for consumption. The approximations can be computed

analytically using our results from Section 3.

We begin by discussing our results for the minimum cost of providing a worker

with a given level of utility. Recall that with CARA utility, this cost is linear when

utility is measured in consumption equivalent units with a slope of 1+r
r

, see equa-

tion (19). For our CRRA specification, we find that the cost is nearly linear with
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almost the same slope. For this reason, we do not graph the cost function. Instead,

we compare the cost obtained from the CRRA specification with an approximation

provided by the CARA exercise. The solid black line in Figure 3 shows that the

difference between C∗(v) and this CARA approximation is small, less than 0.0001

in absolute value when utility exceeds a certainty equivalent of 0.3.

Turning to the optimal allocation and policy, the left panel in Figure 4 shows

that, as a function of the worker’s promised utility, unemployment consumption b

is increasing (solid brown line) while employment taxes τ are decreasing (dashed

orange line). The right panel shows how b and τ evolve over an unemployment spell

starting with initial promised value v0 = u(1.1)/(1 − β). Although initially unem-

ployment consumption is high and the employment tax is slightly negative, after a

sufficiently long unemployment spell the employment tax rises to a high level and

unemployment consumption falls to nearly zero. Putting these together, a worker’s

expected utility vt declines over time. This line is not graphed because it is only

slightly higher than, and would be scarcely distinguishable from, unemployment

consumption bt.
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We also look at the subsidy to unemployment, the additional resources that a

worker gets by remaining unemployed for one more period, as previously defined in

equation (24). The dash-dot blue line in Figure 4 shows that this unemployment

subsidy is small when utility is high at the start of an unemployment spell and then

increases gradually as promised utility falls and the spell continues. The dash-dot

blue line in Figure 3 illustrates the high accuracy for Bt of the CARA approximation

with ρ = σ/u−1((1 − β)v).

The unemployment subsidy Bt paints a very different picture of optimal unem-

ployment insurance than do unemployment consumption bt or employment taxes τt

in isolation. The picture for bt and τt in Hopenhayn and Nicolini (1997) is quali-

tatively similar. Werning (2002) computes the net subsidy to unemployment from

their allocation and finds that it is nearly constant, starting quite low and rising

very slowly. This distinction between unemployment consumption and subsidies

is crucial in understanding the difference between the results of this paper on the

one hand, and Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997) on the

other.
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Finally, Figure 5 shows the probability that an unemployed worker accepts a

job, 1− F (w̄t), under optimal unemployment insurance. This starts just above ten

percent per week when promised utility is high, then initially rises before falling

when promised utility is very low. This non-monotonicity illustrates two opposing

forces at play as the worker gets poorer: the increase in absolute risk aversion and

the increase in unemployment subsidies. The first effect encourages the worker to

accept more jobs, while the second effect, which is partly an endogenous response to

the first, encourages her to become more selective. The dashed red line in Figure 3

shows the high accuracy of the CARA approximation. It follows that the non-

monotonicity of the job finding rate with respect to promised utility v found in our

CRRA specification reflects a non-monotonicity with respect to risk aversion ρ in

the CARA case. The next subsection explores this notion further by studying the

constant benefits policy with CRRA utility.

Before closing, it is important to emphasize that in this CRRA specification, the

probability that a worker remains unemployed for 100 weeks or more is remote, on

the order of 10−5. Over the relevant time period, the unemployment subsidy and
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the job finding probability are virtually constant. In this sense, our results with

CARA provide an excellent benchmark for the CRRA specification.

4.2. Constant Benefits

The Bellman equation (2) describes the problem of an unemployed worker with

assets a facing a constant benefit b̄ and a constant employment tax τ̄ . In addition,

since consumption is nonnegative assets a′ cannot fall below some, possibly negative,

level a, Aiyagari’s (1994) natural borrowing limit. A worker can borrow as long as

she can pay the interest on her debt following any sequence of wage draws. The

natural borrowing limit is

a = −
max{b̄, w − τ̄}

r
= −

max{B̄, w} − τ̄

r
.

Thus, the details of the natural borrowing limit depend on whether the smallest

possible wage, w, is bigger or smaller than the net unemployment benefit, B̄ ≡ b̄+ τ̄ .

In the first case, w > B̄, and the natural borrowing limit is −w−τ̄

r
, since a
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worker with assets above this level could always have positive consumption and pay

the interest on her debt by taking the next job offer. This implies that a change in

the left tail of the wage distribution can substantially affect a worker’s debt limit,

and potentially her behavior, even if she is extremely unlikely ever to accept a wage

from this part of the distribution.11

If w ≤ B̄, the natural borrowing limit is determined by a worker’s ability to use

her unemployment income to pay the interest on her debt, so a = − b̄
r
. An increase

in the net unemployment benefit, obtained by an increase in b̄ and a budget balance

change in τ̄ , then has two distinct effects. It transfers income to states in which

the worker does not find a job (insurance) and it allows the worker to go further

into debt while she is unemployed (liquidity). The liquidity effect is absent from

the model with CARA preferences because there is no borrowing limit.

Appendix C discusses an efficient method of solving the worker’s Bellman equa-

tion (2) for Vu(a; b̄; τ̄) and equation (3) S(a; b̄, τ̄). It is then simple to choose b̄ and

11With CARA preferences, Proposition 1 show that the distribution of wages below the reserva-
tion wage is irrelevant for equilibrium behavior. This is because there is no borrowing limit with
CARA preferences.
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τ̄ to minimize the total resource cost (1+ r)a+S(a; b̄, τ̄) of providing a worker with

utility v = Vu(a; b̄, τ̄). We parameterize the economy as before: β = 0.999, σ = 1.5,

F (w) = exp(−w−θ), and θ = 103.56. Thus, we begin with a specification where

w = 0 ≤ B̄ so that we are in the case where benefits affect the borrowing constraint.

In the next subsection we turn to the other case.

To start, we examine the cost of providing the worker with a given level of utility.

Theoretically this is higher than the cost under optimal unemployment insurance.

Rather than showing the cost directly, the solid purple line in Figure 6 plots the

additional cost of constant benefits on a logarithmic scale. At small values of utility,

the cost of constant benefits is reasonably large, equal to a few weeks consumption.

But at high levels of utility, near those corresponding to a net resource cost of zero,

around v = u(1.03)
1−β

, the additional cost of using a constant benefits system is very

small, about 0.01 weeks of consumption.

On the other hand, Figure 7 shows that the optimal constant unemployment

subsidy B̄ for a worker who starts an unemployment spell with a given level of

utility (solid purple line) is typically much higher than the optimal time-varying
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unemployment subsidy B̄t for a worker with the same level of utility (dash-dot blue

line). Workers with lower utility demand higher benefits for two reasons. First,

they have higher absolute risk aversion, and value insurance more. Second, relaxing

the borrowing constraint is more important to them because they are closer to it.

4.3. Liquidity

The goal of this section is to isolate the insurance role of unemployment bene-

fits. To do this, first observe that under the Frechet wage distribution F (w) =

exp(−w−103.56), the probability that a single wage draw is less than 0.95 is minus-

cule, approximately 10−88. Consider an economy very similar to this one but with

the wage distribution F̃ (w) = F (w) if w ≥ w ≡ 0.95 and F̃ (w) = 0 otherwise,

i.e. with a (small) mass point at 0.95. It turns out that the optimal reservation

wage always exceeds 0.95 and this change has no effect on optimal unemployment

insurance policy. But if in the original economy we had B̄ < .95, then the natural

borrowing limit was −b̄/r while in the modified economy it is −(w − τ̄)/r. Thus,



Section 4: Liquidity and Wealth Effects: CRRA utility Back 45

this slight change in the wage distribution may lead to a significant increase in the

borrowing limit, i.e. in the availability of liquidity.

The green dashed lines in Figure 6 and Figure 7 show how this matters. When

w > B̄, unemployment subsidies no longer play a role in increasing a worker’s

liquidity. The unemployment subsidy turns into a pure insurance mechanism and is

much lower than with w = 0. In fact, the optimal subsidy is only slightly higher than

the optimal time-varying unemployment subsidy at the same level of utility (dash-

dot blue line), at least when utility is high. For example, at v = u(0.5)
1−β

, the optimal

time-varying subsidy is 0.0278, rising to 0.0283 during a ten week unemployment

spell. The optimal constant subsidy is 0.0288 if w = 0.95 but 0.540 if w = 0. There

is little need for time-varying unemployment subsidies when w is high, and hence

little additional cost of providing utility through a constant subsidy (Figure 6).

A slight modification in policy has an effect that is similar to this change in

technology. Suppose that after the worker draws a wage, she has the option of exit-

ing the labor market and collecting w̃ − τ̄ thereafter. She accepts this option if her
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reservation wage w̄ falls below w̃.12 When this happens, the cost is (1+r)(w̃−τ̄)F (w̃)
r

,

since w̃ must be paid in all future periods.

Like the lower bound on the wage distribution, this option can substantially

affect a worker’s debt limit and her behavior even if she is extremely unlikely ever

to exercise it. The only difference is that the policy involves a cost to the planner,

while the alternative distribution does not. However, since the odds of getting a

single wage draw below 0.95 are negligible, the odds of the worker ever accepting

w̃ and hence the cost of the policy are infinitesimal. This means that the cost and

optimal unemployment subsidy under constant benefits are indistinguishable with

w̃ = 0.95 or with w = 0.95.

In summary, when the distribution of wages is such that workers have liquidity

problems, optimal unemployment insurance is well-mimicked by a two part policy:

a subsidy to unemployment, which insures workers against the failure to find a good

job; and measures to ensure that workers are able to smooth their consumption over

12In our numerical examples, a worker only accepts w̃ if doing so is the only way she can pay
the interest on her debt.
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unusually long sequences of bad wage draws. Insuring workers against the small

probability of a very bad shock provides liquidity. Together the two policies mimic

optimal unemployment insurance, which involves a nearly constant unemployment

subsidy for a long period of time, followed by a sharp increase in the subsidy when

workers are sufficiently poor (Figure 4).

An open question is how to interpret the finding that raising the lower bound

on the wage distribution from 0 to 0.95 can have a significant effect on the con-

stant benefit policy even if F (0.95) ≈ 10−88. In our view, it is a shortcoming

of exogenous incomplete markets models that vanishingly small probability events

can significantly affect borrowing. On the other hand, we view the simplicity and

transparency of the exogenous incomplete market model as a virtue.

4.4. Ad Hoc Borrowing Constraints

Although our analysis focuses on the natural borrowing limit, it is useful to note

that policy can easily circumvent any tighter ad hoc limit. To be concrete, suppose
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borrowing is prohibited but that the the natural borrowing limit is negative, a <

0. Consider giving the worker a lump-sum transfer −(1 + r)a at the start of the

initial period, while lowering her unemployment benefit to b̄ + ra and raising her

employment tax to τ̄ − ra. This simply changes the timing of payments, and is

equivalent to providing the worker with a risk-free loan, but is an ideal instrument

for circumventing any ad hoc borrowing constraint.

Optimal unemployment insurance, taken literally as a policy geared towards

a hand-to-mouth consumer, is also a loan. It pays out the duration-dependent

sequence bt and collects taxes τt (as in Hopenhayn and Nicolini, 1997). Figure 4

shows that the net subsidy Bt may be much lower than consumption while unem-

ployed, reflecting the accumulating employment tax liability over the jobless spell.

Thus, an important component of the agency’s gross transfers are not net present

value transfers; the agency pays out early on and collects later, much as a loan.

For completeness, we also consider briefly the case where, for some unspecified

and arbitrary reason, the insurance agency does not circumvent the ad hoc bor-

rowing constraint. This may significantly affect both the cost and level of optimal
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constant benefits. To take an extreme case, suppose a worker has no assets and no

ability to borrow, so she must consume her benefit each period she is unemployed.

We compute the optimal constant benefit and taxes for this case. The black dot-

ted line in Figure 6 shows that this raises the cost of providing the worker with a

particular level of utility by about three to six weeks income, a substantial amount

given that unemployment spells last for only ten weeks. The need to provide both

insurance and consumption smoothing makes the optimal unemployment subsidy

much higher, in excess of 0.5 over the usual range of utility (Figure 7).

4.5. Robustness

This section asks the extent to which our results depend on the wage distribution,

in particular on the assumption that a worker finds a job in ten weeks on average.

There are a few reasons to explore this assumption. First, our results indicate

that constant unemployment benefits and constant employment taxes do almost as

well as a fully optimal unemployment insurance policy. It could be that this result
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would go away if unemployment spells tended to last longer and therefore presented

a bigger risk to individuals. Second, in many countries, notably much of Europe,

unemployment duration is substantially longer, although this is at least in part

a response to unemployment benefits that are high compared to workers’ income

prospects (Ljungqvist and Sargent, 1998; Blanchard and Wolfers, 2000). And third,

workers typically experience multiple spells of unemployment before locating a long-

term job (Hall, 1995). Although modeling this explicitly would go beyond the scope

of this paper, raising unemployment duration may capture some aspect of this longer

job search process.

To explore this possibility, we choose θ = 21.084 so that the weekly job finding

probability is about 1 − F (w̄) = 0.020, one-fifth of the earlier level.13 This raises

the unconditional standard deviation of wages, by a factor of five, to 0.027, which

increases the option value of job search. We revisit our main conclusions under this

alternative parameterization:

13Specifically, we set θ to ensure that a risk-neutral worker without unemployment insurance
would have 1 − F (w̄) = 0.020.
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• Under optimal unemployment insurance, the subsidy Bt rises slowly. Suppose

we start a worker with utility equal to a constant consumption of 1.2. The

optimal subsidy is 0.080 and rises to 0.145 during the first 10.75 years of

unemployment, during which time her utility falls in half, to a consumption

equivalent of 0.6.

• The optimal job finding rate changes slowly. In the same experiment, it rises

from 2.005 percent per week to 2.010 percent per week during the first 10.75

years of unemployment.

• The CARA case provide a good approximation. CARA would suggest an

initial unemployment subsidy of 0.084, rising to 0.156 when absolute risk

aversion doubles. The approximate and exact job finding probabilities are

indistinguishable.

• If the lowest wage is high, here w = 1.03, the optimal constant subsidy is

similar to the optimal time-varying unemployment subsidy, 0.087 at the start

of the unemployment spell and 0.175 once the worker’s utility has fallen to
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0.6. Moreover, the cost of constant benefits is small, approximately 0.0004 at

the start and 0.017 for a worker with utility 0.6.

• If lowest wage is zero, the optimal constant unemployment subsidy is higher,

0.240 at the start of the unemployment spell and 0.698 for a worker with

utility of 0.6. The cost of constant benefits is also higher, 0.745 and 5.56 at

these two utility levels. This last number still only represents about a one

percent increase in the cost of the unemployment insurance system.

We have also examined the robustness of our results to higher risk aversion by

setting σ = 6. Optimal unemployment benefits are higher than the benchmark

with σ = 1.5, as the CARA approximations would also suggest. For example, for a

worker with utility equal to u(1)/(1 − β), the optimal unemployment subsidy rises

by a factor of four from 1.4% to 5.5%. Otherwise this change in preferences has

little effect on our results.
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5. Conclusion

This paper characterizes optimal unemployment insurance in the McCall (1970)

sequential search model. Our main result is that with CARA preferences, constant

benefits coupled with free access to borrowing and lending of a riskless asset is

optimal. In particular, it is inefficient to distort the worker’s savings behavior. With

CRRA preferences, the exact optimality of constant benefits breaks down. We find

that the optimal unemployment subsidy rises very slowly over time. However, we

find little loss to a constant unemployment subsidy if workers are given free access

to enough liquidity. This quantitative result is robust to the key parameters of the

model.

There are important advantages to simple policies with free access to markets

that our model does not capture. Free choice of savings decisions may be intrin-

sically valuable for philosophical reasons (Friedman, 1962; Feldstein, 2005). Such

policies may also be valuable on practical grounds because they are likely to be

more robust to the numerous real-world considerations that are not included in our
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model.

This paper has not focused on the optimal level of unemployment subsides, but

rather on their optimal timing and on the desirability of allowing workers free access

to the asset market. In the examples in this paper, the optimal unemployment

subsidy turns out to be low unless the worker’s utility is also quite low. They are

not, however, out of line with results in Gruber (1997), who computed benefits

somewhere between 0–10% of wages to be optimal for the United States. Still, it is

possible to construct examples where the optimal unemployment subsidy is much

higher.14 In ongoing separate work, we focus on the determinants of the level of

benefits.

We have deliberately written a stark model of job search in order to keep the

analysis relatively simple and focus on the forces that we believe are most important.

Nevertheless, the model lends itself to a number of extensions, some of which we

14Suppose the wage draw can take on two values, w1 < w2. Moreover, suppose the first-best
features the worker only accepting the high wage offer. Then setting the unemployment subsidy
to w2 has the desired effect and moreover fully insures the unemployed; it attains the first-best
and is thus optimal.
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mention here. First, to keep our analysis comparable to Shavell and Weiss (1979)

and Hopenhayn and Nicolini (1997), we have assumed that all jobs last forever.

Relaxing this assumption permits an examination of how optimal unemployment

subsidies depend on a worker’s entire labor market experience.15 Second, we have

focused on deterministic unemployment insurance mechanisms. There are situa-

tions in which an employment lottery can reduce the cost of optimal unemployment

insurance even if workers have CARA or CRRA preferences.16 Future research

should explore the potential gains from using employment lotteries and their inter-

pretation. Third, we have assumed that wage draws are independent over time. By

introducing some serial correlation, this model could potentially capture the idea

that some people are much more likely to obtain a high wage job quickly while

others learn early on that a high wage is an unlikely event. Our results suggest

that for these and other extensions, it will be important to evaluate the relative

efficiency of simple benefit policies coupled with free access to the asset market and

15Wang and Williamson (1996) and Zhao (2000) have explored optimal unemployment insur-
ance, without borrowing and saving, in an economy with repeated spells of unemployment.

16We are grateful to Daron Acemoglu for pointing out this possibility.
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to distinguish between insuring workers against uncertainty in the duration of a

jobless spell and ensuring their ability to smooth consumption while unemployed.

Appendix

A. General Mechanisms

This section uses the revelation principle to set up the most general deterministic

mechanism that an unemployment insurance agency might contemplate given the

assumed asymmetry of information. We allow the worker to make reports on the

privately observed wage and we allow taxes to vary during an employment spell.

We show that neither of these capabilities is useful: the planner does just as well

by offering unemployment benefits that depends on the duration of unemployment,

and setting employment taxes that depend on the duration of the previous unem-

ployment spell, not on employment tenure.
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A.1. The Recursive Mechanism

For notational convenience, we present the general mechanism directly in its recur-

sive form—this can be justified along the lines of Spear and Srivastava (1987). Our

general mechanism involves the following steps:

1. The unemployed worker starts the period with some promise for expected

lifetime utility v.

2. The worker then receives a wage offer w from the distribution F (w) and makes

a report ŵ to the planner.

3. If the worker report ŵ < w̄, she rejects the job, receives unemployment benefit

b(ŵ), and is promised continuation utility v′(ŵ), starting the next period in

step 1, described above, with this value.

4. If the worker reports ŵ ≥ w̄, she accepts the job and pays a tax τ(ŵ, n) in

each subsequent period n = 1, 2, . . ..
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A.2. The Planner’s Problem

The full planner’s problem may be expressed recursively as follows:

C(v) = min
w̄,{b},{v′},{τ}

∫ w̄

w

(

b(w) +
C(v′(w))

1 + r

)

dF (w)+

∫ ∞

w̄

( ∞
∑

n=0

(1 + r)−nτ(w, n)

)

dF (w)

subject to the promise keeping constraint

v =

∫ w̄

w

(

u(b(w)) + βv′(w)
)

dF (w) +

∫ ∞

w̄

( ∞
∑

n=0

βnu(w − τ(w, n))

)

dF (w)
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and a set of truth telling constraints for all w, ŵ:

∞
∑

n=0

βnu(w − τ(w, n)) ≥

∞
∑

n=0

βnu(w − τ(ŵ, n)) w, ŵ ≥ w̄ (25)

∞
∑

n=0

βnu(w − τ(w, n)) ≥ u (b (ŵ)) + βv′ (ŵ) w ≥ w̄ > ŵ (26)

u (b (w)) + βv′ (w) ≥

∞
∑

n=0

βnu(w − τ(ŵ, n)) ŵ ≥ w̄ > w (27)

u (b (w)) + βv′ (w) ≥ u (b (ŵ)) + βv′ (ŵ) w̄ > w, ŵ (28)

We proceed to simplify the planner’s problem.

Lemma 2 (a) Suppose an optimum has the schedules b(w) and v′(w), then the

mechanism that replaces these with a constant schedule b = b(ŵ) and v′ = v′(ŵ)

for any ŵ (with a slight abuse of notation), is also optimal. (b) The incentive



Appendix A: General Mechanisms Back 60

constraints (25)–(28) can be replaced with the single equality condition

u(b) + βv′ =

∞
∑

n=0

βnu(w̄ − τ(w̄, n)), (29)

and constraint (25).

Proof. (a) Condition (28) implies that u(b(w)) + βv′(w) = maxw≤w̄(u(b(w)) +

βv′(w)) ≡ x, independent of w. From the planner’s objective function we see that

given x any (b(w), v′(w)) ∈ arg maxb,v′{b + C(v′)} subject to u(b) + βv′ = x is

optimal. Consequently, one can select a solution that is independent of w.

(b) For constant b and v′, the constraint (28) is trivially satisfied. Since the

right hand side of constraint (27) is increasing in w, it is equivalent to

u(b) + βv′ ≥
∞
∑

n=0

βnu(w̄ − τ(ŵ, n))
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for all ŵ ≥ w̄. Constraint (25) implies ŵ = w̄ maximizes the right hand side of this

inequality, so it reduces to

u(b) + βv′ ≥
∞
∑

n=0

βnu(w̄ − τ(w̄, n)). (30)

Next note that inequality (26) is now equivalent for all w ≥ w̄

∞
∑

n=0

βnu(w − τ(w, n)) ≥ u(b) + βv′.

If w > w̄, then

∞
∑

n=0

βnu(w − τ(w, n)) ≥
∞
∑

n=0

βnu(w − τ(w̄, n)) >
∞
∑

n=0

βnu(w̄ − τ(w̄, n)),

where the first inequality uses (25) and the second uses monotonicity of the utility

function. Therefore the preceding inequality is tightest when w = w̄, so inequal-
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ity (26) is equivalent to

∞
∑

n=0

βnu(w̄ − τ(w̄, n)) ≥ u(b) + βv′. (31)

Inequalities (30) and (31) hold if and only if equation (29) holds, completing the

proof.

A.3. Constant Absolute Risk Aversion

So far we have not made any assumptions about the period utility function u except

that it is increasing. This section examines the implications of having constant

absolute risk aversion preferences.

Lemma 3 With CARA utility, an optimum must feature the tax on the employed

τ(w, n) being independent of w and n.
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Proof. With exponential utility the w on both sides of (25) cancels, implying that

the remaining term
∑∞

n=0 βnu(−τ(w, n)) must be some value independent of w.

Let x denote this value. It follows that an optimum must solve the subproblem

min
{τ}

(

−

∞
∑

n=0

βnτ(w, n)

)

subject to x =

∞
∑

n=0

βnu
(

− τ(w, n)
)

.

The first order condition for this problem reveals that an τ(w, n) must be indepen-

dent of (w, n).

Lemmas 2 and 3 allow us to rewrite the Planning problem as in (6)–(8). Private

information prevents “employment insurance,” so the tax rate τ is independent of

the wage. With CARA preferences and jobs that last forever, the wage effectively

acts as a permanent multiplicative taste shock. This ensures that all employed

workers have the same preferences over transfer schemes, which makes it impossible
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to separate workers according to their actual wages. Since workers have concave

utility, introducing variability in taxes is not efficient.

With non-CARA utility, workers with different wages rank tax schedules dif-

ferently. In some cases, it may be possible to exploit these differences in rankings

to separate workers according to their wage; see Prescott and Townsend (1984) for

an example. If workers have decreasing absolute risk aversion (DARA), including

CRRA preferences, those earning lower wages are more reluctant to accept intertem-

poral variability in taxes. One can therefore induce these workers to reveal their

wage by giving them a choice between a time-varying employment tax with a low

discounted cost and a constant tax with a high cost. High wage workers would opt

for the time-varying schedule. This does not, however, reduce the planner’s cost

of providing an unemployed worker with a given level of utility, since it transfers

income from low wage to high wage workers. It is therefore not optimal.
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B. Proof of Proposition 1

The worker’s sequence problem implies that the value function must have the

form Vu(a) = u(ra − τ̄ + k1)/(1 − β), for some constant k1. We determine this

constant, and the rest of the solution along with it.

The maximization with respect to consumption in equation (2) delivers

cu(a) = ra + (1 + r)−1(rb̄ + k1 − τ̄) (32)

Substituting this back into the value function (2) gives

Vu(a) =
1

1 − β

∫ ∞

w

max

{

u

(

ra +
rb̄ + k1 − τ̄

1 + r

)

, u
(

ra + w − τ̄
)

}

dF (w). (33)

This implies that the worker accepts all wages w exceeding a reservation wage w̄

defined by w̄ = (rB̄ + k1)/(1+ r), where again B̄ ≡ b̄+ τ̄ . Use this and the identity
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u(c1 + c2) = −u(c1)u(c2) to write (33) as:

Vu(a; b̄, τ̄) = −
u(ra − τ̄)

1 − β

∫ ∞

w

u
(

max{w̄, w}
)

dF (w) =
u
(

ra − τ̄ + CE(w̄)
)

1 − β
(34)

establishing equation (12). Substituting k1 = CE(w̄) into equation (32), and w̄ =

(rB̄ + k1)/(1 + r) delivers equations (10) and (11).

C. Computing the Worker’s Value Function

We are interested in solving equation (2). Ricardian equivalence implies that we can

set the employment tax τ̄ to zero without loss in generality. First assume B̄ ≥ w. It

is numerically impossible to work with the natural borrowing limit a = − B̄
r
, and so

instead we impose an ad hoc borrowing constraint, a > − B̄
r
. We consider values of

a arbitrarily close to − B̄
r

to test the sensitivity of the results to the exact borrowing

limit. The results we report in the paper are not sensitive to this choice.

Take a worker with assets a very slightly greater than a0 ≡ a. A worker at this
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point will consume enough to reach the borrowing limit. This implies

Vu(a) = max
w̄

(

(

u
(

(1 + r)a + B̄ − a0

)

+ βVu(a0)
)

F (w̄) +

∫ ∞

w̄

u(ra + w)

1 − β
dF (w)

)

.

We can evaluate this directly at a = a0:

Vu(a0) = max
w̄0

u
(

ra0 + B̄
)

F (w̄0) + 1
1−β

∫∞
w̄0

u(ra0 + w)dF (w)

1 − βF (w̄0)
.

In addition, we can differentiate with respect to a using the envelope condition and

evaluate at a to get

V ′
u(a0) = (1 + r)

(

u′(ra0 + B̄
)

F (w̄0) +

∫ ∞

w̄0

u′(ra0 + w)dF (w)

)

,

where we use 1 − β = r
1+r

to simplify the expression.

Next, for any n ≥ 1, we define recursively an, Vu(an), and V ′
u(an). Let an be

the highest level of a such that a worker with assets a this period wants to have
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assets an−1 next period. Equation (2) implies

u′((1 + r)an + B̄ − an−1

)

= βV ′
u(an−1),

which uniquely defines an since u′ is decreasing and V ′
u(an−1) is known. It follows

that the reservation wage solves

u
(

(1 + r)an + B̄ − an−1

)

+ βVu(an−1) =
u(ran + w̄n)

1 − β
,

the value function solves

Vu(an) =
(

u
(

(1 + r)an + B̄ − an−1

)

+ βVu(an−1)
)

F (w̄n) +

∫ ∞

w̄n

u(ran + w)

1 − β
dF (w),

and, using the envelope theorem again, its derivative solves

V ′
u(an) = (1 + r)

(

u′((1 + r)an + B̄ − an−1

)

F (w̄n) +

∫ ∞

w̄n

u′(ran + w)dF (w)

)

.
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For each level of assets an, we can also compute the expected discounted cost of

the unemployment insurance system. At a0,

s0 =

(

B̄ +
s0

1 + r

)

F (w̄0) =
(1 + r)B̄F (w̄0)

1 + r − F (w̄)
,

while thereafter

sn =

(

B̄ +
sn−1

1 + r

)

F (w̄n−1).

The cost of providing the worker with utility Vu(an) is (1+r)an+sn. We interpolate

this to compute the cost at arbitrary utility levels and choose unemployment benefits

B̄ to minimize cost.

Next consider w > B̄, so accepting any job is the worker’s best option. A

worker’s assets cannot fall below −w

r
. In fact, if a worker who ends one period

with assets a < − w+rB̄

r(1+r) remains unemployed, her assets the following period are

no higher than a′ = (1 + r)a + B̄ < −w

r
, a violation of the borrowing constraint.

Thus the natural borrowing limit is a0 = a = − w+rB̄

r(1+r) . Below this point a worker
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must accept any job. Vu(a0) and V ′
u(a0) are slightly changed by this constraint:

Vu(a0) =

∫∞
w

u(ra0 + w)dF (w)

1 − β
,

and

V ′
u(a0) = (1 + r)

∫ ∞

w

u′(ra0 + w)dF (w).

The cost of a worker at the borrowing limit is zero, since she accepts any job.

Given these initial conditions, an, Vu(an), V ′
u(an), and sn are defined using the

same inductive formulae as before.
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