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In this article, we analyze how inflation affects firms’ price-setting behavior.
For a class of menu cost models, we derive several predictions about how price-
setting changes with inflation at very high and at near-zero inflation rates. Then,
we present evidence supporting these predictions using product-level data under-
lying Argentina’s consumer price index from 1988 to 1997—a unique experience
where monthly inflation ranged from almost 200% to less than zero. For low infla-
tion rates, we find that (i) the frequency and absolute size of price changes as well
as the dispersion of relative prices do not change with inflation, (ii) the frequency
and size of price increases and decreases are symmetric around zero inflation, and
(iii) aggregate inflation changes are mostly driven by changes in the frequency of
price increases and decreases, as opposed to the size of price changes. For high
inflation rates, we find that (iv) the elasticity of the frequency of price changes
with respect to inflation is close to two-thirds, (v) the frequency of price changes
across different products becomes similar, and (vi) the elasticity of the dispersion
of relative prices with respect to inflation is one-third. Our findings confirm and
extend available evidence for countries that experienced either very high or near-
zero inflation. We conclude by showing that a hyperinflation of 500% a year is
associated with a cost of approximately 8.5% of aggregate output a year as a result
of inefficient price dispersion alone. JEL Codes: E31, E50.
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I. INTRODUCTION

Infrequent nominal price adjustments are at the center of
much of the literature studying positive and normative impli-
cations of inflation. In this article, we study how price-setting
behavior changes with inflation, both theoretically and empiri-
cally. We consider menu cost models with idiosyncratic firm-level
shocks, that is, models where monopolistic firms set prices sub-
ject to a fixed cost of adjustment and are hit by shocks to their
real marginal cost. We derive sharp predictions concerning how
changes in steady-state inflation affect price-setting behavior at
near-zero and very high inflation rates. Then we confront these
predictions with their empirical counterparts using product-level
data underlying Argentina’s consumer price index from 1988 to
1997. Argentina’s experience provides a unique opportunity to an-
alyze price-setting behavior through the lens of menu cost models
because it encompasses several years of price stability (and even
deflation) as well as years of sustained very high inflation.

We find evidence supporting many predictions of menu cost
models. Our empirical findings involve confronting a number of
variables (summarizing price-setting behavior) across time peri-
ods with different inflation rates. Our theoretical results involve
comparative statics about how these same variables change across
steady states with different inflation rates. However, we show that
when idiosyncratic shocks are persistent and discount rates are
low, these comparative statics depend on the ratio of inflation to
the variance of firm-level idiosyncratic shocks. Therefore, they are
comparable to our empirical findings under the assumption that
the variance of idiosyncratic shocks remains approximately con-
stant across time periods and that current inflation approximates
expected future inflation.1 The first set of results concerns low-
inflation economies. Theoretically and empirically, we show that in
a neighborhood of zero inflation (i) the frequency of price changes
is unresponsive to inflation; (ii) the dispersion of relative prices
is unresponsive to inflation; (iii) the frequency of price increases
is equal to the frequency of price decreases; (iv) conditional on
a price change, the size of price increases is equal to the size of
price decreases; and (v) inflation changes mostly (to be precise,
90%) due to the changes in the difference between the frequency

1. Later we discuss how we empirically implement measures of expected future
inflation.
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of price increases and of price decreases—as opposed to changes in
the size of price increases and decreases. The second set of results
concerns high-inflation economies. We find that (vi) the frequency
of price adjustment becomes the same for all products/firms, (vii)
the elasticity of the average frequency of price changes with re-
spect to inflation converges to two-thirds, (viii) the elasticity of the
dispersion of relative prices converges to one-third, (ix) the elas-
ticity of the average size of price changes with respect to inflation
converges to one-third, and (x) the frequency of price decreases
converges to zero.

We believe these results are interesting because they underlie
the welfare costs of inflation in menu cost models (as well as
other models of price stickiness) and because they test this class
of models. First, the menu cost paid when changing prices is a
direct welfare cost of inflation because these resources are wasted.
Second, the “extra” price dispersion created by nominal variation
in prices is another avenue for inefficiency in menu cost models as
well as in other models with sticky prices. For example, in models
with an exogenous frequency of price adjustment, as described
in Woodford (2003, ch. 6).2 We find that the direct cost of more
frequent price changes is unlikely to be significant for inflation
rates below 5% a year (see Figure V later). Moreover, the costs
of inflation arising from inefficient price dispersion is also likely
to be negligible for inflation rates below 10% a year (Figure X
later). Therefore, findings (i) and (ii) imply that the welfare cost of
increasing the rate of inflation is negligible around zero inflation.
For higher rates of inflation, the welfare costs of inflation increase
as the frequency of price changes and the standard deviation of
relative prices increase. We estimate that the welfare costs of
the additional relative price dispersion caused by inflation are
approximately 1.5% of GDP for an inflation rate of 100% a year
and approximately 8.5% of GDP for inflation rates of 500% a year.

We begin by presenting a model of monopolistic firms that
are hit by idiosyncratic shocks to their real marginal cost and face

2. See Bénabou (1992) and Burstein and Hellwig (2008) for earlier and recent
examples of analysis that takes both effects of inflation into account, the former
using heterogeneous consumers that search for products and homogeneous firms,
and the latter using differentiated products on the demand side and heterogeneity
in the firm’s cost. Recently, and most related to our article, Nakamura et al. (2018)
reexamine these issues for the United States using new micro data including
the higher inflation period for the United States as well as calibrated menu cost
models.
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a fixed cost of changing prices. Similar models have been intro-
duced by Barro (1972), Bertola and Caballero (1990), Danziger
(1999), Golosov and Lucas (2007), and Gertler and Leahy (2008).
Then, in Sections II.B and II.C, we derive our comparative static
results about how inflation affects price-setting behavior and il-
lustrate them with a numerical example based on the model in
Golosov and Lucas (2007), so that one can evaluate how the local
theoretical results apply to a large range of quantitatively rele-
vant parameter values. The results for low inflation are new: in
particular, the prediction that most of the changes in inflation
(90%) are accounted for by changes in the difference between the
frequency of price increases and decreases.3 Furthermore, a new
insight of this work is that under some simplifying assumptions,
price-setting behavior depends only on the ratio between infla-
tion and the variance of the idiosyncratic shocks. In this sense,
high-inflation economies are equivalent to economies in which
firms do not face idiosyncratic shocks for nominal price adjust-
ment decisions. Hence, we can apply benchmark results on the
effect of inflation on price-setting behavior in the deterministic
case (Sheshinski and Weiss 1977; and Bénabou and Konieczny
1994, which consider models without idiosyncratic shocks) to the
case in which firms face persistent idiosyncratic shocks and there
is high inflation.

We continue with our main empirical findings in Section IV.
Hereinafter, we discuss the most notable ones as well as their
relationship to previous literature. We first describe our data set
in Section IV.A. We use the micro-data underlying the construction
of the Argentine consumer price index from 1988 to 1997 for 506
goods covering 84% of expenditures. The unique feature of these
data is the range of inflation during this time period. The inflation
rate was almost 5,000% during 1989 and 1,500% during 1990.
After the stabilization plan of 1991, there was a quick disinflation
episode and after 1992 there was virtual price stability with some
deflationary periods.

Using these data, we estimate the frequency of price changes,
the average size of price changes, and the dispersion of relative
prices for different time periods. We find that the frequency of
price changes as a function of the rate of inflation is flat at low

3. Alvarez et al. (2011) and Alvarez and Lippi (2014) show that the frequency
of price changes and the dispersion of relative prices are insensitive to inflation at
low inflation rates under a more restrictive set of assumptions.
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inflation levels and has a constant elasticity for high inflation
levels (a novel empirical finding). We estimate this elasticity to be
between one-half and two-thirds, which is close to our theoretical
prediction of two-thirds.4 There is a large literature that estimates
the frequency of price changes. Various papers do this for different
countries, different time periods, different rates of inflation, and
different sets of goods.5 A feature of our data set (and a success of
the theory) is that our estimates of the frequency of price changes
for each level of inflation in the Argentine data are similar to the
estimates of the other studies with the same rate of inflation. This
is illustrated in Figure VI later. Further details on the samples
and inflation ranges considered in other studies in the literature
are provided in Online Appendix G.

Then, we find that even though the frequency of price changes
is unresponsive to inflation when inflation is low, the difference
between the frequency of price increases and the frequency of
price decreases is an increasing function of inflation. This is con-
sistent with previous evidence (see, for example, Nakamura and
Steinsson 2008 for the United States; Gagnon 2009 for Mexico;
Berardi, Gautier, and Le Bihan 2015 for France; and Cavallo
2015 for cross-country evidence). Our contribution is to provide
a new theoretical interpretation of this fact through the lens of
menu cost models. We show that under some assumptions, when
inflation is low, this fact is consistent with 90% of the changes
in inflation resulting from the extensive margin of price adjust-
ments, that is, changes in the difference between the frequency
of price increases and decreases. Furthermore, we document that
the cross-good dispersion of the frequency of price changes falls
with inflation when inflation is high. As is well known in the lit-
erature on low-inflation economies, there is large variation in the
frequency of price changes across firms selling different goods.

4. To accommodate the range of estimates in the data, our simple model could
be extended, allowing firms to freely change prices at random times. Nakamura
and Steinsson (2010) consider a version of this model (also see Dotsey and King
2005; Caballero and Engel 2007; and Alvarez, Le Bihan, and Lippi 2016).

5. For example, for low-inflation economies Álvarez et al. (2006) for the Euro
area; Bils and Klenow (2004), Klenow and Kryvtsov (2008), and Nakamura and
Steinsson (2008) for the United States. For moderate levels of inflation, Gagnon
(2009) for Mexico, Barros et al. (2009) for Brazil, and Wulfsberg (2016) for Norway.
Baharad and Eden (2004) and Lach and Tsiddon (1992) for Israel, as well as
Konieczny and Skrzypacz (2005) for Poland, look at high-inflation economies, but
not as high as our Argentine sample.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/134/1/451/5106372 by guest on 19 February 2020

file:qje.oxfordjournals.org


456 THE QUARTERLY JOURNAL OF ECONOMICS

The new finding is that as inflation rises, the frequency of price
changes becomes similar across different products, reflecting that
the importance of idiosyncratic differences across products disap-
pears as a motive for changing prices when inflation is high.

Next we are concerned with the dispersion of relative prices
and size of price changes. Despite being of theoretical and prac-
tical importance because of its welfare implications, this is the
first article to look at the relationship between inflation and the
dispersion of relative prices across stores, selling the same good,
for a wide range of inflation rates.6 We document that the dis-
persion of relative prices across stores is insensitive to inflation
for low inflation rates and it becomes an increasing function of
inflation for high inflation rates. In fact, for very high inflation
rates, the empirical elasticity of the dispersion of relative prices
with respect to inflation is close to the theoretical upper bound of
one-third. The average size of price changes, conditional on a price
change taking place, exhibits a similar pattern. It is insensitive to
inflation at low inflation rates and then increases with inflation
as inflation becomes higher.

We conclude by showing that the welfare costs of inflation
due to inefficient price dispersion are only relevant for very high
inflation rates. In particular, we find that the cost of the additional
price dispersion resulting from a hyperinflation of 500% a year is
approximately 8.5% of aggregate output a year.

Some of our results for the frequency and size of price
changes have recently been documented for the United States
as well by Nakamura et al. (2018). In particular, using newly
found post 1977 BLS micro-data on U.S. consumer prices, they
find that in calibrated models the frequency of price changes
increases with inflation and that the size of price changes is

6. Many papers look at the dispersion of inflation rates across goods, which
is a different concept. Reinsdorf (1994), Sheremirov (2015), and Perez and Drenik
(2015) are some exceptions. However, due to the low variation of inflation in their
samples, it is hard to make inferences about the elasticity of interest in those
studies. In Reinsdorf (1994), inflation varies between 3.7% and 10.4% in the United
States in the early 1980s and has conflicting results depending on the measure
of inflation. Nakamura et al. (2018) have a better sample, and their results are
consistent with ours. Sheremirov (2015) looks at U.S. data for 2001–2011 when the
variation in the rate of inflation is small. Perez and Drenik (2015) find a positive
correlation between inflation and the dispersion of relative prices for inflation
rates ranging from 10% to 20% a year, which they attribute to other confounding
factors.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/134/1/451/5106372 by guest on 19 February 2020



FROM HYPERINFLATION TO STABLE COSTS 457

insensitive to inflation for inflation rates under 14% a year. While
they study the consequences of these findings for the welfare
cost of inflation in calibrated New Keynesian models, our article
differs in that we are interested in providing a more general
theoretical characterization within menu cost models of these as
well as other statistics for both very low and very high inflation.
In addition, on the empirical side we are able to study very high
and very low inflation during this period, since the first two
years of the sample had annual inflation rates in the thousands,
and the last few years essentially enjoyed price stability, with a
disinflation period in between (see Figure IV and the figures in
the background discussion in Online Appendix H).

Finally, several online appendixes provide supplementary
material. Online Appendix A contains the proofs of the propo-
sitions in Section II.A. Some of these proofs are of independent
interest because they fully characterize the solution of the menu
cost model with a closed-form solution. Online Appendix BA con-
tains an analytical characterization of our version of the Golosov
and Lucas (2007) model. Online Appendix C describes some de-
tails of our data. Both in the main body and in Online Appendix D,
we perform extensive robustness checks to evaluate the sensitiv-
ity of our estimates. Our findings are robust to different treatment
of sales, product substitutions, and missing values in the estima-
tion of the frequency of price changes and with respect to the level
of aggregation of price changes. They are also robust to using con-
temporaneous inflation or an estimate of expected future inflation
for the relevant time frame, and to excluding observations corre-
sponding to periods with inflation above some threshold for which
we have reasons to believe that discrete sampling might bias the
estimates. Online Appendix H contains a short description of the
history of economic policy and inflation in Argentina for the years
before and during our sample.

II. COMPARATIVE STATIC PROPERTIES OF MENU COST MODELS

In this section, we study how inflation affects price-setting
behavior in menu cost models. We show several theoretical pre-
dictions for a stylized menu cost model where competitive monop-
olistic firms face a fixed cost of changing their nominal price in the
presence of idiosyncratic real marginal-cost shocks and common
constant inflation.
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In Section II.A, we write down a simple setup and obtain the
main analytical results. In Section II.B and Section II.C, we ob-
tain the results for low and high inflation, respectively; explain
the nature of the assumptions needed for the results; highlight
which form of these results are already present in the literature;
and discuss pros and cons of applying these comparative statics
results to time series data. Section II.D decomposes changes in the
rate of inflation into those arising from changes in the frequency
of price changes and those arising from changes in the size of
price changes. In Section III, we present Kehoe and Midrigan’s
(2015) version of Golosov and Lucas’s (2007) model and illustrate
the theoretical results in this section for both low and high infla-
tion. This model relaxes some assumptions and we parameterize
the model in an empirically reasonable fashion to show that the
theoretical results of Section II.A are quantitatively applicable to
typical economies.

In Online Appendix A, we prove the theoretical propositions
in this section in a setup with a more general profit function and
a less restrictive process for the shocks, but that retains certain
symmetry properties.

II.A. The Basic Menu Cost Model

We study the problem of a monopolist adjusting the nominal
price of its product in an environment with inflation, idiosyn-
cratic real marginal-cost shocks, and a fixed cost (the menu cost)
of changing nominal prices. We think of this problem as a simpli-
fied version of the problem in Golosov and Lucas (2007), and as an
almost identical problem to the one considered in Barro (1972).

We assume that the instantaneous profit of the monopolist
depends on its price relative to the economy- or industry-wide
average price and on an idiosyncratic shock. We let F(p, z) = ζ (z)
− B(p − z)2 be the real value of the profit per period as a function
of p, the log of the nominal price charged by the firm relative to
the log of the economy-wide price, and z, an idiosyncratic shifter
of the profit function. We let z be the static profit-maximizing real
price. Thus, our quadratic specification can be interpreted as an
approximation of a general function F around the static profit-
maximizing price. In this case, ζ (z) is the static maximized profit,
and B > 0 is half the second derivative of F around that price. We
assume that the economy-wide price grows at a constant inflation
rate π , so that when the firm does not change its nominal price
its relative log-price decreases, that is, dp = −πdt. We also allow
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the menu cost to depend on z. In this case, we write Ct = c ζ (zt),
where c � 0 is a constant, so c = 0 represents the frictionless
problem. We assume that {zt} is a diffusion with law of motion dz
= σ dW, where {W(t)} is a standard Brownian motion with W(t) −
W(0) ∼ N(0, t). We use r � 0 for the real discount rate of profits
and adjustment costs. We let {τ i} be the stopping times at which
prices are adjusted and {�p(τ i)} the corresponding price changes,
so that the problem of the firm can be written as

(1)

V (p, z) = max
{τi ,�pi}∞i=0

E

[ ∫ ∞

0
e−rt F (p (t) , z (t)) dt

−
∞∑

i=0

e−rτi c ζ (z(t))
∣∣z(0) = z

]
,

with p(t) = p(0) + ∑τi<t
i=0 �p(τi) − πt and z(t) = σW(t) for all t � 0,

and the initial state is given by p(0) = p and z(0) = z.
Given the simple form of the period return function and the

law of motion of the state, the optimal policy that solves this prob-
lem can be described by three numbers that control the difference
between p and z, namely:

�(π, σ 2) =
[
ψ(π, σ 2), ψ̄(π, σ 2), ψ̂(π, σ 2)

]
,

where we include the parameters π and σ 2 as explicit arguments
of the decision rules to conduct comparative statics. The numbers
ψ(π, σ 2) and ψ̄(π, σ 2) define the inaction set as follows:

I(π, σ 2) =
{
(p, z) ∈ R × Z : ψ(π, σ 2) + z � p � ψ̄(π, σ 2) + z

}
.

If the firm’s relative price is within the inaction set, that is, if
(p, z) ∈ I, then it is optimal not to change prices. Outside the
interior of the inaction set the firm will adjust prices so that its
relative price just after adjustment is given by p = ψ̂(π, σ 2) +
z. Since {z(t)} has continuous paths, all adjustments will occur
at the boundary of the inaction set (given additional regularity
conditions). For instance, a firm with a relative price p and an
idiosyncratic shock z such that the relative price hits the lower
boundary of the inaction set—that is, such that p = ψ(π, σ 2) +
z— will raise its price by �p = ψ̂(π, σ 2) − ψ(π, σ 2) > 0. Likewise,
when hitting the upper boundary, it will change its price (decrease
it) by �p = ψ̂(π, σ 2) − ψ̄(π, σ 2) < 0.
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Using the optimal decision rules, we can compute the density
of the invariant distribution of the state, g(p, z; π , σ 2), as well
as the expected time between adjustments T (p, z; π, σ 2) starting
from the state (p, z). Note that using g(·) we can readily find the
distribution of relative prices in the economy (or industry) and
we can compute the expected time elapsed between consecutive
adjustments under the invariant distribution, and its reciprocal,
the expected number of adjustments per unit of time, which we
denote by λa(π , σ 2).

We denote by λ+
a (π, σ 2) and λ−

a (π, σ 2) the frequencies of
price increases and decreases, respectively. Furthermore, we let
�+

p (π, σ 2) be the expected size of price changes, conditional on
having an increase, and �−

p (π, σ 2) the corresponding expected
size of price changes, conditional on having a decrease. Formally

�+
p (π, σ 2) = ∫

Z

[
ψ̂(z) − ψ(z)

]
g(ψ(z),z)∫

Z g(ψ(z′),z′)dz′ dz where we omit (π , σ 2)

as arguments of g, ψ̂ , and ψ to simplify notation. �−
p (π, σ 2) is de-

fined analogously.

II.B. Comparative Statics with Low Inflation

In this section, we show that when inflation is zero and firms
face idiosyncratic profit shocks, changes in the inflation rate do
not have a first-order effect on the frequency of price changes or
on the distribution of relative prices. The intuition for this result is
that at zero inflation, price changes are triggered by idiosyncratic
shocks and small variations in inflation have only a second-order
effect. Moreover, we show that there is a type of symmetry in this
case: the frequency of price increases and decreases and the size
of price increases and decreases are the same.

We let h( p̂; π, σ 2) = ∫
g( p̂, z; π, σ 2) dz be the invariant distri-

bution of log relative prices p̂ = p − p̄, for an economy, or industry,
with (π , σ 2), when it exists. Using h we can compute several statis-
tics of interest, such as σ̄ (π, σ 2), the standard deviation of relative
prices. As in the case of the frequency of price changes, we include
(π , σ 2) explicitly as arguments of this statistic.

PROPOSITION 1.
(i) If the frequency of price changes λa(π , σ 2) is differentiable

at π = 0, then the frequency of price changes is insensitive
to inflation,

∂

∂π
λa(0, σ 2) = 0.
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(ii) If the density of the invariant distribution h( p̂; π, σ 2) is
differentiable at π = 0, then the dispersion of relative prices
under the invariant distribution is insensitive to inflation,

∂

∂π
σ̄ (0, σ 2) = 0.

(iii) The frequencies of price changes and the size of price ad-
justment are symmetric at π = 0 in the sense that

λ+
a (0, σ 2) = λ−

a (0, σ 2),
∂λ+

a (0, σ 2)
∂π

= −∂λ−
a (0, σ 2)
∂π

and

�+
p (0, σ 2) = �−

p (0, σ 2),
∂�+

p (0, σ 2)

∂π
= −∂�−

p (0, σ 2)

∂π

where λ+
a is the frequency of price increases, �+

p is the aver-
age size of price increases, and λ−

a , �−
p are the analogous

concepts for price decreases.

The proof, for a more general case, is in Online Appendix A.
The main idea is to use the symmetry of the objective function
F(p, z) with respect to (p, z) to show the results. Indeed, Online
Appendix A extends the model to one with a general F as well
as a law of motion for z given by dz = a(z)dt + b(z)σdW where
both F(·, ·) and a(·), b(·) satisfy certain symmetry properties. The
proof shows that the expected number of adjustments is symmet-
ric around zero inflation, that is, λa(π , σ 2) = λa(− π , σ 2) for all π .
Given the symmetry of the profit function we view this property
as quite intuitive: a 1% inflation should give rise to as many price
changes as a 1% deflation. Symmetry implies that if λa is differ-
entiable then ∂

∂π
λa(π, σ 2) = − ∂

∂π
λa(−π, σ 2), which establishes the

first result.
Analogously, for the distribution of relative prices, the main

idea is to show that the marginal distribution of relative prices
is symmetric in the sense that h( p̂; π, σ 2) = h(− p̂; −π, σ 2) for all
p̂, π , that is, the probability of high relative prices with positive
inflation is the same as that of low relative prices with deflation.
As these symmetric functions are locally unchanged with respect
to π when π = 0, inflation has no first-order effect on the second
moment of the distribution of relative prices at π = 0. Similarly,
the symmetry of the frequency and of the average size of price
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increases and decreases also follow from the symmetry assump-
tions.

The assumption of differentiability of λa and σ̄ with respect to
π is not merely a technical condition. The function λa(π , σ 2) could
have a local minimum at π = 0 without being smooth. This is in-
deed the case for σ 2 = 0 to which we turn in the next subsection.7

Likewise, the differentiability of h( p̂; π, σ 2) at π = 0 requires σ >

0. In Sheshinski and Weiss’s (1977) model, that is, when σ = 0,
the distribution h is degenerate, uniform at π �= 0, but nondiffer-
entiable at π = 0.

1. Remarks and Relation to the Literature. We find Proposi-
tion 1’s theoretical predictions interesting because they extend an
important result on the welfare cost of inflation from sticky-price
models with exogenous price changes (e.g., the Calvo model) to
menu cost models with endogenous frequency of price changes.
The result is that in cashless economies with low inflation, there
is no first-order welfare effect of inflation, that is, the welfare cost
of inflation can be approximated by a “purely quadratic” function
of inflation.

Inflation imposes welfare costs through two channels in
cashless economies. First, the “extra” price dispersion created
by inflation is an avenue for inefficiency in models with sticky
prices, because it creates “wedges” between the marginal rates of
substitution in consumption and the marginal rates of transfor-
mation in production. See, for example, Woodford (2003, ch. 6),
and references therein for the analysis of this effect. Part (ii) of
Proposition 1 extends this result to the menu cost model. Second,
a higher endogenous frequency of price adjustments because
of inflation is an obvious source of welfare losses when these
adjustments are costly. Part (i) of Proposition 1 establishes that
this second channel is also negligible for low inflation rates.8

7. We conjecture, but have not proved at this level of generality, that as long
as σ 2 > 0, the problem is regular enough to become smooth, that is, the idiosyn-
cratic shocks will dominate the effect of inflation. For several examples one can
either compute all the required functions or show that they are smooth, given the
elliptical nature of the different ODEs involved. Based on this logic, as well as
on computations of different models, we believe that the length of the interval for
inflations around zero for which λa(·, σ 2) is approximately flat is increasing in the
value of σ 2.

8. There are other publications that take more than one effect into account.
Burstein and Hellwig (2008) compute numerical examples in a model closer to
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The results of Proposition 1 should apply to a wider class
of models as long as one essential assumption is maintained:
the symmetry of the profit function around the profit-maximizing
price. For example, a version of Proposition 1 applies to models
with both observations and menu costs (Alvarez et al. 2011), to
models that have multiproduct firms (Alvarez and Lippi 2014),
and to models that combine menu costs and Calvo-type adjust-
ments (Nakamura and Steinsson 2010; Alvarez, Le Bihan, and
Lippi 2016). In Section III, we solve numerically for Golosov and
Lucas’s (2007) version of the model (which does not satisfy the
aforementioned symmetry properties). We show that for empir-
ically reasonable parameter values, the functions λa and σ̄ are
approximately flat for a wide value of inflation rates around zero.

We do not know of other theoretical results analyzing the
sensitivity of λa(π , σ 2) and σ̄ (π, σ 2) to inflation around π = 0 in
this setup. However, there is a closely related model that con-
tains a complete analytical characterization by Danziger (1999).
In fact, we can show that for a small cost of changing prices,
Proposition 1 holds in Danziger’s characterization.

II.C. Comparative Statics with High Inflation

Now we turn to the analysis of price-setting behavior for large
values of inflation. In highly inflationary environments, the main
reason for firms to change nominal prices is to keep their relative
price in a target zone as the aggregate price level grows. Idiosyn-
cratic shocks in the high-inflation case become less important and
therefore the analysis of the deterministic case is instructive. This
leads us to proceed in two steps. First we derive comparative stat-
ics results in the deterministic case—that is, when σ 2 = 0. This is
a version of the problem studied by Sheshinski and Weiss (1977).
Then we study the conditions under which these comparative stat-
ics are the same as for the case of σ 2 > 0 and very large π .

Sheshinski and Weiss (1977) study a menu cost model similar
to the deterministic case in our basic setup. The firm’s problem is
to decide when to change prices and by how much when aggregate
prices grow at the rate π . In Sheshinski and Weiss’s (1977) model,
the time elapsed between adjustments is simply a constant, which
we denote by T (π ). Sheshinski and Weiss (1977) find sufficient

ours, which also includes the traditional money demand cost. Bénabou (1992) uses
a different framework, with heterogeneous consumers that search for products
and homogeneous firms subject to menu costs but constant production costs.
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conditions so that the time between adjustments decreases with
the inflation rate (see their Proposition 2), and several authors
have further refined the characterization by concentrating on the
case where the fixed cost c is small. Let p∗ = arg maxp F(p, 0) be
the log price of the static monopolist maximization profit, where
z = 0 is a normalization of the shifter parameter, which stays
constant. In the deterministic setup the optimal policy for π > 0
is to let the log price reach a value s, at which time it adjusts to S,
where s < p∗ < S. The time between adjustments is then T (π ) =
S−s
π

. Furthermore, we highlight another implication obtained in
Sheshinski and Weiss’s (1977) model: the setup with σ 2 = 0. The
distribution of the log relative price is uniform in the interval
[s, S]. Thus, the standard deviation of the log relative prices in this

economy, denoted by σ̄ , is given by σ̄ =
√

1
12 (S − s). As established

in Proposition 1 in Sheshinski and Weiss (1977), the range of
prices S − s is increasing in the inflation rate π . Obviously the
elasticities of λa and of σ̄ with respect to π are related because
S − s = πT and λa = 1

T .

LEMMA 1. Assume that σ 2 = 0 and π > 0. Then it follows immedi-
ately that λ−

a (π, σ 2) = 0 and that �+
p (π, σ 2) = S − s. Further-

more assume that F(·, 0) is three times differentiable, then

lim
c→0

∂λa

∂π

π

λa
= 2

3
and(2a)

lim
c→0

∂σ̄

∂π

π

σ̄
= 1

3
(2b)

Proof. See Online Appendix AB. �
The lemma establishes that in the deterministic case when

menu costs c are small, there are no price decreases, and the mag-
nitude of price increases, S − s, increases with inflation at a rate
of one-third. Also, as inflation increases, the time between consec-
utive price changes shrinks and the frequency of price adjustment
increases with an elasticity of two-thirds.

Next, Lemma 2 analyzes the conditions under which the lim-
iting values of the elasticities in Lemma 1 for the Sheshinski and
Weiss (1977) model are the same as for the case with idiosyncratic
costs, σ > 0, and very large π . Lemma 2 establishes that when the
idiosyncratic shocks z are persistent and interest rates and menu
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costs are small, the frequency of price adjustment is homogeneous
of degree one in (π , σ 2) so that it can be written as a function of
the ratio σ 2

π
.

For the next results we write the frequency of price adjust-
ment as a function of the rate of inflation, π , the variance of the
idiosyncratic shock, σ 2, the discount factor, r, and the inverse of
the menu cost, 1

c , that is, λa(π, σ 2, r, 1
c ). We also write the policy

rules as functions of the parameters for each z; �(π, σ 2, r, 1
c ; z) =[

ψ(z; π, σ 2, r, 1
c ), ψ̄(z; π, σ 2, r, 1

c ), ψ̂(z; π, σ 2, r, 1
c )

]
and the expected

price change functions as �+
p (π, σ 2, r, 1

c ) and �−
p (π, σ 2, r, 1

c ).

LEMMA 2. The function λa(π, σ 2, r, 1
c ) is homogeneous of degree one

and the policy functions �(π, σ 2, r, 1
c ) are homogeneous of de-

gree zero in all the parameters. Therefore,

lim
π→∞

[
lim

c↓0,r↓0

∂λa(π, σ 2, r, 1
c )

∂π

π

λa(π, σ 2, r, 1
c )

]
σ>0

(3a)

= lim
σ→0

[
lim

c↓0,r↓0

∂λa(π, σ 2, r, 1
c )

∂π

π

λa(π, σ 2, r, 1
c )

]
π>0

.

Also,

limπ→∞
[
limc↓0,r↓0 �(π, σ 2, r, 1

c ; z)
]
σ>0

limσ→0
[
limc↓0,r↓0 �(π, σ 2, r, 1

c ; z)
]
π>0

= 1 for all z,(3b)

and

limπ→∞
[
limc↓0,r↓0 �+

p (π, σ 2, r, 1
c )

]
σ>0

limσ→0
[
limc↓0,r↓0 �+

p (π, σ 2, r, 1
c )

]
π>0

= 1.(3c)

Proof. See Online Appendix AC. �
The intuition underlying Lemma 2’s proof is that multiplying

r, π , σ 2, and the profit function F(·) by a constant k > 0 is akin
to changing the units in which we measure time. Moreover, the
objective function on the right-hand side of equation (1) is homo-
geneous of degree one in F(·) and c and hence the policy function
is the same whether we multiply F(·) by k or divide c by it. Thus
λa is homogeneous of degree one in (π, σ 2, r, 1

c ). Likewise, λa(π ,
σ 2) is homogeneous of degree one in (π , σ 2) when menu costs are
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small, c↓0, and the interest rate is very low, r↓0. The interpreta-
tion of r going to zero is that instead of maximizing the expected
discounted profit, the firm is maximizing the expected average
profit, a case frequently analyzed in stopping-time problems (see,
for example, Maurice 1981; Andrew and Zervos 2006), which we
study in detail in Online Appendix AD.

Lemma 2 extends the result on the elasticity of the frequency
of price adjustment with respect to inflation of equation (2a) in
Lemma 1 to the case with σ > 0 and with an arbitrarily large π .
This lemma requires that the shifter z has only permanent shocks.
In a model with permanent shocks, there is no invariant distri-
bution of z, and hence no invariant distribution of relative prices.
However, in the version of Golosov and Lucas’s (2007) model con-
sidered in Section III, the invariant distribution is well defined.
Indeed, the elasticity of the standard deviation of relative prices
conditional on z with respect to inflation converges to one-third,
as in Sheshinski-Weiss. Furthermore, as discussed in Section III,
for large inflation rates, this implies that the elasticity of the un-
conditional standard deviation of relative prices with respect to
inflation has an upper bound of one-third.

Using Lemma 1 and Lemma 2, we obtain the following result
for the high-inflation case:

PROPOSITION 2. Assume that F is three times differentiable. Con-
sider two firms with σ 1, σ 2 > 0. Then,

lim
π→∞

[
limc↓0,r↓0 λa(π, σ 2

1 )
limc↓0,r↓0 λa(π, σ 2

2 )

]
= 1(4a)

lim
π→∞

[
lim

c↓0,r↓0

∂λa(π, σ 2
i )

∂π

π

λa(π, σ 2
i )

]
= 2

3
f or i = 1, 2(4b)

lim
π→∞

[
lim

c↓0,r↓0

∂�+
p (π, σ 2

i )

∂π

π

�+
p (π, σ 2

i )

]
= 1

3
f or i = 1, 2.(4c)

Proposition 2 contains strong predictions about the limiting
behavior of the frequency of price adjustment as inflation becomes
large. The first part is a direct consequence of Lemma 2. It implies

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/134/1/451/5106372 by guest on 19 February 2020

file:qje.oxfordjournals.org


FROM HYPERINFLATION TO STABLE COSTS 467

that if we think that different industries have systematically dif-
ferent idiosyncratic shocks, we would expect the variance of these
shocks to differ across industries and, hence, the frequency of
price adjustment to be different across industries when inflation
is low. Equation (4a) implies that differences in the frequency of
price adjustment observed with low inflation should wash away
as inflation becomes large. This is illustrated in the numerical
example in the next section (see Figure II) and verified in the
data (see Section IV.D). The intuition is that when inflation is
low, the main driver of idiosyncratic nominal price changes are
idiosyncratic shocks, and when inflation is high, the main driver
of price changes is the growth of aggregate prices. The second part
of Proposition 2 is a sharp prediction about the rate at which firms
change the frequency of price adjustment when inflation grows. It
states that this elasticity should be two-thirds in the limit when
π → ∞. Finally, equation (4c) states that the elasticity of price
increases with respect to inflation converges to one-third as π →
∞. It follows from the fact that �+

p is S − s = π
λa

when σ = 0.
The results of Proposition 2 apply to a wider set of models

such as those mentioned in the comments to Proposition 1.

II.D. Decomposition of Changes in the Rate of Inflation

This section shows how steady-state changes in the rate of
inflation can be decomposed into changes in the extensive and
in the intensive margins of price adjustment, that is, changes
in inflation accounted for by the frequency of price changes and
changes in inflation accounted for by the size of price changes
conditional on a price change taking place. Our main theoretical
result is that for low inflation, the extensive margin accounts for
90% of changes in inflation while for high inflation it accounts for
two-thirds of inflation changes.

As a matter of accounting, we can decompose the inflation
rate as the difference between the product of the frequency of
price increases times the average size of price increases and the
product of the frequency of price decreases times the average size
of price decreases. Formally:

π = λ+
a �+

p − λ−
a �−

p .

Totally differentiating the previous expression with respect to the
inflation rate, and using the optimal decision rules, we can decom-
pose the changes in the inflation rate into those due to changes
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in the frequency, denoted by δ, and those due to changes in the
average size, denoted by 1 − δ:

1 = ∂λ+
a

∂π
�+

p − ∂λ−
a

∂π
�−

p︸ ︷︷ ︸
Extensive Margin

δ(π)

+ ∂�+
p

∂π
λ+

a − ∂�−
p

∂π
λ−

a︸ ︷︷ ︸
Intensive Margin

1−δ(π)

.

We derive the decomposition of inflation for π = 0 and for
π → ∞ with a quadratic profit function,9 no discounting, and
where z represents the (log of the) product cost and follows a drift-
less continuous time random walk.

PROPOSITION 3. Assume that σ > 0 and F(p − p̄, z) = −B (p − z)2,
where B > 0 is a positive constant. Then,

lim
r↓0

δ(0; r) = 9
10

and lim
π→∞ lim

r↓0
δ(π ; r) = 2

3
.

Proof. See Online Appendix AD. �
Notably, while Proposition 3 states that 90% of changes in

inflation around zero inflation are accounted for by the exten-
sive margin of price adjustment, Proposition 1 states that the
frequency of price changes is insensitive to inflation. To gain in-
sights into the interplay between the two propositions observe
that for zero inflation the frequency of price increases and de-
creases are the same, that is λ+

a = λ−
a , and also that the sizes are

the same, that is �+
p = �−

p . Proposition 1 implies that ∂λ+
a

∂π
= − ∂λ−

a
∂π

so the extensive margin at zero is δ(0) = 2�+
p

∂λ+
a

∂π
. Since inflation

introduces a negative trend in relative prices, it induces them to
hit more often the lower limit of the inaction set, prompting more
price increases and fewer price decreases. The characterization
of optimal policies in the proof of Proposition 3 shows that these
changes in the frequency of price increases and decreases account
for 90% of changes in the rate of inflation at π = 0. A similar
argument holds for the decomposition of the change of inflation in
a mild deflation.

9. Equivalently, we can write the result for a small fixed cost c, so that prices
are close to the profit-maximizing value, and thus a second-order expansion of the
profit function is accurate.
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The key technical insight in the proof of Proposition 3 is that
limr → 0rV(x, r) is finite and independent of x, where V(x, r) is the
value function and where x ≡ p − z is the markup. This allows
us to obtain an analytical solution of the value function and to
characterize optimal policies.

Finally, the following corollary to Proposition 3 presents a
sharp prediction about how changes in inflation affect the fre-
quency of price increases and decreases when inflation is low.

COROLLARY 1. Around π = 0, the difference between the frequency
of price increases and decreases rises with inflation. For-
mally,

∂(λ+
a − λ−

a )
∂π

|π=0 = δ(0)
�+

p |π=0
=

9
10

�+
p |π=0

> 0.

Taken together, the results at low inflation in Proposition 3
and its corollary imply that inflation rises when inflation is low
mostly because the frequency of price increases rises and that of
price decreases falls (the extensive margin), as opposed to the size
of price increases rising and that of price decreases falling (the
intensive margin).

1. General Remarks. We conclude this section with a few
remarks on the applicability of these comparative static results
to the time series variation in our data set. The propositions in
this section were obtained under the assumption that inflation
is to remain constant at the rate π , and that the frequency of
price changes is computed under the invariant distribution. Thus,
strictly speaking, our propositions are not predictions for time
series variation but comparative static results.

We give three comments in this regard. First, this should be
less of a concern for very high inflation, since the model becomes
close to static, that is, firms change prices very often and thus
the adjustment to the invariant distribution happens very fast.
Second, when we analyze the Argentinean data, we correlate the
current frequency of price changes with an average of the current
and future inflation rates. We experiment with different defini-
tions of these averages and find that the estimates of the elastic-
ities in the first two propositions of this section are not sensitive
to this choice. Moreover, with Argentina’s experience in mind,
Beraja (2013) studies the transitional dynamics in a menu cost
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model where agents anticipate a disinflation in the future and
performs the same comparative statics with artificial data gener-
ated from such model. He finds that the theoretical results in this
section are robust to conducting the analysis in a nonstationary
economy during a disinflation process calibrated to the Argentine
economy. Third, in Section III we numerically solve a standard
version of the menu cost model for reasonable parameter values
for menu cost c and discount rate r, which are positive but small,
and for finite but large inflation rates π , of the order that are
observed in Argentina. We find that the propositions in this sec-
tion (which use limit values for c, r, and π ) accurately predict the
behavior of the statistics of interest computed in the calibrated
model.

III. ILLUSTRATING THE THEORY WITH GOLOSOV AND LUCAS’S (2007)
MODEL

In this section, we specify a version of the firm’s problem
studied in Section II.A to illustrate the theory. We characterize
the solution of the model analytically and numerically and show
how changes in the rate of inflation affect optimal pricing rules,
the frequency of price changes, and the size of price adjustments.
The example also verifies the robustness of the analytical predic-
tions obtained so far. In Section II.A, we obtained sharp analytical
results under a variety of simplifying assumptions such as limit
values of parameters (e.g., vanishing menu cost c and or discount
rate r), or the shape of profit functions F. Also, our analytical
results were obtained at two extreme values of inflation. In this
section, we check the robustness of the simplifying assumptions
by computing a version of the model away from the limit cases,
considering values of inflation in the range observed in Argentina.

The example is a version of the Golosov and Lucas (2007)
model, identical to the one in Kehoe and Midrigan (2015).10 Specif-
ically, we assume a constant elasticity of demand, a constant
returns to scale production technology, idiosyncratic shocks to
marginal cost that are permanent, an exponentially distributed
product life, and a cost of changing prices that is proportional to
current profits (but independent of the size of the price change).

10. We zero out the transitory shock that gives rise to sales in Kehoe and
Midrigan (2015) and write the model in continuous time.
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FIGURE I

Optimal Thresholds for Different Inflation Rates

Online Appendix B presents a more detailed description of the
setup.

Furthermore, in Online Appendix BA, we present several
propositions with an analytical characterization of the solution
of this model. A novel contribution of this article is to derive a
system of three equations in three unknowns for optimal pricing
rules, as well as the explicit solution to the value function. We
also derive an explicit solution for the expected number of adjust-
ments per unit of time λa, and we characterize the density g of
the invariant distribution of (p, z). We believe these derivations
could be useful for researchers interested in menu cost models
more generally.

The remainder of this section contains several figures that
describe numerically how changes in the rate of inflation affect
the optimal pricing rules, the frequency of price changes, and the
size of price adjustments. Again, see Online Appendix B for details
on the calibration of the model underlying these figures.

Figure I illustrates how the optimal pricing policies vary with
inflation for two cases, σ = 0.15 and σ = 0. The dashed center
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lines are the optimal return markup and the outer lines are the
boundaries of the inaction set in each case. With no inflation and
σ > 0, the markup will drift away from the starting optimal
markup, driven by the idiosyncratic shock. The firm will keep
its nominal price fixed as long as it does not hit the boundaries.
Once the markup hits either boundary, x or x̄, the firm resets the
price and the markup returns to x̂. The light gray (in color version,
online, red) lines depict the optimal thresholds for Sheshinski and
Weiss’s (1977) case with σ = 0. Markups always fall when there
are no idiosyncratic shocks after the firm resets its nominal price.
Hence, the upper limit of the inaction set becomes irrelevant. The
firm resets its nominal price to x̂ + z when the markup hits the
lower bound x and waits for it to fall again.

Figure I shows several properties of the menu cost models we
study.11 At very low inflation rates, and when σ > 0, the thresh-
olds are symmetric, that is, the distance between x and x̂ is the
same as the distance between x̄ and x̂. This symmetry implies that
the size of price increases is equal to the size of price decreases,
�+

p (0, σ ) = �−
p (0, σ ), and that the frequency of price increases

is equal to the frequency of price decreases, λ+
a (0, σ ) = λ−

a (0, σ ).
These illustrate the results obtained in part (iii) of Proposition
1. At very high inflation rates, the models with σ > 0 and with
σ = 0 are equivalent in the sense that the critical values x and
x̂ in Golosov and Lucas’s (2007) model converge to the Ss bands
in Sheshinski and Weiss’s (1977) model as established in equa-
tion (3b) in Lemma 2. As a result, the magnitude of price changes
in the two models is the same as in equation (3c) in Lemma 2,
�+

p (π, 0) = S − s = x̂ − x. For rates of inflation above 250% a year,
Figure I also shows that the elasticity of �+

p (π, 0) with respect to
inflation is close to one-third—equation (4c) in Proposition 2.

Figure II, Panel A (color version online) displays the fre-
quency of price increases λ+

a , together with the frequency of all
adjustments λa, for two values of the cost volatility σ . There
are several interesting observations about this figure. First, the
frequency λa is insensitive to inflation in the neighborhood of
zero inflation as established in part (i) of Proposition 1. Second,
the length of the inflation interval around π = 0 where λa is

11. This example does not exactly satisfy all the assumptions of the model in
Section II.A since the profit function F derived from a constant elasticity demand
is not symmetric. Yet for small cost c, the terms in the quadratic expansion, which
are symmetric by construction, should provide an accurate approximation.
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approximately constant increases with σ—(see the discussion in
note 7). Third, the last part of Proposition 1 predicts that the fre-
quency of price increases and price decreases is the same when
π = 0. The figure shows that for low inflation the frequency of
price increases is about half of the frequency of price changes,
indicating that half the price changes are increases and half are
decreases. Fourth, for values of inflation above 250% a year, the
frequency of price changes λa for different values of σ are approx-
imately the same, consistent with the limiting results in equation
(4a) of Proposition 2. Fifth, since the graph is in log scale, it is
clear that the common slope is approximately constant for high
inflation, and close to two-thirds as established in equation (4b)
in Proposition 2. Finally, as inflation becomes large all price ad-
justments are price increases—as can be seen from the fact that
λ+

a converges to λa for each value of σ .
Figure II, Panel B displays the standard deviation of log

prices, conditional on z = 0. It shows that the elasticity of the
standard deviation of relative prices conditional on z with respect
to inflation is approximately zero for π = 0 and σ > 0 (as in
Proposition 1) and it is approximately one-third for large π (as
in Lemma 1). Moreover, for the case when σ > 0, Panel B shows
that the standard deviation of relative prices converges to the case
with σ = 0 and large enough π . Thus, the elasticity with respect to
inflation of the standard deviation of relative prices, conditional
on z = 0, converges to one-third as in Sheshinski and Weiss. Even
though the figure only shows this property conditional on z = 0,
this also holds for all z. This can be seen by using the characteriza-
tion of the invariant distribution of relative prices in Proposition
6 in the Online Appendix and taking limits as π → ∞.

Next we analyze the unconditional dispersion of relative
prices. The standard deviation of relative prices conditional on
z mostly captures the price dispersion coming from asynchronous
price adjustments to inflation. The only other remaining source
of dispersion in log prices is due to firm idiosyncratic shocks z. To
see this, it is helpful to decompose the unconditional variance of
relative prices σ̄ 2 (p; π, ·) for a given inflation rate π as follows:

(5) σ̄ 2 (p; π, ·) = E [Var (p|z; π, ·)] + Var [E (p|z; π, ·)] .

Here, the first term, E [Var (p|z; π, ·)] corresponds to Figure II,
Panel B because, as we show in Online Appendix BA, the
log-price distribution g(·, z) has the same shape for any value

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/134/1/451/5106372 by guest on 19 February 2020

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org


FROM HYPERINFLATION TO STABLE COSTS 475

of z. As for the term Var [E (p|z; π, ·)], this source of dispersion
is mostly exogenous because the variance of the average price is
equal to the cross-sectional dispersion of z for all values of π when
menu costs are zero.

Taken together, the foregoing discussion implies that relative
price dispersion is insensitive to inflation when inflation is low
because it reflects idiosyncratic firm shocks. However, for large
enough inflation rates, relative price dispersion has an elasticity
with respect to inflation that has an upper bound of one-third be-
cause the conditional variance for a given z has an elasticity of
exactly one-third and the second term in equation (5) is insensi-
tive to inflation. To illustrate this, Figure XII in Online Appendix
BB plots the unconditional standard deviation of log-prices for dif-
ferent values of volatility of the idiosyncratic shocks and average
product life. We observe that the elasticity increases when the sec-
ond term in equation (5) becomes smaller (for example, when the
average product life decreases). Yet it takes much higher inflation
rates than the ones observed in the peak months in Argentina
for the elasticity to reach the upper bound of one-third for high
inflation rates.

IV. ARGENTINA’S EVIDENCE ON MENU COST MODELS OF PRICE

DYNAMICS

In Section II we uncovered several properties of menu cost
models that can be contrasted with data. The presentation of the
empirical results in this section is organized around those predic-
tions. As a reminder, these are:

(i) The elasticity of the frequency of price changes λ with
respect to changes in the rate of inflation is zero at low
inflation rates, and it approximates two-thirds as inflation
becomes very large.12

(ii) The dispersion of the frequency of price changes across
goods decreases with inflation. It is zero when inflation
goes to infinity and the model converges to the Sheshinski
and Weiss (1977) model with no idiosyncratic shocks.

12. This result is robust to extending the menu cost model to one where the
menu cost is zero at some random times, so that they combine menu costs and
Calvo-type price adjustments. See, for example Nakamura and Steinsson (2010)
and Alvarez, Le Bihan, and Lippi (2016). In such random-menu-cost models, as
π → ∞, the frequency also converges to two-thirds.
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(iii) Intensive and extensive margins of price increases and
decreases.
(a) The frequency of price increases and of price decreases

are similar at low inflation rates.
(b) The size of price increases and price decreases are

similar at low inflation rates.
(c) At low inflation rates, as inflation grows, the fre-

quency of price changes remains constant while the
frequency of price increases rises and the frequency
of price decreases falls.

(d) For high inflation rates, the frequency of price in-
creases converges to λ and the frequency of price de-
creases converges to zero.

(e) The size of price changes is an increasing function of
the inflation rate.

(iv) The elasticity of the dispersion of prices across stores with
respect to inflation is zero for low inflation rates and it is
bounded by one-third when inflation becomes very large.

Next, we look at each of these predictions in the Argentinean
data.

IV.A. Description of the Data Set

Our data set contains 8,618,345 price quotes underlying the
consumer price index for the Buenos Aires metropolitan area in
the period December 1988 to September 1997. Each price quote
represents an item, that is, a good or service of a determined brand
sold in a specific outlet in a specific period of time. Goods13 and
outlets are chosen to be representative of consumer expenditure
in the 1986 consumer expenditure survey.14 Price quotes are for
506 goods that account for about 84% of household expenditures.

Goods are divided into two groups: homogeneous and differ-
entiated goods. Differentiated goods represent 50.5% of the ex-
penditure in our sample while homogeneous goods account for
the remaining 49.5%.15 Prices are collected every two weeks for
all homogeneous goods and for those differentiated goods sold in

13. To simplify the exposition, when it is clear, we use goods to refer to either
goods or services.

14. Encuesta Nacional de Gasto de los Hogares.
15. Examples of homogeneous goods are barley bread, chicken, and lettuce.

Examples of differentiated goods are moccasin shoes, utilities, tourism, and pro-
fessional services.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/134/1/451/5106372 by guest on 19 February 2020



FROM HYPERINFLATION TO STABLE COSTS 477

supermarket chains. They are gathered every month for the rest of
the differentiated goods. The data set contains 233 prices collected
every two weeks and 302 prices collected every month. Twenty-
nine of each of these goods are gathered both monthly and twice
a month.16

An important feature of the data set is the rich cross section
of outlets where prices are recorded at each point in time. Over the
whole sample there are 11,659 outlets, roughly around 3,200 out-
lets per month for homogeneous goods and about the same num-
ber for differentiated goods. On average, across the nine years,
there are 166 outlets per good (81 outlets per product collected
monthly and 265 per good collected bimonthly). Online Appendix
C contains further information on data collection and on the clas-
sification of goods.

We exclude from the sample price quotes for baskets of goods,
rents, and fuel prices. Baskets correspond to around 9.91% of total
expenditure and are excluded because their prices are gathered
for any good in a basket, that is, if one good is not available, it
is substituted by another in the basket. Examples are medicines
and cigarettes. Rents are sampled monthly for a fixed set of repre-
sentative properties. Reported prices represent the average of the
sampled properties and include what is paid on that month, as
opposed to what is paid for a new contract. Rents represent 2.33%
of household expenditure. Fuel prices account for 4% of total ex-
penditure, and we exclude them because they were gathered in a
separate database that we do not have access to.

The data set has some missing observations and flags for
stock-outs, price substitutions, and sales. We treat stock-outs
(10.5% of observations) and price quotes with no recorded in-
formation (2.25% of observations) as missing observations. The
statistical agency substitutes the price quote of an item for a sim-
ilar item, typically when the good is either discontinued by the
producer or not sold any longer by an outlet. Using this definition,
across the nine years of our data set, we have an average of 2.39%
of price quotes that have been substituted. The data set contains
an indicator of whether an item was on sale. Around 5% of items
have a sale flag. This is small compared with the 11% frequency

16. The outlets are divided into 20 waves, corresponding to the 20 working
days of the month. Each outlet is visited roughly on the same working day every 10
working days in the case of homogeneous goods and differentiated goods gathered
at supermarkets. The data set includes the particular day when each price is
gathered.
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of sales reported by Klenow and Kryvtsov (2008) for the United
States. Seventy percent of the sales correspond to homogeneous
items (this is similar to Klenow and Kryvtsov 2008. They report
that sales are more frequent for food items). The time series data
for the number of outlets per good and for the frequencies of miss-
ing observations, substitutions, and sales are depicted in Figure
III (color version online).

IV.B. Estimating the Frequency of Price Changes

We extend the methodology of Klenow and Kryvtsov (2008)
for estimating the frequency of price changes to the case of time-
varying frequencies of price changes.17 We assume a constant
probability of a price change per unit of time (a month for dif-
ferentiated goods and two weeks for homogeneous goods) so that
the arrival rate of a price change follows a Poisson process. In this
case, the maximum likelihood estimator of the frequency of price
changes is

λt = − ln (1 − fraction of outlets that changed price

between t and t − 1).(6)

The fraction of outlets that changed their price between peri-
ods can be calculated for individual goods or for the aggregate by
pooling the data for all outlets and all goods together. In this com-
putation, we drop observations with missing price quotes. This
simple estimator just counts the fraction of price changes in a pe-
riod of time, and transforms it into a per unit of time rate, λ. We
refer to λ as the “instantaneous” frequency of price changes.

Later, we perform robustness checks by using different meth-
ods of aggregation across goods, by considering different treat-
ments for sales, substitutions, and missing observations, and by
dropping the assumption that price changes follow a Poisson pro-
cess.

Figure IV plots the monthly time series of the simple pooled
estimator of λ and the expected inflation rate. It assumes that
all homogeneous and all differentiated goods have the same fre-
quency of price changes and estimates this aggregate frequency by
using the simple pooled estimator for the homogeneous and for the

17. Using the same methodology makes our study comparable to most of the
papers in the literature.
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FIGURE IV

Estimated Frequency of Price Changes λ and Expected Inflation

The λ shown is the expenditure-share-weighted average of the homogeneous and
differentiated goods’ simple estimator λ̂ = − log(1 − ft), where ft is the fraction of
outlets that changed price in period t. Inflation is the average of the log-difference of
monthly prices multiplied by 1,200 and weighted by expenditure shares. Expected
inflation is the average inflation rate 1

λ̂t
periods ahead.

differentiated goods. The biweekly estimates of the homogeneous
goods are aggregated to a monthly frequency,18 and the plot shows
the weighted average of these two estimators, using the share of
household expenditures as weights. Finally, the expected inflation
is computed as the average inflation rate 1

λ̂t
periods ahead. We ob-

serve that the two variables are correlated. For instance, during
the mid-1989 hyperinflation, the implied expected duration of a
price spell is close to one week; after 1993, the implied expected
duration is close to half a year.

IV.C. The Frequency of Price Changes and Inflation

In this section, we report how the estimated frequency of
price changes varies with inflation. We find that, as predicted by

18. The monthly frequency is the sum of the biweekly frequencies of each
month.
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FIGURE V

The Frequency of Price Changes (λ) and Expected Inflation

The λ shown is the expenditure-share-weighted average of the homogeneous and
differentiated goods’ simple estimator λ̂ = − log(1 − ft), where ft is the fraction of
outlets that changed price in period t. Inflation is the average of the log difference of
monthly prices weighted by expenditure shares. Expected inflation is the average
inflation rate 1

λ̂t
periods ahead. The fitted line is log λ = a + εmin {π − πc, 0} +

ν(min {π − πc, 0})2 + γ max {log π − log πc, 0}. The squares represent negative
expected inflation rates and the circles positive ones.

the menu cost model, the frequency of price changes is insensitive
to inflation when inflation is low. Moreover, for high inflation
rates, we find that the elasticity of the frequency of price changes
with respect to inflation is between one-half and the theoretical
two-thirds.

Figure V plots the frequency of price changes against the rate
of inflation using a log scale for both variables.19 On the right
axis we indicate the implied instantaneous duration, that is, 1

λ
. In

interpreting this figure, as well as the other estimates presented

19. See Section II for caveats on these results and for the interpretation of
contemporaneous correlations.
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below, it is worth noting that 1
λt

is the expected duration of prices at
time t if λt would remain constant in the future and provided that
the probability of a price change is the same within the smallest
period of observation (one month for differentiated goods and two
weeks for homogeneous goods).

Motivated by the theoretical considerations in Section II, as
well as the patterns evidenced in Figure V, we fit (estimated via
nonlinear least squares) the following statistical model to the
data:

(7)
log λ = a + ε min {π − π c, 0} + ν(min {π − π c, 0})2

+ γ max {log π − log π c, 0}.

This model assumes that log λ is a quadratic function of inflation
for inflation rates below the critical value, π c and that log λ is a
linear function of log π for inflation rates above π c. In Figure V
we observe that λ is insensitive to inflation at low inflation rates.
Increasing inflation from 0% to 1% a year increases the frequency
of price changes by only 0.04%. Moreover, the behavior of λ is sym-
metric around zero. The frequency of price changes starts to rise
for inflation rates under 5% a year. For high inflation rates, the
elasticity of λ with respect to inflation is captured by the param-
eter γ . We estimate γ to be at least one-half but smaller than the
theoretical limit of two-thirds. Also, as predicted by the menu cost
model, as inflation rises this elasticity becomes constant—that is,
the linear fit for log λ as a function of log π works well for high
inflation rates. In this estimation, the critical value π c in the sta-
tistical model, which has no theoretical interpretation, is of 14%
a year.20 The expected duration of price spells for zero inflation
is 4.5 months, which is consistent with international evidence, as
the next section shows.

The strong results in Figure V are surprising as the model
applies to steady states in which the inflation rate has been at
the same level for a long time. Section IV.C.2 presents two sets of
robustness checks along these lines. First, we replicated Figure V
using current inflation as well as different measures of expected

20. The comparative static of the models discussed in Section II does not imply
a kink like the one in equation (7), we merely use this specification because it is a
low-dimensional representation of interesting patterns in the data that provides
a good fit and has properties at the extreme values that are consistent with our
interpretation of the theory.
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inflation instead of inflation. The results are similar to those in
Figure V but somewhat weaker. Second, we redo the analysis on
data simulated from our model in Section III, but in a nonstation-
ary economy where agents anticipate a disinflation like the one
that occurred in Argentina following the exchange rate peg. Again,
our results are similar to conducting the analysis in a stationary
economy with a fixed inflation rate.

1. International Evidence on the Frequency of Price Changes
and Inflation. The previous section shows that certain aspects of
price-setting behavior in Argentina are consistent with the pre-
dictions of menu cost models. In particular, the elasticity of the
frequency of price changes is close to zero at low inflation rates
and close to two-thirds for high inflation rates. Here we show that
Argentina’s inflationary experience is of special interest because
it both spans and extends previous findings in the literature.

There are several studies that estimate the frequency of
price changes for countries experiencing different inflation rates.
Figure VI provides a visual summary of these studies and com-
pares them to ours by adding the international evidence to
Figure V.

First, observe how the wide range of inflation rates covered
by our sample makes this article unique: none of the other papers
covers inflation rates ranging from a mild deflation to 7.2 million
percent a year (annualized rate of inflation in July 1989). This is
what allows us to estimate the elasticity of the frequency of price
changes with respect to inflation both at low and high inflation
rates. In the other samples it is hard to test these hypotheses
because of their limited inflation range. Second, we note how the
patterns of the data for each country are consistent with the two
predictions of the menu cost model. Third, we note that in most
cases, the level of the estimated frequency of price changes is
similar to Argentina’s. The similarity between our results and the
existing literature is remarkable since the other studies involve
different economies, different goods, and different time periods. It
is a strong indicator that our results are of general interest, as
the theory suggests, and are not a special feature of Argentina.21

21. Table XV in Online Appendix G provides a succinct comparison of the data
sets used in these studies and of the inflationary environment in place in each
case. The table shows that in addition to covering a wider range of inflation rates
our data set is special due to its broad coverage that includes more than 500 goods
representing 85% of Argentina’s consumption expenditures.
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FIGURE VI

The Frequency of Price Changes (λ) and Expected Inflation: International
Evidence

A color version of this figure is available online. Price changes per month for
Argentina are the simple pooled estimator of λ. For the other cases we plot −log(1 −
f), where f is the reported frequency of price changes in each study. The (λ, π ) pairs
for Argentina, Mexico, and Brazil are estimated once a month and for the other
countries once a year. Expected inflation is the average inflation 1

λ
months ahead.

Data for the Euro area is from Álvarez et al. (2006), for the United States from Bils
and Klenow (2004), Klenow and Kryvtsov (2008), and Nakamura and Steinsson
(2008), for Mexico from Gagnon (2009), for Israel from Baharad and Eden (2004)
and Lach and Tsiddon (1992), for Poland from Konieczny and Skrzypacz (2005),
for Brazil Barros et al. (2009), and for Norway from Wulfsberg (2016). Logarithmic
scales for both axes.

The studies included in the figure are all the ones we could
find covering a wide inflation range. For the low inflation range
we included studies for the United States by Bils and Klenow
(2004), Klenow and Kryvtsov (2008), and Nakamura and Steins-
son (2008), and for the Euro area by Álvarez et al. (2006).22 Our
estimates of the frequency of price changes are consistent with all

22. Recently Nakamura et al. (2018) have extended the U.S. data to cover an
earlier period, which includes inflation rates going up to 14% a year.
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of them.23 We have three data points for Israel corresponding to an
inflation rate of 16% a year between 1991 and 1992 (Baharad and
Eden 2004), 64% a year between 1978 and 1979, and 120% a year
between 1981 and 1982 (Lach and Tsiddon 1992). The frequency
of price changes for these three points is well aligned with the Ar-
gentine data. The same is true for the Norwegian data (Wulfsberg
2016) that ranges from 0.5% to 14% a year. For Poland, Mexico,
and Brazil, we were able to obtain monthly data for a wide range
of inflation rates. The Polish sample ranges from 18% to 249% a
year (Konieczny and Skrzypacz 2005) and the Mexican one ranges
from 3.5% to 45% a year (Gagnon 2009). In both cases, the obser-
vations are aligned with the Argentina sample. The Brazilian data
(Barros et al. 2009) yields an elasticity of the frequency of price
changes at high inflation that is consistent with ours. However, it
yields a higher level of the frequency of price changes than ours
and other studies.

2. Robustness. Next we conduct a number of robustness ex-
ercises to evaluate the sensitivity of the main results regarding
the frequency of price changes. The first set of exercises deals
with recurrent issues when analyzing micro-price data sets, such
as missing observations and price changes due to substitutions or
sales, as well as issues of aggregation across products. Second, we
address biases resulting from discrete sampling. Third, we present
results using different measures of expected inflation. Finally, we
address the possibility that the theoretical propositions that hold
in the steady state are a poor description of the Argentine experi-
ence in the high-inflation period leading to the stabilization plan
in 1991 where agents are likely to have anticipated the strong
disinflation that followed.

The conclusions are twofold. First, at low inflation rates the
empirical findings of this section go through intact. Second, at high
inflation, we observe some quantitative but not qualitative differ-
ences. Most notably, depending on the estimator used to aggregate
the data, the elasticity of the frequency of price changes can range
from approximately one-half to the theoretical two-thirds.

i.Missing Data, Substitutions, Sales, and Aggregation. Table I
reports the sensitivity of the estimates of the elasticity γ , the

23. There are other studies for low-inflation countries, especially for the Euro
area, but since they mostly yield estimates similar to those of Álvarez et al. (2006)
we do not report them (see Álvarez et al. 2006 and Klenow and Malin 2011 for
references to these studies).
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TABLE I
THE FREQUENCY OF PRICE ADJUSTMENT AND INFLATION: ROBUSTNESS CHECKS

Elasticity Semi-elasticity Expected duration
γ at zero �%λ at π = 0 (months)

Aggregation Diff. Hom. Agg. Diff. Hom. Agg. Diff. Hom. Agg.

Panel A: Simple estimator (no information from missing price quotes)
Pooled 0.51 0.5 0.53 0.08 −0.01 0.04 9.1 2.9 4.5
Weighted average 0.52 0.48 0.52 0.07 −0.01 0.04 8.2 2.8 4.4
Median 0.64 0.64 0.68 0.1 0.01 0.05 15 7 9.3
Weighted Median 0.65 0.64 0.68 0.09 0 0.04 12.2 5.5 7.8
Pooled (excluding sales) 0.5 0.47 0.52 0.08 0.01 0.05 10 3.8 5.7

Panel B: All price quotes
Pooled 0.51 0.5 0.52 0.08 0 0.04 8.8 3 5.1
Weighted average 0.52 0.45 0.49 −0.05 −0.01 0.04 8.9 2.9 4.6
Median 0.62 0.58 0.65 0.09 −0.1 0.02 15.3 4.4 10.2
Weighted median 0.62 0.65 0.65 0.09 0.01 0.04 12.9 5.4 7.5

Panel C: Excluding substitution quotes
Pooled 0.55 0.5 0.52 0.09 −0.01 0.03 7 3.2 6.2
Weighted average 0.52 0.45 0.51 0.06 −0.01 0.03 10.7 3 6.7
Median 0.66 0.65 0.68 0.13 0.01 0.02 18.8 9 12.4
Weighted median 0.66 0.62 0.66 0.07 −0.03 0.02 16.5 6.1 10.4

Panel D: Excluding substitution spells
Pooled 0.52 0.5 0.52 0.07 0 0.05 10.7 3 5.5
Weighted average 0.53 0.44 0.49 −0.1 −0.01 0.04 8.6 2.9 4.8
Median 0.62 0.64 0.64 0.09 0.02 −0.02 18.4 8.3 10.9
Weighted median 0.63 0.6 0.66 0.09 −0.07 −0.05 15.4 4.7 8.2

Panel E: Excluding substitution and sales quotes
Pooled 0.5 0.47 0.52 0.08 0.03 0.05 9.9 2.6 6.7

Notes. Diff. denotes differentiated goods, which are sampled once a month. Hom. denotes homogeneous
goods, which are sampled twice a month. Agg. denotes the weighted average of the differentiated and ho-
mogeneous goods, with weights given by the expenditure shares and where the homogeneous goods have
been aggregated to monthly frequencies. For each case we use NLLS to fit: log λt = a + εmin {π t − πc, 0}
+ ν(min {π t − πc, 0})2 + γ max {log π t − log πc, 0} + ωt . The semi-elasticity at zero �%λ is the percentage
change in λ when inflation goes from 0% to 1%. Panel A estimates λ with the simple estimator in equation
(6) discarding information from missing prices, Panel B is the full information maximum likelihood estimator
described in Online Appendix DA, Panel C replaces price quotes with a product substitution by missing data,
Panel D replaces price spells ending in a product substitution by missing data, and Panel E replaces sales
quotes by the previous price and product substitutions by a missing quote.

semi-elasticity �%λ and the duration at low inflation obtained
with the simple estimator to different treatments of missing data,
sales, product substitution, and broad aggregation levels. In On-
line Appendix DA we describe in detail the methodologies and the
definitions of all estimators in Table I.

We report estimates of the three parameters of equation (7)
for the sample of differentiated goods (sampled monthly), for the
sample of homogeneous goods (sampled twice a month) and for
the aggregate. The latter is obtained by averaging the estimated
λs with their expenditure shares after converting the biweekly
estimates to monthly ones.
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The first and second columns show the elasticities at high
and low inflation. The third block of columns shows the implied
duration of price spells when inflation is low (below the threshold)
under the assumption that the frequency of price adjustment is
constant.

The first row in Table I corresponds to the pooled simple es-
timator reported in Figure V. The estimates of the elasticity of
the frequency of price adjustment with respect to inflation, γ , are
very similar for the λs in the two samples and for the aggregate
λ. The estimates for the semi-elasticity and expected duration
at low inflation are markedly higher for differentiated goods in
comparison to homogeneous goods. The other lines in the table
provide estimates of the three parameters of interest for different
aggregation methods and for the different treatments of missing
observations, product substitutions, and sales. The values for the
elasticity γ across all these estimation techniques ranges from
approximately one-half to two-thirds. The variation in �%λ esti-
mates is much smaller across methodologies. Both differences in
the estimators result from alternative aggregation methodologies
and not from the treatment of sales, substitutions, and missing
values. For instance, the elasticity at high inflation when using
the simple estimator with pooled data climbs from 0.53 to 0.68
when using the median estimate across industries.

The treatment of sales and substitutions does seem to have
an effect on the estimates of the expected duration of price spells
when inflation is low, as in other papers in the literature (see
Klenow and Malin 2011). For example, durations increase from
4.5 months to 5.7 months when sales price quotes are replaced
by the price quote of the previous regular price. In Klenow and
Kryvtsov (2008) durations go from 2.2 months to 2.8 after the
sales treatment and in Nakamura and Steinsson (2008) they go
from 4.2 to 3.2 months. Time series for frequency of substitution,
sales, and missing values in the sample can be seen in Figure III.

What accounts for the differences in the estimated implied
duration at low inflation between the sample of differentiated
and homogeneous goods? Expected durations are much higher for
differentiated goods than for homogeneous goods. In principle, we
believe that this discrepancy can be attributed to two features: an
intrinsic difference between the type of goods or due to the fact
that the prices of homogeneous goods are sampled bimonthly and
prices for differentiated goods once a month.
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TABLE II
DISTRIBUTION OF FITTED COEFFICIENTS AT THE FIVE-DIGIT LEVEL

Elasticity Semi-elasticity Duration
γ at zero �%λ at π = 0

Diff. Hom. Diff. Hom. Diff. Hom.

Mean 0.58 0.56 0.03 0.01 18.5 7.5
Median 0.58 0.55 0.03 0 15 6.4
Perc 75 0.7 0.6 0.1 0.02 25.6 9.3
Perc 25 0.48 0.5 −0.03 −0.02 6.9 4.7
Std. dev. 0.14 0.08 0.1 0.07 14.2 5.2

Notes. Diff. denotes differentiated goods. Hom. denotes homogeneous goods. For each five-digit industry we
use NLLS to fit: log λt = a + εmin {π t − πc, 0} + ν(min {π t − πc, 0})2 + γ max {log π t − log πc, 0} + ωt. The
semi-elasticity at zero �%λ is the percentage change in λ when inflation goes from 0 to 1%. λ is estimated
with the simple estimator in equation (6).

Finally, we explore the robustness of the parameter estimates
for the elasticity of the frequency of price changes with respect to
inflation at high and low inflation rates by fitting equation (7) for
each of the five-digit industries, using the simple estimator of λ.24

Table II presents statistics describing the distribution of the
coefficient estimates derived from equation (7) across five-digit in-
dustries. The elasticity estimates confirm our previous findings: (i)
the elasticity of the frequency of price changes at high inflation, γ ,
varies between one-half and two-thirds; and (ii) the semi-elasticity
�%λ is approximately zero regardless of the industry. Consistent
with the results in Table III in the next section, there is large
variation in the expected duration at low inflation, particularly so
for differentiated goods.

ii. Sampling Periodicity. So far we have been using the esti-
mator of the theoretical frequency λa that has been proposed in
the literature, λ̂t = − ln

(
1 − ft

)
. If price changes follow a Poisson

process, this is the maximum likelihood estimator of λa. However,
since we only observe frequency of price changes ft at discrete
times, a well known bias may arise if prices change more than
once within the time interval and these changes are not indepen-
dent. In particular, we would expect the bias to become larger as
inflation increases and prices change more frequently.

In this section, we consider an alternative estimator λ̂SW
t =

ft and compare it to λ̂t. In the Sheshinski-Weiss model with no

24. We performed the same exercise at a six-digit level obtaining qualitatively
similar results. See Table V for disaggregation levels.
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TABLE III
CROSS INDUSTRY DISPERSION OF DURATION 1

λ

Annual inflation Median 75-25 pct 90-10 pct
range (%) duration difference difference

Homogeneous goods
<10 6.3 6.4 14.0
[10, 100] 1.7 3.0 6.4
[100, 500] 0.6 0.7 1.9
�500 0.2 0.3 0.6

Differentiated goods
[0, 10] 9.9 12.0 27.0
[10, 100] 2.9 3.8 6.9
[100, 500] 0.8 0.7 1.6
�500 0.3 0.2 0.4

Notes. Duration is in months and calculated as 1
λ for each five digit industry. The cross-industry statistics,

for example, 75-25 pct, are computed by pooling all λs corresponding to inflation rates in the interval.

idiosyncratic shocks (or in the limit as inflation becomes very
large compared to the volatility of the shocks), this is a maximum
likelihood estimator of λa.

In the left panel of Figure VII we present the results of Monte
Carlo simulations using data generated by the model in Section
II. We sample observations every two weeks and calculate both
estimators of λa for different inflation rates. The true frequency
of price adjustment, λa, is represented by the medium gray (red)
line, the frequency, f, by the light gray (green) line and the simple
estimator λ̂t by the dark gray (blue) line (color version online).
The figure points to the existence of an upward bias in λ̂t for high
inflation rates, and as such, in the elasticity of the frequency of
price adjustments to inflation.

To reduce the incidence of such bias in our empirical esti-
mates, we proceed by reestimating the elasticity of the frequency
of price changes to inflation by excluding observations correspond-
ing to inflation above some threshold. In the right panel of Figure
VII, we show this for a threshold inflation of 200%. This threshold
is where our Monte Carlo estimates show that the bias starts be-
coming more pronounced. The estimated elasticities are 0.63 and
0.48, respectively, much in line with our benchmark estimates.25

25. Excluding observations corresponding to inflation below 50% and above
200% or below 50% and above 100% results in estimated elasticities of 0.64 and
0.76 when using λ̂; when using f instead, these are 0.44 and 0.59.
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iii. Expected Inflation. Next we check the robustness of our
results to measuring expected inflation differently. So far, we have
used the average realized inflation for the expected duration of the
price set in period t, 1

λt
. We now consider the average of the actual

inflation rate of the following kt months, where kt =
[

n
λt

]
and the

operator [·] refers to the integer part of a number. Formally, this is
π e

t = 1
kt

∑t+kt
s=t πs. We refer to n as the forward-looking factor. Thus,

as inflation falls (and implied durations rise) in our sample, agents
put an increasing weight on future inflation. When n = 0 expected
and actual inflation are the same.

Table XIII in Online Appendix DG shows that the results
presented here are not very sensitive to estimating equation (7)
using different forward-looking factors in equation (59).

iv. Expected Disinflation. Motivated by Argentina’s history in
the years prior to the exchange rate peg of the 1990s, it seems rea-
sonable to believe that forward-looking agents anticipating lower
future money growth rates and inflation would have altered their
pricing behavior before the exchange rate peg was actually in
place. This could cast doubts on our interpretation of the evidence
on menu cost models by studying the Argentinean economy dur-
ing this exact period, since our theoretical results are derived for
stationary economies with constant money growth rates.

Beraja (2013) studies this issue. He conducts the same com-
parative statics analysis from this section on data simulated from
the model in Section III during a disinflation process calibrated to
the Argentine economy. He finds that our theoretical results are
robust to studying a nonstationary economy where agents antici-
pate a disinflation in the future.

IV.D. Inflation and the Dispersion of the Frequency of Price
Changes

This section reports how the dispersion of the frequency of
price changes varies as inflation grows. Proposition 2 states that
under certain conditions, the firm’s pricing behavior when infla-
tion is high is independent of the variance of the idiosyncratic
shocks. This implies that as inflation becomes higher, it swamps
the effect of idiosyncratic differences across firms that result
in differences in the frequency with which they change prices.
Figure II illustrates this point in the numerical example of our
version of the Golosov and Lucas (2007) model in Section III. We
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use this result assuming that firms in an industry have the same
parameters, but that the parameters differ across industries.

In Table III we estimate λ for each narrowly defined industry
(at a five-digit level of aggregation),26 calculate the implied aver-
age duration 1

λ
and present two measures of the dispersion of λ’s

across such industries: the 75-25 and 90-10 percentile differences.
We observe a significant decline in dispersion as inflation rises
both across homogeneous and differentiated good industries. For
example, for homogeneous goods, the 90-10 percentile difference
in λs when inflation is above 500% a year is about 23 times smaller
than the percentile difference at single-digit inflation.

IV.E. Inflation and the Intensive and Extensive Margins of Price
Adjustments

In this section, we confront theoretical predictions about the
behavior of the intensive and extensive margins27 of price changes
with the data.

We first look at the predictions of the theory (Propositions
1 and 3 and Corollary 1) with respect to the frequency of price
changes (the extensive margin of price adjustments) for near-zero
inflation rates. According to theory, for near-zero inflation, the
frequency of price increases and of price decreases is the same,
the frequency of price changes is insensitive to inflation, and the
difference between the frequency of price increases and decreases
rises with inflation. Figure II illustrates some of these properties
of the menu cost model in the numerical example in Section III.

Figure VIII (color version online) takes these predictions to
the data for our two groups of goods. The red crosses plot the fre-
quency of price changes λ against inflation and the blue circles
represent the difference between the frequency of price increases
and that of price decreases, λ+ − λ−. The range of inflation in the
figure was chosen by picking the lowest, negative rate of infla-
tion (excluding outliers) and its positive opposite. The quadratic
function fitting the red crosses reflects both the insensitivity of the
frequency of price changes to inflation as well as the symmetry be-
tween the frequency of price increases and price decreases—that
is, quadratic functions have zero derivative and are symmetric
around zero. This fact is particularly evident for homogeneous

26. Examples of five-digit aggregation are citrus fruits, soaps, and detergents.
See Table V in Online Appendix C.

27. See Section II.D for a definition of these margins.
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goods (Panel A), but somewhat less apparent for differentiated
goods (Panel B).28 Furthermore, the two panels in Figure VIII
show that the prediction that the derivative of λ+ − λ− with re-
spect to inflation is positive for low rates of inflation seems to be
consistent with the data.

We conclude the analysis of the extensive margin of price
changes at low inflation with a variance decomposition of infla-
tion. Proposition 3 states that in near-zero inflation, most of the
changes in inflation result from the extensive margin (90% to be
precise). Then, in our data, we compute the extensive margin con-
tribution as follows. Remember that inflation can be decomposed
as:

π = (λ+ − λ−)�+
p + (�+

p − �−
p )λ−,

so that its variance can be written as

var(π ) = cov
[
(λ+ − λ−)�+

p , π
] + cov

[
(�+

p − �−
p )λ−, π

]
.

Therefore, the extensive margin contribution is simply
Cov

[
(λ+−λ−)�+

p ,π
]

V ar(π) . Because at π = 0 the frequency of price increases
and decreases are identical, this calculation approximates the the-
oretical extensive margin contribution in Proposition 3.29 We find
that for both homogeneous and heterogeneous goods, the contribu-
tion of the extensive margin to total inflation variance is between
80% and 90%, depending on whether we define “near-zero infla-
tion” as inflation belonging to a large range (e.g., between 20%
and −20%) or small (e.g., between 5% and −5%).

28. Figure IX, Panel A shows the same fact by plotting the frequency of price
increases (green circles) and the frequency of price decreases (red squares) against
the absolute value of inflation. The axes in Figure VIII are not on a log scale, unlike
Figure V and Figure IX, thus ensuring that the insensitivity of the frequency of
price adjustment to inflation is not an artifact of the scale.

29. This variance decomposition, guided by Proposition 3, differs from Klenow
and Kryvtsov (2008), who do not distinguish between the frequency of price
increases and decreases. Because the frequency of price changes is unresponsive
to inflation for low inflation rates Klenow and Kryvtsov (2008), as well as Gagnon
(2009), conclude that the variance of inflation at low inflation rates is mostly
explained by the intensive margin, whereas we conclude that it is explained by
the extensive margin. In our case, the latter is the change in the difference be-
tween the frequency of price increases and that of price decreases captured by
Cov

[
(λ+−λ−)�+

p ,π
]

V ar(π ) .
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Next, we look at extensive and intensive margin predictions
for high inflation rates. We present results for the homogeneous
goods alone. The results for differentiated goods are similar. As
a reminder, our theoretical propositions showed that at high in-
flation rates, the frequency of price increases λ+ should converge
to λ and the frequency of prices decreases λ− should converge to
zero (Lemma 1 and Lemma 2). Figure IX, Panel A shows that
this is indeed the case in the Argentine data. Furthermore, Panel
B shows the empirical behavior of the intensive margin. We find
that for low inflation rates, the size of price changes is insensitive
to inflation and that the size of price increases and decreases is
the same (approximately 10%).30 This is consistent with the last
part of Proposition 1. As inflation rises, the size of price increases
and decreases rises, with the magnitude of price increases becom-
ing larger than that of price decreases. This is consistent with
the properties of our numerical example, shown in Figure I and
Figure IX.31

As with the results for the frequency of price changes in the
previous section, one concern is that the average size of price
increases in Figure IX, Panel B are biased at very high inflation
rates because of the aforementioned issues with time aggregation.
Thus, we repeat the analysis of Figure VII, Panel B. We calculate
the size of price increases for different inflation rates using data
generated by the model in Section III and sample observations
every two weeks. Figure XIII in Online Appendix E compares this
to the theoretical average size of price increases in the model.
As opposed to what we found in Figure VII, there is almost no
bias in the average size of price increases because of the sampling
periodicity.

IV.F. Inflation and the Dispersion of Relative Prices

In this section, we document the empirical sensitivity of the
cross-sectional price dispersion to the inflation rate at very low
and very high values of inflation. In Section II and in the exam-
ple in Section III, we analyzed how inflation affects the disper-
sion of relative prices in menu cost models. We showed that the

30. Gagnon (2009) finds similar patterns in Mexico. For low inflation, the
frequency and the absolute size of price changes are unresponsive to inflation,
while the share of price increases (decreases) rises (falls) with inflation

31. Note that Figure IX, Panel B is the analog to Figure XI in Online Appendix
BB, which we computed with the numerical example described in Section III. The
theoretical and the empirical figures are indeed qualitatively very similar.
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dispersion of relative prices is insensitive to changes in inflation
when inflation is low, whereas it increases with inflation when
inflation is high. In the limit, as the rate of inflation relative to
the variance of idiosyncratic shocks becomes infinite, π

σ
→ ∞, the

elasticity of the standard deviation of relative prices with respect
to inflation is bounded by one-third. In this section, we contrast
these predictions with our data set and find that the empirical
elasticities are remarkably close to the ones predicted by the
theory.

This aspect of the data is of independent interest because at
the core of the welfare costs of inflation in sticky-price models
is that higher inflation introduces relative price dispersion that
decouples marginal rates of substitution from marginal rate of
transformation. In our model, this is captured by the effect of
inflation on the standard deviation of relative prices.

Our strategy is to estimate the cross-sectional dispersion of
prices in each period and correlate it with inflation. The assump-
tion behind it is that the cross-sectional dispersion is changing
through time only because of the time series variation in infla-
tion. We think that in our case this is a reasonable assumption
due to the very large changes in inflation in relatively short peri-
ods of time.32 We measure the dispersion of relative prices through
the residual variance in a regression of prices at each time, store,
and good on a rich set of fixed effects.

To estimate the effect of inflation on the distribution of rela-
tive prices, ideally we need to compare identical goods or, at least,
control for factors that affect individual price levels (for exam-
ple, quality or store characteristics). We proxy for these factors by
controlling for goods, stores, and nonsubstitution spells, which we
define next.

The Argentine statistical agency (INDEC) fixes the exact
characteristics of a good in each store during what we call a non-
substitution spell (see Online Appendix C). In particular, when
an INDEC enumerator first goes to a store, she fixes all the char-
acteristics of a good and records them. For instance, suppose we
are talking at the most disaggregated level of goods defined as
“carbonated drink of top brand in a small bottle”—this will be i

32. As pointed out by Nakamura et al. (2018) this may be a more pressing
issue for their U.S. data which has much smaller changes in inflation over a longer
time period.
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in the notation below.33 The first time the enumerator goes to the
store s, she fixes the brand and the exact package of the good i,
based on the information given by the manager of store s on which
brand and package is sold most often in that particular store. We
refer to this particular brand-package as j(i, s, t).34 From then on,
when the enumerator visits store s she keeps measuring the price
of that particular brand and package for the good i “carbonated
drink of top brand in small bottle.” The first time the particu-
lar brand and package is no longer available in that store, the
enumerator records this as a substitution. Subsequently the enu-
merator fixes a new brand and package for that store, again using
the information from the store manager. We refer to the times t
between these two events as a nonsubstitution spell, that is, a
period where the variable j(i, s, t) takes the same value. After a
substitution takes place for the same (s, i) then j(i, s, t) increases
by 1. Thus, for each good-store combination (i, s), the variable j(i,
s, t) takes positive integer values. Although we do not have access
to the agency record of the description of the good in each substi-
tution spell, we have access to the indicator of the times at which
substitutions have taken place, and hence we can compute j(i, s,
t) for each time t, good i, and store s.

We consider five cases for the specification of fixed effects
where we progressively include more dummies. In each case, we
estimate a weighted regression for prices of goods at each store
in each time period, using the CPI weights. Then we compute
the residual variance for each time across the goods and stores
and convert it into a standard deviation. We plot this standard
deviation against the expected inflation for each date—which cor-
respond to a two-week period. We use the homogeneous goods
because for these goods there are more outlets per good and be-
cause of the higher frequency of these goods, which is required to
have a large number of good × stores with more than one non-
substitution spell. The data set has about 5.5 million price quotes
(combination of times, goods, and stores with valid prices for ho-
mogeneous goods). In case 1 we have 222 time dummies, one for
each two-week period. In case 2 we have about 5,000 separate
dummies for times, goods, and stores. In case 3 we have about
75,000 dummies for time and for goods × store combinations. In

33. To be concrete, we have 233 different i’s for homogeneous goods.
34. To be concrete, this can be regular Coca-Cola in a particular type of plastic

bottle.
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TABLE IV
REGRESSIONS USED TO COMPUTE RESIDUAL VARIANCE OF PRICE LEVELS

Models i: # of Adj R2 Elast at Elast at Elast at
indicate dummies dummies π = 100% π = 500% π = 700%

1: time 212 0.751 0.03 0.21 0.31
2: time + good + store 4,978 0.982 0.06 0.26 0.34
3: time + good × store 74,755 0.987 0.14 0.35 0.37
4: time + good × store

× non-subs-spell
153,896 0.989 0.16 0.37 0.38

5: time × store + time
× good + good × store
× non-subs-spell

464,505 0.996 0.13 0.30 0.28

Notes. 5,497,452 price observations are used in each regression for 233 goods with prices collected twice a
month over 212 periods.

case 4 we have dummies for time and for each nonsubstitution
spell in each of the store × good combinations, which requires us
to estimate 155,000 parameters. For many good × store combi-
nations there is only one nonsubstitution spell during the time
spanned by our data set, while for some there are dozens. Finally,
in case 5 we have dummies for combinations of time × store, dum-
mies for combinations of time × good, and separate dummies for
nonsubstitution spells of each store × good combination. In this
case we have about 470,000 dummies. Table IV summarizes this
information. On conceptual grounds, our preferred specification is
number 4: time dummies and nonsubstitution-spell dummies for
each good and store. Yet we are mindful that we are borderline
in terms of the degrees of freedom left to be able to accurately
estimate the residual variance in each two-week period.

Figure X displays the standard deviation of the residuals for
each case, plotted against the expected inflation at each point of
time. For each case we also include a fitted polynomial regres-
sion. It is clear that for low inflation the cross-sectional standard
deviation of relative prices varies very little, just as the theory
predicts. Instead, at very high inflation, the elasticity of the cross-
sectional dispersion of relative price with respect to inflation is
about one-third. In particular, the last three columns of Table IV
display the elasticities of the fitted polynomial regressions eval-
uated at annual continually compounded inflation rates of 100%,
500%, and 700% for each case. We view the values of the elastic-
ity of the fitted line at both low and high inflation as consistent
with the theory. The elasticity is zero at low inflation rates and
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FIGURE X

Cross-Sectional Standard Deviation of Prices and Costs of Price Dispersion
versus Inflation

A color version of this figure is available online. Each point is an inflation–
standard deviation pair. The residual standard deviation is derived from each
regression in Table IV for the sample of goods with two visits a month. The lines
are OLS fitted values for a second-order polynomial in levels. The right axis shows
the costs of inflation captured by equation (8) with η = 6 for π = 0 (σ = 0.108), π

= 50 (σ = 0.1175), π = 100 (σ = 0.129), and π = 500 (σ = 0.2), measured as a % of
GDP.

approaches the upper bound of one-third for sufficiently large in-
flation rates, as discussed in Section II.B and Section III.35

Finally, we perform two types of exercises to evaluate the
robustness of these results. As for the frequency and size of price
changes, the first concern is that the standard deviation of relative
prices is biased at very high inflation rates because of issues with

35. These results are sensitive to the method employed to fit the relation
between the standard deviation of relative prices and expected inflation. In
Figure X we fit a second-degree polynomial in levels. Fitting an equation simi-
lar to the one in Figure V, for example, the elasticity of the standard deviation
with respect to inflation for low inflation is still zero, but for high inflation it is
lower.
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time aggregation.36 Thus we repeat the Monte Carlo analysis of
previous sections. Using data generated by the model in Section
III, we sample observations every two weeks and calculate the
standard deviation of log prices for different inflation rates. Figure
XIV in Online Appendix E compares it to the theoretical standard
deviation of log prices. We observe that for inflation rates higher
than 500%, some bias exists. However, in Table IV, we found that
the estimated elasticity remains close to the theoretical upper
bound of one-third even at 500% inflation rates.

The second concern is that of sample selection. Because
our sample is an unbalanced panel, it might be the case that
the goods or stores for which we have price quotes at differ-
ent rates of inflation have different variance of relative prices.
To account for this we reproduced Figure X and Table IV for a
sample of store-good pairs with 190 (out of 212) nonmissing ob-
servations. The sample is reduced by 4 million observations, so
it has approximately 1.5 million observations. The results are
very similar to those from the full sample and can be found in
Online Appendix F.

1. The Cost of Inflation. Taken together, the foregoing re-
sults imply that the welfare cost of inflation due to the inefficient
dispersion in relative prices—as emphasized in Woodford (2003,
ch. 6)—is likely to be relevant only for high rates of inflation,
as evidenced by the insensitivity of relative price dispersion to
inflation for inflation rates below ten percent per year.

Using a second-order approximation to the expression for
the decrease in output due to price dispersion, one obtains the
following expression for the cost of inflation (expressed as a frac-
tion of output lost per period):

cost(π ) = η

2

(
σ̄ 2(π ) − σ̄ 2(0)

)
,(8)

where σ̄ 2(π ) − σ̄ 2(0) is the change in the variance of relative prices
between an annual inflation rate of zero and π , and η is the

36. Prices of the same good are gathered from different stores over a rolling
window of two weeks, as opposed to being measured simultaneously across all
stores on the same day. Thus, if the prices gathered late in the two-week period
are systematically higher than those gathered early on because almost all prices do
change due to inflation, we obtain an upward-biased estimate of the cross-sectional
standard deviation of prices at a point in time.
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elasticity of substitution between the different goods. Note that
this is a “typical” Harberger’s triangle formula: proportional to
half of the elasticity and to the (average) square of the tax wedge.
Furthermore, it is worth emphasizing that this is only the part of
the cost that corresponds to the distortion due to extra price dis-
persion: the total cost also includes the average menu cost spent
per year at the inflation rate π .

Equation (8) and Figure X indicate that the cost of inefficient
price dispersion due to inflation is highly nonlinear. The right
axes of Figure X shows the costs of inefficient price dispersion for
the benchmark case—regression 4 in Table IV—for different (log)
annual inflation rates with η = 6. We take the standard deviation
of relative prices with no inflation to be the level of the fitted line
close to zero. For an inflation rate of π = 50% a year the cost
of inflation is approximately 0.6% of GDP, and for π = 100% it is
approximately 1.5% of GDP. Thus, for inflation rates below 100% a
year the costs of inflation arising from inefficient price dispersion
are relatively moderate. For higher rates of inflation, these costs
rise quickly. An inflation of π = 500% a year, for example, results
in a cost of approximately 8.5% of aggregate output per year due
to the additional price dispersion alone.

V. CONCLUSIONS

After deriving several predictions of menu cost models of nom-
inal price setting at very high and near-zero inflation rates, we
empirically analyzed how inflation affects price-setting behavior
by using a novel micro-data set underlying Argentina’s consumer
price index. Argentina’s experience is unique because it encom-
passes periods of very high and near-zero inflation, thus allowing
us to test sharp predictions of menu cost models in these extreme
scenarios.

We found that when inflation is low, the frequency of price
changes, the dispersion of relative prices, and the absolute size
of price changes are insensitive to inflation. Furthermore, we
showed, both theoretically and empirically, that the difference
between the frequency of price increases and decreases rises with
inflation when inflation is low. These findings are consistent with
predictions of menu cost models at low inflation, where idiosyn-
cratic firm shocks swamp inflation as a motive for changing prices.

At high inflation, we found that inflation swamps idiosyn-
cratic shocks as a driver of price changes. The frequency of price
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changes across different products becomes similar, and the fre-
quency of price changes, the dispersion of relative prices, and the
average size of price changes all rise with inflation with elastic-
ities that are quantitatively in line with Sheshinski and Weiss’s
(1977) menu cost model with no idiosyncratic shocks.

Furthermore, we confirmed and extended available evidence
for the relationship between the frequency of price changes and
inflation for countries that experienced either very high or low in-
flation. Despite large structural differences between these coun-
tries, we view these findings as reflecting common, robust eco-
nomic mechanisms captured by menu cost models driving price
changes and inflation.

Finally, we showed that the cost of inflation resulting from
inefficient price dispersion is likely to be quantitatively large only
for very high inflation rates.
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SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at The Quar-
terly Journal of Economics online. Data and code replicating tables
and figures in this article can be found in Alvarez et al. (2018), in
the Harvard Dataverse, doi:10.7910/DVN/C8ZOAS.
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A Proofs of Comparative Static Results

We prove propositions 1 and 2 in a more general setup than the one in Section II.. We assume that the instan-

taneous profit of the monopolist F(p, z) is strictly concave in its first argument and that {zt} is a diffusion with

coefficients a(·) and b(·):

dz = a (z) dt + b (z) σ dW (9)

where {W(t)} is a standard Brownian Motion so W(t)−W(0) ∼ N(0, t). We keep the parameter σ separately

from b(·) so that when σ = 0 the problem is deterministic.

AA Proof of Proposition 1

In order to prove this result we assume that the idiosyncratic shock z has strictly positive volatility and we

make some mild symmetry assumptions on the firm’s problem, i.e., that the process for the shocks is symmetric

around zero, and that the profit function is symmetric in the log of the static profit maximizing relative price as

well as in its shifter.

More precisely we define symmetry as follows. Assume that z ∈ Z = [−z̄, z̄] for some strictly positive z̄. Let

the profit maximizing relative price given z be p∗(z) ≡ arg maxx F(x, z). We say that a(·), b(·), ζ(z) and F(·) are

symmetric if

a(z) = −a(−z) ≤ 0 and b(z) = b(−z) > 0 for all z ∈ [0, z̄] , (10)

p∗(z) = −p∗(−z) ≥ 0 for all z ∈ [0, z̄] (11)

F( p̂ + p∗(z), z) = F(− p̂ + p∗(−z),−z) + f (z) for all z ∈ [0, z̄] and p̂ ≥ 0 , (12)

ζ(z) = ζ(−z) > 0 for all z ∈ [0, z̄] , (13)

for some function f (z) and with the normalization p∗(0) = 0.

Let µ(z) be the density of the invariant distribution of z, when it exists. Equation (10) implies that the

invariant distribution µ as well as the transition densities of the exogenous process {zt} are symmetric around

z = 0. Equations (11)-(12) state that the profit function is symmetric around the (log) maximizing price and its

cost shifter. Thus, if the price is p̂ higher than the optimal for a firm with z, profits deviate from its optimal value

by the same amount as with prices p̂ lower than the optimal when the shifter is −z. The function f allows to

have an effect of the shifter z on the level of the profits that is independent of the price. The quadratic case with

a(z) = 0 and b(z) = 1 for all Z in Section II. satisfies these symmetry conditions.

Under these symmetry assumptions, first we establish that the value function, the optimal adjustment func-

tion and the inaction sets are all symmetric. We show that:

V( p̂ + p∗(z), z; π, σ2) = V(− p̂ + p∗(−z),−z;−π, σ2) + v(z) ,

ψ̂(z;−π, σ2) = −ψ̂(−z; π, σ2), and

( p̂ + p∗(z), z) ∈ I(π, σ2) =⇒ (− p̂ + p∗(−z),−z) ∈ I(−π, σ2)

1



for all z ∈ [0, z̄], p̂ ≥ 0 and π ∈ (−π̄, π̄). The symmetry of these three objects can be established using a guess

and verify argument in the Bellman equation. This argument has two parts, one deals with the instantaneous

return and the second with the probabilities of different paths of z′s. First we show that the instantaneous return

satisfy the analogous property that the required symmety property for the value function stated above. We note

that for t ≤ τ, where we let 0 be the time where prices were last set, we have:

F (p(t)− p̄(t) , z(t)) = F ( p(0)− p̄(0)− πt− p∗ (z(t)) + p∗ (z(t)) , z(t))

= F (−p(0) + p̄(0) + πt− p∗ (−z(t)) + p∗ (−z(t)) ,−z(t)) + f (z(t))

= F (−p(0) + p̄(0) + πt + p∗ (z(t)) + p∗ (−z(t)) ,−z(t)) + f (z(t)) ,

where the second equality holds by symmetry of F(·) setting p̂(t) = p(0)− p̄(0)− p∗(z(t))−πt. Thus fixing the

path of {z(t)} for 0 ≤ t ≤ τ, starting with p(0)− p̄(0) and z(0) and having inflation π, gives the same profits,

assuming symmetry of F(·), than starting with −p(0) + p̄(0) and having inflation −π and −z(0). Finally the

probability of the path {z(t)} for t ∈ [0, τ] conditional on z(0), given the symmetry of a(·) and b(·) is the same

as the one for the path {−z(t)} conditional on −z(0). From here one obtains that the inaction set is symmetric.

Likewise, from this property it is easy to see that the optimal adjustment is also symmetric. If with inflation π

a firm adjust with current shock z setting p = p̄ + ψ̂(z; π, σ2), then with inflation −π and current shock −z it

will adjust to p = p̄ + ψ̂(−z,−π) = p̄− ψ̂(z,−π). To se this, let t = 0 be a date where an adjustment take place,

let p(0) the price right after the adjustment, and let τ the stopping time until the next adjustment. The value of

p(0) maximizes

p(0) = arg max
p̃

E

[∫ τ

0
e−rtF( p̃− p̄(0)− πt, z(t)) |z(0)

]
= arg max

p̃
E

[∫ τ

0
e−rtF( p̃− p̄(0)− πt− p∗(z(t)) + p∗(z(t)), z(t)) |z(0)

]
= arg max

p̃
E

[∫ τ′

0
e−rtF(− p̃ + p̄(0) + πt− p∗(−z(t)) + p∗(−z(t)),−z(t)) | − z(0)

]
= arg max

p̃
E

[∫ τ′

0
e−rtF(− p̃ + p̄(0) + πt,−z(t)) | − z(0)

]
.

where τ′ is the stopping time obtained from τ but defined flipping the sign of the z′s.

Given the symmetry of the inaction set and optimal adjustment it is relatively straightforward to establish the

symmetry of the expected time to adjustment T and of the invariant density g. With the T and g symmetric, it is

immediate to establish that λa is symmetric. Finally, if λa is differentiable, then ∂
∂π λa(π, σ2) = − ∂

∂π λa(−π, σ2),

which establish part (i) of the proposition.

Now we show that inflation has no first order effect of σ̄, i.e., we establish part (ii). For that we first use

that the symmetry of the decision rules and of the invariant distribution of the shocks (which follows from the

symmetry of a and b) implies that h( p̂, π) = h(− p̂,−π) where for simplicity we suppress σ2 as an argument.

Differentiating this expression with respect to π and evaluating at π = 0 we obtain: hπ( p̂, 0) = −hπ(− p̂, 0).

Let f ( p̂, π) be any symmetric differentiable function in the sense that f ( p̂) = f (− p̂). Then writing the expected

value of f as E[ f |π] =
∫ 0
−∞ f ( p̂)h( p̂, π)dp̂ +

∫ ∞
0 f ( p̂)h( p̂, π)dp̂ and differentiating both terms with respect to π

2



and evaluating it at π = 0, using the implications for symmetry for the derivatives of h and the symmetry of f

we have ∂
∂π E[ f |0] = 0. Applying this to f ( p̂) = p̂2 we obtain that inflation does not have a first order effect on

the second non-centered moment of the relative prices. Finally, to examine the effect of inflation on the variance

of the relative prices, we need to examine the effect of inflation on the square of the average relative price,

∂

∂π

[∫ ∞

−∞
p̂ h( p̂, π)dp̂

]2
|π=0 = 2

[∫ ∞

−∞
p̂ h( p̂, 0)dp̂

] [∫ ∞

−∞
p̂

∂

∂π
h( p̂, 0)dp̂

]
= 0,

since by symmetry of h(·, 0) around p̂ = 0 we have
∫ ∞
−∞ p̂ h( p̂, 0)dp̂ = 0. Then, we have shown that inflation has

no first order effect on the variance of relative prices around π = 0.

Finally, observe that by symmetry we have that for any inflation rate λ+
a (π) = λ−a (−π) and ∆+

p (π) =

∆−p (−π). Differentiating with respect to inflation yields ∂λ+
a (π)
∂π = − ∂λ−a (−π)

∂π and
∂∆+

p (π)

∂π = − ∂∆−p (−π)

∂π . Evaluating

it at π = 0 gives the result. Q.E.D.

AB Proof of Lemma 1

Benabou and Konieczny (1994) compute the value of following an sS policy assuming that the period return

function F(p, 0) is cubic in terms of deviations from the profit maximizing price, i.e. p − p∗. This allows

for explicit computation of the value of the policy and to obtain the first order conditions at s and S for any

value of π. Adding equations (8) and (14) in Benabou and Konieczny (1994) we get the expression S − s =

2δ + 2
3
( r

π − a
)

δ2 for δ =
(

3
2

cπ
−F′′

) 1
3 and a = − F′′′

2F′′ . Thus,

S− s = 2
(
−3

2
c

F′′

) 1
3

π
1
3 +

2
3

(
−3

2
c

F′′

) 2
3

rπ
−1
3 − 2

3

(
−3

2
c

F′′

) 2
3

aπ
2
3

and
d(S− s)

dπ

π

S− s
= ω1

1
3
+ ω2

−1
3

+ ω3
2
3

,

where ω1 = 2
(
− 3

2
c

F′′
) 1

3 π
1
3 /(S− s), ω2 = 2

3
(
− 3

2
c

F′′
) 2

3 rπ
−1
3 /(S− s), and ω3 = − 2

3
(
− 3

2
c

F′′
) 2

3 aπ
2
3 /(S− s) . Using

L’hospital’s rule limc→0ω1 = 1, and limc→0ω2 = limc→0ω3 = 0, so that d(S−s)
dπ

π
S−s = 1/3.

The same argument for T = (S− s)/π yields

T = 2
(
−3

2
c

F′′

) 1
3

π−
2
3 +

2
3

(
−3

2
c

F′′

) 2
3

rπ−
4
3 − 2

3

(
−3

2
c

F′′

) 2
3

aπ−
1
3

As λa = T −1, taking limits as c→ 0 yields limc→0
dλa
dπ

λa
π = 2

3 . QED.

AC Proof of Lemma 2

First notice that if in the problem described in (1) we multiply r, π, σ2 and the functions a(·), F(·) by a constant

k > 0, we are just changing the units at which we measure time. Moreover, the objective function in the right

hand side of (1) is homogeneous of degree one in F(·) and c and, hence, the policy function is the same whether

we multiply F(·) by k or divide c by it. Thus, if the function a(·) equals zero, λa is homogeneous of degree one
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in (π, σ2, r, 1
c ). Using this homogeneity:

1

λa(1, σ2

π , r
π , 1

πc )

∂λa(1, σ2

π , r
π , 1

πc )

∂π
=

π

λa(π, σ2, r, 1
c )

∂λa(π, σ2, r, 1
c )

∂π

Taking limits for σ > 0:

lim
c↓0,r↓0

1

λa(1, σ2

π , r
π , 1

πc )

∂λa(1, σ2

π , r
π , 1

πc )

∂π
=

1

λa(1, σ2

π , 0, ∞)

∂λa(1, σ2

π , 0, ∞)

∂π

= lim
c↓0,r↓0

π

λa(π, σ2, r, 1
c )

∂λa(π, σ2, r, 1
c )

∂π
=

π

λa(π, σ2, 0, ∞)

∂λa(π, σ2, 0, ∞)

∂π

Thus

lim
π→∞

[
lim

c↓0,r↓0

1

λa(1, σ2

π , r
π , 1

πc )

∂λa(1, σ2

π , r
π , 1

πc )

∂π

]
σ2>0

= lim
σ→0

[
lim

c↓0,r↓0

1

λa(1, σ2

π , r
π , 1

πc )

∂λa(1, σ2

π , r
π , 1

πc )

∂π

]
π>0

.

For the same reason all the elements of Ψ for a given z are homogeneous of degree 0 so, (3b) follows.

Finally we establish (3c). Using the same notation we index the invariant density as follows g
(

p− p̄, z; π, σ2, r, 1/c
)
.

Note that since a(z) = 0, scaling the four parameters scales the units of time of z. Moreover, scaling the four

parameters does not change Ψ. Thus for each (p− p̄, z) the invariant density is homogeneous of degree zero in(
π, σ2, r, 1/c

)
. The result follows from the definition of ∆+

p and ∆−p in terms of g and Ψ. QED.

AD Proof of Proposition 3

Let x = p− z be the log of the real gross mark-up, which we refer to as the net markup. The firm’s optimal

pricing policy, in this case, can be characterized in terms of three constants X ≡ (x, x̄, x̂). The policy function

takes the simple form Ψ(z) = X + z. We can write the inaction set in terms of the net markups as I = {x : x <

x < x̄}. It is optimal to keep the price unchanged when the net markup x is in the interval (x, x̄). When prices

are not changed, the real markup evolves according to dx = −πdt + σdW. When the real markup hits either of

the two thresholds, prices are adjusted so that the real markup is x̂ and thus the optimal return relative price is

ψ̂(z) = x̂ + z. Price increases are equal to ∆+
p = x̂− x and price decreases are equal to ∆−p = x̄− x̂. In the case

where σ = 0 and π > 0, we obtain a version of Sheshinski and Weiss’s (1977) model, and the optimal policy can

be characterized simply by two thresholds x < x̂.

We present a series of lemmas that yield the proof of Proposition 3. First, Lemma 3 simplifies the Hamilton-

Jacobi-Bellman for the undiscounted case. It shows that limr→0 rV(x, r) in problem 1 is a constant. Second,

Lemma 4 represents the value function as a power series and finds its coefficients as functions of π and σ.

Lemma 5 is an analytical solution for the zero inflation case that characterizes (x, x̄, x̂), the size of prize changes

and the frequency of price increases and of price decreases. Lemma 6 characterizes the derivatives of these

elements with respect to inflation at π = 0. Finally, Lemma 7 is a complete analytical characterization of

Sheshinski and Weiss’s (1977) case.

Lemma 3. The limit as r ↓ 0, of the value function and of the thresholds x, x̂, x̄ can be obtained by solving for a

4



constant A and a function v : [x , x̄]→ R which satisfy:

A = Bx2 − πv′(x) +
σ2

2
v′′(x) for all x ∈ [x, x̄] (14)

and the boundary conditions:

v(x̄) = v(x∗) + c ,

v(x) = v(x∗) + c

v′(x̄) = 0 ,

v′(x) = 0 ,

v′(x̂) = 0 .

Remark: v(x̂) can be normalized to zero, and A has the interpretation of the expected profits per unit of time

net of the expected cost of changing prices.

Proof. The solution of the firm’s problem (1) can be characterized by the equation

rV(x0, r) = F(x)− πV′(x, r) +
σ2

2
V′′(x, r) for all x ∈ [x, x̄] (15)

and the following boundary conditions: two value matching conditions V(x̂, r)−V(x̄, r) = V(x̂, r)−V(x, r) = c

and the smooth pasting and optimal return conditions V′(x̂, r) = V′(x̄, r) = V′(x, r) = 0.

Let v(x) = limr→0 V(x, r) for x ∈ [x, x̄] and v′(x) = limr→0 V′(x, r) for x ∈ [x, x̄] .

We show that when r → 0 the left hand side of (15) is a constant—i.e., limr→0 rV(x, r) = A—so it becomes

(14). Write V(x, r) as V(x, r) = V1(x, r) + V2(x, r), where the first term is the present value of expected profits

and the second is the present value of the expected adjustment costs. Multiplying the former by r we get

rV1(x0, r) = lim
T→∞

E
[∫ T

0
re−rtF(x(t)) dt | x = x0

]

for some profit function F(x(t)). Observe that rV1 is a weighted average of F(x(t)) with positive weights, re−rt

that satisfy
∫ T

0 re−rtdt = 1. As r → 0, the terms re−rt become a constant, which has to be 1/T to still integrate to

1. Then,

lim
r→0

E
[

lim
T→∞

∫ T

0
re−rtF(x(t))dt | x = x0

]
= lim

T→∞

∫ ∞

0

1
T

E [F(x(t)) | x = x0] dt.

If the path of x(t) that solves the firm’s problem (1) is ergodic then the average E [F(x(t)) | x = x0] is independent

of the state so

lim
T→∞

∫ ∞

0

1
T

E [F(x(t)) | x = x0] dt→ E [F(x)] for all x(0) ∈ [x, x̄].

Now write the second part of the value function in problem (1), the expected costs of price adjustments,

5



as V2(x0, r) = limT→∞ E
[
∑

N(T)
i=1 e−rτi c | x = x(0)

]
, where τi is the time of each price adjustment and N(T) =

max[i : τi ≤ T] is the number of price adjustments before T. Letting τN be the time of the Nth adjustment,

we can write V2(x, r) as V2(x0, r) = E
[
∑N

i=1 e−rτi c | x = x0

]
+ E

[
e−rτN ∑∞

i=N+1 e−rτi c | x = x0
]
. Multiplying both

terms by r, noticing that immediately after an adjustment x reverts to the reset value x̂, adding and subtracting

V(x̂, r) on the left side of the equality, and collecting terms yields

rV2(x0, r) =
r

1− E[e−rτN | x = x0]
E

[
N

∑
i=1

e−rτi c | x = x(0)

]
−

r
1− E[e−rτN | x = x0]

[V2(x0, r)−V2(x̂, r)] .

Taking limits as r → 0, we get limr→0 ∑N
i=1 e−rτi = N and limr→0

r
1−E[e−rTτN |x=x0]

= 1
E[τN |x=x0]

so that

lim
r→0

rV2(x0, r) = c
N

E[τN | x = x0]
− 1

E[τN | x = x0]
[V2(x0, r)−V2(x̂, r)]

For N → ∞, the first term in the right hand side converges to λa by the strong law of large numbers of

renewal theory, and the second term vanishes since |V2(x0, r)−V2(x̂, r)| ≤ 1 for all r > 0, so that

lim
r→0

rV2(x0, r) = λa for all x0

Equation (14) together with its boundary conditions is a functional equation to find a constant A, the values

(x, x̂, x̄) and a twice differentiable function v : [x, x̄]→ R. Moreover, A is the expected profit net of the expected

cost of adjustment—i.e., A = E[F(x)]− λac.

In the case with σ = 0, the integral limT→∞
∫ ∞

0
1
T F(x(t))dt converges to a value that is independent of x(0)

for the path of x(t) that solves the firm’s problem and a similar argument applies. Analogously for the expected

costs of price adjustment V2.

Lemma 4. Given x and x̄, the function v described in Lemma 3 is the power series

v(x) =
∞

∑
i=1

αi xi . (16)

In the case with π = 0 and σ > 0 the coefficients are

α2 =
A
σ2 , α4 = −1

6
B
σ2 and αi = 0 for all i 6= 2, 4

In the case with π > 0 and σ = 0, the coefficients are

α1 = −A
π

, α3 =
1
3

B
π

and αi = 0 for i = 2 and for i ≥ 4.
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Proof. We look for the coefficients of (16) that solve (14) for all x ∈ [x, x̄]. Substituting for v′ and for v′′ in (14)

and matching coefficients yields the results. When σ > 0, the conditions for matching coefficients are

A = −α1π + α2σ2

α3 =
1
3

(
2π

σ2

)
α2

α4 = −1
6

B
σ2 +

1
12

(
2π

σ2

)2
α2

αi =

[
−2

B
σ2 +

(
2π

σ2

)2
α2

]
2
i!

(
2π

σ2

)i−4
for i ≥ 5.

For π = 0 we have that αi = 0 for all i except for α2 and α4. For i = 3 and for i ≥ 5 this follows directly from the

conditions above. α1 = 0 is a condition for the symmetry of v when π = 0.

Finding v(x) then requires to solve a two dimensional problem in α1 and α2 when σ > 0 (or in α1 and α3

when σ = 0) using the boundary conditions in Lemma 3.

Lemma 5. The solution for the thresholds when π = 0 is x̂ = 0, x̄ = −x =
(

6c σ2

B

) 1
2 and the constant

A =
( 2

3 Bcσ2) 1
2 .

Proof. We will use the normalization v(x̂) = 0, the smooth pasting condition v′(x̄) = 0 and the value matching

conditions v(x̄) = v(x) = c together with Lemma 4. From Lemma 4 we know that for the case of π = 0 the only

terms in (16) are the powers 2 and 4 of x with A = α2σ2 and α4 = − 1
6

B
σ2 . This implies that for v′(x̄) = 0 we

need A = B/3x̄2, which, in turn, implies that v(x̄) = 1/6 B
σ2 x̄4 = c from where we obtain the expressions for x̄

and A. x̂ = 0 then follows from v(x̂) = 0. Later we use the fact the α2 = 1
3 B x̄2

σ2

Lemma 6. The derivatives of the thresholds are for π = 0 are given by:

∂x̄
∂π

=
∂x
∂π

=
2

15
1

λa(0)
and

∂x̂
∂π

=
21
90

1
λa(0)

Corollary 2. The derivative of the size of price changes with respect to inflation for π = 0 is

∂∆+
p (0)

∂π
= −

∂∆−p (0)
∂π

= 0.1
1

λa(0)

Proof. We solve first for the derivatives of α1 and α2 with respect to π at π = 0.

Derivative of α2: From the representation of v(x; π) in (16) we have that ∂2

(∂x)2 v(0; π) = 2α2. The symmetry of

the value function implies that v(x, π) = v(−x,−π), which implies ∂3

(∂x)2∂π
v(x, π) = − ∂3

(∂x)2∂π
v(−x,−π) for all

x ∈ [x, x̄] and for all π. Hence, ∂3

(∂x)2∂π
v(0, 0) = − ∂3

(∂x)2∂π
v(0, 0) = 0. Finally, ∂3

(∂x)2∂π
v(0, 0) = 2 ∂α2

∂π = 0.
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Derivative of α1: From the representation of v(x, π) in (16), using ∂α2
∂π = 0 at π = 0, we have that

∂v(x, 0)
∂π

=
∂α1(0)

∂π
x +

2α2

3σ2 x3 − 1
15

B
σ4 x5

Differentiating value matching, v(x̂(π), π) + c = v(x̄(π), π) with respect to inflation and using smooth pasting

we get ∂v(x̂,π)
∂π = ∂v(x̄,π)

∂π . Evaluating at π = 0, ∂v(x̄,0)
∂π = ∂v(0,0)

∂π , which is equal to zero since by symmetry
∂v(0,0)

∂π = 0. Therefore, evaluating the first equation at x̄ and dividing by x̄ we get

0 =
∂α1(0)

∂π
+

2
3σ2 α2 x̄2 − 1

15
B
σ4 x̄4

On the other hand, smooth pasting evaluated at π = 0, yields ∂v(x̄,0)
∂x = 2α2 x̄ − 4 1

6
B
σ2 x̄3 = 0, implying α2 x̄2 =

1
3

B
σ2 x̄4. Substituting above implies

0 =
∂α1(0)

∂π
+

2
3σ2

1
3

B
σ2 x̄4 − 1

15
B
σ4 x̄4

and we get
∂α1(0)

∂π
= − 7

45
B

x̄4

σ4 .

Now we are ready to take the derivative of the thresholds X with respect to π at π = 0.

Derivative of x̂. Using the implicit function theorem on the smooth pasting condition ∂v(x̂,0)
∂x = 0 and recalling

that at π = 0 x̂ = 0 we get

∂x̂(0)
∂π

= −
∂2v(0,0)

∂x∂π
∂2v(0,0)
(∂x)2

= −
∂α1(0)

∂π

2α2(0)
=

7
45 B x̄4

σ4

1
3 B x̄2

σ2

=
21
90

x̄2

σ2

Derivative of x̄ and of x. Using the implicit function theorem on the smooth pasting condition ∂v(x̄,0)
∂x = 0 we

get

∂x̄(0)
∂π

= −
∂2v(x̄,0)

∂x∂π
∂2v(x̄,0)
(∂x)2

Using the expression of α2 for π = 0 in the proof of Lemma 5 and the result for the derivative of α1, the

numerator is

∂2v(x̄, 0)
∂x∂π

=
∂α1(0)

∂π
+

2α2

3σ2 x̄2 − 1
15

B
x̄4

σ4

= − 7
45

B
x̄4

σ4 +
1
3

B
x̄4

σ4 =
8

45
B

x̄4

σ4

Using (16) with the coefficients in Lemma 4 evaluated at π = 0 as well as the expression for α2 for π = 0, the

8



denominator is

∂2v(x̄, 0)

(∂x)2 = 2α2 − 2B
x̄2

σ2

=
2
3

B
x̄2

σ2 − 2B
x̄2

σ2 = −4
3

B
x̄2

σ2 .

Symmetry implies that ∂x̄(0)
∂π = ∂x(0)

∂π Therefore,

∂x̄(0)
∂π

=
∂x(0)

∂π
=

2
15

x̄2

σ2

Size of price changes. Recall that the size of price increases and of price decreases is given by

∆+
p (π) = x̂(π)− x(π) and ∆−p (π) = x̄(π)− x̂(π)

Using the previous results
∂∆+

p (0)
∂π = ∂x̂(0)

∂π −
∂x̄(0)

∂π = 21
90

x̄2

σ2 − 2
15

x̄2

σ2 = 0.1 x̄2

σ2 . We also know that λa(π) for π = 0 is

λa(0) = σ2

x̄2 . Hence,

∂∆+
p (0)

∂π
= −

∂∆−p (0)
∂π

= 0.1
1

λa(0)

Lemma 7. Assume that σ = 0 and π > 0 or, equivalently, that π/σ→ ∞ for σ > 0. Then,

x̂(π) = −x(π) =
1
2

∆+
p (π) =

(
3
4

c
B

π

)1/3

λa = λ+
a =

π

∆+
p (π)

=
1
2

(
3
4

c
B

)−1/3
π2/3

Proof. Consider the case in which σ = 0. This is equivalent to taking the limit for π → ∞ with σ > 0—see

Lemma 2 or Lemma 4. The state moves deterministically from x̂ to x at speed π. We find closed form solutions

for these thresholds. From Lemma 4 we know that for σ = 0 the value function is v(x) = α1π + α3x3 with

α1 = −A/π and α3 = B
3π . We use smooth pasting at x̂ and x, together with value matching to solve for α1, x̂ and

x. Smooth pasting, v′(x̂) = 0 and v′(x) = 0 implies that x̂ = −x =
√
−α1 π

B . Value matching, v(x̂)− v(x) = c,

then implies α1 = −
(
c 3

4
)2/3

(
B
π

)1/3
. The results of the lemma follow.

B Illustrating the Theory with Golosov and Lucas’s (2007) model

In this section we specify a version of the firm’s problem studied in Section II.A to illustrate the theory. We

characterize the solution of the model analytically and numerically and show how changes in the rate of inflation
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affect optimal pricing rules, the frequency of price changes, and the size of price adjustments.

We compute this example to verify the robustness of the analytical predictions obtained so far. In Section II.A

we obtained sharp analytical results under a variety of simplifying assumption such as limit values of parameters

(e.g., vanishing menu cost c and or discount rate r), or the shape of profit functions (e.g., symmetry of F). Also,

our analytical results were obtained at two extreme values of inflation. In this section, we check the robustness

of the simplifying assumptions by computing a version of the model away from the limit cases, considering

values of inflation in the range observed in Argentina.

The example assumes a constant elasticity of demand, a constant returns to scale production technology,

idiosyncratic shocks to marginal cost that are permanent, an exponentially distributed product life and a cost

of changing prices that is proportional to current profits (but independent of the size of the price change). This

version of the Golosov and Lucas (2007) model is identical to the one in Kehoe and Midrigan (2015).37

We assume that period profits are given by a demand with constant elasticity η and with a constant return

to scale technology with marginal cost given by ez, so that

F(p, z) = e−ηp (ep − ez) ,

where p− z is the log of the gross markup (the net markup).

The shocks on the log of the cost are permanent in the sense that

dz = µzdt + σdW − zdN.

where N is the counter of a Poisson process with constant arrival rate per unit of time ρ. We interpret this as

products dying with Poisson arrival rate ρ > 0 per unit of time, at which time they are replaced by a new one

which starts with z = 0 and must set its initial price. A positive value of µz can be interpreted as a vintage effect,

i.e., the technology for new products grows at rate µz. The disappearance of products assures the existence of an

ergodic distribution of relative prices, a realistic device given the rate at which product are substituted in most

datasets.

The menu cost, ζ(z), is assumed to be ζ(z) = c F(p∗(z), z) for some constant c > 0, so that it is proportional

to the maximized proftis. Here, p∗(z) = z+m where m = log( η
η−1 ) is the log of the gross optimal static markup.

Thus F(p∗(z), z) = e(1−η)z
(

η−1
η

)η 1
η−1 . Note that F(p∗(z), z) is decreasing and strictly convex on z for η > 1.

We will assume that η > 1 so that the static monopolist problem has a solution, and that

r + ρ ≥ (1− η)

[
µz + (1− η)

σ2

2

]
(17)

so that the profits of the problem with zero fixed cost, c = 0 are finite. Since for η > 1, period profits are

decreasing and convex on z, and hence discounted expected profits are finite if the discount rate r + ρ is high

enough, or if the cost increases at a high enough rate µz, or if σ2/2 is low enough.38

37We zero out the transitory shock that gives rise to sales in Kehoe and Midrigan (2015) and write the model in continuous
time.

38 In this case the expected discounted value of profits, starting with z0 is given by E0
∫ ∞

0 e−(r+ρ)tF (p∗ (zt) , zt) dt =
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The firm’s optimal pricing policy for the σ > 0 case can be characterized in terms of three constants X ≡

(x, x̄, x̂). This is due to the combination of assumptions of constant elasticity of demand, constant returns to

scale and permanent shocks to cost while the product lasts. In this example, the policy function takes the simple

form Ψ(z) = X + z. Letting x = p − z be the log of the real gross mark-up, which we refer to as the net

markup, we write the inaction set as I = {x : x < x < x̄}. It is optimal to keep the price unchanged when

the net markup x is in the interval (x, x̄). When prices are not changed, the real markup evolves according

to dx = −(µz + π)dt + σdW. When the real markup hits either of the two thresholds, prices are adjusted so

that the real markup is x̂ and thus the optimal return relative price is ψ̂(z) = x̂ + z. For the case where σ = 0

and π + µz > 0, we obtain a version of Sheshinski and Weiss’s (1977) model, and the optimal policy can be

characterized simply by two thresholds s ≡ x < x̂ ≡ S.39

In online appendix BA, we present several propositions with an analytical characterization of the solution

of this model. For the numerical examples in Section III., we use those propositions together with the following

calibration. We follow Kehoe and Midrigan (2015) and use η = 3, which implies a very large markup, but it is

roughly inline with marketing/IO estimates of demand elasticities. We set ρ = 0.1 so products have a lifetime

of 10 years, and r = 0.06 so yearly interest rates are 6%. We let c = 0.002 so that adjustment cost is 20 basis

point of yearly frictionless profits. We let µz = 0.02, i.e., a 2 percent per year increase in cost (or a 2% increase

in vintage productivity). We consider three values for σ ∈ {0, 0.15, 0.20}, the first corresponds to Sheshinski and

Weiss’s (1977) model, and the others are 15% and 20% standard deviation in the change in marginal cost, at

annual rates. The values of c/ (η(η − 1)) and σ = 0.15 were jointly chosen so that at zero inflation the model

matches both the average number of price changes λa = 2.7 and the average size of price changes of ∆p = 0.10,

roughly the values corresponding to zero inflation in our data set.40

BA Analytical Characterization of the Model in Section B

In what follows we use x = p− z for the log of the real gross mark-up. In Proposition 4 we show that when

σ > 0, the inaction set is given by I = {(p, z) : x + z < p < x̄ + z} and that the optimal return point is given

by ψ̂(z) = x̂ + z for three constants X ≡ (x, x̂, x̄). This is due to the combination of assumptions of constant

elasticity of demand, constant returns to scale and permanent shocks to cost while the product last. This means

that it is optimal to keep the price unchanged when the real markup x is in the interval (x, x̄). When prices

are not changed, the real markup evolves according to dx = −(µz + π)dt + σdW. When the real markup hits

either of the two thresholds, prices are adjusted so that the real markup is x̂. Proposition 4 derives a system of

three equations in three unknowns for X, as well as the explicit solution to the value function, as function of

the parameters Θ ≡ (π, µz, σ2, ρ, r, η, c). Proposition 5 derives an explicit solution for the expected number of

adjustment per unit of time λa given a policy X and parameters (π, µz, σ2, ρ). Proposition 6 characterizes the

(η−1)η−1e(1−η)z0

ηη

∫ ∞
0 e

[
−(r+ρ)+(1−η)µz+(1−η)2 σ2

2

]
tdt .

39 In this case λa = ρ
/ [

1− exp
(
− ρ

π+µz
(x̂− x)

)]
= (π + µz)/(x̂ − x) + o(ρ/(π + µz)), so that it coincides with the

expression used for σ = 0 if ρ is small relative to π.
40Using results in Alvarez, Lippi, and Paciello (2011), when z is a random walk and the fixed cost is proportional to profits,

there are mappings from observations to parameters λa =
[

σ2

2
(1/2) η (η−1)

c

] 1
2 and ∆p =

[
σ2 c

(1/2) η (η−1)

] 1
4
√

2
3.14159···

11



density g for invariant distribution of (p, z) implied by the policy X and the parameters (π, µz, σ2, ρ, η).

For future reference we define ĉ implicitely ζ(z) = ĉ ez(1−η)

Proposition 4. Assume that σ > 0, c > 0 and that (17) holds. The inaction set is given by I = {(p, z) : x + z <

p < x̄ + z}. The optimal return point is given by ψ̂(z) = x̂ + z. The value function in the range of inaction and

the constants X ≡ (x, x̂, x̄) with x < x̂ < x̄ solve

V(p, z) = ez(1−η)V(p− z, 0) ≡ ez(1−η)v(p− z) (18)

v(x) = a1 ex(1−η) + a2 e−xη +
2

∑
i=1

Ai eνix (19)

where the coefficients ai, νi are given by

0 = −b0 + b1νi + b2(νi)
2

a1 =
1

b0 − (1− η) b1 − (1− η)2 b2
and a2 = − 1

b0 + η b1 − (η)2 b2
where

b0 = r + ρ− µz(1− η)− (1− η)2 σ2

2
, b1 = −

[
µz + π + 2(1− η)

σ2

2

]
, b2 =

σ2

2
.

and where the five values A1, A2, X solve the following five equations:

ĉ −a1

(
ex̂(1−η) − ex̄(1−η)

)
− a2

(
e−x̂η − e−x̄η

)
=

2

∑
i=1

Ai

(
eνi x̂ − eνi x̄

)
,

ĉ −a1

(
ex̂(1−η) − ex(1−η)

)
− a2

(
e−x̂η − e−xη

)
=

2

∑
i=1

Ai

(
eνi x̂ − eνix

)
,

0 = a1 (1− η)ex̂(1−η) − a2 ηe−x̂η +
2

∑
i=1

Ai νieνi x̂ ,

0 = a1 (1− η)ex̄(1−η) − a2 ηe−x̄η +
2

∑
i=1

Ai νieνi x̄ ,

0 = a1 (1− η)ex(1−η) − a2 ηe−xη +
2

∑
i=1

Ai νieνix .

The first two equations are linear in (A1, A2), given X.

Proof. To simplify the notation we evaluate all the expressions when p̄ = 0, so the relative price and the nominal

price coincide.

The Bellman equation in the inaction region (p, z) ∈ I is

(r + ρ)V(p, z) = e−ηp (ep − ez)− πVp(p, z) + Vz(p, z)µz + Vzz(p, z)
σ2

2

for all p ∈ [p(z), p̄(z)]. The boundary conditions are given by first order conditions for the optimal return point:

Vp(ψ̂(z), z) = 0 (20)

12



the value matching conditions, stating that the value at each of the two boundaries is the same as the value at

the optimal price after paying the cost:

V(p(z), z) = V(ψ̂(z), z)− ζ(z), V( p̄(z), z) = V(ψ̂(z), z)− ζ(z). (21)

and the smooth pasting conditions, stating that the value function should have the same slope at the boundary

than the value function in the control region (which is flat), so:

Vp(p(z), z) = 0, Vp( p̄(z), z) = 0, (22)

Under this conditions, the value function and optimal policies are homogeneous in the sense that:

V(p, z) = ez(1−η)V(p− z, 0) ≡ ez(1−η)v(p− z) (23)

p(z) = z + z, p̄(z) = x̄ + z , and ψ̂(z) = x̂ + z , (24)

where x, x̄ and x̂ are three constant to be determined.

Using the homogeneity of the value function in (23) we can compute the derivatives

Vp(p, z) = ez(1−η)v′(p− z)

Vz(p, z) = (1− η)ez(1−η)v(p− z)− ez(1−η)v′(p− z)

Vzz(p, z) = (1− η)2ez(1−η)v(p− z)− 2(1− η)ez(1−η)v′(p− z) + ez(1−η)v′′(p− z)

Replacing this derivatives in the Bellman equation for the inaction region we get

(r + ρ)v(p− z) = e−(p−z)η (ep−z − 1
)
− πv′(p− z) + [(1− η)v(p− z)− v′(p− z)]µz

+ [(1− η)2v(p− z)− 2(1− η)v′(p− z) + v′′(p− z)]
σ2

2

or

[
r + ρ− µz(1− η)− (1− η)2 σ2

2

]
v(p− z) = e(p−z)(1−η) − e−η(p−z)

− v′(p− z)[µz + π + 2(1− η)
σ2

2
] + v′′(p− z)

σ2

2

We write x = p− z be the log of the gross markup, or the net markup. Consider the free boundary ODE:

b0 v(x) = ex(1−η) − e−ηx + b1 v′(x) + b2 v′′(x) for all x ∈ [x, x̄]

v (x) = v (x̂)− ĉ, v (x̄) = v(x̂)− ĉ,

v′ (x) = 0, v′ (x̄) = 0, v′ (x̂) = 0 ,

13



where

b0 =

[
r + ρ− µz(1− η)− (1− η)2 σ2

2

]
,

b1 = −
[

µz + π + 2(1− η)
σ2

2

]
,

b2 =
σ2

2
.

The value function is given by the sum of the particular solution and the solution of the homogeneous

equation:

v(x) = a1 ex(1−η) + a2 e−xη +
2

∑
i=1

Ai eνix

where νi are the roots of the quadratic equation

0 = −b0 + b1νi + b2(νi)
2

and where the coefficients for the particular solution are

a1 =
1

b0 − (1− η) b1 − (1− η)2 b2

a2 = − 1
b0 + η b1 − (η)2 b2

,

since

b0 a1 ex(1−η) = ex(1−η) + a1 (1− η)ex(1−η) b1 + a1 (1− η)2ex(1−η) b2

b0 a2 e−xη = −e−xη − a2 ηe−xη b1 + a2 (η)2e−xη b2 .

The five constants A1, A2 and X ≡ (x, x̄, x̂) are chosen to satisfies the 2 value matching conditions (21), the

two smooth pasting conditions (22) and the optimal return point (20). It is actually more convenient to solve

the value function in two steps. First to solve for the constants Ai(X) for i = 1, 2 using the two value matching

conditions. Mathematically, the advantage of this intermediate step is that, given X, the equations for the A1, A2

are linear. Conceptually, the advantage is that the solution represent the value of the policy described by the

triplet X = (x̄, x, x̂). Then we solve for (x̄, x, x̂) using the conditions for the optimality of the thresholds, namely

the two smooth pasting (22) and the f.o.c. for the return point (20).

Solving A1, A2 for a given policy X amount to solve the following linear system:

ĉ− a1

(
ex̂(1−η) − ex̄(1−η)

)
− a2

(
e−x̂η − e−x̄η

)
=

2

∑
i=1

Ai

(
eνi x̂ − eνi x̄

)
ĉ− a1

(
ex̂(1−η) − ex(1−η)

)
− a2

(
e−x̂η − e−xη

)
=

2

∑
i=1

Ai

(
eνi x̂ − eνix

)
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Given A1(X), A2(X) we need to solve the following three equations:

0 = a1 (1− η)ex̂(1−η) − a2 ηe−x̂η +
2

∑
i=1

Ai(X) νieνi x̂ ,

0 = a1 (1− η)ex̄(1−η) − a2 ηe−x̄η +
2

∑
i=1

Ai(X) νieνi x̄ ,

0 = a1 (1− η)ex(1−η) − a2 ηe−xη +
2

∑
i=1

Ai(X) νieνix .

The expected number of adjustments per unit of time is given in the next proposition:

Proposition 5. Given a policy described by X = (x, x̂, x̄) the expected number of adjustment per unit of time

λa and the expected number of price increases λ+
a are given by

λa = 1
/[1

ρ
+

2

∑
i=1

Bi eqi x̂

]

λ+
a = 1

/[1
ρ
+

2

∑
i=1

Bl,i eqi x̂

]

where qi are the roots of ρ = −(π + µz)qi +
σ2

2 (qi)
2 and where Bi and Bl,i, BH,i solve the following system of

linear equations:

0 =
1
ρ
+

2

∑
i=1

Bi eqix =
1
ρ
+

2

∑
i=1

Bi eqi x̄,

1
ρ

= −Bh,1 eq1 x̂ − Bh,2 eq2 x̂ , 0 = Bh,1

(
eq1 x̂ − eq1 x̄

)
+ Bh,2

(
eq2 x̄ − eq2 x̂

)
,

−1
ρ

= Bl,1 eq1x + Bl,2 eq2x , 0 = Bl,1 q1 eq1 x̂ + Bl,2 q2 eq2 x̂ − Bh,1 q1 eq1 x̂ − Bh,2 q2 eq2 x̂ .

Proof. The expected time until the next adjustment solves the following Kolmogorov equation:

ρT (p, z) = 1− πTp(p, z) + Tz(p, z)µz + Tzz(p, z)
σ2

2

for all p such that p(z) < p < p̄(z), and all z. The boundary conditions are that time reaches zero when it hits

the barriers:

T ( p̄(z), z) = T (p(z), z) = 0 .

Given the homogeneity of the policies we look for a function satisfying

T (p, z) = T(p− z)
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Given the form of the expected time we have:

Tp(p, z) = T′(p− z), Tz(p, z) = −T′(p− z) and Tzz(p, z) = T′′(p− z) ,

so the Kolmogorov equation becomes:

ρT(x) = 1− (π + µz)T′(x) + T′′(x)
σ2

2
for all x ∈ (x, x̄) .

The solution of this equation, given x, x̄ is:

T(x) =
1
ρ

+
2

∑
i=1

Bi eqix for all x ∈ (x, x̄)

where qi are roots of

ρ = −(π + µz)qi +
σ2

2
(qi)

2 , (25)

and where the B1, B2 are chosen so that the expected time is zero at the boundaries:

0 =
1
ρ
+

2

∑
i=1

Bi eqix (26)

0 =
1
ρ
+

2

∑
i=1

Bi eqi x̄ (27)

Given the solution of this two linear equations B1(x, x̄), B2(x, x̄) the expected number of adjustments per unit of

time λa is given by

λa =
1

T(x̂)
=

1
1
ρ + ∑2

i=1 Bi(x, x̄) eqi x̂
,

Finally, we derive the expression for the frequency of price increases. The time until the next price increase is

the first time until x hits x or the product dies while x < x < x̂. If x hits x̄, or the product dies exogenously

while x̄ > x > x̂, then x then is returned to x̂. Thus the expected time until the next increase in price solves the

following Kolmogorov equation:

ρT (p, z) =

1− πTp(p, z) + Tz(p, z)µz + Tzz(p, z) σ2

2 if p < z + x̂

1 + ρT (z + x̂, z)− πTp(p, z) + Tz(p, z)µz + Tzz(p, z) σ2

2 if p > z + x̂

for all p such that p(z) < p < p̄(z), and all z. The boundary conditions are that time reaches zero when it hits

the barriers:

T (x̄ + z, z) = T (x̂ + z, z) and T (x + z, z) = 0 .

We look for a solution that is continuous and once differentiable at (p, z) = (x̂ + z, z), and otherwise twice

continuously differentiable. To do so we let T (p, z) = Th(x) for x ∈ [x̂, x̄] and T (p, z) = Tl(x) for x ∈ [x, x̂] and

ρTl(x) = 1− (π + µz)T′l (x) + T′′l (x)
σ2

2
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ρTh(x) = 1 + ρTh(x̂)− (µz + π)T′h(x) + T′′h (x)
σ2

2
Tl(x̂) = Th(x̂) , T′l (x̂) = T′h(x̂)

Th(x̂) = Th(x̄) , Tl(x) = 0 .

The solution for Tj for j = h, l are:

Tl(x) =
1
ρ
+

2

∑
i=1

Bl,i eqix and Th(x) =
1
ρ
+

2

∑
i=1

Bh,i eqix +

(
1
ρ
+

2

∑
i=1

Bl,i eqi x̂

)

The four boundary conditions become the following four linear equations of the constants B′s:

2

∑
i=1

Bl,i eqi x̂ =
2

∑
i=1

Bh,i eqi x̂ +
2

∑
i=1

Bl,i eqi x̂ +
1
ρ

2

∑
i=1

Bl,i qi eqi x̂ =
2

∑
i=1

Bh,i qi eqi x̂

2

∑
i=1

Bl,i eqix = 0

2

∑
i=1

Bh,i eqi x̂ =
2

∑
i=1

Bh,i eqi x̄

Hence, the frequency of price increases λ+
a is given by

λ+
a = 1/Tl(x̂) = 1

/(
1/ρ +

2

∑
i=1

Bl,ieqi x̂

)
. �

Now we turn to the density of the invariant distribution

Proposition 6. Given a policy described by X = (x, x̂, x̄) the density of the invariant distribution g(p, z) is

given by

g(p, z) =



eφ1z
[
U+

1 eξ1(p−z) + U+
2

]
if p− z ∈ (x̂, x̄] , z > 0

eφ1z
[

L+
1 eξ1(p−z) + L+

2

]
if p− z ∈ [x, x̂] , z > 0

eφ2z
[
U−1 eξ2(p−z) + L−2

]
if p− z ∈ (x̂, x̄] , z < 0

eφ2z
[

L−1 eξ2(p−z) + L−2
]

if p− z ∈ [x, x̂] , z < 0

0 otherwise

(28)

where {φ1, φ2, ξ1, ξ2} are given by

ρ = −µzφj +
σ2

2
φ2

j for each of the roots j = 1, 2 and

ξ j = −
π + µz − 2φj

σ2

2
σ2/2
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and where the coefficients {U+
i , L+

i , U−i , L−i }i=1,2 solve 8 linear equations:

0 = U+
1 eξ1 x̄ + U+

2 = L+
1 eξ1x + L+

2

0 = U−1 eξ2 x̄ + U−2 = L−1 eξ2x + L−2
φ1φ2

φ1 − φ2
=

L+
1

ξ1

[
eξ1 x̂ − eξ1x

]
+ L+

2 [x̂− x] +
U+

1
ξ1

[
eξ1 x̄ − eξ1 x̂

]
+ U+

2 [x̄− x̂]

φ1φ2

φ1 − φ2
=

L−1
ξ2

[
eξ2 x̂ − eξ2x

]
+ L−2 [x̂− x] +

U−1
ξ2

[
eξ2 x̄ − eξ2 x̂

]
+ U−2 [x̄− x̂]

U+
1 eξ1 x̂ + U+

2 = L+
1 eξ1 x̂ + L+

2

U−1 eξ2 x̂ + U−2 = L−1 eξ2 x̂ + L−2 .

Proof. The density of the invariant distribution for (p, z) solves the forward Kolmogorov p.d.e.:

ρg(p, z) = πgp(p, z)− µzgz(p, z) + gzz(p, z)
σ2

2
(29)

for all (p, z) 6= (x̂ + z, z) = (ψ̂(z), z) and all p : p(z) = x + z ≤ p ≤ x̄ + z = p̄(z) and all z. The pde does

not apply at the optimal return point, since local consideration cannot determine g there. The other boundary

conditions are zero density at the lower and upper boundaries of adjustments, and that g integrates to one:

g(x + z, z) = g(x̄ + z, z) = 0 for all z

1 =
∫ ∞

∞

∫ x̄+z

x+z
g(p, z) dp dz

We will show that g can be computed dividing the state space in four regions given by whether (p, z) is such

that z > 0 and z < 0 and given z whether p ∈ [x + z, x̂ + z] and p ∈ [x̂ + z, x̄ + z].

As a preliminary step we solve for the marginal on z of the invariant distribution, which we denote by g̃.

This is the invariant distribution of the process {z} which with intensity ρ is re-started at zero and otherwise

follows dz = µzdt + σdW. It can be shown that g̃ is given by

g̃(z) ≡
∫ x̄+z

x+z
g(p, z) dp =


φ1φ2

φ1−φ2
eφ2z if z < 0

φ1φ2
φ1−φ2

eφ1z if z > 0,
(30)

where φ1 < 0 < φ2 are the two real roots of the characteristic equation

ρ = −µzφ +
σ2

2
φ2. (31)

We conjecture that g can be written as follows:

g(p, z) =

eφ1zk(p− z) if z < 0

eφ2zk(p− z) if z > 0,
(32)
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In this case we compute the derivatives as:

gp(p, z) = eφzk′(p− z) ,

gz(p, z) = eφzφ k(p− z)− eφzk′(p− z) ,

gzz(p, z) = eφzφ2 k(p− z)− 2eφzφ k′(p− z) + eφzk′′(p− z) .

where φ = φ1 for z < 0 and φ = φ2 for z > 0. The p.d.e. then becomes:

ρk(p− z) = πk′(p− z)− µz
[
φ k(p− z)− k′(p− z)

]
+
[
φ2 k(p− z)− 2φ k′(p− z) + k′′(p− z)

] σ2

2

for p− z 6= x̂ or

[
ρ + φµz − φ2 σ2

2

]
k(p− z) =

(
π + µz − 2φ

σ2

2

)
k′(p− z) + k′′(p− z)

σ2

2

Thus

k(p− z) =

U1eξ1j(p−z) + U2eξ2j(p−z) if p− z ∈ (x̂, x̄]

L1eξ1j(p−z) + L2eξ2j(p−z) if p− z ∈ [x, x̂]

where ξ1j, ξ2j solves the quadratic equation:

[
ρ + φjµz − φ2

j
σ2

2

]
=

(
π + µz − 2φj

σ2

2

)
ξ +

σ2

2
ξ2 (33)

for each j = 1, 2 corresponding to φ = φ1 and φ = φ2, i.e., the positive and negative values of z. We note that,

by definition of φ in (31), the left hand side of (33) equal zero, and hence one of the two roots is always equal to

zero. Thus we label ξ2j = 0 for j = 1, 2. The remaining root equals:

ξ1j = −
π + µz − 2φj

σ2

2
σ2/2

and ξ2j = 0 for j = 1, 2 . (34)

We integrate g(p, z) over p and equate it to g̃(z) to obtain a condition for coefficients C. First we consider

the case of z > 0:

g̃(z) =
∫ x̂+z

x+z
eφ1z

2

∑
i=1

L+
i eξi1(p−z) dp +

∫ x̄+z

x̂+z
eφ1z

2

∑
i=1

U+
i eξi1(p−z) dp

= eφ1z
2

∑
i=1

L+
i e−ξi1z

ξi1

[
eξi1(x̄+z) − eξi1(x̂+z)

]
+ eφ1z

2

∑
i=1

U+
i e−ξi1z

ξi1

[
eξi1(x̂+z) − eξi1(x+z)

]
= eφ1z

(
2

∑
i=1

L+
i

ξi1

[
eξi1 x̄ − eξi1 x̂

]
+

2

∑
i=1

U+
i

ξi1

[
eξi1 x̂ − eξi1x

])

= eφ1z

(
L+

1
ξ11

[
eξ11 x̂ − eξ11x

]
+ L+

2 [x̂− x] +
U+

1
ξ11

[
eξ11 x̄ − eξ11 x̂

]
+ U+

2 [x̄− x̂]

)
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where the last line uses that ξ2,1 = 0. The analogous expression for z < 0 is

g̃(z) = eφ2z

(
L−1
ξ12

[
eξ12 x̂ − eξ12x

]
+ L−2 [x̂− x] +

U−1
ξ12

[
eξ12 x̄ − eξ12 x̂

]
+ U−2 [x̄− x̂]

)

The value of the density at the boundary of the range of inaction is given by

g(x̄ + z, z) =

eφ1z ∑2
i=1 U+

i eξi1 x̄ for z > 0

eφ2z ∑2
i=1 U+

i eξi2 x̄ for z < 0

g(x + z, z) =

eφ1z ∑2
i=1 L+

i eξi1x for z > 0

eφ2z ∑2
i=1 L+

i eξi2x for z < 0

If the density g at (p, z) = (ψ̂(z), z) = (z + x̂, z) is continuous on p for a given z we have:

g(x̂, z) =

eφ1z
[
∑2

i=1 U+
i eξi1 x̂

]
= eφ1z

[
∑2

i=1 L+
i eξi1 x̂

]
if z > 0 ,

eφ2z
[
∑2

i=1 U−i eξi2 x̂
]
= eφ2z

[
∑2

i=1 L−i eξi2 x̂
]

if z < 0 .
(35)

We summarize the results for the invariant density g here

g(p, z) =



eφ1z
[
U+

1 eξ1(p−z) + U+
2

]
if p− z ∈ (x̂, x̄] , z > 0

eφ1z
[

L+
1 eξ1(p−z) + L+

2

]
if p− z ∈ [x, x̂] , z > 0

eφ2z
[
U−1 eξ2(p−z) + L−2

]
if p− z ∈ (x̂, x̄] , z < 0

eφ2z
[

L−1 eξ2(p−z) + L−2
]

if p− z ∈ [x, x̂] , z < 0

(36)

where {φ1, φ2} are the two roots of the quadratic (31) and where the use ξ1 ≡ ξ11, ξ2 ≡ ξ12} are given by the

non-zero roots (34). The 8 values for {U+
i , L+

i , U−i , L−i }i=1,2 solve two system of 4 linear equations, one for

{U+
i , L+

i }i=1,2 and one for {U−i , L−i }i=1,2. The upper and lower boundary of the range of inaction has zero

density for both positive and negative values of z:

0 = U+
1 eξ1 x̄ + U+

2 = L+
1 eξ1x + L+

2 (37)

0 = U−1 eξ2 x̄ + U−2 = L−1 eξ2x + L−2 (38)

The marginal distribution of the z computed using g coincides with g̃ for positive and negative values of z:

φ1φ2

φ1 − φ2
=

L+
1

ξ1

[
eξ1 x̂ − eξ1x

]
+ L+

2 [x̂− x] +
U+

1
ξ1

[
eξ1 x̄ − eξ1 x̂

]
+ U+

2 [x̄− x̂] (39)

φ1φ2

φ1 − φ2
=

L−1
ξ2

[
eξ2 x̂ − eξ2x

]
+ L−2 [x̂− x] +

U−1
ξ2

[
eξ2 x̄ − eξ2 x̂

]
+ U−2 [x̄− x̂] (40)
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The density is continuous at (p, z) = (ψ̂(z), z) = (z + x̂, z). Thus

U+
1 eξ1 x̂ + U+

2 = L+
1 eξ1 x̂ + L+

2 (41)

U−1 eξ2 x̂ + U−2 = L−1 eξ2 x̂ + L−2 . (42)

�

We are now ready to characterize the marginal density of prices, denoted by h.

h(p) ≡
∫ ∞

−∞
g(p, z)dz =

∫ p−x

p−x̄
g(p, z)dz =

∫ p−x̂

p−x̄
g(p, z)dz +

∫ p−x

p−x̂
g(p, z)dz (43)

h(p) =



∫ p−x̂
p−x̄ eφ1z

[
U+

1 eξ1(p−z) + U+
2

]
dz +

∫ p−x
p−x̂ eφ1z

[
L+

1 eξ1(p−z) + L+
2

]
dz if p > x̄

∫ 0
p−x̄ eφ2z

[
U−1 eξ2(p−z) + U−2

]
dz +

∫ p−x̂
0 eφ1z

[
U+

1 eξ1(p−z) + U+
2

]
dz

+
∫ p−x

p−x̂ eφ1z
[

L+
1 eξ1(p−z) + L+

2

]
dz if p ∈ [x̂, x̄)

∫ p−x̂
p−x̄ eφ2z

[
U−1 eξ2(p−z) + U−2

]
dz +

∫ 0
p−x̂ eφ2z

[
L−1 eξ2(p−z) + L−2

]
dz

+
∫ p−x

0 eφ1z
[

L+
1 eξ1(p−z) + L+

2

]
dz if p ∈ [x, x̂)

∫ p−x̂
p−x̄ eφ2z

[
U−1 eξ2(p−z) + U−2

]
dz +

∫ p−x
p−x̂ eφ2z

[
L−1 eξ2(p−z) + L−2

]
dz if p < x

(44)

Using that

∫ b

a
eφz
[

D1eξ(p−z) + D2

]
dz = D1eξ p

∫ b

a
e(φ−ξ)zdz + D2

∫ b

a
eφzdz

= D1
eξ p+(φ−ξ)b − eξ p+(φ−ξ)a

φ− ξ
+ D2

eφb − eφa

φ

we can solve the integrals for each of the branches of h where Di ∈ {U+
i , U−i , L+

i , L−i } for i = 1, 2 and (φ, ξ) ∈

{φ1, ξ1, φ2, ξ2} and a and b take different values accordingly.

For completeness, we give the expression for the case with σ = 0, a version of Sheshinski and Weiss (1977).

Proposition 7. Assume that σ = 0, c > 0, π + µz > 0 and (17) holds. The inaction set is given by I = {(p, z) :

x + z < p < x̄ + z}. The optimal return point is given by ψ̂(z) = x̂ + z. The value function in the range of

inaction and the constants X ≡ (x, x̂) solve

V(p, z) = ez(1−η)V(p− z, 0) ≡ ez(1−η)v(p− z)

v(x) = a1 ex(1−η) + a2 e−xη + A eνx
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where the coefficients ai, ν are given by

ν =
b0

b1
, a1 =

1
b0 − (1− η) b1

and a2 = − 1
b0 + η b1

where

b0 = r + ρ− µz(1− η), b1 = − [µz + π] .

and where the three values A, X ≡ (x, x̂) solve the following three equations:

ĉ −a1

(
ex̂(1−η) − ex(1−η)

)
− a2

(
e−x̂η − e−xη

)
= A

(
eνx̂ − eνx

)
,

0 = a1 (1− η)ex̂(1−η) − a2 ηe−x̂η + A νeνx̂ ,

0 = a1 (1− η)ex(1−η) − a2 ηe−xη + A νeνx .

Furthermore:

λa =
ρ

1− exp
(
− ρ

π+µz
(x̂− x)

)

Proof. The expressions for the value function are obtained by setting σ = 0 and imposing the sS policy between

the bands x, x̂. This problem is identical to the one in Sheshinski and Weiss (1977), where the discount rate is

r + ρ. For the frequency of price adjustment we need to include the death and replacement of the products. For

this we let T the expected time until an adjustment:

ρT (p, z) = 1 + Tz(p, z)µz − Tp(p, z)π

ρT(x) = 1− T′(x)(µz + π) .

with boundary conditions T(x) = 0. So the solution is T(x) = 1/ρ+ B exp
(
− ρ

π+µz
x
)

with B = − exp
(

ρ
π+µz

x
)

/ρ

so

T(x) =
1
ρ

[
1− exp

(
− ρ

π + µz
(x− x)

)]
and hence

1/λa = T(x̂) =
1
ρ

[
1− exp

(
− ρ

π + µz
(x̂− x)

)]
�

BB Some graphical illustrations of the model in Section B

Figure XI plots the size of the“regular" price increases and “regular" price decreases, for different inflation rates.

Imitating the empirical literature, we define as regular price changes those not triggered by the jump shock that

reset the value of z to zero. The figure shows that for low inflation rates the size of price increases and of price

decreases is very similar as predicted by part (iii) of Proposition 1.The figure also that the slope of the size of price

changes with respect to inflation is very small, consistent with the prediction that
∂∆+

p (0,σ2)
∂π +

∂∆−p (0,σ2)
∂π = 0. As
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inflation rises, the size of both price increases and decreases becomes larger. Panel (b) of Figure IX in Section IV.

is the empirical counterpart of Figure XI.

Figure XI: Average size of price increases ∆+
p and decreases ∆−p
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Figure XII plot the unconditional standard deviation of relative prices as a function of inflation. For low

values of inflation the unconditional standard deviation is insensitive to inflation as predicted by the theory. For

large enough inflation rates the width of the inaction range should swamp the effect the variation of z on σ. In

our numerical examples, however, it takes inflation rates even much higher than the ones observed in the peak

months in Argentina for this to happen. Nevertheless, the elasticity with respect to inflation at high inflation

increases when we decrease the average product life 1/ρ (and thus the unconditional variance at low inflation),

getting closer to the theoretical upper bound of 1/3.
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Figure XII: Unconditional standard deviation of log relative prices σ̄

(a) ρ = 0.9
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(b) ρ = 0.1
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C Classification of Goods and Services and Data Collection

Goods/services in the dataset are classified according to the MERCOSUR Harmonized Index of Consumer Price

(HICP) classification. The HICP uses the first four digit levels of the Classification of Individual Consumption

According to Purpose (COICOP) of the United Nations plus three digit levels based on the CPI of the MERCO-

SUR countries. The goods/services in the database are the seven digit level of the HICP classification; six digit

level groups are called products; five digit level groups are called sub-classes; four digit level categories are called

classes; three digit level categories are called groups and two digit level groups are called divisions. Table V shows

two examples of this classification.

Table V: Example of the Harmonized Index of Consumer Price Classification

Classification Example 1 Example 2
Division Food and Beverages Household equipment and maintenance
Group Food Household maintenance
Class Fruits Cleaning tools and products
Sub-Class Fresh Fruits Cleaning products
Product Citric Fruits Soaps and detergents
Good Lemons Liquid soap

For most cases, the brand chosen for the product is the one most widely sold by the outlet, or the one that

occupy more space in the stands, if applicable (hence brands can change from month to month or from two-

weeks to two-weeks). For same cases, the brand is part of the attributes, the product is defined as one from a

“top brand".

The weight of each good in the CPI is obtained from the 1986 National Expenditure Survey (Encuesta

Nacional de Gasto de los Hogares). Weights are computed as the proportion of the households expenditure on

each good over the total expenditure of the households. We re-normalize these weights to reflect the fact that

24



our working dataset represents only 84% of expenditure. The weight of a particular good is proportional to the

importance of its expenditure with respect to the total expenditure without taking into account the percentage

of households buying it.

Table VI shows the top 20 goods, in terms of the importance of their weights in our sample. As it can be

seen from the table, most goods whose prices are gathered twice a month are represented by food and beverages

while goods whose prices are gathered monthly include services, apparel and other miscellaneous goods and

services.

Table VI: Goods ordered by weight whose prices are gathered once and twice per month

Differentiated) Weight (%) Homogeneous Weight (%)
Lunch 2.02 Whole chicken 1.51
Lunch in the workplace 1.67 Wine 1.49
Car 1.52 French bread (less than 12 pieces) 1.38
Housemaid 1.48 Fresh whole milk 1.31
Monthly union membership 1.22 Blade steaks 0.96
Snack 0.91 Standing rump 0.93
Medical consultation 0.83 Eggs 0.87
Gas bottle 0.58 Short ribs (Roast prime ribs) 0.85
Laides hairdresser 0.56 Striploin steaks 0.78
Labor for construction 0.54 Apple 0.73
Adult cloth slippers 0.50 Oil 0.72
Color TV 0.50 Rump steaks 0.72
Funeral expenses 0.49 Potatos 0.71
Men’s dress shirt 0.49 Soda (coke) 0.70
Dry cleaning and ironing 0.48 Cheese (quartirolo type) 0.70
Sports club fee 0.47 Tomatoes 0.63
Movie ticket 0.47 Minced meat 0.60
Men’s denim pants 0.45 Sugar (white) 0.59
Disposable diapers 0.43 Coffee (in package) 0.57
Shampoo 0.40 Yerba mate 0.55

Table VII shows the weight structure in our database classified by divisions. The table shows goods in terms

of their weight with respect to the total weight in the sample (Total column), and with respect to the total weight

of their belonging category (one or two visit goods) Food and non-alcoholic beverages represent almost 43% of

the total weight in the sample and 82% of the total weight of goods whose prices are gathered twice a month.

On the other hand, weights of one visit goods are less concentrated. Almost 12% of the total weight in the

sample corresponds to furniture and household items and around 9% correspond to apparel. These percentages

are around 24% and 19%, respectively, when computing percentages over the total weight in the one visit goods

category.

CA Instructions to CPI’s Pollsters

Pollsters record item’s prices. Remember that an item is a good/service of a determined brand sold in a specific

outlet in a specific period of time. Prices are transactional, meaning that the pollster should be able to buy the

product in the outlet. Goods are defined by their attributes. For the majority of the goods, the brand is not an

attribute. The brand of a specific item is determined the first time the pollster visits an outlet. The brand is the

most sold/displayed by the outlet. Once the item is completely defined, the pollster collects the price of that

item next time she visits the same outlet. After the first visit, in the following visits, the pollsters arrive to each
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Table VII: Weights for Divisions of the Harmonized Index of Consumer Price

Weight Weight
Divisions Total One visit Total Two visits
Food and non-alcoholic beverages 4.94 9.91 42.67 82.39
Apparel 9.24 18.53
Conservation and repair of housing plus gas in bottle 0.99 1.99
Furniture and household items 11.86 23.79
Medical products, appliances and equipment plus external medical services 3.39 6.79
Transportation 2.60 5.22
Recreation and culture 4.50 9.02
Education 2.42 4.85
Miscellaneous goods and services (Toiletries, haircut, etc.) 5.07 10.16
Jewelry, clocks, watches plus other personal belongings 4.86 9.75
Alcoholic beverages 3.94 7.62
Non-durable household goods 2.40 4.64
Other items and personal care products 2.77 5.36

outlet with a form that includes all items for which prices are to be collected.

For example, assume the good is soda-cola top brand and the attributes are package: plastic bottle and weight:

1.5 litters. The first time the pollster goes to, say, outlet A she ask for the cola top brand most sold in that outlet.

Assume that Coca-Cola is the most sold soda in outlet A. Then the item is completely defined: Coca-Cola in

plastic bottle of 1.5 litters in outlet A. Next time the pollster goes to outlet A she records the price of that item.

All prices are in Argentine pesos. Our dataset does not contain flags for indexed prices. In traditional outlets

pollsters ask for the price of an item even when, for example it is displayed in a blackboard, because the good

has to be available in order to record its price. In supermarket chains the price recorded is collected from the

shelf/counter display area.

There are a number of special situations to be taken into account:

1. Substitutions: every time there is a change in the attributes of the good the pollster has to replace that

particular good for another one. In this case, the pollster mark the price collected with a flag indicating a

substitution has occurred. The goods that are substituted should be similar in terms of the type of brand

and or quality.

2. Stockouts: every time the pollster could not buy the item, either because the good is out of stock in the

outlet or because the same good or a similar one is not sold by outlet at the time the price has to be

collected, she has to mark the item with a flag of stockout and she has to assign a missing price for that

item. Stock-outs include what we label “pure stock-outs", the case where the outlet has depleted the stock

of the good, including end of seasonal goods/services. Stock outs also include the case where the outlet

no longer carries the same good/service and it does not offers a similar good/service of comparable

quality/brand. Examples of stock-outs include many fruits and vegetables not available off-season, as

well as clothing such as winter coats and sweaters during summer.

3. Sales: every time the pollster observes a good with a sale flag in an outlet, she has to mark the price of
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that particular item with a sale flag.

All pollsters were supervised at least once a month. Supervisors visited some of the outlets that had been

visited earlier the same day by the pollster and collected a sample of the prices that the pollster should have

collected. Then, at the National Statistic Institute, another supervisor compared both forms.

D Robustness

DA Missing Data, Substitutions, Sales and Aggregation

Here we describe in detail the methodologies and the definitions of all estimators in Table I in Section IV.C.2.

We start by describing the assumptions used to estimate the probability of a price change when we observe

missing prices. If between two observed prices there are some missing prices we use the following assumption.

If the two observed prices are exactly equal we assume there has been no changes in prices in any times between

these dates. This is the same assumption as in Klenow and Kryvtsov (2008). Instead, if the two observed prices

are different we assume there has been at least one change in prices in between. The first assumption allow us

to complete the missing prices in between two observed prices that are equal. From here on, assume that the

missing prices in such string of prices have been replaced.

We will refer from now on to the sequence of prices between two different observed prices as a spell of constant

prices, or for short a spell of prices. Without any missing prices, a spell of constant prices is just a sequence of

repeated prices ending with a different price. Notice that the last (observed) price in a spell of constant prices is

the first price of the next spell.

Next we describe the possible patterns of prices, and its implications for the estimation of the probability

of a price change. After following the procedure described above, all spell of prices and missing observations

have only two possible patterns. The first pattern is a spell of prices ending with a price change, but with no

missing observations. We consider the second pattern in the following section, where we deal with the effect of

missing prices. Consider the following example for a spell for an outlet i that contains no missing prices nor

substitutions:

Table VIII: Example of a spell of constant prices without missing prices

pt 10 10 10 10 10 15
t t + 1 t + 2 t + 3 t + 4 t + 5︷︸︸︷

λt+1

︷︸︸︷
λt+2

︷︸︸︷
λt+3

︷︸︸︷
λt+4

︷︸︸︷
λt+5

It y 0 0 0 0 1
γt y 1 1 1 1 1

The braces on top of the values of λ are meant to remind the reader that λt refers to the constant probability

of change in prices between t− 1 and t. The indicator Iit adopts the value one if, in outlet i, the price in period

t is different from the price at period t− 1, and zero otherwise, except for the first temporal period of the first
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string of prices where it is missing41. In this example we have exactly no changes for the first four periods and

at least one change in the next period. The probability of observing this completed spell of constant prices is

thus:42

P = e−λt+1 × e−λt+2 × e−λt+3 × e−λt+4 ×
(

1− e−λt+5
)

(45)

It follows that in this simple case, assuming all the outlets selling the same good have the same λj, the likelihood

function of prices observed for product j is

Lj = ∏
i∈Oj

[
e−λj,t

](1−Iit) ×
[
1− eλj,t−τ

]Iit
(46)

The maximum likelihood estimator of the arrival rate of price changes for product j between times t and

t + 1 in the simple case without missing prices and without substitutions is

λj,t+1 = log

(
∑i∈Oj

1

∑i∈Oj
(1− Iit)

)
= −log(1− f jt) (47)

where we let Oj denote the set of the outlets i of the product j and f jt is the fraction of outlets of good j that

changed prices in period t. In words, λj,t+1 is the log of the ratio of the number of outlets to the number of

outlets that have not changed the price between t and t + 1. Thus λj,t+1 ranges between zero, if no outlets have

change prices, and infinite if all outlets have changed prices. The probability of at least one change in prices in

period t for product j is 1− e−λjt = f jt.

DB Incorporating Information on Missing Prices

Now we consider the case where there are some missing prices before the price change, but we postpone the

discussion of the effect of price substitutions.

In general, a spell of constant prices is a sequence of n + 1 prices that starts with an observed price pt,

possibly followed by a series of prices all equal to pt, then followed, possibly, by a series of missing prices, that

finally ends with an observed price at pt+n that differs from the value of the initial price pt. Notice that while

we also refer to this sequence of prices as a spell of constant prices, it can include more than one price change if

there were missing observations, a topic to which we return in detail below.

To deal with missing prices, the interesting patterns for a spell of constant prices are those which end with

a price change, but that contain some missing price(s) just before the end of the spell. For example, consider a

spell of prices for an outlet, i, in which there are exactly no changes in the first four periods and at least one

change sometime during the next three periods.

In Table IX an x means that the variable is not defined for that case, the m denotes a missing/imputed

price and the y denotes that for indicator I and counter γ the first observation in the spell of prices is missing

because it depends on the prices in period t− 1 which are not in the information of the table. The probability of

41We also include the indicator γt, which we explain below, for completeness.
42We assume that the number of price changes between t− 1 and t follows a homogeneous Poisson process with arrival

rate λt per unit of time. The probability of k occurrences is e−λλk/k! and the waiting time between occurrences follows an
exponential distribution.
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Table IX: Example of a spell of constant prices with observed and missing prices

pt 10 10 10 10 10 m m 15
t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7︷︸︸︷

λt+1

︷︸︸︷
λt+2

︷︸︸︷
λt+3

︷︸︸︷
λt+4

︷︸︸︷
λt+5

︷︸︸︷
λt+6

︷︸︸︷
λt+7

It y 0 0 0 0 x x 1
γt y 1 1 1 1 x x 3
χt 0 0 0 0 0 1 1 0

observing this spell is:

P = e−λt+1 × e−λt+2 × e−λt+3 × e−λt+4 ×
(

1− e−λt+5 × e−λt+6 × e−λt+7
)

(48)

The first four products are the probability of no change during the first four periods, and the last term is the

probability of at least one change during the last three periods. The second term is the complement of the

probability of no change in prices during the last three periods.

The likelihood of the sample of T periods (with T + 1 prices) of all the outlets for the good j –denoted by

the set Oj– is the product over all outlets i of the product of all spells for outlet i of the probability (48). To write

the likelihood we define an indicator, χit, and a counter γit. The indicator χit adopts the value one if a price is

missing for outlet i in period t, and zero otherwise. The value of γt counts the number of periods between two

non-missing prices. The counter γit is Klenow and Kryvtsov (2008) duration clock. Then the likelihood function

of the prices observed for product j is:

Lj = ∏
i∈Oj

T

∏
t=1

[
e−λj,tγit

](1−Iit)(1−χit) ×
[

1− e−∑
γit−1
τ=0 λj,t−τ

]Iit(1−χit)

(49)

Since the λ’s are the probability of a price change and they are indexed at the end of a period, the first temporal

observation of prices at t = 0 does not enter the likelihood. The log likelihood is:

`j = ∑
i∈Oj

(
T

∑
t=1

(1− χit)(1− Iit)× (−λj,tγit) +
T

∑
t=1

(1− χit)Iit ln
[

1− e−∑
γit−1
τ=0 λj,t−τ

])
(50)

To compute the contribution to the likelihood of a given value of λj,t for t = 1, ..., T we find convenient to

introduce two extra counters: κit and ηit for any period t in which prices are missing/imputed. The variable κit

counts the number of periods since the beginning of a string of missing/imputed prices. The variable ηit counts

the number of periods of missing/imputed prices until the next price is observed. For example, consider the

string of prices in Table X.

Table X shows an example of a spell of constant prices for a given variety and a given outlet. In (51) we

highlight the contribution to the log-likelihood of the value of λt for a given outlet i:
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Table X: Example of a spell of constant prices, w/ missing prices and counters

p 10 10 m m m m m 15
t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7

λt+1 λt+2 λt+3 λt+4 λt+5 λt+6 λt+7
I y 0 x x x x x 1
χ 0 0 1 1 1 1 1 0
γ y 1 x x x x x 6
κ x x 1 2 3 4 5 x
η x x 5 4 3 2 1 x

`j = · · ·+ (1− χit)(1− Iit)× (−λj,tγit) + (1− χit)Iit ln
[

1− e−∑
γit−1
τ=0 λj,t−τ

]
+ χit ln

[
1− e−(∑

κit−1
τ=0 λj,t−τ+∑

ηit
τ=1 λj,t+τ

]
+ · · · . (51)

The first two terms have the contribution to the likelihood of λj,t, if the price at time t is not missing. The

first case corresponds to a price at the beginning of the spell of constant prices. The second to a case where

the price is the last one of the spell, and uses γit to be able to write the corresponding probability. The third

term, correspond to the contribution of λj,t, if the price at time t is missing, and uses κit, and ηit to write the

corresponding probability.

Using (51) it is easy to write the FOC with respect to λj,t of the sample as:

∂ `j

∂ λj,t
= ∑

i∈Oj

(1− χit) (1− Iit)× (−γit) + ∑
i∈Oj

(1− χit) Iit
1

e
(

∑
γit−1
τ=0 λj,t−τ

)
− 1

+ ∑
i∈Oj

χit
1

e
(

∑
κit−1
τ=0 λj,t−τ+∑

ηit
τ=1 λj,t+τ

)
− 1

= 0 , (52)

for t = 1, . . . , T.

Roughly speaking the estimator for λj,t computes the ratio of the number of outlets i that a time t have

change the prices with those that have not change prices or that have missing prices. This approximation is

exact if no outlet has a missing/imputed price at period t or before. In this case χis = 0 for s = 1, 2, ..., t for all

i ∈ Oj, then (52) becomes

∑
i∈Oj

(1− Iit)× γit = ∑
i∈Oj

[
Iit

e ∑
γit−1
τ=0 λj,t−τ − 1

]
,

which, if we make λj,t = λj,t−1 = ... = λj,t−γit+1 is the same expression than in Klenow and Kryvtsov (2008). In

the case of no missing observations, and where all the λ′s are assumed to be the same, this maximum likelihood

estimator coincide with the simple estimator introduced in (47).
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DC Incorporating Missing Prices and Sales

Our data contains a flag indicating whether an item was on sale. We consider a procedure that disregards the

changes in prices that occur during a sale. The idea behind this procedure is that sales are anomalies for the

point of view of some models of price adjustment, and hence they are not counted as price changes. To explain

this assumption we write an hypothetical example:

Table XI: Example of a spell of constant prices removing sales

pt 10 10 10 m 8 15
t t + 1 t + 2 t + 3 t + 4 t + 5︷︸︸︷

λt+1

︷︸︸︷
λt+2

︷︸︸︷
λt+3

︷︸︸︷
λt+4

︷︸︸︷
λt+5

It y 0 0 0 0 1
at y 0 0 0 1 0

In Table XI the indicator at takes the value of one if the good is on sale on period t and if the price at the time

t is smaller than the previous recorded price. In this case, the price in periods t + 3 and t + 4 is changed to 10,

the value of the previous recorded price. The general principle is to consider a string of recorded prices, possible

missing values, and a price that has a sale flag, and replace the price of the string of missing values and the

period with a sale flag for the previous recorded price. In other words, we replace the price at the period with a

sale flag for the previous recorded price and then using our first assumption on missing prices we complete the

missing price in between two prices that are equal. When the sales are disregarded the number and duration of

price spells can change. Once this procedure is implemented, the likelihood is the one presented above using

the modified price series -indeed in Table XI the indicator It is the one that corresponds to the modified price

string. We refer to the corresponding estimates as those that excludes sale quotes. This is a procedure used by

many, e.g., Klenow and Kryvtsov (2008). By construction with this method the estimates for λ will be smaller.

DD Incorporating Missing Prices and Price Substitutions

In this section we discuss different assumptions on the treatment of missing data and good substitutions that

allow us to construct four estimators of the frequency of price changes that we report later on.

We use the indicators ẽit, e∗it, ēit to consider two different assumptions on how to treat a price spell that ends

in some missing values or price substitutions. In particular, consider the case of a substitution of a product

or a missing price. As explained above, our data set contains the information of whether the characteristic of

the product sold at the outlet has changed and was subsequently substituted by a similar product. We also

have information on whether the price is missing (mostly due to a stock-out). To be concrete, consider the

following example of a spell of constant prices in Table XII. In this table, and sit = 1 denotes the period where

a price substitution has occurred. Thus, the example has a spell of 9 prices, with two periods (3 prices) with no

change in prices, then 5 periods with missing prices, and finally in the last period there is an observed price that

correspond to a substitution of the good.
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Table XII: Example: spell of constant prices w/ counters for substitutions

p 10 10 10 m m m m 15
t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7

λt+1 λt+2 λt+3 λt+4 λt+5 λt+6 λt+7
I y 0 x x x x x 1
χ 0 0 0 1 1 1 1 0
s y 0 0 0 0 0 0 1
ẽ y 0 0 0 0 0 0 0
e∗ y 1 1 1 1 1 1 1
ē y 0 0 1 1 1 1 1

As in the previous examples, for the first observation an y indicates that the value of the indicator cannot be

decided based on the information in the table.

The issue is the interpretation of when and whether there has been a price change in the previous price spell.

One interpretation is that there has been a price change somewhere between periods t + 2 and t + 7. A different

interpretation is that, because the price spell ends with the substitution of the good, the price has not changed.

The idea for this interpretation is that if the good would have not changed, the price could have been constant

beyond t+ 7. The next three cases explain how to implement the first interpretation, and two ways to implement

the second one. The last two cases present two simple estimators, one that treats quotes with substitutions as

regular price changes, and one that exclude them.

1. We disregard the information of the substitution of a good, and proceed as we have done so far: including

all price quotes as if the good have been not changed. In the previous example, it consists on assuming

that the price has changed between periods t + 2 and t + 7. In this case we say that the probability of

observing the spell in the table is given by:

P = e−λt+1 × e−λt+2 ×
(

1− e−λt+3−λt+4−λt+5−λt+6−λt+7
)

(53)

In this case we set ẽit = 0 for all periods, since we don’t want to exclude any part of this price spell. We

refer to these assumptions as including all price quotes.

2. We follow Klenow and Kryvtsov (2008) and others and exclude completely any spell of prices that ends

with a substitution of a product. We implement this by defining the indicator e∗it = 1 for any price

corresponding to this spell, i.e., we exclude all the observations –with the exception of the first price,

which is relevant for the previous string. In this case we have no associated probability for this spell. The

idea behind this treatment is that if there would have been no substitution of the good the price could

have stayed constant even beyond t + 7. We refer to these assumptions as excluding substitution spells for

short.

3. We introduce a new way to handle this information based on the following underlying assumption: if a

spell of constant prices ends up in a substitution we interpret that the product has changed, and hence

we cannot infer from the observed price whether the price has changed or not, as in the previous case.

32



Yet, unlike the previous case, we do not discard the information at the beginning of the string, where the

product was the same and its price was not changing. In this case the associated probability for this spell

is:

P = e−λt+1 × e−λt+2 (54)

In this case we use the indicator ēit = 0 for the first two observations, among which we know that there

was no price change, and ēit = 1 for the rest of the observations where we can’t conclude if there was a

price change for the same product. We refer to these assumptions as excluding substitution quotes for short.

4. We present an alternative estimator to the maximum likelihood, which has the advantage of being simpler

to describe and understand. This estimator imitates the one for the case where there are no missing price

quotes in (47), and simply excludes the values of the missing. In this case, this estimator is:

λj,t+1 = log

(
∑i∈Oj

(1− χt) (1− χt+1)

∑i∈Oj
(1− χt) (1− χt+1) (1− Iit)

)
(55)

In words, λj,t+1 is a non-linear transformation of the probability of the change of prices. This probability

is estimated as the ratio of the outlets that have changed prices over all the outlets, including only those

price quotes that are simultaneously not missing at t and t + 1. While this estimator is simpler than the

maximum likelihood, it does not use all the information of the missing values efficiently. We refer to this

estimator as the simple estimator.

Finally, to completely state the notation for the likelihood function, we use the indicator ζ to deal with

missing prices at the beginning of the sample. In particular, if for an outlet i the sample starts with n + 1 missing

prices, we exclude these observations from the likelihood since we cannot determine the previous price. We do

this by setting the indicator ζit = 1 for t = 0, 1, ..., n. Thus, depending of the assumption, the exclusion indicator

e takes the values given by ẽ, ē or e∗, besides the value of 1 for all the missing observations at the beginning of

the sample. The log likelihood function is then:

`j = ∑
i∈Oj

T

∑
t=1

(1− eit)

(
(1− χit)(1− Iit) (−λj,tγit) + (1− χit)Iit ln

[
1− e−∑

γit−1
τ=0 λj,t−τ

])
(56)

The first order condition for λj,t, using the counters κ and η is:

∂ `j

∂ λj,t
= ∑

i∈Oj

(1− χit) (1− eit) (1− Iit)× (−γit)+

∑
i∈Oj

(1− χit) (1− eit) Iit
1

e
(

∑
γit−1
τ=0 λj,t−τ

)
− 1

+ ∑
i∈Oj

χit (1− eit)
1

e
(

∑
κit−1
τ=0 λj,t−τ+∑

ηit
τ=1 λj,t+τ

)
− 1

= 0 , (57)

for t = 1, . . . , T.
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DE Computation of estimates and standard errors of λ

We compute the maximum likelihood estimator by using an iterative procedure. In this discussion we fix a good

or item. We denote the iterations by superindex j. The initial guess for λ0
t is the log of the ratio of the outlets that

change the price between t− 1 and t. Then we solve for λ
j+1
t in (57) for the foc of λt taking as given the values

of λ
j
t−i and λjt + i for all i 6= 0. Notice that this equation has a unique solution. Also notice that the solution can

be ∞, for instance if all prices change, or zero.

We have not derived expression for standard error for the different estimator of λ. Nevertheless to give

an idea of the precision of our estimator, we note that for the simple pooled estimator, assuming that missing

values are independent, we can use the expression for the standard error of a binomial distributed variable for

the probability of a price change π, while using the estimate π̂t = number of outlets with a price change /Nt

where Nt is the number of outlet with a price quote between t and t1. In this case se(π̂) =
√

π̂(1− π̂)/N. Using

the delta method and λ(p) = − log(1− p) then we have:

se(λ̂) =

√
exp(λ̂)− 1
√

N
and se(log λ̂) =

1
λ̂

√
exp(λ̂)− 1
√

N
. (58)

To give an idea of the magnitudes for our estimated parameters we use some round numbers for both ho-

mogeneous and differentiated goods. For the case where we pool all the differentiated goods we can take

Nd = 230× 80× 0.80 = 14720 ≈ # diff. goods ×avg. # outlets diff. goods × fraction of non-missing quotes.

Pooling all the homogeneous goods we Nh = 60000 = 300× 250× 0.80 ≈ # homog. goods ×avg. # outlets

homog. goods × fraction of non-missing quotes. So for high value of λ such as for logλ̂ = log 5, we have

that the standard errors are se(log λ̂d) = 0.02 and se(log λ̂h) = 0.010. Instead for low values of λ such as for

logλ̂ = log 1/5, we have that the standard errors are se(log λ̂d) = 0.019 and se(log λ̂h) = 0.009. Instead if we

estimate λ at the level of each good, the standard errors should be larger by a factor
√

230 ≈ 15 and
√

330 ≈ 17

for differentiated and homogeneous goods respectively.

DF Aggregation: Weighted Average, Median, Weighted Median and Pooled Maximum Likelihood

In this section we deal with the issue of aggregation. So far we have described how to estimate the frequency of

price adjustment for each good category separately.

Remember that those goods that fall in the homogeneous goods category are sampled bi-monthly and so

will be our estimates. In this way, the first step in order to aggregate all categories is to convert them into

monthly estimates, which is done simply by adding the two estimates in any given month (this results from the

exponential assumption for our likelihood function).

Next, we compute three aggregated estimations. First, we calculate the weighted average of all monthly

estimates (both differentiated and homogeneous goods), where the weights are the corresponding expenditure

shares of each good category.

λt =
N

∑
i=1

ωiλit

For future reference, we will call this weighted average or simply WA, followed by the specific treatment of
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missing, sales and substitutions. For example, Weighted Average Excluding Sales.

The other two estimates are the median and weighted median of all monthly estimates (both differentiated

and homogeneous goods). The aggregated median estimation (median for short) consists in taking the median λ

of all products at each time period. The aggregate weighted median estimation is computed by sorting, at each

time period, the expenditure weights of each product by the value of their associated λ from lowest to highest.

Then we compute the accumulated sum of the weights until reaching 0.5. The aggregate weighted median of

the frequency of price adjustment is the associated λ of the product whose weight makes the accumulated sum

equal to or grater than 0.5. We refer to this estimate as weighted median.

Finally we consider a last aggregated estimation. As mentioned, the estimates for the frequency of price

changes presented allow the value of λ to depend on the time period and the good. We now consider an

estimate based on the assumption that the frequency price changes is common for all goods, but that that it can

change between time periods. This simply puts together the outlets for all goods in our sample. Thus, the log

likelihood is:

`(λ1, ..., λT) =
N

∑
j=1

`j (λ1, ..., λT)

where the `j (λ1, ..., λT) corresponding to the log likelihood for each assumption about missing prices and or

price substitutions as it has been introduced in the previous sections, and where N is the number of goods in

our sample. We refer to this estimator as the pooled maximum likelihood or for short PML. Likewise, when we

assume that all goods have the same frequency of price changes but use the simple estimator for λ, we refer to

it as simple pooled estimator.

DG Expected Inflation

The robustness check in this section pertains to the measure of expected inflation as opposed to our estimates of

the frequencies of price adjustment. Theoretical models of price setting behavior, such as the menu cost model

presented in Section II., predict that firms decision to change prices, and the magnitude of such change, depend

on expected inflation between adjustments. Our measure of expected inflation so far was the average realized

inflation for the expected duration of the price set in period t, 1/λt.

We now consider a more flexible form for expected inflation as an average of the actual inflation rate of the

following kt months, where kt = [n/λt] and [x] is the integer part of x; that is

πe
t =

1
kt

t+kt

∑
s=t

πs (59)

We refer to n as the forward looking factor. Thus, as inflation falls (and implied durations rise) in our sample

agents put an increasing weight on future inflation. When n = 0 expected and actual inflation are the same.

Table XIII shows that the results presented in Section IV.C are not very sensitive to estimating (7) using

different forward looking factors in (59). The first row of the table shows the results when we use the actual

rate of inflation43. The following four rows shows that as expectations are more forward looking the threshold

43 We use the inflation rate estimated by INDEC for the whole CPI instead of the inflation rate in our sample because we
need forward looking values of inflation at the end of the sample that otherwise we cannot obtain.
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Table XIII: Elasticities and implied duration for different estimates of expected inflation.

Forward looking Elasticity Semi-elasticity Duration R2

factor γ at zero ∆%λ at π = 0
n = 0 0.57 0.01 4.4 0.959
n = 0.5 0.54 0.03 4.4 0.949
n = 1 0.53 0.04 4.5 0.953
n = 1.5 0.48 0.04 4.6 0.946
n = 2 0.46 0.04 4.7 0.944

inflation and the elasticity fall slightly and the implied duration at the threshold remains constant. The R2 of the

regression is maximized for n = 1, so that the best fit is when we assume agents set expected inflation equal to

the average of the perfect foresight future inflation rates for the expected duration of the prices. All the estimates

of the elasticity γ are consistent with the theoretical prediction in Section II..

E Monte Carlo

Figure XIII and Figure XIV show the Monte Carlo simulations to evaluate whether time-aggregation is biasing

our estimates of the average size of price of changes and the standard deviation of relative prices. See the text

for a description of the simulation and results.

Figure XIII: Size of Price Increases:
Sensitivity to Sampling Periodicity

1% 5% 10% 25% 50% 100% 250% 500% 1000%

0.1

0.2

0.3

Note: Figure shows the theoretical ∆+
a and the estimator ∆+ when we simulate the

model in Section II. and sample observations twice a month.

36



Figure XIV: Standard deviation of relative prices:
Sensitivity to Sampling Periodicity
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Note: Figure shows the theoretical and the estimator of the standard deviation of
log-prices when we simulate the model in Section II. and sample observations twice a
month.

F Balanced Sample

In this section we explore the sensitivity of the relationship of the price dispersion and inflation displayed

in Section IV.F due to sample selection. In particular, we analyzed whether the increase in price dispersion

displayed in Table IV.F and Figure X are due to a compositional effect of the dispersion of relative pries across

the good and or stores for which we have price quotes at different inflation rates. For this purpose we select a

sample of good and stores that is more balanced than our benchmark case. In particular, we select the good ×

store combinations for which we have 190 non-missing observations out of the 212 two-weeks periods. We select

190 as a compromise to have enough observations to compute the relevant fixed-effects and to obtain a balanced

sample. We end up with about 1.6 million of price observations instead of 5.5 millions for the complete sample.

We refer to this as the “balanced sample".

The results of the “balanced sample" are analyzed in Table XIV and displayed in Figure XV. As can be seen,

the results of the balanced sample are very similar to the results of the full sample, from which we conclude

that sample selections does not substantially biased our estimate of the relationship between inflation and price

dispersion.

37



Table XIV: Regressions used to compute residual variance of price levels: balanced sample

Models i: # of Adj- Slope at Slope at Slope at
indicate dummies dummies R2 π = π = π =

100% 500% 700%

1: time 212 0.739 0.02 0.18 0.24
2: time + good + store 1091 0.981 0.06 0.26 0.35
3: time + good × store 8613 0.984 0.13 0.37 0.40
4: time + good × store × non-subs-spell 32220 0.987 0.16 0.38 0.38
5: time × store + time × good 169131 0.995 0.11 0.26 0.24

+ good × store × non-subs-spell
Price observations used in each regression 1613623 for homogenous goods, in 212 two-week periods. We
have kept the good × store combinations which have non-missing price quotes for at least 190 out of the
212 two week periods.

Figure XV: Cross sectional standard deviation of prices vs. inflation
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Balanced Sample: > 190 non-missing good x store

G Comparison to Other Studies

Table XV provides a succinct view of the samples used in other studies of price dynamics under high inflation.

It shows the countries analyzed, the product coverage of each sample, and the range of inflation rates in each
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study. The most salient features of this paper are the broader coverage of our sample and the larger variation in

inflation rates.

Table XV: Comparison with other Studies in Countries with High Inflation

Sample Observ. Inflation Monthly
Country Authors product coverage per month Sample (%. a.r.) freq. (%)

506 goods/servicies, 81, 305
Argentina This paper representing 84% on average 1988-1997 0− 7.2× 106 16-99

of Argentinian
consumption
expenditures

Brazil Barros et al. 70% of Brazilian 98,194 1997-2010 2-13 39-50
(2009) consumption on average

expenditures
Israel Llach and 26 food products

Tsiddon (1992) (mostly meat and 250 1978-1979 64 41
alcoholic beverages)

Israel Llach and 26 food products
Tsiddon (1992) (mostly meat and 530 1981-1982 118 61
Eden (2001), alcoholic beverages)

Israel Baharada and up to 390 narrowly- 2800 1991-1992 16 24
Eden (2004) defined products from

the Israeli CPI
227 product categories,
representing

Mexico Gagnon (2007) 54.1 percent of 31, 500 1994-2002 3.5-45 27-45
Mexican consumption
expenditures

Konieczny and 52 goods, including 37
Poland Skrzypacz grocery items, and 3 up to 2400 1990-1996 18-249 59-30

(2005) services

H Background on Inflation and Economic Policy

Here we give a brief chronology of economic policy to help readers understand the economic environment in

our sample period, which goes from December 1988 to September 1997. The beginning of our sample coincides

with decades of high inflation culminating in two years of extremely high inflation (typically referred as two

short hyperinflations) followed by a successful stabilization plan, based on a currency board, started in April of

1991 which brought price stability in about a year, and stable prices until at least three more years after the end

of our sample.

The years before the introduction of the currency board witnessed several unsuccessful stabilization plans,

whose duration become shorter and shorter, and that culminated in the two short hyperinflations, all of these

during a period of political turmoil. Several sources describe the inflation experience of Argentina since the

1970, such as Kiguel (1991) and Alvarez and Zeldes (2005) for the period before 1991 and Cavallo and Cottani

(1997) for descriptions right after 1991. For a more comprehensive study see Buera and Nicolini (2010).
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Argentina had a very high average inflation rate since the beginning of the 1970s. Institutionally, the Central

Bank has been part of the executive branch with no independent powers, and typically has been one of the most

important sources of finance for a chronic fiscal deficit. Figure XVI plots inflation, money growth and deficits

between 1960 and 2010 with our sample period highlighted in yellow. The deficit as a percentage of GDP was

on average well above 5% from 1975 to 1990, see Figure XVI. At the beginning of the 1980s fiscal deficit and its

financing by the Central Bank were large even for Argentinean standards. These years coincide with a bout of

high inflation that started in the second half of the last military government, 1980 to 1982, and continued during

the first two years of the newly elected administration of Dr. Alfonsin, 1983 to 1984.

Figure XVI: Inflation, Money Growth and Deficits
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In June of 1985 there was a serious attempt to control inflation by a new economic team which implemented

what it is referred to as the Austral stabilization plan (the name comes from the introduction of the “Austral"

currency in place of the “Argentine Peso"). The core of this stabilization plan was to fixed the exchange rate, to

control the fiscal deficit and its financing from the Central Bank, and to introduce price and wage controls. While

the Austral plan had some initial success, reducing the monthly inflation rate from 30% in June of 1985 to 3.1%

in August of 1985, by mid 1986 the exchange rate was allowed to depreciate every month and inflation reached

about 5% per month. By July of 1987 the monthly inflation rate was already above 10%. The same economic

team started what is referred to as the “Primavera" stabilization plan in October 1988, when the inflation rate was
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again around 30% per month, at a time when the Alfonsin administration was becoming politically weak. The

primavera plan was a new short lived exchange rate based stabilization plan that was abandoned in February of

1989.44 Our data set starts right after the beginning of the Primavera stabilization plan, in December of 1988.

After the collapse of the “Plan Primavera” the economy lost its nominal anchor and a perverse monetary

regime was in place. Legal reserve requirements for banks where practically 100% and the Central Bank paid

interest on reserves (most of the monetary base) printing money. Thus a self fulfilling mechanism for inflation

was in place. High inflationary expectations, led to high nominal deposit rates, which turned into high rates of

money creation that validated the inflationary expectations.

Figure XVII displays the yearly percent continuously compounded inflation rate and interest rate for the

first years of our sample, together with references to some of the main changes in economic policy during

the period. Observe how interest rates and inflation skyrocketed after the plan Primavera’s crawling peg was

abandoned. In May 1989 a presidential election took place where the opposition candidate, Dr. Menem, was

elected. The finance minister and the central bank president that carried the Primavera plan resigned in April

1989. Thereafter, Dr. Alfonsin’s administration had two different finance ministers and two different central

bank presidents, in the midst of a very weak political position and rampant uncertainty about the policies to be

followed by the next administration. During the campaign for the presidential election Dr. Menem proposed

economic policies that can be safely characterized as populist, with a strong backing from labor unions. Indeed,

the core of his proposed economic policy was to decree a very large generalized wage increase, “el salariazo".45

In July 1989 the elected president, Dr Menem, took office, several months before the stipulated transition date,

in the midst of uncontrolled looting, riots and extreme social tension. The inflation rate at this time was the

highest ever recorded in Argentina, almost 200% per month—2.3% per day.

The beginning of the Menem administration started with a large devaluation of the argentine currency, in

what is known as the BB stabilization plan, for the name of the company Bunge and Born, where the two first

secretaries of the treasury came from. Indeed these appointments made by the Menem administration were a

surprise to most observers, given the promises made in the campaign. The announcement of tight control of

the fiscal deficit, and the management of the exchange rate of this plan were also surprising for most observers.

During this time inflation transitorily fell.

In December 1989, amid large looses in the value of the argentine peso, a new finance minister was ap-

pointed, Dr. Erman Gonzalez, who started yet a new “stabilization plan" (referred to as Plan Bonex). The core

of this plan was a big compulsory open market operation by which the central bank exchanged all time deposits

in the Banking system (mostly peso denominated time deposits with maturities of less than a month) for 10

year US Dollar denominated government bonds (Bonex 1989). This big open market operation changed the

monetary regime and allowed the Central Bank to regain control of the money supply, as the government no

longer had to pay interest on money (reserves on time deposits) by printing money. During Dr. Gonzalez tenure

there were several fiscal measures aimed at controlling the fiscal deficit. In march 1990 a renewed version of the

stabilization plan was launched, with a stricter control of the money supply and of the fiscal deficit. The actual

44The peg started at about 12 units of argentine currency (“the Austral") per us dollar. To put it in perspective, at the
beginning of the Austral plan, the peg was 0.8 units of argentine currency per US dollar.

45The slogan to summarize his proposed economic policy was “el salariazo", i.e., “the huge wage increase" in Spanish.

41



Figure XVII: Inflation and Depreciation Rate during HyperInflations
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percentage inflation rates during 1989 and 1990 were 4924% and 1342% respectively!

In January of 1991, Dr. Gonzalez resigned and Dr. Cavallo was appointed as finance minister. During

the first two months of his tenure there was a large devaluation of the currency and a large increase in the

prices of government owned public utility firms. In April 1st of 1991 there was a regime shift that lasted until

2001. The new regime was a currency board that fixed the exchange rate and enacted the independence of the

Central Bank, first by means of presidential decrees, and then by laws approved by congress. At this time the

argentinean currency, the Austral, was pegged to the US dollar at 10,000 units per USD.46

On January 1st 1992 there was a currency reform that introduced a new currency (the Peso Argentino) to

replace the Austral, chopping four zeros of the latter (so that one peso was pegged to one dollar, and to 10,000

australes).

There are a host of changes that were introduced at this time, both in term of deregulation and in terms of

fiscal arrangements (broadening of the value added tax’s base, sale of state owned firms, etc.), which in the first

years reduced the size of the fiscal deficit. There was also a renewed access to the international bond markets,

and a constant increase in public debt. There were also an acceleration of the trade liberalization that started in

46To have an idea of the average inflation rate until 1991, notice that the exchange rate when the Austral was introduced
in June of 1985 was 0.8 austral per US dollars.
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the mid 80s and a liberalization of all price and wage controls. During the years covered in our sample, GDP

grew substantially, despite the short and sharp recession during 1995, typically associated with the balance of

payment crisis in Mexico. The exchange rate remained fixed until January of 2002, where the exchange rate was

depreciated in the midst of a banking run that started in the last quarter of 2001, a recession that started at least

a year prior, and the simultaneous default of the public debt.
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