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Three Rationalizations Motivation: Idiosyncratic Shocks
and Aggregate Volatility

I Suppose each agent in a large population receives an
idiosyncratic shock to his productivity. Will these shocks give
rise to aggregate volatility of output or will they wash out by a
law of large numbers?

I Three simple, important and distinct reasons why they might
not wash out:

1. They are correlated
2. There are network e¤ects (Acemoglu, Carvalho, Ozdaglar,
Tahbaz-Salehi 12)

3. Incomplete information about the shocks (Angeletos and La�O
13)

I They might be hard to distinguish
I Natural to combine networks and information to think about
interaction
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I Consider a network game with quadratic payo¤s (linear best
response) and normally distributed payo¤ shocks

I For a �xed network game, characterize what can happen for
all information structures at once
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This Talk

1. characterization of all outcomes and "robust predictions /
information design" agenda

2. one dimensional signals (an example of a particular
information structure)

3. three rationalizations (an example of an application)

4. networks and information: alternative approaches
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Game
I there are N agents

I agent i takes action ai 2 R

I agent i�s payo¤ is given by:

ui (a, θi ) =

 
∑
j 6=i

γijaj + θi

!
ai +

1
2

γiia
2
i

and where θi is agent�s i "payo¤ type" and γii < 0.
I so agent i will have linear best response, choosing ai to satisfy

8i 2 N, E[θi +
N

∑
j=1

γijaj jai ] = 0. (1)

or

ai = �
1

γii

 
θi +∑

j 6=i
γijaj

!
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Game

I the strategic interaction is characterized by the parameters
fγijgi ,k2N , which are represented by:

Γ =

0B@γ11 � � � γ1N
...

. . .
...

γN1 � � � γNN

1CA

I payo¤ types are jointly normally distributed:0B@ θ1
...

θN

1CA � N

0B@
0B@µθ1

...
µθN

1CA ,Σθθ

1CA ,
where Σθθ is an arbitrary positive de�nite matrix.
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Information Structure

I Traditional approach: solve for some particular information
structures

1. complete information
2. solve for class of one dimensional signals
3. solve for general signals

I Di¤erent (sometimes better?) approach: solve for what could
happen for all (normal) information structures
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Bayes correlated equilibrium
De�nition
An outcome (joint distribution of (θ1, ..., θN , a1, ..., aN )) form a
Bayes correlated equilibrium if the marginal distribution (θ1, ..., θN )
over payo¤ states coincides with the common prior and:

8i , 8ai , Eµ[θi +
N

∑
j=1

γijaj jai ] = 0

Theorem
An outcome arises as the Bayes Nash equilibrium of the game with
some information structure if and only if it is a Bayes correlated
equilibrium

I no reference to information structures, just restrictions on the
set of random variables corresponding to obedience constraints

I true for arbitrary games: Bergemann and Morris (2016); for
symmetric linear best response games: Bergemann-Morris
(2013) and Bergemann-Heumann-Morris (2015)
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Bayes correlated equilibrium

Theorem
A joint distribution µ of variables (θ1, ..., θN , a1, ..., aN ) forms a
normal Bayes correlated equilibrium if and only if (1) the mean
vector of actions satis�es:0B@µa1

...
µaN

1CA = �Γ�1 �

0B@µθ1
...

µθN

1CA ; (2)

(2) the variance of individual actions satis�es:0B@σa1
...

σaN

1CA = �(Paa � Γ)�1 �

0B@ σθ1corr(θ1, a1)
...

σθN corr(θN , aN )

1CA ; (3)

(3) the correlation matrix corr(θ1, ..., θN , a1, ..., aN ) is positive
semi-de�nite..



Bayes correlated equilibrium

I the �rst moments of the distribution are completely �xed by
the payo¤ environment.

I the set of feasible correlation matrices are independent of the
interaction matrix and depend only on correlation matrix Pθθ.

I the variance of actions depends on the correlations of actions
Paa which is arbitrary and the interaction matrix.
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Proof

Equilibrium:

8i 2 N, E[θi +
N

∑
j=1

γijaj jai ] = 0. (4)

Taking expectations:

8i 2 N, µθi
+

N

∑
j=1

γijµaj = 0. (5)

(2) is matrix representation of (5).



Proof

Multiplying (4) by ai , taking expectations:

8i 2 N, E[θiai ] +
N

∑
j=1

γijE[aiaj ] = 0.

rewrite as:

8i 2 N, cov(θi , ai ) + µθi
µai +

N

∑
j=1

γij (cov(ai , aj ) + µai µaj ) = 0.

Using (5):

8i 2 N, cov(θi , ai ) +
N

∑
j=1

γijcov(ai , aj ) = 0.



Proof

By de�nition of a covariance, we have:

8i 2 N, ρθi ,ai
σθi σai +

N

∑
j=1

γijρai ajσajσai = 0. (6)

(3) is the matrix representation of (6).



One Dimensional Signals

I agent i 2 N observes signal i , with:0BBBBBBBB@

θ1
...

θN
s1
...
sN

1CCCCCCCCA
� N

0BBBBBBBB@

0BBBBBBBB@

µθ1
...

µθN
0
...
0

1CCCCCCCCA
,

�
Σθθ Σsθ
Σθs Σss

�
1CCCCCCCCA
.

I this completely determines the information structure.
I normalize so that Σss = Pss .
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One Dimensional Signals
we look equilibria in linear strategies de�ned by (α�i , β

�
i ), such that:

a�i = α�i si + β�i .

Proposition (Characterization for One Dimensional Signals:
Strategy)

The coe¢ cients (α�1, ..., α
�
N ) and (β

�
1, ..., β

�
N ) form a linear Bayes

Nash equilibrium if and only if:0B@β�1
...

β�N

1CA = �Γ�1 �

0B@µθ1
...

µθN

1CA (7)

and 0B@α�1
...

α�N

1CA = �(Pss � Γ)�1 �

0B@ cov(θ1, s1)...
cov(θN , sN )

1CA . (8)



One Dimensional Signals

I the constant term is independent of the information structure.

I the response of an agent to his own signal depends on the
information structure and the interaction matrix.
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One Dimensional Signals

we now characterize the outcomes of an equilibrium when agents
receive one dimensional signals.

Proposition (Characterization for One Dimensional Signals:
Outcomes)
The joint distribution of actions and payo¤ states
(θ1, ..., θN , a1, ..., aN ) in the outcome of the Bayes Nash
equilibrium is given by:

1. The �rst moments are given by:0B@µa1
...

µaN

1CA = �Γ�1 �

0B@µθ1
...

µθN

1CA



One Dimensional Signals

I the strategic interaction only a¤ects the variance of an agent�s
action.

I does not a¤ect the correlation between agents actions.
I the correlation between actions is determined by the
correlations of signals.
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Three Rationalizations

I we can identify three elements from a model:

I joint distribution of payo¤ shocks (Σθθ).
I strategic interaction (Γ).
I information structure (s1, ..., sN )

I how do these have di¤erent implications on the outcome of a
game?

I consider some joint distribution of actions (a1, ..., aN ).
I what models would allow us to rationalize this joint
distribution of actions as the outcome of a Bayes Nash
equilibrium?
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Three Rationalizations

Let Σaa be a variance/covariance matrix of actions, then Σaa is the
outcome of a Bayes Nash equilibrium in the following models:

1. Agents have complete information, no strategic interactions
but heterogenous payo¤ shocks.

2. Agents have complete information, independent payo¤ shocks
but heterogenous strategic interactions.

3. Agents have no strategic interactions, independent payo¤
shocks but incomplete information.
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Let Σaa be a variance/covariance matrix of actions, then Σaa is the
outcome of a Bayes Nash equilibrium in the following models:

1. Agents do not interact between each other (Γ = I), agents
have complete information and the distribution over types is
given by:

Σθθ = Σaa. (9)

2. Agents have complete information, types are independently
distributed with a variance of 1 (Σθθ = I), the interaction
matrix is given by any solution to:

Γ = Σ�1/2
aa , (10)

such that Γ is negative semi-de�nite.
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Three Rationalizations

3. Agents do not interact between each other (Γ = I), types are
independently distributed (Pθθ = I), agents receive one
dimensional signals of the form:0B@ s1...

sN

1CA = P1/2
aa

0BB@
θ1

σθ1
...

θN
σθN

1CCA ,
where elements of the diagonal of P1/2

aa are positive, and the
variance of payo¤ shocks satis�es:

8i 2 N, σθi =
σai

corr(si , θi )
.



Three Rationalizations: Example

Let

Σaa =

0@ 6.5 1.77 1.77
1.77 3.75 2.75
1.77 2.75 3.75

1A ; (11)

1. Agents do not interact between each other (Γ = I), agents
have complete information and the distribution over types is
given by Σθθ = Σaa.

2. Agents have complete information, types are independently
distributed with a variance of 1 (Σθθ = I), the interaction
matrix is given by any solution to:

Γ = Σ�1/2
aa =

0@ �0.42 0.06 0.06
0.06 �0.71 0.29
0.06 0.29 �0.71

1A (12)
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Three Rationalizations: Example

3. Agents do not interact between each other (Γ = I), types are
independently distributed (Pθθ = I), agents receive one
dimensional signals of the form:

0@s1s2
s3

1A =

0@ 0.97 0.15 0.15
0.15 0.90 0.39
0.15 0.39 0.90

1A
0BB@

θ1
σθ1
θ2

σθ2
θ3

σθ3

1CCA
and 0@σθ1

σθ2

σθ3

1A =

0@ 6.66
4.13
4.13

1A



Networks and Incomplete Information: Uni�ed Analysis

1. A number of recent papers unify networks and incomplete
information: Calvo-Argmengol, Marti and Prat (2015), de
Marti and Zenou (2015), Blume, Brock, Durlauf and
Jayaraman (2015), Golub and Morris (2017), Lambert,
Martini and Ostrovsky (2017)

2. Mean actions are pinned down by network centrality under the
common prior assumption, information only relevant for
second moments; our BCE approach makes this point in a
stark way; Golub and Morris 2017 show that this is not true
without the common prior assumption.

3. Even more uni�ed analysis if we interpret each signal of each
player as a separate player (cf, agent normal form); see Morris
(1997), Morris (2000), Golub and Morris (2017), Lambert,
Martini and Ostrovsky (2017).
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