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law of large numbers?

» Three simple, important and distinct reasons why they might
not wash out:
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13)
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» Natural to combine networks and information to think about
interaction
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Networks and Information

» Consider a network game with quadratic payoffs (linear best
response) and normally distributed payoff shocks

» For a fixed network game, characterize what can happen for
all information structures at once
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This Talk

1. characterization of all outcomes and "robust predictions /
information design" agenda

2. one dimensional signals (an example of a particular
information structure)

3. three rationalizations (an example of an application)

4. networks and information: alternative approaches
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> there are N agents
> agent i takes action a; € R

> agent i's payoff is given by:

1
ui (a,0;) Z’Y,ﬂj +0; ) i+ 5%7312

and where 0; is agent's i "payoff type" and ; < 0.

> so agent / will have linear best response, choosing a; to satisfy

N
Vie N, IE[G, + Z')f,-jaj]a,-] = 0. (1)
=1

or

a; = —i (9/—|—Z’)’ijaj>

i J#i
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Game

> the strategic interaction is characterized by the parameters
{7 }i.ken, which are represented by:
Yiio o TMin
r— . _ .
TNt o TN

> payoff types are jointly normally distributed:

01 Ho,
~N Co o Xeg |

On Hoy

where Xgg is an arbitrary positive definite matrix.
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Information Structure

» Traditional approach: solve for some particular information
structures

1. complete information
2. solve for class of one dimensional signals
3. solve for general signals

» Different (sometimes better?) approach: solve for what could
happen for all (normal) information structures
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> no reference to information structures, just restrictions on the
set of random variables corresponding to obedience constraints
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An outcome (joint distribution of (61, ...,0, a1, ..., ay)) form a

Bayes correlated equilibrium if the marginal distribution (61, ..., Oy)
over payoff states coincides with the common prior and:

N
Vi, Va;, IEV[Q,' + Z'y,-jaj]a,-] =0
j=1

Theorem
An outcome arises as the Bayes Nash equilibrium of the game with
some information structure if and only if it is a Bayes correlated
equilibrium
> no reference to information structures, just restrictions on the
set of random variables corresponding to obedience constraints
» true for arbitrary games: Bergemann and Morris (2016); for
symmetric linear best response games: Bergemann-Morris
(2013) and Bergemann-Heumann-Morris (2015)



Bayes correlated equilibrium

Theorem

A joint distribution y of variables (01, ...,0n, a1, ..., an) forms a
normal Bayes correlated equilibrium if and only if (1) the mean
vector of actions satisfies:

Val ‘uel
=T (2)
Va/\/ I/leN
(2) the variance of individual actions satisfies:
O g, corr(61, ar)

:_(Paaor)il‘ : ! (3)
Tan O'QNCOIT(QN,SN)

(3) the correlation matrix corr(601, ...,0p, a1, ..., an) is positive
semi-definite..
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Bayes correlated equilibrium

> the first moments of the distribution are completely fixed by
the payoff environment.

> the set of feasible correlation matrices are independent of the
interaction matrix and depend only on correlation matrix Pyg.

» the variance of actions depends on the correlations of actions
P, which is arbitrary and the interaction matrix.



Proof

Equilibrium:

N

VieN, IE[G, + Z’y,-jaj|a,-] =0.

J=1

Taking expectations:
N
VieN, uy + Z'y,-jptaj =0.
j=1

(2) is matrix representation of (5).



Proof

Multiplying (4) by aj, taking expectations:
N
VieN, IE[G,‘&,’] + Z’)f,-J-IE[a,-aj] =0.
j=1

rewrite as:
N
Vie N, cov(6i ai)+ pgp, + 3 vy(cov(ai, a) + Hata) = 0.
j=1
Using (5):

N
Vie N, cov(b;, a;)+ Z’)’UCOV(‘?/, aj) =0.
j=1



Proof

By definition of a covariance, we have:

N
Vi €N, Py 0005+ ) Vifs,0505 =0.

j=1

(3) is the matrix representation of (6).
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One Dimensional Signals

> agent i € N observes signal i, with:

01 Ho,

Oy u Yoo Lsp
~ N 9[\/ , <
S1 0 Z@S z:ss

SN 0

» this completely determines the information structure.

» normalize so that X = Pss.



One Dimensional Signals
we look equilibria in linear strategies defined by (a7, B7), such that:

* ok *
a; —DCI'S,"'IBI-.

Proposition (Characterization for One Dimensional Signals:
Strategy)

The coefficients (a7, ...,a}) and (B, ..., By) form a linear Bayes
Nash equilibrium if and only if:

IBT V91
=T (7)
137\1 ‘I/IGN
and
oy cov(61, s1)
= —(Psol)7 L. : . (8)

ay cov(Opn, sy)
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» the constant term is independent of the information structure.

> the response of an agent to his own signal depends on the
information structure and the interaction matrix.



One Dimensional Signals

we now characterize the outcomes of an equilibrium when agents
receive one dimensional signals.

Proposition (Characterization for One Dimensional Signals:
Outcomes)

The joint distribution of actions and payoff states

(01,....,0n, a1, ..., an) in the outcome of the Bayes Nash
equilibrium is given by:

1. The first moments are given by:
Val ]/lel
: —_1t. :
]/laN ]/lf)N
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One Dimensional Signals

> the strategic interaction only affects the variance of an agent's
action.

> does not affect the correlation between agents actions.

> the correlation between actions is determined by the
correlations of signals.



Three Rationalizations

> we can identify three elements from a model:



Three Rationalizations

> we can identify three elements from a model:

» joint distribution of payoff shocks (Zgg).



Three Rationalizations

> we can identify three elements from a model:

» joint distribution of payoff shocks (Zgg).
» strategic interaction (T).



Three Rationalizations

> we can identify three elements from a model:

» joint distribution of payoff shocks (Zgg).
» strategic interaction (T).
» information structure (s, ..., sp)



Three Rationalizations

> we can identify three elements from a model:

» joint distribution of payoff shocks (Zgg).
» strategic interaction (T).
» information structure (s, ..., sp)

» how do these have different implications on the outcome of a
game?



Three Rationalizations

> we can identify three elements from a model:

» joint distribution of payoff shocks (Zgg).
» strategic interaction (T).
» information structure (s, ..., sp)

» how do these have different implications on the outcome of a
game?

» consider some joint distribution of actions (ay, ..., an).



Three Rationalizations

> we can identify three elements from a model:

» joint distribution of payoff shocks (Zgg).
» strategic interaction (T).
» information structure (s, ..., sp)

» how do these have different implications on the outcome of a
game?
» consider some joint distribution of actions (ay, ..., an).

» what models would allow us to rationalize this joint
distribution of actions as the outcome of a Bayes Nash
equilibrium?
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Let X,, be a variance/covariance matrix of actions, then X, is the
outcome of a Bayes Nash equilibrium in the following models:

1. Agents have complete information, no strategic interactions
but heterogenous payoff shocks.

2. Agents have complete information, independent payoff shocks
but heterogenous strategic interactions.

3. Agents have no strategic interactions, independent payoff
shocks but incomplete information.
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Let X,, be a variance/covariance matrix of actions, then X, is the
outcome of a Bayes Nash equilibrium in the following models:

1. Agents do not interact between each other (I' = I), agents
have complete information and the distribution over types is
given by:

Ypg = 2aa. (9)

2. Agents have complete information, types are independently
distributed with a variance of 1 (Xgy = II), the interaction
matrix is given by any solution to:

r=x;12 (10)

such that T" is negative semi-definite.



Three Rationalizations

3. Agents do not interact between each other (I' =T, types are
independently distributed (Pgg = 1), agents receive one
dimensional signals of the form:

01
S1 0o,
__ pl/2 .
- ’Daa . '
On
S —
N 7oy

where elements of the diagonal of P1/2 are positive, and the
variance of payoff shocks satisfies:

02

i

e N =
VieN. o corr(s;i, 0;)
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Let
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have complete information and the distribution over types is
given by Xgg = X.,.



Three Rationalizations: Example

Let
6.5 177 1.77

Y= | 177 375 275 |; (11)
177 275 3.75

1. Agents do not interact between each other (I = I), agents
have complete information and the distribution over types is
given by Xgg = X.,.

2. Agents have complete information, types are independently
distributed with a variance of 1 (Xgy = II), the interaction
matrix is given by any solution to:

—~0.42 006 0.06
r=x;2=1| 006 -071 029 (12)
0.06 029 —0.71



Three Rationalizations: Example

3. Agents do not interact between each other (I' = 1), types are
independently distributed (Pgg = 1), agents receive one
dimensional signals of the form:

6
s 0.97 015 015\ [
s| =1 015 090 039 ;’722
55 0.15 0.39 0.90 65
(793
and
oo, 6.66
Og, | = 4.13

Og, 4.13
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Networks and Incomplete Information: Unified Analysis

1. A number of recent papers unify networks and incomplete
information: Calvo-Argmengol, Marti and Prat (2015), de
Marti and Zenou (2015), Blume, Brock, Durlauf and
Jayaraman (2015), Golub and Morris (2017), Lambert,
Martini and Ostrovsky (2017)

2. Mean actions are pinned down by network centrality under the
common prior assumption, information only relevant for
second moments; our BCE approach makes this point in a
stark way; Golub and Morris 2017 show that this is not true
without the common prior assumption.

3. Even more unified analysis if we interpret each signal of each
player as a separate player (cf, agent normal form); see Morris
(1997), Morris (2000), Golub and Morris (2017), Lambert,
Martini and Ostrovsky (2017).
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