LIMITED MEMORY, LEARNING, AND
STOCHASTIC CHOICE*

Drew Fudenberg! Giacomo Lanzani'
Philipp Strack®

August 15, 2024

Abstract

We study learning by agents whose information depends on their actions
and whose decisions are based on a random subset of their past experiences.
We show that if the empirical distribution of actions converges, the limit must
be a finite memory equilibrium, and that finite memory equilibrium generates
the stochastic choices of random utility models. We relate finite memory
equilibrium to the selective memory equilibrium concept that applies when
the number of recalled experiences goes to infinity as the agent’s sample size

increases. We extend the model to allow for recency and rehearsal effects.
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1 Introduction

People typically only remember a relatively limited number of their past experiences,
and what they remember is stochastic— they might remember some things one week
and different things the next. We analyze the long-run implications of these memory
biases for myopic agents whose information can depend on their actions and who
update their beliefs as if the experiences they remember are the only ones that
occurred.! Because the agent only recalls a small subset of their experiences, their
beliefs and behavior remain stochastic as their number of experiences goes to infinity.
We say that a distribution of actions is a finite memory equilibrium if the action
distribution is generated by a best response to the distribution of memories it induces.
We show that such equilibria exist and that whenever the empirical frequency of
actions converges, it converges to a finite memory equilibrium.

We show that finite memory generates the stochastic choices of a random util-
ity model, specifically that of Lu [2016]’s information representation of stochastic
choice rules. When the data generating process consists of a vector of signals about
the quality of the possible alternatives and memory is limited but unselective, the
stochastic choice rule is monotone in the sense that actions that have higher utility
are chosen more often. Thus, although limit behavior is stochastic, the environment
disciplines the errors, making more costly mistakes less likely. When the outcomes
and prior are normally distributed, we obtain the particular case of the mixed probit
random utility model. Here, the variance-covariance matrix of the resulting probit
accommodates both payoff monotonicity and diminishing sensitivity, as in baseline
probit [Thurstone, 1927], and it also captures frequency dependence because less
frequently chosen actions have noisier perceived values.? If instead actions are de-
scribed as vectors of desirable features, and outcomes correspond to situations in
which those features proved useful, we show that the limit frequency corresponds to
a different random utility model, the Elimination by Aspect (EBA) model of Tver-

sky [1972], where the distribution of the random lexicographic preferences is given

'Reder [2014], Duncan and Shohamy [2020], Zimmermann [2020], and Gédker, Jiao, and Smeets
[2024] provide evidence of partial or complete unawareness of memory biases.

2Kaanders, Sepulveda, Folke, Ortoleva, and De Martino [2022] provides evidence of frequency
dependence in active learning problems. This dependence is a general implication of our model; we
explicitly characterize its effect for normal-normal and binomial-beta environments.



by the probability of recalling instances where a particular aspect was useful. We
then show that phenomena such as sample size insensitivity [Kahneman and Tversky,
1972] and underreaction to signals, usually attributed to “underinference,” [Phillips
and Edwards, 1966] can alternatively be explained through limited memory.

We also relate our findings to the limit outcomes when the number of recalled
experiences goes to infinity as the agent’s sample size increases. We show that every
accumulation point of a sequence of finite memory equilibria with an increasing
expected number of recalled events must be a heterogeneous-belief selective memory
equiltbrium, a generalization of the equilibrium concept that Fudenberg, Lanzani,
and Strack [2024] uses to characterize limit outcomes when the agent’s memory is
selective but unlimited.

Finally, we expand the model to allow experiences that were remembered in one
period to be more likely to be recalled in the next one. This addition makes the model
more realistic and lets it fit evidence about the importance of rehearsal and recency.
We show that, as with limited memory, a fixed point condition characterizes the limit
action distribution. But now, limit beliefs are autocorrelated instead of i.i.d., and
the limit action distribution must be consistent with the stationary distribution of
the Markov chain of beliefs it induces. This property, which we call ergodic memory
equilibrium, lets us extend Mullainathan [2002]’s analysis of the effect of rehearsal
on income forecasts from short-run predictions to the long run and to more general
functional forms. It also lets us provide an explanation of the equity premium puzzle
that is similar to that in Weitzman [2007] but does not require misspecified beliefs

about the evolution of the state.

Related work Memory has been informally described as stochastic since the
early stages of the psychology literature, and the finiteness of memory has been
documented at least since Miller [1956]. Shadlen and Shohamy [2016] and Sial,
Sydnor, and Taubinsky [2024] provide more recent evidence of stochastic memory.
d’Acremont, Schultz, and Bossaerts [2013] provides fMRI evidence that agents access
their accumulated evidence each period when updating beliefs.

In finite memory equilibrium, agents’ actions are stochastic because they remem-
ber a random sample of their (endogenous) experiences. Several different classes of

models derive random choice from randomness in exogenous or endogenous signals.



Perhaps the oldest example of this is the Wald optimal stopping problem, where the
agent wants to match a binary action with a binary state and pays a flow cost to ob-
serve a Brownian signal; once the agent is sufficiently certain of the state, they stop.
Fudenberg, Strack, and Strzalecki [2018] extends this to settings where the agent
is uncertain of the payoff difference between the actions, and Che and Mierendorff
[2019] further extends to more general signal structures. Lu [2016] and Natenzon
[2019] axiomatize stochastic choice due to Bayesian updating, where the distribution
and number of signals are exogenous.

Wilson [2014] and Jehiel and Steiner [2020] study the optimal use of a finite
memory by an agent who receives a stream of exogenous signals until they stop at
an exogenous time and take a single action. Osborne and Rubinstein [1998] studies
a notion of equilibrium in two-player games where players receive a fixed number
of samples of the payoffs of each of their actions against the equilibrium mixed
action of the other player and choose the action that maximizes the expected payoft
against these empirical distributions; Salant and Cherry [2020] extends this prior-
free approach to other statistical inference procedures, again with a fixed sample size;
Danenberg and Spiegler [2023] extends this to the case where agents receive signals of
their payoff to each action whose variance is inversely proportional to the probability
the action is played. Gongalves [2023] defines an equilibrium concept for games based
on Bayesian-optimal sequential sampling from the equilibrium distribution.

A large literature in psychology documents the recency effect; see, e.g., the sum-
maries in Lee [1971] and Erev and Haruvy [2016]. There is also extensive evidence
of the importance of rehearsal; see, e.g., the Kandel et al. [2000] textbook. Schac-
ter [2008] discusses evidence that some experiences are recalled more often than
others. Mullainathan [2002] analyzes the short-run implications of rehearsal in a
specific parametric context but did not study its long-run effects. Bordalo, Coffman,
Gennaioli, Schwerter, and Shleifer [2021] shows how memory depends on the rela-
tive frequency of various characteristics and can be manipulated by making some

observations stand out.



2 The Model

We study a sequence of choices made by a single agent. In every period t € N, the
agent chooses an action a from the finite set A. In the periods action a is chosen, it
induces the objective probability distribution p} € A(Y') over the finite set of possible
outcomes Y.? The agent’s flow payoff is given by the utility function v : A xY — R.

The agent knows that the map from actions to probability distributions over
outcomes is fixed and depends only on their current action but is uncertain about
the outcome distributions each action induces. We suppose the agent has a prior
po over data generating processes p € A(Y)?4, where p,(y) denotes the probability
of outcome y € Y when action a is played under data generating process p. The
support of pg is ©; its elements are the p the agent initially thinks are possible. We

maintain the following assumption throughout:
Assumption 1. Forall pe ©, y e Y, and a € A, p*(y) > 0 if and only if p,(y) > 0.

This assumption guarantees that no data generating process is ruled out in finite

time and that posteriors are well defined.*

Objective Histories and Recalled Periods We call action-outcome pairs (a, y) €
A x Y experiences. Period t € N histories are sequences h; € H; = (A x Y)!, and
H = J, H; is the set of all histories. We assume that the agent’s memory of past
experiences at the beginning of period t + 1 is distorted by a memory function m;.1,

where
mean(a,y) = mind1, k/t} m(a, y), (1)

for some fixed function m : A x Y — (0, 1], and some fixed memory capacity k € N.
The way m varies with (a,y) captures the relative memorability of the various ex-
periences. Allowing m to vary with a and y lets the model capture various memory
biases that have been documented in the literature, such as positive memory bias,
cognitive dissonance-reducing memory, associative memory, and confirmatory mem-

ory bias (see Fudenberg, Lanzani, and Strack, 2024). We sometimes focus on the

3We denote objective distributions with a superscript *.
4The assumption can be considerably relaxed, as in Fudenberg, Lanzani, and Strack [2021], but
the relaxation would create additional technical subtleties unrelated to this paper’s focus.



case of partial but unselective memory, i.e., m(a,y) = 1.°
After history hy = (a;,y;)i_;, the recalled periods r, are a random subset of
{1,..,t}. We assume for now that each past experience has an independent probability

of being recalled, so®

Plry= R h] =] [msi(any) [] (0=mealany) VRS ..t} (2)

i€R ie{l,.. tH\R

For every objective history h; and set of recalled periods R, the recalled history

is the subsequence of recalled experiences listed in the order they realized.

Beliefs We assume the agent recomputes their beliefs each period based on all of
their remembered experiences, as opposed to simply updating their period-t beliefs
based on their period-t observation,” and that the agent is unaware of their selective
memory and naively updates their beliefs as if the experiences they remember are
the only ones that occurred.

We let p;,1 denote the random (beginning of) period-t + 1 belief induced by the
recalled history, so that the posterior probability of every (measurable) C' € © after

recalled history (a,, Y;)rer, 1S

Sc I Ler, Par (y-)dpo(p)

1(C'| (ar,yr)rer,) = L pe(odote) (3)

An implication of equation (3) is that the agent’s beliefs depend on the recalled

history only through how many times each (a,y) pair occurs and not on their order.

Optimal Policies Denote by BR(v) the actions that maximize the current period

expected utility when the agent’s belief is v € A(©).5 A Markovian policy m :

SWith unselective memory restricting to m(a,y) = 1 is without loss of generality, as any combi-
nation of ¢ = m(a,y) and k for which ck is the same induces the same memory function in equation
(1) from period k.

6Section 6 allows experiences that were recalled at ¢t — 1 to be more likely to be recalled at t.

"As noted above, there is fMRI evidence that agents re-access memories of their experiences
when forming beliefs. Note that if the same data is relevant in many different decision problems, it
is more efficient to store the data than all of the potentially relevant posterior beliefs.

®That is, BR(v) = argmax,e 4 §g Yyey (@, y)pa(y)dv(p). For every n € N and X € R", A(X)
denotes the set of Borel probability distributions on X endowed with the topology of weak conver-



A(®) — A specifies a pure action for every belief. We assume that the agent is
myopic and uses an optimal Markovian policy w, i.e., for every v € A(O), n(v) €
BR(v). Together, a true data generating process p*, a memory function (m;)en,
and an optimal Markovian policy function uniquely induce a probability measure
over histories, denoted as IP.

Because the agent’s beliefs only depend on the number of times each (a,y) pair
is recalled, they can be written as functions of the agent’s database d of recalled
experiences. We let D = N4*Y denote the set of databases, and denote by u(-|d)
the posterior belief obtained by applying the formula in (3) to an arbitrary history

whose database is equal to d.

Limit Action Frequencies For every t, define the action frequency at time t by

L
ai(a') = 7 Z 1oy (ar) Va' € A.
T=1

We say that a € A(A) is a limit frequency if there exists an optimal Markovian policy
7 such that?
P [limat = a] > 0.

t—00

3 Finite Memory Equilibrium

This section defines finite memory equilibrium, and then shows these equilibria exist
and that they characterize the action distributions that can arise as the limit of the

empirical action frequencies.

Limit Distribution of Databases The first step is to derive the distribution
over databases that is induced by a fixed action distribution a. For every action
distribution «, define n* € A(D) by

* d(a,
ngz(d> _ H [a<a)pa(?ji>(12ﬂ;g?v y)] () efa(a)p;‘(y)km(a,y) Vd e D.

aceA,yeY

gence.
9Note that we do not assert that such a limit exists or is unique.



This is a product distribution where the marginal distribution for each action-
outcome pair (a,y) is Poisson with mean a(a)pk(y)km(a,y). We will show that
not is the limit distribution of databases if the action frequencies converge to a. In-
tuitively, the expected number of times a pair (a,y) is recalled is proportional to
the frequency of action a, the probability of the outcome given the action p*(y), and

how memorable that experience is, i.e., m(a,y).

Lemma 1. Let a € A(A). For P, almost every sequence of histories (h)wen, if

lim; .o, oy = « then the distribution of databases given h, converges to 1}

To prove the lemma, we first use a law of large numbers for martingale differ-
ences to show that if the empirical action distribution converges to a;, then the joint
frequency of each action and outcome pair (a,y) converges to a(a)p*(y); Lemma 1
then follows from the Poisson limit theorem on the sum of binomials. The proofs of

this and all other results stated in this section are in Appendix A.2.

Limit Distribution of Beliefs The second step is to associate the candidate
action distribution with the distribution of beliefs that it induces. We do so by
taking the image measure of the databases with respect to the Bayesian updating
operator. Let F"#° be the distribution of beliefs induced by the distribution 17" of

databases and prior py, i.e., for all measurable C < A(©),

FH(C) = ma ({d = p(-]d) € C}) . (4)

Let O denote the set of (measurable) selections from the (mixed) best reply
correspondence: i.e., p : A(©) — A(A) is in O if and only if p is measurable and
p(v) e A(BR(v)) for all v € A(O).

For any p € O, let ;" be the function that maps a € A(A) to the action
distribution generated when the agent uses policy p and their beliefs are distributed

according to M0 as illustrated in Figure 1. Formally,
upree) = [ pdEz ) )
A(©)

In words, if action distribution « is played forever, it induces distribution ap* over

histories. This distribution and the memory function m together induce a distribu-

7



tion of databases 7', and Bayesian updating on each database generates distribution
F™#to over posterior beliefs. Assigning p(v) to each posterior belief v generates action

distribution 70 (a).

Figure 1: Illustration of ¢y
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Finite memory equilibrium requires that the agent’s behavior best replies to the

distribution of memories it induces:

Definition 1. A finite memory equilibrium is an « € A(A) for which there is p € O
such that o = 7" ().

Note that the set of finite memory equilibria depends on the prior pg through its
effect on the posterior beliefs. Below, we say more about this dependence and show

that it vanishes as k& grows.
Theorem 1. A finite memory equilibrium exists.

To prove this, we show that the correspondence that maps each « to the union
over p € O of Y7 (a) satisfies the conditions of the Kakutani fixed point theo-
rem. The definition of finite memory equilibrium is justified by the following result,
which shows that whenever the behavior converges to an action distribution, that

distribution is a finite memory equilibrium.

Theorem 2. If a is a limit frequency, then « is a finite memory equilibrium.



The first step of the proof is the characterization of the limit beliefs in Lemma 1.
The second step of the proof uses the Benaim, Hofbauer, and Sorin [2005] extension
of stochastic approximation to differential inclusions to show that the asymptotic
behavior of the empirical distribution can be characterized by looking at the limit
points of the solution to an associated differential inclusion. In particular, the cor-
respondence defining the inclusion is shown to be a well-behaved integral of the
best reply correspondence with respect to F7»#° (Lemma A.3 in the Appendix). We
conclude the proof by showing that if the differential inclusion enters a sufficiently
small neighborhood of «;, it leaves it after a bounded time interval, which contradicts

convergence to o.'®

4 Applications

4.1 Random Utility and Stochastic Choice

As Theorem 2 makes clear, a decision-maker with limited memory will behave
stochastically even in the long run. This section relates random behavior in finite
memory equilibrium to the most widely used model of non-deterministic behavior in
single-agent problems, the random utility model of stochastic choice. In a random
utility model, the agent’s utility function for the various actions is independently
drawn from a fixed distribution in every period; in a finite memory equilibrium, the
agent’s beliefs about the expected utility of each action are determined by their ran-
dom memories. By connecting the two concepts, we will provide a long-run learning
foundation for the random utility model and some of its specifications.

Let M be the collection of non-empty subsets of A. A stochastic choice function
is a map ¢ : M — A(A) such that > _,, c(z, M) =1 for all M € M. Let P be the
linear orders on A. A stochastic choice function ¢ has a random utility representation

if there is ¢ € A(P) such that for all M € MM

c(xz,M)=C({PeP|Vye M, zPy}) =: cc(x, M).

0There can be multiple finite memory equilibria, see Example 1 in the Online Appendix.
Whether multiple finite memory equilibria can be limit frequencies remains an open question.

" This is equivalent to the form of the random utility representation that uses an additional
probability space. See, e.g., Proposition 1.9 in Strzalecki [2023].



To relate our model of memory and learning to random utility, we suppose that the
analyst can elicit the agent’s choice from restricted sets of actions, as in the stan-
dard decision theory exercise. We assume that the decision maker uses an optimal

Markovian policy, and breaks ties deterministically in a menu-independent way.'?

Definition 2. Behavior converges to a random utility representation ¢ on a history
sequence (hy)en if for every ¢ > 0 there is ¢ € N such that |P,[a,+1 = alh,, M] —

cela, M)| <eforall 7>t

The next result shows that if the agent’s behavior converges, its limit is a random
utility representation that is consistent with Lu [2016]’s information representation,
where the decision maker is choosing between acts to maximize the expectation of
a fixed utility function with respect to a distribution over posteriors over states.!?
Intuitively, in our model, random posterior beliefs come from finite samples of past

events, instead of from a single signal.

Proposition 1. For every optimal Markovian policy m and o* € A(A), and on
P.-every sequence of histories such that lim; ., oy = o, the agent converges to a

random utility representation . In particular, it has an information representation

and o*(a) = c¢(a, A) for all a € A.

The proposition establishes that the long-run behavior of the decision maker ap-
proaches the random utility representation v in two different senses. First, if the
analyst conducts a menu-based elicitation after a sufficiently long sequence of obser-
vations, observed behavior will be close to that prescribed by c¢; (cf. Definition 2).
Second, the empirical distribution of choice for the full set of alternatives approaches
the stochastic choice function induced by ( evaluated at A.

All proofs for this section are in Appendix A.3. The proof of Proposition 1 first
constructs the target random utility representation. To do this, we associate to every

database d a preference relation in P where a is preferred to o’ if and only if @ is chosen

12T state this condition formally, let BR(v|M) denote the set of best replies to the posterior
restricted to menu M for any M < A. Menu-independence requires that for all M, M’ € M if
a,a’ € BR(v|M) n M’ and n(v|M) = a, then 7n(v|M') # d’.

130k, Ortoleva, and Riella [2012] modeled a related distinction between indeterminate prefer-
ences due to uncertain beliefs or uncertain tastes, where indeterminacy is modeled with incomplete-
ness rather than randomness.

10



by 7 from {a,a’} conditional on p(-|d). The random utility representation is then
defined by assigning each ranking the limit probability of the databases that induce
it. Since Lemma A.2 guarantees that the distribution over databases converges and
the set of menus is finite, this pushforward measure also converges. To see that the
stochastic choice rule admits an information representation, we map our objects to

those in Lu [2016]’s representation.

4.1.1 Monotonicity

To further develop the connections between limited memory and stochastic choice,
we now assume that what the agent observes is independent of their chosen action,
so that outcome y = (¥4 )aca is the |A| dimensional vector corresponding to the payoff
that would have been obtained taking the different actions: u(a,y) = y,.

The prior belief of the agent induces a (subjective) joint distribution over the pairs
(E,[Yal; ¥a).** The next result shows that if these joint distributions are affiliated,

actions with higher payoffs are played more frequently.'®

Proposition 2 (Monotonicity). Suppose that memory is unselective, E,|y.] and yi,
are affiliated under the prior, and o is a limit frequency. If the objective distribution
of y, increases in the sense of first-order stochastic dominance, keeping fized the

objective distribution of y.,, a’ # a, there is a limit frequency & with &(a) = «a(a).

Most decision-theoretic explanations of stochastic choice are based on variations
in tastes and unrelated to objective quality measures.'® In contrast, Proposition 2
lets us connect the stochastic choice rule with the quality of the decisions, enabling

predictions on how the agent’s choices vary with the objective environment they

14The joint probability assigned by the prior to any measurable C € R and c € {y, : y € Y} is
S{p:]Ep[ya]GC} p({y €Yy, = C})dﬂ(p)'

5The expected and realized outcomes are affiliated with respect to the prior probability measure
if for all ¢, € R, P,[Ep[ya] = ¢,y = ] = PulEp[ya] = c]Puly. = ]

16The objective environment does have a role in models where a decision maker with perfect
memory stops and makes a choice after acquiring information from costly sequential sampling, as
in Fudenberg, Strack, and Strzalecki [2018], Che and Mierendorff [2019], Ke and Villas-Boas [2019]
and Hébert and Woodford [2023]. In our setting, agents repeatedly make decisions, while in optimal
stopping problems, it is made once and for all. An alternative explanation for stochastic choice
is a deliberate desire to hedge, as in the models of Fudenberg, Tijima, and Strzalecki [2015] and
Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella [2019] and the evidence in Agranov and Ortoleva
[2017].

11



face.!” Callaway, Rangel, and Griffiths [2020] measures the repeated allocation of
attention and shows it is directed towards alternatives that are perceived to have
higher values and more uncertainty. The first property is consistent with our result;
the second requires an experimentation motive that is ruled out by our assumption

that agents are myopic.

4.1.2 Specific Signal Structures

For some signal structures, the fixed-point condition defining finite memory equilib-
rium is quite tractable, and the equilibria correspond to important stochastic choice
models. This section gives two tractable examples, the normal and binomial cases.
The section also connects finite memory equilibria with the Probit model (also in

the normal environment) and the Elimination by Aspects Tversky [1972] model.

Probit Probit [Thurstone, 1927] is a stochastic choice model with two desirable
features: payoff monotonicity and diminishing sensitivity. Our learning model deliv-
ers the related mized probit [Hausman and Wise, 1978; Greene, 2000] specification,
which also has these two properties.'® Moreover, the form of mixed probit that we
obtain is also consistent with frequency-dependence (i.e., agents have more precise
estimates of the values of actions they take more frequently), which, as Strzalecki
[2023] points out, is not accommodated by baseline probit.

To relate mixed probit to our model, suppose the payoff y, of each action a € A
is i.i.d. normally distributed y, ~ N (¥4, 0?), and that the agent’s prior belief is that
(41, ---,9a)) are independently normally distributed with mean 0 and variance o;.
We call this a normal environment. (Here, we allow infinitely many outcomes, so our

general results do not directly apply, but the definitions extend in the obvious way.)

Proposition 3. Let a be a limit frequency in a normal environment with unselective
memory. Its induced choice probabilities correspond to a Mixed Probit Model where

the mean parameter (Y,)aea s constant, and the variance parameter is a diagonal

17Under the generic condition that the posterior of the agent after every recalled database does
not feature multiple best replies, there are unique limit frequencies both before and after the shits
and under them the probability of a increases.

8Mixed probit is a hierarchical stochastic choice rule. First, the probit parameters (mean and
covariance matrix) are drawn with some mixing probabilities; given the realized probit parameters,
the usual stochastic probit rule determines the choice.

12



Figure 2: Binomial Beta Probability of choosing a’ when A = {d’,a"} when Y =
{0,1}, a symmetric beta prior with § = v = 1, no memory bias (m = 1), k = 2
(blue), k = 4 (orange), k = 8 (green), and a” is known to give outcome 1 with
probability 30%.
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matriz with entries o2 /n,, where for each (a,a) n, has a Poisson distribution with

parameter o(a)k.

In this mixed probit specification, the variance o /n of the payoff to a is stochas-
tically decreasing (i.e., in the sense of first-order stochastic dominance) in «(a), so

the payoffs of more frequently chosen alternatives are more precisely estimated.’

Binomial Beta Model Suppose there are two outcomes Y = {0,1}, that for
each action a € A, the prior is independently and identically beta distributed with
parameters -, 3, that the agent only observes the outcome of the action they choose,

and u(a,y) = y. The posterior mean the agent’s assigns to action a given database d
v+d(a,1)
v+B+d(a,1)+d(a,0)

equilibrium as a solution « to the equation

then is given as r, = . We can thus explicitly describe a finite memory

1{r, = maxy ry}

ala) = | arg max, 7|

where we assume that the agent uniformly randomizes over actions when they are

indifferent.

9Danenberg and Spiegler [2023] makes a similar point about the relation between frequency and
precision in a setting with exogenous normally distributed signals and no memory limitations.

13



With endogenous data, the signal’s precision about the action’s quality depends
on how frequently that action is chosen. This effect can be seen in Figure 2. There,
the left panel contains three different expected numbers of recalled experiences that
mimic the behavior under three different precisions in the probit model when the

success probability of the uncertain action is high, and thus, it is played frequently.

Elimination by Aspects Elimination by aspects [Tversky, 1972] postulates that
agents use “random lexicographic order” when choosing between alternatives with
multiple attributes: they randomly choose an attribute to focus on and restrict their
choice to the alternatives with the largest values of that attribute. If there are
multiple such alternatives, a second attribute is randomly chosen, and only maximal
alternatives (within the restricted set) in that second attribute are considered. The
procedure continues in this way until a single alternative is left.

EBA was designed to capture the following observed violations of the ITA: Start-
ing from a situation with two alternatives {a, a’}, the addition of a third alternative
that is closer to a, without dominating or being dominated from a (i.e., not a “decoy”
in the sense of Huber, Payne, and Puto, 1982) draws relatively more probability away
from a than from a’. To fix idea ideas using an example from Tversky [1972], suppose
a manager needs to decide whether to hire a worker based on their intelligence and
motivation score. Adding a worker with (intelligence, motivation) scores (78,25) to a
choice between (75,35) and (60, 90) has been shown to draw away significantly more
choice probability from (75, 35).

The EBA model is a RUM. It does not have an axiomatic foundation [Strzalecki,
2023]; our limited memory model gives it a foundation based on learning. To see
this in the example above, suppose that outcomes are tasks in which either intelli-
gence or motivation is the key feature driving the hired worker’s performance. The
manager receives payoff equal to the worker’s skill in the dimension that is relevant
in this period (intelligence or motivation). Further, the manager is uncertain about
the probabilities with which each is relevant. In particular, the prior is 50-50 on two
DGPs: either there is probability .9 that motivation is the relevant factor or prob-
ability .9 that success only depends on the worker’s intelligence, and the memory
function is constant. At the end of the period, the manager observes which factor was

relevant for this period’s task. Then, in every limit frequency, the probability that
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(75,35) is chosen over (60,90) equals the probability that the manager recalls more
past periods in which intelligence was important. And, as predicted by EBA, the
addition of (78,25) will reduce the probability of (75,35) but not that of (60, 90).2°

Note that our model predicts that more frequently relevant aspects have a higher
probability of being used to determine the choice, while in [Tversky, 1972], these
probabilities are not restricted. Note also that the relation between our model and
EBA is more general than in the example, To see this formally, define an aspects
environment as one where A < {0,1}4 for some finite set of aspects A, Y = A,
u(a,y) = ay, for every pe ©, a,da’ € A p, = p and such that the prior is responsive:
for every database d(A,y) > d(A,y') and a, > a;, implies that g Ep[u(a, -)]du(p|d) >
So Eplu(d’,-)]du(p|d).** The interpretation is that actions with more 1’s have more
desirable features, and the outcome is the feature that that was important that

period.??

Corollary 1. In an aspects environment, every limit frequency is that of an EBA

stochastic choice rule with aspects A.

4.2 The Effect of Skewness

Our next example shows that the probability that an action is chosen need not be
determined by its expected payoff, but can also depend on higher-level moments,
such as variance and skewness. Suppose that the agent chooses between two actions

A = {0,1} with outcomes Y = {0,c¢} u [1,00). The action 0 always produces the

20Let n; and nas be the number of recalled intelligence and motivation tasks, respectively,
and observe that the posterior likelihood ratio between (0.9,0.1) and (0.1,0.9) is 9"7~"™ . When
nas > ny, the posterior probability of DGP (0.9,0.1) is no more than 0.1, and (60, 90) is the unique
best reply. And when nj; > n; the posterior probability of DGP (0.9,0.1) is at least 0.9, so (78, 25)
the unique best reply.

2IThe latter condition is trivially satisfied when the prior is symmetric, and either there are two
aspects as in the example above or each a € A has a unique strictly positive entry. The model is
only interesting if no alternative is pointwise weakly larger than the others.

22We follow Tversky [1972] in considering a formal framework with binary discrete attributes
but an example where attributes can take on more values. The latter can be reduced to a special
case of the former by transforming each option into a vector of 0 and 1, where 1 means that they
are the alternative with the highest value in that entry. Gul, Natenzon, and Pesendorfer [2014]
axiomatizes an extension of EBA where attributes are nonbinary (with a different tie-breaking
rule). Our corollary extends to that case if the outcomes are enriched to encode noisy signals about
each attribute’s level and whether it is currently relevant.
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outcome ¢ € (0,1), e.g., u({p : po(c) = 1}) = 1. The action 1 generates outcome
y = 0 with probability 1 — ¢q. With probability ¢, action 1 produces the outcome
y = 1/b with probability b and the outcome 0 with probability 1 —b. The agent does
not know b, which is uniformly distributed on [0, 1].

The agent’s payoff function is u(a,y) = y. As the first success reveals that the
action a = 1 has an expected payoff of 1, the agent will always choose that action
whenever they remember a success. The prior expected value of a = 1 is ¢, so for
q > ¢, the agent will take the action a = 1 if they don’t remember any outcomes
of the risky arm. After remembering the outcome y = 0 once after taking the
action a = 1, the posterior expected value associated with the action a = 1 is given
0.5¢/(0.5¢ + (1 — q)). If 0.5¢/(0.5¢ + (1 — q)) < ¢, it is optimal for the agent to take
the safe action if they remember the outcome y = 0 at least once after taking the
action @ = 1. Thus, for a prior as described above with 0.5¢/(0.5¢+ (1—¢q)) < ¢ < g,
the agent takes the action a = 1 if they don’t remember an outcome with a = 1, or
if they remember at least one occurrence of y > 1. This generates the equilibrium
probability of choosing action 1 displayed in Figure 3.

As rare events are likely not to be recalled, they will not be present in most
databases and so be ignored. As a consequence, actions with a given expected payoff
tend to be chosen more often when they deliver a good payoff with high probability
than when they deliver a very good payoff more rarely.?2> This is consistent with
the evidence in Hertwig, Barron, Weber, and Erev [2004], which also shows how
this effect is not obtained if probabilities are given rather than learned. The figure
also illustrates that the effect decreases in the memory capacity k, and in the limit

k — oo, the agent chooses optimally.2*

4.3 Underreaction to Evidence

In a finite memory equilibrium, the agent sometimes relies on a small dataset to

make decisions. This can induce long-run underreaction of beliefs and insensitivity

ZEllison and Fudenberg [1993] makes this point in a model where each agent sees two signals.
Conversely, when a rare event is recalled, it will tend to be over-represented in the database and
trigger over-reaction. See Ba, Bohren, and Imas [2024] for a recent theoretical and empirical analysis
of which information structures tend to induce under- or over-reaction.

24Theorem 3 in the next section gives a more general form of this observation.
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Figure 3: Probability of @ = 1 when E,[u(1,y)] =1, m =1, and k = 4 (blue), k = 8
(orange), and k = 16 (green), k = 32 (red).
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to sample size, which Benjamin [2019] reports are some of the most persistent de-
partures from rationality in probabilistic reasoning. The main model that has been
used to explain this underreaction, Phillips and Edwards [1966])’s underinference
model, modifies Bayes rule to f(C|(a;,yi)i;) = S Loy Py Wi dise) iy (o (0,1).

T So ITizi (P, (i) du(@)
Underinference and limited memory both predict underreaction to the data, but un-

derinference predicts that a sufficiently long sequence of observations always leads
beliefs to concentrate around the observed frequency, while our model predicts that
the agent perceives uncertainty even in the limit, in line with Kahneman and Tver-
sky [1972]’s “universal distribution” conditional on large samples. Also, our model
suggests that underreaction will be more severe when people are shown data sequen-
tially without being provided written records of past outcomes, while underinference

does not.?®

25This effect of reminders and written records also arises in the infinite-memory model of Fu-
denberg, Lanzani, and Strack [2024], as that paper noted. See Fudenberg and Peysakhovich [2016]
and Esponda, Vespa, and Yuksel [2024] for experimental evidence on the effect of providing agents
with records and/or summary statistics.

17



5 Unlimited Memory

This section compares the equilibria and long-run outcomes under the memory func-
tion myy1(-) = min{l, k/t}m(-) to those with a time-independent version of the same
memory function, i.e., my;1(-) = m(-). When m is independent of time, the expected
number of recalled experiences converges to infinity with ¢, as in Fudenberg, Lanzani,
and Strack [2024].

To facilitate this, we extend that paper’s definition of selective-memory equilib-
rium to mixed actions, which requires an extension of the paper’s definition of the
memory-weighted likelihood maximizers from pure actions to action distributions.
This is the set

6™ (a) := argmax (Z a(a) Y m(a,y)pi(y) logpa(y)> : (6)

ped acA yeY

For every action distribution «, ©™(«) consists of the models that maximize a
weighted version of the log-likelihood of the true data generating process, where
the weights depend both on the memory function and the frequency of each action.
In particular, when memory is not selective (i.e., m is a constant), and the prior has
full support, ©"(«) consists only of models that exactly match the objective out-
come distribution induced by a. As a consequence, when this outcome distribution
identifies p*, p* is the unique element of ©™(«). To lighten notation, we identify a

point mass on action a with action a, and write ©™(a) instead of ©(d,).

Definition 3. (i) A pure selective memory equilibrium is an action a such that
there is v € A(©™(a)) such that a € BR(v).
(ii) A unitary-beliefs selective memory equilibrium is an o € A(A) such that there
is v e A(©™(«)) with a € BR(v) for all a € supp(«).
(iii) A heterogeneous-beliefs selective memory equilibrium is an « € A(A) such that
for all a € supp(«a) there is v* € A(©™(«)) such that a € BR(v*).

Note that, unlike finite memory equilibrium, these equilibrium concepts only
depend on the prior’s support and not on the relative weights the prior assigns to
various models. Note also that heterogeneous-belief selective memory equilibrium re-

quires that every action in supp(«) is justified by a (possibly different) belief over the
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same set of likelihood maximizers ©™(«), corresponding to the mixed action «. This
differs from heterogeneous-belief self-confirming equilibrium (Fudenberg and Levine
[1993]), which only requires that each action a in the support of « is a best response
to a belief over the maximizers ©'(a) corresponding to data about the consequences
of a. This difference is a consequence of the different origins of the heterogeneity
for the two equilibrium concepts. Heterogeneous-belief self-confirming equilibria are
steady states of models with many agents in each player role, and heterogeneity
comes from the fact that different agents in the same role may behave differently
and thus find that different models best fit their data. In contrast, in heterogeneous-
belief selective memory equilibrium is a single-person equilibrium concept, where all
the beliefs are based on the consequences of the same distribution over actions .
Here, as we show in Example 2 below, the heterogeneity arises because, with limited
memory, the agent’s database and beliefs are stochastic even when k is arbitrarily

large, as we show in Example 2 below.

Theorem 3. Suppose (o*)ren is a sequence of finite memory equilibria each with
memory capacity k and that lim,_, of = &. Then & is a heterogeneous-beliefs

selective memory equilibrium.

The first step of the proof is to show that when a* converges to &, the distributions
of databases also converge, so the agent’s beliefs concentrate on ©"(&). The fact
that & is a selective memory equilibrium then follows since each action a for which
&(a) > 0 is a best reply to some belief concentrated on ©™(&). Importantly, there
may not be a single belief that makes all of these actions best replies, so the limit
need not be a unitary-beliefs selective memory equilibrium.

Combining Theorems 1 and 3 shows that a heterogeneous-beliefs selective memory
equilibrium exists, but considering a game between the agent and Nature, where
Nature chooses the agent’s beliefs to maximize the memory-weighted log-likelihood

of the agent’s data, shows that a stronger result is true:
Proposition 4. A unitary-beliefs selective memory equilibrium exists.

A stronger result is obtained if the possible outcome distributions for one action

do not constrain the possible outcome distributions for other actions. Formally:
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Definition 4. We say © has a product structure if for every p’,p” € © and a’,a” € A,
there is p € © with p, = p/, and p.r = pl..

A product structure rules out some cases where the agent is certain there is a
structural linkage between the consequences of the action, e.g., that the outcomes
are equal to the action plus an action-independent shock, or that exactly one action
yields a good outcome (but the identity of that action is unknown.) However, because
the assumption only restricts the support of the prior, it can be satisfied when the
prior weights on most of the possible DGPs are arbitrarily small, and so allows the
agent to learn about the consequences of one action by observing the consequences

of another.26

Proposition 5. When © has a product structure and is convex, any heterogeneous-

belief selective memory equilibrium can be supported with unitary beliefs.

Combining Theorem 3 and Proposition 5 shows that when © is convex and has
a product structure if (a"“)keN is a sequence of finite memory equilibria converg-
ing to &, & is a unitary-beliefs selective memory equilibrium. Example 2 in the
Online Appendix shows that without the assumption of Proposition 5, there are
heterogeneous-beliefs selective memory equilibria that are not unitary-beliefs selec-
tive memory equilibria. It also shows that there exist pure selective memory equilibria

that are not the limit of a sequence of finite memory equilibria.

Corollary 2. Fizr © € A(Y)* and m : A xY — (0,1]. Suppose that all p € O, p*,
and m do not depend on actions. Then:

1. When the agent has infinite expected memory, if there is a unique selective
memory equilibrium a, then P, [sup{t: a; # a} < | = 1 for every optimal
policy 7.

2. For every a € A that is a strict best reply to some beliefs on O, and every
memory capacity k € N, there exist a prior belief with support © and an

optimal policy m such that if Pr[lim; o, ap = a] > 0 then a(a) > 0.

26For example, suppose A = {0,1} =Y, ¢ = (.1,.9), ¢ = (.9,.1), and © = {p',p", p,p}, where
Po=4q="r1, P =4 =ph Po=DP1=q, po=p1 =g The assumption rules out po = (.5p',.5p")
but is consistent with any full-support distribution on ©.
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When the data generating process is exogenous and memory is unbounded, the
empirical distribution of recalled outcomes converges almost surely, and the agent
ends up playing the best reply to this distribution. Since there is a unique selective
memory equilibrium, this best response is unique, and the agent eventually converges
to it. With finite memory, there is a positive fraction of periods in which the agent
recalls so little that they play a best reply to their prior, although the probability
that this occurs becomes smaller and smaller as k goes to infinity. More generally,
when the action does influence the distribution of outcomes, the prior may affect the
probability of converging to a specific selective memory equilibrium. Still, the set
of selective memory equilibria is the same for priors that share a common support.

This is not the case for finite memory equilibrium.

6 Rehearsal and Recency

This section extends the model to incorporate the effects of rehearsal and recency.
Here, rehearsal means that if an experience is recalled in one period, it is more likely
to be recalled in subsequent periods, as in Kandel et al. [2000] and the references
therein, and recency is the idea that the agent gives more weight to more recent
outcomes. To model these phenomena, we assume that the agent’s memory at time
t + 1 is distorted through a rehearsal memory function that can depend on the last
period’s experience and the experiences that were recalled then. Formally, let d,

denote the database recalled at period ¢, and define

my1((a,9)|dy, (ar,y:)) = min{1, k/t} (m(a,y) + 71w gy =1 ot} (@ 9))
(7)
where the experiences that were recalled or experienced last period have an additional
probability of r € [0, 1 — max,ea yey m(a,y)] of being recalled, and r = 0 reduces to

equation (1).2” Throughout this section, we fix an optimal Markovian policy 7.

2TThus the recalled periods at time ¢ 4 1 given the previous period’s database d; and experience
(at,y:) are distributed as in (2), with ms;1 replaced by myy1(-|dy, (at,y:)). Both rehearsal and
recency typically depend on more than just the last period’s outcome and recollections. We think
we could extend the analysis to allow these effects to depend on a finite number of past periods, but
allowing an unbounded number of past periods to matter would cause significant complications.
Mullainathan [2002] also assumes a one-period recency window.
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6.1 Ergodic Memory Equilibrium

Limit Distribution of Databases As in the baseline model, the stationary dis-
tribution of databases is a product of Poisson distributions, but now they depend
on the database recalled in the previous period, in addition to the frequency of each
action a, the probability of the outcomes given a, and how memorable that experi-

ence is. We now define a Markov chain over databases for each action distribution
ae A(A).

Definition 5. The Markov chain 7 has state space D and Markov kernel *;(d’),*®
where for every a € A(A), t € N, and d € D, let 5, € A(D) be a product of

independent Poisson distributions with parameter for (a,y) € A x Y equal to

a(a)py(y) k [m(a,y) +r] if d(a,y) > 1
a(a)p;(y) k[m(a,y) + rp;(y))] if a = 7(u(|d)) and d(a,y) = 0
ala)pi(y) km(a,y) otherwise.

Intuitively, the expected number of times experience (a,y) is recalled given pre-
vious database d is proportional to the frequency of a, the probability of y given a,
how memorable that experience is, and whether it either occurred last period or was
recalled in d. We will show that this Markov chain has a unique stationary distribu-
tion (Lemma 2) and that this distribution is the limit time-average distribution over
databases when the distribution over actions is @ (Claim 1 in the Appendix).

The first step is to note that at any time, every subdatabase of what is currently
recalled has a positive probability of being the subsequent database. In particular,
every period, the null database has a positive probability of being recalled, so the
chain is irreducible on the subsets of databases that can be reached with a positive
probability starting from the empty database. A calculation shows the Markov chain
is also positive recurrent, which yields the following lemma. (All proofs for this

section are in Appendix A.5.)
Lemma 2. 7" admits a unique stationary distribution H, € A(D).

Let F)'/ be the database-dependent distributions of beliefs induced by 7;,: For

28That is, the probability of a transition from d to d’ is Novald').

22



each d € D and all measurable C <€ A(©),

Fd" () = mga ({d' = po(-|d’) € C}). (8)

Definition 6. An ergodic memory equilibrium is an o € A(A) such that there exists
p € O such that o = By, [Epmeo[p(v)]]

Ergodic memory equilibria are fixed points: for every database d, a mixed action
« determines a probability distribution over what is recalled next period, and thus
over the next period’s beliefs. The agent’s policy applied to those beliefs determines
a mixed action ag = EF:’L;IMO [p(v)]; ergodic memory equilibrium requires that the
expectation of ay with respect to the induced stationary distribution over databases

is a.
Theorem 4. An ergodic memory equilibrium exists.

The proof extends that of Theorem 1 by showing that the average of the best
reply correspondence over the database with weights .y has the properties needed

to appeal to a fixed-point theorem.
Theorem 5. If a is a limit frequency, then o« is an ergodic memory equilibrium.

The proof of this theorem has three main steps. We first show that the inhomoge-
neous Markov chain over databases has the “Doeblin property” that there is a state
that has positive probability of being reached in one period from every state, which
guarantees convergence to the ergodic distribution. (In our case, the special state is
the empty database.) The second step generalizes Lemma A.2 on the convergence of
beliefs conditional on the databases, with the key difference that now the limit belief
distribution is database-dependent. The final part of the proof repeats arguments

from the proof of Theorem 2.

6.2 Applications of Memory Rehearsal to Finance

Our model of finite expected memory and rehearsal lets us generalize the findings of
Mullainathan [2002] about income forecasts beyond the specific parametric structure
it assumes. It also lets us provide a novel memory-based explanation of the equity-

premium and equity-volatility puzzles. For this subsection we suppose that the
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outcome ¥ is i.i.d. y; = 0 + ¢, independent of the action of the agent, where 6 € R

and the ¢, are mean- 0 shocks.?”

Correlated Prediction Errors The rehearsal memory function(7) generates the
same predictions about one-period correlations as Mullainathan [2002], without as-
suming associativeness. First, a high outcome last period triggers memories of equally
high past realizations, so the forecasting error will be negatively correlated with the
most recent information.?® Second, when the baseline probability of remembering
an event is low, and the rehearsal effect is strong, the forecast errors in successive
periods are positively correlated for the same reason as in as Mullainathan [2002]:

memories that are remembered are more likely to be remembered again.

Asset pricing Suppose that each of a continuum of risk-neutral agents indexed
by x € [0, 1] has a constant per-period amount w to invest, and each period decides
whether to buy, sell, or not trade a unit of a representative equity portfolio in net
zero supply and invest the wealth net of the expenditure/revenues from the risky

t.31 The safe asset has net return i € [—1,00) per period,

asset in the risk-free asse
while the risky asset provides per-period net return ¢ + 6 + ¢;, where from the point
of view of the agents # is a random variable with unknown distribution and ¢ is
symmetric, zero mean period specific shock. The risky asset is in net-zero supply
and prices py and p; are determined by market clearing: p; — py = Median[E,[0]]. In
this setting, the equity premium puzzle is that if the distribution of # were known
and equal to that observed in the data, a very large amount of risk aversion would
be needed to justify the observed difference in asset prices.

Weitzman [2007] explains this with the combination of an overly pessimistic prior
and the assumption that the agent believes 6 changes over time, so they discard
old observations. Ergodic memory equilibrium predicts the same effect even with

a perceived constant € and with risk neutrality an unbiased but selective constant

29Both Mullainathan [2002] and Weitzman [2007] assume that outcomes follow an AR1 process.
Our assumption of finite expected memory has the same implication even in an i.i.d. setting.

30Mullainathan [2002] supposes that y has a positive density on the real line so that some form
of associativeness is needed for rehearsal to have any effect.

31Under our assumption of risk neutrality, a bang-bang solution in which all the income is
invested in the same asset is without loss of optimality. We restrict to this case to be able to
directly apply our results, which assume finite actions.

24



memory function m(a,y) = ¢, ¢ € (0,1).32 Here, the agents’ actions impact their
payoffs, but all agents observe the sequence of realized prices and returns. Therefore,
Theorem 5, paired with an exact law of large numbers, guarantees that if the action
distribution converges to « in the long run, the distribution of recalled experiences
equal H,. Therefore, even in the long run, the agents will rely on a limited number
of observations. If the prior is symmetric and centered around a value § < 0, the
pessimistic prior can sustain the premium. This is because the combination of the
distribution of experiences H, centered around # and the prior centered around 6

makes the median expected value of § < 6 under the posterior strictly smaller than
9T‘33

7 Conclusion

This paper provides a simple and general model of limited memory, which can be
applied to many economic problems. In particular, the role of memory in belief
formation is important for behavioral economics and macroeconomics, so our work
will be useful there. The paper shows how limited memory can provide a founda-
tion for some well-known models of stochastic choice, and it characterizes how the
asymptotic outcomes with limited memory relate to the asymptotic outcomes when
memory capacity is unbounded.

The paper has maintained the assumption that agents are completely myopic.
Fudenberg, Lanzani, and Strack [2024] showed that the qualitative predictions of
selective memory equilibrium extend to agents who are partially naive about their
memory and believe they have a memory function m instead of their actual mem-
ory function m. We expect that finite memory equilibrium has the same sort of
qualitative robustness, but we have not checked the details. Under this extension,
something that would be interesting to explore is the use of reminders to remember
better, and especially the combination of this possibility with rehearsal.

Finally, throughout the paper, we assume that the agent uses Bayesian updat-

321t is easy to see that a memory function that is more likely to recall negative stock performance
would create an additional force towards the equity premium puzzle.

330f course, as the size of the average number of recalled events grows, the premium shrinks,
just as the premium in Weitzman [2007] shrinks as the fundamental’s rate of change goes to 0.

25



ing. This is a standard model of how people use their information, but it is only
approximately correct. Many different models have been proposed to capture de-
partures from this benchmark rule.>* We believe that our characterization of limit
databases (Lemma 1) and our use of stochastic approximation techniques with per-
sistently stochastic frequencies (proof of Theorem 1) can be fruitfully combined with
non-Bayesian inference from agent’s limited memory to develop a model that is more

realistic albeit more complex.

A Appendix

A.1 Preliminaries

Let (vs)ien € A(A x Y)N be a sequence of empirical joint distributions over actions
and outcomes. The next lemma shows that almost surely, if the action frequency
converges to some a*, then the joint empirical distribution of actions and outcomes

converges to the distribution where each pair (a,y) has frequency o*(a)p*(y).

Lemma A.1. For any policy w

P, L max limsup |v(a,y) — a(a)pi(y)| # 0] =0

avy)EA xY t—00

and in particular for every o* € A(A),
P, | i =a" and li ) — a*(a)pk 0f=0.
o= o ond | Tmsup oo, ) — a* )] < 0]
Proof. Consider the stochastic processes (ng’g))(&@)e Axy.ten defined by
X" = (L () = P5(9) ey (ar) V(@ 9) € Ax Y, VteN.

These stochastic processes correspond to the deviations of the number of times each y
has appeared from their expected frequencies given the actions chosen. The processes
are measurable with respect to the filtration (F;),.y generated by the stochastic

process of histories (h;),.. They are not i.i.d., as previous outcome realizations affect

34See the reviews in e.g., Benjamin [2019] and Ortoleva [2022].
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current period choices, but for each (a,y) € Ax Y, E[ | F:] = 0. Consequently,
(X,E“ y))teN is a martingale difference sequence, and from the strong law of large
numbers (see Theorem 2.7 in Hall and Heyde [2014] for the version that applies

here) limy, o = 330, Xga’y) =0, P,-a.s. And since

]]-a Gy, a :H'a a C
0= lim L ZXay _1}5{3@2 o} (ar; Y1) np fa} (a1) = S (e, y)—on(@)p (),

n—0o0
—en =1

we get limy_,o, vi(a,y) — au(a)pi(y) = 0, Pr-a.s., and in particular lim; . vi(a,y) —

a*(a)pi(y) = 0, Pr-a.s. conditional on lim, o oy = . O

Lemma A.2. Let « € A(A). For P, almost every sequence of histories (hy)wen if
lim; oy = «, the distribution of u; given hy—y weakly converges to F"*°  and F(T_';"“O

1S continuous in .

The proof of Theorem 3 applies a fixed-point theorem to the correspondence
ko s A(A) 3 A(A) defined by U™ (o) = .o 50 (a).

Lemma A.3.

PmHo 4s non-empty valued.
ko g4s closed valued;

ko gs ypper hemicontinuous;

ko 4s conver valued;

ARSI S

o' € A(A) is a finite memory equilibrium if and only if o/ € ¥(a/).

The proof of this result is in Online Appendix B.1.

A.2 Proofs for Section 3

Proof of Lemma 1. By Lemma A.1, there is P-probability 0 of sequences of his-
tories (hy)en, in which limy o, oy = « but where we do not have lim;_, v(a,y) =
ala)pk(y) for all (a,y) € A x Y. Take any sequence of histories (h;)sen, in which
lim; ., ay = « that is outside of that null set. We prove the stated convergence on

that sequence of histories.
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The database at time t > k is distributed as a product of multinomial distribu-
tions: for all d € D

P, [d, — d] = 1—[ (vt(a,y)t) (ﬁm(a, y))d(a,y) (M)vt(a,y)td(a,y)‘

(a,y)eAXY d(&’ y) L ¢

By the Poisson limit theorem (e.g., page 15 of Loéve [1977]), the probability that
(@]

: . VDY
(a,y) is recalled C' € N times converges to e **v=%! where

oy = i vla) (5 (m(a) )

Thus, on this sequence of histories, the number of times (a,y) is recalled converges

to a random variable Poisson distributed with parameter A, ,. ]

Proof of Theorem 1. By point 5 of Lemma A.3, every fixed point of W""#0 is a
finite memory equilibrium. By points 1 and 2 of Lemma A.3 and the closed-graph
theorem, W™ has a closed graph. The Lemma also shows it is non-empty valued
and convex-valued, so it admits a fixed point by the Kakutani fixed point theorem.

[

The proofs of Theorems 2 and 5 use the continuous-time approximation of the
process of empirical frequencies. Set ap: = aq, 79: =0, and 7: = 2221% for all
t € N. Following Benaim, Hofbauer, and Sorin [2005], we define the continuous-time
interpolation of (ay)en to be the function w : Ry — A(A)

— 1
w(t +¢) = aﬁ—cu, VieN,Vee [0, —|. (10)
Ti+1 — Tt t+ 1

Proof of Theorem 2. We extend the Esponda, Pouzo, and Yamamoto [2021a] ap-
plication of Benaim, Hofbauer, and Sorin [2005]’s stochastic approximation tech-
niques for differential inclusion to settings where beliefs remain stochastic in the
limit. In particular, we will use the results of Benaim, Hofbauer, and Sorin [2005] to

show that (10) can be approximated by a solution to

Qlt) € U™ (au(t)) — ax(t). (11)
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A solution to (11) with initial point x* € A(A) is a mapping z : R, — A(A) that
is absolutely continuous over compact intervals, with z(0) = z*, and (11) satisfied
for almost every t. By part 3 of Lemma A.3, a solution exists by Theorem 2.1.4 in
Aubin and Cellina [2012]. For every T' € N and z* € A(A), let X7, be the set of
solutions to (11) over [0, T with initial conditions *, and let X = (e () Xox-

Now we show that the continuous-time interpolation of o defined in (10) can, in
the long run, be approximated arbitrarily well by a solution to (11). Define the ran-
dom variable U, = a1 —U,, where U, is an arbitrary element of AN ey (o) ||t r1—
a/||. Since both W0 () and cy1 are uniformly bounded, U, is uniformly bounded.
Moreover, by Lemma A.2 and the definition of W"#°(q,), on P, almost every se-
quence of histories (h;)en where lim; o, oy = «, Ut converges to 0, so condition (i)
of Proposition 1.3 in Benaim, Hofbauer, and Sorin [2005] is satisfied. Condition (ii)
is also satisfied because ||ay1 — ayl|eo < 1/(t+ 1), w is Lipschitz continuous of order
1, and o is uniformly bounded because it takes values in A(A), so w is a perturbed
solution of (11). Thus, by Theorem 4.2 in Benaim, Hofbauer, and Sorin [2005],%

tlijg) &iergT Ozlng llw(t +s) —a(s)|| =0 P, almost surely for all 7" e N. (12)
Suppose by contradiction that « is not a finite memory equilibrium. We will
show it is not a limit frequency. By parts 1,2, and 4 of Lemma A.3, the separating
hyperplane theorem guarantees that there exists f € R* with a- f > maxsew(a) @ f-
Let K = o+ f —maxXsew(a) @ f. By part 3 of Lemma A.3, there exists ¢ € Ry, such
that for all o/ € B.(a), maxaew(w) @ [ < MaXsew() @ - f+K/4and o' -f > a- f—K/4.
Therefore, for every initial condition o* € B.(«) and every solution in X7, a(t) - f
decreases at rate at least K /2 until the solution leaves B.(«). So there exists 7' € N
such that for every initial condition a* € B.(a) and every solution in X2, the

differential inclusion leaves B.(«a) by time T, that is,3¢

sup inf{t:a(t) ¢ B.(a)} <T Va* € B.(«). (13)

=T
ana*

35The proof of Theorem 4.2 in Benaim, Hofbauer, and Sorin [2005] invokes an implication of
their Theorem 4.1 that is not correct. However, the weaker statement we are invoking is correct,
as shown by equation (3) in Esponda, Pouzo, and Yamamoto [2021b].

36To see that T can be taken to be the same for every a* € B, let C = maXyrep, (o) Of —
Mingep,_ (o) @f and take T'=2C/K + 1.

29



To conclude the proof, we will show that a; does not converge to o on any path (hy)sen
where (12) applies. Since the set of such sample paths has P, probability 1, this
implies that « is not a limit frequency. If there is no 7' € N such that w(c) € B.js(a)
for all ¢ > 74, (ou)ien does not converge to a. So let T € N be such that on the chosen
path (h:)en, w(c) € Bejo(a) for all ¢ > 74 and infse xr supg< < |w(T +5) —&(s)]] <
/4, and take & € X7 with

sup ||w(T + s) — &(s)]| < /4. (14)

0<s<T
Then (13) implies that the differential inclusion leaves B.(«a) at least once between
T and T+ T, and by (14), a; must leave B.js(av) at least once between TandT+T.
This proves Theorem 2. O]

A.3 Proofs for Section 4

Proof of Proposition 1. We first construct the target random utility representa-
tion and then prove convergence to it. Consider the map G : D — P such that
aG(d)d' if and only if a = 7w(u(-|d) | {a,a’}). Because the agent uses a Markov
policy, the map G only depends on the agent’s beliefs and not on other aspects of
the database, so the random utility representation ¢ given by ((P) = "% (G~*(P))
is well-defined.

Because the sets of menus and actions are finite, the proposition can be estab-
lished by proving pointwise convergence of the probabilities that any given action is
chosen from any given menu. Fix M € M and a € M. Lemma A.2 shows that for P
almost any sequence of histories such that P.[lim; . ; = o*] > 0, the probability
that the number of recalled (a, y) experiences is equal to ¢ for every ¢ € N converges to
its probability under a Poisson random variable with parameter o*(a)p?(y)km(a,y).
Therefore, if we define 7" to be the probability distribution over databases recalled
at period 7 + 1 given h,, we have that lim, .., n"" = "%,

To link this with the convergence of the stochastic choice rule, let Dy (a) = {d :
Va' € M,aG(d)a’} and observe that the difference between c¢(a, M) and Pr[a,11 =
alh,, M] is bounded by |n™(Dys(a,a’) — n"*(Dys(a,a’)|. For every | € N, this is less
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than

ey | d e Dy(a) : Z d(a,y) > 1| —n" [ de Dyla): Z d(a,y) >1

(a,y)EAXY (a,y)EAXY

+{nm | d€ Dy(a) : Z d(a,y) <1 |—n" [ de Dyla): Z d(a,y) <1

(a,y)eAXY (a,y)eAXY

Both addends can be made arbitrarily small by taking [ and 7 large.

And the set {d : Va' € MaG(d)d', X}, e axy d(a,y) < 1} is finite, so the pointwise
convergence of the probability over database implies the convergence of the prob-
ability on that set. This establishes the random utility representation, given that
tiebreaking is menu-independent.

To see that the stochastic choice rule admits an information representation, we
map our objects to those in Lu [2016]. We identify the states S with ©, the acts
H with actions A, and the outcomes with utility realizations Z = {u(a,y) : (a,y) €
A x Y} (where u is our u). Let the utility function u of Lu [2016] be the identity,
with each action mapped to an Anscombe-Aumann act by associating each state p
to the lottery p,({y : u(a,y) = u}). Given this mapping, the stochastic choice rule
admits a representation with distribution over posteriors v = F”"#0. Finally, that
a*(a) = cc(a, A) follows by Theorem 2. O

Proof of Proposition 2. By Theorem 2, for every optimal Markovian policy T,
there exists a unique limit frequency. Fix such a policy, let o be a limit frequency
it induces under p*, and suppose frequency & is a limit frequency under 7 and the
new objective distribution p*. We next show &(a) = a(a). By Lemma A.1, the limit
distribution of action a’s payoff P, almost surely increases. Moreover, because the
outcomes of different actions are independent, conditional on each value y, the limit
distribution of the payoffs of each action other than a is almost surely the same as
before the change.

Because m is constant, at any period 7 the probability of recalling exactly ¢t <t
experiences is unaffected by the FOSD increase of the objective distribution of y,.
Moreover, conditional on having recalled that period, P, almost surely there exists

a sufficiently large 7 such that the recalled payoff distribution of action a first-
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order stochastically dominates what was before. Thus by Theorem 5 in Milgrom
and Weber [1982] P, almost surely there exists a sufficiently large ¢ such that the
agent’s subjective expected value of action a, E,pa,)[Eplva]], increases in first-order
stochastic dominance. Conditional on each predicted expected value of action a,
E,.pld) [Eplya]], the distribution of the predicted expected values of the other actions,
(Eppld) [Ep[yar]])area\a, remains the same. The result follows since an action is chosen

only if it has the highest predicted mean. O

Proof of Proposition 3. We first derive the limit distribution of actions condi-
tional on recalling n, € N experiences for each action a € A. Because the agent’s
prior is symmetric across the actions and Normal, it is optimal for the agent to choose
the action with the highest average payoff among the experiences they remember.
Since memory is unselective when the agent recalls n, experiences for action a, each

of them is normally distributed with mean ¢, and variance o?.

Therefore, the av-
erage payoff of action a is Normally distributed with mean ¢, and variance o2/n,.
Since the prior is symmetric, the induced choice probabilities are equal to those in
a Probit model with a vector of mean parameters (7,).ca and a diagonal covariance
matrix with entries (62/n,)q4e4-

We next derive the distribution over the number of recalled experiences. Let

t = k and a € A. The probability that d;;1(a,Y) = n, € N conditional on the

t) kai(a) \ "¢ [ t—kou(a) =
Na t t

page 15 of Loeve [1977]), the probability that diy1(a,Y) = n, € N converges to

e—a(a)k (a(a)k)"e
k
lim ¢ (O‘t(t“) ) = afa)k. (15)

history (a’,y") is ( " By the Poisson limit theorem (e.g.,

, as

ng!
t—00

This concludes the proof as it guarantees that the number of recalled experiences of

action n, is exponentially distributed with parameter a(a)k. ]

A.4 Proofs for Section 5

As a first step towards proving Theorem 3, we establish a deviation bound for ratios

of random variables whose distributions converge to Poisson distributions. Since in
m,k
ak

this proof we let & grow, we explicitly index the distribution 77 by k, i.e., as n
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Lemma A.4. Suppose that limy_,.,a* = &. For every € > 0 and (a,d’,y,y’) €
A% x Y% with a(a’) > 0 and p*(y') > 0

day)  al@m ( i )
s, Py Hd(a',w & (a)m

k—o0 nk

Moreover,

A !/ !/ / * /
hm]P)nm,k: ld(a/’y/)_a(a>m(a7y)pa’<y)k<€i|:0.

k—o0 ok
The proof of this result is in Online Appendix B.1.

Proof of Theorem 3. Let f(d) € A(A xY') denote the empirical joint distribution
over action-outcome pairs corresponding to d € D. By Lemma A .4, for every M € N

and € > 0,

oA *

Hm P [ > da,y) > M, Jax | f(d)(a,y) — a(a)m(a, y)p,(y)] <€]
acA,yeY

is equal to 1. That is, with probability approaching 1, the database is large, and the

recalled frequency of pair (a,y) is approximately proportional to &(a)m(a,y)pi(y).

Let e > 0. By Assumption 1 there exist ¢’ < ¢ and K > 0 such that

(Z a(a) Y m(a, y)pi(y) logpa(y)) - (Z a(a) Y m(a, y)pi(y) 1ngé(y)) > K

acA yeY acA yey

for all p e B (0™ (&)), p' ¢ B-(©™(&)). Thus, there is a set of databases d that has
Pn;nk,k probability going to 1, whose length >, , .y d(a,y) is growing to co and such
that

p(B:(©"(@)ld) _ Jn@mian T lapeary Pl du(r)
1 — p(B:(0™(a))[d) S@\BE(@m(d)) H(a,y)eAxy(pa(y))d(a’y)dﬂ(p)

> (B (0™(@))) exp <K/2 > d(a,w).

acA,yeY

Since the RHS is growing to oo as k grows and € can be arbitrarily small, the agent’s
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beliefs concentrate on ©™(&). The fact that & is a selective memory equilibrium
then follows from the fact that every action a for which &(a) > 0 is a best reply to
a belief that assigns an arbitrary high probability to any e ball around ©™ (&) and

the upper hemicontinuity of the best reply correspondence. O

Proof of Proposition 4. This proof builds on the proof of Proposition 4 in Lanzani
[2024]. Consider the following two-player game. The action sets are A; = A (A),

Ay = A (©) with arbitrary elements denoted as «,v. The utility functions are

Ui(aw) = Ya | Elulap)dip)

acA e

Uz (a,v) = | Dla(a) D m(a,y)p;(y)logp. (y)dv (p).
(S)

acA yeY

Note that any pure-strategy Nash equilibrium of this game is a unitary-beliefs selec-
tive memory equilibrium, and the game satisfies the assumptions®” of Reny [1999]

Theorem 3.1, so a pure strategy equilibrium exists. O

Proof of Proposition 5. Let a be a heterogeneous-beliefs selective memory equi-
librium. When © has a product structure, the maximization in equation (6) can
be done separately for each a € A, and when © is convex, there will be a unique
maximizer for each a € supp(a). For every for a € supp(«) let p, be the likeli-
hood maximizer and for every a € A let p = argmin g, (Zer u(a, y)q(y)). Define
Pa = Do for a € supp(a), p, = p, fora ¢ supp(a). By the product structure as-
sumption, p € ©, and « is a unitary selective memory equilibrium with belief J;.

]

Proof of Corollary 2. Part 1 follows from the proof of Theorem 2 in Fudenberg,
Lanzani, and Strack [2024]. For part 2, note that by Theorem 2, if P [lim; o oy =
al > 0, a is a finite memory equilibrium, so the probability that the agent doesn’t
remember any relevant data is [ [, )c 4.y exp(—a(a)p;(y) km(a, y)) > 0. The result
follows by choosing a prior that makes a the unique best reply. O]

37The action spaces are convex and compact because they are the Borel measures on compact
sets. The utility function U; is continuous in its second argument, and Us is continuous in its first
argument, so the game is better-reply secure, and U; and Us are linear in A; and Aj respectively.
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A.5 Proofs for Section 6

This section proves our results for the model that allows for rehearsal.

Proof of Lemma 2. Let D’ < D denote the set of databases that, under the
Markov chain 1, have a positive probability of being reached with a finite number
of transitions from the empty database. At any database d € D’, the probability of a
transition to the empty history is bounded below by @ := [, ,yca.y exp(—a(a)p;(y) k [m(a, y)+
r]) > 0, so D' is a closed communicating class. Moreover, for any d’ € D', there is
7 € N such that, given that the state at period ¢t € N is the empty database, the
probability that the state at period ¢t + 7 is d’ is some M > 0. Thus the expected
time of return to d’ is bounded from above by 7+ Y,.7 (1 — P(return time < 7+1)) <
T+ Y0, (1—=QM)" < w0, so d is positive recurrent. Since there is zero probability of
leaving D', the Markov chain is irreducible on D’, and all the states in D’ are posi-
tive recurrent, 77" has a unique invariant distribution (see Theorem 5.5.9 in Durrett
[2008]). [

Let W4 (a) denote the distributions over actions induced by an optimal Markovian

mixed policy p and random beliefs p: W™ (v, d’) = | 00 SA(@) p(V)dE, 3" (v).

Lemma A.5

1§, o (- d)dH o (d') is non-empty valued.

2. { ko (- dYdH ey (d') is closed valued;

8.\, Umko (- d'YdH .y (d') is upper hemicontinuous;

4. §pumro (- dYdH ey (d) is convex valued;

5. §, @ (- d)dH(d') is an ergodic memory equilibrium if and only if of €
§p U (o, d ) dH o (d)

The proof of this result is in Online Appendix B.1.

Proof of Theorem 4. Lemma A.5 shows that every fixed point of ¥ = §_ W™ (. d')dH,(d')
is a finite memory equilibrium, and that ¥ is non-empty valued and convex-valued.
Together with the closed-graph theorem, the lemma also shows ¥ has has a closed

graph, so it has a fixed point by the Kakutani fixed point theorem. O]

Lemma A.6. For any o € A(A) and any sequence of histories (hy)wen such that

limy o v (a,y) = a(a)p®(y) for all (a,y) € AxY, the distribution of i1 when d, = d'
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converges to the product of independent Poisson random variables, with parameters
Md)ay = ala)pz(y) k (m(a,y) + r(lwo(d'(a,y)) + Lop(d' (@, ¥)) Lntuciarn (@)Ps(y))-
Moreover, the distribution of p; conditional on a database at time t — 1 equal to d

weakly converges to I 7° € A(A(O)), and F';" is continuous in .
The proof of this result is in Online Appendix B.1

Proof of Theorem 5. The proof has four steps. First, Lemma A.6 characterizes
the Markov chain on databases when the empirical distribution of actions and out-
comes converges. Claim 1 then shows that this chain is ergodic. The third step uses
stochastic approximation to show that play can only converge to a fixed point of the
associated differential inclusion, as in the proof of Theorem 2. Finally, we show that

if o is not an ergodic memory equilibrium, it cannot be a fixed point.
Claim 1. The distribution of databases converges to Ho ast — o0.

Proof. Lemma A.6 shows that the transition matrices over databases converge as
t — oo and says what the limit is. Moreover, for every € > 0, there exists K € N such
that the probability that H, assigns to the transition from an arbitrary database to
the set of databases with K or more experiences is smaller than €. Create a coarser
finite state space where every database with K or more experiences and the same
set of experiences with positive frequency in the database is pooled together, i.e.,
databases d, d’ are pooled if 1) >}, 4y dla,y) > K, ii) 25, eaxy @(a,y) > K, ii)
for every (a,y) € A x Y, d(a,y) = 0 iff d'(a,y) = 0. Transition to the null database
always has positive probability in the Markov chain for the restricted process, so
the limit matrix is regular, and by Theorem 4.14 in Seneta [2006], the Markov chain
converges to a stationary distribution that coincides with H, on the coarser history.?®

But since £ can be chosen arbitrarily small, the claim follows.

The third step of the proof uses stochastic approximation to show that the long-
run behavior of (10) can be approximated by e(t) € Ey,, [¥(a(t),d)] — a(t). The
last step parallels the last step of the proof of Theorem 2 with {, " (ar, d')dHq in
place of W0 («) after observing that §, ¥"#°(«,d’)dH inherits the key properties

of U0 as shown by Lemma (A.5); we omit the remaining details. [

38Cohn [1981] and Cerreia-Vioglio, Corrao, and Lanzani [2024] prove related convergence results
for finite-state inhomogeneous Markov chains.
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B Online Appendix

B.1 Omitted Proofs

Lemma A.2. Let a € A(A). For P, almost every sequence of histories (hy)sen if
lim; ., ay = v, the distribution of y; given h;_; weakly converges to F""° and F(’;’“ 0

is continuous in «.

Proof. The convergence of the distribution of beliefs follows from Lemma 1. Let
(atn)nen € A(A)N be a sequence converging to o*, and fix some ¢ > 0. Let (NgZ)(a’y)eAxy
be independent random variables with distributions corresponding to the marginal
of % on (a,y). Since all the NC‘}Z have Poisson distributions, there is a K € N such
that P[max(qy)eaxy N;“Z > K| <e. Let M € N be such that P[max(gyecaxy No7 >
K] <eand |[P[Ngn = c] - IP’[N;:Z =c¢]| < e for all (a,y) e AxY, for all ¢ < K and
n > M. Then for any continuous and bounded f : A(©) — R, for all n > M we

have

<2 max [fOI(K + DA x Y]z (16)

f f(V)dFﬂ’“O—f F)dEm
A(©) A(©)

so FH0 weakly converges to F7"#°. Since the sequence was arbitrarily chosen, F, 6"“ 0

is continuous in «. O

Lemma A.3. 1. U™ is non-empty valued.
2. U™Ho g closed valued;

3. U™ ig upper hemicontinuous;

4. P™Ho is convex valued;
5

. o € A(A) is a finite memory equilibrium if and only if o/ € ¥(«).
Proof.

1. Since the set of actions is finite, there is at least one measurable selection from

the best reply correspondence.

2. A(A) is finite-dimensional and bounded, U ,eop(v) is closed for every v € A(O),
and U™#0 () is the Aumann integral [Aumann, 1965] of the (mixed) best reply

correspondence with respect to the distribution of beliefs F#0. Therefore, it



satisfies the assumptions of case (i) of Theorem 2.1.37 of Molchanov [2017], s

it is closed.

3. By Lemma A.2, F'}* is continuous in «, and so by Artstein and Wets [1988],

Theorem 4.2, ¥™#0 is upper hemicontinuous.
4. This follows immediately from the definition of W™#0.

5. This follows immediately from the definition of finite memory equilibrium.

]

Lemma A.4. Suppose that limy ., a* = &. For every ¢ > 0 and (a,d,y,y) €
A% x Y% with a(a’) > 0 and pf (y') > 0

Hd(a,y)_ a(a)m(a,y) p; (v)
dla’,y')  a(a)m(a,y)p} (V')

Iim P
k—o0 nk

>5]=0.

Moreover,

A !/ / / * /
hH]. ]P)n'm,k |:d(a//,yl)_a(a/)m(a7y)pal (y>k <€] :O

k—o0 ok

Proof. Let € (0,1), and a € supp &. By Chernoff’s Theorem (e.g., Theorem 9.3 in
Billingsley [2017])

P, [ld(a,y) - ko* (@) m (a,y) pi (y) | > Bka® (a)m (a,y) pk (y)]

< me (c)e —cBka* (aym(a,y)p¥ (y)

Na,y

where M, ~is the moment generating function of the distribution associated to

d(a,y). Because d(a,y) has a Poisson distribution with expected value ka* (a) m (a,y) p¥ (y),

P, [[d(a,y) = ka* (a)m (a,y) P (y) | > Bka® (@) m(a,9) P (v)]
inf exp (ka* (a) m (a,y) p; (y) (¢° — 1)) exp (—cBka’ (a) m(a,y) p; (v))
= infexp ((e° — 1+ Be) ka® (a) m (a,y) pk (y)) < exp (CZ/fOék (a)m (a,y) Pk (v)),

ceR

N

where cf € R__ is any strictly negative real number that depend on 3 (but not on

k) such that inf.g (e — 1+ Bc) < ¢ < 0. (Such a number exists because for every

2



e (0,1), infeeg (e — 14 Bc) < (1/e — 1 — ) < 0.) Taking the limit k& — oo gives

Jim P, [[d(a,y) = ka (@) m(a,9) p; (y) | > Bka* (a)m (a,y) Py (y)] =0 VB e (0,1).
(17)
Analogous steps show that limy_c P mx[d(@, y) > kA] = 0 for all @ ¢ supp &(a) and
A > 0.
Let 8 € (0,1) be such that for all v € [0, 5]

at(a)m(d,y)py (y) (1 =) «

o (a)m (a,y) pi (y) (1 +7) o (a)m (a,y) P} (v)

and
ar(@)m(a,y)pi(y)  o*(@)m(a,y)pk(y) (1-7)
of (a)ym(a,y)ph (v)  oF (a)m(a,y)ph (V) (1+7)
Thus we have
dla,y) o (a)m(a,y) P} (y)
2 P Hdw,y') k(@) m(d,y)pl (v) ”]
< Jlim P [[d(a,y) — o (a) m(a,y) pi (y) K| > ka® (a) m (a,9) ; (v) 5]

k—0o0

P [[d('s ') = of (@) m (@, 9) Pl () B > ke (@) m (') v () 5]

Equation (17) implies that the RHS goes to 0, and since o

is converging to &, this
proves the first part of the lemma.

The second part of the statement immediately follows by equation (17). O]

Lemma A.6. For any o € A(A) and any sequence of histories (hy)wen such that
limy oo vi(a,y) = ala)pi(y) for all (a,y) € A x Y, the distribution of d;; when
d; = d' converges to the product of independent Poisson random variables, with

parameters

Md)ay = ala)ps(y) k (m(a,y) + r(Imo(d (@, y)) + Loy (d (@, y) Dn(guclany) (@)p; (y))-

Moreover, the distribution of p; conditional on a database at time ¢t — 1 equal to d’

weakly converges to F) ;" € A(A(O)), and F;* is continuous in a.

Proof. Given a database d’ recalled in period ¢t — 1, the database at time t > k is



distributed as a product of multinomial distributions:

Pdd]= ] (”t(a” y)t)

(a,y)EAXY d(a’ y)

k

d(a,y)
< (Bonta) + r(hnald ) + L@ 0, Vg (@0 0)

k ve(a,y)t—d(ay)
g (1 = 7 (mla,y) + r(Lwo(d'(a,9)) + Lioy(d(a, y))ﬂwaucd’)})(a)pZ(y)))>

By the Poisson limit theorem (e.g., page 15 of Loéve [1977]), the probability

that (a,y) is recalled C' € N times when the previous database was d’ converges to
e~ AMd)a.y MGy where
cr o

@y = i (o)t (a5 + r(Liald(0,0) + Loy (@) e @1 )D))

= a(a)p;(y) k (m(a,y) + r(Iwo(d (a,y)) + Loy (d' (@, ) Ln(guclany) (@)ps () -
(18)

Thus the random number of times (a, y) is recalled conditional on v; and the previous
database being d’ converges to a random variable Ng, (d') that is Poisson distributed
with parameter A\(d'),,. Moreover, let (av,)nen € A(A) be a sequence converging to
o, and fix some € > 0. Since all the Ng“: (d’) have Poisson distributions, there is a
K e N such that

P[ max Ng:(d’) > K] <e.

(a,y)eAxY
Let M € N be such that P[max(yyecaxy Nop(d') > K| < ¢ and [P[Ng2(d) = c] —
PN (d) = ]| < e for all (a,y) € Ax Y, forall c < K and n > M. Then for any
continuous and bounded f : A(©) — R, for all n > M we have

J fW)dED —f fW)AF)3" 1 <2 max [f(v)|[((K + 1)|A x Y])e, (19)
A(©) A(©)

veA(O)
so ") weakly converges to F, . O
Lemma A.5.

1§, wmko (. d)dH ) (d') is non-empty valued.
2. (@ (. d)dH .y (d') is closed valued;

4



3. §, Umko(. d')dH.y(d') is upper hemicontinuous;
4. §,wmko (- d)dH .y (d') is convex valued;
5. §,wmio (., d')dH . (d') is an ergodic memory equilibrium if and only if o € § U™#0 (o, d')dH o (d').

Proof. First, observe that {  W™#o(. d")dHy(d') is the integral of the mixed best

reply correspondence with respect to the measure SD F ;n Ay (d).
1. Follows from the finiteness of A.

2. Follows from the finite dimensionality of A(A) and Theorem 2.1.37, case (i) of
Molchanov [2017].

3. By Lemma A.6, F{’;"“ ® is continuous in «. Moreover, since the stationary
distribution is continuous in the entries of the corresponding Markov chains
on the set of matrices that admit a unique station distribution, H)(d') is
continuous in and so is §, W0 (-, d')dHy(d'). Therefore, by Artstein and
Wets [1988], Theorem 4.2, ™0 is upper hemicontinuous.

4. Immediate from the definition of { W™ (. d")dH.)(d').

5. Immediate from the definition of ergodic memory equilibrium and W0,

B.2 Additional Examples

Example 1. Suppose that A = {0,1} and u(0,y) = %, u(1l,y) = y where Y =
{0,1}. Let pi(1) = 0.9 and k = 2, with the prior about the probability of 1
under action 1 beta (1,2). There are two equilibria, o/,o” with o/ (0) = 1 and
a” (1) = 0.45, where the second fived point is found using the Mathematica pro-
gram available at https://www.dropboxz.com/scl/fi/wiltzstdynepbdOnzTnnnj/
multipleNew.nb?rlkey=5dnjsilme6injrs62m79n9hl66d1=0.

Example 2. Let Y = {-1,1}, A = {-1,0,1}, u(a,y) = ay — 0.1Lj_y 1y (a). The
agent has unselective memory, m(-) = m < 1. They believe that the probability
of y = 1, is independent of a and is either equal to .9 or .1, so the myopic best
response is 1 if p(.9) = 9/16, —1 if p(.9) < 7/16 and 0 if 7/16 < p(.9) < 9/16.


https://www.dropbox.com/scl/fi/w1tzstdynepbd0nz7nnnj/multipleNew.nb?rlkey=5dnjsi2me6injxs62m79n9hl6&dl=0
https://www.dropbox.com/scl/fi/w1tzstdynepbd0nz7nnnj/multipleNew.nb?rlkey=5dnjsi2me6injxs62m79n9hl6&dl=0

The true probability of outcome 1 is indeed independent of a, and equal to 0.5.
Here both .1 and .9 are likelihood mazimizes, regardless of the action distribution.
Thus, uniform distribution over actions is also easily seen to be a heterogeneous-belief
selective memory equilibrium. Moreover, action 0 is a unitary-belief selective memory
equilibrium supported by the belief that both models are equally likely. There are no
unitary beliefs equilibria with a positive probability of both actions —1 and 1 because
the unique belief that makes actions —1 and 1 indifferent assigns equal probability to
0.9 and 0.1, and at that belief, action O is preferred to both. However, if the prior is
uniform over .9 and .1, then after observing j occurrences of y = 1 and k occurrences
of —1, the posterior probability that .9 is 997%, so the agent strictly prefers either
action 1 or —1 unless 7 = k. As k grows to infinity, the probability that j = k goes

to 0, so the finite memory equilibria converge to the heterogeneous-belief equilibrium
(1/2,0,1/2).
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