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Abstract

The thesis is composed of three chapters discussing the economics of information in markets
and contracts.

The first chapter paper proposes a theoretical framework that combines information
design and mechanism design to analyze markets for mediation services between an informed
and an uninformed party. The mediator receives compensation from the informed party and
must rely on information that is voluntarily reported. We describe all the outcomes that can
be induced via a mediation contract and compare the optimal outcomes when the mediator
has the bargaining power (i.e., monopolistic mediation) with those when the informed party
has it. The main finding is that mediation contracts often reveal more information with
a monopolistic mediator because they give up some information rents to retain incentive
compatibility. Unlike the conventional logic of quality under-provision for physical goods,
here the attempt to capture information rents can lead to increased information disclosure.
These findings shed light on the controversial matter of whether a monopolistic market for
information intermediaries, such as rating agencies for financial securities, is more or less
desirable than a competitive one.

The second chapter studies the bounds of mediated communication in sender-receiver
games in which the sender’s payoff is state-independent. We show that the feasible distribu-
tions over the receiver’s beliefs under mediation are those that induce zero correlation, but
not necessarily independence, between the sender’s payoff and the receiver’s belief. Media-
tion attains the upper bound on the sender’s value, i.e., the Bayesian persuasion value, if and
only if this value is attainable under unmediated communication, i.e., cheap talk. The lower
bound is given by the cheap talk payoff. We provide a geometric characterization of when
mediation strictly improves on this using the quasiconcave and quasiconvex envelopes of the
sender’s value function. In canonical environments, mediation is strictly valuable when the
sender has countervailing incentives in the space of the receiver’s belief. We apply our results
to asymmetric-information settings such as bilateral trade and lobbying and explicitly con-
struct mediation policies that increase the surplus of the informed and uninformed parties
with respect to unmediated communication. This chapter is the result of joint work with
Yifan Dai.

The third and final chapter studies a principal-agent model in which actions are im-
perfectly contractible and the principal chooses the extent of contractibility at a cost. If
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contractibility costs satisfy a monotonicity property—which is implied by costs that come
from difficulties in distinguishing actions when writing the contract—then optimal contracts
are necessarily coarse: they specify finitely many actions out of a continuum of possibilities.
This result holds even if contractibility costs are arbitrarily small. By contrast, costs that
are derived from enforcing a contract ex post affect allocations but yield complete contracts.
Applying our results to a nonlinear pricing model, we study how changes in consumer de-
mand, production costs, and informational asymmetries affect the optimally coarse set of
quality options. This chapter is the result of joint work with Joel P. Flynn and Karthik A.
Sastry.
JEL Codes: D40, D42, D86
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Thesis Supervisor: Drew Fudenberg
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Chapter 1

Mediation Markets: The Case of Soft
Information

1.1 Introduction
As shown in the seminal works by Akerlof (1978) and Spence (1978), frictions arising from
asymmetric information in markets are especially stark when private information is non-
verifiable, that is when private information is soft, and when the informed party cannot
commit to an information policy.1 In these scenarios, credible information intermediaries,
such as rating agencies or quality certifiers, can provide information in exchange for com-
pensation from the informed party. Two natural questions then arise: 1) What information
and market outcomes are possible when the intermediary relies only on information will-
ingly reported by the informed party? 2) Would more information be revealed under the
intermediary’s revenue-maximizing contract (i.e., monopolistic mediation) or the informed
party’s?

This paper analyzes markets for mediation services between an informed and an unin-
formed party through a theoretical framework that combines information design and mecha-
nism design. This allows us to describe all the outcomes that can be induced by a mediation
contract with transfers from the informed party to the intermediary. Finding the optimal
outcomes for the intermediary and the informed party respectively reduces to solving rela-
tively simple optimization problems. We compare these solutions in terms of the extent of
information revealed to the uninformed party. The main findings addressing the previous

1See for example Liberti and Petersen (2019) for a survey on the broad definitions and differences between
soft and hard information. In general, one aspect of this difference concerns the nature of information:
numeric and objective for hard information and textual and subjective for soft information. Here we ignore
this aspect and discriminate between hard and soft information in terms of its verifiability. This is the
classical difference considered in contract economics (e.g, Hart (1995))
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two questions are that: 1) A large set of information policies and all the market outcomes can
be still implemented under this soft-information regime; 2) Because a monopolistic mediator
gives up some information rents to retain incentive compatibility, monopolistic mediation
contracts often reveal more information.

We apply our model to the analysis of optimal mediation contracts in ratings and certi-
fications markets. Financial issuers have superior and unverifiable information on both the
composition and the projected returns of the financial security they issue. Without any third
party, issuers would tend to inflate the projected returns of a security or provide selective
information about its composition. Therefore, rating agencies act as information mediators
from issuers to the market and receive their remuneration from the former.2

Rating agencies can sometimes mix soft information elicited from the informed party
with verifiable and testable information that they obtained independently, that is, hard
information. This second aspect has been the almost exclusive focus of the literature on
rating agencies, e.g., Skreta and Veldkamp (2009), Bolton, Freixas, and Shapiro (2012), and
Ali, Haghpanah, Lin, and Siegel (2022), and in general on quality certifiers e.g., Lizzeri
(1999), Harbaugh and Rasmusen (2018), and Zapechelnyuk (2020). However, a large part
of the rating agencies’ final evaluations depends on information reported by the informed
party. For instance, the Code of Professional Conduct issued by Moody’s (February 2023)
(MIS) reports that:

Credit Ratings are based on information obtained by MIS from sources believed by
MIS to be accurate and reliable, including, but not limited to, Issuers and their
Agents, as well as sources independent of the Issuer [...] MIS is not an auditor
and cannot in every instance independently verify or validate information received
in the rating process.

The important aspect of soft information is not a prerogative of markets for ratings
of financial securities. Duflo, Greenstone, Pande, and Ryan (2013) show evidence that
environmental audits of industrial plants in India often purely rely on information reported
by the firms evaluated. Similarly, Silver-Greenberg and Gebeloff (2021), whose research was
featured in the New York Times issue of March 13, 2021, provide evidence that nursing
home ratings in the US heavily rely on data and information reported by the facilities’
administrations.

Our analysis shows that some of the key findings of the literature on hard-information-
based certifiers do not extend to the soft-information case. For example, differently from

2For example, in the early 1970s, the rating agency market switched from an “investor-pay” model where
information users remunerated the agencies to an “issuer-pay” model where issuers of financial securities pay
fees to the agencies. See White (2010) for a detailed survey on the market of rating agencies.
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the parasitic certifier result in Lizzeri (1999) where the intermediary extracts all the surplus
through a pass-fail policy, in the present setting much richer disclosure policies that leave
rents to the informed party are optimal.

Overview of the Model In the baseline model, we consider two agents: a sender and a
receiver. The sender, e.g., a financial issuer, is privately informed about a one-dimensional
payoff-relevant state, for example, the fundamental value of a financial security. This infor-
mation is non-verifiable and the sender cannot commit ex-ante to any information disclosure
policies. The receiver is uninformed of the state and their optimal choice only depends on
the conditional expectation of the state given the available information. For example, the re-
ceiver can represent a population of traders in a market where each of them chooses whether
to short or not the issuer’s asset depending on their conditional expectation.

The payoff of the sender is increasing in both the state and the receiver’s conditional
expectation, satisfies a standard strict single-crossing condition, and is quasi-linear with
respect to any monetary transfer. For instance, the financial issuer’s final payoff is larger
when fewer traders short the asset, and this effect is larger when the fundamental value of
the asset is high. Under these assumptions, no credible communication can be sustained
between the two parties because the sender has always the incentive to induce the highest
receiver’s expectation possible.

Next, we consider a trustworthy and credible mediator who is uninformed of the state and
shares the same prior beliefs as the receiver. The mediator can commit to any communication
mechanisms. These mechanisms collect a report from the sender and, conditional on it,
require payments from the sender and disclose a message to the receiver. The timing goes
as follows: i) The mediator commits to a communication mechanism; ii) The sender chooses
whether to accept or not the contract; iii) If the sender participates, they submit a report
to the mediator and a message is sent to the receiver and payment for the mediator is
executed according to the terms of the contract. If the sender does not participate, there is
no transfer; iv) The receiver updates their beliefs given the available information, and payoffs
are realized. Conditional on no participation the receiver updates their belief to the worst
possible state. This is a realistic assumption within our leading rating agency application:
issuers are often forced by law to refer to a rating agency and failure to do so would trigger
a negative response from the market.3

The mediator’s payoff is equal to the payment from the sender and transfers between

3Rating agencies often disclose the names of the entities that decline to participate in the rating process.
The Code of Professional Conduct by Moody’s (February 2023) reports that: “To promote transparency
regarding the nature of MIS’s interactions with Rated Entities, and in accordance with the MIS Policy for
Designating Non-Participating Rated Entities, MIS will publicly designate and disclose the names of Rated
Entities that decline to participate in the rating process”.
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the mediator and the receiver are not allowed. We compare two leading cases depending
on whether all the bargaining power is in the hand of the mediator, monopolistic-mediation
case, or the sender, the sender’s preferred case. In the first case, the optimal contracts are
those that maximize the mediator’s expected revenue, whereas in the second case are those
that maximize the sender’s payoff net of the mediator’s fee.4

In our application, the rating agency embodies the role of the mediator: they commit to
information disclosure contracts that depend on the information reported by the issuer, and,
in line with the issuer-pay model, their remuneration is given by the contractualized fees.
The monopolistic-mediator case represents the realistic scenario where the agency designs the
contractual terms to maximize profit.5 Differently, the sender’s preferred case corresponds
to the scenario where the terms of the contract are in favor of the sender, capturing the idea
of competition among rating agencies.

Implementable Outcomes We recast our contracting environment as a mechanism-
design problem. Differently from the more canonical setting though, the mediator does
not allocate physical goods or services but rather information to the receiver. We thus bor-
row tools from information design to represent the information structures that are feasible
given all the incentive constraints and that are optimal for the two cases considered.

We first apply the Revelation Principle for Bayesian games of Myerson (1982) and Forges
(1986) and restrict to truthful and obedient direct mechanisms where the sender truthfully
reports the state and the message for the receiver coincides with the correct conditional
expectation of the state. The obedience requirement is reduced to the standard martingale
condition for the joint distribution of states and conditional expectation. The truthful re-
porting constraint is in general equivalent to a monotone cyclicality condition that resembles
the one in Rochet (1987), and reduces to a simpler monotonicity condition when the sender’s
payoff is linear in the state.

Next, we focus on the distributions over the receiver’s conditional expectations that can
be induced by some mechanism. In our leading application, the receiver’s conditional ex-
pectations correspond to the market’s evaluations of the issuer’s security. We show that,
perhaps surprisingly, the mediator can implement all the distributions that are consistent
with unconstrained verifiable information, that is, those that are mean-preserving contrac-
tions of the prior. These can be implemented by random bi-pooling information policies :
the mediator randomizes over a collection of information policies that send up to two mes-
sages conditional on every report (i.e., standard bi-pooling policies as introduced by Arieli,

4These are the two leading cases considered in the screening and nonlinear pricing literature. See for
example Samuelson (1984); Biais and Mariotti (2005); Grubb (2009); Corrao, Flynn, and Sastry (2023).

5The rating agencies market is highly concentrated with Fitch, Moody’s, and S&P retaining the vast
majority of the market share. See for example OECD Hearing (2010).
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Babichenko, Smorodinsky, and Yamashita (2023). Importantly, the sender is not informed
about the particular policy drawn from the randomization at the moment of reporting the
state, but the receiver is informed of both the realized policy and of the corresponding realized
signal.

These mechanisms admit a clear interpretation within our rating agency application.
In fact, from the issuer’s perspective, referring to a rating agency introduces an element
of unpredictability, as they are uncertain about the exact outcome of the rating process
conditional on their reports. However, the rating agency is obligated to maintain complete
transparency with investors, detailing every procedure and methodology utilized to arrive at
that particular rating.6

Optimal Outcomes We then move to the study of optimal communication mechanisms.
We leverage our implementation results to rewrite the design problems in both the mo-
nopolistic case and the sender’s preferred case as Bayesian persuasion problems under an
additional monotonicity constraint. With this, if monotone partitional outcomes, such as
full disclosure or no disclosure, solve the (relaxed) Bayesian persuasion problem obtained
by ignoring the monotonicity constraint, then these solve the original problem. This allows
us to derive conditions on the sender’s payoff such that full disclosure is optimal for the
monopolistic mediator, for example, when the mediator’s virtual surplus is supermodular
and convex in the receiver’s expectation.

We next focus on two particularly tractable cases. First, we consider the linear-uniform
casewhere the sender’s payoff is linear in the state and the state is uniformly distributed.
Under these assumptions, the mediator’s revenue and the sender’s payoff are pinned down
by the conditional distribution over the receiver’s expectation. In turn, because all such
distributions that are consistent with the prior are implementable, it follows that the global
monotonicity constraint does not have any bite. With this, we reduce the two problems to
simple persuasion problems that have been extensively analyzed in the literature. Notably,
we obtain that if the sender’s information rents are concave, then the monopolistic mediator’s
optimal contracts reveal more information than the sender’s preferred ones.

In the second case, we restrict to quadratic payoff functions for the sender but keep the
distribution over states general. Differently from before, here the global monotonicity con-
straint can bind at the optimum. First, we show that the mediator’s revenue is pinned down
by the distribution of the sender’s second-order expectations. Next, we show that every

6The Code of Professional Conduct by Moody’s (February 2023) reports that: “In order to promote
transparency, MIS will publicly disclose sufficient information about its rating committee process, procedures,
methodologies, and any assumptions about the published financial statements that deviate materially from
information contained in the Issuer’s published financial statements so that investors and other users of
Credit Ratings can understand how a Credit Rating was determined.”
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distribution that is a mean-preserving contraction of the prior is a valid distribution over
second-order expectations. Finally, an additional change of variable from states to quantiles
of conditional expectations allows us to rewrite the revenue maximization problem as a lin-
ear program under a majorization constraint and use the results in Kleiner, Moldovanu, and
Strack (2021) to characterize optimal outcomes. In particular, there always exist optimal
communication mechanisms that are deterministic (i.e., monotone partitions), and the com-
parison between the monopolistic mediator case and the sender’s preferred case is determined
by the coefficient on the quadratic term of the sender’s payoff.

Our findings point out that in several natural instances, a monopolistic mediator that
relies on unverifiable reports only optimally discloses more information than in the follow-
ing two alternative cases: 1) Information is still unverifiable, but the mediator selects the
sender’s preferred outcome distribution 2) information is verifiable (hard information) and
the bargaining power is all in the hand of the mediator (e.g., Lizzeri (1999)). For instance,
in our leading rating agency example, when the market is characterized by lower shocks
and information is soft, a monopolistic rating agency optimally reveals more information
than in the issuer’s preferred contract or when the agency could commit to any information
disclosure without relying on reports (hard information). This rationalizes the presence of
virtually monopolistic rating agencies that rely on non-verifiable information, even from the
perspective of the final users of the information released, i.e. the investors. In fact, the
model predicts that if the bargaining power shifts too much in favor of the financial issuer or
if the rating agencies have unlimited access to verifiable information, then the actual amount
of information released to investors would decrease.

Transparency and Credibility Despite their simplicity, random bi-pooling information
policies still involve an element of randomness from the point of view of the receiver, which
partially invalidates the transparency of communication. For this reason, we also study trans-
parent communication mechanisms where the mediator must disclose the sender’s report to
the receiver. We show that the implementable outcomes under this additional restriction
correspond to monotone partitions : the mediator partitions the state space into (possibly
degenerate) adjacent intervals and the sender reports the interval where the realized state
lies. In turn, this allows us to connect transparent outcomes to a recent notion of credible
information structures put forward by Lin and Liu (2023) which captures the idea that the
sender does not have any incentive to change the correlation structure between states and
messages. In our setting, credible outcomes also coincide with monotone partitions which
then are consistent with independent notions of transparency and credibility. This combined
with our previous results on the optimality of monotone partitions in the unrestricted prob-
lem, implies that often the restriction to transparent and credible outcomes is without loss
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of optimality for either the monopolistic mediator or the sender.

Related Literature Besides the aforementioned works on optimal certification and rating
agencies, our work lies at the intersection of several other literatures that we now describe.

Our paper uses methods and results from the vast literature on Bayesian persuasion. The
belief-based approach used in Section A.2 on binary-state settings follows the seminal work
by Kamenica and Gentzkow (2011). Differently, the outcome-based approach used in the
general analysis follows more recent contributions such as Kolotilin (2018a) and Kolotilin,
Corrao, and Wolitzky (2022). Relatedly, our analysis of the uniform-state case shows that
both in the monopolistic-mediator case and the sender’s preferred case, the problem becomes
equivalent to a “linear” Bayesian persuasion problem such as the one studied in Dworczak and
Martini (2019). For all these cases, there are two main differences between our work and the
standard Bayesian persuasion problem: 1) The set feasible mechanism here is restricted by
the truthful reporting 2) Once transfers have been pinned down by the envelop formula, the
mediator maximizes the virtual surplus as opposed to the sender’s original payoff function.
Our analysis shows that the first difference is immaterial for the cases where the state of
the world is binary and for the cases where it is uniformly distributed. However, the second
difference is always present and is a key driver for our results comparing the optimal solutions
across the mediator and the sender’s preferred outcomes.

Among the seminal papers on Bayesian persuasion, Rayo and Segal (2010) and Rayo
(2013) are the most related to our work. While the general model in Rayo and Segal (2010)
corresponds to a particular case of finite-state Bayesian persuasion, their leading application
considers a sender that elicits the state from an informed third party through transfers. They
show that the additional truthtelling constraint is always slack under their assumptions and
apply their results to the relaxed persuasion problem. Besides allowing for infinite states, our
analysis differs insofar as our focus is on the comparison between the revenue-maximizing
contract and the optimal contract for the informed party.

Rayo (2013) considers a one-dimensional screening problem where rather than a physical
good, the seller allocates a “status” for the agent in the form of the conditional expectation
of their type. With this, their problem involves a truthtelling constraint and an obedience
constraint as in the present work. However, they restrict to deterministic mechanisms and the
sender’s payoff functions that are linear in both the state and the conditional expectation.
Notably, our results imply that, in his setting, the restriction to monotone partitions is
without loss of optimality for the designer.

Other recent works have also studied information design problems with transfers and
truthtelling constraints. Nikandrova and Pancs (2017) and Dworczak (2020) study auctions
with aftermarkets where the auctioneer can reveal information elicited from the first bidders
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to successive bidders or participants on a resale market. The former paper solves the relaxed
problem by ignoring the global truthtelling constraint.7 The latter paper, restricts to cutoff
mechanisms that only reveal whether the reported type is above or below a threshold. Differ-
ently, Krishna and Morgan (2008) and Kolotilin and Li (2021) study models of contracting
over information where the informed party is paid in exchange for information. They restrict
to deterministic mechanisms like in Rayo (2013) and show that the implementable outcomes
are monotone partitions. Differently from the present setting with revenue maximization,
the designer (the receiver in their case) trades off the information needed to adapt their
choice to the state of the world with the payment necessary to elicit that information. None
of the aforementioned works focus on the comparison of optimal contracts across different
objective functions.

Our work is also closely connected to the literature on mediation initiated by Myerson
(1982) and continued by the recent works on the comparison between mediated and un-
mediated communication like Goltsman, Hörner, Pavlov, and Squintani (2009), Salamanca
(2021), and Corrao and Dai (2023). All these papers consider settings without transfers and
where the mediator is perfectly aligned with the informed or the uninformed party. Notably,
the absence of transfers considerably restricts the set of implementable outcomes because
now the mediator can only screen the sender via the information revealed to the receiver. For
example, Corrao and Dai (2023) show that, when the sender has state-independent prefer-
ences, the feasible distributions of beliefs are those that induce zero correlation between the
sender’s payoff and the receiver’s belief. Differently, in our binary-state and linear-uniform
settings, we show that all the distributions of beliefs are feasible and that often the revenue-
maximizer contract induces the highest correlation possible between the sender’s payoff and
the receiver’s belief.

Outline Section 3.2 introduces the baseline model and assumptions. Section 1.3 presents
our main results for the case of binary states. This allows us to describe the basic intuition
of our results without the technical challenges presented by the general case. Section 1.4
characterizes the feasible distributions of outcomes under mediation. In Section 1.5 we derive
and compare optimal outcomes across the monopolistic and sender’s preferred case. In Sec-
tion 1.6, we analyze implementable and optimal outcomes when an additional transparency
restriction is imposed. Finally, Section 1.7 concludes. All the proofs are relegated to the
appendix.

7In particular, their optimal information structure often does not satisfy the monotonicity properties
required by the global truthtelling constraint.
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1.2 The Model
This section introduces a model of information mediation with transfers. We start with a
few key mathematical preliminaries. Given any product Borel probability space (𝑋 ×Θ, 𝜋),
we let 𝜋𝜃 ∈ ∆(𝑋) denote a version of the conditional probability over 𝑋 given 𝜃 and define
𝜋𝑥 similarly.8 When we say that 𝜋𝜃 satisfies a given property for all 𝜃 ∈ Θ, we mean that this
is the case for at least one such version. Finally, for every integrable function 𝐴 : 𝑋 → R,
we let E𝜋[𝐴(𝑥̃)|𝜃] denote the conditional expectation of 𝐴 given 𝜃.9

1.2.1 Sender and receiver

First, consider two agents only: a sender and a receiver. The sender is privately informed
about a payoff-relevant state of the world 𝜃 ∈ [0, 1] which is distributed according to a non-
degenerate common prior with CDF 𝐹 ∈ ∆([0, 1]). We often refer to 𝜃 as the type of the
sender. Define the relevant state space as Θ := supp(𝐹 ), let 𝑥𝐹 := E𝐹 [𝜃] denote the prior
mean, and assume that 0 ∈ Θ.

The key assumption on the private information of the sender is that it is not verifiable,
that is, it is soft information. This is a standard assumption in most of the mechanism-design
literature; it implies that the sender can directly communicate with the receiver only through
costless cheap talk messages without any intrinsic meaning. The receiver is uninformed of
𝜃 and takes a payoff-relevant action 𝑎 ∈ 𝐴 conditional on all the available information
about 𝜃. The message space is assumed to be large enough to contain all possible action
recommendations.

As discussed in the introduction, we interpret the sender as a seller of an asset (or a good)
who is privately informed about its return (or quality) 𝜃. The receiver can be interpreted
either as a single buyer or a multiplicity of buyers (e.g., traders in a market), and their action
corresponds to an evaluation of the asset and/or a decision whether to buy the asset or not.

The payoffs of the sender and the receiver depend on both the state 𝜃 and the action
𝑎. We assume that the action of the receiver is uniquely pinned down by the conditional
expectation of the state 𝑥 := E[𝜃|𝑠], where 𝑠 denotes the realization of the information
available to the receiver.10 Given this assumption, we do not specify additional properties
for the action space.

8Recall that the maps 𝜃 ↦→ 𝜋𝜃 and 𝑥 ↦→ 𝜋𝑥 are measurable with respect to the sigma-algebra generated
by the weak topologies over Δ(𝑋) and Δ(Θ), and that they are uniquely defined 𝜋-almost everywhere.

9The conditional expectations E𝜋[𝐻(𝜃)|𝑥] for integrable functions 𝐻 : Θ → R are similarly defined. We
always use the tilde notations 𝑥̃, 𝜃 inside expectation operators to highlight what are the random variables
inside the expectation.

10The assumption that the payoffs of the players depend on the state and the receiver’s conditional
expectation only is standard in the persuasion literature: see Gentzkow and Kamenica (2016) and Dworczak
and Martini (2019).
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Let 𝑋 := [0, 1] denote the space of the receiver’s conditional expectations and let 𝑉 :

𝑋 × Θ → R denote the sender’s payoff function. Because the payoff of the receiver is not
relevant for the general analysis, we do not posit a specific receiver’s payoff. In all the relevant
applications below, the (indirect) receiver’s payoff induced by their conditional expectation
is always described by a continuous and convex function 𝑅 : 𝑋 → R.11

Assumption 1. 𝑉 (𝑥, 𝜃) is twice continuously differentiable, strictly increasing and super-
modular in (𝑥, 𝜃), and such that 𝑉 (0, 𝜃) = 0 for all 𝜃 ∈ Θ.

Besides the technical assumption on differentiability, Assumption 1 posits that the sender
wants to induce the highest conditional expectation possible and that the benefit from
higher conditional expectations is larger for high states. The assumption also normalizes
the sender’s payoff so that the worst possible conditional expectation generates zero regard-
less of the state.

Under Assumption 1, it is not possible to sustain any credible communication in the
form of cheap talk, and the only equilibrium is the one where the receiver ignores all the
sender’s messages and plays always 𝑥𝐹 . The intuition behind this observation is simple and
does not need a proper formalization of the cheap talk environment. Indeed, in any cheap
talk equilibrium, it must be the case that, for every state 𝜃, the sender is indifferent among
all the receiver’s actions induced by some message played with strictly positive probability.
Now suppose that two different messages played respectively in states 𝜃′ and 𝜃 induce two
different conditional expectations 𝑥′ > 𝑥. Then 𝑉 (𝑥′, 𝜃) > 𝑉 (𝑥, 𝜃) implies that at state 𝜃 the
sender has a strictly profitable deviation by sending the message inducing 𝑥′, contradicting
the equilibrium hypothesis.

To characterize optimal outcomes, we often add more structure to the sender’s payoff
function. We say that the sender’s payoff is linear in the state if there exist strictly increasing
functions 𝐴(𝑥) and 𝐵(𝑥) such that 𝑉 (𝑥, 𝜃) = 𝜃𝐴(𝑥) + 𝐵(𝑥). Assumption 1 implies that
both 𝐴 and 𝐵 are twice continuously differentiable and such that 𝐴(0) = 𝐵(0) = 0. We
say that the sender’s payoff is quadratic if there exist parameters 𝛼, 𝛽, 𝛾 ∈ R such that
𝑉 (𝑥, 𝜃) = 𝛼𝜃𝑥+ 𝛽𝑥− 𝛾𝑥2/2. Assumption 1 implies that 𝛼 > 0 and 𝛽 > 𝛾.

Example 1 (Bank and Rating Agency). A bank holds an asset whose fundamental value
is denoted by 𝜃 and distributed according to 𝐹 . This can represent a specific asset to
which the bank is significantly exposed or a one-dimensional measure of the bank’s balance
sheet. There is a continuum of traders characterized by idiosyncratic information and/or

11For the sake of concreteness, one may assume that the receiver’s action space is 𝐴 = 𝑋 with payoff
function given by 𝑈(𝑥, 𝜃) = 𝑥𝜃−𝑥2/2. However, in Examples 1 and 2, we consider different settings inducing
slightly more general indirect receiver’s payoff functions. Convexity of 𝑅(𝑥) always holds due to the standard
properties of the indirect value function of decision problems under expected utility.
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preference shocks 𝑟 ∼ 𝐺 on [0, 1], but uninformed about 𝜃. Each trader can attack 𝑎 = 1

or not 𝑎 = 0 the bank, say by shorting the asset. The market evaluation of the asset given
public information 𝑠 is 𝑥 := E[𝜃|𝑠]. For simplicity, assume that each trader shorts the asset
if and only if this ex-post evaluation is lower than the private shock, that is, 𝑎 = 1 if and
only if 𝑟 > 𝑥. The bank defaults with probability equal to the mass 1 − 𝐺(𝑥) ∈ [0, 1] of
attackers.

Conditional on no-default, the value of the asset for the bank is (1 − 𝛿)𝑥 + 𝛿𝜃 for some
discount factor 𝛿 ∈ (0, 1). The interpretation is that the current asset evaluation is given
by the market’s expectation, while the future evaluation is given by the asset’s fundamental
value. The bank’s overall payoff is

𝑉 (𝑥, 𝜃) = ((1− 𝛿)𝑥+ 𝛿𝜃)𝐺(𝑥),

that is, the probability of no-default times the asset value. This payoff function satisfies
Assumption 1 and is also linear in the state. Importantly, the strictly single-crossing property
depends on the bank caring about the fundamental value of the asset 𝛿 > 0.

The bank is privately informed about 𝜃 and this information is not verifiable, e.g., the
exact composition of the asset. They aim to induce the highest evaluation 𝑥 possible but
cannot commit to information disclosure ex-ante. In turn, this implies that no credible in-
formation transmission can be sustained alone because 𝑉𝑥 > 0.12 △

Example 2 (Selling Platform and Advertising Agency). Consider a seller trying to advertise
a good/service of quality 𝜃 to a market of potential buyers. The market is competitive and
the seller can only act on advertising policies, that is, prices are fixed. Each buyer has an
idiosyncratic alternative option 𝑟 ∼ 𝐺 on [0, 1] that they forgo if they buy from the seller.
Each buyer buys the good 𝑎 = 1 if and only if 𝑥 ≥ 𝑟, for example, because their utility is
𝑈(𝑎, 𝜃, 𝑟) = 𝑎(𝜃− 𝑟). The seller’s payoff is 𝑎(𝑏(𝑟)+𝛼𝜃) where 𝛼 > 0 and 𝑏(𝑟) is a continuous
function. The interpretation is that conditional on acquiring the good 𝑎 = 1, the seller gets
(present and future) revenue that is proportional to the actual quality 𝛼𝜃 and a benefit 𝑏(𝑟)
that depends on the type of the buyer that has acquired the good. For example, if the seller
receives 1 dollar for every customer that buys the good, and if they attach weight 𝛼 > 0 to
their customer surplus, the seller’s payoff for every buyer 𝑟 that buys is 𝑎(1 + 𝛼(𝜃 − 𝑟)).

12This example is similar to Example 1 in Quigley and Walter (2023) who consider a setting with a
regulator able to commit to any form of hard information.
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The seller’s overall payoff given the buyers’ conditional expectation 𝑥 is

𝑉 (𝑥, 𝜃) = 𝛼𝜃𝐺(𝑥) +

∫︁ 𝑥

0

𝑏(𝑟)𝑑𝐺(𝑟).

This payoff function satisfies Assumption 1 and is also linear in the state. Importantly, the
strictly single-crossing property depends on the seller caring about the actual quality of the
good, i.e., 𝛼 > 0. Finally, as in the previous example, no credible information transmission
is sustainable in any cheap-talk equilibrium.13 △

Remark 1. In both Examples 1 and 2 the sender’s payoff is linear in the state. In Example
1, the sender’s payoff is quadratic when the distribution of shocks 𝐺 is uniform. Similarly,
in Example 2, the sender’s payoff is quadratic when the distribution of outside options 𝐺 is
uniform and the benefit function is affine 𝑏(𝑟) = 𝛽 − 𝛾/2𝑟.

1.2.2 The mediator

We now introduce the third and final agent of the model: the mediator. We consider two
alternative objective functions for the mediator and these define the two notions of optimal
contracts that we analyze. In the first case, called monopolistic mediation, the mediator
maximizes revenue. In the second case, called sender’s preferred mediation, the mediator
maximizes the sender’s payoff. These two scenarios capture the two extreme cases of the
division of bargaining power between the mediator and the sender.

The mediator is uninformed of the realized state 𝜃 but can commit to a communication
mechanism with transfers. This is composed of a reporting space for the sender 𝑀𝑆, a
message space for the receiver 𝑀𝑅, and a stochastic map 𝜎 : 𝑀𝑆 → ∆(𝑀𝑅 ×R) assigning a
distribution over messages 𝑚𝑅 for the receiver and transfers 𝑡 from the sender to the mediator.
The interpretation is that the mediator commits to a menu of (potentially random) messages
for the receiver and each of these comes together with a price that the sender pays to the
mediator. In particular, we assume that the sender’s payoff is quasi-linear in money so that
their overall payoff is equal to 𝑉 (𝑥, 𝜃) − 𝑡 when the state is 𝜃 and the realized conditional
expectation and transfer are 𝑥 and 𝑡. The payoff of the mediator is given by the transfer
from the sender 𝑡.

Each communication mechanism 𝜎 defines a standard signaling game between the sender
and the receiver. First, the sender observes the state 𝜃 and chooses whether to participate
in the mechanism. This choice is observed by the receiver. Conditional on participating, the

13Rayo and Segal (2010) and Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017); Kolotilin, Mylovanov,
and Zapechelnyuk (2022) analyze similar examples under standard Bayesian persuasion.
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sender selects a report 𝑚𝑆 that generates some message for the receiver and payment for the
mediator.14 After observing the participation choice of the sender and the realized message,
the receiver updates their beliefs and takes the corresponding optimal action. Let Γ𝜎 denote
the set of Bayes-Nash equilibria of the signaling game induced by 𝜎.15 We assume that the
sender and the receiver break ties in favor of the equilibrium suggested by the mediator.

There are two main differences with the standard theory of signaling games (e.g., Fuden-
berg and Tirole (1991)). First, the cost of signaling actions in our setting corresponds to
the mediator’s revenue rather than being a merely wasteful activity for the sender. Second,
and in line with the mechanism design literature, the costly signaling mechanism is designed
by the mediator. In fact, this turns out to be a particular case of the general mechanism
design problem introduced in Myerson (1982). A similar setting has also been considered in
the literature of mechanism design under imperfect commitment. In particular, Bester and
Strausz (2007) and Doval and Skreta (2022) consider a mechanism design problem where
the designer can only partially commit to final allocations/actions conditional on the report
of the sender, and therefore acts as a mediator between the sender and themselves. In the
present setting, the mediator can commit to a communication mechanism including trans-
fers but cannot control the final action which is still under the control of the receiver. In
both settings, it is possible to apply the Revelation Principle for Bayesian games of Myerson
(1982) and Forges (1986) (see Section 1.4).

Definition 1. A communication mechanism 𝜎 and a corresponding equilibrium in Γ𝜎 are
consistent with

1. Full participation if the sender participates in the mechanism for every 𝜃 ∈ Θ;

2. Punishment beliefs if the receiver’s posterior belief conditional on no participation as-
signs probability 1 to 𝜃 = 0;

3. Deterministic payments if conditional on every sender’s report 𝑚𝑠, the marginal dis-
tribution of 𝜎(·|𝑚𝑆) over payments 𝑡 is degenerate.

Observe that under full participation, the no-participation outcome is out of the equi-
librium path. Therefore, the receiver’s conditional belief is not pinned down by the laws of
probability and any belief would be consistent with equilibrium. We restrict the mediator
to select a communication mechanism and a corresponding equilibrium satisfying all these
properties.

14We assume that the receiver does not observe the realized transfer. However, this is without loss of
generality for the main analysis as shown in Doval and Skreta (2022).

15See Appendix A.1 for a formal definition of Bayes-Nash equilibrium in this case.
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Assumption 2. The mediator selects a communication mechanism and a corresponding
equilibrium that are consistent with full participation, punishment beliefs, and deterministic
payments.

Deterministic payments are always without loss due to the assumption of quasi-linearity
for the sender and mediator’s payoffs. The first two properties have more substantial content:
they imply that whenever the sender does not participate in the mediator’s mechanism, the
receiver always updates their beliefs to assign probability one to the worst possible state.
This assumption is consistent with the applications considered so far. In modern financial
markets, it is important for issuers, if not required, to refer to a rating agency to get ratings
on the issued financial products. Moreover, regulators often impose institutional investors
to hold assets that have received positive ratings from one or more agencies. Therefore,
when issuers do not refer to rating agencies they essentially give up a large part of potential
investors in the market. Similarly, generic sellers do not have the same reach as professional
advertising agencies, and referring to them is often the only way to broaden the basin of
potential customers.

The punishment-belief assumption is standard in the literature on quality certification
(e.g., Lizzeri (1999)), on rating agencies (e.g., Quigley and Walter (2023)), and on strategic
communication (e.g., Carroll and Egorov (2019)). Because a monopolistic mediator maxi-
mizes revenue, it is always without loss of optimality for them to select a mechanism and an
equilibrium satisfying Assumption 2.16

Next, we interpret the role of the mediator in our examples. [Continue from Example 1]
In the setting of Example 1, a rating agency is a trustworthy third party that can commit to
information disclosure in exchange for a fee from the bank. Following our motivation in the
introduction, we assume that the rating agency is uninformed about 𝜃 and must rely on the
bank’s report while remaining credible to the market. They can disclose only information
that is self-reported and that the bank is willing to share. Therefore, the agency screens the
banks via two instruments: information revealed to the market and fees charged. Following
the general model above, the agency commits to report-dependent signals (possibly noisy)
for the market and fees for the bank: this is the content of the contract between the agency
and the bank. The traders publicly observe the realization of 𝑚𝑅, update their evaluation
to 𝑥 = E[𝜃|𝑚𝑅], and attack or not. Here, the punishment-beliefs assumption implies that if
the bank does not refer to the agency, the market updates to 𝑥 = 0. △

16This relies on the fact the mediator can select the preferred equilibrium for every mechanism. In
particular, punishment beliefs maximize revenue. See also the revelation principle for mechanism design
under imperfect commitment in Doval and Skreta (2022). In Additional Appendix A.6 we show that equilibria
satisfying Assumption 2 survive a version of the D1 refinement for infinite games.
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[Continue from Example 2] In the setting of Example 2, an advertising agency is a trust-
worthy third party that can commit to information disclosure in exchange for a fee from the
seller. Advertising agencies have enough reputation to sustain credible information policies
but are not as informed as the seller about the actual quality of the product. Therefore,
they often rely on the seller’s reported quality △

1.2.3 Outcomes and beliefs distributions

Under Assumption 2, any equilibrium of a communication mechanism generates a distribu-
tion over outcomes 𝜋 ∈ ∆(𝑋 × Θ) that describes the joint probability of state 𝜃 and the
receiver’s expectation 𝑥 in the given equilibrium. This is paired with a transfer function
𝑡 : Θ → R which prescribes the (deterministic) payment from the sender to the mediator in
each state 𝜃. We say that (𝜋, 𝑡) is implementable if there exists a communication mechanism
and an equilibrium that induce them. Similarly, we say that 𝜋 is implementable if there
exists a payment function 𝑡 such that (𝜋, 𝑡) is implementable.

Let ℳ(𝐹 ) denote the set of implementable pairs (𝜋, 𝑡). For every such mechanism, the
induced indirect payoff of the sender at each state is defined by 𝑆𝜋(𝜃) := E𝜋[𝑉 (𝑥̃, 𝜃)|𝜃] −
𝑡(𝜃) for all 𝜃 ∈ Θ.17 In the monopolistic case, the mediator acts to maximize revenue
independently of the other outcomes of the sender-receiver interaction:

sup
(𝜋,𝑡)∈ℳ(𝐹 )

∫︁
Θ

𝑡(𝜃)𝑑𝐹 (𝜃). (1)

The objective function in (1) corresponds to the expected revenue of the monopolist across
all the possible states.

In the sender’s preferred case, the optimal outcome distributions are those that maximize
the expected payoff of the sender. This requires the proposed mechanism and payment rule
to satisfy an additional participation constraint because the mediator’s expected revenue has
to be non-negative for the mediator to be willing to serve the sender.

In the sender’s preferred case, the optimal outcomes and payments solve

sup
(𝜋,𝑡)∈ℳ𝐶(𝐹 )

∫︁
Θ

𝑆𝜋(𝜃)𝑑𝐹 (𝜃). (2)

where ℳ𝐶(𝐹 ) denotes the set of pairs of outcomes and payments that are implementable

17With a slight abuse of notation, we use the subscript 𝜋 to denote objects derived from an implementable
pair (𝜋, 𝑡), such as the sender and receiver’s indirect payoffs. As we shall clarify in Section 1.4, this is not
an issue because the optimal payment rule 𝑡 is uniquely pinned down given an implementable 𝜋, provided
that the state is continuously distributed.
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when we also add the mediator’s participation choice described above.
Observe that payments from the sender to the mediator are still relevant in the sender’s

preferred case. This is the case because having different payments for different reports re-
laxes the truthtelling constraint making a larger set of outcome distributions implementable.
Payments to the mediator essentially play the role of money burning in standard models of
communication (e.g., Austen-Smith and Banks (2000)).

So far we focused on the distributions of outcomes induced by a communication mech-
anism and an equilibrium. An alternative is to consider the induced distribution over the
receiver’s beliefs. While our main analysis is based on outcome distributions, it is convenient
in the binary-state case (Section 1.3) to work with distributions of the receiver’s beliefs.
Let ∆𝐹 (∆(Θ)) denote the set of distributions 𝜏 over the receiver’s beliefs that satisfy Bayes
plausibility :

∫︀
Δ(Θ)

𝜇𝑑𝜏(𝜇) = 𝐹 . Every implementable outcome distribution 𝜋 induces a distri-
bution of beliefs 𝜏𝜋 ∈ ∆𝐹 (∆(Θ)) defined by 𝜏𝜋(𝐷) =

∫︀
𝑋
1[𝜋𝑥 ∈ 𝐷]𝑑𝐻𝜋(𝑥) for all measurable

𝐷 ⊆ ∆(Θ), where 𝐻𝜋 := marg𝑋 𝜋 is the marginal distribution of the receiver’s conditional
expectations. In this case, we say that 𝜏𝜋 is implementable.

1.3 Binary-State Case
In this section, we assume that the state is binary: Θ = {0, 1}. The interpretation is that the
residual private information of the sender is as coarse as possible. For instance, in Example
1, the bank is only privately informed about whether the fundamental value of the asset is
above or below a certain benchmark threshold.

We apply the belief-based approach for Bayesian persuasion (Kamenica and Gentzkow
(2011)) to the current setting because the constraints describing implementable distributions
of beliefs dramatically simplify. Let 𝑉 (𝑥) = 𝑉 (𝑥, 0) and 𝑉 (𝑥) = 𝑉 (𝑥, 1) denote the sender’s
payoffs when the state is 𝜃 = 0 and 𝜃 = 1 respectively. Observe that the prior expectation
𝑥𝐹 ∈ (0, 1) coincides with the prior probability that 𝜃 = 1 and summarizes the entire prior
distribution. Similarly, each realized conditional expectation 𝑥 coincides with the posterior
probability that 𝜃 = 1. Define the sender’s expected payoff given the receiver’s posterior
belief as

𝑉 (𝑥) := (1− 𝑥)𝑉 (𝑥) + 𝑥𝑉 (𝑥).

Given an implementable pair (𝜋, 𝑡) ∈ ℳ(𝐹 ), we let 𝑡 = 𝑡(1) and 𝜋 = 𝜋1 ∈ ∆(𝑋) denote
the distribution over receiver’s beliefs and sender’s payment in state 𝜃 = 1. We define 𝑡

and 𝜋 symmetrically when 𝜃 = 0. Finally, the induced unconditional distribution over the
receiver’s belief is 𝜏𝜋 = (1−𝑥)𝜋+𝑥𝜋 ∈ ∆(𝑋).18 It is well known that in this case, the Bayes

18Observe that with binary states we have 𝜏𝜋 = 𝐻𝜋 for all implementable 𝜋 because posterior beliefs and
conditional expectations coincide.
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plausibility condition (i.e., 𝜏 ∈ ∆𝐹 (∆(Θ))) becomes∫︁ 1

0

𝑥𝑑𝜏(𝑥) = 𝑥𝐹 . (3)

A payment rule (𝑡, 𝑡) implements 𝜏 if it implements an outcome distribution inducing 𝜏 . In
principle, Bayes plausibility is not sufficient alone to characterize implementable distributions
over beliefs because we need to take into account the truthtelling constraint for the sender.
However, as we next show, the strict single-crossing condition on the sender’s payoff implies
that no further restrictions on 𝜏 are needed.19

Proposition 1. A distribution of receiver’s beliefs 𝜏 is implementable if and only if it is
Bayes plausible, that is, it satisfies equation 3. In this case, a payment rule (𝑡, 𝑡) implements
𝜏 if and only if

𝑡 ≤
∫︁ 1

0

𝑉 (𝑥)
1− 𝑥

1− 𝑥𝐹

𝑑𝜏(𝑥) (4)

and
Cov𝜏 (𝑉 (𝑥̃), 𝑥̃)

Var𝐹 (𝑥̃)
≤ 𝑡− 𝑡 ≤ Cov𝜏 (𝑉 (𝑥̃), 𝑥̃)

Var𝐹 (𝑥̃)
. (5)

The first part of Proposition 1 states a remarkable property of the model: under binary
states, the mediator can design a payment rule to implement any distribution of beliefs
that is induced by some arbitrary experiment (i.e., the Bayesian-persuasion case). This
implies that, under binary states, there is no difference between the distributions of beliefs
implementable with soft and hard information.

The proof of this part is based on the chain rule of probabilities: Bayes plausibility implies
that both 𝜋 and 𝜋 are absolutely continuous with respect to the unconditional distribution 𝜏𝜋

with 𝑑𝜋
𝑑𝜏𝜋

(𝑥) = 𝑥
𝑥𝐹

and 𝑑𝜋
𝑑𝜏𝜋

(𝑥) = 1−𝑥
1−𝑥𝐹

. This allows us to rewrite all the sender’s truthtelling
constraints in terms of the unconditional distribution 𝜏𝜋 only and reduce them to those
in (5). This equation implies that 𝑡 ≥ 𝑡 and it holds for some payment rule if and only
if Cov𝜏 (∆𝑉 (𝑥̃), 𝑥̃) ≥ 0, where ∆𝑉 (𝑥) := 𝑉 (𝑥) − 𝑉 (𝑥). In other words, the truthtelling
constraint imposes that there is a positive correlation between the receiver’s belief 𝑥 and
the marginal sender’s payoff ∆𝑉 (𝑥). Assumption 1 implies that ∆𝑉 (𝑥) is strictly increasing,
hence it is positively correlated with 𝑥 for every Bayes plausible 𝜏 .20

19This result crucially relies on the possibility of having payments from the sender to the mediator.
See Corrao and Dai (2023) for a setting where report-contingent transfers are not allowed and additional
restrictions on implementable 𝜏 are needed.

20An inspection of the proof of Proposition 1 shows that this last step is the only one where we use
supermodularity of the sender’s payoff. Therefore the previous positive correlation property characterizes
implementable distributions of beliefs even beyond the supermodular case. See Appendix A.2.
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The second part of the result exactly characterizes the limits on the payment rules that
can implement an arbitrary 𝜏 . In particular, given 𝜏 , both the upper bound on 𝑡 and the
lower bound on 𝑡 − 𝑡 are non-negative.21 It follows that any distribution of beliefs can be
implemented by a non-negative payment rule.

For every function 𝐽 : 𝑋 → R, let cav (𝐽) denote its concavification, that is, the smallest
concave function that dominates 𝐽(𝑥) pointwise.

Corollary 1. For every implementable distribution of beliefs 𝜏 , the maximal expected revenue
for the mediator is given by∫︁

𝑋

𝑉 (𝑥)
1− 𝑥

1− 𝑥𝐹

𝑑𝜏(𝑥) + 𝑥𝐹
Cov𝜏 (𝑉 (𝑥̃), 𝑥̃)

Var𝐹 (𝑥̃)
. (6)

The overall maximum revenue for the mediator is

cav(𝐽)(𝑥𝐹 ) = max
𝜏∈Δ𝐹 (Δ(Θ))

∫︁ 1

0

𝐽(𝑥)𝑑𝜏(𝑥). (7)

where 𝐽(𝑥) = 𝑉 (𝑥)−∆𝑉 (𝑥)(1− 𝑥).

The first part of this result follows because, for every 𝜏 , the highest payment rule that
implements 𝜏 is such that the upper bounds in (4) and (5) are both attained. Therefore,
under binary states, the monopolistic mediator acts as a fictitious sender that can commit
to any statistical experiment before observing 𝜃 and that maximizes the distorted indirect
payoff 𝐽(𝑥) := 𝑉 (𝑥)−∆𝑉 (𝑥)(1− 𝑥). This expression is the analog of the virtual surplus in
standard screening problems. Here 𝑉 (𝑥) is the total surplus within the bilateral interaction
between the sender and the mediator, whereas

𝐼(𝑥) := ∆𝑉 (𝑥)(1− 𝑥)

are the information rents that the monopolistic mediator must give up to satisfy the truthtelling
constraint. Corollary 1 also yields a (maximal) revenue equivalence for the monopolistic me-
diator: if two (direct) implementable communication mechanisms 𝜋 and 𝜋′ induce the same
distribution of receiver’s beliefs 𝜏 , then the maximal expected mediator’s revenue is the same
across the two mechanisms and equal to

∫︀
𝑋
𝐽(𝑥)𝑑𝜏(𝑥).

We now move to the sender’s preferred case.

21The first assertion follows from the fact that 1 − 𝑥 ≥ 0 and 𝑉 (𝑥) ≥ 0 for all 𝑥. The second assertion
follows from the fact that 𝑉 (𝑥) is strictly increasing and therefore always positively correlated with 𝑥.

26



Corollary 2. The sender’s optimal distribution of the receiver’s beliefs solves

cav(𝑉 )(𝑥𝐹 ) = max
𝜏∈Δ𝐹 (Δ(Θ))

∫︁ 1

0

𝑉 (𝑥)𝑑𝜏(𝑥). (8)

Moreover, the corresponding optimal payment rule is such that 𝑡 ≤ 0 ≤ 𝑡 with strict inequality
if and only if no disclosure is suboptimal in (8).

This corollary says that the sender’s preferred case is analogous to a Bayesian persuasion
problem with indirect payoff function 𝑉 (𝑥). It then follows that the optimal distributions
of beliefs under the sender’s preferred case coincide with those optimal when the sender can
commit to disclosing unrestricted (hard) information.

1.3.1 Comparison of optimal distributions of beliefs

The characterizations of the optimal distributions of beliefs across the two regimes obtained
in Corollaries 1 and 2 can be used to compare the corresponding degrees of information
revelation. The relevant order over distributions of beliefs we adopt is the one induced by
the Blackwell order over experiments. Given two distributions of beliefs 𝜏 and 𝜏 ′ satisfying
Bayes plausibility (3), we say that 𝜏 is more informative than 𝜏 ′ if 𝜏 dominates 𝜏 ′ in the
convex order of distributions on [0, 1], denoted by 𝜏 ≿ 𝜏 ′.22 Because the optimal distributions
of belief can be multiple under either regime, we need to extend the previous ordering to sets
of distributions. We follow Curello and Sinander (2022) and consider the extension induced
by the weak set order among solution sets. Formally, we say that more information is
revealed under monopolistic mediation than under competitive mediation if for every optimal
distribution 𝜏 *𝑀 under monopoly, there exists an optimal distribution 𝜏 *𝐶 under competition
such that 𝜏 *𝑀 ≿ 𝜏 *𝐶 , and vice-versa for every optimal distribution 𝜏 ′*𝐶 under competition,
there exists an optimal distribution 𝜏 ′*𝑀 under monopoly such that 𝜏 ′*𝑀 ≿ 𝜏 ′*𝐶 . We define
symmetrically the case where more information is revealed under competitive mediation.

Corollary 3. If 𝐼(𝑥) is concave, then more information is revealed under monopolistic
mediation than under competitive mediation. Moreover, for all 𝐼(𝑥), there exists a prior
𝑥𝐹 ∈ (0, 1) such that at least one of the following holds:

1. There exists an optimal 𝜏 *𝑀 under monopoly such that 𝜏 *𝑀 ≿ 𝜏 *𝐶 for all sender’s preferred
𝜏 *𝐶.

2. For all sender’s preferred 𝜏 *𝐶, there exists an optimal distribution under monopoly 𝜏 *𝑀
such that 𝜏 *𝑀 ≿ 𝜏 *𝐶.

22Recall that this means that
∫︀
𝑋
𝜑(𝑥)𝑑𝜏(𝑥) ≥

∫︀
𝑋
𝜑(𝑥)𝑑𝜏 ′(𝑥) for all continuous and convex functions

𝜑 : 𝑋 → R.
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Intuitively, when the difference 𝐼(𝑥) between the total surplus 𝑉 (𝑥) of the sender and
the binary-state version of the monopolist virtual surplus 𝐽(𝑥) is concave, it follows that the
induced preference of the monopolist is less “risk-averse” than that of the sender.23 Because
under the Blackwell order more information is equivalent to more dispersion of posterior
beliefs, it follows that in this case, the monopolist would prefer more dispersion. Moreover,
𝐼(𝑥) can never be globally convex because 𝐼 ′′(𝑥) = ∆′′

𝑉 (𝑥)(1 − 𝑥) − 2∆′
𝑉 (𝑥) < 0 when 𝑥 is

nearby 1. Therefore, it is never the case that the preference of the sender is globally more
“risk averse” than that of the monopolist.

In Example 1, 𝑉 (𝑥) = 𝑥𝐺(𝑥) and 𝐼(𝑥) = 𝛿𝑝
1−𝑝

(1 − 𝑥)𝐺(𝑥), where 𝐺 is the distribution
of idiosyncratic shocks to the traders in the market. Thus, the corollary implies that when
𝐺(𝑥) is concave the rating agency will optimally disclose more information and induce more
dispersed evaluations. The intuition is that 𝐺(𝑥) is concave when higher shocks that lead
traders to attack the bank are considerably less likely. In this case, the bank favors less
disclosure to maintain the status quo, but the rating agency still favors relatively more
disclosure to maximize the correlation between 𝐺(𝑥) and 𝑥. Differently, when for example the
distribution of traders’ shocks 𝐺 is uniform, both the bank’s and agency’s optimal contract
entails full disclosure. In general, because

𝐼 ′′(𝑥) = 𝑔(𝑥)

(︂
(1− 𝑥)𝑔′(𝑥)

𝑔(𝑥)
− 2

)︂
, (9)

when 𝑔(𝑟) is log-concave (i.e., unimodal), 𝑔′/𝑔 is decreasing, hence if it is smaller than 2

around 0, then 𝐼 ′′(𝑥) < 0 globally, implying that 𝐼(𝑥) is concave. With this, Corollary 3
implies that the monopolistic rating agency discloses more information for a large class of
shock distributions.

Corollary 3 by itself is not enough to derive sufficient conditions for the monopolistic
mediator to disclose strictly more information than in the sender’s preferred case. For this
reason, we now add more structure to the sender’s payoff function to describe and compare
in more detail the optimal outcomes.

Consider the payoff structure of Example 2 under the additional assumption that 𝐺(𝑥)

is uniform and that 𝑏(𝑟) is twice continuously differentiable and either strictly concave or
strictly convex. This implies that 𝑉 (𝑥, 𝜃) = 𝛼𝜃𝑥+𝐵(𝑥) where 𝐵(𝑥) is the primitive function
of 𝑏(𝑟). Therefore, 𝑉 (𝑥) = 𝛼𝑥2+𝐵(𝑥), 𝐽(𝑥) = 2𝛼𝑥2−𝑥+𝐵(𝑥), and 𝐼(𝑥) = 𝑥−𝛼𝑥2, a strictly
concave function. Because the linear term in 𝐼(𝑥) is irrelevant due to Bayes plausibility, it
follows that the only relevant difference between 𝑉 (𝑥) and 𝐽(𝑥) is that the latter has a higher

23While this is not the classical Arrow-Pratt notion of more risk aversion, it is similar to that in Ross
(1981).
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coefficient for the quadratic term.
The assumption on 𝑏(𝑟) implies that there exists a unique optimal distribution of beliefs

and this is a stochastic censorship mechanism. Stochastic upper-censorship is defined as
follows. The reporting space for the sender is 𝑀𝑆 = Θ and the message space for the
receiver is 𝑀𝑅 = {0,𝑚0}. When the sender reports 𝜃 = 0, this is revealed with probability
𝑞0 ∈ [0, 1], and with complementary probability 𝑚0 is sent. When the sender reports 𝜃 = 1,
𝑚0 is sent with probability 1. In this case, 𝑚0 can be defined as the corresponding posterior
belief of the receiver given this information structure, that is,

𝑚0 =
𝑥𝐹

𝑥𝐹 + (1− 𝑥𝐹 )(1− 𝑞0)
.

Stochastic lower-censorship is defined analogously by swapping the roles of 𝜃 = 0 and 𝜃 = 1.
We denote with 𝑞1 and 𝑚1 the corresponding parameters. Observe that in both cases the
mechanism is uniquely defined by the probability 𝑞𝑖, 𝑖 ∈ {0, 1}. Higher 𝑞𝑖 induce information
structures that reveal strictly more information in the sense of Blackwell.

Corollary 4. Assume that 𝑏(𝑟) is strictly convex (resp. concave). Both in the monopolistic
mediator and the sender’s preferred case, there exist uniquely optimal distributions of beliefs
𝜏 *𝑀 and 𝜏 *𝐶 and these are upper (resp. lower) stochastic censorship with probabilities 𝑞*0,𝑀 ≥
𝑞*0,𝐶 (resp. 𝑞*1,𝑀 ≥ 𝑞*1,𝐶). The inequality is strict whenever at least one of the two probabilities
is in (0, 1).

This result follows from the fact that both 𝑉 (𝑥) and 𝐽(𝑥) are S-shaped under the main-
tained assumptions.24 The monopolistic mediator case pools the states with a lower proba-
bility because 𝐽(𝑥) is more convex than 𝑉 (𝑥) due to the particular form of the information
rents. In the interpretation of Example 2, when the buyers are uniformly distributed, this
implies that a monopolistic advertising agency would reveal more information than one that
selects the seller’s preferred advertising policy.

We now summarize the main lessons we learned from the binary-state case following the
interpretation of our rating agency example (Example 1). First, all the distributions of the
market’s evaluations are implementable via an incentive-compatible contract. Second, the
extent of information revealed by the optimal contracts depends on the shape of the shock
distribution. Third, when lower shocks are relatively more likely (i.e., 𝐺 is concave), the
agency’s preferred contract is more desirable.

The model with a continuum of types analyzed in the next sections is substantially more
challenging, but the basic economic intuitions stay the same in some important cases (e.g.

24A function 𝑊 : [0, 1] → R is S-shaped if there exists 𝑥̂ ∈ [0, 1] such that 𝑊 is strictly convex on [0, 𝑥̂]
and concave on [𝑥̂, 1], or if it is concave on [0, 𝑥̂] and strictly convex on [𝑥̂, 1]. See Definition 6 below.
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when 𝜃 is uniformly distributed).

1.4 Implementable Outcomes
In this section, we come back to the general model with a continuously distributed state and
analyze the set of implementable outcomes and payment rules. Unless otherwise specified,
in this and all the following sections we assume that the prior 𝐹 admits a strictly positive
density 𝑓 > 0 over [0, 1].

First, we apply a version of the Revelation Principle (Myerson, 1982; Forges, 1986) to
show that, under Assumption 2, it is without loss of generality for the mediator to consider
outcome distributions and payment functions induced by direct incentive-compatible mech-
anisms. That is, a communication mechanism and a corresponding equilibrium where the
sender reports the state 𝑀𝑆 = Θ, the mediator gives a recommendation 𝑀𝑅 = 𝑋 to the
receiver in the form of a suggested conditional expectation, and the sender truthfully reports
the state while the receiver’s conditional expectation coincides with the recommended one.

Lemma 1 (Revelation Principle). An outcome distribution 𝜋 ∈ ∆(𝑋 × Θ) and a payment
function 𝑡(𝜃) are implementable if and only if:

(1) Consistency:
margΘ 𝜋 = 𝐹. (C)

(2) Sender’s Participation: For all 𝜃 ∈ Θ

E𝜋[𝑉 (𝑥̃, 𝜃)|𝜃]− 𝑡(𝜃) ≥ 0. (P)

(3) Honesty: For all 𝜃, 𝜃′ ∈ Θ

E𝜋[𝑉 (𝑥̃, 𝜃)|𝜃]− 𝑡(𝜃) ≥ E𝜋[𝑉 (𝑥̃, 𝜃)|𝜃′]− 𝑡(𝜃′). (H)

(4) Obedience: For all 𝑥 ∈ 𝑋,
E𝜋[𝜃|𝑥] = 𝑥. (O)

Consistency says that the equilibrium distribution of states is equal to the common prior.
Sender’s participation and Honesty are the incentive constraints of the sender and resemble
the ones present in the standard screening models. The former requires the mechanism to
secure a payoff higher than 0, the sender’s outside option in light of Assumption 2, while
the latter requires the sender not to have a strict incentive to misreport the realized state.
Obedience is the incentive constraint for the receiver: the inference that the receiver draws
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from the recommended expectation 𝑥 induces the same actual expectation, hence the joint
distribution of states and expectations must be a martingale from 𝑥 to 𝜃.

Remark 2. In the sender’s preferred case, the implementable outcome distributions 𝜋 and
payments 𝑡 are characterized by the same conditions in Lemma 1 when we replace P with

(2’) Mediator’s Participation:
E𝜋[𝑡(𝜃)] ≥ 0 (MP)

The mediator’s participation constraint in MP implies that the mediator does not lose
money on average.

Next, we simplify the set of implementable outcomes by expressing the Honesty constraint
in terms of a cyclical monotonicity property.

Definition 2. An outcome distribution 𝜋 ∈ ∆(𝑋 × Θ) satisfies stochastic cyclical mono-
tonicity if for all finite cycles 𝜃0, 𝜃1, ..., 𝜃𝑘+1 = 𝜃0 in Θ,

𝑘∑︁
𝑗=0

E𝜋[𝑉 (𝑥̃, 𝜃𝑗)|𝜃𝑗]− E𝜋[𝑉 (𝑥̃, 𝜃𝑗+1)|𝜃𝑗] ≥ 0 (SCM)

This notion of cyclical monotonicity generalizes the one in Rochet (1987) by allowing
for the assignment of distributions of allocations, in this case, the receiver’s conditional
expectations.25

Proposition 2. An outcome distribution 𝜋 ∈ ∆(𝑋 × Θ) is implementable if and only if
it satisfies C, O, and SCM. The indirect payoff of the sender and the supporting payment
function are given by:

𝑆𝜋(𝜃) = 𝑆𝜋(0) +

∫︁ 𝜃

0

E𝜋[𝑉𝜃(𝑥̃, 𝑠)|𝑠]𝑑𝑠 (10)

and

𝑡𝜋(𝜃) =

∫︁ 𝜃

0

E𝜋[𝑉𝜃(𝑥̃, 𝑠)|𝜃]− E𝜋[𝑉𝜃(𝑥̃, 𝑠)|𝑠]𝑑𝑠− 𝑆𝜋(0) (11)

where 𝑆𝜋(0) ≥ 0 is an arbitrary constant. Every implementable distribution 𝜋 can be sup-
ported by a non-negative payment rule 𝑡𝜋(𝜃) ≥ 0 and generates total revenue:∫︁

𝑋×Θ

𝑉 (𝑥, 𝜃)− ℎ𝐹 (𝜃)𝑉𝜃(𝑥, 𝜃)𝑑𝜋(𝑥, 𝜃)− 𝑆𝜋(0) (12)

where ℎ𝐹 (𝜃) := (1− 𝐹 (𝜃))/𝑓(𝜃) is the inverse hazard-rate of 𝐹 .
25In Section 1.6, we show that this notion of cyclicality is the same as the one in Rochet (1987) when we

restrict to deterministic communication mechanisms.
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The proof of the first part of this proposition closely follows the one of Theorem 1 in
Rochet (1987). In particular, the sufficiency of SCM comes from constructing the indirect
payoff function 𝑆𝜋(𝜃) of the sender by maximizing over all the possible finite cycles of reports.
Then, by construction 𝑡𝜋(𝜃) = E𝜋[𝑉𝜃(𝑥̃, 𝜃)|𝜃]− 𝑆𝜋(𝜃) is a supporting payment for 𝜋. By the
Envelope theorem (e.g., Milgrom and Segal (2002)), every implementable distribution of
outcomes induces the indirect utility in (10) and is supported by the payment function in
(11) once we sum back the state-independent payoff. Because the constant 𝑆𝜋(0) can be set
equal to 0, the SCM condition implies that the integral in (11) is non-negative, hence the
supporting payments can be taken non-negative. Finally, the total-revenue formula in (12)
can be derived by taking the expectation of the supporting payment rule 𝑡𝜋(𝜃) and applying
the law of iterated expectation together with integration by parts.

In analogy to the pure screening problem, we define the virtual surplus of the mediator
as:

𝐽(𝑥, 𝜃) := 𝑉 (𝑥, 𝜃)− ℎ𝐹 (𝜃)𝑉𝜃(𝑥, 𝜃) (13)

The usual decomposition applies: the revenue of the mediator is equal to the total surplus
of the sender minus the information rents that need to be conceded to the sender because of
asymmetric information. This shows that ignoring the global monotonicity constraints, the
mediator problem is equivalent to a fictitious Bayesian persuasion problem with a distorted
payoff function given by 𝐽(𝑥, 𝜃).

In the sender’s preferred case, the payment necessary to sustain incentive compatibility
can be transferred to the lowest type in the form of a lump sum added to 𝑆𝜋(0). Equation
10 implies that this transfer increases the payoff of all the sender’s types.

Corollary 5. The set of implementable outcome distributions in the sender’s preferred case
and the monopoly case coincide. The indirect payoffs and the supporting payments coincide
up to a constant.

This implies that also in the sender’s preferred case the mediator problem is equivalent to
a Bayesian persuasion problem with the addition of the SCM constraint but with the original
sender’s payoff 𝑉 (𝑥, 𝜃). The difference between 𝐽 and 𝑉 is what drives our comparative static
results in Section 1.5.

The integral formula in (10) is used in mechanism design to derive the Revenue Equiv-
alence Theorem: if two mechanisms generate the same state-dependent allocation, then the
state-dependent revenues they generate are equal up to a constant. Here, the same logic can
be applied. Furthermore, given the Consistency and Obedience constraints, the equivalence
result can be formulated in terms of implementable distributions over beliefs.
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Corollary 6. If two implementable communication mechanisms (𝜋, 𝑡) and (𝜋̂, 𝑡) induce the
same distribution of beliefs 𝜏 ∈ ∆𝐹 (∆(Θ)), then there exists a constant 𝑐 ∈ R such that
𝑡(𝜃) = 𝑡(𝜃) + 𝑐, for 𝐹 -almost all 𝜃.

In other words, the distribution of the receiver’s beliefs is a sufficient statistic for both
the revenue and the information rents at every realization of the state in equilibrium.

Finally, the SCM condition reduces to a simpler monotonicity condition when 𝑉 (𝑥, 𝜃) is
linear in the state, that is, 𝑉 (𝑥, 𝜃) = 𝜃𝐴(𝑥) +𝐵(𝑥).

Corollary 7. Assume that 𝑉 (𝑥, 𝜃) is linear in the 𝜃. An outcome distribution 𝜋 ∈ ∆(𝑋×Θ)

is implementable if and only if it satisfies C, O, and for all 𝜃, 𝜃′,

𝜃′ ≥ 𝜃 =⇒ 𝐴𝜋(𝜃
′) ≥ 𝐴𝜋(𝜃) (M)

where 𝐴𝜋(𝜃) := E𝜋[𝐴(𝑥̃)|𝜃]. The indirect payoff of the sender and the supporting payment
functions are defined as in equations 10 and 11.

This result can be more directly obtained by first reducing the Honesty condition to that
of a one-dimensional screening problem. In fact, for every candidate outcome distribution 𝜋

we can define the auxiliary variables 𝐴𝜋(𝜃) = E𝜋[𝐴(𝑥̃)|𝜃] and 𝑡𝜋(𝜃) = 𝑡𝜋(𝜃)−E𝜋[𝐵(𝑥̃)|𝜃] and
rewrite the Honesty constraint as

𝜃𝐴𝜋(𝜃)− 𝑡𝜋(𝜃) ≥ 𝜃𝐴𝜋(𝜃)− 𝑡𝜋(𝜃
′) ∀𝜃, 𝜃′ ∈ Θ (14)

It follows now that the assignment 𝐴𝜋 satisfies (14) for some auxiliary payment function 𝑡𝜋 if
and only if it is non-decreasing. We refer to this property as Monotonicity. In this case, the
mediator’s virtual surplus simplifies to 𝐽(𝑥, 𝜃) := 𝑦𝐹 (𝜃)𝐴(𝑥)+𝐵(𝑥) where 𝑦𝐹 (𝜃) := 𝜃−ℎ𝐹 (𝜃)

is the sender’s virtual type.

1.4.1 Positive dependence and distributions of expectations

In this section, we derive an easier sufficient condition for implementability and use it to
characterize the feasible distributions of expectations. First, this allows us to more easily
compare the outcome-based approach used in this section to the belief-based approach used
in the binary-state case. Second, in some relevant cases, the sender and mediator’s expected
payoffs are both pinned down by 𝐻𝜋, hence in these cases we can solve both problems by
finding the optimal marginal distribution over 𝑋.

Stochastic cyclical monotonicity captures the idea of positive (stochastic) dependence
between the sender’s report and the receiver’s ex-post expectation. We now introduce a
classic positive-dependence criterion, namely Positive Regression Dependence, and show that
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it implies SCM.26 Given any two 𝐻, 𝐻̂ ∈ ∆(𝑋), we say that 𝐻 dominates 𝐻̂ in the first-order
stochastic dominance sense, denoted 𝐻 ≿𝐹𝑂𝑆𝐷 𝐻̂ if 𝐻(𝑥) ≤ 𝐻̂(𝑥) for all 𝑥 ∈ 𝑋.

Definition 3. An outcome distribution 𝜋 ∈ ∆(𝑋×Θ) satisfies positive regression dependence
if for all 𝜃, 𝜃′ ∈ Θ,

𝜃′ ≥ 𝜃 =⇒ 𝜋𝜃′ ≿𝐹𝑂𝑆𝐷 𝜋𝜃. (PRD)

Under implementable outcomes that satisfy PRD, the conditional expectation of (any
non-decreasing function of) the receiver’s expectation is increasing with respect to the real-
ized state.27 We next show that outcomes that satisfy C, O, and PRD are implementable and
induce a positive correlation between the mediator’s revenue and the receiver’s conditional
expectation.

Proposition 3. For every 𝜋 ∈ ∆(𝑋 × Θ), if 𝜋 it satisfies C, O, and PRD, then it is
implementable and such that

Cov𝜋(𝐴(𝑥̃), 𝑡𝜋(𝜃)) ≥ 0. (15)

for every non-decreasing function 𝐴(𝑥).

The first part of the result follows by rewriting SCM as an integral monotonicity condition
(see for example Pavan, Segal, and Toikka (2014)) that is implied by PRD. The second part
follows from the payment formula in (11): under PRD, 𝑡(𝜃) is non-decreasing and therefore
positively correlated with any non-decreasing function of 𝑥. For instance, in the rating
agency example (Example 1), the no-attack rate 𝐺(𝑥) must be positively correlated with the
sender’s payment to the mediator in any implementable outcome.

PRD is substantially easier to check than SCM, hence Proposition 3 is useful to conclude
whether a candidate outcome is implementable. For example, monotone partitional outcomes
are implementable as we show next.

Definition 4. An outcome distribution 𝜋 ∈ ∆(𝑋 × Θ) is partitional if there exists a mea-
surable function 𝜑 : Θ → 𝑋 such that E𝐹 [𝜃|𝜑(𝜃)] = 𝜑(𝜃) for all 𝜃 ∈ Θ, and

𝜋(𝑋̃ × Θ̃) =

∫︁
Θ̃

I[𝜑(𝜃) ∈ 𝑋̃]𝑑𝐹 (𝜃) (16)

for all measurable 𝑋̃ ⊆ 𝑋 and Θ̃ ⊆ Θ. In addition, 𝜋 is monotone partitional if 𝜑(𝜃) is
non-decreasing.

26See for example Lai and Balakrishnan (2009). This criterion has also been recently considered in the
information- and mechanism-design literature (e.g., Bergemann, Heumann, and Morris (2022)).

27PRD holds, for example, when the 𝜃 and 𝑥 are affiliated in the sense of Milgrom and Weber (1982).
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Partitional outcomes are induced by partitions of the state space that assign to each of
their cells the corresponding conditional expectation of the state. In addition, if this partition
is monotone then the regions of the state that are pooled together must be intervals.

Corollary 8. Monotone partitional outcome distributions satisfy C, O, and PRD, hence are
implementable.

Most real-life examples of communication mechanisms such as full-disclosure (𝜑(𝜃) = 𝜃),
no-disclosure (𝜑(𝜃) = 𝑥𝐹 ), and upper-censorship (resp. lower-) where 𝜑 is equal to the
identity on an interval [0, 𝜃] (resp. [𝜃, 1]) and constant otherwise, are implementable by the
mediator because they are all monotone partitions. In general, monotone partitional out-
comes are those induced by mechanisms that are deterministic conditional on every sender’s
report.28 Furthermore, monotone partitions are often optimal mechanisms as we show in
Section 1.5 and enjoy transparency and credibility properties as we show in Section 1.6.

Next, we use Proposition 3 to study the distributions of the receiver’s expectations that
are consistent with implementable communication mechanisms. We say that 𝐻 ∈ ∆(𝑋) is
implementable if there exists an implementable outcome distribution 𝜋 such that 𝐻 = 𝐻𝜋.
Let 𝐶𝑋(𝐹 ) ⊆ ∆(𝑋) denote the subset of distributions over 𝑋 that are dominated by 𝐹 in
the convex order. Strassen (1965) shows that a distribution of conditional expectations 𝐻 is
induced by an outcome distribution 𝜋 that satisfies C and O if and only if it is in 𝐶𝑋(𝐹 ).

The question then becomes what additional restrictions are imposed by Honesty. We
next show that the answer is no restriction at all. Moreover, we show that each distribution
in 𝐶𝑋(𝐹 ) can be implemented by simple information outcomes that capture the idea of
transparency to the receiver.

Definition 5. A communication mechanism 𝜎 is a bi-pooling information policy if 𝑀𝑆 = Θ,
it induces truthful reporting, and is such that | supp(𝜎(𝜃))| ≤ 2 for all 𝜃 ∈ Θ. A communi-
cation mechanism 𝜎 is a random bi-pooling mechanism if there exists a collection {𝜎𝑖}𝑖∈𝐼 of
bi-pooling mechanisms and a probability measure 𝜆 ∈ ∆(𝐼) such that, conditional on every
report 𝜃, a mechanism 𝜎𝑖 is drawn from 𝜆, a message 𝑚𝑅 is drawn form 𝜎𝑖, and the receiver
observes both 𝑖 and 𝑚𝑅.

Bi-pooling (information) policies were introduced by Arieli, Babichenko, Smorodinsky,
and Yamashita (2023), who show how any extreme point of 𝐶𝑋(𝐹 ) is induced by one such

28Monotone partitions are also the focus of Onuchic and Ray (2021), Kolotilin and Zapechelnyuk (2019),
Rayo (2013), and Kolotilin and Li (2021). In the former two papers, the set of feasible information struc-
tures is restricted to monotone partitions from the start. In the latter two papers, the initial restriction is
over deterministic communication mechanisms (i.e., partitions) and then monotonicity is derived from an
incentive-compatibility constraint involving transfers.
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policy. Here, we consider the possibility that the mediator randomizes over bi-pooling policies
without revealing it to the sender before the reporting stage. The receiver is then informed
of both the actual policy used and the resulting message.

Proposition 4. The set of implementable distributions of expectations is 𝐶𝑋(𝐹 ). Every
𝐻 ∈ 𝐶𝑋(𝐹 ) can be implemented by a random bi-pooling policy.

The mediator can implement all the distributions of expectations that are consistent with
the prior 𝐹 (i.e., those implementable under hard information). The proof of this proposition
combines a result in Arieli, Babichenko, Smorodinsky, and Yamashita (2023) that implies
that extreme points of 𝐶(𝑋) are implementable and the Choquet theorem. In particular,
every 𝐻 ∈ 𝐶𝑋(𝐹 ) can be written as a convex linear combination of extreme points {𝐻𝑖}𝑖∈𝐼
for some probability measure 𝜆. This probability measure represents the randomization
device used to construct the candidate random bi-pooling policy. Next, define the outcome
𝜋𝜆 =

∫︀
𝐼
𝜋𝑖𝑑𝜆(𝑖) where every 𝜋𝑖 corresponds to the implementable outcome inducing 𝐻𝑖.

Because each 𝜋𝑖 satisfies C,O, and PRD, and all these properties are preserved under convex
linear combinations, the constructed outcome distribution 𝜋𝜆 also satisfies C,O, and PRD,
hence it is implementable. Moreover, by revealing 𝑖 to the receiver, the ex-ante distribution
of conditional expectations induced by this mechanism is 𝐻 =

∫︀
𝐼
𝐻𝑖𝑑𝜆(𝑖).

The expected payoffs of the sender and the mediator are entirely pinned down by the
distributions of the receiver’s expectations in the following case.

Corollary 9. Assume that 𝐹 is uniform over [𝜃, 𝜃] and that 𝑉 (𝑥, 𝜃) is linear in 𝜃. Fix
two implementable outcome distributions 𝜋 and 𝜋̂ that induce the same distribution over
the receiver’s expectations 𝐻 and impose 𝑆𝜋(0) = 𝑆𝜋̂(0).29 Then the expected payoffs of the
sender and the mediator are the same across the two mechanisms and respectively equal to:

𝑆(𝐻) := 𝑆𝜋(0) +

∫︁
𝑋

(𝜃 − 𝑥)𝐴(𝑥)𝑑𝐻(𝑥), (17)

𝑀(𝐻) :=

∫︁
𝑋

(2𝑥− 𝜃)𝐴(𝑥) +𝐵(𝑥)𝑑𝐻(𝑥)− 𝑆𝜋(0). (18)

This corollary can be interpreted as a reduced-form revenue equivalence under mediation.
It relies on the linearity of the sender’s payoffs in the state as well as on the fact that the
inverse hazard rate of uniform distributions is also linear. O pins down the conditional
expectation of the virtual type of the sender: E𝜋[𝜃−ℎ𝐹 (𝜃)|𝑥] = 2𝑥−𝜃, yielding the expression
for revenue conditional on the receiver’s expectation. Under the assumptions of Remark 1,

29In the monopolistic case, this second condition is immaterial because the payoff of the lowest type is
optimally set equal to 0 as we shall see.
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we can apply Corollary 9 to Examples 1 and 2 and focus on distributions over expectations
to solve for the optimal outcomes.

1.5 Optimal Outcomes
In this section, we study the properties of the optimal outcome distributions. In particular,
we focus on i) the linear-uniform case where the sender’s payoff is linear in the state and
the state is uniformly distributed and ii) the quadratic case where the sender’s payoff is
quadratic but no restriction is imposed on the state’s distribution. These assumptions allow
us to characterize optimal outcome distributions and compare the monopolistic case with
the sender’s preferred case.

We start by rewriting the optimization problems both for the monopolistic and the
sender’s preferred case in light of the results of the previous section. In the monopolis-
tic case, it can never be optimal to leave a strictly positive payoff for the lowest type. The
reason is that 𝑆𝜋(0) does not affect C, O, and SCM, but it has a negative impact on the
mediator’s revenue. Therefore, we have 𝑆𝜋(0) = 0. Differently, in the sender’s preferred case,
the optimal outcome maximizes 𝑆𝜋(0) while still satisfying the mediator’s participation con-
straint. This constraint in particular implies that

𝑆𝜋(0) ≤
∫︁
𝑋×Θ

𝑉 (𝑥, 𝜃)− ℎ𝐹 (𝜃)𝑉 (𝑥, 𝜃)𝑑𝜋(𝑥, 𝜃). (19)

By Proposition 4 every implementable outcome can be implemented with a non-negative
payment rule, hence the inequality in (19) must bind in the optimum yielding:∫︁

Θ

𝑆𝜋(𝜃)𝑑𝐹 (𝜃) =

∫︁
𝑋×Θ

𝑉 (𝑥, 𝜃)𝑑𝜋(𝑥, 𝜃)

We can summarize these observations in a formal result.

Lemma 2. The monopolistic mediator solves

sup
𝜋∈Δ(𝑋×Θ)

∫︁
𝑋×Θ

𝐽(𝑥, 𝜃)𝑑𝜋(𝑥, 𝜃) (20)

subject to 𝐶,𝑂, and 𝑆𝐶𝑀 (21)

The sender’s preferred outcome distribution solves the same optimization problem with 𝑉 (𝑥, 𝜃)

in place of 𝐽(𝑥, 𝜃).

It is useful at this point to compare the previous two problems with the case where the
mediator does not need to elicit information from the sender, that is, the case where they
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can commit to any information structure (i.e., hard information). Formally, the problem
remains the same as in 20, except for the SCM constraint which is removed. Therefore, the
mediator solves a standard information-design problem with payoff function 𝑉 (𝑥, 𝜃).

Under hard information, if the mediator acts as a monopolist, then they extract all the
surplus leaving the sender to their outside option equal to 0. This is reminiscent of the
parasitic role of the certifier in Lizzeri (1999), with the difference that here the optimal
information structure can convey some additional information to the market on top of a
pass-or-fail policy.30 In the sender’s preferred case, the sender retains all the surplus and
the expected revenue of the monopolist is 0. Nevertheless, in either case, the set of optimal
outcomes coincides with the set of 𝜋 that maximize

∫︀
𝑋×Θ

𝑉 (𝑥, 𝜃)𝑑𝜋(𝑥, 𝜃) subject to C and
O.

The main difference between our soft-information case and the hard-information case just
described is the SCM constraint. Moreover, in the monopolistic case, the objective function
corresponds to the virtual surplus 𝐽(𝑥, 𝜃). These two differences both capture the impact of
the Honesty constraint in the information-design problem. The information rents in 𝐽(𝑥, 𝜃)

are necessary to deal with local deviations, whereas the cyclical monotonicity constraint
deals with global ones. The latter unambiguously leads toward optimally disclosing less
information: more pooling is now necessary to satisfy the Honesty constraint as in standard
adverse selection. However, the effect of information rents is in general ambiguous and can
lead the mediator to optimally disclose more information as we have already seen for the
binary-state case.

Before restricting to the two aforementioned particular cases, we derive a result on the
optimality of full disclosure that follows from Lemma 2.

Proposition 5. If for all 𝑥1, 𝑥2 ∈ 𝑋 and 𝜃1, 𝜃2 ∈ Θ such that 𝜃1 < 𝑥1 < 𝑥2 < 𝜃2 it holds

𝐽𝑥(𝑥2, 𝜃2) ≥ (>)𝐽𝑥(𝑥1, 𝜃1), (22)

then full disclosure is (uniquely) optimal for the monopolistic mediator. Conversely, if there
exist 𝜃1, 𝜃2 ∈ Θ with 𝜃1 < 𝜃2 and such that

𝐽𝑥(𝑥2, 𝜃2) < 𝐽𝑥(𝑥1, 𝜃1) (23)

for all 𝑥1, 𝑥2 ∈ 𝑋 with 𝜃1 < 𝑥1 < 𝑥2 < 𝜃2, then full disclosure is suboptimal for the monopo-
listic mediator.

30The reason is that differently from Lizzeri (1999), the payoff of the sender depends on the state and
potentially non-linearly on the receiver’s expectation. Similarly, punishment out-of-path beliefs play a key
role in supporting Lizzeri’s parasitic certifier equilibrium.
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First, observe that the full disclosure outcome is implementable. Thus, when it is optimal
under hard information, it is also optimal for the original problem in (20). Proposition 5
combines Theorems 1 and 2 in Catonini and Stepanov (2022) and Theorem 5 in Kolotilin,
Corrao, and Wolitzky (2022) and yields sufficient conditions for optimality of full disclosure
in the relaxed problem.31 These conditions on the virtual surplus function 𝐽 imply that
whenever the mediator chooses between pooling or separating any two states, they prefer
the latter.

A sufficient condition for the optimality of full disclosure in the full problem under mo-
nopolistic mediation is that 𝐽(𝑥, 𝜃) is supermodular and convex in 𝑥, and full disclosure is
uniquely optimal if either of these properties holds strictly. In the rating-agency example
(Example 1), this is the case if 𝐹 is regular, that is ℎ𝐹 (𝜃) is strictly decreasing and 𝐺 is uni-
form.32 Similarly, in the advertising-agency example (Example 2), full disclosure is uniquely
optimal when 𝐹 is regular, 𝐺 is uniform, and 𝑏(𝑟) is non-decreasing.

Finally, we remark that both the statements of Proposition 5 hold in the sender’s preferred
case when we replace 𝐽(𝑥, 𝜃) with 𝑉 (𝑥, 𝜃).

1.5.1 Linear-Uniform case

In this section, we assume that the state is uniformly distributed over [𝜃, 𝜃] ⊆ [0, 1] and that
the sender’s payoff is linear in the state. Recall that this implies that 𝑉 (𝑥, 𝜃) = 𝜃𝐴(𝑥)+𝐵(𝑥)

for strictly increasing functions 𝐴(𝑥) and 𝐵(𝑥).
As we next show, these assumptions combined imply that the global truthtelling con-

straint never binds in either of the two problems. More concretely, for every implementable
outcome distribution 𝜋, Corollary 9 yields that both the mediator’s expected revenue and
the sender’s expected payoff are pinned down by the distribution of conditional expectations
𝐻𝜋. Moreover, by Proposition 4 all distributions 𝐻 ∈ 𝐶𝑋(𝐹 ) are implementable. Therefore,
it is possible to ignore the Honesty constraint.

We first state some useful definitions.

Definition 6. A continuous function 𝑊 : 𝑋 → R is bell-shaped if there exist 𝑥 < 𝑥̃ in 𝑋

such that 𝑊 is strictly convex over [0, 𝑥] and [𝑥̃, 1], and concave over [𝑥, 𝑥̃]. If in addition
either 𝑥 = 0 or 𝑥̃ = 1, then 𝑊 is S-shaped.

We start with the sender’s preferred case. With an abuse of notation, define 𝑉 (𝑥) :=

𝑉 (𝑥, 𝑥), similarly to the binary-state case.
31Theorem 5 in Kolotilin, Corrao, and Wolitzky (2022) provides an iff condition for the optimality of

full disclosure in the corresponding Bayesian persuasion problem. That necessary condition cannot be
immediately applied in the present setting because the suboptimality of full disclosure in the relaxed program
does not imply its suboptimality in the original program.

32The standard example of regular distribution is uniform.
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Proposition 6. In the sender’s preferred case the optimal distribution of the receiver’s ex-
pectations solves:

max
𝐻∈𝐶𝑋(𝐹 )

∫︁
𝑋

𝑉 (𝑥)𝑑𝐻(𝑥) (24)

There exists a solution that is induced by an implementable bi-pooling policy. In addition,

1. If 𝑉 (𝑥) is convex (resp. concave), then full disclosure (resp. no-disclosure) is optimal.

2. If 𝑉 (𝑥) is S-shaped, then censorship disclosure is optimal.

Due to the linearity of the sender’s payoff in the state, for every implementable outcome
𝜋, we have E𝜋[𝑉 (𝑥, 𝜃)|𝑥] = 𝑉 (𝑥) for almost all 𝑥. Therefore, the conditional distribution
drops from the objective which now depends on the marginal distribution of expectations
𝐻𝜋 only. We can then ignore the Honesty constraint and focus on the relaxed problem in
(24).33 Because the objective function in (24) is linear in 𝐻, there exists a solution that is
an extreme point of 𝐶𝑋(𝐹 ) and these are implementable by bi-pooling policies. Finally, the
results in Kolotilin, Mylovanov, and Zapechelnyuk (2022) can be readily invoked to derive
the simple forms of the solutions in points 1 and 2 provided that the shape of the objective
𝑉 (𝑥) is S-shaped.

Remark 3. None of the arguments sketched above depends on the assumption of a uniformly
distributed state. Indeed, Proposition 6 holds true as written if we relax this assumption
and only assume that the sender’s payoff is linear in the state.

Next, we move to the monopolistic mediator case. This time we rely on the uniform-
distribution assumption which implies that the inverse hazard rate of the distribution of
states is linear and equal to ℎ𝐹 (𝜃) = 𝜃 − 𝜃, yielding that 𝑦𝐹 (𝜃) = 2𝜃 − 𝜃. For every
implementable outcome 𝜋, we recover the same decomposition of the mediator’s virtual
surplus of the binary-state case

𝐽(𝑥) := E𝜋[𝐽(𝑥, 𝜃)|𝑥] = 𝑥𝐴(𝑥) +𝐵(𝑥)⏟  ⏞  
Total surplus

− (1− 𝑥)𝐴 (𝑥)⏟  ⏞  ,
Information rents

where we used the same notation 𝐽(𝑥) of the binary-state case to stress their equivalence.
We can then derive a version of Proposition 6 for the monopolistic mediator.

33This is known in the Bayesian-persuasion literature as the linear case: the receiver’s best response only
depends on the conditional expectation of the state and the sender’s payoff is linear in the state. See Kolotilin,
Corrao, and Wolitzky (2022) for a complete taxonomy on single-receiver Bayesian persuasion models.
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Proposition 7. The monopolistic mediator’s preferred distribution of expectations solves

max
𝐻∈𝐶𝑋(𝐹 )

∫︁
𝑋

𝐽(𝑥)𝑑𝐻(𝑥)

There exists a solution that is induced by an implementable bi-pooling policy. In addition,

1. If 𝐽(𝑥) is convex (resp. concave), then full disclosure (resp. no-disclosure) is optimal.

2. If 𝐽(𝑥) is S-shaped, then censorship disclosure optimal.

The derivation of this result is entirely analogous to the one of Proposition 6
Next, we use the previous two results to compare the informativeness of the optimal

outcomes across the monopolistic and the sender’s preferred case. In particular, we follow
Curello and Sinander (2022) and apply the same criterion defined in Section 1.3 for distri-
butions over posterior beliefs 𝜏 to distributions over conditional expectations 𝐻.34 Because
the receiver’s expected payoff under any 𝐻 is equal to 𝑅(𝐻) :=

∫︀
𝑋
𝑅(𝑥)𝑑𝐻𝜋(𝑥) and 𝑅(𝑥) is

convex, if 𝐻 is more informative than 𝐻̂, then the receiver is weakly better off under 𝐻.
Using the same notation of the binary-state case, define the information-rents function

as 𝐼(𝑥) := (1− 𝑥)𝐴(𝑥).

Proposition 8. Assume that 𝑉 (𝑥) is bell-shaped. If 𝐼(𝑥) is concave, then more information
is disclosed in the monopolistic mediator case than in the sender’s preferred case.

The intuition for this result is analogous to the one for Corollary 2: When the information-
rents function is concave, the monopolistic mediator is relatively less “risk averse” than the
sender and therefore favors more dispersion of the receiver’s expectations.

In the rating agency example (Example 1) under uniformly distributed 𝜃 over [0, 1],

𝑉 (𝑥) = 𝑥𝐺(𝑥) and 𝐽(𝑥) = (1 + 𝛿)𝑥𝐺(𝑥)− 𝛿𝐺(𝑥). (25)

Similarly to the binary-state case, the monopolistic rating agency outweighs the importance
of the correlation between the market value 𝑥 and the no-attack rate 𝐺(𝑥) and underweighs
the importance of the expected no-attack rate.

We next use Proposition 8 to compare the optimal outcomes in this setting.

Corollary 10. Consider the setting of Example 1 and assume that 𝜃 is uniform on [0, 1]. If
𝐺(𝑟) is convex, then full disclosure is optimal in the sender’s preferred case and it is optimal

34Comparing the informativeness of information structures with respect to the distributions of conditional
expectations they induce is standard in the information design literature. See for example Ganuza and
Penalva (2010) and Kolotilin, Mylovanov, and Zapechelnyuk (2022).
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in the monopolistic mediator case if and only if

2(1 + 𝛿) + ((1 + 𝛿)𝑥− 𝛿)
𝑔′(𝑥)

𝑔(𝑥)
≥ 0 ∀𝑥 ∈ 𝑋. (26)

If 𝐺(𝑟) is concave and has a log-concave density and 𝑉 (𝑥) = 𝑥𝐺(𝑥) is bell-shaped, then more
information is disclosed in the monopolistic mediator case than in the sender’s preferred
case.

When 𝐺(𝑟) is convex, high shocks are relatively more likely among traders so it is rel-
atively more common to attack the bank. To contrast this effect, the bank would like to
commit to the policy that maximizes the dispersion of conditional expectations in the mar-
ket, that is full disclosure. This effect is attenuated in the case of a monopolistic rating
agency due to the information rents and prevails only when these rents are low enough,
that is when the discount factor 𝛿 is high enough (see Equation 26). Instead, when 𝐺(𝑟) is
concave there are relatively less high shocks among traders so it is relatively less common
to attack the bank. The bank then would favor the status quo more than the rating agency
which in turn cares more about the correlation between 𝑥 and the no-attack rate 𝐺(𝑥). The
additional log-concavity property on 𝐺(𝑟) is needed to ensure that 𝑉 (𝑥) is S-shaped.

Proposition 8 can be applied beyond convex CDFs 𝐺. In particular, because the expres-
sion of 𝐼 ′′(𝑥) is the same as the one in equation 9 derived in the binary-state case, it follows
that when 𝐺 is log-concave enough, the information-rent function is concave. With this,
whenever 𝑉 (𝑥) is bell-shaped we can conclude that the monopolistic rating agency discloses
more information than the sender’s preferred case.

In addition, following the same steps as in the binary-state case, we consider the payoff
structure in Example 2 and assume that 𝐺(𝑟) is uniform and that 𝑏(𝑟) is strictly convex or
strictly concave. This implies that 𝑉 (𝑥, 𝜃) = 𝛼𝑥𝜃+𝐵(𝑥) where 𝐵(𝑥) is the primitive function
of 𝑏(𝑟). In turn, this implies that 𝑉 (𝑥, 𝑥) = 𝛼𝑥2+𝐵(𝑥) and 𝐽(𝑥) = 2𝛼𝑥2−𝛼𝑥+𝐵(𝑥). With
this, we can extend the comparative statics of Corollary 4 to the uniform-state case.

Proposition 9. Assume that 𝑏(𝑟) is strictly convex (resp. concave). Both in the monop-
olistic mediator and the sender’s preferred case, there exist uniquely optimal distributions
of expectations 𝐻*

𝑀 and 𝐻*
𝐶 and these are upper (resp. lower) censorship with thresholds

𝜃*0,𝑀 ≥ 𝜃*0,𝐶 (resp. 𝜃*1,𝑀 ≥ 𝜃*1,𝐶). Moreover, the inequality is strict whenever at least one of
the two thresholds is in (0, 1).

As in the binary-state case, this result follows from the fact that the coefficient for the
quadratic term in 𝐽(𝑥) is strictly higher than the one of 𝑉 (𝑥).
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1.5.2 Quadratic sender’s payoffs

In this section, we consider general state distributions 𝐹 beyond the uniform case. In par-
ticular, we allow for the so-called “irregular case” where the inverse hazard rate ℎ𝐹 (𝜃) of 𝐹
is not necessarily decreasing. However, we restrict the sender’s payoff to be quadratic. This
amounts to say that 𝑉 (𝑥, 𝜃) = 𝛼𝜃𝑥 + 𝛽𝑥 − 𝛾𝑥2/2 with 𝛼 > 0 and 𝛽 > 𝛾. Observe that
the sender’s payoff is linear in the state. Moreover, in Examples 1 and 2 the sender has
a quadratic payoff if shocks/outside options are uniformly distributed 𝑟 ∼ 𝑈 [0, 1] and the
seller’s benefit 𝑏(𝑟) is linear in 𝑟 (See Remark 1).

Because quadratic sender’s payoff implies linearity in the state, Proposition 6 can be
directly applied to solve the sender’s preferred case.

Remark 4. If 𝛼 > 𝛾/2, then full disclosure is the uniquely optimal outcome for the sender’s
preferred case. Conversely, if 𝛼 < 𝛾/2, then no disclosure is the uniquely optimal outcome
for the sender’s preferred case.

The monopolistic mediator problem is more challenging and we start with a lemma sim-
plifying it. Recall that, because the payoff of the sender is linear in the state, implementable
outcomes are characterized by C, O, and M (see Corollary 7).

Lemma 3. The monopolistic mediator’s problem is equivalent to

sup
𝜋∈Δ(𝑋×Θ)

∫︁
Θ

𝑦𝐹 (𝜃)E𝜋[𝑥̃|𝜃]𝑑𝐹 (𝜃) (27)

subject to 𝐶,𝑂, and 𝑀, (28)

where 𝑦𝐹 (𝜃) := 𝜃(𝛼− 𝛾/2)− 𝛼ℎ𝐹 (𝜃).

This result follows because, for every implementable 𝜋, O implies that

E𝜋[𝜃𝑥] = E𝜋[E𝜋[𝜃|𝑥]𝑥] = E𝜋[𝑥
2],

yielding that the expectation of 𝐽(𝑥, 𝜃) can be simplified to (27) by the law of iterated
expectations.

The mediator’s expected revenue is uniquely pinned down by the sender’s second-order
expectation 𝜉𝜋(𝜃) := E𝜋[𝑥̃|𝜃]. Indeed, (O) implies that 𝜉𝜋(𝜃) is the sender’s expectation of the
receiver’s first-order expectation 𝑥 given the sender’s private information 𝜃. Because 𝜉𝜋 must
be nondecreasing, it follows that the distribution of second-order expectation is 𝐿𝜋 = 𝐹 ∘𝜉−1

𝜋

and its quantile function is 𝑞𝐿𝜋(𝑡) = 𝜉𝜋(𝑞𝐹 (𝑡)), where we let 𝑞𝐹 (𝑡) denote the prior quantile
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function.35 Notably, the change of variable 𝜃 = 𝑞𝐹 (𝑡) allows us to rewrite the mediator’s
expected revenue in (27) in terms of this quantile function∫︁ 1

0

(𝑞𝐹 (𝑡)(𝛼− 𝛾/2)− 𝛼𝑞′𝐹 (𝑡)(1− 𝑡))𝑞𝐿𝜋(𝑡)𝑑𝑡 (29)

Given the prior quantile function 𝑞𝐹 , let 𝐶𝑉 (𝑞𝐹 ) denote the set of quantile functions 𝑞𝐿

over [0, 1] that are mean-preserving spreads of 𝑞𝐹 , that is, those satisfying∫︁ 𝑡

0

𝑞𝐿(𝑧)𝑑𝑧 ≤
∫︁ 𝑡

0

𝑞𝐹 (𝑧)𝑑𝑧 (30)

for all 𝑡 ∈ [0, 1] with equality at 𝑡 = 1.

Lemma 4. Let 𝐿 be a CDF on [0, 1]. If there exists an implementable outcome 𝜋 such that
𝐿 = 𝐿𝜋 then 𝑞𝐿 ∈ 𝐶𝑉 (𝑞𝐹 ). Conversely, if 𝑞𝐿 is an extreme point of 𝐶𝑉 (𝑞𝐹 ), then there
exists an implementable outcome 𝜋 such that 𝐿 = 𝐿𝜋.

In other words, the implementable distributions over second-order expectations 𝐿 are
mean-preserving contractions of the prior 𝐹 . Furthermore, all distributions 𝐿 whose quantile
function is an extreme point of the set of mean preserving spreads of 𝑞𝐹 are implementable.
This, together with the fact that the objective function in (29) is linear in 𝑞𝐿(𝑡), allows
us to characterize optimal outcomes. Define 𝑤𝐹 (𝑡) := 𝑞𝐹 (𝑡)(𝛼 − 𝛾/2) − 𝛼𝑞′𝐹 (𝑡)(1 − 𝑡) and
𝑊 (𝑡) :=

∫︀ 𝑡

0
𝑤𝐹 (𝑧)𝑑𝑧.

Proposition 10. The mediator’s problem is equivalent to:

max
𝐿∈𝐶𝑋(𝐹 )

∫︁ 1

0

𝑤𝐹 (𝑡)𝑞𝐿(𝑡)𝑑𝑡 (31)

There exists a countable monotone partitional outcome. Moreover, a monotone partition
with disjoint pooling intervals

{︀
[𝜃𝑛, 𝜃𝑛)

}︀
𝑛∈N is optimal if and only if 𝑊𝐹 (𝐹 (𝜃)) is affine on

[𝜃𝑛, 𝜃𝑛) for every 𝑛 and such that 𝑊𝐹 (𝐹 (𝜃)) = cav(𝑊 )(𝐹 (𝜃)) otherwise.

Because Problem 31 is linear in the quantile function 𝑞𝐿, there exists a solution that is an
extreme point of the 𝐶𝑉 (𝑞𝐹 ). By Lemma 4, this distribution is implementable. This allows
us to use the characterization of extreme points in Kleiner, Moldovanu, and Strack (2021) to
find the solution to the monopolistic mediation problem. In particular, the characterization
in Kleiner, Moldovanu, and Strack (2021) implies that the extreme points of 𝐶𝑉 (𝑞𝐹 ) are
implemented by countable monotone partitions.

35The quantile function of any CDF 𝐿 on [0, 1] is defined as 𝑞𝐿(𝑡) = inf {𝑥 ∈ [0, 1] : 𝐿(𝑥) ≥ 𝑡} for all
𝑡 ∈ [0, 1].
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Finally, when the derivative of 𝑤𝐹 (𝑡) changes sign only once, the optimal monotone
partitions are censorship policies.

Proposition 11. Under monopolistic mediation, we have:

1. If 𝑤𝐹 (𝑡) is strictly quasiconcave, then upper censorship is uniquely optimal.

2. If 𝑤𝐹 (𝑡) is strictly quasiconvex, then lower censorship is uniquely optimal.

The (interior) threshold quantile 𝑞* for cases 1 and 2 is respectively defined by the solution
of

𝑤𝐹 (𝑞
*)(1− 𝑞*) = 1−𝑊𝐹 (𝑞

*), (32)

and
𝑤𝐹 (𝑞

*)𝑞* = 𝑊𝐹 (𝑞
*). (33)

First, since 𝑤𝐹 (𝑡) = 𝑦𝐹 (𝑞𝐹 (𝑡)), it follows that 𝑤𝐹 (𝑡) is strictly quasiconcave (resp. qua-
siconvex) when 𝑦𝐹 (𝜃) is so. Second, the optimal threshold state 𝜃* is derived in both cases
from the equation 𝑞* = 𝐹 (𝜃*). Third, this result allows us to easily compare the optimal
outcomes under monopolistic mediation to the sender’s preferred ones.

If 𝛼 > 𝛾/2, then full disclosure is uniquely optimal for the sender’s preferred case and
it is optimal for the monopolistic mediator if 𝐹 is regular. Indeed, in this case, 𝑤𝐹 (𝑡) is
non-decreasing implying that the threshold quantile defined in (32) is equal to 1. When 𝐹

is not regular, then more information is revealed under the sender’s preferred case. In the
advertising-agency example (Example 2), 𝛼 > 𝛾/2 captures the idea that the benefit 𝑏(𝑟)

from having a customer with outside option 𝑟 is increasing in the value of this outside option.
This is the case for instance when network effects are relevant, that is, when other potential
customers infer that the good is of high quality when a buyer decides to buy it despite an
attractive outside option.

If 𝛼 < 𝛾/2, then no disclosure is uniquely optimal for the sender’s preferred case and it
is strictly suboptimal in the monopolistic mediator case when the threshold quantile 𝑞* is in
(0, 1). In the advertising-agency example (Example 2), 𝛼 < 𝛾/2 captures the idea that the
benefit 𝑏(𝑟) from having a customer with outside option 𝑟 is decreasing in the value of this
outside option. This is the case for instance when the future revenues of the seller depend
on the loyalty of current buyers: Higher outside options increase the likelihood that present
buyers will switch to a competitor

1.6 Transparency and Credibility
In this section, we consider a restricted class of communication mechanisms that are trans-
parent, in the sense that all the information reported by the sender is also revealed to the
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receiver.36 This is in line with the applications considered: rating agencies are mandated to
disclose any relevant information acquired from issuers or any other relevant party.37

Formally, assume that the mediator is restricted to communication mechanisms of the
following form: a reporting space 𝑀𝑆 for the sender and a payment rule 𝑡(𝑚𝑆) that depends
on the report submitted. Moreover, the receiver directly observes the report of the sender,
but not the transfer. We call these communication mechanisms transparent and still assume
that all the sender types participate in the mechanisms and that the receiver updates their
belief to 𝜃 = 0 if the sender does not participate in the mediator’s mechanism. With this,
the participation constraints are the same as the ones described in P and MP.

As argued by Bester and Strausz (2001) and Krishna and Morgan (2008), in this case, the
standard revelation principle for Bayesian games does not hold. However, it is still possible
to rely on a partial revelation principle where 𝑀𝑆 = Θ but without truthful revelation. In
this case, the induced distributions over outcomes 𝜋 ∈ ∆(𝑋 ×Θ) still need to satisfy C and
O.

Definition 7. An outcome distribution 𝜋 ∈ ∆(𝑋 × Θ) is transparently implementable if
there exists a transparent communication mechanism that induces 𝜋.

Transparency is related to the notion of credibility. Suppose that the mediator can
commit to any information structure without the need to elicit it from the sender, that is,
assume that the mediator has access to hard information. As already pointed out, in this
case, all the outcomes that satisfy C and O are implementable. Now consider an additional
restriction: The mediator cannot profit from manipulating her messages to the receiver
while keeping the message distribution unchanged. This is the idea of credible information
structures in (Lin and Liu, 2023).38

Definition 8. An outcome distribution 𝜋 ∈ ∆(𝑋×Θ) is credibly implementable if it satisfies
C, O, and

𝜋 ∈ argmax
𝜋̂∈Δ(𝐻𝜋 ,𝐹 )

∫︁
𝑋×Θ

𝑉 (𝑥, 𝜃)𝑑𝜋̂(𝑥, 𝜃) (CR)

where ∆(𝐻𝜋, 𝐹 ) ⊆ ∆(𝑋×Θ) is the set of joint distributions with marginals given by 𝐻𝜋 and
𝐹 .

36In the previous sections, we introduced random bi-pooling policies and observed how they are also
related to the idea of transparency to the receiver. Yet, conditional on every report there can be some
residual (binary) randomness.

37See Footnote 6.
38Here we apply their definition of credible information structure directly to consistent and obedient

outcome distributions with the interpretation that the signal for the receiver is a recommended conditional
expectation.
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In the present setting, the definition of credibly implementable outcomes replaces the
Honesty requirement with the credibility requirement in (CR). In this case, the mediator
does not have to elicit the sender’s private information but can commit to any information
structures as long as the observed distribution of recommendations is consistent with the
announced mechanism.39 As mentioned in Section 3.2, without the Honesty constraint, the
mediator acts “as-if“ they were maximizing the sender’s payoff, and therefore the credibility
constraint (CR) for the mediator involves the sender’s payoff function 𝑉 (𝑥, 𝜃).

Finally, recall that 𝐶𝑉 (𝑞𝐹 ) denotes the set of quantile functions on [0, 1] corresponding
to distributions in 𝐶𝑋(𝐹 ), where 𝑞𝐹 denotes the quantile function of 𝐹 .

Proposition 12. For every outcome distribution 𝜋 ∈ ∆(𝑋×Θ), the following are equivalent:

(i) 𝜋 is transparently implementable.

(ii) 𝜋 is credibly implementable.

(iii) 𝜋 is monotone partitional.

Moreover, a distribution of conditional expectations 𝐻 ∈ ∆(𝑋) is implementable by an out-
come distribution 𝜋 satisfying any of the previous conditions if and only if 𝑞𝐻 is an extreme
point of 𝐶𝑋(𝑞𝐹 ).

The equivalence between (i) and (iii) follows from the fact that deterministic imple-
mentable outcomes are monotone partitional. Moreover, monotone partitions completely
characterize the set of credibly implementable outcomes, thereby implying that those are
a strict subset of the implementable outcomes. This sharp characterization follows from
the strict supermodularity assumption of 𝑉 (𝑥, 𝜃) and the continuity of 𝐹 . These assump-
tions imply that, for every marginal distribution of expectations 𝐻 ∈ ∆(𝑋), the optimal
transportation problem in (CR) is uniquely solved by the deterministic coupling given by
𝜃 ↦→ 𝑇𝐻(𝜃) = 𝑞𝐻(𝐹 (𝜃)). Therefore, a necessary and sufficient condition for credibility is that
𝜋 is monotone partitional. This immediately implies that it is also implementable: higher
states are matched with higher conditional expectations. Finally, distributions 𝐻 ∈ 𝐶𝑋(𝐹 )

that are extreme in the dual space of quantiles, are credibly implementable, that is they are
induced by a monotone partition.40

In section 1.5, we derived several sufficient conditions such that optimal outcomes in
the unrestricted mediation problems are monotone partitional. With this, Proposition 12

39Following the long-run interpretation in Lin and Liu (2023), we implicitly assume that the receiver can
observe many draws of 𝑥 from 𝜋 and perfectly identify its marginal over 𝑋.

40Here, the term “dual” is an abuse of terminology for we do not mean the dual topological space of the
set of countably additive measures over 𝑋. The term “dual” as a name to describe the space of quantiles of
distributions is borrowed from the literature of decision theory under risk.
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establishes that in those cases the optimal outcomes satisfy additional transparency and
credibility properties that are consistent with more realistic requirements that rating agencies
must follow.

1.6.1 Optimal transparent outcomes and pooling at the bottom

Next, we analyze optimal outcomes when the mediator is restricted to mechanisms that
satisfy the transparency and credibility conditions introduced in Section 1.6. This implies
that we restrict the space of feasible outcomes for the mediator to monotone partitions (see
Proposition 12). For simplicity, we assume that the sender’s payoff is linear in the state and
that 𝐵(𝑥) = 0, so 𝑉 (𝑥, 𝜃) = 𝜃𝐴(𝑥) and 𝐽(𝑥, 𝜃) = 𝑦𝐹 (𝜃)𝐴(𝑥).41 Moreover, we restrict to the
regular case: 𝑦𝐹 (𝜃) is non-decreasing.

The restriction to monotone partitions implies that, for every interval [𝜃, 𝜃], the mediator
compares the benefit of fully revealing all the elements of that interval against pooling them.
Extending the analysis in Rayo (2013) to nonlinear payoffs, we observe that the relative
benefit of pooling an interval in the monopolistic mediator case is

−𝐶𝑂𝑉[𝜃,𝜃](𝑦𝐹 (𝜃), 𝐴(𝜃))
(︀
𝐹 (𝜃)− 𝐹 (𝜃)

)︀⏟  ⏞  
Rayo’s linear effect

− (E[𝜃,𝜃][𝐴(𝜃)]− 𝐴(E[𝜃,𝜃][𝜃]))

∫︁ 𝜃

𝜃

𝑦𝐹 (𝜃)𝑑𝐹 (𝜃)⏟  ⏞  
Nonlinear effect

(34)

where E[𝜃,𝜃] and 𝐶𝑂𝑉[𝜃,𝜃] respectively denote the expectation and the covariance operators
of 𝐹 conditional on [𝜃, 𝜃]. In the sender’s preferred case, the benefit of pooling an interval is
equal to the expression in (34) provided that we replace 𝑦𝐹 (𝜃) with 𝜃.

The first term in (34) corresponds to the effect considered in the linear model of Rayo
(2013) where 𝐴(𝑥) = 𝑥. The second term comes from the nonlinearity of 𝐴. The optimality
of pooling interval [𝜃, 𝜃] boils down to computing the sign of this expression.

It follows that the first term is negative because the covariance between 𝑦𝐹 (𝜃) and 𝐴(𝜃)

is non-negative. Similarly, the first term is always negative in the sender’s preferred case.42

The sign of the second term depends on the curvature of 𝐴(𝜃) in the interval considered
and on the sign of the integral of 𝑦𝐹 (𝜃) in that interval. In particular, when 𝐴(𝜃) is concave
and 𝑦𝐹 (𝜃) is negative on that interval, the overall sign of the second term is negative too.
Differently, in the sender’s preferred case, the sign of the integral in the second term is always
positive. This in turn implies that the overall sign of the second term is positive.

Notably, the sign of 𝑦𝐹 (𝜃) = 𝜃 − ℎ𝐹 (𝜃) is always negative on [0, 𝜃] for some 𝜃 > 0. We

41These assumptions are satisfied in Example 1 when 𝛿 = 1, and in Example 2 when 𝑏(𝑟) = 0.
42The Harris inequality implies that the covariance of two non-decreasing transformations of the same

random variable is non-negative. See Liang (2022). Observe that this conclusion holds for the sender’s
preferred case even when 𝐹 is not regular.
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can then formalize the previous discussion as follows.

Proposition 13. If 𝐹 is regular and 𝐴(𝑥) is concave, then there exists 𝜃 > 0 such that:

1. The monopolistic mediator fully discloses the states in [0, 𝜃];

2. In the sender’s preferred case the states in [0, 𝜃] are pooled provided that

(𝐴(E[0,𝜃][𝜃])− E[0,𝜃][𝐴(𝜃)])E[0,𝜃][𝑦𝐹 (𝜃)] ≥ 𝐶𝑂𝑉[0,𝜃](𝑦𝐹 (𝜃), 𝐴(𝜃)).

Similarly, when 𝐹 is regular and 𝐴(𝑥) is convex, in the sender’s preferred case the optimal
outcome fully discloses the states at the bottom. In the monopolistic mediator case instead,
there is pooling at the bottom provided that

(𝐴(E[0,𝜃][𝜃])− E[0,𝜃][𝐴(𝜃)])E[0,𝜃][𝑦𝐹 (𝜃)] ≤ 𝐶𝑂𝑉[0,𝜃](𝑦𝐹 (𝜃), 𝐴(𝜃)).

The comparison of the extent of disclosure at the bottom of the type space is relevant for
the rating agency application. There, low states represent banks (or in general financial
issuers) with weak balance sheets or projected returns. Therefore, from the point of view of
investors, an ideal information policy would fully disclose those states. The previous analysis
applied to Example 1 implies that when low market shocks are relatively more likely (i.e.,
concave 𝐺), a monopolistic rating agency would be more prone to optimally separate weak
banks from the rest. Differently, when high market shocks are relatively more likely (i.e.,
convex 𝐺), a monopolistic rating agency would be less prone to optimally separate weak
banks from the rest.

1.7 Conclusion and Discussion
We developed a theoretical framework that combines information design and mechanism
design to analyze a market for mediation services between an informed and an uninformed
party. The mediator receives compensation from the informed party and can only commit
to communication mechanisms that rely on information that is voluntarily reported by the
informed party. We described all the outcomes that can be induced via a mediation contract,
and compared the optimal outcomes when the mediator has the bargaining power (i.e.,
monopolistic mediation) with those when the informed party has it. Despite the soft nature of
information, the mediator can induce any distribution of conditional expectations consistent
with hard information. This allowed us to reduce the original mediation problems to simpler
Bayesian persuasion problems. With this, the main finding is that mediation contracts often
reveal more information with a monopolistic mediator because they give up some information
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rents to retain incentive compatibility. In particular, the monopolistic mediator does not
induce the highest market expectation possible: to maximize revenue they have to separate
enough the receiver’s expectation differential between high and low states.

These findings shed light on the controversial matter of whether a monopolistic market
for information intermediaries, such as rating agencies for financial securities, is more or
less desirable than a competitive one. For example, when the market is characterized by a
distribution of preference (or information) shocks that would induce buyers to acquire the
financial issuer’s asset more often, then the ideal information structure for the issuer would
reveal less information. Differently, the revenue-maximizer contract for the monopolistic
rating agency reveals more information to effectively differentiate the outcomes of high-return
reports from those of low-return reports and incentivize truthful reporting while maximizing
revenue.

Finally, we discuss some natural follow-up points and extensions that arise from our
analysis and that we leave for future research.

More general environments In this paper, we derived optimal outcomes under specific
assumptions such as uniform states or linearity of payoffs. While the analysis of optimal
transparent outcomes (i.e., monotone partitions) in Section 1.6 can be more easily extended
to more general environments, the unrestricted case of random communication mechanisms
is more challenging. A promising route for future research would be to adapt the results
developed for nonlinear Bayesian persuasion (e.g., Kolotilin, Corrao, and Wolitzky (2022))
and multidimensional Bayesian persuasion (e.g., Dworczak and Kolotilin (2022)) to the case
where outcomes must satisfy the stochastic monotone cyclicality condition derived in this
paper. An alternative case that has been extensively studied in the Bayesian persuasion
literature is that of transparent motives, i.e. when the sender has state-independent payoffs.
In this direction, Corrao and Dai (2023) derive several comparison results for the mediation
problem under transparent motives when transfers between the sender and the mediator are
not allowed.

Restriction to positive payments In the sender’s preferred case analyzed in this paper,
the MP constraint prescribed that the payments are positive in expectation. A more severe
constraint for the sender’s preferred case would prescribe that payments must be positive for
every report, that is, an ex-interim participation constraint for the mediator. It is immediate
to see that this additional constraint would restrict the set of implementable outcomes in
the sender’s preferred case. For example, under binary states, Corollary 2 establishes that
payments must be negative in the low state for distributions of beliefs that entail some
disclosure. This suggests that, under this additional constraint for the sender’s preferred
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case, the comparative analysis on the informativeness of optimal outcomes would be even
more inclined in favor of monopolistic mediation.

Competition among mediators In this paper, we compared optimal outcomes across
extreme allocations of bargaining power between the sender and the mediator. In particular,
it is possible to interpret optimal outcomes in the sender’s preferred case as a proxy for out-
comes arising under perfect competition among several mediators. Formally, this is the case
in a model where the sender chooses which of the mechanisms proposed by the mediators to
accept before learning the realized state; this translates to an ex-ante participation constraint
for the sender. It is possible to show that replacing our interim participation constraint (P)
with its ex-ante counterpart, would not alter the derivation of the optimal outcomes in the
sender’s preferred case. Differently, the analysis of the monopolistic mediator case would not
change only for those cases where the new ex-ante participation constraint for the sender is
slack in the optimal outcomes that we derived.

A rigorous analysis of competitive mediation under the interim participation constraint
considered in this paper seems challenging: competitive screening models are hardly tractable
even when we ignore the obedience constraint imposed by mediated communication. More-
over, the Rothschild and Stiglitz (1978) logic can be often applied to rule out equilibrium
outcomes that do not entail full disclosure. Yet, these outcomes do not seem quite realistic
since the rating agencies market is characterized by high concentration and entry barriers.
We leave the rigorous analysis of competitive mediation for future research.
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Chapter 2

The Bounds of Mediated Communication

This chapter is jointly authored with Yifan Dai

2.1 Introduction
Consider a receiver who faces a decision problem under uncertainty about some payoff-
relevant finite state. The state is privately observed by a sender who can communicate with
the receiver to influence her decision and has a final payoff that depends on the receiver’s
action only, that is, the sender has transparent motives.1 These situations are pervasive in
economics: a seller has superior information about the quality of a good and always wants
to maximize the probability of selling it to buyers.

In these settings, one of two extreme assumptions is usually considered: 1) The sender
can commit ex-ante to any information policy, such as an experiment that conveys verifiable
information to the receiver, or 2) The sender cannot commit to any experiment, their private
information is not verifiable (i.e., it is soft), but they can freely send messages to the receiver.
The first case has been extensively analyzed in recent years and corresponds to the Bayesian
persuasion model of Kamenica and Gentzkow (2011). The second case corresponds to a
game of strategic information transmission or cheap talk as introduced in Crawford and
Sobel (1982). It is well known that with commitment, the sender can often achieve a strictly
higher payoff than the one obtained by conveying no information. Perhaps more surprisingly,
Chakraborty and Harbaugh (2010) and Lipnowski and Ravid (2020) showed that the sender
can also achieve a strictly higher payoff under cheap talk than without communication, that
is communication is also often strictly valuable.

In this paper, we revisit and adapt the intermediate case of mediated communication
introduced in Myerson (1982). We enlarge the set of players by considering a third-party

1This is the language introduced by Lipnowski and Ravid (2020) to describe settings where the sender’s
payoff is state independent.
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mediator. The mediator cannot take the relevant decision in place of the receiver and is
uninformed about the state, hence they must resort to information willingly shared by the
sender. However, the mediator can commit to any communication mechanism that collects
reports from the sender and sends messages to the receiver. In the buyer-seller example
above, the mediator can represent an advertising agency or a financial intermediary with a
prominent reputation that collects reports from the seller and conveys credible information
to the buyers.

We focus on the case where the mediator’s preference is aligned with the sender, hence
they act to maximize the sender’s payoff. Clearly, the sender-optimal values across the
three protocols considered are weakly ordered because the space of feasible information
policies becomes smaller from persuasion to mediation and from mediation to cheap talk:
𝐵𝑃 ≥ 𝑀𝐷 ≥ 𝐶𝑇 .2 With this, we decompose the gap between Bayesian persuasion and
cheap talk as follows:

𝐵𝑃 − 𝐶𝑇⏟  ⏞  
Value of Commitment

= 𝐵𝑃 −𝑀𝐷⏟  ⏞  
Value of Elicitation

+ 𝑀𝐷 − 𝐶𝑇⏟  ⏞  .
Value of Mediation

The gap 𝐵𝑃 − 𝐶𝑇 represents the value of commitment for the sender. The first com-
ponent of this gap is 𝐵𝑃 −𝑀𝐷 which captures the value of elicitation. In both persuasion
and mediation, there is an entity with commitment power, the sender and the mediator, re-
spectively. However, the mediator is not directly informed about the state and has to elicit
this information in an incentive-compatible way. Differently, the gap 𝑀𝐷−𝐶𝑇 captures the
value of mediation because it corresponds to the additional value that an uninformed third
party with commitment can secure to the sender when the latter has no commitment power.
Our results provide sufficient and necessary conditions such that the values of elicitation and
mediation are strictly positive.

Outline of the results By the revelation principle, the mediator acts “as-if” selecting a
communication equilibrium outcome of the sender-receiver game. However, differently from
Myerson (1982), we adopt a belief-based approach to mediation that connects us more directly
to Bayesian persuasion and cheap talk. We show that the feasible distributions of receiver’s
beliefs are those that induce zero correlation, but not necessarily independence, between the
sender’s payoff and the receiver’s belief. This condition translates the truth-telling constraint
of the sender from the space of mechanisms to the space of beliefs. We can then represent
the optimal mediation problem as a linear program under moment constraints in the belief
space: the standard Bayes plausibility constraint and the zero-correlation constraint.

2Here, 𝐵𝑃 , 𝑀𝐷, and 𝐶𝑇 respectively denote the sender-optimal values attained under Bayesian per-
suasion, mediation, and cheap talk.

54



Exploiting this rewriting of the mediation problem, we show that the sender can attain
the optimal persuasion payoff under mediation if and only if this value can be attained under
cheap talk. Therefore, we show that when elicitation is valueless, so is mediation. Given that
the value of commitment is often strictly positive, this implies that an uninformed mediator
cannot usually guarantee the same value that the sender would achieve with commitment.

Next, we introduce two novel key concepts for cheap talk: the cheap talk hull is the
affine hull of all the supports of cheap-talk optimal distributions of the receiver’s beliefs, and
the full-dimensionality condition holds when the cheap talk hull covers the entire space of
the receiver’s beliefs. This condition is satisfied for almost every prior when the receiver’s
action set is finite and, at every binary prior such that the babbling equilibrium is not sender
optimal. Moreover, we show that full dimensionality is satisfied at a given prior when the
value of cheap talk is constant around that prior.

Under the full-dimensionality condition, we characterize the cases where elicitation and
mediation are strictly valuable, that is, 𝐵𝑃 > 𝑀𝐷 and 𝑀𝐷 > 𝐶𝑇 , respectively. Elicitation
is strictly valuable if and only if there exists a belief 𝜇 ∈ ∆(Ω) of the receiver such that the
maximum cheap talk value at 𝜇 is strictly higher than the maximum cheap talk value at the
prior 𝑝.3 Mediation is strictly valuable if and only if there exist two beliefs 𝜇+, 𝜇− ∈ ∆(Ω)

of the receiver that are colinear with the prior 𝑝 and such that the maximum cheap talk
value at 𝑝 lies strictly between the maximum cheap talk value at 𝜇+ and the minimum cheap
talk value at 𝜇−. In particular, we construct an improving mediation plan by randomizing
over distributions of beliefs that include cheap talk equilibria at 𝜇+ and 𝜇− respectively.
This randomization is not a valid cheap talk equilibrium at 𝑝, yet it satisfies all the incentive
compatibility requirements of communication equilibria, hence it is feasible under mediation.
We prove these results by first providing distinct sufficient and necessary conditions for the
values of elicitation and mediation to be strictly positive without any additional assumption
and then show that under full dimensionality these conditions are the same. All the afore-
mentioned conditions admit geometric characterizations in terms of the quasiconcave and
quasiconvex envelopes of the sender’s value function.

In several canonical settings, we find that mediation has a strictly positive value when
the sender has countervailing incentives in the space of the receiver’s beliefs, that is, when
the sender would like to induce more optimistic beliefs for some realized messages and more
pessimistic beliefs for some others. In binary-state settings or when the sender’s utility
depends on the receiver’s conditional expectation only, this translates to the failure of a
weak form of single-crossing. For multidimensional environments with strictly quasiconvex
utility for the sender, countervailing incentives are captured by the non-monotonicity of the

3Here, Ω denotes the finite state space and 𝑝 ∈ Δ(Ω) denotes the common prior.
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restriction of the sender’s utility to the edges of the simplex.
We illustrate how our constructive approach is useful in applications to find mediation

plans that improve the sender’s expected payoff. We revisit the think tank example in
Lipnowski and Ravid (2020) by assuming that the think tank acts as a mediator between
an interest group (the sender) and the lawmaker (the receiver). In this case, countervailing
incentives arise because the interest group strictly prefers the lawmaker to approve one of
several new policies as opposed to retaining the status quo. Similarly, we apply our results
to study advertising agencies or financial intermediaries that operate as mediators between
sellers and buyers. In this case, countervailing incentives can arise because of reputation
concerns of the seller or because of non-monotone preferences over risky prospects (e.g.,
mean-variance) of the receiver. For these examples, both elicitation and mediation are
usually strictly valuable, thereby rationalizing the ubiquitous presence of intermediaries in
these markets. In addition, we often find that the extra randomness introduced by the
mediator strictly benefits the receiver as well, that is, in these cases mediation is (ex-ante)
strictly Pareto superior to unmediated communication.

Finally, we discuss some additional implications of our results as well as some extensions.
For long cheap talk (see Aumann and Hart (2003)) and repeated games with asymmetric
information (see Hart (1985)), our results characterize the environments where the sender’s
payoff under the best correlated equilibrium is strictly higher than the one obtained when
we restrict to Nash equilibria.

2.1.1 Illustrative Example

We illustrate the geometric comparison of Bayesian persuasion, mediation, and cheap talk by
a simple advertising model that compares the case where a seller directly communicates with
a buyer to the case where the seller hires an advertising agency to mediate communication.

Consider a seller planning to commercialize a new product. The product’s quality 𝜔 ∈
Ω = {0, 1} is privately known by the seller, and a buyer has a prior 𝑝 ∈ (0, 0.55) on the
quality being good (𝜔 = 1). We first consider the case when the seller can only communicate
by cheap talk messages. After observing the message, the buyer updates her belief about
the quality to 𝜇 ∈ [0, 1] and decides whether to purchase the good or take her outside option
with quality 𝜀 ∈ [0, 1]. Each buyer is privately informed about the outside option, but the
seller knows only that the distribution of 𝜀 is 𝐺. In particular, we assume that 𝐺 has a
unimodal density 𝑔, that is, 𝐺 is strictly convex up to some point 𝜀 and concave beyond that
point.4

4In this case, we say that 𝐺 is S-shaped. Several recent papers in the persuasion literature focus on a
similar class of indirect utility functions called S-shaped functions (Kolotilin, 2018b; Kolotilin, Mylovanov,
and Zapechelnyuk, 2022; Arieli, Babichenko, Smorodinsky, and Yamashita, 2023).
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The market is competitive, and we normalize the price of the good and the outside option
to 1. Thus, when the buyers’ posterior belief is 𝜇, the buyers purchasing the good are those
such that 𝜀 ≤ 𝜇, for a total mass of 𝐺(𝜇). The seller’s overall utility depends on the total
demand for the good and on a component of reputation concern of the seller, that is, the
seller’s indirect utility 𝑉 (𝜇, 𝜔) given posterior 𝜇 and quality 𝜔 is

𝑉 (𝜇, 𝜔) = (1− 𝛿)𝐺(𝜇) + 𝛿(𝜔 − 𝜇).

The linear term 𝛿(𝜔 − 𝜇) captures the reputation effect, where 𝛿 > 0 measures the positive
effect of a surprisingly good product on the seller’s future payoff. Conversely, when 𝜔 < 𝜇,
there is a negative reputation effect due to an unexpectedly bad product. As the state 𝜔 is
privately known and the seller’s payoff function is additively separable in 𝑉 (𝜇, 𝜔), the seller
acts to maximize

𝑉 (𝜇) = (1− 𝛿)𝐺(𝜇)− 𝛿𝜇.

Therefore, in what follows we consider 𝑉 to be the payoff function of the seller. Under our
assumptions on 𝐺, this indirect utility 𝑉 is a rotated S-shaped function as illustrated in
Figure 2-1.5 In this case, an intermediate level of reputation concern induces countervailing
incentives for the sender. For example, in Figure 2-1, for posteriors 𝜇 just before 3/4, the
sender would like the buyer to be more optimistic about the product quality, whereas, for
posteriors above 3/4, the seller would like the buyer to be more pessimistic.

From Lipnowski and Ravid (2020), we know that the seller-optimal cheap talk value at
any prior is given by the quasiconcave envelope of 𝑉 at that prior, which is the dotted red
line in Figure 2-1. In particular, the best cheap talk equilibrium for the seller at 𝑝 is such that
posterior 𝜇 = 0.55 is induced with probability 𝑝/0.55 and 𝜇 = 0 is induced with probability
1− 𝑝/0.55. Hence, the seller’s optimal payoff under cheap talk is 0.

Next, we show that the seller can obtain a strictly higher payoff by hiring an advertiser
(the mediator) who can credibly commit to revealing information about the quality of the
good to the buyer.6 The advertiser does not have the expertise to assess the exact quality
of the good and can only convey information the seller reports. To maintain credibility, the
advertiser designs the information structure so that the seller is willing to report truthfully.
The contract between the seller and the advertiser is fixed and binds the seller to pay the
advertiser a fixed fraction of its revenue, and the advertiser maximizes the seller’s expected
payoff. In this case, the advertiser can strictly increase the seller’s expected payoff by in-

5Specifically, Figure 2-1 plots the indirect utility 𝑉 induced by the Beta(2,2) distribution and a weight
𝛿 = 209

409 .
6We assume the seller decides whether to hire a mediator before it learns the state 𝜔, to avoid any

additional signaling effects.
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Figure 2-1: Comparison of Bayesian persuasion, mediation, and cheap talk

The colored lines represent the seller’s optimal payoff from Bayesian persuasion (blue dashed),
mediation (yellow solid), and cheap talk (red dashed). The discussion here focuses on the case

𝑝 ∈ (0, 0.55), where the three lines do not coincide.

troducing randomness to the message distribution conditional on the seller’s quality report.
For instance, this randomness conditional on the seller’s quality reports can be interpreted
as the use of inessential visual effects or vague language in the advertising campaign for the
product.

Figure 2-2: Construction of strictly improving mediation plan

Now, we construct a distribution of beliefs that is feasible for the advertiser and that
yields a strict improvement for the seller with respect to direct communication. First fix
𝜉 ∈ (0, 1) such that 𝜉 · 𝑉 (3/4) · (3/4 − 𝑝) + (1 − 𝜉) · 𝑉 (1) · (1 − 𝑝) = 0.7 With this, fix the
belief 𝜇* = 𝜉 · 3/4+ (1− 𝜉) · 1, highlighted by the yellow line in Figure 2-2, and observe that
there exists 𝛼 > 1 such that 𝛼𝑝 + (1 − 𝛼)𝜇* = 0. Now, consider the distribution of buyers’
beliefs supported on {0, 3/4, 1} given by

𝜏 * = {(0; 1/𝛼), (3/4; (𝛼− 1)𝜉/𝛼), (1; (𝛼− 1)(1− 𝜉)/𝛼)} .
7This coefficient exists because 𝑉 (1) < 0 < 𝑉 (3/4).
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The three points in the support of this distribution are highlighted by the red dots in Figure
2-2. Note that this distribution does not correspond to a cheap talk equilibrium, as the seller
would always have the incentive to induce 𝜇 = 3/4 at every state.

By construction, 𝜏 * averages to 𝑝 and induces zero correlation between the buyers’ beliefs
𝜇 and the seller’s payoff 𝑉 (𝜇). In Theorem 1 below, we show that this is necessary and
sufficient for 𝜏 * to be implementable under mediation. Finally, one can verify that the
seller’s expected payoff under this distribution of beliefs is

𝛼−1
𝛼

(𝜉 · 𝑉 (3/4) + (1− 𝜉) · 𝑉 (1)) > 0

yielding a strict improvement. This payoff is not the best payoff the mediator can secure
for the sender, but shows that the value of mediation is strictly positive. With a small
enough commission rate, the seller strictly benefits from hiring an advertiser to mediate
communication.8

If the mediator has the expertise to assess the quality of the goods without relying on the
seller’s reports, they design (and commit to) a test/information structure about the quality
of the goods that is revealed to the buyer. The seller has a strict incentive to take this option
because it relaxes the truth-telling constraint and allows the seller to induce any Bayesian
persuasion outcome. For instance, the mediator can commit to sending messages 𝜇 = 3/4

with probability 4𝑝/3 and 𝜇 = 0 with probability 1−4𝑝/3. This information structure induces
the optimal Bayesian persuasion outcome (one may verify this by concavification), and the
optimal persuasion payoff is greater than the payoff of the mediation plan we illustrated.
Indeed, since the value of commitment is strictly positive, our Theorem 2 implies that the
value of elicitation is strictly positive as well. Figure 2-1 plots the CT value (red), the MD
value (yellow), and the BP value (blue) over all the priors. Both elicitation and mediation
are strictly valuable at every 𝑝 ∈ (0, 0.55).

Finally, the buyer is strictly better off under the mediation plan we constructed than
under the sender-optimal cheap talk equilibrium or the Bayesian persuasion outcome. Note
that the buyer’s indirect utility 𝑉𝑅(𝜇) = 𝜇𝐺(𝜇) +

∫︀ 1

𝜇
𝜀 d𝐺(𝜀) is strictly convex, and the in-

duced distributions of posteriors are supported on {0, 3/4, 1} under mediation and {0, 3/4}
under persuasion. Hence, the distribution of beliefs under mediation is a mean-preserving
spread of that under persuasion, which leads to a strictly higher buyer payoff. Direct calcu-
lation shows that the buyer’s payoff under the proposed mediation plan is also strictly higher
than under cheap talk.

8In Section 2.6, we characterize when similar constructions that randomize among posteriors with values
strictly above/below the cheap talk value lead to a strictly higher payoff than cheap talk.
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2.1.2 Literature review

Our work uses the “belief-based approach,” a widely adopted methodology in the study of
sender-receiver games. Kamenica and Gentzkow (2011) characterizes the sender’s optimal
payoff under persuasion as the concave envelope of the sender’s value function, and Lipnowski
and Ravid (2020) shows that the sender’s best payoff under cheap talk with transparent
motives is characterized by the quasiconcave envelope of her value function.9

Our work also belongs to the literature on mediated communication initiated by Myerson
(1982) and Forges (1986). Recent works on this topic study the comparison between media-
tion and other specific forms of communication in the uniform-quadratic case of Crawford and
Sobel (1982). Blume, Board, and Kawamura (2007) focuses on contrasting noisy cheap talk
with cheap talk, while Goltsman, Hörner, Pavlov, and Squintani (2009) compares mediation,
(long) cheap talk, and delegation. Differently, we completely characterize the comparison
between persuasion, mediation, and cheap talk under state-independent preferences for the
sender, but without additional parametric assumptions.

The most related paper in the mediation literature is Salamanca (2021), where mediated
communication for finite games is analyzed using a recommendation approach similar to the
original one in Myerson (1982). Our analysis differs from the one in Salamanca (2021) for sev-
eral reasons. First, the two models are not nested since we focus on the transparent-motive
case but we allow for arbitrary action space for the receiver. Second, our analysis is entirely
carried out with a belief-based approach as opposed to the recommendation approach they
use. Our approach not only allows us to readily derive the same “virtual-utility” represen-
tation of the sender-optimal value of mediation but also to compare more directly mediated
communication with persuasion and cheap talk. In fact, the main differences between the
two analyses are on the result side. While Salamanca (2021) focuses on deriving strong
duality for the recommendation-based mediation problem, we use a more direct perturba-
tion approach that allows us to completely characterize when elicitation and mediation are
valuable for finite games at almost all prior beliefs.10 Moreover, we provide several sufficient
conditions such that our characterization extends to infinite-action games.

Some works in the mediation literature allow for transfers between the informed party
and the intermediary. For example, Corrao (2023) considers an optimal mediation prob-
lem with transfers where the mediator maximizes their revenue from payments from the
informed party. Importantly, he considers a state-dependent payoff for the sender and im-

9Aumann and Maschler (1995) and Aumann and Hart (2003) first adopted the belief-based approach to
respectively study zero-sum repeated games with asymmetric information and long cheap talk.

10Salamanca (2021) provides a binary-state example under transparent motives where the strict inequal-
ities 𝐵𝑃 > 𝑀𝐷 > 𝐶𝑇 hold, but does not characterize when these inequalities are strict.
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poses a strict single-crossing condition. This considerably expands the set of implementable
outcomes. In fact, Corrao (2023) shows that in a binary-state setting, every distribution of
the receiver’s beliefs is implementable. This is in sharp contrast with the zero-correlation
restriction imposed by the truthtelling constraint in our setting with transparent motives
and where transfers are not allowed.

Finally, our work is related to recent papers studying Bayesian persuasion with limited
commitment or additional constraints (Lin and Liu, 2023; Lipnowski, Ravid, and Shishkin,
2022; Koessler and Skreta, 2021; Doval and Skreta, 2023). Like mediation, the communi-
cation protocols studied in these works can be seen as intermediate cases between Bayesian
persuasion and (single-round) cheap talk. The transparent-motive assumption sometimes
makes these intermediate cases attain one of the two bounds given by persuasion and cheap
talk. For example, the credible information structures in Lin and Liu (2023) are the same
ones that are feasible under persuasion, when the sender has transparent motives. Under
the same assumption, Lipnowski and Ravid (2020) show that the sender’s optimal payoff in
the long cheap talk model of Aumann and Hart (2003) is the same as the one of single-round
cheap talk. Differently, in this paper, we show that the optimal sender’s value under medi-
ation can be strictly between the two bounds and we completely characterize when this is
the case in several settings.

Outline of the paper Section 3.2 introduces the model. Section 2.3 characterizes the
feasible distributions of the receiver’s beliefs under mediation. Section 2.4 presents our main
comparison results for the simple case of binary states. This allows us to describe the basic
intuition of our results without the technical challenges of the general case. Sections 2.5 and
2.6 present our general results on the comparison of mediation, Bayesian persuasion, and
cheap talk. Section 2.7 applies our results to the case where the sender’s utility is strictly
quasiconvex. Section 2.8 discusses some extensions and future research. All the proofs are
relegated to Appendix B.1.

2.2 The Model
Our model consists of three players: a sender, a receiver, and a mediator. Let Ω be a finite
state space with |Ω| = 𝑛. The state 𝜔 ∈ Ω is drawn according to a full-support common
prior 𝑝 ∈ ∆(Ω), and the realization of 𝜔 is the sender’s private information.11 The receiver
does not know the realized 𝜔 and takes a payoff-relevant action 𝑎 ∈ 𝐴, where 𝐴 is a compact
metric space. We assume the sender has a state-independent utility function 𝑢𝑆 : 𝐴 → R,
and the receiver has utility 𝑢𝑅 : Ω× 𝐴 → R. Both utility functions are continuous.

11We identify Δ(Ω) with the standard 𝑛− 1–dimensional simplex in R𝑛.
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The sender and receiver communicate through the mediator, who commits to a communi-
cation mechanism 𝜎 : 𝑅 → ∆(𝑀) without knowing 𝜔, where 𝑅 is the reporting space for the
sender and 𝑀 is the space of messages for the receiver. After observing 𝜔, the sender sends
a report 𝑟 ∈ 𝑅 to the mediator. Given the report, the mediator draws a random message
𝑚 ∈ 𝑀 according to 𝜎 and sends it to the receiver, who then takes an action 𝑎 ∈ 𝐴. We
consider the communication game Γ𝜎 induced by 𝜎 and focus on the Bayes-Nash equilibria
of Γ𝜎, also known as the communication equilibria (see Myerson (1982) and Forges (1986)).12

We assume that the mediator is perfectly aligned with the sender and selects a mechanism
and an equilibrium to maximize the sender’s expected utility.

Any mechanism 𝜎 and a communication equilibrium in Γ𝜎 induce an outcome distribution
𝜋 ∈ ∆(Ω×𝐴). Applying the Revelation Principle (Myerson, 1982; Forges, 1986), it is without
loss to consider outcome distributions induced by direct incentive-compatible mechanisms,
that is, a communication equilibrium where the mediator asks the sender for a state report
in 𝑅 = Ω, provides an action recommendation in 𝑀 = 𝐴 to the receiver, and the sender
truthfully reports the state while the receiver follows the action recommendation. Any
outcome distribution 𝜋 ∈ ∆(Ω × 𝐴) is induced by some communication equilibrium if and
only if it satisfies:

(i) Consistency: margΩ 𝜋 = 𝑝

(ii) Obedience: For all 𝑎 ∈ supp(𝜋𝐴) and 𝑎′ ∈ 𝐴, E𝜋𝑎 [𝑢𝑅(𝜔, 𝑎)] ≥ E𝜋𝑎 [𝑢𝑅(𝜔, 𝑎
′)], where

𝜋𝑎 ∈ ∆(Ω) is a version of the conditional probability given 𝑎 ∈ 𝐴;

(iii) Honesty: For all 𝜔, 𝜔′ ∈ Ω, E𝜋𝜔 [𝑢𝑆(𝑎)] ≥ E𝜋𝜔′ [𝑢𝑆(𝑎)], where 𝜋𝜔 ∈ ∆(𝐴) is the condi-
tional probability given 𝜔 ∈ Ω.

We say that 𝜋 ∈ ∆(Ω× 𝐴) is a communication equilibrium (CE) outcome if it satisfies (i),
(ii), and (iii).

2.3 Belief-based Approach to Mediated Communication
Instead of focusing on CE outcomes, we consider distributions over the receiver’s posteriors
𝜏 ∈ ∆(∆(Ω)) and the sender’s indirect utility 𝑉 : ∆(Ω) → R in terms of the receiver’s
posterior. Define the indirect value correspondence V : ∆(Ω) ⇒ R by

V(𝜇) := co

(︂
𝑢𝑆

(︂
argmax

𝑎∈𝐴
E𝜇[𝑢𝑅(𝜔, 𝑎)]

)︂)︂
.

12Formally, the sender’s strategy is 𝜌 : Ω → Δ(𝑅) and the receiver’s strategy is 𝛼 : 𝑀 →
Δ(𝐴). (𝜌, 𝛼) forms an equilibrium if and only if E𝑝[E𝜎[𝑢𝑆(𝛼(𝑚))|𝜌(𝜔)]] ≥ E𝑝[E𝜎[𝑢𝑆(𝛼(𝑚))|𝜌(𝜔)]] and
E𝑝[E𝜎[𝑢𝑅(𝜔, 𝛼(𝑚))|𝜌(𝜔)]] ≥ E𝑝[E𝜎[𝑢𝑅(𝜔, 𝛼̃(𝑚))|𝜌(𝜔)]] for any 𝜌, 𝛼̃.

62



For every posterior 𝜇 ∈ ∆(Ω), the set V(𝜇) collects all the possible (expected) sender’s
payoffs that can be attained by some (potentially mixed) receiver’s best response at posterior
𝜇. By Berge’s Theorem, V is upper hemi-continuous, compact, convex, and non-empty
valued. Define the functions 𝑉 (𝜇) = maxV(𝜇) and 𝑉 (𝜇) = minV(𝜇), which are respectively
upper and lower semi-continuous.13

Any CE outcome 𝜋 induces a distribution over posterior beliefs 𝜏𝜋 ∈ ∆(∆(Ω)) as follows:
𝜏𝜋(𝐷) =

∫︀
I[𝜋𝑎 ∈ 𝐷] d𝜋 for all Borel 𝐷 ⊆ ∆(Ω). It also induces an indirect utility for the

sender 𝑉 𝜋 : ∆(Ω) → R defined for 𝜏𝜋-almost all posterior beliefs by

𝑉 𝜋(𝜇) :=

∫︁
𝑢𝑆(𝑎) d𝜋(𝑎 | 𝜋𝑎 = 𝜇),

where 𝜋(· | 𝜋𝑎 = 𝜇) is the conditional probability over Ω× 𝐴 given that 𝜋𝑎 = 𝜇.

Definition 9. A distribution of posteriors 𝜏 ∈ ∆(∆(Ω)) and a measurable function 𝑉 :

∆(Ω) → R are induced by some CE outcome 𝜋 ∈ ∆(Ω × 𝐴) if 𝜏 = 𝜏𝜋 and 𝑉 (𝜇) = 𝑉 𝜋(𝜇)

for 𝜏–almost all 𝜇.

For our main analysis we focus on pairs (𝜏, 𝑉 ) that are induced by some CE outcome. For
any 𝜏 ∈ ∆(∆(Ω)), we say 𝜏 attains value 𝑠 ∈ R if there exists 𝑉 ∈ V such that

∫︀
𝑉 d𝜏 = 𝑠.

Our first result characterizes the set of implementable distributions over posteriors and
indirect utility functions using three conditions parallel to Consistency, Obedience, and Hon-
esty. In particular, as the sender’s preference is state-independent, her expected payoff should
be the same conditional on every state report. This simplifies the sender’s truth-telling con-
straint when expressed in terms of distributions over posteriors.

Theorem 1. If a distribution of receiver’s beliefs 𝜏 ∈ ∆(∆(Ω)) and a measurable sender’s
indirect utility function 𝑉 : ∆(Ω) → R are induced by some CE outcome, then they satisfy

(i) Consistency*: ∫︁
𝜇 d𝜏(𝜇) = 𝑝; (BP)

(ii) Obedience*: For 𝜏 -almost all 𝜇 ∈ ∆(Ω), 𝑉 (𝜇) ∈ V(𝜇);

(iii) Honesty*:
Cov𝜏 [𝑉 (𝜇), 𝜇] = 0. (zeroCov)

13See Lemma 17.30 in Aliprantis and Border (2006b).
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Conversely, if (𝜏, 𝑉 ) satisfy (i),(ii), and (iii), then there exists a CE outcome 𝜋 ∈ ∆(Ω× 𝐴)

such that E𝜏 [𝑉 ] = E𝜋[𝑢𝑆].14

The set of implementable distributions over posteriors under mediation is

𝒯𝑀𝐷(𝑝) := {𝜏 ∈ ∆(∆(Ω)) : ∃ 𝑉 ∈ V such that (BP) and (zeroCov) hold}.

We now sketch the derivation of equation zeroCov. For simplicity, consider the singleton-
valued case: V(𝜇) = 𝑉 (𝜇). Under transparent motives, the Honesty constraint implies
that

E𝜏𝜔 [𝑉 (𝜇)] = E𝜏 [𝑉 (𝜇)] ∀𝜔 ∈ Ω,

where 𝜏𝜔 is the conditional distribution of the receiver’s beliefs given 𝜔. Furthermore, Con-
sistency* implies that for all 𝜔 ∈ Ω, 𝜏𝜔 is absolutely continuous with respect to 𝜏 with
Radon-Nikodym derivative d𝜏𝜔

d𝜏
(𝜇) = 𝜇(𝜔)

𝑝(𝜔)
. We then obtain:

∫︁
𝑉 (𝜇)

𝜇(𝜔)

𝑝(𝜔)
d𝜏(𝜇) =

∫︁
𝑉 (𝜇) d𝜏(𝜇) ⇐⇒ Cov𝜏 [𝑉 (𝜇), 𝜇] = 0.

Therefore, whenever the indirect value correspondence has a single selection, it is possible
to obtain an exact characterization of the implementable distributions over posteriors under
mediation.

Corollary 11. If the indirect value correspondence is singleton-valued V = 𝑉 , then 𝜏 is
implementable under mediation if and only if (𝜏, 𝑉 ) satisfy Consistency* and Honesty*.

An important case where the correspondence V is singleton-valued is when the receiver
has a single best response 𝑎*(𝜇) ∈ 𝐴 to every possible posterior, for example when this
is the conditional expectation of 𝜔 given the message received from the mediator.15 The
zero covariance condition states that there cannot be any correlation between the payoff of
the sender and the belief of the receiver. To gain an intuition for the implications of this
condition, consider for simplicity the binary-state case Ω = {𝜔, 𝜔} with a singleton-valued
V = 𝑉 . In this case, the realized posterior belief is represented by the probability 𝜇 ∈ [0, 1]

that the state is 𝜔. Suppose that a candidate information structure induces a non-degenerate
distribution over posteriors 𝜏 with finite support. The collection of pairs of sender’s payoff
and receiver’s belief is given by {(𝜇𝑖, 𝑉 (𝜇𝑖))}𝑘𝑖=1 ⊆ R2. In statistical terms, the zeroCov

14Here, Cov𝜏 [𝑉 (𝜇), 𝜇] is a (𝑛 − 1)-dimensional vector of one-dimensional covariances Cov𝜏 [𝑉 (𝜇), 𝜇(𝜔)]
between the sender’s indirect utility and the receiver’s posterior at each of 𝑛 − 1 states 𝜔. One state is
clearly redundant, hence the dimensionality is 𝑛− 1.

15Kolotilin, Corrao, and Wolitzky (2022) give simple sufficient conditions on 𝑢𝑅 such that the receiver
has a single, yet possibly nonlinear, best response to every belief.
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condition says that if we draw the regression line for the variable 𝑉 (𝜇) with respect to the
variable 𝜇, then this line must be flat: there cannot be any linear dependence between the
two variables.16 Notably, the property of having a flat regression line does not imply that
there is no stochastic dependence between 𝑉 (𝜇) and 𝜇.

2.3.1 The Optimal Value of Mediation

Applying our Theorem 1, we can rewrite the mediator’s problem in the belief space. The
mediator chooses a distribution over receiver’s posterior 𝜏 ∈ ∆(∆(Ω)) and a measurable
selection 𝑉 ∈ V to maximize the sender’s expected payoff:

sup
𝑉 ∈V,𝜏∈Δ(Δ(Ω))

∫︁
𝑉 (𝜇) d𝜏(𝜇)

subject to:
∫︁

𝜇 d𝜏(𝜇) = 𝑝 (BP)∫︁
𝑉 (𝜇)(𝜇− 𝑝) d𝜏(𝜇) = 0, (TT)

where (TT) is just a rewriting of (zeroCov). Let 𝑔 ∈ R𝑛 denote an arbitrary Lagrange mul-
tipliers for the TT linear constraint and, for any selection 𝑉 ∈ V, define the corresponding
virtual indirect value function of the sender as

𝑉 𝑔(𝜇) := (1 + ⟨𝑔, 𝜇− 𝑝⟩)𝑉 (𝜇).

Each 𝑉 𝑔(𝜇) is the belief-based version of the virtual utility in Myerson (1997) and Salamanca
(2021) and, like those, takes into account a fixed shadow price 𝑔 of the TT constraint.17 We
next use these objects to characterize the optimal value of mediation. For any measurable
function 𝑈 : ∆(Ω) → R, let cav(𝑈)(𝑝) denote the concavification of 𝑈 evaluated at 𝑝, that
is, the pointwise infimum over all concave functions that majorize 𝑈 .

Proposition 14. The mediation problem admits solution (𝑉 *, 𝜏 *) and this solution can
be implemented using a communication mechanism with no more than 2𝑛 − 1 messages.
Moreover, the sender’s optimal value under mediation is given by

𝒱𝑀𝐷(𝑝) = max
𝑉 ∈V

inf
𝑔∈R𝑛

cav(𝑉 𝑔)(𝑝).

We show the existence of a solution by constructing an auxiliary program in the space
of joint distributions of the sender’s expected values and receiver’s posteriors that has also

16This is illustrated in Figure 2-3 in Section 2.4.
17Recall that the virtual utilities in both Myerson (1997) and Salamanca (2021) are defined on outcomes

as opposed to beliefs.
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been analyzed in Lipnowski, Ravid, and Shishkin (2022). Since V is upper hemi-continuous
and closed-valued, its graph is closed, so the auxiliary program admits a solution. This
implies our existence result. Note that (BP) and (TT) are in the form of moment conditions
à la Winkler (1988), which implies that optimal mediation can be achieved with finitely
many messages. Because the truth-telling constraint can be incorporated into the objective
function via Lagrange multipliers, and by the Sion’s minimax theorem, the sender’s optimal
value under mediation is the lower envelope of a family of concavified virtual utilities.

2.3.2 Bayesian Persuasion and Cheap Talk

We now recall how to analyze Bayesian persuasion and cheap talk using the belief-based
approach. The classical interpretation of Bayesian persuasion is that the sender can commit
to an information structure for the receiver before the state is realized. An alternative, yet
mathematically equivalent interpretation, is that there is a mediator with commitment power
that is completely aligned with the sender but, unlike in standard mediation, does not need
to elicit the state from the sender. In this case, the mediator’s problem drops the truth-
telling constraint (TT) and directly maximizes the expectation of the upper envelope 𝑉 over
all distributions over posteriors 𝜏 that satisfy (BP). We denote the set of implementable
distributions over posteriors under persuasion by 𝒯𝐵𝑃 (𝑝) := {𝜏 ∈ ∆(∆(Ω)) : (BP) holds}
and the optimal persuasion value by 𝒱𝐵𝑃 (𝑝).

Under cheap talk, we completely bypass the mediator: after having observed the state,
the sender sends a cheap talk message to the receiver. As the sender does not have commit-
ment power, in equilibrium she must be indifferent among all the messages she sends. Thus,
the sender’s problem under cheap talk replaces (TT) with the following stronger incentive
compatibility constraint: the selected indirect value function 𝑉 (𝜇) is constant over supp(𝜏).
Therefore, the set of implementable distributions under cheap talk is 𝒯𝐶𝑇 (𝑝) := {𝜏 ∈ 𝒯𝐵𝑃 (𝑝) :

∃ 𝑉 ∈ V such that 𝑉 is constant on supp(𝜏)}. An alternative way to represent the con-
straint under cheap talk is a zero variance constraint Var𝜏 [𝑉 ] = 0. Compared with the zero
covariance condition (zeroCov), this illustrates the statistical difference between mediation
and cheap talk: Under mediation, there cannot be any statistical correlation between 𝜇 and
𝑉 (𝜇), whereas under cheap talk, these two must be stochastically independent.

To compare cheap talk with persuasion and mediation, we consider the sender’s preferred
cheap talk equilibrium, that is we maximize over all measurable selections 𝑉 ∈ V. This value
is denoted by 𝒱𝐶𝑇 (𝑝). Because the sets of implementable distributions are nested, we have
𝒱𝐵𝑃 (𝑝) ≥ 𝒱𝑀𝐷(𝑝) ≥ 𝒱𝐶𝑇 (𝑝). Our results show when there is a strict difference in value.

Let 𝑉 𝐶𝑇 : ∆(Ω) → R and 𝑉 𝐶𝑇 : ∆(Ω) → R denote the quasiconcave envelope and
the quasiconvex envelope of V, respectively. That is, 𝑉 𝐶𝑇 (𝑉 𝐶𝑇 ) is the pointwise infimum
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(supremum) over all quasiconcave (quasiconvex) functions that majorize 𝑉 (are majorized by
𝑉 ). Theorem 2 in Lipnowski and Ravid (2020) shows that the value of the sender’s preferred
cheap talk equilibrium coincides with the quasiconcave envelope of V, that is 𝑉 𝐶𝑇 = 𝒱𝐶𝑇 .
Similarly, it is possible to show that the value of the sender’s least preferred cheap talk
equilibrium coincides with the quasiconvex envelope of V.18

Say that a distribution over posteriors 𝜏 is deterministic if | supp 𝜏𝜔| = 1 for all 𝜔 ∈ Ω.
When this is not the case and 𝜏 is implementable under mediation, then it must be induced
by a random (direct) communication mechanism, that is 𝜎 : Ω → ∆(𝐴) such that 𝜎𝜔 is
non-degenerate for some 𝜔 ∈ Ω.

Corollary 12. A deterministic distribution over posteriors 𝜏 is implementable under medi-
ation if and only if it is implementable under cheap talk.

The full disclosure distribution 𝜏𝐹𝐷 :=
∑︀

𝜔∈Ω 𝑝(𝜔)𝛿𝜔 is deterministic, so it is imple-
mentable under mediation if and only if there exists 𝑉 ∈ V such that 𝑉 (𝛿𝜔) is constant.
Therefore, when full disclosure, or any other deterministic distribution 𝜏 , is sender optimal
under mediation at 𝑝, we have 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝). Conversely, whenever 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝),
Corollary 12 implies that every optimal distribution of beliefs under mediation must be
induced by a random communication mechanism.

2.4 Binary-state Case
In this section, we illustrate our main results under the assumption that Ω is binary. Our
first result compares persuasion and mediation and shows that mediation attains the optimal
persuasion value if and only if this value can be attained under (single-round) cheap talk. As
Ω is binary and ∆(Ω) is 1-dimensional, with a slight abuse of notation, we use 𝜇 to denote
the first entry of the receiver’s posterior belief.

Proposition 15. The following are equivalent:

(i) 𝒱𝐵𝑃 (𝑝) = 𝒱𝑀𝐷(𝑝);

(ii) 𝒱𝐵𝑃 (𝑝) = 𝒱𝐶𝑇 (𝑝);

(iii) 𝑝 ∈ co(argmax𝑉 ) or 𝑉 is superdifferentiable at 𝑝.

The fact that (ii) implies (i) is obvious. To gain intuition on the implication from (i) to (ii),
recall that the optimal Bayesian persuasion value 𝒱𝐵𝑃 (𝑝) coincides with the concave envelope

18See Lipnowski and Ravid (2020) Appendix C.2.1, which defines the quasiconcave and quasiconvex
envelopes with an extra semi-continuity assumption. Our definition is the same since our state space Ω is
finite.
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of 𝑉 at the prior 𝑝, and this is the minimum of all affine functions 𝐿 on [0, 1] that pointwise
dominate 𝑉 . Consider the affine function 𝐿𝑝(𝜇) = 𝛼 + 𝛽𝜇 that attains this minimum at
𝑝 and fix a non-degenerate distribution over posteriors 𝜏 that is optimal under Bayesian
persuasion and implementable under mediation, so that 𝒱𝐵𝑃 (𝑝) = 𝒱𝑀𝐷(𝑝). It is well known
that 𝜏 must be supported on the contact set

{︀
𝜇 ∈ [0, 1] : 𝐿𝑝(𝜇) = 𝑉 (𝜇)

}︀
, the set where the

minimal dominating affine function touches the sender’s value function.19 This implies that
the affine function 𝐿𝑝(𝜇) represents the regression line of the points

{︀
𝑉 (𝜇)

}︀
𝜇∈supp(𝜏) with

respect to the points {𝜇}𝜇∈supp(𝜏). Because 𝜏 is implementable under mediation, Theorem 1
implies that this regression line must be flat: 𝐿𝑝(𝜇) = 𝛼. By the definition of the contact
set, 𝑉 (𝜇) must be constant over the points in the support of 𝜏 as well. This means that
𝜏 can be implemented by a cheap talk equilibrium because the sender does not have any
profitable deviation at 𝜏 , hence 𝒱𝐵𝑃 (𝑝) = 𝒱𝐶𝑇 (𝑝). Finally, condition (iii) describes when 𝑉

admits a flat minimal dominating affine function at 𝑝 or a degenerate distribution at 𝑝 is
optimal under Bayesian persuasion.

Figure 2-3: Flat vs. non-flat regression line

Figure 2-3 plots a singleton-valued 𝑉 with three peaks and illustrates both the case where
the regression line is flat and the case where it is not. First, consider the prior 𝑝1 between
the first two equally high peaks of 𝑉 . It is clear that the minimal affine function representing
the concave envelope of 𝑉 at 𝑝 is the flat line passing through them. This coincides with
their regression line and therefore the persuasion value can be attained with cheap talk.
Differently, when we consider prior 𝑝2 between the second and the third peaks with different
values, the corresponding regression line for optimal persuasion is not flat, hence mediation
cannot implement any persuasion-optimal distribution.

19See for example Dworczak and Kolotilin (2022).
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Proposition 15 implies that it suffices to focus on the pairwise comparison of persuasion
vs. cheap talk and mediation vs. cheap talk. Geometrically, cheap talk attains the persuasion
value if and only if the concave envelope and the quasiconcave envelope of 𝑉 coincide at 𝑝.
When the state is binary, this happens if and only if cheap talk attains global maximum
value, or no disclosure is optimal under persuasion (i.e., (iii) in Proposition 15).

Next, we present a geometric comparison between mediation and cheap talk. When Ω

is binary, this comparison is captured by a weaker version of the single-crossing condition.
Recall that given a closed-valued correspondence U : R ⇒ R, its upper and lower envelope
respectively are (𝑥) = maxU(𝑥) and (𝑥) = minU(𝑥). A correspondence U is mono-crossing
from below if for any 𝑥 < 𝑥′, (𝑥) > 0 implies (𝑥′) ≥ 0. U is mono-crossing from above if
for any 𝑥 < 𝑥′, (𝑥) < 0 implies (𝑥′) ≤ 0. We say U is mono-crossing if it is mono-crossing
either from below or from above. When U is singleton-valued, we obtain the corresponding
definition for functions: See Figure 2-4.20

Proposition 16. If no disclosure is suboptimal under cheap talk, then 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝) if
and only if V(𝜇)− 𝑉 𝐶𝑇 (𝑝) is mono-crossing.

Figure 2-4: Comparison of mono-crossing and not mono-crossing functions

Intuitively, the mono-crossing condition captures the sender’s tendency to misreport.
Fix any 𝑉 ∈ V such that the shifted indirect utility 𝑉 (𝜇) − 𝑉 𝐶𝑇 (𝑝) is mono-crossing and
𝑉 (𝑝) < 𝑉 𝐶𝑇 (𝑝). We have 𝑉 (𝜇) ≤ 𝑉 𝐶𝑇 (𝑝) on at least one of [0, 𝑝) or (𝑝, 1]. In the former
case, the sender always prefers to over-claim the state if her preference is mono-crossing from
below. Hence, it is impossible for the mediator to credibly randomize over the posteriors
with sender values higher/lower than 𝒱𝐶𝑇 (𝑝), which is the key for mediation to outperform
cheap talk as we will show in Section 2.6.

20A function 𝑈 : R → R is mono-crossing from below (above) if for any 𝑥 < 𝑥′, 𝑈(𝑥) > (<) 0 implies
𝑈(𝑥′) ≥ (≤) 0, and we say 𝑈 is mono-crossing if it is mono-crossing either from below or from above. This
property, also called weak single-crossing in Shannon (1995), is a weaker version of the standard single-
crossing property.
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If instead, no disclosure is optimal under cheap talk, then 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝) if and only
if no disclosure is optimal under mediation. Applying the results in Dworczak and Kolotilin
(2022), we may verify the optimality of no disclosure when V = 𝑉 is singleton-valued. If
there exists 𝑔 ∈ R such that the distorted value function (1 + 𝑔(𝜇− 𝑝))𝑉 (𝜇) in Proposition
14 is superdifferentiable at 𝑝, then no disclosure is optimal under mediation.21

When the sender’s payoff is uniquely defined given the receiver’s posterior and we strengthen
the mono-crossing condition of Proposition 16 to the standard single-crossing condition, the
equivalence between mediation and chap talk is much stronger as we show next.

Proposition 17. Assume that V = 𝑉 is singleton-valued. If 𝑉 (𝜇) − 𝑉 𝐶𝑇 (𝑝) is single-
crossing at 𝜇 = 𝑝, then 𝒯𝑀𝐷(𝑝) = 𝒯𝐶𝑇 (𝑝) and all cheap talk equilibria attain the same value
for the sender.22 In this case, no disclosure is optimal for mediation.

The assumptions of Proposition 17 hold whenever V = 𝑉 is monotone. Therefore, coun-
tervailing incentives (i.e., 𝑉 non-monotone) are necessary for mediation to strictly outperform
cheap talk with binary states.

Propositions 16 and 17 imply that cheap talk and mediation attain the same sender-
optimal value for several canonical shapes of the sender’s payoff.

Corollary 13. Assume that V = 𝑉 is singleton-valued. If 𝑉 is concave or quasiconvex,
then 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝) for all 𝑝 ∈ (0, 1). There exists a non-monotone quasiconcave 𝑉 and
𝑝 ∈ (0, 1) such that 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝).

When 𝑉 is concave, it is well known that 𝒱𝐵𝑃 (𝑝) = 𝑉 (𝑝), hence all the three communi-
cation protocols yield the same value as no disclosure. When 𝑉 is quasiconvex, the shifted
value 𝑉 (𝜇)−𝑉 𝐶𝑇 (𝑝) is either mono-crossing or single-crossing at 𝜇 = 𝑝.23 When 𝑉 is quasi-
concave, we cannot apply Proposition 16 since no disclosure is sender-optimal for cheap talk.
However, we can still construct an example with a quasiconcave (yet not concave) indirect
value 𝑉 and prior 𝑝 such that no disclosure is suboptimal for mediation.24

In Sections 2.5 and 2.6, we generalize these results to settings with an arbitrary number of
states. While the basic intuition remains the same, the higher dimensionality of the problem
does not allow us to use one-dimensional notions such as the mono-crossing or single-crossing

21This becomes an if and only if when the infimum is attained in the mediation program in Proposition
14, that is, strong duality holds for the mediation program. However, differently from Bayesian persuasion,
strong duality does not hold in general for mediation as we show via example in Appendix B.2.

22A function 𝑈 : R → R is single-crossing at 𝑥̂ if 𝑈 is single-crossing and 𝑈(𝑥̂) = 0.
23When the shifted value 𝑉 (𝜇)−𝑉 𝐶𝑇 (𝑝) is mono-crossing but no disclosure is optimal under cheap talk, we

cannot apply Proposition 16 to conclude that 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝). However, in this case, the same conclusion
follows by applying Theorem 3 in Section 2.6. See the proof of Corollary 13 in Appendix B.1.3.

24See Section 2.6 for general results on the comparison between mediation and cheap talk that do not
make the distinction between optimality and suboptimality of no disclosure for cheap talk.
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properties to characterize when elicitation and mediation are strictly valuable. However,
these properties are still relevant when the sender’s payoff depends on a one-dimensional
statistic of the receiver’s posterior (see Appendix B.3.2).

2.5 Persuasion vs. Mediation
In this section, we go back to our general setting and compare the sender’s optimal value
under Bayesian persuasion and mediation. Our first result extends Proposition 15.

Theorem 2. Elicitation has no value if and only if commitment has no value, that is,

𝒱𝐵𝑃 (𝑝) = 𝒱𝑀𝐷(𝑝) ⇐⇒ 𝒱𝐵𝑃 (𝑝) = 𝒱𝐶𝑇 (𝑝).

Theorem 2 implies there are only three possible relationships among the values: 𝒱𝐵𝑃 (𝑝) =

𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝), 𝒱𝐵𝑃 (𝑝) > 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝), or 𝒱𝐵𝑃 (𝑝) > 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝). Com-
bined with the geometric characterizations of the optimal persuasion value (Kamenica and
Gentzkow (2011)) and the optimal cheap talk value (Lipnowski and Ravid (2020)), Theorem
2 also provides a geometric comparison between the sender’s optimal value under commit-
ment and their optimal value under any truthful communication mechanism: these are the
same if and only if the concave and quasiconcave envelopes of the sender’s value function
coincide at the prior. Therefore, if the sender cannot achieve the optimal persuasion value
using single-round cheap talk, then she cannot attain this via any communication mechanism
without sender commitment (e.g. multiple-round cheap talk, noisy cheap talk).

The proof of Theorem 2 generalizes that of Proposition 15 to multiple states. In fact,
the optimal persuasion value is still attained from above by the minimal affine functional
(i.e., a hyperplane) that dominates 𝑉 (𝜇) pointwise. Let 𝐿𝑝(𝜇) = ⟨𝑓𝑝, 𝜇⟩ denote this affine
functional, where 𝑓𝑝 ∈ R𝑛 is its representing vector, and fix a finitely supported distribution
𝜏 that is optimal under persuasion and that is implementable under mediation.25 The duality
result in Dworczak and Kolotilin (2022) implies that 𝑉 (𝜇) = ⟨𝑓𝑝, 𝜇⟩ for all 𝜇 in the support
of 𝜏 . In other words, 𝑓𝑝 represents the regression hyperplane that passes through all the
points

{︀
(𝜇, 𝑉 (𝜇))

}︀
𝜇∈supp(𝜏). The zeroCov condition of Theorem 1 implies that there exists

an intercept 𝛼 ∈ R such that 𝑉 (𝜇) = ⟨𝑓𝑝, 𝜇⟩ = 𝛼 for all 𝜇 ∈ supp(𝜏). Therefore, 𝜏 must be
implementable under cheap talk because it induces a constant optimal value for the sender,
hence 𝒱𝐵𝑃 (𝑝) = 𝒱𝐶𝑇 (𝑝).

Unlike the binary case, comparing the concave envelope and the quasiconcave envelope
is not easy in general. Thus, we take a constructive approach and provide a sufficient
condition for persuasion to strictly outperform mediation. To state the formal condition, we

25Given that we restrict to finitely many states, the finite-support assumption is innocuous.
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begin with the following definition. We say a distribution 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) attains value 𝑠 (under
cheap talk) if 𝑠 ∈ ∩𝜇∈supp(𝜏)V(𝜇), and a value 𝑠 ∈ R is attainable under cheap talk if there
exists 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) that attains it. By Theorem 1 in Lipnowski and Ravid (2020), 𝑠 ≥ 𝑉 (𝑝)

is attainable under cheap talk if and only if 𝑝 ∈ co
{︀
𝜇 ∈ ∆(Ω) : 𝑉 (𝜇) ≥ 𝑠

}︀
. For every set

𝐷 ⊆ ∆(Ω), let aff(𝐷) ⊆ R𝑛 denote the affine hull of 𝐷.

Definition 10. For every 𝑠 ≥ 𝑉 (𝑝) attainable under cheap talk, we define the cheap talk
hull of 𝑠 as

𝐻(𝑠) :=
⋃︁

{aff(supp(𝜏)) ∩∆(Ω) : 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) attains value 𝑠, | supp(𝜏)| < ∞} . (35)

We define 𝐻* := 𝐻(𝒱𝐶𝑇 (𝑝)).26

The cheap talk hull of 𝑠 is the intersection of ∆(Ω) and the largest affine hull spanned
by the support of some 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) with finite support.27 In this case, we say that 𝜏 spans
out 𝐻(𝑠).

Theorem 2 leads to the following sufficient condition for persuasion to strictly outperform
mediation – it suffices to check whether there exists another 𝜇 ∈ 𝐻* where the sender’s most
preferred cheap talk equilibrium with prior 𝜇 is strictly better than the optimal cheap talk
equilibrium with prior 𝑝.

Proposition 18. If there exists 𝜇 ∈ 𝐻* such that 𝑉 𝐶𝑇 (𝜇) > 𝑉 𝐶𝑇 (𝑝), then 𝒱𝐵𝑃 (𝑝) >

𝒱𝑀𝐷(𝑝).

The proof is constructive. Fix any optimal 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) that spans out 𝐻*. For any
posterior 𝜇 ∈ 𝐻* with 𝑉 𝐶𝑇 (𝜇) > 𝑉 𝐶𝑇 (𝑝), there exists 𝜏𝜇 ∈ 𝒯𝐶𝑇 (𝜇) that attains 𝑉 𝐶𝑇 (𝜇) and
𝛼𝜇 > 1 such that (1 − 𝛼𝜇)𝜇 + 𝛼𝜇𝑝 is in the (relative) interior of co(supp(𝜏)). Hence, there
exists 𝜏 ′ ∈ 𝒯𝐶𝑇 ((1 − 𝛼𝜇)𝜇 + 𝛼𝜇𝑝) that attains 𝑉 𝐶𝑇 (𝑝), and 1

𝛼𝜇
𝜏 ′ + 𝛼𝜇−1

𝛼𝜇
𝜏𝜇 is a distribution

of beliefs centered at prior 𝑝 and that attains a value strictly higher than 𝑉 𝐶𝑇 (𝑝).28 This
construction also yields a lower bound on the value of commitment:

𝒱𝐵𝑃 (𝑝)− 𝒱𝐶𝑇 (𝑝) ≥ 𝛼𝜇−1

𝛼𝜇
(𝑉 𝐶𝑇 (𝜇)− 𝑉 𝐶𝑇 (𝑝)).

for all 𝜇 ∈ 𝐻* such that 𝑉 𝐶𝑇 (𝜇) > 𝑉 𝐶𝑇 (𝑝).

26With an abuse of notation we drop the dependence of 𝐻(𝑠) and 𝐻* from 𝑝.
27Lemma 11 in Appendix B.1.1 shows that it is without loss of generality to focus on 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) with

finite support.
28A similar construction idea is applied in Corollary 2 of Lipnowski and Ravid (2020), which focuses on

the optimal cheap talk value and implements this construction when 𝐻* = Δ(Ω). See the discussion about
this full-dimensionality case below.
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We next introduce an important particular case that will help us to make tighter the
comparison between persuasion and mediation in this section and the one between cheap
talk and mediation in the next section.

Definition 11. We say that the full-dimensionality condition holds at 𝑝 if 𝐻* = ∆(Ω).

Full-dimensionality amounts to having a solution of the cheap talk program that spans
out the entire simplex. Moreover, it allows us to make the condition of Proposition 18 tight.

Corollary 14. Assume that the full-dimensionality condition holds at 𝑝. Then, 𝒱𝐵𝑃 (𝑝) >

𝒱𝑀𝐷(𝑝) if and only if there exists 𝜇 ∈ ∆(Ω) such that 𝑉 (𝜇) > 𝑉 𝐶𝑇 (𝑝).

When does the full-dimensionality condition hold? In the binary-state case, it holds
if the maximum cheap talk value is strictly higher than the maximum value achievable
under no disclosure. In general, the next lemma exactly answers the previous question by
characterizing the full-dimensionality condition in terms of the value that the sender can
attain under cheap talk around the prior.

The full-dimensionality condition holds at 𝑝 if and only if 𝑉 𝐶𝑇 (𝑝) can be attained
under cheap talk at every prior in an open neighborhood of 𝑝.29 In particular, the full-
dimensionality condition holds if 𝑉 𝐶𝑇 is locally constant around 𝑝.

This characterization is particularly useful because 𝑉 𝐶𝑇 is locally constant around 𝑝 for
almost every prior 𝑝 when the action set 𝐴 is finite, as shown in Corollary 2 of Lipnowski
and Ravid (2020). Combining this observation with our Corollary 14 yields that, when the
action set is finite, for almost all priors, either cheap talk achieves the global maximum value
or elicitation is strictly valuable.

2.5.1 The Think Tank Revisited

We now illustrate the ideas introduced in this section with a three-state example. Think
tanks often act as research mediators between an interest group and lawmakers. In partic-
ular, the most prominent ones have enough reputation to make a credible commitment to
information policies that elicit information from an interest group and release it to the law-
maker. Here, we revisit the think-tank example in Lipnowski and Ravid (2020) by assuming
that the sender is an interest group, say a lobbyist with private knowledge of the state, the
receiver is a lawmaker with the option to maintain the status quo or to choose a new policy,
and the mediator is a think tank which is completely aligned to the interest group.30

29Open in relative topology.
30In Lipnowski and Ravid (2020), the think tank does not have commitment power but does not need

to elicit information from an interest group. Therefore, in their cheap-talk example, the think tank is the
sender and tries to influence the lawmaker, i.e., the receiver.
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There are three possible states of the world Ω = {𝜔1, 𝜔2, 𝜔3} and the lawmaker can take
one of four actions 𝐴 = {𝑎0, 𝑎1, 𝑎2, 𝑎3}. Each action 𝑎𝑖 for 𝑖 ∈ {1, 2, 3} represents a costly
and risky policy that pays if and only if the state is 𝜔𝑖. Differently, action 𝑎0 is safe and
represents the status quo. Formally, the lawmaker’s payoff 𝑢𝑅(𝜔𝑖, 𝑎𝑗) is 1 if 𝑖 = 𝑗 ̸= 0, 0 if
𝑗 = 0, and −𝑐 otherwise for some 𝑐 > 1.

Figure 2-5: Lobbyist’s value function and its quasiconcave envelope

Left panel: lobbyist’s value correspondence over the lawmaker’s belief space. Right panel:
lobbyist’s optimal cheap talk value (i.e., quasiconcave envelope) over the lawmaker’s belief space.

This illustrates the case where 𝑐 = 2.

The lobbyist is informed about the state of the world, but their preferences are misaligned
with respect to the lawmaker. In particular, the lobbyist’s payoff is 𝑢𝑆(𝑎) =

∑︀3
𝑖=0 𝑣𝑖I[𝑎 = 𝑎𝑖]

with 𝑣3 > 𝑣2 > 𝑣1 > 𝑣0 = 0, that is, the lobbyist prefers higher indexed policies and
maintaining the status quo yields zero payoff. Therefore, the lobbyist wants to influence the
lawmaker to change the status quo regardless of the state of the world.

Given belief 𝜇 ∈ ∆(Ω), the lawmaker’s best response is to take action 𝑎𝑖 if and only if
𝜇(𝜔𝑖) >

𝑐
1+𝑐

, and they are indifferent between 𝑎𝑖 and 𝑎0 when 𝜇(𝜔𝑖) =
𝑐

1+𝑐
. This is illustrated

in the left panel of Figure 2-5. The colored regions at the vertexes of the simplex represent
the beliefs such that the lobbyist’s payoff is equal to 𝑣𝑖 for some 𝑖 ∈ {1, 2, 3}. The central
hexagon is the region of the lawmaker’s beliefs where their optimal response is to maintain
the status quo, yielding a zero payoff for the lobbyist. Observe that the boundary segments
between each colored region and the zero-payoff region represent the beliefs such that the
lawmaker is indifferent between the status quo and one of the new policies.

Suppose first that the lobbyist communicates with the lawmaker without the think tank
mediation. This corresponds to the cheap-talk case and the lobbyist’s optimal value as a
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function of the prior belief 𝑝 is

𝒱𝐶𝑇 (𝑝) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑣3 if 𝑝(𝜔3) ≥ 𝑐

1+𝑐

𝑣1 if 𝑝(𝜔1) ≥ 1
1+𝑐

𝑣2 otherwise.

This is the quasiconcave envelope 𝑉 𝐶𝑇 (𝑝) of 𝑉 evaluated at 𝑝. The right panel of Figure
2-5 shows the level sets of the quasiconcave envelope over the simplex. When the prior
is in one of the three colored regions in the left panel, then the babbling equilibrium is
optimal for the lobbyist. Instead, the status-quo region can be split into two subregions.
For priors that lie between the 𝑣2 and 𝑣3 regions, there exists an equilibrium distribution of
the lawmaker’s beliefs supported on posteriors where 𝑎2 is uniquely optimal and posteriors
where the lawmaker is indifferent between the status quo and 𝑎3. Differently, for priors to
the right of the blue dashed line, (BP) implies that any optimal equilibrium must induce at
least a posterior where 𝑎1 is optimal, implying the highest value attainable is 𝑣1.

Given that the action set is finite, the full-dimensionality condition holds at almost all
priors 𝑝 in the simplex. For example, suppose that the prior 𝑝 lies between the 𝑣2 and 𝑣3

region as in Figure 2-6. Around this prior, the quasiconcave envelope 𝑉 𝐶𝑇 is constant and
equal to 𝑣2. For instance, this value is attained by the lobbyist-optimal distribution of the
lawmaker’s beliefs supported over {𝜇1, 𝜇2, 𝜇3, 𝜇4} as shown in Figure 2-6. At posteriors 𝜇2

and 𝜇3 the lawmaker takes action 𝑎2, whereas on 𝜇1 and 𝜇4 the lawmaker mixes between the
status quo and action 𝑎3 so to induce exactly a payoff equal to 𝑣2 for the lobbyist.31 Observe
that the affine hull of {𝜇1, 𝜇2, 𝜇3, 𝜇4} has dimension 2, hence full dimensionality holds.

Assume now that the lobbyist and the lawmaker communicate through the mediation of
the think tank. We can easily apply Corollary 14 to establish when the think tank mediation
secures to the lobbyist the Bayesian persuasion value. In fact, this happens if and only if the
prior lies in the 𝑣3 region, i.e., the red triangle in the left panel of Figure 2-5. In this case,
no disclosure is optimal for all three of the communication protocols considered. As soon as
the prior 𝑝 is outside this region, that is when 𝑝(𝜔3) <

𝑐
1+𝑐

, we have 𝑉 𝐶𝑇 (𝜇) > 𝑉 𝐶𝑇 (𝑝) for
all 𝜇 in the 𝑣3 region, yielding that 𝒱𝐵𝑃 (𝑝) > 𝒱𝑀𝐷(𝑝) ≥ 𝒱𝐶𝑇 (𝑝).

For example, for the prior 𝑝 considered in Figure 2-6, we can still consider the distribution
over posteriors supported on {𝜇1, 𝜇2, 𝜇3, 𝜇4} but this time selecting a different best response
for the lawmaker: 𝑎2 at 𝜇2 and 𝜇3, and 𝑎3 at 𝜇1 and 𝜇4. This distribution does not corre-
spond to any cheap talk equilibrium but can be induced by committing to some information
structure. Given Theorem 2, both cheap talk and mediation are outperformed in this case.

31In our belief-based approach, this amounts to take a 𝑣2 as a selection from V(𝜇1) = V(𝜇4) = [0, 𝑣3].
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Figure 2-6: Construction of a cheap-talk equilibrium distribution of beliefs with a full-
dimensional cheap talk hull.

Overall, this shows that, for a large set of prior beliefs, a lobbyist with commitment power
would be strictly better off than the case where they communicate through an uninformed
think tank with commitment, that is, the value of elicitation is often strictly positive.

2.6 Mediation vs. Cheap Talk
In this section, we offer a general comparison between the sender’s optimal value under
mediation and under cheap talk. In particular, we will provide separate sufficient and neces-
sary conditions for the mediator to strictly outperform direct communication by introducing
some randomness. Moreover, these conditions collapse under the full-dimensionality condi-
tion introduced in the previous section, yielding a tight geometric characterization of when
mediation is strictly valuable.

We start with a useful lemma that extends Theorem 1 in Lipnowski and Ravid (2020).32

For every 𝑠 ∈ R, 𝑉 𝐶𝑇 (𝑝) > 𝑠 if and only if 𝑝 ∈ co{𝑉 > 𝑠}, and 𝑉 𝐶𝑇 (𝑝) < 𝑠 if and only
if 𝑝 ∈ co{𝑉 < 𝑠}.

This lemma implies that there exists a cheap talk equilibrium that attains a strictly
higher (lower) value than 𝑠 if and only if the prior lies in the convex hull of posteriors with
highest (lowest) value strictly above (below) 𝑠.

As we have seen in Corollary 12, the mediator must randomize to strictly improve on

32Theorem 1 of Lipnowski and Ravid (2020) establishes the weak inequality versions of the first equivalence
in Lemma 2.6. We extend this result to strict inequalities.
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cheap talk. Here, we show that they must randomize over posteriors with a value strictly
above and below the optimal cheap talk value. Recall that the cheap talk hull 𝐻(𝑠) of 𝑠 is
defined in (35).

Definition 12. For any 𝑠 ≥ 𝑉 (𝑝) attainable under cheap talk, we say that 𝑠 is (locally)
improvable at 𝑝 if there exist 𝜇 ∈ ∆(Ω) (𝜇 ∈ 𝐻(𝑠)) and 𝜆 ∈ [0, 1) such that

𝑉 𝐶𝑇 (𝜆𝜇+ (1− 𝜆)𝑝) > 𝑠 > 𝑉 𝐶𝑇 (𝜇).

We say that cheap talk is (locally) improvable at 𝑝 if 𝒱𝐶𝑇 (𝑝) is (locally) improvable at 𝑝.

In words, 𝑠 is locally improvable at 𝑝 if there are alternative priors 𝜇 ∈ 𝐻(𝑠) and 𝜇′ = 𝜆𝜇+

(1− 𝜆)𝑝 such that there exists a cheap talk equilibrium at 𝜇 and one at 𝜇′ that respectively
yield a strictly lower and a strictly higher expected payoff to the sender. Importantly, the
prior 𝜇′ corresponding to the high-value equilibrium has to be “closer” to the original prior
𝑝, in the sense that 𝜇′ lies in the semi-open segment [𝑝, 𝜇).

We can now state the main result of this section.

Theorem 3. For any 𝑠 ≥ 𝑉 (𝑝) attainable under cheap talk, if 𝑠 is locally improvable at 𝑝,
then 𝒱𝑀𝐷(𝑝) > 𝑠. Conversely, if 𝑠 is not improvable at 𝑝, then 𝒱𝑀𝐷(𝑝) = 𝑠.

As for Proposition 18, the proof of the first statement is constructive, and it is graphically
illustrated in Figure 2-7 in subsection 2.6.1. If 𝑠 is locally improvable at 𝑝, then there exists
𝜇− ∈ 𝐻(𝑠) and 𝜇+ ∈ [𝑝, 𝜇−) and two cheap talk equilibria 𝜏− and 𝜏+ respectively centered at
𝜇− and 𝜇+ that attain a value strictly lower and strictly higher than 𝑠. Because 𝜇− ∈ 𝐻(𝑠),
there exists 𝜇0 that lies on the half line with endpoint 𝜇− through 𝑝, such that 𝑠 can be
attained by a cheap talk equilibrium 𝜏0 centered at 𝜇0. The mediator may then randomize
over three cheap talk equilibria 𝜏+, 𝜏− and 𝜏0 such that (BP) and (TT) are satisfied, which
reduces to a 1-dimensional problem as the barycenters are colinear. Since 𝜇+ is “closer" to
the prior 𝑝 compared to 𝜇−, (TT) requires the mediator to assign a relatively higher weight
to 𝜏+ compared to 𝜏−, so the sender’s expected utility is strictly higher than 𝑠 with this
randomization. Note that this construction also provides a lower bound on the value of
mediation, which depends on the barycenters and cheap talk equilibria in the construction.33

The proof of the converse statement is more technical. Suppose 𝑠 is not improvable at 𝑝,
then there exists a hyperplane 𝐻 that properly separates all posteriors with values strictly
higher than 𝑠 from those with values strictly lower than 𝑠. Moreover, the prior 𝑝 lies in
the same closed half-space as the posteriors with a value strictly below 𝑠. A normal vector

33See equation 91 in Appendix B.1.5 for an explicit expression of this lower bound.
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𝑔 ∈ R𝑛 of 𝐻 is a Lagrange multiplier for the (TT) constraint such that (𝑉 (𝜇)− 𝑠)⟨𝑔, 𝜇⟩ ≤ 0

for any 𝑉 ∈ V. Hence, for any (𝜏, 𝑉 ) implementable under mediation, we have

0 ≥
∫︁

(𝑉 (𝜇)− 𝑠)⟨𝑔, 𝜇⟩ d𝜏(𝜇) =
(︂∫︁

𝑉 (𝜇) d𝜏(𝜇)− 𝑠

)︂
⟨𝑔, 𝑝⟩,

by (zeroCov) and (BP). When 𝑝 does not lie on 𝐻, we conclude that
∫︀
𝑉 d𝜏 ≤ 𝑠. Other-

wise, 𝜏 can be supported on posteriors such that 𝑉 (𝜇) ̸= 𝑠 only if 𝜇 ∈ 𝐻 ∩ ∆(Ω), which
is a strictly lower-dimensional set. We can find another separating hyperplane 𝐻 ′ while
restricting attention to 𝐻 ∩∆(Ω) and then repeat the same argument until 𝑝 is not in the
separating hyperplane or until the intersection of all separating hyperplanes 𝐻 ∩𝐻 ′ ∩∆(Ω)

is a singleton 𝑝. Either case leads to the desired conclusion that 𝒱𝑀𝐷(𝑝) ≤ 𝑠.
Paralleling the analysis in Section 2.5, under full dimensionality the previous result yields

a complete geometric characterization of the case when mediation is strictly valuable.

Corollary 15. The following hold:

1. If cheap talk is locally improvable at 𝑝, then 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝) and every optimal distri-
bution of beliefs under mediation is induced by a random communication mechanism.

2. Conversely, if cheap talk is not improvable at 𝑝, then 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝).

Moreover, if the full-dimensionality condition holds at 𝑝, then 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝) if and only
if cheap talk is improvable at 𝑝.

The first two statements of the corollary immediately follow by taking 𝑠 = 𝒱𝐶𝑇 (𝑝) in
Theorem 3. For the last part of the corollary, full dimensionality implies that cheap talk
is locally improvable at 𝑝 if and only if it is improvable at 𝑝, hence the necessary and
sufficient conditions of the first part collapse. In general, full dimensionality holds when
the quasiconcave envelope 𝑉 𝐶𝑇 (𝑝) is locally flat at 𝑝 (see Lemma 2.5), which is the case for
almost every prior 𝑝 when the action set 𝐴 is finite.

When the sender’s payoff correspondence is singleton-valued and no disclosure is not a
sender’s optimal cheap talk equilibrium, it is possible to simplify the characterization of
Corollary 15 as follows.

Corollary 16. Assume that V = 𝑉 is singleton-valued, that the full-dimensionality condition
holds at 𝑝, and that no disclosure is suboptimal for cheap talk at 𝑝 (i.e., 𝑉 𝐶𝑇 (𝑝) > 𝑉 (𝑝)).
Then 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝) if and only if there exists 𝜇 ∈ ∆(Ω) such that

𝑉 𝐶𝑇 (𝜇) > 𝑉 𝐶𝑇 (𝑝) > 𝑉 𝐶𝑇 (𝜇).
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In this case, it is sufficient to find a single alternative prior 𝜇 that admits two cheap talk
equilibria respectively inducing a strictly higher and a strictly lower sender’s payoff than the
sender’s optimal cheap talk value at 𝑝.

The next remark discusses the effect of the sender’s preferred mediated communication
on the receiver’s expected payoff.

Remark 5. Theorem 3 and Corollary 15 provide sufficient and necessary conditions that
ensure the value of mediation is strictly positive for the sender. It is then natural to ask
whether mediation also improves the expected utility of the receiver,

∫︀
𝑉𝑅(𝜇)𝑑𝜏(𝜇), where

𝑉𝑅(𝜇) := max𝑎∈𝐴 E𝜇[𝑢𝑅(𝜔, 𝑎)] is the receiver’s utility given posterior 𝜇. By inspection of the
proof of Theorem 3, it is easy to see that the distribution of beliefs 𝜏 ∈ 𝒯𝑀𝐷(𝑝) that we
construct to improve the sender’s expected utility would also strictly improve the receiver’s
expected utility provided that V = 𝑉 is singleton-valued and that 𝑉𝑅(𝜇) = 𝐺(𝑉 (𝜇)) for
some strictly increasing and convex function 𝐺 : R → R.34 In general, it is not always easy
to adapt our approach to conclude whether there exists a mediation plan that improves both
the sender’s and receiver’s expected payoff compared to their payoffs under some sender-
preferred cheap talk equilibrium. However, this is the case in the illustrative example in the
introduction as well as in the illustrations in Sections 2.6.1 and 2.7.1.35

Finally, we can use Theorem 3 to provide sufficient and necessary conditions for the
optimality of full disclosure under mediation. Observe that full disclosure is feasible under
cheap talk, or equivalently under mediation, if and only if there exists 𝑠 ∈ R such that
𝑠 ∈ ∩𝜔∈ΩV(𝛿𝜔).

Corollary 17. Full disclosure is optimal under mediation if and only if there exists 𝑠 ≥ 𝑉 (𝑝)

such that 𝑠 ∈ ∩𝜔∈ΩV(𝛿𝜔) and 𝑠 is not improvable at 𝑝. In this case, 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝).

The if part immediately follows from Theorem 3. Conversely, if full disclosure is optimal
under mediation, it follows that 𝐻* = ∆(Ω), that is, full dimensionality holds. Therefore,
the expected payoff induced by full disclosure cannot be improvable by Corollary 15.

2.6.1 Valuable Mediation in the Think-Tank Example

Consider again the setting of Section 2.5.1 with a lobbyist (sender) trying to influence a
lawmaker (receiver) through a think tank (mediator). Here, we use the results of this section

34The receiver’s expected payoff under sender-preferred cheap talk equilibrium is 𝐺(𝒱𝐶𝑇 (𝑝)). Under
𝜏 ∈ 𝒯𝑀𝐷(𝑝) that we construct to improve the sender’s expected utility, the receiver’s expected payoff is∫︀
𝐺(𝑉 (𝜇)) d𝜏(𝜇) ≥ 𝐺(

∫︀
𝑉 d𝜏) > 𝐺(𝒱𝐶𝑇 (𝑝)) by convexity of 𝐺 and the fact that sender is strictly better off

under 𝜏 . While this assumption seems overly restrictive, it is actually satisfied in some important cases as
we show in Section 2.7.1.

35See also the discussion at the end of Section 2.8.

79



to show when the mediation of the think tank is strictly valuable. Recall that in this case,
the full dimensionality condition holds at almost every prior.

Suppose first that the prior 𝑝 lies between the 𝑣2 and 𝑣3 region as in Figure 2-6. Observe
that the lawmaker’s beliefs 𝜇′ such that 𝑉 𝐶𝑇 (𝜇

′) > 𝑉 𝐶𝑇 (𝑝) = 𝑣2 are those in the 𝑣3 region
(i.e., the red triangle). Therefore, it is not possible to find a belief 𝜇 and a point 𝜇′ in the
segment [𝑝, 𝜇) as described in Definition 12. To see this, note that if 𝑉 𝐶𝑇 (𝜇

′) > 𝑣2 for some
𝜇′ ∈ [𝑝, 𝜇), then 𝜇 must be in the 𝑣3 region except the boundary red line where the lobbyist
is indifferent between 𝑎3 and 𝑎0, yielding that 𝑉 𝐶𝑇 (𝜇) = 𝑉 𝐶𝑇 (𝜇) = 𝑣3. This logic holds for
all priors 𝑝 that are in the central hexagon and at the left of the dashed blue line in Figure
2-6, that is for any 𝑝 with 𝑝(𝜔1) <

1
1+𝑐

. For all such priors, cheap talk is not improvable at
𝑝, so the think tank is worthless in this case.

Figure 2-7: Construction of an improving distribution of beliefs under mediation

Differently, consider a prior 𝑝 to the right of the same dashed blue line as in Figure 2-7,
that is such that 𝑝(𝜔1) >

1
1+𝑐

. At all these priors, cheap talk is improvable, so by Corollary
15 mediation by a think tank strictly improves upon direct communication. Intuitively, me-
diation helps strictly when the lawmaker has a pessimistic prior belief. Figure 2-7 graphically
constructs an improving distribution of beliefs that is feasible under mediation following the
logic of Theorem 3. First, recall from Figure 2-5 that 𝑉 𝐶𝑇 (𝑝) = 𝑣1 > 0. Next, fix 𝜇− and
𝜇+ ∈ [𝑝, 𝜇−) lying in the same segment as in Figure 2-7. Both these two beliefs are to
the left of the blue dashed line, implying that 𝑉 𝐶𝑇 (𝜇+) = 𝑉 𝐶𝑇 (𝜇−) = 𝑣2 > 𝑣1. Moreover,
𝑉 𝐶𝑇 (𝜇−) = 𝑉 𝐶𝑇 (𝜇+) = 0, the payoff of the babbling equilibrium. This shows that cheap
talk is improvable at 𝑝. Next, consider a distribution 𝜏+ of the lawmaker’s beliefs that is
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supported on
{︀
𝜇1
+, 𝜇

2
+

}︀
and with barycenter 𝜇+. This is a feasible distribution of beliefs

under cheap talk at prior 𝜇+ since we can select a lawmaker’s mixed best response at 𝜇2
+

that induces expected payoff 𝑣2 for the lobbyist. Importantly, this distribution of beliefs
and selection gives an overall expected payoff 𝑉 𝐶𝑇 (𝜇+) = 𝑣2 > 𝑣1 to the lobbyist. Consider
also two degenerate distributions of beliefs 𝜏− = 𝛿𝜇− and 𝜏0 = 𝛿𝜇0 , where 𝜇0 lies at the
intersection of the previous segment and the boundary between the status-quo region and
the 𝑣1 region.36 Given that their barycenters all lie in the same segment as 𝑝, we can mix the
three distributions of beliefs 𝜏+, 𝜏−, and 𝜏0 in a way to satisfy (BP) and (TT) while strictly
improving the overall expected payoff of the lobbyist. Given that the barycenters of these
distributions are colinear, the randomization over 𝜏+, 𝜏−, and 𝜏0 is the same as the one in
the illustrative example in the introduction.

Figure 2-8: Relationships among communication protocols

For 𝑝 with 𝑝(𝜔1) ≥ 𝑐
1+𝑐

, no disclosure is optimal under cheap talk and suboptimal un-
der mediation. Hence, the optimal mediation solution is strictly more informative than an
optimal cheap talk equilibrium under these priors. Moreover, as the cost 𝑐 increases, the
region where the cheap talk is improvable expands, and it converges to the entire simplex as
𝑐 → ∞. Therefore, mediation by a think tank is more likely to be valuable for high-stakes
decisions. In general, the dotted blue line in Figure 2-7 separates the status-quo hexagon

36In principle, there are multiple ways to construct 𝜇0 and 𝜏0, and 𝜇0 is not required to lie in the 𝑣1
region. By full dimensionality, any 𝜇0 in a neighborhood of 𝑝 attains 𝑣1 under cheap talk. Hence, for any
selection of 𝜇−, we can choose a 𝜇0 in the extended segment (𝜇−, 𝑝] through 𝑝 where 𝑣1 is attained under
cheap talk with some distribution 𝜏0. We choose the simplest one for illustration here.
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into two regions: to its left elicitation is strictly valuable but mediation is not, to its right
both elicitation and mediation are strictly valuable. The relations among the three pro-
tocols are summarized in Figure 2-8. All the three possible scenarios that we mentioned
after Theorem 2 are present in the current example: For priors 𝑝 in the red region we have
𝒱𝐵𝑃 (𝑝) = 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝), for 𝑝 in the blue region 𝒱𝐵𝑃 (𝑝) > 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝), and for 𝑝

in the green region 𝒱𝐵𝑃 (𝑝) > 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝).37

Finally, we show that for every 𝑝 such that 𝑝(𝜔1) ∈ ( 1
1+𝑐

, 𝑐
1+𝑐

), there is a distribution
of beliefs 𝜏 ∈ 𝒯𝑀𝐷(𝑝) under which both the lobbyist’s and lawmaker’s expected payoff are
strictly higher than their payoff under a lobbyist-preferred cheap talk equilibrium. Consider
a lobbyist-preferred cheap talk equilibrium 𝜏 ′ ∈ 𝒯𝐶𝑇 (𝑝) that is supported on 𝜇3, 𝜇4 and
some posteriors on the boundary of the 𝑣1 region as in Figure 2-6. At every posterior in
the support of 𝜏 ′, the lawmaker is indifferent between 𝑎0 and some other action, so the
lawmaker’s expected payoff is 0 under 𝜏 ′. We’ve illustrated that mixing among three cheap
talk equilibria 𝜏+, 𝜏− and 𝜏0 with different but colinear barycenters yields a 𝜏 ∈ 𝒯𝑀𝐷(𝑝) that
strictly improves the lobbyist’s payoff. Different from the illustration, we now take a 𝜏0 that
supports on 𝜇3, 𝜇4 and 𝛿𝜔1 . The lawmaker takes action 𝑎1 with certainty at posterior 𝛿𝜔1 ,
so her expected payoff at 𝛿𝜔1 is 1. Hence, the lawmaker’s expected utility under 𝜏 is strictly
positive.

2.7 Moment Mediation: Quasiconvex Utility
In this section, we apply the results from Section 2.6 to moment-measurable mediation.
Formally, assume that assume V = 𝑉 is singleton-valued and specifically that 𝑉 (𝜇) =

𝑣(𝑇 (𝜇)) for some continuous 𝑣 : R𝑘 → R and 𝑘-dimensional moment 𝑇 (𝜇), that is, a full-
rank linear map 𝑇 : ∆(Ω) → R𝑘 for some 1 ≤ 𝑘 ≤ 𝑛 − 1. Also, define the set of relevant
moments as 𝑋 := 𝑇 (∆(Ω)) ⊆ R𝑘. Here, we focus on the multidimensional case (𝑘 > 1)
under the assumption that 𝑣(𝑥) is strictly quasiconvex. This is the main case considered in
past works on multidimensional cheap talk under transparent motives (see Chakraborty and
Harbaugh (2010) and Lipnowski and Ravid (2020)).38 The analysis of the one-dimensional
case (𝑘 = 1) for general 𝑣(𝑥) is similar to that for the binary-state case in Section 2.4 and is
relegated to Appendix B.3.

When 𝑣(𝑥) is strictly quasiconvex and the full-dimensionality condition holds at 𝑝, only
two extreme cases can happen: either all the communication protocols attain the global max
of 𝑉 or the optimal sender’s value across communication protocols, including no disclosure,

37The dotted grey line in Figure 2-8 is a zero-measure region where full dimensionality does not hold.
38Quasiconvex sender’s utilities play an important role also in the informed information design model of

Koessler and Skreta (2021).
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are all strictly separated. Hence, elicitation, mediation, and communication are all strictly
valuable in the latter case.

Theorem 4. Assume that 𝑉 (𝜇) = 𝑣(𝑇 (𝜇)) for some 𝑘-dimensional moment 𝑇 (𝑘 ≥ 2) and
continuous and strictly quasiconvex 𝑣(𝑥). If the full-dimensionality condition holds at 𝑝,
then exactly one of these cases holds:

(1) max𝑉 = 𝒱𝐵𝑃 (𝑝) = 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝) > 𝑉 (𝑝);

(2) max𝑉 > 𝒱𝐵𝑃 (𝑝) > 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝) > 𝑉 (𝑝).

Corollary 6 in Lipnowski and Ravid (2020) shows that under strict quasiconvexity no
disclosure is suboptimal under cheap talk. In addition, we show that strict quasiconvexity
and full-dimensionality imply that cheap talk is improvable at 𝑝 if and only if its optimal
value is strictly below the global max of 𝑉 . Finally, the strict separation between Bayesian
persuasion and mediation in (2) comes from Theorem 2.

While Theorem 4 dramatically simplifies the comparison among communication protocols
in the present setting, it still relies on the full-dimensionality condition. We now provide an
easy-to-check condition that implies the existence of a non-trivial set of priors that satisfy full
dimensionality when 𝑣 is strictly quasiconvex. With an abuse of notation, we let 𝑇 (Ω) ⊂ 𝑋

denote the finite set composed by all the points 𝑇 (𝛿𝜔) with 𝜔 ∈ Ω.
We say that 𝑣(𝑥) is minimally edge non-monotone given 𝑇 if there exists 𝑥 ∈ argmin𝑥̃∈𝑇 (Ω) 𝑣(𝑥̃)

such that for all 𝑥 ∈ 𝑇 (Ω) ∖ {𝑥}, the one-dimensional function 𝑣𝑥(𝜆) := 𝑣(𝜆𝑥+ (1− 𝜆)𝑥) is
neither weakly increasing nor weakly decreasing in 𝜆 ∈ [0, 1].

The utility function 𝑣(𝑥) is minimally edge non-monotone whenever its one-dimensional
restrictions over the segments between the worst possible degenerate belief and any alterna-
tive degenerate belief are all non-monotone. This property captures the idea of countervailing
incentives that we mentioned in the introduction. When 𝑣(𝑥) is both strictly quasiconvex
and minimally edge non-monotone given 𝑇 , it follows that the one-dimensional function
𝑣𝑥(𝜆) defined above is strictly single-dipped with a unique minimum at some 𝜆𝑥 ∈ (0, 1).

Proposition 19. Assume that 𝑉 (𝜇) = 𝑣(𝑇 (𝜇)) for some 𝑘-dimensional moment 𝑇 (𝑘 ≥ 2)
and that 𝑣(𝑥) is continuous, strictly quasiconvex, and minimally edge non-monotone given
𝑇 . Then there exists an (𝑛 − 1)-simplex ∆̃ ⊆ ∆(Ω) such that the full-dimensionality con-
dition holds for all 𝑝 ∈ ∆̃. For every such 𝑝, point (2) of Theorem 4 holds if and only if
min𝑥∈𝑇 (Ω) 𝑣(𝑥) < max𝑥∈𝑋 𝑣(𝑥).

In the proof, we derive an explicit expression for the simplex ∆̃, that is,

∆̃ := co{𝛿𝜔, {𝜇𝜔 ∈ ∆(Ω) : 𝜔 ∈ Ω ∖ {𝜔}}},
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where 𝜔 is an element in argmin𝜔∈Ω 𝑣(𝑇 (𝛿𝜔)) and, for every 𝜔 ∈ Ω ∖ {𝜔}, 𝜇𝑤 is the unique
element of the one-dimensional segment (𝛿𝜔, 𝛿𝜔] such that 𝑣(𝑇 (𝛿𝜔)) = 𝑣(𝑇 (𝛿𝜔)).39 Full
dimensionality holds at every 𝑝 ∈ ∆̃ because strict quasiconvexity implies that at every
such prior, there exists an optimal cheap talk equilibrium supported on all the extreme
points of ∆̃.

2.7.1 Moment Mediation: Illustrations

In this subsection, we provide two additional applications of our results to seller-buyer in-
teractions.

Salesman with Reputation Concerns

We extend our illustration in the introduction to multidimensional states and revisit the
salesman example in Chakraborty and Harbaugh (2010) and Lipnowski and Ravid (2020).
For simplicity, we restrict here to a parametric case and analyze a more general version of
this illustration in Appendix B.1.7.

A seller is trying to convince a buyer to purchase a good with multiple features with
qualities 𝜔 ∈ Ω = {0, 1}𝑘, where 𝑘 > 1. For example, the good can be a laptop where
each 𝜔𝑖 represents the laptop’s performance in one of 𝑘 tasks such as graphic design, data
analysis, or gaming. Note that 0 ∈ Ω, that is, there is a state of the world where the good
is completely useless.

The buyer is uncertain about 𝜔, and their payoff from purchasing this good only depends
on the posterior mean on the quality of these features 𝑇 (𝜇) = E𝜇(𝜔) ∈ R𝑘. In particular,
given a vector of expectations 𝑥 = 𝑇 (𝜇) for laptop performance on each task, the laptop’s
value for the buyer is 𝑅(𝑥) = ⟨𝑦, 𝑥⟩ for some 𝑦 ∈ R𝑘

++ with
∑︀𝑘

𝑖=1 𝑦𝑖 = 1, where 𝑦𝑖 measures
the buyer’s weight on task 𝑖. Moreover, the buyer has an outside option with value 𝜀 ∈ R
with distribution 𝐺(𝜀) = 𝜀𝑛 for some 𝑛 ≥ 2, and she purchases the good if and only if
𝑅(𝑥) ≥ 𝜀.

As in the illustrative example, the seller has reputation concerns. That is, the seller’s
expected payoff with posterior mean 𝑥 is 𝑣(𝑥) = 𝐺(𝑅(𝑥))− ⟨𝜌, 𝑥⟩, where 𝜌 ∈ R𝑘

++ measures
the seller’s reputation concern. Assume the seller’s reputation concern is low compared to
the benefit of making a sale, that is, 𝑣(𝑇 (𝛿𝜔)) > 0 for all 𝜔 ∈ Ω ∖ {0}.40

The seller’s payoff 𝑣(𝑥) = ⟨𝑦, 𝑥⟩𝑛−⟨𝜌, 𝑥⟩ is strictly convex. It is also minimally edge non-
monotone given 𝑇 . To see this, fix any 𝑥 = 𝑇 (𝛿𝜔) ̸= {0} and note that it suffices to check that
𝜑(𝛼) := 𝑣(𝛼𝑥) is non-monotone in 𝛼 ∈ [0, 1]. Direct calculation yields 𝜑′(0) = −⟨𝜌, 𝑥⟩ < 0

39For every 𝜔 ∈ Ω ∖ {𝜔}, 𝜇𝜔 is well-defined because of strict quasiconvexity and minimal edge non-
monotonicity.

40This holds when 𝑦𝑛𝑖 > 𝜌𝑖 for every 𝑖 = 1, . . . , 𝑘.
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since 𝜌 ∈ R𝑘
++ and 𝑥 ∈ R𝑘

+. By assumption, 𝜑(1) > 𝜑(0) and 𝜑′ is continuous, so 𝜑 is
non-monotone.

By Proposition 19, there exists an (𝑛−1)-simplex ∆̃ ⊆ ∆(Ω) where the full-dimensionality
condition holds. This simplex can be explicitly constructed by finding 𝛼𝜔 ∈ (0, 1) that solves
𝑣(𝛼𝑇 (𝛿𝜔)) = 0 for all 𝜔 ∈ Ω ∖ {0}. Let 𝜇𝜔 = 𝛼𝜔𝛿𝜔 + (1 − 𝛼𝜔)𝛿0 and ∆̃ := co{𝛿0, {𝜇𝜔 : 𝜔 ∈
Ω ∖ {0}}} is the desired simplex. Proposition 19 also implies that the seller strictly benefits
from hiring an advertising agency when the prior is in ∆̃. Moreover, since the seller’s payoff
at state 0 is strictly lower than at other states, the dichotomy in Theorem 4 implies that
the seller attains an even higher payoff under Bayesian persuasion than mediation at priors
in ∆̃.

If the seller’s reputation concern becomes more relevant, that is 𝜌 increases in each entry,
then 𝛼𝜔 increases because 𝛼𝑛−1

𝜔 ⟨𝑦, 𝑇 (𝛿𝜔))⟩ = ⟨𝜌, 𝑇 (𝛿𝜔)⟩. Therefore, the full-dimension region
∆̃ expands with the reputation concern.

Financial Intermediation under Mean-Variance Preferences

A financial issuer tries to convince an investor to invest in an asset with unknown return
𝜔 ∈ Ω ⊆ R. The investor is risk-averse and cares about both the expected payoff and
the variance. That is, the investor’s payoff from investing is E𝜇(𝜔) − 𝛾 Var𝜇(𝜔) for some
𝛾 > 0. Defining the two moments 𝑥1 = E𝜇(𝜔), 𝑥2 = E𝜇(𝜔

2), we may rewrite the investor’s
payoff given 𝜇 as 𝑅(𝑥) = 𝛾𝑥2

1 + 𝑥1 − 𝛾𝑥2. These preferences capture that investors must
satisfy some risk requirements for their investment. In particular, 𝛾 can be interpreted
as the shadow price on the constraint on the maximum variance in a portfolio selection
problem. Importantly, these preferences are not necessarily monotone with respect to first-
order stochastic dominance.

Suppose there are 𝑛 states 0 = 𝜔0 < 𝜔1 < . . . < 𝜔𝑛−1 = 1 with 𝑛 ≥ 3. Assume that
the investor is risk averse enough: 𝛾 > 1/𝜔𝑖 for all 𝜔𝑖 > 0; and that the investor’s outside
option follows a uniform distribution on [0, 1]. Let 𝛼𝑖 = 1− 1

𝛾𝜔𝑖
and 𝜇𝑖 = 𝛼𝑖𝛿𝜔𝑖

+ (1− 𝛼𝑖)𝛿0.
We next show that for all 𝑝 ∈ ∆̃ = co{𝛿0, {𝜇𝑖 : 𝑖 = 1, . . . , 𝑛 − 1}}, the full-dimensionality
condition holds and that mediation is strictly better than cheap talk.

Note that the issuer’s payoff function 𝑣(𝑥) = 𝑅(𝑥) is convex but not strictly quasiconvex
in 𝑥, so we cannot directly apply Theorem 4 and Proposition 19. However, the same idea
as in the proof could also help us to verify the claim. Fix any 𝜔𝑖 ̸= 0, we show the seller’s
payoff 𝑉 (𝜇) is non-monotone on the edges of ∆(Ω) that connect 𝛿0 and each 𝛿𝜔𝑖

. For every
𝛼 ∈ [0, 1], we have 𝑉 (𝛼𝛿𝜔𝑖

+ (1 − 𝛼)𝛿0) = 𝛼𝜔𝑖 − 𝛾𝛼(1 − 𝛼)𝜔2
𝑖 . This is a quadratic function

that is non-monotone on [0, 1] and intersects 0 at 𝛼 = 0 or 1− 1
𝛾𝜔𝑖

.

By construction, for all 𝑝 ∈ ∆̃, there exists 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) that attains value 0. Note that 𝑉
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is convex by the convexity of 𝑣 and linearity of 𝑇 , so the set of posteriors that attains value
higher than 0 is contained in ∆(Ω) ∖ ∆̃. Lemma 2.6 then implies 0 is the optimal cheap talk
value for priors in ∆̃. Finally, note that 𝑣(𝑥) ≤ 0 gives 𝑥2 ≥ 𝑥2

1 + 𝑥1/𝛾, so the lower contour
set {𝑣 ≤ 0} is strictly convex. In Appendix B.1.7, we use an analogous argument to that of
Theorem 4 to show that 𝒱𝐵𝑃 (𝑝) > 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝) > 𝑉 (𝑝) for every 𝑝 ∈ ∆̃.

The issuer strictly benefits from mediation when the investor’s prior is sufficiently pes-
simistic. Moreover, when the investor becomes more risk-averse (𝛾 increases), then 𝛼𝑖 also
increases for all 𝑖 = 1, . . . , 𝑛 − 1. So the region where the issuer strictly benefits from
mediation expands as the investor becomes more risk-averse.

The investor also strictly benefits from mediation when the prior is in ∆̃. The investor’s
payoff function 𝑣𝐼(𝑥) =

∫︀ 1

0
max{𝜀, 𝑅(𝑥)} d𝜀 = (1 + 𝑅(𝑥)2)/2 is convex in 𝑥. Let 𝐻(𝑧) :=

(1 + 𝑧2)/2, then 𝑣𝐼 = 𝐻 ∘ 𝑅. Take any optimal 𝜏 ∈ 𝒯𝑀𝐷(𝑝) and observe that the investor’s
expected payoff under 𝜏 is

∫︀
𝑣𝐼(𝑇 (𝜇)) d𝜏(𝜇) ≥ 𝐻

(︀∫︀
𝑅(𝑇 (𝜇)) d𝜏(𝜇)

)︀
> 𝐻(0). The first

inequality follows by the convexity of 𝐻, and the second inequality follows because the
issuer’s value under 𝜏 is strictly higher than the optimal cheap talk value. Note that 𝐻(0)

is the investor’s value under the issuer’s most preferred cheap talk equilibrium yielding that
the investor strictly benefits from mediation.

2.8 Discussion and Extensions
In this section, we discuss some of the points left out from the main analysis and potential
future research.

Correlated equilibria in long cheap talk and repeated games Our work is closely
connected to the classical works on Nash and correlated equilibria in static and repeated
games with asymmetric information.41 We now discuss how our results contribute to this
literature and we restrict to the finite-action case, an assumption that is consistent with
most of the literature on this topic.

The sender-receiver games we studied in this paper are called basic decision problems in
Forges (2020), albeit we restrict to the transparent-motive case. First, consider the cheap-talk
extended version of this game where (potentially infinite) rounds of pre-play communication
between the sender and the receiver are allowed, which is known as the long cheap talk
(Aumann and Hart, 2003). Lipnowski and Ravid (2020) show that, under transparent mo-
tives, the highest sender’s expected payoff that is induced by a Nash equilibrium of this long
cheap talk game coincides with the one-shot highest cheap talk value 𝒱𝐶𝑇 (𝑝). For correlated
equilibria, Forges (1985) shows that the highest sender’s expected payoff coincides with the

41See the recent survey by Forges (2020).
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payoff induced by the sender’s preferred communication equilibrium, that is 𝒱𝑀𝐷(𝑝).42 With
this, our results imply that, for almost all priors 𝑝, correlated equilibria strictly increase the
expected payoff of the sender if and only if cheap talk is improvable at 𝑝, a property that
can be easily checked through the quasiconcave and quasiconvex envelopes of V (Theorem
3 and Corollary 15).

A different class of games can be obtained by considering the infinitely repeated sender-
receiver game. Suppose that the sender is initially informed about 𝜔 and that, at each stage,
the sender and the receiver simultaneously choose an action. The action of the receiver 𝑎 ∈ 𝐴

is the only one that is payoff-relevant, whereas the action of the sender has only a potential
signaling role. Moreover, assume that the sender’s payoff does not depend on the state and
that the overall payoff of the players is given by the undiscounted time average of the one-
period payoffs. This is the transparent-motive case of the repeated games of pure information
transmission as defined in Forges (2020). Similarly to before, we can consider both Nash
and Correlated equilibria. Forges (1985) shows that the set of correlated equilibrium payoffs
of this game corresponds to the one induced by the communication equilibria of the stage
game. Moreover, the results in Hart (1985) and Habu, Lipnowski, and Ravid (2021) imply
that every sender’s Nash-equilibrium payoff of this game corresponds to a sender’s payoff of
a one-stage cheap talk equilibrium. Then Theorem 3 provides sufficient conditions such that
the sender’s largest correlated-equilibrium payoff in the repeated game is strictly higher than
that obtained by restricting to Nash equilibria. Specifically, if cheap talk is improvable at 𝑝,
then correlation would strictly improve the sender’s best equilibrium payoff. See Appendix
B.5 for more details.

Sender’s interim efficiency Theorem 2 established that under transparent motives and
with a single receiver (or multiple receivers and public information), mediation attains the
ex-ante efficient value (i.e., Bayesian persuasion) if and only if the same value can be attained
under cheap talk. This result can be generalized by replacing this notion of ex-ante efficiency
with a notion of interim efficiency inspired by the analysis in Doval and Smolin (2021).

We say that 𝜏 ∈ 𝒯𝐵𝑃 (𝑝) is fully interim efficient if there exist 𝑉 ∈ V and 𝜆 ∈ ∆(Ω) with
𝜆(𝜔) > 0 for all 𝜔 ∈ Ω, such that

(𝜏, 𝑉 ) ∈ argmax
𝜏∈𝒯𝐵𝑃 (𝑝),𝑉 ∈V

∑︁
𝜔∈Ω

(︂∫︁
Δ(Ω)

𝑉 (𝜇) d𝜏𝜔(𝜇)

)︂
𝜆(𝜔), (36)

and we say 𝜏 is fully interim efficient with selection 𝑉 if (𝜏, 𝑉 ) satisfies (36). When V =

𝑉 is singleton-valued, fully interim efficient distributions 𝜏 induce interim sender’s values

42In this case, a single round of pre-play communication is sufficient.
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𝑤 = (E𝜏𝜔 [𝑉 ]))𝜔∈Ω ∈ RΩ that are on the Pareto frontier of the Bayes welfare set introduced
in Doval and Smolin (2021).43 This set represents all the sender’s interim expected payoffs
that can be induced by some Blackwell experiments without requiring that the truth-telling
constraint holds. Therefore, the points on its Pareto frontier represent vectors of interim
sender’s payoffs that cannot be Pareto improved by an alternative experiment. Here, we
restrict to the fully efficient outcome where every state has a strictly positive Pareto weight,
that is 𝜆(𝜔) > 0 for all 𝜔 ∈ Ω.

In Lemma 12 in the appendix we show that if 𝜏 ∈ 𝒯𝑀𝐷(𝑝) is fully interim efficient, then
𝜏 ∈ 𝒯𝐶𝑇 (𝑝). In other words, if a mediator can induce an efficient vector of the sender’s
interim payoffs, then the same vector can be induced via unmediated communication. In
turn, this allows us to extend Theorem 2: Mediation is fully interim efficient if and only if
cheap talk is fully interim efficient. Observe that Theorem 2 immediately follows from this
more general result by just setting 𝜆 = 𝑝.

This result can also be interpreted as a mediation’s trilemma. Consider the three following
properties: (1) Information is public; (2) The payoff of the sender is state-independent; (3)
Mediation is fully interim efficient and strictly better than cheap talk. The previous result
implies that these three properties are incompatible. Moreover, this is a proper trilemma in
the sense that if we relax even one between (1) and (2), then mediation can be interim efficient
and strictly better than cheap talk at the same time. We show this with two examples in
Appendix B.4.1.

The full-dimensionality condition Our main characterizations on the strict value of
elicitation and mediation rely on the full-dimensionality condition at the prior (see Definition
11 and Lemma 2.5). This condition holds for almost every prior in finite games and, at every
binary prior such that no disclosure is suboptimal under cheap talk.44 However, it is more
restrictive when we consider games with infinitely many actions and more than two states.
Closing the gap between our sufficient and necessary condition for 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝) in
Theorem 3 when the full-dimensionality condition does not hold remains an open problem.
A promising route might be the following. Suppose that the full-dimensionality condition
fails at 𝑝, that is, the largest dimension of the support of a cheap-talk optimal distribution
𝜏 * of beliefs at 𝑝 is 𝑘 < 𝑛− 1. We can redefine the state space Ω̃ to be equal to the extreme
points of the convex hull of supp(𝜏 *). This would also require redefining the receiver’s prior
belief and the sender’s indirect payoff correspondence. The full-dimensionality condition
holds in this redefined cheap talk environment and our characterizations can be applied.

43This immediately follows from their Theorem 2.
44Recall also the sufficient condition we derived in Proposition 19 for the multidimensional moment-

measurable case.
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The drawback of this approach is that the new environment depends on the exact cheap talk
solution 𝜏 * considered. We leave a more detailed analysis of this issue for future research.

Beyond transparent motives The main analysis focused on the case of the state-independent
sender’s payoff function. Without this assumption, it is still possible to express the Hon-
esty constraint purely in terms of the unconditional distribution of beliefs. Suppose that the
sender’s indirect payoff at state 𝜔 and the receiver’s posterior 𝜇 is uniquely given by 𝑉 (𝜇, 𝜔).
It is easy to show (see for example Doval and Skreta (2023)) that the truth-telling constraint
can be written as ∫︁

𝑉 (𝜇, 𝜔)

(︂
𝜇(𝜔)

𝑝(𝜔)
− 𝜇(𝜔′)

𝑝(𝜔′)

)︂
d𝜏(𝜇) ≥ 0 ∀𝜔, 𝜔′ ∈ Ω. (37)

These are 𝑛(𝑛 − 1) moment constraints. Therefore, the optimal mediation problem is still
linear in 𝜏 , and the same techniques of Proposition 14 can be applied to derive the sender’s
optimal value under mediation and show that there exists an optimal mediation plan with
no more than 𝑛2 signals. It would be more challenging to extend our remaining results.
In Appendix B.4.1, we show via example that Theorem 2 may fail with state-dependent
sender’s payoff. We leave the formal analysis of the general state-dependent case for future
research.45

Multiple receivers and private communication Our analysis can be immediately ex-
tended to the case with multiple receivers interacting in a game conditional on some public
information, that is, the mediator sends the same message to all the receivers. In this case,
the indirect payoff correspondence V(𝜇) collects all possible expected sender’s expected pay-
off across all the correlated equilibria of the game the receivers play conditional on public
belief 𝜇. This correspondence is still upper hemi-continuous and therefore all our results
extend to this case.

Instead, if the mediator can privately communicate with every single receiver, then the
analysis would be considerably more challenging.46 However, some of our results can be
relatively easily extended in the intermediate case where communication is private but the
receivers do not interact in the game but rather solve an isolated decision problem, and the

45When 𝑉 (𝜇, 𝜔) = 𝑉 (𝜇)𝑏(𝜔) + 𝑎(𝜔) for some continuous function 𝑉 (𝜇), strictly positive vector 𝑏 ∈ R𝑛
++,

and arbitrary vector 𝑎 ∈ R𝑛 all our results apply as written. This immediately follows from the fact that 𝑏(𝜔)
and 𝑎(𝜔) drop from (TT) and from the sender’s unconditional expected payoff due to (zeroCov). Observe
that the sender here can also be said to have “transparent motives” because the sender’s preferences at
different states are positive affine transformations of each other.

46Even without the truth-telling constraint, the analysis of the standard information design problem is
complicated by the fact that potentially all the higher-order beliefs of the receivers matter. See, for example,
Mathevet, Perego, and Taneva (2020) for a belief-based analysis of the information-design problem with
multiple receivers interacting in a game.
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payoff of the sender is additively separable with respect to the profile of receiver’s actions.
This case would be trivial under standard Bayesian persuasion: the sender can just solve
multiple different single-receiver Bayesian persuasion problems. This is not the case for a
mediator who must elicit information from the sender, even if they maximize the sender’s
payoff. The reason is that the truth-telling constraint will not be separable with respect to
the receiver’s posterior beliefs.

In particular, in Appendix B.4.1, we show by example that already in the intermediate
setting described above, the mediation trilemma fails: with private communication, a medi-
ator can achieve the first-best Bayesian persuasion value whilst strictly improving on cheap
talk, and this is true even under transparent motives.

Receiver’s utility and informativeness In some cases, our results can be used to show
that communication mechanisms improving the sender’s expected payoff also improve the
receiver’s expected payoff, that is mediation yields a strict ex-ante Pareto improvement (see
Remark 5 and Section 2.7.1). In general, our techniques can be extended beyond these
cases. However, focusing on the receiver’s expected utility would present a key new chal-
lenge, namely that the objective function in the mediation problem would be different from
the utility function in the truth-telling constraint. A related point is the comparison of infor-
mativeness across the sender’s optimal communication and cheap talk equilibria respectively.
In general, this comparison seems ambiguous as suggested by our examples. In the illustra-
tion in the introduction, when the prior 𝑝 is in a neighborhood of 0.6, the sender’s optimal
cheap-talk equilibrium would be no disclosure while the sender’s optimal communication
equilibrium would involve some nontrivial form of disclosure (see Figure 2-1). Conversely, in
Appendix B.4.2, we modify this example and show that in this case there exists a neighbor-
hood of priors 𝑝 such that full disclosure is sender optimal under cheap talk but not under
mediation. We leave both these interesting questions for future research.
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Chapter 3

Optimally Coarse Contracts

This chapter is jointly authored with Joel P. Flynn and Karthik A. Sastry.

3.1 Introduction
Few contracts completely specify obligations for all observable, payoff-relevant outcomes.
At least since Coase (1960), economists have argued that this incompleteness of contracts
arises from costs inherent to their writing. Hart and Moore (2008) describe incompleteness
of contracts as the difference between contractible actions in the “letter” of the contract and
non-contractible actions in the “spirit” of the contract. In this paper, we study how costs of
determining the “letter” of the contract affect optimal contract design.

To do this, we study a principal-agent model with privately informed agents in which
agents’ actions are imperfectly contractible and contractibility is costly for the principal.
We model contractibility via a correspondence that translates a recommended action from
the principal into a set of allowable actions for the agent—that is, a relationship between
the “spirit” and the “letter” of the contract. Contractibility costs formalize the difficulty in
distinguishing what is allowable under the “letter” of the contract from what is not.

We then analyze optimal contracts in two steps. First, we characterize implementable and
optimal mechanisms for a fixed extent of contractibility. Second, we leverage this characteri-
zation to derive our main result: if contractibility has marginal costs that decline sufficiently
slowly, then the principal chooses a coarse contract that specifies finitely many recommen-
dations. This property of marginal costs is satisfied by a large family of costs that is based
on distinguishing what is in the “letter” of the contract from what is not. Importantly, other
cost functions that are motivated by costly enforcement of the contract ex post, as opposed
to costly writing of the contract ex ante, do not generate the prediction of coarse contracts.
Thus, in our analysis, it is the ex ante cost of determining the “letter” of the contract that
yields coarseness.
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In further results, we derive an upper bound on the optimal number of contractible
outcomes as a function of the principal’s payoffs, the agent’s payoffs, the distribution of
agents’ types, and the cost of contractibility. Finally, we derive necessary conditions that
describe not only how many outcomes, but also which outcomes, are optimally contractible.

We apply the model to study when and why incomplete contracts emerge in product
markets, manifested as optimally designed coarse quality grades for a differentiated good
or service. To do this, we study a variant of the nonlinear pricing model of Mussa and
Rosen (1978) in which contracting on quality is costly. We analytically characterize the
optimal qualities offered by the monopolist and show that lower production costs and greater
consumer demand both lead to menus that feature fewer quality options. We also find that
contracts are endogenously coarser under incomplete information about buyers’ willingness
to pay than under complete information.

Model A principal contracts with an agent of an unknown type. The agent can take actions
that influence the payoff of both the principal and the agent. Higher types value higher
actions relatively more and all types have monotone increasing preferences over the action
(i.e., it is a “good”).1 The principal writes a contract that specifies payments associated with
recommendations. Agents select a recommendation and then take a realized action which we
call the outcome. The scope of contracts to discipline outcomes is specified by a contractibility
correspondence, which describes all possible actions from which the agent can choose after
receiving a given recommendation. Thus, the contractibility correspondence relates the spirit
of the contract—the set of recommendations—to the letter of the contract—the set of actions
that agents can legally take.

We impose four economic axioms on the relationship between spirit and letter, which
translate to restrictions on the contractibility correspondence. The first is reflexivity : if the
agent is called upon to do 𝑦, then 𝑦 is within the letter of the contract. The second is
transitivity : if the contract calls upon the agent to do 𝑦 and they can, within the letter of
𝑦, also do 𝑥, then the set of actions consistent with doing 𝑥 is a subset of the set of actions
consistent with doing 𝑦. The third is monotonicity : if the contract recommends a higher
action, then the consistent actions in the letter of the contract are also higher. The fourth
is excludability, which allows the principal to not transact with the agent.2 These axioms
translate into natural patterns of incomplete contracting, in which the outcome space is
composed of regions with perfectly contractible actions, regions that permit deviations up
or down, and regions that are fully indistinguishable.

1The case in which preferences are monotone decreasing and the action is a “bad” is symmetric and our
results apply.

2We also impose technical axioms that the correspondence is closed-valued and lower hemicontinuous.
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We allow the principal to select the contractibility correspondence at some cost. The
cost reflects the principal’s efforts in writing the contract. As a leading example, we define
a class of costs of distinguishing outcomes. In this class, the cost of a given correspondence
is the total cost, over all possible outcomes, of the inverse distance between what is within
the letter of the contract and what is outside of it.

Main Results To begin, we fix the contractibility correspondence and study how the
principal optimally designs the contract. We first show that the principal can implement an
outcome function, a mapping from agents’ types to outcomes, if and only if it is monotone
increasing and supported on a given set that depends on the contractibility correspondence.
This set is the image of the action space under the maximum selection from the contractibility
correspondence. Intuitively, agents prefer to take the highest possible action within the letter
of the contract. The optimal outcome function maximizes virtual surplus (i.e., total surplus
net of information rents) subject to being supported on the given set.3 We show that this
takes a simple form: pick the best contractible action that is “close” to what the principal
would pick with full contractibility.

We leverage this result to study optimal contractibility. Using our implementation result,
we re-express our costs of contractibility correspondences in terms of the closed set of imple-
mentable outcomes that they induce. Under the technical condition that the cost is lower
semicontinuous, the problem of optimal contractibility is well-posed: there exists a solution
set, which is nonempty and compact.

To study the form of optimal contractibility, we place one additional assumption on
the cost that we call strong monotonicity. This property is most easily understood in the
context of contracting upon intervals of the action space. In this case, strong monotonicity
implies that the marginal cost of introducing perfect contracting in an interval of the action
space is (at most) second-order in the length of the interval. Strong monotonicity in its full
form disciplines the marginal cost of not only adding intervals but also adding countably
infinite sets and uncountably infinite and nowhere dense sets (e.g., the Cantor set). The
implicit requirement is the same: adding a small such set induces a marginal cost that
converges to zero sufficiently slowly in the size of the set. While these requirements of strong
monotonicity may seem specific, we show that any aforementioned cost of distinguishing
outcomes is strongly monotone. Intuitively, distinguishing an interval of length 𝑡 from all
other outcomes moves measure 𝑡 outcomes into the letter of the contract. Thus, the principal
must distinguish the outcomes in this new contract, which are of total measure 𝑡, from the
nearby outcomes that are now outside of the contract, which are also of measure 𝑡; yielding

3Formally, we make the standard assumptions that virtual surplus is strictly quasi-concave and strictly
supermodular.
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a second-order cost that is proportional to 𝑡× 𝑡 = 𝑡2.

Our main result is that, if costs are strongly monotone, then optimal contractibility
specifies a finite number of contractible actions. By implication, optimal contracts are coarse,
or supported on a finite menu. These contracts are incomplete in a particularly strong way—
they not only fail to specify some potentially verifiable outcomes, they in fact fail to specify
almost all of them and leave a bounded-size gap between any two adjacent items. This result
holds even when the cost of implementing the complete contract is arbitrarily low.

We prove this result by using variational arguments in the space of the closed sets of
implementable outcomes that are induced by contractibility correspondences. For example,
to rule out intervals of perfect contractibility, we construct a payoff-improving alternative
contractibility correspondence that introduces “local incompleteness,” or replaces a subset
of such an interval with its two boundary points. The principal’s surplus loss under the
optimal contract that we previously characterized is third-order in the length of the interval.
Intuitively, for each type that is allocated an outcome in the interior of this interval, the
principal was originally maximizing the virtual surplus function—that is, for this type, the
principal was unconstrained by incompleteness. Thus, there is no first-order cost in slightly
moving the allocation, and any losses can be described by a second-order term. To obtain the
total loss in surplus, we integrate these second-order losses over the interval of types whose
allocation changes, which is also proportional to the width of the interval—thus obtaining a
third-order loss. For a small enough interval, this will always be lower than the second-order
savings in costs of contractibility, which are guaranteed under strong monotonicity. This
argument rules out intervals of perfect contractibility. More technical arguments based on
estimates of the value of other set-valued perturbations of the contract space rule out all
other infinite sets, including the uncountable and nowhere dense sets.

Finally, we derive results that inform how coarse optimal contracts can be and which
outcomes will be optimally contractible. First, we derive an analytical upper bound on
the number of items on the menu or, more informally, a lower bound for the “extent of
incompleteness.” This bound increases in the maximum concavity of the virtual surplus
function because this scales the principal’s loss from moving agents’ allocations; it increases
in the maximum density of types and decreases in the minimum complementarity of types
with actions because this scales how tightly packed the principal’s preferred allocations can
be in small intervals; and it increases in a parameter scaling the costs, for obvious reasons.
Combined with the structure of payoffs and information rents, which themselves determine
the virtual surplus function, we can use this result to gauge when contracts are “more or
less incomplete.” Second, we show how to determine optimal coarse contracts using simple
first-order conditions that equate the marginal benefits of changing allocations on virtual
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surplus with the marginal costs of writing this into the contract.

Importantly, the coarseness of contracts does not stem from the presence of costly con-
tractibility per se. Instead, the prediction of coarse contracts hinges on the notion that the
ex ante writing of contracts is costly. We demonstrate this claim by showing that costs of
contractibility which are natural but do not stem from a foundation of costly ex ante writing
of contracts are not strongly monotone and do not yield coarse contracts. Concretely, we
consider a setting in which writing contracts is free ex ante but has ex post enforcement
costs. We can capture such a situation with an ex post variant of a cost of distinguishing
what is allowed from what is not: instead of paying for each action described, the principal
instead pays in proportion to how likely it is that a given action will be taken ex post. We
show that such costs never yield coarse contracts alone: while these costs distort allocations,
they do not affect the choice of contractibility.

Application: Monopoly Pricing with Coarse Contracts We apply our model of
optimal contractibility in the Mussa and Rosen (1978) nonlinear pricing model. This model
describes a monopolist selling a service (e.g., a vacation rental) that may differ in quality.
The monopolist chooses both a menu of utilization levels (abstractly, “qualities”) and prices,
as in the standard nonlinear pricing problem. Moreover, they must write a contract that
describes what levels of utilization by the buyers are acceptable. Contractibility is costly
because the monopolist has to describe the acceptable levels of utilization of the good—for
example, what constitutes a unit in “good” versus “bad” condition.

First, we show that the optimal contract features uniformly spaced qualities. Intuitively,
in this quadratic-uniform setting of the Mussa and Rosen (1978) model, the monopolist’s
losses from coarse contracting are the same at all points in the menu. Thus, the monopolist
has no incentive to make contracts more or less precise for high vs. low quality levels.

Second, we give a formula for the number of points in the menu (up to integer rounding)
in terms of the parameters that control production costs (i.e., concavity), differentiation in
preferences (i.e., supermodularity), and costs of contractibility. These parameters enter this
formula exactly as they did in the general analysis’ bound: contracts are more complete in
environments with higher concavity, lower supermodularity, and lower costs of contractibility.

Finally, we study the impact of incomplete information on the optimally incomplete con-
tract. We show that contracts are always “more complete,” or contain more menu items
under complete information than under incomplete information. Intuitively, adverse selec-
tion reduces the size of the pie available to the monopolist and dulls their incentives to
contract more precisely. Thus, incomplete information begets more incomplete contracts in
this setting.
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Related Literature Our approach to modeling incomplete contracts is inspired by the
dichotomy between perfunctory performance (the letter) and consummate performance (the
spirit) introduced by Hart and Moore (2008).4 Under complete information, Hart and Moore
(2008) adopt a behavioral approach to modeling contracting, in which contracts act as ref-
erence points. We retain their dichotomy between the letter and the spirit of a contract for
understanding that some actions cannot be contracted upon, but follow the standard mech-
anism design literature in studying implementable and optimal contracts when the principal
does not know the type of the agent. In general, this strand of the literature on incomplete
contracts relies on the possibility of the parties renegotiating ex-post a previously speci-
fied and potentially optimally incomplete contract. For example, Segal (1999) provides a
foundation of optimally incomplete contracts based on the classical renegotiation approach.

Another strand of literature on incomplete contracts, closer to the analysis in this paper,
explicitly models the complexity and the cost of writing and enforcing contracts by studying
the derived trade-off for the principal between the benefits of more complete contracts and
the costs of writing more complete contracts. Two notable examples are Bajari and Tadelis
(2001) and Battigalli and Maggi (2002). By working in finite state and action settings,
neither speaks to the issue of the endogenous coarseness of contracts. Moreover, neither of
these papers considers ex-ante asymmetric information between the principal and the agent.

By incorporating incomplete contracts into principal-agent problems, our results fit into
the theoretical literature on mechanism design with ex post moral hazard (e.g., Laffont
and Tirole, 1986; Carbajal and Ely, 2013; Strausz, 2017; Gershkov, Moldovanu, Strack, and
Zhang, 2021; Yang, 2022). Within this literature, the most related analysis is by Grubb
(2009) and Corrao, Flynn, and Sastry (2023), who study how fully non-contractible uti-
lization (the possibility of free disposal) matters for optimal nonlinear pricing of goods.
Our analysis significantly generalizes the scope of contractibility away from this fully non-
contractible case. An important contrast between our approach and the standard one is that
we model imperfect contractibility, while most analyses of moral hazard concern imperfect
observability (with perfect contractibility). As we show, this difference in perspective leads
to qualitatively different optimal mechanisms.

Finally, our work is related to models of optimal design where a continuous variable is
optimally discretized as a result of a trade-off between the benefit of higher flexibility and
its exogenous or endogenous costs. For example, in models of rational inattention as in
Jung, Kim, Matějka, and Sims (2019) or optimal categorization as in Mohlin (2014) the
designer faces an exogenously given cost of respectively refining information or labelings.
In a setting closer to ours, Bergemann, Heumann, and Morris (2022) study a variant of a

4In turn, this language choice is inspired by Williamson (1975).
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standard Mussa and Rosen (1978) nonlinear pricing model and show that if the monopolist
can simultaneously choose the selling mechanism and the buyer’s information, then both
can be optimally chosen to be discrete. Differently from the previous two papers, here, the
“cost” of finer information and contract is given by the information rents that the monopolist
needs to guarantee to the buyer. In particular, Bergemann, Heumann, and Morris (2022)
generalize results in Wilson (1989) showing that, under perfect information, coarsening the
domain of contractibility into uniform cells is second-order in the length of the grid.

Outline Section 3.2 introduces the model. Section 3.3 characterizes optimal contracts for a
fixed contractibility correspondence. Section 3.4 studies optimal contractibility. Section 3.5
applies our results to study optimal contractibility in a nonlinear pricing model. Section 3.6
studies optimal contractibility under alternative assumptions on costs. Section 3.7 concludes.

3.2 Model

3.2.1 The Agent and the Principal

There is a single agent with privately known type 𝜃 ∈ Θ = [0, 1]. The type distribution
𝐹 ∈ ∆(Θ) admits a density 𝑓 that is bounded away from zero on Θ. Each agent can take
an action 𝑥 in the interval 𝑋 = [0, 𝑥] ⊂ R.

The agent’s preferences are represented by a twice continuously differentiable utility
function 𝑢 : 𝑋 × Θ → R. We assume that higher types value higher actions more and that
all types have monotone preferences over actions with the following three conditions: (i) 𝑢(·)
satisfies strict single-crossing in (𝑥, 𝜃); (ii) for each 𝑥 ∈ 𝑋, 𝑢(𝑥, ·) is monotone increasing
over Θ; and (iii) for each 𝜃 ∈ Θ, 𝑢(·, 𝜃) is strictly monotone increasing over 𝑋. The case with
strictly decreasing preferences over 𝑋 is analogous. All agent types value the zero action
the same as their outside option payoff, which we normalize to zero, or 𝑢(0, 𝜃) = 0 for all
types 𝜃 ∈ Θ. Agents have quasilinear preferences over actions and money 𝑡 ∈ R, so their
transfer-inclusive payoff is 𝑢(𝑥, 𝜃)− 𝑡.

The principal’s payoff derives from three sources. The first is the sum of monetary
payments 𝑡 ∈ R from agents to the seller. The second is a (potentially type-dependent) payoff
that derives from agents’ actions, represented by a continuously differentiable 𝜋 : 𝑋×Θ → R.
We normalize 𝜋(0, 𝜃) = 0 for all 𝜃 ∈ Θ. The third is a cost of contractibility, which we will
introduce in due course.

3.2.2 Partial Contractibility

To model the principal’s inability to contract perfectly on outcomes, we define a contractibil-
ity correspondence 𝐶 : 𝑋 ⇒ 𝑋 that maps every recommendation 𝑦 ∈ 𝑋 to a feasible set
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of final actions that the agents can take 𝑥 ∈ 𝐶(𝑦). In our interpretation, 𝑦 embodies “the
spirit of the contract” and the collection of outcomes 𝐶(𝑦) consistent with 𝑦 according to
𝐶 embodies “the letter of the contract.” This terminology is also consistent with the fol-
lowing terminology from Williamson (1975) and Hart and Moore (2008): 𝑦 is “consummate
performance” and 𝑥 is “perfunctory performance.”

Regular Contractibility Correspondences We discipline the relationship between the
spirit and letter of a contract by imposing six axioms. The first four are economic in nature:

Axiom 1 (Reflexivity). For every 𝑦 ∈ 𝑋, 𝑦 ∈ 𝐶(𝑦).

Reflexivity requires that the agent can undertake action 𝑦 when they are called upon to
take action 𝑦 by the contract.

Axiom 2 (Transitivity). For every 𝑥, 𝑦 ∈ 𝑋, if 𝑥 ∈ 𝐶(𝑦), then 𝐶(𝑥) ⊆ 𝐶(𝑦).

Transitivity requires that, if an agent can reach action 𝑥 by deviating from 𝑦 and 𝑧 by
deviating from 𝑥, then they can reach 𝑧 by deviating from 𝑦.

Axiom 3 (Monotonicity). For every 𝑥, 𝑦 ∈ 𝑋, if 𝑥 ≤ 𝑦, then 𝐶(𝑥) ≤𝑆𝑆𝑂 𝐶(𝑦), where ≤𝑆𝑆𝑂

denotes the strong set order.

Monotonicity requires that, if an agent starts from being called upon to do 𝑧 ≤ 𝑦, then
the set of things they can do after 𝑧 is also lesser than the set of things they can do after 𝑦.

Axiom 4 (Excludability). 𝐶(0) = {0}.

Excludability imposes that the principal can always exclude the agent from the contract
by giving them their outside option.

The final two axioms are technical:

Axiom 5 (Closed-valuedness). For all 𝑦 ∈ 𝑋, 𝐶(𝑦) is closed.

Axiom 6 (Lower hemicontinuity). The correspondence 𝐶 is lower hemicontinuous.

Closed-valuedness and Lower hemicontinuity ensure the existence of an optimal contract
given any contractibility correspondence that satisfies the axioms above.

Throughout our analysis, we will study contractibility correspondences that satisfy all
six axioms. We will refer to such contractibility correspondences as regular. We let 𝒞 denote
the set of regular contractibility correspondences.
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Figure 3-1: Illustrating Regular Contractibility Correspondences
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Notes: Each graph illustrates a contractibility correspondence for 𝑋 = [0, 1], with dark shading
denoting the graph. The examples in Panel 1 (top row) are regular, with informative names. The
examples in Panel 2 (bottom row) are not regular, respectively failing Axioms 1-3 and 5.

Examples We plot four examples of regular correspondences in Panel 1 of Figure 3-1. In
the first regular example (1a), all 𝑥 ≤ 1/2 can be specified “perfectly” in the contract, while
all 𝑥 > 1/2 are indistinguishable: an agent recommended any action in this region can pick
any other action in the region. In (1b), the action space is coarsened into four partitions of
indistingushable actions. In (1c), agents have access to unrestricted free disposal as studied
by Grubb (2009) and Corrao, Flynn, and Sastry (2023). In (1d), we combine these basic
patterns into a “ ‘hybrid.”

We also show four irregular examples in the second row to better illustrate what our
axioms rule out. Example (2a) is not reflexive, since the correspondence does not include
the 45 degree line; (2b) is not transitive, since there are “chains” whereby an agent can reach
𝑥 from 𝑦 and 𝑧 from 𝑥 but not 𝑧 from 𝑦; (2c) is not monotone, for 𝑥 > 1/2; and (2d) is not
closed, since the boundary of 𝐶(𝑥) is open for 𝑥 > 1/2.

Representing Regular Contractibility We now provide two characterizations of regular
contractibility correspondences that clarify their economic properties. In our later analysis,
these representations also turn out to be mathematically convenient.

Lemma 5 (Representations of Contractibility). Fix a contractibility correspondence 𝐶. The
following statements are equivalent:
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1. 𝐶 is regular

2. There exist an upper semi-continuous increasing function 𝛿 : 𝑋 → 𝑋 and a lower
semi-continuous increasing function 𝛿 : 𝑋 → 𝑋 such that for all 𝑦 ∈ 𝑋: (i) 𝐶(𝑦) =

[𝛿(𝑦), 𝛿(𝑦)], (ii) 𝛿(𝑦) ≤ 𝑦 ≤ 𝛿(𝑦), (iii) 𝛿(𝑥) = 𝛿(𝑦) for all 𝑥 ∈ [𝛿(𝑦), 𝑦), (iv) 𝛿(𝑥) = 𝛿(𝑦)

for all 𝑥 ∈ (𝑦, 𝛿(𝑦)], and (v) 𝛿(0) = 0.

3. There exist two closed sets 𝐷 ⊆ 𝑋 and 𝐷 ⊆ 𝑋 such that: (i) 0 ∈ 𝐷 and 0, 𝑥 ∈ 𝐷, (ii)
For all 𝑥 ∈ 𝑋, we have

𝐶(𝑥) =

[︂
max

𝑧≤𝑥:𝑧∈𝐷
𝑧, min

𝑧≥𝑥:𝑧∈𝐷
𝑧

]︂
(38)

In this case, we have 𝐷 = 𝛿(𝑋), 𝐷 = 𝛿(𝑋). Moreover, given 𝐶, (𝛿, 𝛿) and (𝐷,𝐷) are
unique, and vice versa.

Proof. See Appendix C.1.1.

The first characterization (Part 2) is in terms of the upper and lower envelope of the
correspondence, 𝛿(𝑦) = max{𝑥 ∈ 𝐶(𝑦)} and 𝛿(𝑦) = min{𝑥 ∈ 𝐶(𝑦)}. The first two properties
of its definition ensure that 𝐶(𝑦) is a closed and convex interval including 𝑦. Properties three
and four are most easily understood via the graphical illustrations of Figure 3-1: upper and
lower boundaries of the graph 𝐶(𝑋), if they deviate from the identity line, must be flat.
In this sense, imperfect contractibility in our model always presents as “disposal” (“lower
triangles”), “creation” (“upper triangles”), or complete indistiguishability (“boxes”).

The second alternate characterization (Part 3) is in terms of the images of these functions,
which are equal to the sets of fixed points of these functions: 𝐷 = 𝛿(𝑋) ⊆ 𝑋 and 𝐷 = 𝛿(𝑋) ⊆
𝑋. These correspond to the recommendations that an agent with monotone decreasing or
increasing preferences (respectively) would follow.

3.2.3 Costly Contractibility

To achieve a specific level of contractibility, the principal pays a cost. This cost formalizes
the difficulty that the principal faces in writing a contract with more elaborate contingencies.
Our primary interpretation is that the cost is borne ex ante, for instance in the process of
writing a contract with more descriptive language or even understanding how to express the
relevant outcomes. However, the cost may reflect the expectation of a cost borne ex post,
for instance in litigation. We express these costs via a function Γ : 𝒞 → [0,∞]. For now, we
place no economic restrictions on this cost. Later, restrictions on the cost will be key for our
main result about optimally incomplete contracts.
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To make these costs concrete and to make clear the core economics that we wish to
study, we now introduce a class of cost functionals based on the idea that writing contracts
is costly because the principal must distinguish what is within the letter of the contract
and what is outside of it. Consider a principal writing a contract that describes rights and
obligations under a variety of “scenarios.” In our formalism, each scenario is labeled by a
recommendation 𝑥, the obligations by a monetary transfer, and a description of the rights
embodied by 𝐶(𝑥). An important challenge for the principal is to differentiate the rights
under 𝑥, 𝐶(𝑥), from the actions outside of the agent’s rights in the same scenario, 𝑋 ∖𝐶(𝑥).
We embody this idea by assuming that the cost of distinguishing 𝐶(𝑥) from 𝑋 ∖ 𝐶(𝑥) is
equal to some decreasing function of the distance between 𝐶(𝑥) and 𝑋 ∖𝐶(𝑥). Formally, we
define such a cost of distinguishing as follows:

Definition 13 (Costs of Distinguishing Outcomes). Define the inverse distance between
𝐶(𝑥) and 𝑋 ∖ 𝐶(𝑥) as:

𝑑(𝐶(𝑥), 𝑋 ∖ 𝐶(𝑥)) =

∫︁
𝑋∖𝐶(𝑥)

min
𝑧∈𝐶(𝑥)

𝑑(𝑧, 𝑦) d𝑦 (39)

where 𝑑 = ℎ ∘ 𝑑, ℎ : R+ → R+ is a continuously differentiable, strictly decreasing function
that is strictly positive on R++, and 𝑑 : 𝑋×𝑋 → R+ is a continuously differentiable distance
function, except potentially on the set {(𝑥, 𝑥) : 𝑥 ∈ 𝑋}. The cost of distinguishing outcomes
is given by the total inverse distance over all possible outcomes:

Γ(𝐶) =

∫︁
𝑋

𝑑(𝐶(𝑥), 𝑋 ∖ 𝐶(𝑥)) d𝑥 (40)

As this definition is somewhat abstract, we give some specific examples:.

Example 3 (Discrete and 𝑝−Distance Costs of Distinguishing). The special case of the
discrete metric, 𝑑(𝑧, 𝑦) = I[𝑦 ̸= 𝑧], is particularly natural. This cost is equal to the total
Lebesgue measure over 𝑥 ∈ 𝑋 of all points 𝑦 ∈ 𝑋 ∖ 𝐶(𝑥) that are distinguished from 𝐶(𝑥):

Γ(𝐶) =

∫︁
𝑋

𝜇(𝑋 ∖ 𝐶(𝑥)) d𝑥 =

∫︁ 𝑥

0

(︀
𝑥− 𝛿(𝑥)

)︀
d𝑥+

∫︁ 𝑥

0

𝛿(𝑥) d𝑥 (41)

where 𝜇 is the Lebesgue measure. Geometrically, in this case, the cost equals the area lying
above the graph of 𝛿 and below the graph of 𝛿. Observe that this cost is 0 for the zero-
contractibility correspondence 𝐶(𝑥) = [0, 𝑥] and it is equal to its maximum of 𝑥2 for the
perfect contractibility correspondence 𝐶(𝑥) = {𝑥}. Alternative distances, such as the family
of 𝑝−distances, 𝑑(𝑧, 𝑦) = (𝑧 − 𝑦)−

1
1+𝑝 for 𝑝 ∈ (0,∞), allow for the cost to depend on how
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many nearby actions are distinguished from each other. The discrete cost is nested in the
family of 𝑝−distances as the 𝑝 → ∞ limit.

In Section 3.6, we will give several other classes of cost functional based on notions of
costly enforcement, costly clauses, and menu costs.

3.2.4 The Principal’s Problem

We now state the principal’s mechanism and contractibility design problem. Given the
revelation principle, we consider direct and truthful mechanisms and restrict attention to
deterministic mechanisms. Thus, a mechanism is a triple (𝜑, 𝜉, 𝑇 ) comprising a recommen-
dation 𝜉 : Θ → 𝑋, a final action or outcome 𝜑 : Θ → 𝑋, and a tariff 𝑇 : 𝑋 → R. The tariff
and the recommendation jointly determine the transfer between the principal and the agent
𝑇 (𝜉(𝜃)). The final action is then taken by the agent and must lie within the contractibility
correspondence 𝜑(𝜃) ∈ 𝐶(𝜉(𝜃)). Principal and agent payoffs both depend on the final action
𝜑(𝜃) and the monetary transfer 𝑇 (𝜉(𝜃)). We now define what it means for a mechanism to
be implementable:

Definition 14 (Implementable Mechanism). A mechanism (𝜑, 𝜉, 𝑇 ) is implementable given
contractibility 𝐶 if and only if the following three conditions are satisfied:

1. Obedience:
𝜑(𝜃) ∈ arg max

𝑥∈𝐶(𝜉(𝜃))
𝑢(𝑥, 𝜃) for all 𝜃 ∈ Θ (O) (42)

2. Incentive Compatibility:

𝜉(𝜃) ∈ argmax
𝑦∈𝑋

{︂
max
𝑥∈𝐶(𝑦)

𝑢(𝑥, 𝜃)− 𝑇 (𝑦)

}︂
for all 𝜃 ∈ Θ (IC) (43)

3. Individual Rationality:

𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜉(𝜃)) ≥ 0 for all 𝜃 ∈ Θ (IR) (44)

We let ℐ(𝐶) denote the set of implementable mechanisms under 𝐶.

Obedience requires that each agent 𝜃 chooses an optimal final action 𝜑(𝜃) by optimally
exploiting what is possible under the contract given the initial recommendation 𝜉(𝜃), i.e.,
they choose a favorite element from 𝐶(𝜉(𝜃)).5 Incentive Compatibility ensures that the
agent wishes to actually perform the initial action 𝜉(𝜃) required by the mechanism, taking

5We use the word “obedience” in the sense of Myerson (1982).
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into account both the transfer they pay and their subsequent ability to optimize their final
action within the scope described by the contract. Individual Rationality ensures that all
agents are willing to participate in the mechanism.

Conditional on a level of contractibility 𝐶, the principal maximizes the sum of transfers
and payoffs arising from agents’ final actions or solves

𝒥 (𝐶) := sup
(𝜑,𝜉,𝑇 )∈ℐ(𝐶)

∫︁
Θ

(𝜋(𝜑(𝜃), 𝜃) + 𝑇 (𝜉(𝜃))) d𝐹 (𝜃) (45)

We refer to a maximizer (𝜑, 𝜉, 𝑇 ), if it exists, as an optimal contract given 𝐶.
The principal’s full problem encompasses the aforementioned inner problem and the

choice of contractibility. The principal chooses contractibility 𝐶 ∈ 𝒞 to maximize expected
surplus net of costs, or

sup
𝐶∈𝒞

𝒥 (𝐶)− Γ(𝐶) (46)

As this representation makes clear, designing “contractibility” and designing “the contract”
are tightly linked, since the former determines what is implementable in the latter problem.

3.3 Optimal Contracts
We begin by studying the mechanism design problem with a fixed extent of contractibility.
We characterize implementable and optimal contracts, and illustrate the optimal contract
when partial contractibility induces a coarse menu.

3.3.1 The Optimal Contract

In principle, partial contractibility affects the problem in complex ways due to the interac-
tions between obedience and incentive compatibility: when deciding what type to report,
the agent takes into account their ability to later ignore the spirit of the contract (recom-
mendation 𝑦) and instead take a different action within the letter of the contract (a different
𝑥 ∈ 𝐶(𝑦)). Put differently, allowing for imperfect contractibility (𝐶(𝑦) ̸= {𝑦}) widens the
scope for deviations for each agent 𝜃—they can now pretend to be type 𝜃′ while also taking
an action that differs from the recommendation or action of 𝜃′. Such double deviations place
additional global constraints on what the principal can implement.

Despite this complication, we show that optimal mechanisms can be fully characterized.
To do this, we first define the virtual surplus function 𝐽 : 𝑋 ×Θ → R as:

𝐽(𝑥, 𝜃) = 𝜋(𝑥, 𝜃) + 𝑢(𝑥, 𝜃)− 1− 𝐹 (𝜃)

𝑓(𝜃)
𝑢𝜃(𝑥, 𝜃) (47)

which is the total surplus from 𝜃 taking action 𝑥, net of any payments that must be made to
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the agent to ensure local incentive compatibility. As is standard, we assume that 𝐽 is strictly
supermodular in (𝑥, 𝜃) and strictly quasiconcave in 𝑥. We define the principal’s favorite final
outcome function 𝜑𝑃 : Θ → 𝑋 as:

𝜑𝑃 (𝜃) = argmax
𝑥∈𝑋

𝐽(𝑥, 𝜃) (48)

Moreover, we define the lowest implementable final action greater than 𝜑𝑃 (𝜃) and the greatest
implementable final action less than 𝜑𝑃 (𝜃) as:

𝜑(𝜃) = min{𝑥 ∈ 𝐷 : 𝑥 ≥ 𝜑𝑃 (𝜃)} and 𝜑(𝜃) = max{𝑥 ∈ 𝐷 : 𝑥 ≤ 𝜑𝑃 (𝜃)} (49)

Given that 𝐷 is closed, these minimum and maximum values are attained. We finally define
the difference in the virtual surplus between these two allocations as:

∆𝐽(𝜃) = 𝐽(𝜑(𝜃), 𝜃)− 𝐽(𝜑(𝜃), 𝜃) (50)

With these objects in hand, we can now describe optimal contracts:

Theorem 1 (Optimal Contract). Fix a regular contractibility correspondence 𝐶 with upper
image set 𝐷. Any optimal final outcome function is almost everywhere equal to:

𝜑*(𝜃) =

⎧⎨⎩𝜑(𝜃), ∆𝐽(𝜃) > 0,

𝜑(𝜃), ∆𝐽(𝜃) ≤ 0.
(51)

Moreover, 𝜑* is supported by 𝜉* = 𝜑* and tariff:

𝑇 *(𝑥) = 𝑢(𝑥, (𝜑*)−1 (𝑥))−
∫︁ (𝜑*)−1(𝑥)

0

𝑢𝜃(𝜑
*(𝑠), 𝑠) d𝑠 (52)

Proof. See Appendix C.1.2.

We prove this result in three parts in the appendix. In the first part, we characterize
implementable allocations: a final outcome function 𝜑 is implementable if it is monotone
increasing in 𝜃 and its image lies in 𝜑(Θ) ⊆ 𝐷. Intuitively, after being given any 𝑦 ∈ 𝑋,
the agent’s favorite point is 𝛿(𝑦). Thus, if 𝑦 < 𝛿(𝑦), Obedience fails and the contract is
not implementable. The substantive part of the proof establishes sufficiency by ruling out
double deviations: if 𝜑(𝜃) ∈ 𝐷, and 𝜑 is monotone, then transfers can be designed so that
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Obedience and Incentive Compatibility hold. This characterization of implementation also
implies yields our formula for the tariff (Equation 52), which follows from application of the
envelope theorem to the standard reporting problem of single deviations.

In the second part of the result, we combine our novel characterization of implementation
with standard mechanism design arguments to reduce the principal’s problem to an optimal
control problem for the final action function.

The final part of the result characterizes the optimal final outcome function by solving
this control problem. Intuitively, the optimal contract implements the “next best” thing
to 𝜑𝑃 (𝜃) that is actually conctractible, in an incentive-compatible way. This is 𝜑(𝜃) when
∆𝐽(𝜃) > 0 and 𝜑(𝜃) when ∆𝐽(𝜃) < 0. Our assumption that 𝐽 is supermodular guarantees
that this pointwise optimal policy is monotone and therefore globally optimal. As this result
shows that 𝜉 can be taken equal to 𝜑; we henceforth focus on (𝜑, 𝑇 ) as the key objects of
the contract.

3.3.2 Coarse Contracts

We finally specialize and illustrate Theorem 1 in a case that will become important later:
when 𝐷 can be written as a sequence of ordered isolated points, or 𝐷 = {𝑥1, . . . , 𝑥𝐾} with
𝑥1 = 0 and 𝑥𝐾 = 𝑥. In this case, the contract has the following structure:

Proposition 20 (Coarse Contracts). If 𝐷 = {𝑥1, . . . , 𝑥𝐾}, any optimal final outcome func-
tion is almost everywhere equal to:

𝜑*(𝜃) =
𝐾∑︁
𝑘=1

𝑥𝑘I[𝜃 ∈ (𝜃𝑘, 𝜃𝑘+1]] (53)

where for 𝑘 ∈ {2, . . . , 𝐾}, 𝜃𝑘 is defined as the unique solution to 𝐽(𝑥𝑘, 𝜃𝑘) = 𝐽(𝑥𝑘−1, 𝜃𝑘) if
one exists, one if 𝐽(𝑥𝑘, 𝜃) < 𝐽(𝑥𝑘−1, 𝜃) for all 𝜃 ∈ Θ, and zero if 𝐽(𝑥𝑘, 𝜃) > 𝐽(𝑥𝑘−1, 𝜃) for
all 𝜃 ∈ Θ, with the normalization that 𝜃1 = 0 and 𝜃𝐾+1 = 1. The optimal on-menu tariff,
𝑇 : 𝐷 → R, is given by

𝑇 *(𝑥𝑘) = I[𝑘 ≥ 2]
𝑘∑︁

𝑗=2

[︁
𝑢(𝑥𝑗, 𝜃𝑗)− 𝑢(𝑥𝑗−1, 𝜃𝑗)

]︁
(54)

Proof. See Appendix C.1.3.

In an optimal coarse contract with 𝐾 contractible actions, the principal offers a 𝐾-item
menu. The items are priced such that the types separate into a 𝐾-interval partition and the
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Figure 3-2: An Optimal Coarse Contract
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Notes: The optimal coarse contract in a setting with 𝑢(𝑥, 𝜃) = 𝑥𝜃, 𝜋(𝑥, 𝜃) = −𝑥2

2 , 𝜃 ∼ 𝑈 [0, 1], and
𝐷 = {0, 1/3, 2/3, 1}. The first panel shows the assignment 𝜑; the second panel shows the function
Δ𝐽(𝜃) defined in Equation 50 and Theorem 1; and the third panel shows the tariff 𝑇 . In the first
and third panel, we graph both the optimal coarse contract (𝜑*, 𝑇 *) and the contract under perfect
contractibility (𝜑𝑃 , 𝑇𝑃 ).

types in interval 𝑘 purchase item 𝑘. The boundary types separating these intervals, {𝜃𝑘}𝐾𝑘=1,
are such that the principal is indifferent between their purchasing adjacent items, taking into
account the marginal effect of that type’s choices on the required information rents. The
profit-maximizing pricing has prices jump by exactly the willingness-to-pay of the threshold
type for moving from the previous allocation to the next.

We now illustrate the coarse contract in an example of monopoly pricing à la Mussa and
Rosen (1978) in Section 3.5.

Example 4. We study a case with linear utility for the agent, quadratic costs for the prin-
cipal, and uniformly distributed types:

𝑢(𝑥, 𝜃) = 𝑥𝜃 𝜋(𝑥, 𝜃) = −1

2
𝑥2 𝜃 ∼ 𝑈 [0, 1] (55)

We allow for contractibility on a four-point, evenly spaced partition of the action space 𝑋 =

[0, 1]: 𝐷 = {0, 1/3, 2/3, 1}. One contractibility correspondence that induces such an 𝐷 is
the “Partition” example of Figure 3-1, Panel 1b. Moreover, as implied by Theorem 1, the
specification of the lower image set 𝐷 is not relevant for the the optimal contract.

We remind that the optimal contract under full contractibility, as studied by Mussa and
Rosen (1978) inter alia, assigns 𝜑𝑃 (𝜃) = 0 for 𝜃 ∈ [0, 1/2] and 𝜑𝑃 (𝜃) = 2𝜃−1 for 𝜃 ∈ (1/2, 1].
The optimal contract under full contractibility charges tariff 𝑇 (𝑥) = 𝑥2

4
+ 𝑥

2
.

The optimal contract in this quadratic case “coarsens” the familiar contract (𝜑𝑃 , 𝑇 𝑃 ) as
illustrated in Figure 3-2. As described in the discussion of Theorem 1 and Corollary 20, the
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principal partitions the types into intervals receiving each item (first panel) and determines
the boundaries of these intervals based on their indifference, or when ∆𝐽 crosses zero (second
panel). That the partition of the type space also features even intervals and that the optimal
tariff connects points on 𝑇 𝑃 (third panel) are special features of this model, which features
quadratic 𝑢 and 𝐽 . We discuss these special features in more depth when we study optimal
contractibility in the same model in Section 3.5.

3.4 Optimal Contractibility
We now study the principal’s optimal choice of contractibility. We show our main result: if
costs of contractibility satisfy a strong monotonicity property defined below, then optimal
contracts are coarse, i.e, they are supported on finitely many outcomes.

3.4.1 Existence of Solution

We first use the results of Section 3.3 to restate the principal’s optimal contractibility problem
and show that it is well-posed. As shown in Theorem 1, the set 𝐷 summarizes the effects
of imperfect contractibility on the optimal contract. We let 𝒟 denote the set of possible 𝐷,
or closed subsets of 𝑋 that contain 𝑥 and 0, and endow it with the topology induced by the
Hausdorff distance between closed sets (see Lemma 5).6 With an abuse of notation, let 𝒥 :

𝒟 → R define the value induced by solving the non-linear pricing problem given a particular
contractibility support 𝐷 ∈ 𝒟. This is formally defined in Lemma 19 in Appendix C.1.2.
The same lemma implies that the value induced by the optimal contract does not depend
on 𝐷. For this reason, here we fix 𝐷 = {0}, that is, complete absence of contractibility for
deviations below the recommended outcome.7 With this, and with some abuse of notation,
for every 𝐷 ∈ 𝒟, we let Γ(𝐷) denote the cost of the regular contractibility correspondence
represented by 𝐷 and {0}. We assume henceforth that Γ : 𝒟 → R is lower semi-continuous.
For example, this is satisfied by costs of distinguishing (Definition 13). Using this we can
rewrite the program of Equation 46 as the following choice of 𝐷:

sup
𝐷∈𝒟

𝒥 (𝐷)− Γ(𝐷) (56)

Our results in Section 3.3 moreover imply that 𝒥 is continuous, allowing us to show the
following:

6Recall that the Hausdorff distance between sets in the real line is defined as 𝑑𝐻(𝐴,𝐵) =
max {sup𝑎∈𝐴 inf𝑏∈𝐵 |𝑎− 𝑏|, sup𝑏∈𝐵 inf𝑎∈𝐴 |𝑎− 𝑏|}.

7Observe that, whenever adding any contractibility from below involves strictly positive costs, setting
𝐷 = {0} is part of any solution of the principal’s overall problem.
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Proposition 21. The set of optimal contractibility supports 𝒟*(Γ) solving Problem 56 is
nonempty and compact.

Proof. See Appendix C.1.4.

Theorem 1 and Proposition 21 together imply that the joint design problem of optimally
choosing a contractibility correspondence and then a contract has well-defined solutions,
despite its high dimensionality.

3.4.2 Key Property: Strongly Monotone Costs

We next introduce a property of contractibility costs that will be crucial for our coarseness
result. The property concerns the cost of differentiating a given action 𝑥 from others with
arbitrarily high “precision.” Formally, we consider an 𝑥 ∈ 𝐷 that is an accumulation point,
or a point around which any small neighborhood contains another point in 𝐷. Economically,
the principal can differentiate such an action 𝑥 from many arbitrarily close actions. We
consider the thought experiment of removing contractibility in a small region around 𝑥, or
eliminating these fine distinctions between actions. The strong monotonicity property, stated
below, disciplines the rate at which this cost of precise contracting declines to zero as we
focus on an arbitrarily small part of the action space around 𝑥:

Definition 15. A cost function Γ is strongly monotone if there exists 𝜖 > 0 such that:

lim inf
𝑚

Γ(𝐷)− Γ(𝐷 ∖ (𝑎𝑚, 𝑏𝑚))
(𝑥𝑚 − 𝑎𝑚)(𝑏𝑚 − 𝑥𝑚)

≥ 𝜖 (57)

for all 𝐷 ∈ 𝒟, accumulation points 𝑥 ∈ 𝐷, and sequences {𝑎𝑚, 𝑥𝑚, 𝑏𝑚}∞𝑚=1 ⊆ 𝐷 such that
𝑥𝑚 ∈ (𝑎𝑚, 𝑏𝑚) and 𝐷 ∩ (𝑎𝑚, 𝑏𝑚) → {𝑥}, where the limit is in the topological sense.8

Note that this property allows the costs of “precise contracting” to go to zero, as we can
take 𝑥𝑚−𝑎𝑚 and 𝑏𝑚−𝑥𝑚 each to zero. The content of the property is to restrict how quickly
these costs reach zero.

One important and illustrative implication of strong monotonicity is that there are second
order costs of perfect contractibility in the following sense. Consider an 𝑥 and 𝐷 such that
there is perfect contractibility in a neighborhood around 𝑥, or 𝐵𝑡(𝑥) ⊂ 𝐷 for all sufficiently
small 𝑡 > 0.9 In this construction, 𝑥 is an (interior) accumulation point that the principal

8The upper topological limit of a sequence of sets {𝐴𝑚}∞𝑚=1 ⊆ 𝑋 is the set of points 𝑥 ∈ 𝑋 such that
every neighborhood intersects infinitely many sets 𝐴𝑚. The lower topological limit is the set of points such
that every neighborhood contains intersects almost all sets 𝐴𝑚. The topological limit exists if the upper and
lower topological limits are equal.

9Here 𝐵𝑡(𝑥) denotes the open ball centered at 𝑥 and with radius 𝑡.
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Figure 3-3: Strong Monotonicity for Costs of Distinguishing Outcomes

am xm bm
x

am

xm

bm

δ(
x

) δD

δm

δD\(am,bm)

Bound, (bm − xm)(xm − am)

Γ(D \ (am, bm))− Γ(D)

Notes: An illustration of strong monotonicity for discrete costs of distinguishing (Example 3). The
function 𝛿𝑚 is constructed in the proof of Proposition 22. Note that, in this example, the bound is
not tight.

can precisely differentiate from all of its neighbors. Applying Definition 15, we can take a
sequence {𝑡𝑚}∞𝑚=0 such that 𝑡𝑚 → 0 and construct sequences 𝑎𝑚 = 𝑥− 𝑡𝑚 and 𝑏𝑚 = 𝑥+ 𝑡𝑚.
In this case, the operation in Definition 15 is to remove a sequence of shrinking balls centered
around 𝑥. A cost Γ is strong monotone only if, in such a scenario, the cost of removing these
balls is asymptotically bounded by a constant times their radius squared, or 𝜖𝑡2𝑚.

Definition 15 generalizes this idea to also discipline the cost of precise contracting around
non-interior accumulation points. For example, the set 𝐷 = {1−2−𝑘}∞𝑘=0∪{1} has an empty
interior, but 1 is an accumulation point which the principal can distinguish from any close
action 1 − 2−𝑘, for arbitrarily large 𝑘. Similarly, if 𝐷 were the Cantor set, then all of its
elements are non-interior accumulation points. The full form of Definition 15 is required to
consider set-valued perturbations that allow for countably infinite sets and irregular sets,
such as the Cantor set.

We argue that strong monotonicity is a natural property to possess because is any cost
of distinguishing outcomes (recall Definition 13) satisfies it:

Proposition 22. Any cost of distinguishing outcomes is strongly monotone with 𝜖 = 𝑑(0, 𝑥).

Proof. See Appendix C.1.5.

We can give a simple geometric intuition why costs of distinguishing are strongly mono-
tone. For simplicity, suppose that 𝑑 is the discrete metric (recall Example 3), in which
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case 𝜖 = 1 and the cost coincides with the area above 𝛿 (Figure 3-3). We first observe
that any 𝐷 which induces an upper envelope 𝛿𝐷 (black solid line, illustrating perfect con-
tractibility), is “greater” than a variant set of contractibility that includes {𝑎𝑚, 𝑥𝑚, 𝑏𝑚} but no
other points in the interval (𝑎𝑚, 𝑏𝑚), represented by some upper envelope 𝛿𝑚 (blue dashed
line). This is itself “greater” than 𝛿𝐷∖(𝑎𝑚,𝑏𝑚) (red dotted line). The cost savings of mov-
ing between the dashed line and the dotted line is the right-hatched rectangle, with side
lengths 𝑏𝑚 − 𝑥𝑚 and 𝑥𝑚 − 𝑎𝑚. These cost savings are a lower bound for the cost savings
of moving from 𝐷 to 𝐷 ∖ (𝑎𝑚, 𝑏𝑚), which are indicated with left-hatched shading. Thus,
Γ(𝐷)− Γ(𝐷 ∖ (𝑎𝑚, 𝑏𝑚)) ≥ (𝑥𝑚 − 𝑎𝑚)(𝑏𝑚 − 𝑥𝑚) and strong monotonicity is satisfied. Beyond
this case, we show by the mean value theorem that any cost of distinguishing outcomes is
bounded below by 𝑑(0, 𝑥) times the cost of distinguishing outcomes under the discrete met-
ric. For example, when the cost of distinguishing is induced by a 𝑝−distance (from Example
3), we have that 𝜖 = 𝑥− 1

1+𝑝 .

3.4.3 Optimal Coarse Contracts

We now state our main theoretical result on the optimality of coarse contracts and the extent
of their coarseness. To do this, we define of maximum concavity 𝐽𝑥𝑥 = max𝑥,𝜃 |𝐽𝑥𝑥(𝑥, 𝜃)|,
minimum complementarity 𝐽𝑥𝜃 = min𝑥,𝜃 𝐽𝑥𝜃(𝑥, 𝜃), and maximum density 𝑓 = max𝜃 𝑓(𝜃).
Note that, under our maintained assumptions, 0 < 𝐽𝑥𝑥, 𝐽𝑥𝜃, 𝑓 < ∞. With these objects in
hand, we have that:

Theorem 2 (Optimally Coarse Contractibility). If Γ is strongly monotone, then every op-
timal contractibility support 𝐷* is finite with |𝐷*| ≤

⌊︁
2
(︁

3𝑥𝐽2
𝑥𝑥𝑓

𝜖𝐽𝑥𝜃
+ 1
)︁⌋︁

.

Before proving this result, we remark on what these properties for optimal contractibility
imply for optimal contracts. We say that a final outcome function 𝜑 is supported on a set
𝐷 ⊆ [0, 𝑥] if there exists a tariff 𝑇 with proper domain 𝐷 that induces 𝜑.

Corollary 18 (Optimally Coarse Contracts). If Γ is strongly monotone, every optimal final
outcome function 𝜑* is supported on a finite menu with at most

⌊︁
2
(︁

3𝑥𝐽2
𝑥𝑥𝑓

𝜖𝐽𝑥𝜃
+ 1
)︁⌋︁

items.

This combination of Theorem 2 and Corollary 18 provides a foundation for endogenous
incomplete contracts under the presence of contractibility costs. This incompleteness takes a
strong form under a coarse contract because almost all actions are left unspecified. Moreover,
this result holds for any arbitrarily small degree of cost of writing contracts, since the 𝜖 in
Definition 15 can be made arbitrarily small.

We now describe the proof of Theorem 2 in three parts: i) finding estimates of the loss
in value from set-valued perturbations of contractibility, ii) combining these estimates with
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strong monotonicity to rule out infinite sets, and iii) constructing an explicit bound for the
extent of contractibility.

Part I: The Opportunity Cost of Coarsening a Contract We first give an interme-
diate result that bounds the loss to the principal from removing contractibility:

Lemma 6. Consider any 𝐷 ∈ 𝒟 and any 𝑎, 𝑏 ∈ 𝐷 such that 𝑎 < 𝑏. Then,

𝒥 (𝐷)− 𝒥 (𝐷 ∖ (𝑎, 𝑏)) ≤ 3

2

𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃

(𝑏− 𝑎)3 (58)

Moreover, if (𝑎, 𝑏) ∩𝐷 ̸= ∅, then there exists 𝑐 ∈ (𝑎, 𝑏) ∩𝐷 such that:

𝒥 (𝐷)− 𝒥 (𝐷 ∖ (𝑎, 𝑏)) ≤ 3

2

𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃

(𝑏− 𝑎)
[︀
(𝑐− 𝑎)2 + (𝑏− 𝑐)2

]︀
(59)

Furthermore, if {𝑎, 𝑏, 𝑐} are sequential, or 𝐷 ∩ (𝑎, 𝑏) = ∅ and 𝐷 ∩ (𝑏, 𝑐) = ∅, then

𝒥 (𝐷)− 𝒥 (𝐷 ∖ (𝑎, 𝑏)) ≤ 3
𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃

(𝑏− 𝑎)(𝑐− 𝑎)(𝑏− 𝑐) (60)

Proof. See Appendix C.1.6.

The first statement says that the opportunity cost of removing all points of contractibility
within an interval (𝑎, 𝑏) is third-order in the length of that interval. The next two statements
refine this bound when there is a known point of contractibility 𝑎 < 𝑐 < 𝑏 and when the
three points of interest are isolated. All three bounds share the following basic comparative
statics: they loosen when 𝐽 has higher concavity, when 𝐽 has lower supermodularity, and
when the type density is more concentrated.

We omit the full proof because it involves detailed calculations. But, to provide intuition
for the form of these bounds, we sketch the proof of the first statement (Equation 58). We
first observe, exploiting our results from Section 3.3.1, that optimal allocations conditional
on any level of contractibility solve a pointwise program (see Lemma 19). Thus, we can
re-express 𝒥 (𝐷)− 𝒥 (𝐷 ∖ (𝑎, 𝑏)) as

𝒥 (𝐷)− 𝒥 (𝐷 ∖ (𝑎, 𝑏)) =
∫︁
Θ

(𝐽(𝜑*(𝜃), 𝜃)− 𝐽(𝜑*′(𝜃), 𝜃)) d𝐹 (𝜃) (61)

where 𝜑* and 𝜑*′ respectively denote the optimal assignments under each level of contractibil-
ity. We next observe, using our characterization of the optimal contract (Theorem 1), that
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𝜑* ̸= 𝜑*′ only for types such that the actions 𝜑(𝜃) or 𝜑(𝜃), defined relative to 𝐷, were within
(𝑎, 𝑏). The third-order bound derives from two steps: showing that this set of affected types
has measure proportional to 𝑏− 𝑎 and showing that the payoff losses for each such type are
bounded by something proportional to (𝑏− 𝑎)2.

For the first step, we observe that a necessary condition for a type 𝜃 to be affected by the
removal of the interval (𝑎, 𝑏) is that 𝜑𝑃 (𝜃) ∈ (𝑎, 𝑏): in words, that the principal would prefer
(absent imperfect contractibility) to allocate these types something between 𝑎 and 𝑏. We
can define this set of types as the pre-image of (𝑎, 𝑏) via 𝜑𝑃 ; intuitively, it has large mass if
the 𝜑𝑃 mapping is very flat (i.e., nearby types map to similar actions) or if the type density
is very large in this region. We bound the (inverse) slope of the type distribution by 𝐽𝑥𝑥

𝐽𝑥𝜃
and

the maximum type distribution by 𝑓 . Together, this contributes a term (𝑏 − 𝑎)𝐽𝑥𝑥
𝐽𝑥𝜃

𝑓 to the
bound.

For the second step, we exactly express 𝐽(·, 𝜃) to second order around 𝜑*(𝜃) using Taylor’s
remainder theorem. We next express the first-order effects as also second-order, using the
fact that 𝜑*(𝜃) and 𝜑*′(𝜃) are close to 𝜑𝑃 (𝜃), and the fact that 𝐽𝑥(𝜑

𝑃 (𝜃), 𝜃) = 0 due to
that allocation’s pointwise optimality. This contributes a term 3

2
𝐽𝑥𝑥(𝑏 − 𝑎)2, where we use

the uniform bound on concavity. Putting steps one and two together gives the bound in
Equation 58.

Part II: Establishing Finite Contractibility We now establish that there exists some
𝐾* ∈ N such that every optimal contractibility support is finite with |𝐷*| ≤ 𝐾*. We prove
this by contradiction. Suppose instead that an optimal contractibility support 𝐷

* is an
infinite set. As 𝐷

* is compact, this implies that 𝐷
* contains an accumulation point 𝑥.

We now consider the closed set 𝐵𝑡(𝑥) ∩ 𝐷, which is the neighborhood around 𝑥 in 𝐷

and is infinite as 𝑥 is an accumulation point. There are four exhaustive possibilities for the
properties of this set:

1. 𝐵𝑡(𝑥) ∩𝐷 is a perfect set: that is, all of its members are accumulation points.

(a) Moreover, the set is somewhere dense. In this case, the set necessarily contains
an interval.

(b) Moreover, the set is nowhere dense. For example, the set could be the Cantor set.

2. 𝐵𝑡(𝑥) ∩𝐷 is not a perfect set.

(a) Moreover, the set is uncountably infinite. In this case, by application of the
Cantor-Bendixson Theorem, it contains a perfect set (see, e.g., p. 67 of Apostol,
1974).
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(b) Moreover, the set is countably infinite. In this case, the set contains an isolated
point. If it did not, then all points in the set would be accumulation points, and
the set would be a perfect set.

We proceed to show that each of these cases contradicts optimality. In each case, our
argument will be that, given strong monotonicity (Definition 15), the marginal costs of
precise contracting near an accumulation point 𝑥 go to zero more slowly than the marginal
benefits. In each case, we will rely on a different “costs” implication of strong monotonicity
and a different “benefits” implication of Lemma 6.

Lemma 7. If Γ is strongly monotone, then the following statements are true:

1. If 𝐷 ∈ 𝒟 contains an interval, then 𝐷 is not optimal

2. If 𝐷 ∈ 𝒟 contains an accumulation point 𝑥 such that 𝐵𝑡(𝑥)∩𝐷 is a perfect and nowhere
dense set for some 𝑡 > 0, then 𝐷 is not optimal

3. If 𝐷 ∈ 𝒟 is countably infinite, then 𝐷 is not optimal.

Proof. See Appendix C.1.7

Thus, strong monotonicity rules out intervals, nowhere dense perfect sets (e.g., the Cantor
set), and countably infinite sets. We finally put these steps together to complete the proof of
finiteness, referring back to our exhaustive list of cases. Under case 1(a), claim 1. of Lemma
7 contradicts optimality. Under case 1(b), claim 2. of Lemma 7 contradicts optimality.
Under case 2(a), the problem reduces to either 1(a) or 1(b) and the previous arguments
apply. Under case 2(b), claim 3. of Lemma 7 contradicts optimality. Thus, we have shown
that 𝐷* cannot contain an accumulation point. As the set is also compact, it must be finite.

Part III: Deriving the Bound We now derive an explicit bound on the number of
elements in 𝐷

*.

Lemma 8. If Γ is strongly monotone, then |𝐷*| ≤
⌊︁
2
(︁

3𝑥𝐽2
𝑥𝑥𝑓

𝜖𝐽𝑥𝜃
+ 1
)︁⌋︁

.

Proof. See Appendix C.1.8.
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We prove this by using our explicit bound on the payoff gains from more complete con-
tracts from Lemma 6. Concretely, if more than this many actions were contractible, we can
show directly that eliminating at least one action would be payoff improving. The bound
on the completeness of the contract inherits the comparative statics of our payoff bound in
Lemma 6. That is, contracts are finer-grained when the losses from coarseness are higher,
and those losses are higher with high concavity, low supermodularity, and high concentration
of types. In Section 3.5, we will explore these predictions further in our application.

3.4.4 Designing Coarse Contracts

Having established that strong monotonicity implies coarse contracts and derived an explicit
bound on the contract’s “size,” we now study how the principal chooses which outcomes are
contractible. That is, how does a principal design a coarse contract to best suit their needs?

We first revisit our analysis from Section 3.3 to write the principal’s payoffs when con-
tractibility is finite. As observed in Proposition 20, the optimal contract given a coarse
contractibility correspondence allocates action 𝑥𝑘 to types 𝜃 ∈ [𝜃𝑘, 𝜃𝑘+1) (recall that 𝜃𝑘 is
defined as the solution to 𝐽(𝑥𝑘, 𝜃𝑘) = 𝐽(𝑥𝑘−1, 𝜃𝑘) when one exists for 𝑘 ∈ {2, . . . , 𝐾}, with
the normalization that 𝜃1 = 0 and 𝜃𝐾+1 = 1). Given this, we have that the principal’s total
profit is given by:

𝒥
(︀
{𝑥𝑘}𝐾𝑘=1

)︀
=

𝐾∑︁
𝑘=1

∫︁ 𝜃𝑘+1

𝜃𝑘

𝐽(𝑥𝑘, 𝜃) d𝐹 (𝜃) (62)

Let 𝒟𝐾 be the set of all 𝐷 ∈ 𝒟 such that |𝐷| = 𝐾. Observe that each set 𝐷 =

{𝑥1, ..., 𝑥𝐾} ∈ 𝒟𝐾 is uniquely identified by the vector (𝑥1, ..., 𝑥𝐾) ∈ 𝑋𝐾 . Therefore, with a
slight abuse of notation, we identify 𝒟𝐾 with the finite-dimensional set 𝑋𝐾 . Given any Γ

and 𝐾 ∈ N, define the family of restricted cost functions Γ𝐾 : 𝒟𝐾 → R̄ with Γ𝐾(𝐷) = Γ(𝐷)

for all 𝐷 ∈ 𝒟𝐾 . We now define the differentiability notion that we employ:

Definition 16 (Finite Differentiability). Γ is finitely differentiable if Γ𝐾 is a continuously
differentiable function for all 𝐾 ∈ N.10

When a cost function is finitely differentiable, its derivatives coincide with a more traditional
notion in Euclidean space. We write these derivatives in some abuse of notation for 𝑘 ∈
{2, . . . , 𝐾 − 1} as:

Γ
(𝑘)
𝐾 (𝐷) = lim

𝜖↓0

Γ({𝑥1, . . . , 𝑥𝑘 + 𝜖, . . . , 𝑥𝐾})− Γ({𝑥1, . . . , 𝑥𝑘, . . . , 𝑥𝐾})
𝜖

(63)

We observe that any cost of distinguishing satisfies this property:
10As standard, here we mean that each Γ𝐾 admits a continuously differentiable extension to an open set

that contains 𝑋𝐾 .
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Proposition 23. Any cost of distinguishing outcomes is finitely differentiable.

Proof. See Appendix C.1.9.

We now state a necessary condition for an optimally designed coarse contract, which in-
tuitively requires that “marginal benefits equal marginal costs” for adjusting any contractible
outcome 𝑥𝑘:

Proposition 24. If Γ is strongly monotone and finitely differentiable, then any optimal
contractibility support 𝐷*

= {𝑥1, . . . , 𝑥𝐾*} satisfies:

∫︁ 𝜃𝑘+1

𝜃𝑘

𝐽𝑥(𝑥𝑘, 𝜃) d𝐹 (𝜃) = Γ
(𝑘)
𝐾*(𝐷

*
) for 𝑘 ∈ {2, . . . , 𝐾* − 1} (64)

where 𝜃𝑘 is as defined in Proposition 20.

Proof. See Appendix C.1.10

The left-hand-side of Equation 64 says that the marginal benefit of changing a grid point
𝑥𝑘 is the average increase in virtual surplus over all types allocated to that action. Note that
these marginal changes in virtual surplus take into account the direct effects on revenues
and costs (holding fixed agents’ purchases) as well as the indirect effects on the rest of the
contract via information rents. A second effect of changing 𝑥𝑘, the change in the marginal
types 𝜃𝑘 and 𝜃𝑘+1, is only second order since the principal is indifferent between allocating
those types either of two adjacent actions in the grid.

3.4.5 Efficient Contracts and Contractibility

We have so far considered optimal contracts. However, our analysis also applies to efficient
contracts that maximize total surplus, rather than virtual surplus. To be concrete, define
total surplus as 𝑆(𝑥, 𝜃) = 𝜋(𝑥, 𝜃) + 𝑢(𝑥, 𝜃) and assume that this is strictly supermodular
in (𝑥, 𝜃) and strictly quasi-concave in 𝑥. The efficient mechanism design and contractibility
problems are respectively given by:

𝒮(𝐶) := sup
(𝜑,𝜉,𝑇 )∈ℐ(𝐶)

∫︁
Θ

𝑆(𝜑(𝜃), 𝜃)d𝐹 (𝜃) (65)
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and:
sup
𝐶∈𝒞

𝒮(𝐶)− Γ(𝐶) (66)

Understanding efficient contractibility is interesting for three reasons. First, it is directly
useful for understanding the welfare effects of incomplete contracts. Second, it allows us to
understand how incomplete information affects incomplete contracts. This is because the
principal’s problem under complete information reduces to the efficient problem.11 Third,
it allows us to study settings in which the agents have the bargaining power and choose a
contract to maximize their expected utility subject to the principal’s participation.12

All of our results apply to this problem, where 𝐽 in our earlier results must simply
be substituted with 𝑆. This observation opens up the door to comparative statics results
on the extent of optimal contractibility across the revenue-maximization cases and the ef-
ficient cases. For example, the new bound on the optimal extent of contractibility in the
efficient case is |𝐷*

𝑒| ≤
⌊︁
2
(︁

3𝑥𝑆2
𝑥𝑥𝑓

𝜖𝑆𝑥𝜃
+ 1
)︁⌋︁

, where 𝐷
*
𝑒 is any efficient contractibility support

and 𝑆𝑥𝑥 = max𝑥,𝜃 |𝑆𝑥𝑥(𝑥, 𝜃)| and 𝑆𝑥𝜃 = min𝑥,𝜃 𝑆𝑥𝜃(𝑥, 𝜃). Thus, changes in concavity and
supermodularity induced by information rents can be seen to directly impact the difference
between efficient and revenue-maximizing contractibility. In Section 3.5.3, we exploit this to
derive exact comparative statics in our leading application.

3.5 Application: Optimally Coarse Monopoly Pricing

In this section, we apply our results to study monopoly pricing with endogenous and costly
contractibility. We show that optimal pricing takes the form of discrete quality tiers, as the
principal forgoes the opportunity for finer-grained price discrimination to economize on the
costs of designing the contract. We derive comparative statics for optimal coarseness, i.e.,
the number of quality tiers, as a function of differentiation in consumers’ tastes, production
costs, and costs of contractibility. We find that the presence of asymmetric information
leads to endogenously coarser contracts, or fewer quality tiers, by restricting the principal’s
potential gains from introducing a more fine-grained menu.

11This is because the participation constraint of each type 𝜃 must bind under complete information and
so the principal extracts full surplus from each type. Although Problem 65 is defined to include the incentive
compatibility constraint implied by incomplete information, strict supermodularity of 𝑆 implies that the
global incentive compatibility constraint would be slack.

12Formally, this corresponds to the constraint that the principal’s expected payoff is no less than their
outside option (normalized to 0):

∫︀
Θ
(𝜋(𝜑(𝜃), 𝜃) + 𝑇 (𝜉(𝜃))) d𝐹 (𝜃) ≥ 0. It is then standard to show that

this participation constraint must bind at the agent’s optimal contract which in turn must solve Problem
Problem 65. Therefore, the extent of optimal contractibility must again solve Problem 66.
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3.5.1 Set-up

We study the canonical linear-quadratic-uniform model of monopoly screening introduced
by Mussa and Rosen (1978). A monopolist (the principal) is selling a good of potentially
variable quality 𝑥 ∈ 𝑋 = [0, 1]. A continuum of consumers (the agents) have privately known
taste 𝜃 ∼ 𝑈 [0, 1] and preferences

𝑢(𝑥, 𝜃) = 𝛼𝜃𝑥 (67)

where 𝛼 > 0 scales the extent of differentiation in preferences. The monopolist has produc-
tion or service cost

𝜋(𝑥, 𝜃) = −𝛽
𝑥2

2
(68)

where 𝛽 ∈ (0, 𝛼] scales the extent of these costs.13

In the model of Mussa and Rosen (1978), and the broader literature on nonlinear pricing
(Wilson, 1993), the principal has access to contracts that specify a mapping from continuous
levels of quality 𝑥 ∈ [0, 1] to prices 𝑇 (𝑥). This is nested in our setting by eliminating costs
of contractibility and observing that the principal’s problem has the fewest constraints, and
hence the highest payoff, under perfect contractibility, 𝐶(𝑥) = {𝑥} (see Lemma 19).

We instead assume that the principal faces costs when writing the contract. In particular,
these take the form of the costs of distinguishing actions under the discrete metric introduced
in Example 3:

Γ(𝐶) = 𝛾

∫︁
𝑋

𝜇(𝑋 ∖ 𝐶(𝑥)) d𝑥 = 𝛾

∫︁ 1

0

(1− 𝛿(𝑥)) d𝑥 (69)

where 𝜇 is the Lebesgue measure, 𝛿(𝑥) = max𝐶(𝑥), 𝛾 > 0 is a scaling parameter, and where
we ignore the additive term corresponding to 𝛿(𝑥) = min𝐶(𝑥) due to its irrelevance for the
problem with increasing preferences. As described in Example 3, these costs represent the
monopolist’s difficulty in describing the difference between levels of quality ex ante.

To sharpen this interpretation, consider an application of the model to monopoly pricing
of rentals—for instance, of hotel rooms or cars. In this example, 𝑥 is the consumer’s intensity
of use (the “quality” of their experience). The type represents consumers’ differential taste
to spend time in the room or drive. The production cost represents the monopolist’s need
to offset damage and/or depreciation. The cost of contractibility is the cost of specifying
the boundaries between different levels of utilization (when is a car’s interior damaged?). To
act in the spirit of the contract is to check out of a pristine hotel room or return a perfectly
clean car; to act in the letter is to skirt the boundary of acceptable condition.

13We introduce the simplifying assumption that 𝛼 ≥ 𝛽, so under all optimal contracts the highest types
are allocated the maximum quality 𝑥 = 1.
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3.5.2 Optimal Pricing Features Uniform Quality Tiers

We now study the monopolist’s optimal pricing policy when they jointly design contractibility
and the optimal contract. We first apply our general theoretical results to significantly
simplify the problem. First, since the cost faced is a cost of distinguishing outcomes (as per
Definition 13), Proposition 22 establishes that it is strongly monotone. Thus, Theorem 2
implies that any optimal contractibility correspondence is finite. As a consequence, we can
treat the monopolist as optimizing jointly over a number 𝐾 ∈ N of distinct quality levels
and a vector {𝑥𝑘}𝐾𝑘=1 specifying those levels. Moreover, Proposition 24 implies that optimal
quality levels necessarily solve a first-order condition which, applied to our monopoly pricing
problem, embodies the trade-off between the cost of specifying the contract ex ante and
the benefits from price discrimination ex post. To proceed further, we exploit the specific
structure of production costs and consumer demand. Specifically, the first-order condition
reduces to a second-order nonlinear difference equation which we can solve directly. Using
this, we can calculate the firm’s payoff conditional on optimally designing a contract with
any number 𝐾 of contractible quality levels and then optimize analytically over 𝐾.

We find that the optimal contract takes the specific form of uniformly spaced quality
levels. Moreover, we can characterize the optimal number of qualities in closed form and
describe its comparative statics.

Proposition 25 (Optimal Nonlinear Pricing Contract). The seller offers the menu

𝑥𝑘 =
𝑘 − 1

𝐾* − 1
𝑇 (𝑥𝑘) =

1

2

𝑘 − 1

𝐾* − 1

(︂
𝛽

2

𝑘 − 1

𝐾* − 1
+ 𝛼

)︂
𝑘 ∈ {1, . . . , 𝐾*} (70)

where the optimal number of qualities, 𝐾*, satisfies |𝐾* − 𝐾̃| < 1 and

𝐾̃ = 1 +
𝛽2

12𝛼𝛾
(71)

Moreover, 𝐾* decreases in 𝛼, increases in 𝛽, and decreases in 𝛾. If 𝛾 < 𝛽2

16𝛼
, then 𝐾* ≥ 3.

Proof. See Appendix C.1.11.

Uniform Quality Tiers The uniform spacing of qualities arises due to symmetries in the
benefits of more precise price discrimination, irrespective of quality 𝑥 or type 𝜃, and the
symmetry of the cost function. To understand the first property (symmetric benefits), we
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observe that the second derivative 𝐽𝑥𝑥 is constant as a function of (𝑥, 𝜃) and that the prin-
cipal’s optimal assignment absent contracting frictions induces a uniform distribution over
actions. The following informal, constructive argument suggests the form of the solution.
Starting from perfect contractibility, the opportunity cost of removing perfect contractibility
in some interval of the action space is the same regardless of where that interval is located.
This for two reasons. First, as virtual surplus is quadratic in this model, the seller has an
equal opportunity cost of forgoing quality differentiation for high qualities. Second, because
the optimal assignment function is linear (which is itself because of the uniformity of the
distribution, the constant concavity of virtual surplus, and the constant supermodularity of
virtual surplus), the same measure of types is affected. This is a specialization of the ar-
gument that underpins Theorem 2 in the general model, but without needing uniformity of
concavity or the measure of affected types. In economic language, the seller has an equal op-
portunity cost of forgoing quality differentiation for high qualities (high-demand customers)
or low qualities (low-demand customers). This is true even though the seller makes more
money from the high-demand segment of the market. The corresponding symmetry in costs
arises from our argument about distinguishing actions. In particular, this cost function im-
plies that the difficulty in distinguishing actions does not vary over the action space—that
is, nearby low qualities are not easier or harder to distinguish than nearby high qualities.

The Optimal Number of Tiers and Comparative Statics The parameter 𝐾̃ is the
unique maximum of the “smooth” (i.e., non-integer) optimization problem. The comparative
statics follow from applying the supermodularity of the objective function to the true, integer-
domain problem. Economically, the comparative statics reinforce the lessons of our general
bound of Theorem 2: contracts are more fine-grained or less incomplete when complementar-
ity 𝛼 is low, concavity 𝛽 is high, and costs of contracting 𝛾 are low. In the monopoly-pricing
contract, as described above, this corresponds to low consumer heterogeneity, high service
costs, and high costs of distinguishing actions (e.g., levels of utilization).

A Numerical Example We have, in fact, already illustrated such a contract in the ex-
ample of Section 3.3.1 shown in Figure 3-2. This example featured 𝐾 = 4 and 𝛼 = 𝛽 = 1;
moreover, a four-quality contract is optimal for a range of cost scalings including 𝛾 = 1

32
.

In Figure 3-4, we numerically illustrate the comparative statics of Proposition 25 near these
parameter values.

3.5.3 Incomplete Information Begets (More) Incomplete Contracts

We finally explore the interaction of incomplete information (i.e., adverse selection) and
incomplete contracts in the monopoly pricing setting. We do this by comparing the optimal
monopoly pricing menu with the efficient allocation defined in Section 3.4.5.
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Figure 3-4: Comparative Statics for Contract Coarseness
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Notes: In each panel, we illustrate comparative statics of the optimal level of contractibility 𝐾* in
the example of Section 3.5 with 𝛼 = 𝛽 = 1 and 𝛾 = 1

32 . These results correspond to the analytical
predictions of Proposition 25.

Here, our preferred interpretation of that problem is that the monopolist can perfectly
segment the market and propose an allocation that depends on the actual type 𝜃 of each
consumer (i.e., perfect third-degree price discrimination).14 However, the monopolist must
use the same extent of contractibility for all consumer types, for example because the choice
of contractibility must be carried out before the monopolist learns the market segmentation.15

Under perfect contractibility, the monopolist would implement an “efficient” outcome
that maximizes expected total surplus 𝑆 = 𝜋 + 𝑢 and perfectly extracts each consumer’s
willingness to pay. Under costly contractibility, however, the principal may prefer to imper-
fectly price discriminate and economize on the costs of writing a complex contract. We find
that the efficient allocation also features uniform quality tiers, and that there are more tiers
than in the monopoly allocation:

Proposition 26. In the efficient contract, the optimal contractibility support is 𝐷
*
𝑒 ={︀

𝑘−1
𝐾*𝐶−1

}︀𝐾*𝐶

𝑘=1
where 𝐾*𝐶 ≥ 𝐾*. Moreover, 𝐾*𝐶 satisfies |𝐾*𝐶−𝐾̃𝐶 | < 1, where 𝐾̃𝐶 = 2𝐾̃−1.

Proof. See Appendix C.1.12.

The first part of the result has the same intuition as Proposition 25, relying on the

14In other words, we consider the complete-information setting where the feasible direct mechanisms
satisfy Obedience and Individual Rationality, but not Incentive Compatibility necessarily.

15As mentioned in Section 3.4.5, there is an alternative interpretation in which the consumer rather than
the producer has bargaining power (i.e., monopsony rather than monopoly).
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symmetry of the benefits and cost functions. The second part follows by observing that

𝑆(𝜃, 𝑥) = 𝐽

(︂
1 + 𝜃

2
, 𝑥

)︂
(72)

because 𝜃 = 2𝜃 − 1 is the “virtual type” of consumers, taking into account their effect on
information rents. Thus, the complete-information monopolist faces the same trade-offs as
the incomplete-information monopolist, but serves twice as large of a market (types in [0, 1]

rather than types in [1/2, 1]). Leveraging this observation, we show that the complete-
information monopolist has exactly twice as much incentive to contract more precisely or
employ more tiers.

Practically, this result implies that monopoly with adverse selection implies not just
under-provision of quality—a classic result of Mussa and Rosen (1978)—but also under-
differentiation of qualities. This arises in our environment because more incomplete in-
formation dulls the monopolist’s incentives to price discriminate, which in turn dulls the
monopolist’s incentive to contractually differentiate different quality levels.

3.5.4 Additional Application: Optimal Quality Certification

To demonstrate the broad applicability of our framework, we apply our results to a model
of optimal quality certification in Appendix C.2. Building on Albano and Lizzeri (2001) and
Zapechelnyuk (2020), we consider a seller who is privately informed about how efficient they
are in producing a good of a given quality. The quality actually produced by the seller is also
their private information and, conditional on the realized quality, the seller offers a price to
the market. The market is composed of a continuum of buyers who are privately informed
about an outside option they forego when buying the seller’s good. Therefore, each buyer
purchases the good if and only if the expected quality of the good, minus the offered price, is
no less than their outside option. We assume that the realized quality is not verifiable by the
buyer and the sender cannot commit ex ante to any information disclosure policy. However,
we consider a third-party certifier (i.e., the designer) that, in exchange for payments from the
seller, can commit ex-ante to an information policy disclosing information about the quality
produced to the buyers. As described by Zapechelnyuk (2020), this setting captures a number
of markets, such as crash safety testing in the car industry, food hygiene certifications for
restaurants and factories, and educational inspections for schools and universities.

Differently from Albano and Lizzeri (2001) and Zapechelnyuk (2020), we assume that the
certifier is also uninformed about how efficient the seller is. Moreover, each disclosure policy
comes with a verification cost that the certifier has to pay. This captures the idea that the
certifier has to invest resources in designing inspections and technology to ensure that the
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validity of their certification. Finally, we assume that the certifier maximizes profit.
We analyze this problem through a mechanism-design approach and show that it is

mathematically equivalent to the problem analyzed in our main analysis. Therefore, when the
verification costs for the certifier satisfy our strong monotonicity property, Theorem 2 implies
that every optimal quality-certification policy must involve finitely many grades, a prediction
that is in line with most certification policies that we practically observe. Concretely, in
the context of the earlier examples: the European New Car Assessment Program gives a
discrete star rating out of five for the crash safety of new vehicles; the New York City
Health department gives grades of A, B, and C for restaurants’ food hygiene; and the United
Kingdom Office for Standards in Education operates a four-point grading system after school
inspections.

3.6 Beyond Strongly Monotone Costs
While we have shown that the coarse contracting prediction holds for many reasonable
costs, we have not yet demonstrated that the conclusion is non-trivial in general. That is,
we have not shown that there exist reasonable costs of contractibility that do not deliver the
prediction of coarse contracts. In this final section, we discuss the boundaries of the coarse
contracting prediction under alternative costs. We show that: (i) costs motivated solely
by enforcing contracts ex post do not deliver coarse contracts, (ii) some costs motivated
by writing clauses deliver coarse contracts while some do not, and (iii) menu costs do not
necessarily deliver coarse contracts.

3.6.1 Costly Enforcement

We have interpreted costly contractibility as something borne ex ante, or before the agent
takes an action. As we argued above, this could capture the principal’s difficulties in de-
scribing different outcomes in a legally precise way. A different model would instead focus
on costs borne ex post, or after the agent takes (or attempts to take) an action. This could
capture the expected cost of detecting a deviation from the contract or litigating a deviation
from the contract, more reminiscent of the classic literature studying costly verification.

To shed light on the difference between these models, we show how an ex post variant of
our costs of distinguishing outcomes (Definition 13) leads to optimally complete contracts.
The reason turns out to be simple: ex post costs are equivalent to additional production costs
for the principal, which do not by themselves induce coarseness. We use this observation to
discuss the applicability of our coarse-contracts prediction to scenarios in which one might
expect more costs to be borne ex ante vs. ex post.

To describe this scenario mathematically, we let Φ = {𝜑 : Θ → 𝑋} be the set of increasing
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assignment rules, define the generalized inverse 𝜑−1(𝑥) = inf{𝜃 ∈ Θ : 𝜑(𝜃) ≥ 𝑥}, and define
an action-dependent cost as one that can be expressed by a function Γ : 𝒞 ×Φ → R. In this
context, we define ex post costs of distinguishing:

Definition 17 (Ex Post Costs of Distinguishing Outcomes). Fix 𝜑 ∈ Φ and define the
push-forward measure of 𝐹 to 𝑋 as 𝐹𝜑(𝑥) = 𝐹 (𝜑−1(𝑥)). The ex post cost of distinguishing
is:

Γ(𝐶, 𝜑) =

∫︁
𝑋

𝑑(𝐶(𝑥), 𝑋 ∖ 𝐶(𝑥))d𝐹𝜑(𝑥) (73)

where 𝑑 is as in Definition 13.

This differs from the ex ante cost of distinguishing as the total cost is evaluated under the
distribution of 𝑥 that obtains ex post, which is 𝐹𝜑, rather than under the uniform measure,
which is relevant when costs are borne ex ante. We now give an example of such a cost that
builds on Example 3, but differs critically in the timing of events:

Example 5 (Discrete Ex Post Costs of Distinguishing Outcomes). Consider the discrete
metric introduced by Example 3. The ex post cost of distinguishing is given by:

Γ(𝐶, 𝜑) =

∫︁
𝑋

𝜇(𝑋 ∖ 𝐶(𝑥))d𝐹𝜑(𝑥) =

∫︁
Θ

𝜇(𝑋 ∖ 𝐶(𝜑(𝜃)))d𝐹 (𝜃)

=

∫︁
Θ

(︀
𝑥− 𝛿(𝜑(𝜃)) + 𝛿(𝜑(𝜃))

)︀
d𝐹 (𝜃)

(74)

Which has the same integrand as Example 3, but instead integrates over the space of types
with respect to the distribution of types rather than the space of allocations with respect to
the uniform measure over actions.

This example hints at a fundamental difference between ex ante and ex post costs of
distinguishing outcomes: ex post costs are linearly separable over types while ex ante costs
are not. The only thing that ties different types together is 𝛿, as this is common to all types.
However, under any Obedient mechanism, we know that 𝜑(𝜃) = 𝛿(𝜑(𝜃)). Thus, fixing 𝜑, we
have pinned down 𝛿, and the induced cost function is linearly separable over types in their
final actions. Hence, it is as if ex post costs of distinguishing actions are a production cost.
This logic yields the following result, which implies that optimal contracts are never coarse
under ex post costs:

Proposition 27 (Ex Post Costs Do Not Yield Coarse Contracts). Under ex post costs of
distinguishing outcomes, free disposal, 𝐶(𝑥) = [0, 𝑥] for all 𝑥 ∈ 𝑋, is optimal.
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Proof. See Appendix C.1.13.

Thus, the optimal contract makes additional usage impossible 𝛿(𝑥) but allows for the possi-
bility of free disposal; this generates no loss in value for the principal but economizes on the
costs of monitoring for disposal, which they know will never actually happen as the agent
has a positive marginal value for all units of the good.

Realistic scenarios might be described as a combination of both ex ante and ex post
costs of distiguishing. That is, a principal may both have to write a contract that precisely
distinguishes actions and enforce it. We might model such scenarios by allowing the “true”
cost faced by the principal to be a weighted sum of ex ante and ex post costs. For instance,
in the context of the aforementioned examples, we could have:

Γ(𝐶, 𝜑) = 𝜈Γ𝐸𝐴(𝐶) + Γ𝐸𝑃 (𝐶, 𝜑) (75)

for some 𝜈 ∈ R+, where Γ𝐸𝐴 is some cost of distinguishing outcomes and Γ𝐸𝑃 is some ex
post cost of distinguishing outcomes. Provided that 𝜈 > 0, Theorem 2 holds and optimal
contracts are coarse. Moreover, the bound in Theorem 2 decreases in 𝜈.

Thus, our theory predicts coarser contracts in scenarios in which defining outcomes ex
ante is particularly difficult compared to scenarios in which outcomes are very well defined
but merely difficult to detect, punish, or enforce. The first category might include variable
quality services like hotel stays, vehicle rentals, or management consulting. What these sce-
narios have in common is that “success,” “quality,” and/or “damage” are inherently difficult
to define. While there are surely issues also with enforcement, at least some meaningful
fraction of costs comes from designing the contract in the first place (𝜈 > 0). The second
category might include metered utilities, in which the sole difficulty is the precise measure-
ment of ex post usage. This may include cases like the electrical service contracts which
motivate Wilson’s (1989) analysis.

3.6.2 Clause-Based Costs

One natural source for costly contractibility is a fixed cost for enumerating each relevant
outcome. We call any cost that depends on the contractible set only via its cardinality a
clause-based cost. These costs do not satisfy strong monotonicity, because they are insen-
sitive to the structure of contractibility. Nevertheless, it is possible to recover the spirit of
strong monotonicity and derive a sufficient condition for optimally coarse contracts in this
class. This will highlight that the prediction of incompleteness is sensitive to the parametric
structure of clause-based costs: while coarseness is guaranteed for any distance-based cost,
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not all clause-based costs will deliver incomplete contracts.

Definition 18 (Clause-Based Costs). A contractibility cost is clause-based if, for any 𝐷 ∈ 𝒟,
we can write Γ(𝐷) = Γ̂(𝑛(𝐷)), where 𝑛(·) denotes the cardinality of a set and Γ̂ : N → R is
a strictly increasing cost defined on this cardinality with the normalization that Γ̂(2) = 0 (as
our axioms imply that all 𝐷 contain {0, 𝑥}).

For such clause-based costs, we will discipline the rate at which marginal costs of adding
a clause decline to zero with the following definition:

Definition 19 (Clause Strong Monotonicity). We say that Γ, with induced Γ̂, is 𝛽−clause
strongly monotone if there exist 𝛽 and 𝜖 > 0 such that:

lim inf
𝑛→∞

(Γ̂(𝐾 + 1)− Γ̂(𝐾))𝐾𝛽 ≥ 𝜖 (76)

We illustrate clause-based costs and 𝛽−clause strong monotonicity in the following ex-
amples:

Example 6. Consider first the linear cost Γ̂(𝐾) = 𝐾 − 2, studied by Battigalli and Maggi
(2002) in their analysis of optimally incomplete contracts. This cost is 𝛽−clause strongly
monotone if and only if 𝛽 ≥ 0. As another example, the cost Γ̂(𝐾) = 1

2
− 1

𝐾
, which is bounded

and converges to 1
2

as the number of clauses become infinite. This cost is 𝛽−clause strongly
monotone if and only if 𝛽 ≥ 1. Finally, a cost with increments that are some power of the
number of clauses written so far, i.e., Γ̂(𝐾)− Γ̂(𝐾 − 1) = (𝐾 − 2)𝛼 for some 𝛼 ∈ R, yields
a cost Γ̂(𝐾) =

∑︀𝐾−2
𝑘=1 𝑘−𝛼. This cost is 𝛽−clause strongly monotone if and only if 𝛽 ≥ 𝛼.

It is obvious that any unbounded clause-based cost, such as the linear cost, implies a
coarse contract. It is less obvious when coarseness will be obtained for bounded clause-based
costs, such as Γ̂(𝐾) = 1

2
− 1

𝐾
. The next proposition ties the optimality of coarse contracts

to 𝛽−clause strong monotonicity.

Proposition 28. If Γ is clause-based and 𝛽−clause strongly monotone for 𝛽 < 3, then every

optimal contractibility support is finite with |𝐷*| ≤ 2 +

⌊︂(︁
6𝐽2

𝑥𝑥𝑓
𝜖𝐽𝑥𝜃

)︁ 1
3−𝛽

⌋︂
.

Proof. See Appendix C.1.14.

The proof of this result follows from three steps. We first observe that if any infinite-
support contract is optimal, so too is perfect contractibility—this has the same cost, but
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higher benefits. We next show that the benefits of perfect contractibility relative to an
evenly-spaced grid of sparse contracting points is second-order in the width of the grid. This
is exactly consistent with integrating the third-order bound of Lemma 6’s “individual grid
cells” over the entire domain 𝑋. This step in the proof of Proposition 28 has precedents in
the literature. In particular, Wilson (1989) shows under perfect information that coarsening
the domain of contractibility into uniform cells is second-order in the length of the grid.
Extending these ideas, Bergemann, Yeh, and Zhang (2021) show that this remains true
with private information. By contrast, our earlier arguments away from clause-based costs
that must consider set-valued perturbations are without precedent to our knowledge. The
third step shows that, when costs are 𝛽−clause strongly monotone for 𝛽 < 3, there is a
fine enough grid that beats perfect contractibility, thereby contradicting that any infinite-
support contractibility is optimal. Finally, the bound follows from using a similar argument
to contradict the optimality of points spaced too close together.

To illustrate this result, let us return to the example Γ̂(𝐾) = 1
2
− 1

𝐾
. As this cost is

𝛽-clause strongly monotone for 𝛽 = 1 < 3, we have that the optimal contract is necessarily
coarse. Moreover, we have a bound on the number of elements which is given by 2+

⌊︁√︁
6𝐽2

𝑥𝑥𝑓
𝐽𝑥𝜃

⌋︁
.

Thus, despite the fact that the marginal cost of additional clauses converges to zero, there
is nevertheless a finite bound on the number of clauses.

When a cost function is not 𝛽-clause strongly monotone for 𝛽 < 3, it is possible that an
optimal contract will be complete. Indeed, in our application from Section 3.5, it is easy to
verify that a cost of the form Γ̂(𝐾) =

∑︀𝐾−2
𝑘=1 𝑘−𝛼 for 𝛼 > 3 would yield an optimally complete

contract. This highlights that certain costs of contractibility could yield a prediction of
complete contracts. Thus, the issue of whether contracts are complete hinges on the cost
function and its economic properties.

We finally observe that the characterization of the optimally chosen actions in the clause-
based case is much the same as the characterization in Proposition 24. The only difference is
that the marginal cost term in the right of Equation 64 is zero, as there is no contractibility
cost of changing the value of any 𝑥𝑘. Bergemann, Shen, Xu, and Yeh (2012) have previously
studied this problem of optimally spacing grid points given an exogenous constraint in the
setting with linear-quadratic preferences and found the same first-order condition that we
have in this case. Relative to this work, we have shown how to optimally choose such points
in the presence of costs and, more substantively, how many points the principal should elect
to choose.
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3.6.3 Menu Costs

Another natural source of non-production costs for the principal are menu costs of various
forms: that is, costs of putting products up for sale rather than costs of delivering the final
product per se. A rich class of menu costs can be described by the expanded class of costs
Γ(𝐶, 𝜑). For example, our baseline costs of distinguishing actions can be re-interpreted as a
type of menu cost that leads to coarse contract. Clause-based costs, which depend on the
cardinality of the menu, can be interpreted as a menu cost that may or may not induce
coarse contracts (Section 3.6). In general, however, not all reasonable menu costs induce
coarse contracts, as we argue in the following eample.

Example 7 (Menu Costs from Maximum Quality). Consider the cost function studied by
Sartori (2021), in which the indirect cost of a menu corresponds to the cost of the most
expansive quality to be produced. Formally, fix a continuous and increasing baseline cost
function 𝑐 : 𝑋 → R and define

Γ(𝐶, 𝜑) = max
𝑥∈𝜑(Θ)

𝑐(𝑥) (77)

The interpretation of this cost function is that the monopolist invests ex-ante in a maximum
level of quality 𝑥 of the good and then they are able to freely garble this quality by offering
any smaller level 𝑦 ≤ 𝑥. It is easy to see that Γ𝑐 does not satisfy the strong monotonicity
properties of Section 3.4, since it depends only on the largest (relevant) item on the menu.
In fact, the analysis in Sartori (2021) shows that, in general, the optimal menu offered by
the monopolist is not coarse and involves a continuum of differentiated qualities.

3.7 Conclusion
In this paper, we introduced a model of when and why incomplete contracts arise in an envi-
ronment with costly contractibility. First, we studied contracting with fixed restrictions on
what actions are contractible and we characterized implementable and optimal mechanisms.
Second, we studied the problem of a principal that chooses the extent of contractibility sub-
ject to a cost. The cost, as we illustrated via examples, models the principal’s difficulty
in specifying and describing what outcomes are contractible. We then showed our main
result: if the costs of contracting on outcomes are strongly monotone in a way that we for-
malized, then optimal contracts are coarse. Moreover, we derive a bound on the number of
items in the optimal menu and derived necessary conditions that discipline which actions are
contractible. Finally, we applied this model to study when and why incomplete contracts
would arise in a monopoly pricing problem à la Mussa and Rosen (1978) that features costly
contractibility. We showed that optimal menus feature uniformly spaced quality tiers and
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provided a formula for the number of tiers that featured the same comparative statics as our
general bound. In this context, incomplete information induces more incomplete contracts
relative to the complete information benchmark.
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Appendix A

Appendix to Mediation Markets: The
Case of Soft Information

A.1 Revelation Principle
In this Appendix, we prove Lemma 1 and provide some related analyses that we mentioned in
the main text. First, we spell out the formal definition of equilibrium given a communication
mechanism. Recall that a communication mechanism is a triple (𝑀𝑆,𝑀𝑅, 𝜎) where 𝜎 : 𝑀𝑆 →
∆(𝑀𝑅×R) assigns a distribution over signals for the receiver and transfers for the mediator
conditional on each report of the sender. Also, recall that the timing goes as follows:

1. Sender privately observes the state 𝜃.

2. The mediator commits to mechanism (𝑀𝑆,𝑀𝑅, 𝜎).

3. The sender chooses whether to enter the mechanism 𝑝 ∈ 𝑃 := {0, 1}.

4. If 𝑝 = 1, sender chooses 𝑚𝑆 ∈ 𝑀𝑆 and (𝑚𝑅, 𝑡) are drawn according to 𝜎(·|𝑚𝑆). If
𝑝 = 0, then 𝑚𝑅 = ∅ and 𝑡 = 0.

5. The receiver observes (𝑝,𝑚𝑆), updates her beliefs to evaluation 𝑥, and picks an optimal
action.

Given any communication mechanism, define the expanded reporting space 𝑀̂𝑆 := 𝑀𝑆 ∪
{∅} and the expanded message space 𝑀̂𝑅 := 𝑀𝑅 ∪ {∅} which includes the empty message,
which represents the sender’s choice not to participate in the mechanism. Given a commu-
nication mechanism (𝑀𝑆,𝑀𝑅, 𝜎), a candidate equilibrium is a triple (𝛼𝑆, 𝛼𝑅, 𝛽) composed
by the sender’s strategy 𝛼𝑆 : Θ → ∆(𝑀̂𝑆), the receiver’s strategy 𝛼𝑅 : 𝑀̂𝑅 → ∆(𝑋), and a
belief map 𝛽 : 𝑀̂𝑅 → ∆(Θ). More specifically, 𝛼𝑆 describes the participation and reporting
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choice of every sender’s type. In particular, 𝛼𝑆(∅|𝜃) denotes the participation probability of
the sender in state 𝜃. Similarly, 𝛼𝑅 describes the receiver’s choice in terms of the conditional
expectation of 𝜃 for every realized message in 𝑀̂𝑅, including the empty message ∅. Finally,
the belief 𝛽 describes the posterior belief of the receiver over Θ for every realized message
in 𝑀̂𝑅. The candidate equilibrium (𝛼𝑆, 𝛼𝑅, 𝛽) forms an equilibrium if, for every 𝜃, 𝛼𝑆(𝜃)

is optimal for the sender at each state 𝜃 given 𝛼𝑅, 𝛼𝑅 is optimal for the receiver at each
message 𝑀𝑅 given 𝛽, and 𝛽 satisfies the chain rule of probabilities whenever possible. Here,
optimality for the receiver means that, given their belief 𝛽(·|𝑚𝑅) ∈ ∆(Θ) at message 𝑚𝑅,
the strategy 𝛼𝑅(·|𝑚𝑅) ∈ ∆(𝑋) is a degenerate probability over E𝛽[𝜃|𝑚𝑅].

A communication mechanism (𝑀𝑆,𝑀𝑅, 𝜎) and a corresponding equilibrium (𝛼𝑆, 𝛼𝑅, 𝛽)

satisfy 1) Full participation if 𝛼𝑆(∅|𝜃) = 0 for all 𝜃 ∈ Θ; 2) Punishment beliefs if 𝛽(·|∅) = 𝛿0;
and 3) Deterministic payments if margR 𝜎(·|𝑚𝑆) is degenerate for every 𝑚𝑆 ∈ 𝑀𝑆.

Next, we prove Lemma 1

Proof of Lemma 1. By Assumption 2, we restrict to mechanisms and corresponding equi-
libria that induce full participation and such that, conditional on no participation 𝑚𝑟 = ∅,
the receiver updates their belief in the worst possible way: 𝛽(·|∅) = 𝛿0. Therefore, to induce
full participation, the interim expected utility of every sender’s type 𝜃 must be weakly higher
than the utility induced by the worst possible belief, that is, 𝑉 (0, 𝜃) = 0 for all 𝜃 ∈ Θ. At
this point, the standard revelation principle for Bayesian Games (Myerson (1982); Forges
(1986)) yields that the mediator can restrict to direct revelation mechanisms that induce
truthful revelation for the sender and recommend a conditional expectation to the receiver
that coincides with the one obtained via the chain rule of probabilities. Moreover, given
our restriction to full-participation mechanisms, it follows that all the sender types must be
weakly better off participating than not. These conditions are exactly the ones in H, O, and
P.

A.2 Binary State Case
In this appendix, we prove all the statements of Section 1.3.

Proof of Proposition 1. Recall that, under binary state, for every outcome distribution
𝜋 ∈ ∆(𝑋 ×Θ), we have 𝜏𝜋 =marg𝑋𝜋. Let 𝜋̄,𝜋 ∈ ∆(𝑋) denote the conditional distribu-
tions over 𝑋 given 𝜃 = 1 and 𝜃 = 0 respectively. By Lemma 1, an outcome distribution
𝜋 ∈ ∆(𝑋 ×Θ) and a payment rule (𝑡, 𝑡) are implementable if and only if the incentive
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compatibility constraints∫︁ 1

0

𝑉 (𝑥) 𝑑𝜋̄ (𝑥)− 𝑡 ≥
∫︁ 1

0

𝑉 (𝑥) 𝑑𝜋 (𝑥)− 𝑡∫︁ 1

0

𝑉 (𝑥) 𝑑𝜋 (𝑥)− 𝑡 ≥
∫︁ 1

0

𝑉 (𝑥) 𝑑𝜋̄ (𝑥)− 𝑡∫︁ 1

0

𝑉 (𝑥) 𝑑𝜋̄ (𝑥)− 𝑡 ≥ 0∫︁ 1

0

𝑉 (𝑥) 𝑑𝜋 (𝑥)− 𝑡 ≥ 0

and the Consistency condition margΘ𝜋 = 𝑥𝐹 hold. The unconditional distribution 𝜏𝜋 of the
receiver’s beliefs can be rewritten as

𝜏𝜋 = 𝑥𝐹 𝜋̄ + (1− 𝑥𝐹 ) 𝜋. (78)

Equation 78 implies that 𝜋̄, 𝜋 ∈ ∆(𝑋) are absolutely continuous with respect to 𝜏𝜋 with
derivatives 𝑑𝜋̄

𝑑𝜏𝜋
(𝑥) = 𝑥

𝑥𝐹
and 𝑑𝜋̄

𝑑𝜏𝜋
(𝑥) = 1−𝑥

1−𝑥𝐹
. We can combine this and the two truthtelling

constraints to obtain∫︁ 1

0

𝑉 (𝑥)

(︂
𝑥

𝑥𝐹

− 1− 𝑥

1− 𝑥𝐹

)︂
𝑑𝜏𝜋 (𝑥) ≤ 𝑡− 𝑡 ≤

∫︁ 1

0

𝑉 (𝑥)

(︂
𝑥

𝑥𝐹

− 1− 𝑥

1− 𝑥𝐹

)︂
𝑑𝜏𝜋 (𝑥)

which is equivalent to

𝐶𝑂𝑉𝜏𝜋 (𝑉 (𝑥̃) , 𝑥̃)

𝑉 𝐴𝑅𝐹 (𝑥̃)
≤ 𝑡− 𝑡 ≤ 𝐶𝑂𝑉𝜏𝜋

(︀
𝑉 (𝑥̃) , 𝑥̃

)︀
𝑉 𝐴𝑅𝐹 (𝑥̃)

.

Observe that both the left-hand side and the right-hand side of the previous equations are
positive because 𝑉 and 𝑉 are strictly increasing.1 Therefore, we must have 𝑡− 𝑡 ≥ 0.

Next, fix an arbitrary Bayes plausible distribution 𝜏 ∈ ∆𝐹 (∆ (Θ)). We need to show
that there exists a payment rule (𝑡, 𝑡) such that the corresponding outcome distribution 𝜋𝜏

is implementable. Define

𝑡 =

∫︁ 1

0

𝑉 (𝑥)
1− 𝑥

1− 𝑥𝐹

𝑑𝜏 (𝑥) ,

𝑡− 𝑡 =
𝐶𝑂𝑉𝜏

(︀
𝑉 (𝑥̃) , 𝑥̃

)︀
𝑉 𝐴𝑅𝐹 (𝑥̃)

,

1The Harris inequality implies that the covariance between two nondecreasing functions of the same
random variable, 𝑥 in this case, is nonnegative.
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and observe that the Honesty constraint for the high type and the Participation constraint
for the low type are satisfied by construction. Next, the Participation constraint for the high
type holds provided that 𝑡 ≤

∫︀ 1

0
𝑉 (𝑥) 𝑥

𝑥𝐹
𝑑𝜏 (𝑥), that is,

∫︁ 1

0

𝑉 (𝑥)
1− 𝑥

1− 𝑥𝐹

𝑑𝜏 (𝑥) +
𝐶𝑂𝑉𝜏 (𝑉 (𝑥̃) , 𝑥̃)

𝑉 𝐴𝑅𝐹 (𝑥̃)
≤
∫︁ 1

0

𝑉 (𝑥)
𝑥

𝑥𝐹

𝑑𝜏 (𝑥)

which is implied by∫︁
𝑋

𝑉 (𝑥)
1− 𝑥

1− 𝑥𝐹

𝑑𝜏 (𝑥) +
𝐶𝑂𝑉𝜏 (𝑉 (𝑥̃) , 𝑥̃)

𝑉 𝐴𝑅𝐹 (𝑥̃)
≤
∫︁
𝑋

𝑉 (𝑥)
𝑥

𝑥𝐹

𝑑𝜏 (𝑥)

which is equivalent to

𝐶𝑂𝑉𝜏 (𝑉 (𝑥̃) , 𝑥̃)

𝑉 𝐴𝑅𝐹 (𝑥̃)
≤ 𝐶𝑂𝑉𝜏

(︀
𝑉 (𝑥̃) , 𝑥̃

)︀
𝑉 𝐴𝑅𝐹 (𝑥̃)

=
𝐶𝑂𝑉𝜏 (𝑉 (𝑥̃) , 𝑥̃)

𝑉 𝐴𝑅𝐹 (𝑥̃)
+

𝐶𝑂𝑉𝜏 (𝑥̃∆𝑉 (𝑥̃) , 𝑥̃)

𝑉 𝐴𝑅𝐹 (𝑥̃)

which is always verified because ∆𝑉 (𝑥) is strictly increasing. Given the definition of 𝑡 and
𝑡, the Honesty constraint for the low type is verified if and only if∫︁ 1

0

𝑉 (𝑥)

(︂
𝑥

𝑥𝐹

− 1− 𝑥

1− 𝑥𝐹

)︂
𝑑𝜏 (𝑥) ≥

∫︁ 1

0

𝑉 (𝑥)

(︂
𝑥

𝑥𝐹

− 1− 𝑥

1− 𝑥𝐹

)︂
𝑑𝜏 (𝑥)

which is equivalent to
𝐶𝑂𝑉𝜏 (∆𝑉 (𝑥̃) , 𝑥̃)

𝑉 𝐴𝑅𝐹 (𝑥̃)
≥ 0

which is always verified because ∆𝑉 (𝑥) is strictly increasing.

Proof of Corollary 1. Fix an implementable 𝜏 ∈ ∆𝐹 (∆ (Θ)). Because that the payment
rule (𝑡, 𝑡) we constructed in the proof of Proposition 1 for a given 𝜏 is such that the upper
bounds on 𝑡 − 𝑡 and 𝑡 are attained, it follows that this payment rule is the maximal one
implementing 𝜏 . This payment rule induces the expected revenue-defined in equation 6. In
particular, the expected revenue can be rewritten as

∫︀ 1

0
𝑉 (𝑥)− (1− 𝑥)∆𝑉 (𝑥) 𝑑𝜏 (𝑥). Given

that the mediator can implement any 𝜏 ∈ ∆𝐹 (∆ (Θ)) by Proposition 1, it follows that the
mediator’s maximum revenue is given by

max
𝜏∈Δ𝐹 (Δ(Θ))

∫︁ 1

0

𝑉 (𝑥)− (1− 𝑥)∆𝑉 (𝑥) 𝑑𝜏 (𝑥) = 𝑐𝑎𝑣 (𝐽) (𝑥𝐹 )

where the second equality follows by Proposition 1 in Kamenica and Gentzkow (2011) and
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from the definition of 𝐽 (𝑥) in the binary-state case.

Proof of Corollary 2. By Proposition 4, in the sender’s preferred case the mediator picks
a distribution of the receiver’s beliefs 𝜏 ∈ ∆𝐹 (∆ (Θ)) and supporting payments (𝑡, 𝑡) to
maximize ∫︁ 1

0

𝑉 (𝑥) 𝑑𝜏 (𝑥)− 𝑡− 𝑥𝐹 (𝑡− 𝑡) (79)

subject to (5) and the mediator’s participation constraint (i.e., MP)

𝑡+ 𝑥𝐹 (𝑡− 𝑡) ≥ 0. (80)

It is immediate to see that (80) must bind at the optimum so that the optimal sender’s value
is given by cav(𝑉 )(𝑥𝐹 ) = max𝜏∈Δ𝐹 (Δ(Θ))

∫︀ 1

0
𝑉 (𝑥) 𝑑𝜏 (𝑥). Moreover, by (5), we have

(𝑡− 𝑡) ≥ 𝐶𝑂𝑉𝜏 (𝑉 (𝑥) , 𝑥)

𝑉 𝐴𝑅𝐹 (𝜃)
≥ 0,

and the first inequality but be an equality at the optimum because (𝑡− 𝑡) has a negative
effect on the objective function in (79). Therefore at every optimal distribution 𝜏 *, in order
to satisfy (80) with equality, we must have that 𝑡 < 0 if and only if 𝐶𝑂𝑉𝜏* (𝑉 (𝑥) , 𝑥) > 0.
Finally, because 𝑉 (𝑥) is strictly increasing, it follows that 𝐶𝑂𝑉𝜏* (𝑉 (𝑥) , 𝑥) > 0 if and only
if 𝜏 * is not induced by no disclosure.

Before proving Corollary 3, we report a useful definition from Curello and Sinander
(2022).

Definition 20. Consider two functions 𝐽, 𝑉 : 𝑋 → R. We say that 𝑉 is coarsely less convex
than 𝐽 if for all 𝑥, 𝑥′ ∈ 𝑋 with 𝑥 < 𝑥′ and such that

𝑉 (𝛼𝑥+ (1− 𝛼)𝑥′) ≤ (<)𝛼𝑉 (𝑥) + (1− 𝛼)𝑉 (𝑥′) ∀𝛼 ∈ (0, 1) ,

it holds that

𝐽 (𝛼𝑥+ (1− 𝛼)𝑥′) ≤ (<)𝛼𝐽 (𝑥) + (1− 𝛼) 𝐽 (𝑥′) ∀𝛼 ∈ (0, 1) .

Proof of Corollary 3. Observe that 𝐽 (𝑥) = 𝑉 (𝑥)−𝐼 (𝑥) = Φ (𝑉 (𝑥) , 𝑥) where Φ (𝑣, 𝑥) :=

𝑣−𝐼 (𝑥) is strictly increasing in 𝑣 and convex in 𝑥 by assumption. It then follows by Corollary
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1 in Curello and Sinander (2022) that 𝑉 (𝑥) is coarsely less convex that 𝐽 (𝑥). Therefore, by
their Proposition 1, it follows that more information is revealed under monopolistic mediation
than under competitive mediation.

Next, consider an arbitrary information-rent function 𝐼 (𝑥). Observe that 𝐼 ′′ (𝑥) =

(1− 𝑥)∆′′
𝑉 (𝑥) − 2∆′

𝑉 (𝑥), where ∆′
𝑉 (𝑥) and ∆′′

𝑉 (𝑥) respectively denote denote the first
and second derivative of ∆𝑉 (𝑥). Because 𝐼 ′′ (1) = −2∆′

𝑉 (1) < 0, it follows that there exists
𝜀 > 0 such that 𝐼 (𝑥) is strictly concave when restricted to (1− 𝜀, 1). This implies that 𝐼 (𝑥)
is not convex globally convex, hence that 𝐽 (𝑥) is not coarsely less convex than 𝑉 (𝑥). It
then follows from Proposition 1 in Curello and Sinander (2022) that either point 1 or 2 in
the statement must hold.

Proof of Corollary 4. Assume that 𝐺 (𝑟) = 𝑟, that 𝑏 (𝑟) is concave and observe that in
this case 𝐵 (𝑥) =

∫︀ 𝑥

0
𝑏 (𝑟) 𝑑𝑟. The case where 𝑏 (𝑟) is strictly convex is completely analogous

and therefore omitted. Observe that 𝑉 (𝑥, 𝜃) = 𝛼𝜃𝑥+𝐵 (𝑥). With this, we have

𝑉 (𝑥) = 𝛼𝑥2 +𝐵 (𝑥) and 𝐽 (𝑥) = 2𝛼𝑥2 − 𝛼𝑥+𝐵 (𝑥) .

Observe that the linear term in 𝐽 (𝑥) is irrelevant in the objective function for the monopolis-
tic case because

∫︀ 1

0
𝛼𝑥𝑑𝜏 (𝑥) = 𝛼𝑥𝐹 for all 𝜏 ∈ ∆𝐹 (∆ (Θ)). Next, define 𝛼𝑀 = 2𝛼, 𝛼𝑆 = 𝛼,

and
𝑈 (𝑥, 𝜅) = 𝜅𝑥2 +𝐵 (𝑥) ∀𝜅 ≥ 0.

With this notation, the optimization problems in the monopolistic and the sender’s preferred
cases can be rewritten as

max
𝜏∈Δ𝐹 (Δ(Θ))

∫︁ 1

0

𝑈 (𝑥, 𝛼𝑖) 𝑑𝜏 (𝑥) 𝑖 ∈ {𝑀,𝑆} .

Next, consider the optimization problem

max
𝜏∈Δ𝐹 (Δ(Θ))

∫︁ 1

0

𝑈 (𝑥, 𝜅) 𝑑𝜏 (𝑥) ∀𝜅 ≥ 0 (81)

and observe that 𝑈 ′′
𝑖 (𝑥, 𝜅) = 𝜅+ 𝑏′ (𝑥) for all 𝜅 ≥ 0. Given that 𝑏′ (𝑥) is strictly decreasing,

for every 𝜅 ≥ 0, it follows that 𝑈 (𝑥, 𝜅) is strictly convex on [0, 𝑥𝜅] and strictly concave
on [𝑥𝜅, 1] where 𝑥𝜅 = min {max {0, 𝑥̂𝜅} , 1} and where 𝑥̂𝜅 ∈ R is the unique solution of
𝜅 + 𝑏′ (𝑥) = 0. Theorem 1’ in Kolotilin, Mylovanov, and Zapechelnyuk (2019) implies that
Problem 81 admits a solution that is stochastic upper-censorship with pooling probability
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𝑞𝜅 ∈ [0, 1]. Recall that under this information policy, given report 𝜃 = 0, this is revealed with
probability 𝑞𝜅 and pooled with 𝜃 = 1 otherwise, whereas given report 𝜃 = 1, this is always
pooled with 𝜃 = 0. Given 𝑞𝜅, the (discrete) conditional distribution of beliefs at every state
𝜃 ∈ {0, 1} is defined as

𝜏𝜃,𝜅 (𝑥) =

{︃
𝑞𝜅𝛿0 + (1− 𝑞𝜅) 𝛿𝑚(𝑞𝜅) 𝑖𝑓 𝜃 = 0

𝛿𝑚(𝑞𝜅) 𝑖𝑓 𝜃 = 1

where
𝑚 (𝑞𝜅) =

𝑥𝐹

𝑥𝐹 + (1− 𝑥𝐹 ) (1− 𝑞𝜅)

is the probability that 𝜃 = 1 conditional on receiving the message pooling both states.
Therefore, for every 𝜅 ≥ 0, the optimization problem over 𝑞𝜅 is

max
𝑞𝜅∈[0,1]

{(1− 𝑥𝐹 ) (1− 𝑞𝜅)𝑈 (𝑚 (𝑞𝜅) , 𝜅) + 𝑥𝐹𝑈 (𝑚 (𝑞𝜅) , 𝜅)} .

We next show that the solution 𝑞𝜅 is strictly increasing in 𝜅. Define

Υ(𝑞, 𝜅) = [(1− 𝑥𝐹 ) (1− 𝑞) + 𝑥𝐹 ]𝑈 (𝑚 (𝑞) , 𝜅)

and observe that
𝑚′ (𝑞) =

(1− 𝑥𝐹 )𝑥
2
𝐹

[𝑥𝐹 + (1− 𝑥𝐹 ) (1− 𝑞)]2
.

With this, we have
𝜕

𝜕𝜅
Υ(𝑞, 𝜅) = [(1− 𝑥𝐹 ) (1− 𝑞) + 𝑥𝐹 ]𝑚 (𝑞)2

and

𝜕

𝜕𝜅𝜕𝑞
Υ(𝑞, 𝜅) =

2 (1− 𝑥𝐹 )𝑥
2
𝐹

[𝑥𝐹 + (1− 𝑥𝐹 ) (1− 𝑞)]2
− (1− 𝑥𝐹 )𝑥

2
𝐹

[𝑥𝐹 + (1− 𝑥𝐹 ) (1− 𝑞𝜅)]
2

=
(1− 𝑥𝐹 )𝑥

2
𝐹

[𝑥𝐹 + (1− 𝑥𝐹 ) (1− 𝑞𝜅)]
2 > 0

This proves that Υ is strictly supermodular, hence by Theorem 4 in Milgrom and Shannon
(1994) it follows that 𝜃𝜅 is strictly increasing in 𝜅. This proves the desired result.
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A.3 Implementable Outcomes
In this appendix, we prove all the statements of Section 1.4 except for Lemma 1 whose proof
has been given in Appendix A.1.

Proof of Proposition 2. Fix 𝜋 ∈ ∆(𝑋 ×Θ). To prove the first part of the statement, it
is sufficient to show that there exists a payment rule 𝑡 (𝜃) that implements 𝜋 if and only if it
satisfies SCM. First, let 𝜋 be implementable by a a payment rule 𝑡 (𝜃) and fix a finite cycle
𝜃0, 𝜃1, ..., 𝜃𝑁+1 = 𝜃0 in Θ. Then for all 𝑘 ∈ {0, ..., 𝑁} it holds

𝑡 (𝜃𝑘)− 𝑡 (𝜃𝑘+1) ≥ E𝜋 [𝑉 (𝑥̃, 𝜃𝑘+1) |𝜃𝑘]− E𝜋 [𝑉 (𝑥̃, 𝜃𝑘) |𝜃𝑘] .

By summing these inequalities over 𝑘 we obtain

𝑁∑︁
𝑘=0

E𝜋 [𝑉 (𝑥̃, 𝜃𝑘+1) |𝜃𝑘]− E𝜋 [𝑉 (𝑥̃, 𝜃𝑘) |𝜃𝑘] ≤ 0

which implies SCM. Conversely, let 𝜋 satisfy SCM and consider an arbitrary 𝜃0 ∈ Θ. Let
𝒞𝑁 (𝜃0) be the collection of all finite cycles 𝜃0, 𝜃1, ..., 𝜃𝑁+1 = 𝜃0 in Θ and define

𝑆𝜋 (𝜃) := sup

{︃
𝑁∑︁
𝑘=0

E𝜋 [𝑉 (𝑥̃, 𝜃𝑘+1) |𝜃𝑘]− E𝜋 [𝑉 (𝑥̃, 𝜃𝑘) |𝜃𝑘] : (𝜃0, 𝜃1, ..., 𝜃𝑁+1) ∈ 𝒞𝑁 (𝜃0)

}︃

for all 𝜃 ∈ Θ. Condition SCM implies that 𝑆𝜋 (𝜃0) = 0. Moreover, by construction of 𝑆𝜋, we
have

𝑆𝜋 (𝜃0) ≥ 𝑆𝜋 (𝜃) + E𝜋 [𝑉 (𝑥̃, 𝜃0) |𝜃]− E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃]

yielding that 𝑆𝜋 (𝜃) is finite for all 𝜃 ∈ Θ. Similarly, for all 𝜃, 𝜃′ ∈ Θ, we have that

𝑆𝜋 (𝜃) ≥ 𝑆𝜋 (𝜃
′) + E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃′]− E𝜋 [𝑉 (𝑥̃, 𝜃′) |𝜃′] .

With this, define the payment rule 𝑡𝜋 (𝜃) = E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃]− 𝑆𝜋 (𝜃) and observe

E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃]− 𝑡𝜋 (𝜃) ≥ E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃′]− 𝑡𝜋 (𝜃
′)

for all 𝜃, 𝜃′ ∈ Θ, implying that (𝜋, 𝑡𝜋) satisfy Honesty.
Next, take an implementable pair (𝜋, 𝑡𝜋) and observe that

𝑆𝜋 (𝜃) = sup
𝜃′∈Θ

{E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃′]− 𝑡𝜋 (𝜃)} ∀𝜃 ∈ Θ.
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Give that 𝑉𝜃 is a bounded function it follows that for all 𝜃′ ∈ Θ, we have

𝜕

𝜕𝜃

∫︁
𝑋

𝑉 (𝑥, 𝜃) 𝑑𝜋𝜃′ (𝑥) =

∫︁
𝑋

𝑉𝜃 (𝑥, 𝜃) 𝑑𝜋𝜃′ (𝑥) .

Therefore, by the Envelope theorem in Milgrom and Segal (2002), 𝑆𝜋 is absolutely continuous
and such that 𝑆 ′

𝜋 (𝜃) = E𝜋 [𝑉𝜃 (𝑥̃, 𝜃) |𝜃] for all 𝜃 ∈ Θ. By the fundamental Theorem of calculus
we have

𝑆𝜋 (𝜃) = 𝑆𝜋 (0) +

∫︁ 𝜃

0

E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠] 𝑑𝑠,

for some constant 𝑆𝜋 (0) ∈ R. Moreover, given that 𝑡𝜋 (𝜃) = E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃]−𝑆𝜋 (𝜃), we have

𝑡𝜋 (𝜃) = E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃]− 𝑆𝜋 (0)−
∫︁ 𝜃

0

E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠] 𝑑𝑠 (82)

=

∫︁ 𝜃

0

E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝜃]− E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠] 𝑑𝑠− 𝑆𝜋 (0)

With this, equations 10 and 11 both hold. Next, we prove that there exists 𝑆𝜋 (0) ≥ 0 such
that 𝑡𝜋 (𝜃) ≥ 0 for all 𝜃 ∈ Θ. As an intermediate step, we first prove the following claim.

Claim For all implementable 𝜋 ∈ ∆(𝑋 ×Θ), for all 𝜃, 𝜃′ ∈ Θ, we have∫︁ 𝜃

𝜃′
[E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠]− E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝜃′]] 𝑑𝑠 ≥ 0

Proof of the claim. By the first part of the proof, 𝜋 is implementable by the payment
rule 𝑡𝜋. Given that (𝜋, 𝑡𝜋) satisfy H, it follows that for all 𝜃, 𝜃′ ∈ Θ,

0 ≤ 𝑆𝜋 (𝜃)− (E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃′]− 𝑡 (𝜃′))

= (𝑆𝜋 (𝜃)− 𝑆𝜋 (𝜃
′)) + (E𝜋 [𝑉 (𝑥̃, 𝜃′) |𝜃′]− E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃′])

=

∫︁ 𝜃

𝜃′
𝑆 ′
𝜋 (𝑠) 𝑑𝑠−

∫︁ 𝜃

𝜃′

𝜕

𝜕𝜃
E𝜋 [𝑉 (𝑥̃, 𝑠) |𝜃′] 𝑑𝑠

=

∫︁ 𝜃

𝜃′
E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠]− E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝜃′] 𝑑𝑠

yielding the desired inequality.

By the claim, and setting 𝜃 = 0 and 𝑆𝜋 (0) = 0, we have

𝑡𝜋 (𝜃
′) =

∫︁ 𝜃′

0

E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝜃′]− E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠] 𝑑𝑠 ≥ 0

for all 𝜃′ ∈ Θ, obtaining the desired statement.
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For the final part of the proposition, observe that∫︁ 1

0

𝑡𝜋 (𝜃) 𝑑𝐹 (𝜃) =

∫︁ 1

0

{︂
E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃]−

∫︁ 𝜃

0

E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠] 𝑑𝑠
}︂
𝑑𝐹 (𝜃)− 𝑆𝜋 (0)

=

∫︁ 1

0

E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃] 𝑑𝐹 (𝜃)−
[︂
𝐹 (𝜃)

∫︁ 𝜃

0

E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠] 𝑑𝑠
]︂1
0

+

∫︁ 𝜃

0

𝐹 (𝜃)E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠] 𝑑𝜃 − 𝑆𝜋 (0)

=

∫︁ 1

0

E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃] 𝑑𝐹 (𝜃)−
∫︁ 1

0

(1− 𝐹 (𝜃))E𝜋 [𝑉𝜃 (𝑥̃, 𝜃) |𝜃] 𝑑𝜃 − 𝑆𝜋 (0)

=

∫︁ 1

0

E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃]− ℎ𝐹 (𝜃)E𝜋 [𝑉𝜃 (𝑥̃, 𝜃) |𝜃] 𝑑𝐹 (𝜃)− 𝑆𝜋 (0)

=

∫︁
𝑋×Θ

𝑉 (𝑥, 𝜃)− ℎ𝐹 (𝜃)𝑉𝜃 (𝑥, 𝜃) 𝑑𝜋 (𝑥, 𝜃)− 𝑆𝜋 (0)

where the second equality follows from integration by parts and the last equality follows
because 𝜋 satisfies C and the law of iterated expectation. Finally, with entirely analogous
steps, it is possible to show that∫︁ 1

0

𝑆𝜋 (𝜃) 𝑑𝐹 (𝜃) =

∫︁
𝑋×Θ

ℎ𝐹 (𝜃)𝑉𝜃 (𝑥, 𝜃) 𝑑𝜋 (𝑥, 𝜃) + 𝑆𝜋 (0) .

Proof of Corollary 7. The first part of the statement is proved in the main text. The
second part of the statement follows from Proposition 2.

Proof of Corollary 6. Consider two implementable direct communication mechanisms (𝜋, 𝑡)
and

(︀
𝜋̂, 𝑡
)︀

such that 𝜏𝜋 = 𝜏𝜋̂ = 𝜏 . Recall that, for every measurable 𝐷̃ ⊆ ∆(Θ), we have

𝜏
(︁
𝐷̃
)︁
=

∫︁
𝑋

1
[︁
𝜋𝑥 ∈ 𝐷̃

]︁
𝑑𝐻𝜋 (𝑥)

and the same equation must hold when we replace 𝜋 with 𝜋̂. Conversely, for all measurable
𝑋̃ ⊆ 𝑋 and Θ̃ ⊆ Θ, we have

𝜋
(︁
𝑋̃ × Θ̃

)︁
=

∫︁
Δ(Θ)

𝜇
(︁
Θ̃
)︁
1
[︁
E𝜇

[︁
𝜃
]︁
∈ 𝑋̃

]︁
𝑑𝜏 (𝑥)
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and the same equation must hold when we replace 𝜋 with 𝜋̂. Therefore, there exists a com-
mon version of the conditional probability over 𝑋 given 𝜃 for 𝜋 and 𝜋̂. Proposition 2 then
implies that the payment functions 𝑡 and 𝑡 must be the same up to a constant.

Proof of Corollary 5. By Lemma 1 and the following discussion in the main text, (𝜋, 𝑡) is
implementable in the sender’s preferred case if and only if it satisfies C, O, H, and MP. By
Proposition 2, 𝑡 = 𝑡𝜋 must be as in equation 82 for some 𝑆𝜋 (0) ≥ 0. In particular, by setting
𝑆𝜋 (0) = 0, the claim in the proof of Proposition 2 implies that 𝑡 (𝜃) ≥ 0 for all 𝜃 ∈ Θ. With
this, MP must hold.

Proof of Proposition 3. Assume that 𝜋 satisfies C, O, and PRD and define 𝑡𝜋 as in equa-
tion 11. For all 𝜃, 𝜃′ ∈ Θ such that 𝜃 ≥ 𝜃′, we have that

(E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃]− 𝑡 (𝜃))− (E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃′]− 𝑡 (𝜃′))

= (E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃]− 𝑡 (𝜃))− (E𝜋 [𝑉 (𝑥̃, 𝜃′) |𝜃′]− 𝑡 (𝜃′))

− (E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃′]− E𝜋 [𝑉 (𝑥̃, 𝜃′) |𝜃′])
= (𝑆𝜋 (𝜃)− 𝑆𝜋 (𝜃

′))− (E𝜋 [𝑉 (𝑥̃, 𝜃) |𝜃′]− E𝜋 [𝑉 (𝑥̃, 𝜃′) |𝜃′])

=

∫︁ 𝜃

𝜃′
𝑆 ′
𝜋 (𝑠) 𝑑𝑠−

∫︁ 𝜃

𝜃′

𝜕

𝜕𝜃
E𝜋 [𝑉 (𝑥̃, 𝑠) |𝜃′] 𝑑𝑠

=

∫︁ 𝜃

𝜃′
{E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠]− E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝜃′]} 𝑑𝑠 ≥ 0.

To see why the last inequality holds, observe that SCM implies

𝑠 ≥ 𝜃′ =⇒ E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠] ≥ E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝜃′]

because the function 𝑥 ↦→ 𝑉𝜃 (𝑥, 𝑠) is strictly increasing in 𝑥. This shows that 𝜋 satisfies H.
Given that 𝜋 satisfies C and O by assumption, it follows by Lemma 1 that 𝜋 is implementable.

Next, observe that for all 𝜃, 𝜃′ ∈ Θ such that 𝜃 ≥ 𝜃′, we have that

𝑡𝜋 (𝜃)− 𝑡𝜋 (𝜃
′) =

∫︁ 𝜃

𝜃′
E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝜃]− E𝜋 [𝑉𝜃 (𝑥̃, 𝑠) |𝑠] 𝑑𝑠 ≥

where the inequality follows from the first part of the proof. This shows that 𝑡𝜋 (𝜃) is non-
decreasing. Finally, we prove a more general statement that implies equation 15 in the
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statement. Fix any two non-decreasing functions 𝐴 (𝑥, 𝜃) and 𝐵̂ (𝑥, 𝜃) of (𝑥, 𝜃). We have
that

𝐶𝑂𝑉𝜋

(︁
𝐴
(︁
𝑥̃, 𝜃
)︁
, 𝐵̂
(︁
𝑥̃, 𝜃
)︁)︁

(83)

= 𝐶𝑂𝑉𝜋

(︁
E𝜋

[︁
𝐴
(︁
𝑥̃, 𝜃
)︁
|𝜃
]︁
,E𝜋

[︁
𝐵̂
(︁
𝑥̃, 𝜃
)︁
|𝜃
]︁)︁

+ E𝜋

[︁
𝐶𝑂𝑉𝜋

(︁
𝐴
(︁
𝑥̃, 𝜃
)︁
, 𝐵̂
(︁
𝑥̃, 𝜃
)︁
|𝜃
)︁]︁

by the law of total covariance. The first term in 83 is weakly positive because both E𝜋

[︁
𝐴 (𝑥̃, 𝜃) |𝜃

]︁
and E𝜋

[︁
𝐵̂ (𝑥̃, 𝜃) |𝜃

]︁
are non-decreasing in 𝜃 sicne 𝐴 and 𝐵̂ are non-decreasing and 𝜋 satis-

fies PRD.2 Similarly, the covariance inside the expectation in the second term is positive
because 𝐴 and 𝐵̂ are non-decreasing, hence the entire expectation is positive. We conclude
that 𝐶𝑂𝑉𝜋

(︁
𝐴
(︁
𝑥̃, 𝜃
)︁
, 𝐵̂
(︁
𝑥̃, 𝜃
)︁)︁

≥ 0. Finally, equation 15 in the statement follows by taking

𝐴 (𝑥, 𝜃) = 𝐴 (𝑥) and 𝐵̂ (𝑥, 𝜃) = 𝑡𝜋 (𝜃).

Proof of Corollary 8. Fix a monotone partitional outcome distribution 𝜋 ∈ ∆(𝑋 ×Θ)

with representing function 𝜑. For every non-decreasing function 𝐴 (𝑥) and 𝜃, 𝜃′ ∈ Θ with
𝜃 ≥ 𝜃′, we have

E𝜋 [𝐴 (𝑥) |𝜃] = 𝐴 (𝜑 (𝜃)) ≥ 𝐴 (𝜑 (𝜃′)) = E𝜋 [𝐴 (𝑥) |𝜃′]

yielding the desired result.

Proof of Proposition 4. If 𝐻 ∈ ∆(𝑋) is implementable then there exists 𝜋 ∈ ∆(𝑋 ×Θ)

that satisfies O and such that marg𝑋𝜋 = 𝐻 and margΘ𝜋 = 𝐹 . Given the joint distribution
𝜋, the state 𝜃 is a martingale with respect to 𝑥. The results in Strassen (1965) then imply
that 𝐻 is dominated by 𝐹 in the convex order, that is 𝐻 ∈ 𝐶𝑋 (𝐹 ). Conversely, assume that
𝐻 ∈ 𝐶𝑋 (𝐹 ). Given that 𝐶𝑋 (𝐹 ) is a convex set, the Choquet theorem implies that there
exists a probability measure 𝜆 ∈ ∆(𝐶𝑋 (𝐹 )) supported on the extreme points of 𝐶𝑋 (𝐹 ) and
such that 𝐻 =

∫︀
𝐶𝑋(𝐹 )

𝐻̃𝑑𝜆
(︁
𝐻̃
)︁
. By Proposition 3 in Arieli, Babichenko, Smorodinsky, and

Yamashita (2023), every 𝐻̃ ∈supp(𝜆) can be induced bi-pooling mechanism 𝜋𝐻̃ ∈ ∆(𝑋 ×Θ)

that also satisfies PRD. Now define Ω :=supp(𝜆) and consider the expanded state space Ω×Θ

with prior 𝜆×𝐹 and consider the following communication mechanism in this expanded state
space: let 𝑀̂𝑆 = Θ, 𝑀̂𝑅 = 𝑋 × Ω, and define 𝜎 : 𝑀̂𝑆 × Ω → ∆

(︁
𝑀̂𝑅

)︁
as follows

𝜎 (·|𝜃, 𝜔) = 𝜋𝜔 (·|𝜃)× 𝛿𝜔.
2Again, the covariance is positive due to Harris inequality.
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In other words, the sender reports their type and the receiver observes the realization of
𝜔 = 𝐻̃ as well as the realization of 𝑥 drawn from the distribution 𝜋𝜔 (·|𝜃). Let 𝜎⊗ (𝜆× 𝐹 ) ∈
∆(𝑋 × Ω×Θ) denote the joint distribution induced by 𝜎 and (𝜆× 𝐹 ). Because 𝜋𝜔 satisfies
O, it follows that

E𝜎⊗(𝜆×𝐹 )

[︁
𝜃|𝑥, 𝜔

]︁
= 𝑥.

Next, define the measurable function 𝜁 (𝑥, 𝜔) := E𝜎⊗(𝜆×𝐹 )

[︁
𝜃|𝑥, 𝜔

]︁
and observe that its image

set is contained in 𝑋. Next, let 𝜋𝜆 ∈ ∆(𝑋 ×Θ) be the push-forward measure of 𝜎⊗ (𝜆× 𝐹 )

through the map (𝑥, 𝜔, 𝜃) ↦→ (𝜁 (𝑥, 𝜔) , 𝜃). Clearly, 𝜋𝜆 satisfies C and O by construction. We
next show that 𝜋𝜆 satisfies PRD. Take any non-decreasing function 𝐴 (𝑥) and fix 𝜃, 𝜃′ ∈ Θ

such that 𝜃 ≥ 𝜃′. We have∫︁
𝑋

𝐴 (𝑧) 𝑑𝜋𝜆 (𝑧|𝜃) =

∫︁
𝑋×Ω

𝐴 (𝑧) 𝑑 (𝜎 ⊗ 𝜆) (𝑧, 𝜔|𝜃) =
∫︁
Ω

(︂∫︁
𝑋

𝐴 (𝑥) 𝑑𝜋𝜔 (𝑥|𝜃)
)︂
𝑑𝜆 (𝜔)

≥
∫︁
Ω

(︂∫︁
𝑋

𝐴 (𝑥) 𝑑𝜋𝜔 (𝑥|𝜃′)
)︂
𝑑𝜆 (𝜔) =

∫︁
𝑋×Ω

𝐴 (𝑧) 𝑑 (𝜎 ⊗ 𝜆) (𝑧, 𝜔|𝜃′)

=

∫︁
𝑋

𝐴 (𝑧) 𝑑𝜋𝜆 (𝑧|𝜃′)

implying that 𝜋𝜆 satisfies PRD. By Proposition 2, it follows that 𝜋𝜆 is implementable. More-
over, by construction 𝜋𝜆 is implemented by a random bi-pooling policy.

Proof of Corollary 9. Under the maintained assumptions of the corollary, the expression
of the mediator’s expected revenue derived in Proposition 2 becomes∫︁ 1

0

𝑡𝜋 (𝜃) 𝑑𝐹 (𝜃) =

∫︁
𝑋×Θ

(𝜃 − ℎ𝐹 (𝜃))𝐴 (𝑥) +𝐵 (𝑥) 𝑑𝜋 (𝑥, 𝜃)− 𝑆𝜋 (0)

=

∫︁
𝑋×Θ

(︀
2𝜃 − 𝜃

)︀
𝐴 (𝑥) +𝐵 (𝑥) 𝑑𝜋 (𝑥, 𝜃)− 𝑆𝜋 (0)

=

∫︁
𝑋

(︁
2E𝜋

[︁
𝜃|𝑥
]︁
− 𝜃
)︁
𝐴 (𝑥) +𝐵 (𝑥) 𝑑𝐻𝜋 (𝑥)− 𝑆𝜋 (0)

=

∫︁
𝑋

(︀
2𝑥− 𝜃

)︀
𝐴 (𝑥) +𝐵 (𝑥) 𝑑𝐻𝜋 (𝑥)− 𝑆𝜋 (0)

where the third equality follows by the law of iterated expectations and the last equality
follows because 𝜋 satisfies O. With entirely analogous steps we obtain that expression for
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the sender’s expected payoff becomes∫︁ 1

0

𝑆𝜋 (𝜃) 𝑑𝐹 (𝜃) =

∫︁
𝑋

(︀
𝜃 − 𝑥

)︀
𝐴 (𝑥) 𝑑𝐻𝜋 (𝑥) + 𝑆𝜋 (0) .

Given that these two expressions only depend on the marginal distribution 𝐻𝜋 the result
follows.

A.4 Optimal Outcomes
In this appendix, we prove all the statements of Section 1.5.

Proof of Proposition 5. First, observe that the full disclosure outcome 𝜋𝐹𝐷 is monotone
partitional and induced by the map 𝜑𝐹𝐷 (𝜃) = 𝜃. Therefore, full disclosure is implementable
by Corollary 8. Next, consider the relaxed problem

max
𝜋∈Δ(𝑋×Θ)

∫︁
𝑋×Θ

𝐽 (𝑥, 𝜃) 𝑑𝜋 (𝑥, 𝜃)

s.t. C and O

where we removed the SCM constraint. It follows that if 𝜋𝐹𝐷 is (uniquely) optimal for this
relax problem, then it must be optimal for the original monopolistic mediator problem in
Lemma 2. By Theorem 1 in Catonini and Stepanov (2022), under the condition in equation
22, the full-disclosure outcome is optimal for the relaxed problem, hence it is optimal for the
original problem. Moreover, when in addition 𝐽 (𝑥, 𝜃) is strictly convex in 𝜃, Theorem 5 in
Kolotilin, Corrao, and Wolitzky (2022) implies that the full-disclosure outcome is uniquely
optimal in the relaxed problem, hence it is uniquely optimal in the original problem.

Conversely, assume 𝐽 (𝑥, 𝜃) satisfies the condition in equation 23 and assume by contra-
diction that 𝜋𝐹𝐷 is optimal. Theorem 2 in Catonini and Stepanov (2022) implies that an
alternative monotone partitional outcome 𝜋̂ that fully reveals the states 𝜃 ̸∈ (𝜃1, 𝜃2) and
completely pools the states 𝜃 ∈ (𝜃1, 𝜃2) is such that∫︁

𝑋×Θ

𝐽 (𝑥, 𝜃) 𝑑𝜋̂ (𝑥, 𝜃) >

∫︁
Θ

𝐽 (𝜃, 𝜃) 𝑑𝐹 (𝜃) ,

thereby implying 𝜋𝐹𝐷 is not optimal in the relaxed problem. Given that 𝜋̂ is monotone
partitional, it is implementable and therefore 𝜋𝐹𝐷 cannot be optimal in the original problem
either.
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Proof of Proposition 7. We prove the result for 𝐽 (𝑥). The corresponding result for
𝑉 (𝑥, 𝑥) follows completely analogous steps. By combining Corollary 9 and Lemma 2 the
monopolistic mediator problem becomes

max
𝜋∈Δ(𝑋×Θ)

∫︁ 1

0

(︀
2𝑥− 𝜃

)︀
𝐴 (𝑥) +𝐵 (𝑥) 𝑑𝐻𝜋 (𝑥)

subject to C, O, and SCM. By Proposition 4, for every 𝐻 ∈ ∆(𝑋), there exists 𝜋 satisfying all
the three previous conditions and such that 𝐻𝜋 = 𝐻 if and only if 𝐻 ∈ 𝐶𝑋 (𝐹 ). Therefore,
we can rewrite the previous problem as

max
𝐻∈𝐶𝑋(𝐹 )

∫︁ 1

0

(︀
2𝑥− 𝜃

)︀
𝐴 (𝑥) +𝐵 (𝑥) 𝑑𝐻 (𝑥) .

Given that this is a linear problem in 𝐻, by the Bauer’s maximum principle, there exists an
optimal solution 𝐻* that is an extreme point of 𝐶𝑋 (𝐹 ). By Theorem 1 and Proposition 2
in Arieli, Babichenko, Smorodinsky, and Yamashita (2023), 𝐻* can be induced by a imple-
mentable bi-pooling policy 𝜋*. Finally, points 1 and 2 of the statement follow by Theorems
1 and 2 in Kolotilin, Mylovanov, and Zapechelnyuk (2022).

Proof of Proposition 8. Observe that 𝐽 (𝑥) = 𝑉 (𝑥, 𝑥)− 𝐼 (𝑥). When 𝐼 (𝑥) is concave, it
follows from Corollary 1 in Curello and Sinander (2022) that 𝑉 (𝑥, 𝑥) is coarsely less convex
that 𝐽 (𝑥). Given that 𝑉 (𝑥, 𝑥) is bell-shaped, it follows from Theorem 2 in Curello and
Sinander (2022), that more information is disclosed in the monopolistic mediator case than
in the sender’s preferred case.

Proof of Corollary 10. The first part of the corollary follows because when 𝐺(𝑥) is convex,
𝑉 (𝑥) in (25) is also convex. Therefore, we can apply Proposition 6 to conclude that full
disclosure is optimal. Next, observe that

𝐽 ′′(𝑥) = (1 + 𝛿)𝑥𝑔′(𝑥) + 2(1 + 𝛿)𝑔(𝑥)− 𝛿𝑔′(𝑥) = 𝑔(𝑥)(2(1 + 𝛿) + ((1 + 𝛿)𝑥)− 𝛿)
𝑔′(𝑥)

𝑔(𝑥)
,

so 𝐽(𝑥) is convex if and only if (26) holds. This implies the second statement by Propositions
5 and 7.

The last part of the corollary follows from two implications of concavity of 𝐺(𝑟). First,
𝑉 (𝑥) is S-shaped because 𝑉 ′′(𝑥) = 𝑔(𝑥)(𝑥𝑔′(𝑥)/𝑔(𝑥) + 2) crosses zero once from above due
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to concavity of 𝐺(𝑟). To see this observe that 𝑔′(𝑥)/𝑔(𝑥) < 0 and it is decreasing by log-
concavity of 𝐺(𝑟). Second, we have 𝐼 ′′(𝑥) = 𝛿(1 − 𝑥)𝑔′(𝑥) − 2𝑔(𝑥) < 0 for all 𝑥 ∈ 𝑋. This
implies that 𝐼(𝑥) is concave, hence by Proposition 8 the desired result follows.

Proof of Proposition 9. Assume that 𝐺 (𝑟) = 𝑟, that 𝑏 (𝑟) is strictly concave and observe
that in this case 𝐵 (𝑥) =

∫︀ 𝑥

0
𝑏 (𝑟) 𝑑𝑟. The case where 𝑏 (𝑟) is strictly convex is completely

analogous and therefore omitted. Observe that

𝑉 (𝑥, 𝜃) = 𝛼𝜃𝑥+𝐵 (𝑥) .

With this, we have

𝑉 (𝑥) = 𝛼𝑥2 +𝐵 (𝑥) and 𝐽 (𝑥) = 2𝛼𝑥2 − 𝛼𝑥+𝐵 (𝑥) .

Observe that the linear term in 𝐽 (𝑥) is irrelevant in the objective function for the monopo-
listic case because

∫︀
𝑋
𝛼𝑥𝑑𝐻 (𝑥) = 𝛼𝑥𝐹 for all 𝐻 ∈ 𝐶𝑋 (𝐹 ). Next, define 𝛼𝑀 = 2𝛼, 𝛼𝑆 = 𝛼,

and
𝑈 (𝑥, 𝜅) = 𝜅𝑥2 +𝐵 (𝑥) ∀𝜅 ≥ 0.

With this notation, the optimization problems in the monopolistic and the sender’s preferred
cases can be rewritten as

max
𝐻∈𝐶𝑋(𝐹 )

∫︁
𝑈 (𝑥, 𝛼𝑖) 𝑑𝐻 (𝑥) 𝑖 ∈ {𝑀,𝑆} .

Next, consider the optimization problem

max
𝐻∈𝐶𝑋(𝐹 )

∫︁
𝑈 (𝑥, 𝜅) 𝑑𝐻 (𝑥) ∀𝜅 ≥ 0 (84)

and observe that 𝑈 ′′
𝑖 (𝑥, 𝜅) = 𝜅+𝑏′ (𝑥) for all 𝜅 ≥ 0. Given that 𝑏′ (𝑥) is strictly decreasing, for

every 𝜅 ≥ 0, it follows that 𝑈 (𝑥, 𝜅) is strictly convex on [0, 𝑥𝜅] and strictly concave on [𝑥𝜅, 1]

where 𝑥𝜅 = min {max {0, 𝑥̂𝜅} , 1} and where 𝑥̂𝜅 ∈ R is the unique solution of 𝜅+ 𝑏′ (𝑥) = 0.
Theorem 1 in Kolotilin, Mylovanov, and Zapechelnyuk (2022) implies that Problem 84 has
a unique solution and this is induced by an upper-censorship policy. Moreover, the optimal
threshold 𝜃𝜅 is the unique solution of

max
𝜃∈[0,1]

{︃∫︁ 𝜃

0

𝑈 (𝑥, 𝜅) 𝑑𝑥+ 𝑈
(︁
𝑚
(︁
𝜃
)︁
, 𝜅
)︁(︁

1− 𝜃
)︁}︃
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where 𝑚
(︁
𝜃
)︁
= E𝐹

[︁
𝜃|𝜃 ≥ 𝜃

]︁
. We next show that 𝜃𝜅 is strictly increasing in 𝜅. Define

Υ
(︁
𝜃, 𝜅
)︁
=

∫︁ 𝜃

0

𝑈 (𝑥, 𝜅) 𝑑𝑥+ 𝑈
(︁
𝑚
(︁
𝜃
)︁
, 𝜅
)︁(︁

1− 𝜃
)︁

and observe that

𝜕

𝜕𝜃𝜕𝜅
Υ
(︁
𝜃, 𝜅
)︁

= 𝑈𝜅

(︁
𝜃, 𝜅
)︁
+ 𝑈𝑥𝜅

(︁
𝑚
(︁
𝜃
)︁
, 𝜅
)︁(︁

1− 𝜃
)︁
− 𝑈𝜅

(︁
𝑚
(︁
𝜃
)︁
, 𝜅
)︁

= 𝜃2 + 2𝑚
(︁
𝜃
)︁(︁

1− 𝜃
)︁
−𝑚

(︁
𝜃
)︁2

= 2𝑚
(︁
𝜃
)︁(︁

1− 𝜃
)︁
−
(︁
𝑚
(︁
𝜃
)︁
+ 𝜃
)︁(︁

𝑚
(︁
𝜃
)︁
− 𝜃
)︁
> 0

where the last inequality follows from the fact that 2𝑚
(︁
𝜃
)︁
>
(︁
𝑚
(︁
𝜃
)︁
+ 𝜃
)︁

and
(︁
1− 𝜃

)︁
>(︁

𝑚
(︁
𝜃
)︁
− 𝜃
)︁

> 0. This proves that Υ is strictly supermodular, hence by Theorem 4 in

Milgrom and Shannon (1994) it follows that 𝜃𝜅 is strictly increasing in 𝜅.

Proofs of Lemma 3 and Remark 4. Under the maintained assumption of Section 1.5.2,
for every implementable outcome distribution 𝜋 ∈ ∆(𝑋 ×Θ), we have∫︁

𝑋×Θ

𝐽 (𝑥, 𝜃) 𝑑𝜋 (𝑥, 𝜃) =

∫︁
𝑋×Θ

𝛼 (𝜃 − ℎ𝐹 (𝜃))𝑥+ 𝛽𝑥− 𝛾
𝑥2

2
𝑑𝜋 (𝑥, 𝜃)

=

∫︁
Θ

𝛼 (𝜃 − ℎ𝐹 (𝜃))E𝜋 [𝑥̃|𝜃] 𝑑𝐹 (𝜃)− 𝛾
E𝜋 [𝑥̃

2]

2
+ 𝛽𝑥𝐹

=

∫︁
Θ

𝛼 (𝜃 − ℎ𝐹 (𝜃))E𝜋 [𝑥̃|𝜃] 𝑑𝐹 (𝜃)− 𝛾
E𝜋

[︁
𝑥̃E𝜋

[︁
𝜃|𝑥̃
]︁]︁

2
+ 𝛽𝑥𝐹

=

∫︁
Θ

𝛼 (𝜃 − ℎ𝐹 (𝜃))E𝜋 [𝑥̃|𝜃] 𝑑𝐹 (𝜃)− 𝛾
E𝜋

[︁
𝑥̃𝜃
]︁

2
+ 𝛽𝑥𝐹

=

∫︁
Θ

𝛼 (𝜃 − ℎ𝐹 (𝜃))E𝜋 [𝑥̃|𝜃] 𝑑𝐹 (𝜃)− 𝛾

∫︁
Θ

𝜃E𝜋 [𝑥̃|𝜃]
2

𝑑𝐹 (𝜃) + 𝛽𝑥𝐹

=

∫︁
Θ

(︁(︁
𝛼− 𝛾

2

)︁
𝜃 − 𝛼ℎ𝐹 (𝜃)

)︁
E𝜋 [𝑥̃|𝜃] 𝑑𝐹 (𝜃) + 𝛽𝑥𝐹

where the third equality follows by O and the fourth and fifth equalities follow by applying
twice the law of iterated expectation. With this, by Lemma 2, the monopolistic mediator
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problem is

max
𝜋∈Δ(𝑋×Θ)

∫︁
𝑋×Θ

𝐽 (𝑥, 𝜃) 𝑑𝜋 (𝑥, 𝜃) = max
𝜋∈Δ(𝑋×Θ)

∫︁
Θ

(︁(︁
𝛼− 𝛾

2

)︁
𝜃 − 𝛼ℎ𝐹 (𝜃)

)︁
E𝜋 [𝑥̃|𝜃] 𝑑𝐹 (𝜃) + 𝛽𝑥𝐹

subject to C, O, and SCM. Given that 𝑥𝐹 does not depend on 𝜋, the result follows.
For the sender’s preferred case, analogous steps yield that∫︁

𝑋×Θ

𝑉 (𝑥, 𝜃) 𝑑𝜋 (𝑥, 𝜃) =

∫︁
Θ

(𝛼− 𝛾) 𝜃E𝜋 [𝑥̃|𝜃] 𝑑𝐹 (𝜃) + 𝛽𝑥𝐹 .

By applying the law of iterated expectation twice, the right-hand side can be written as∫︁
𝑋

(︁
𝛼− 𝛾

2

)︁
E𝜋

[︁
𝜃|𝑥
]︁
𝑥𝑑𝐻𝜋 (𝑥) =

∫︁
𝑋

(︁
𝛼− 𝛾

2

)︁
𝑥2𝑑𝐻𝜋 (𝑥) ,

implying that the sender’s expected payoff depends on the marginal distribution 𝐻𝜋 only.
Finally, Proposition 6 implies that, in this case, full disclosure is uniquely optimal when
𝛼 > 𝛾/2 and that no disclosure is uniquely optimal when 𝛼 < 𝛾/2.

Proof of Lemma 4. First suppose that there exist an implementable 𝜋 ∈ ∆(𝑋 ×Θ) such
that the push-forward of 𝐹 through of the map 𝜃 ↦→ E𝜋 [𝑥̃|𝜃] is 𝐿. For every continuous and
convex function 𝜙 (𝑥) we have that∫︁ 1

0

𝜙 (𝑥) 𝑑𝐿 (𝑥) =

∫︁
Θ

𝜙 (E𝜋 [𝑥̃|𝜃]) 𝑑𝐹 (𝜃) ≤
∫︁
Θ

E𝜋 [𝜙 (𝑥̃) |𝜃] 𝑑𝐹 (𝜃)

=

∫︁
𝑋

𝜙 (𝑥) 𝑑𝐻𝜋 (𝑥) ≤
∫︁
𝑋

𝜙 (𝜃) 𝑑𝐹 (𝜃) ,

implying that 𝐿 ∈ 𝐶𝑋 (𝐻𝜋) ⊆ 𝐶𝑋 (𝐹 ). We prove the converse in two steps. First, we prove
that if 𝐿 is such that 𝑞𝐿 is an extreme point of 𝐶𝑉 (𝑞𝐹 ), then there exists an implementable
𝜋 that induces 𝐿. Second, we prove that the space of implementable second-order quantile
functions 𝑞𝐿 is convex. Together these steps yield the result.

Next, fix 𝐿 ∈ 𝐶𝑋 (𝐹 ) such that 𝑞𝐿 is an extreme point of 𝐶𝑉 (𝑞𝐹 ). By Theorem 1 in
Kleiner, Moldovanu, and Strack (2021), it follows that there exists a countable collection of
disjoint intervals {[𝑧𝑖, 𝑧𝑖)}𝑖∈N with [𝑧𝑖, 𝑧𝑖) ⊆ [0, 1] such that

𝑞𝐿 (𝑧) =

⎧⎨⎩ 𝑞𝐹 (𝑧) 𝑖𝑓 𝑧 ̸∈𝑖∈N [𝑧𝑖, 𝑧𝑖)∫︀ 𝑧𝑖
𝑧𝑖

𝑞𝐹 (𝑠)𝑑𝑠

𝑧𝑖−𝑧𝑖
𝑖𝑓 𝑧 ∈ [𝑧𝑖, 𝑧𝑖)

. (85)
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Next, define the function 𝜑𝐿 : Θ → 𝑋 as

𝜑𝐿 (𝜃) =

⎧⎨⎩ 𝜃 𝑖𝑓 𝐹 (𝜃) ̸∈𝑖∈N [𝑧𝑖, 𝑧𝑖)∫︀ 𝑧𝑖
𝑧𝑖

𝑞𝐹 (𝑠)𝑑𝑠

𝑧𝑖−𝑧𝑖
𝑖𝑓 𝐹 (𝜃) ∈ [𝑧𝑖, 𝑧𝑖)

.

Because 𝐹 (𝜃) is strictly increasing, it follows that 𝜑𝐿 is non-decreasing. Moreover, by
construction we have

E𝐹

[︁
𝜃|𝜑𝐿 (𝜃)

]︁
= 𝜑𝐿 (𝜃)

for all 𝜃 ∈ Θ. Therefore, 𝜑𝐿 defines a monotone partitional outcome 𝜋𝜑𝐿
. Moreover, the con-

ditional distribution of 𝜋𝜑𝐿
over 𝑋 given any 𝜃 ∈ Θ is degenerate, hence E𝜋𝜑𝐿

[𝑥̃|𝜃] = 𝜑𝐿 (𝜃)

for all 𝜃 ∈ Θ. The push-forward of 𝐹 through 𝜑𝐿 (𝜃) is equal to 𝐿 by construction and
therefore 𝐿 is implementable.

Proof of Proposition 10. By Lemma 3, for any implementable outcome distribution 𝜋,
the mediator’s revenue is∫︁

Θ

(︁(︁
𝛼− 𝛾

2

)︁
𝜃 − 𝛼ℎ𝐹 (𝜃)

)︁
E𝜋 [𝑥̃|𝜃] 𝑑𝐹 (𝜃) .

Next, consider the change of variable 𝑡 = 𝐹 (𝜃), or equivalently 𝜃 = 𝑞𝐹 (𝑡). In particular, we
have

ℎ𝐹 (𝑞𝐹 (𝑡)) = (1− 𝑡) 𝑞′𝐹 (𝑡)

and
E𝜋 [𝑥̃|𝑞𝐹 (𝑡)] = 𝑞𝐿𝜋 (𝑡) .

By recalling the definition of 𝑤𝐹 (𝑡) =
(︀(︀
𝛼− 𝛾

2

)︀
𝑞𝐹 (𝑡)− 𝛼 (1− 𝑡) 𝑞′𝐹 (𝑡)

)︀
, the expected rev-

enue can be rewritten as ∫︁ 1

0

𝑤𝐹 (𝑡) 𝑞𝐿𝜋 (𝑡) 𝑑𝑡.

Let 𝑒𝑥𝑡 (𝐶𝑉 (𝑞𝐹 )) denote the set of extreme points of 𝐶𝑉 (𝑞𝐹 ). For every implementable
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outcome distribution 𝜋, we obtain

max
𝜋∈Δ(𝑋×Θ):𝜋 implementable

∫︁ 1

0

𝑤𝐹 (𝑡) 𝑞𝐿𝜋 (𝑡) 𝑑𝑡 ≤ max
𝑞𝐿∈𝐶𝑉 (𝑞𝐹 )

∫︁ 1

0

𝑤𝐹 (𝑡) 𝑞𝐿 (𝑡) 𝑑𝑡

= max
𝑞𝐿∈𝑒𝑥𝑡(𝐶𝑉 (𝑞𝐹 ))

∫︁ 1

0

𝑤𝐹 (𝑡) 𝑞𝐿 (𝑡) 𝑑𝑡

≤ max
𝜋∈Δ(𝑋×Θ):𝜋 implementable

∫︁ 1

0

𝑤𝐹 (𝑡) 𝑞𝐿𝜋 (𝑡) 𝑑𝑡

where the first inequality follows from the first part of Lemma 4, the second equality follows
from the Bauer’s maximum principle and the fact that the objective function in the maxi-
mization is linear in 𝑞𝐿, and the last inequality follows from the second part of Lemma 4.
This proves the first part of the proposition. Next, consider the problem

max
𝑞𝐿∈𝐶𝑉 (𝑞𝐹 )

∫︁ 1

0

𝑤𝐹 (𝑡) 𝑞𝐿 (𝑡) 𝑑𝑡. (86)

This problem admits a solution because of compactness of 𝐶𝑉 (𝑞𝐹 ). Moreover, there exists
a solution in 𝑒𝑥𝑡 (𝐶𝑉 (𝑞𝐹 )) again by Bauer’s maximum principle. By Lemma 4, for every
solution 𝑞𝐿 ∈ 𝑒𝑥𝑡 (𝐶𝑉 (𝑞𝐹 )) there exists an implementable outcome distribution 𝜋 such that
𝐿𝜋 = 𝐿. By the first part of the proof, 𝜋 must be optimal for the monopolistic mediator
problem. Moreover, the monotone partition 𝜑𝜋 corresponding to 𝜋 is given by

𝜑𝜋 (𝜃) =

{︃
𝜃 𝑖𝑓 𝐹 (𝜃) ̸∈𝑖∈N [𝑧𝑖, 𝑧𝑖)

E𝐹

[︁
𝜃|𝐹 (𝜃) ∈ [𝑧𝑖, 𝑧𝑖)

]︁
𝑖𝑓 𝐹 (𝜃) ∈ [𝑧𝑖, 𝑧𝑖)

(87)

where {[𝑧𝑖, 𝑧𝑖)}𝑖∈N is the unique collection of intervals representing 𝐿 as in equation 85.

Next, define 𝑊𝐹 (𝑡) =
∫︀ 𝑡

0
𝑤𝐹 (𝑧) 𝑑𝑧 and fix 𝑞𝐿 ∈ 𝑒𝑥𝑡 (𝐶𝑉 (𝑞𝐹 )) as in equation 85 with re-

spect to the countable collection of intervals {[𝑧𝑖, 𝑧𝑖)}𝑖∈N. Given that 𝑞𝐹 is strictly increasing,
Proposition 2 in implies that 𝑞𝐿 solves problem 86 if and only if 𝑐𝑜 (𝑊 ) (𝑡) is affine on [𝑧𝑖, 𝑧𝑖)

for every 𝑖 ∈ N and cav (𝑊𝐹 ) (𝑡) = 𝑊𝐹 (𝑡) otherwise. The second part of the statement then
follows by the definition of 𝜑𝜋 (𝜃) in equation 87.

Proof of Proposition 11. We prove only point 1 since point 2 follows by a completely
symmetric argument. Given that 𝑤𝐹 (𝑡) is strictly quasiconcave, there exists 𝑡 ∈ [0, 1] such
that 𝑤′

𝐹 (𝑡) > 0 if 𝑡 < 𝑡 and 𝑤′
𝐹 (𝑡) < 0 if 𝑡 > 𝑡. it follows that 𝑊𝐹 (𝑡) is strictly convex if
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𝑡 < 𝑡 and strictly concave if 𝑡 > 𝑡. Therefore the convex hull of 𝑊 is defined as

cav (𝑊𝐹 ) (𝑡) =

{︃
𝑊𝐹 (𝑡) 𝑖𝑓 𝑡 ≤ 𝑡*

𝑤𝐹 (𝑡*) (𝑡− 𝑡*) +𝑊𝐹 (𝑡*) 𝑖𝑓 𝑡 > 𝑡*

where 𝑡* is uniquely defined by

𝑤𝐹 (𝑡*) (1− 𝑡*) = 1−𝑊𝐹 (𝑡*)

when the solution of the previous equation is in (0, 1) and respectively by 𝑡* = 0 if 𝑊𝐹 (𝑡) is
convex and by 𝑡* = 1 if 𝑊𝐹 (𝑡) is concave. Next, define

𝑞𝐿 (𝑡) =

{︃
𝑞𝐹 (𝑡) 𝑖𝑓 𝑡 ≤ 𝑡*∫︀ 1

𝑡* 𝑞𝐹 (𝑠)𝑑𝑠

1−𝑡* 𝑖𝑓 𝑡 > 𝑡*
.

Then 𝑞𝐿 is the unique quantile function that satisfies the optimality conditions of Proposition
10 with respect to the single interval [𝑡*, 1]. Finally, the unique monotone partition 𝜑𝐿 induc-
ing 𝐿 defined in the proof of Proposition 10 is upper-censorship with threshold 𝜃* = 𝑞𝐹 (𝑡*).

A.5 Transparency and Credibility
In this appendix, we prove all the statements of Section 1.6.

Proof of Proposition 12. First, recall that 𝐹 is an absolutely continuous distribution and
that 𝑉 is strictly supermodular. By Theorem 2.9 and Remark 2.13 in Santambrogio (2015),
𝜋 ∈ ∆(𝑋 ×Θ) is optimal for

max
𝜋̃∈Δ(𝐻𝜋 ,𝐹 )

∫︁
𝑋×Θ

𝑉 (𝑥, 𝜃) 𝑑𝜋̃ (𝑥, 𝜃) (88)

if and only if it is the unique monotone coupling between 𝐻𝜋 and 𝐹 , that is the coupling
induced by the monotone map 𝜃 ↦→ 𝑇𝜋 (𝜃) = 𝑞𝐻 (𝐹 (𝜃)). Because 𝑇𝜋 is monotone, it follows
that if 𝜋 is credibly implementable, then it is monotone partitional. Conversely, if 𝜋 is
monotone partitional, then by Theorem 2.9 in Santambrogio (2015) it follows that 𝜋 solves
the problem in equation 88.

The equivalence between (i) and (ii) follows steps analogous to those in Proposition 2 in
Krishna and Morgan (2008). Fix a transparent mechanism (𝑀𝑆, 𝑡) where 𝑀𝑆 is the reporting
space for the sender and 𝑡 : 𝑀𝑆 → R is the report-dependent transfer from the sender to
the mediator. Recall that by Assumption 2, we restrict to deterministic payments and
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to mechanisms and equilibria that induce full participation and punishment beliefs. With
this, given a transparent mechanism (𝑀𝑆, 𝑡), an equilibrium is a strategy for the sender
𝛼𝑆 : Θ → ∆(𝑀𝑆), a strategy for the receiver 𝛼𝑅 : 𝑀𝑆 → ∆(𝑋), and a belief map for the
receiver 𝛽 : 𝑀𝑅 → ∆(Θ).

We now prove that (i) implies (iii). Suppose that (𝛼𝑆, 𝛼𝑅, 𝛽) is an equilibrium under the
transparent communication mechanism (𝑀𝑆, 𝑡). Recall that because the receiver’s unique
best response is equal to the conditional expectation of the state given their beliefs, it must
be the case that 𝛼𝑅 (𝑚𝑆) is a degenerate distribution for every 𝑚𝑅. For every state 𝜃 ∈ Θ,
define

𝑥 (𝜃) = sup {𝛼𝑅 (𝑚𝑆) ∈ 𝑋 : 𝑚𝑆 ∈ supp (𝛼𝑆 (·|𝜃))} ,
𝑥 (𝜃) = inf {𝛼𝑅 (𝑚𝑆) ∈ 𝑋 : 𝑚𝑆 ∈ supp (𝛼𝑆 (·|𝜃))} ,

that is, the “largest” and “smallest” actions induced in state 𝜃, respectively. Consider two
states 𝜃1 < 𝜃2. Then we claim that 𝑥 (𝜃1) ≤ 𝑥 (𝜃2). Suppose by contradiction that 𝑥 (𝜃1) >

𝑥 (𝜃2). Fix an arbitrary sequence {𝑥𝑛
1}𝑛∈N ⊆ {𝛼𝑅 (𝑚𝑆) ∈ 𝑋 : 𝑚𝑆 ∈ supp (𝛼𝑆 (·|𝜃1))} such

that 𝑥𝑛
1 ↑ 𝑥 (𝜃1). Similarly, fix an arbitrary sequence {𝑥𝑛

2}𝑛∈N ⊆ {𝛼𝑅 (𝑚𝑆) ∈ 𝑋 : 𝑚𝑆 ∈ supp (𝛼𝑆 (·|𝜃2))}
such that 𝑥𝑛

2 ↓ 𝑥 (𝜃2). For 𝑛 large enough, 𝑥𝑛
1 > 𝑥𝑛

2 . Next, for all 𝑛 ∈ N, let 𝑡𝑛1 and 𝑡𝑛2 re-
spectively denote the transfers associated with 𝑥𝑛

1 and 𝑥𝑛
2 . These are well defined because

each 𝑥 ∈ 𝑥 (𝜃1) is such that 𝑥 = 𝛼𝑅 (𝑚𝑆) for some 𝑚𝑆 ∈supp(𝛼𝑆 (·|𝜃1)) inducing a payment
𝑡 (𝑚𝑆). Moreover, if there exists a message 𝑚′

𝑆 ∈supp(𝛼𝑆 (·|𝜃1)) such that 𝑥 = 𝛼𝑅 (𝑚′
𝑆), then

incentive compatibility of the equilibrium implies that 𝑡 (𝑚𝑆) = 𝑡 (𝑚′
𝑆). This shows that 𝑡𝑛1

and 𝑡𝑛2 are well defined. Similarly, by incentive compatibility of the equilibrium we must
have that, for all 𝑛 ∈ N,

𝑉 (𝑥𝑛
1 , 𝜃1)− 𝑡𝑛1 ≥ 𝑉 (𝑥𝑛

2 , 𝜃1)− 𝑡𝑛2 .

Because 𝑉𝑥𝜃 > 0, we have that

𝑉 (𝑥𝑛
1 , 𝜃2)− 𝑉 (𝑥𝑛

2 , 𝜃2) > 𝑡𝑛1 − 𝑡𝑛2

which implies that type 𝜃2 has strictly positive profitable deviation by playing the message
that induce 𝑥𝑛

1 and 𝑡𝑛1 instead of the one inducing 𝑥𝑛
2 and 𝑡𝑛2 in the support of their candidate

equilibrium strategy. This directly contradicts the incentive compatibility of the equilibrium,
hence we must have that 𝑥 (𝜃1) ≤ 𝑥 (𝜃2). In particular, this shows that the map 𝜃 ↦→ 𝑥 (𝜃)

must be non-decreasing.

Next, fix 𝜃 ∈ Θ such that 𝑥 (𝜃) < 𝑥 (𝜃). Then, from the first part of the proof, for all
𝜃′ < 𝜃, we have 𝑥 (𝜃′) ≤ 𝑥 (𝜃) < 𝑥 (𝜃) and so the function 𝑥 (𝜃) must be discontinuous at
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𝜃. Given that non-decreasing functions can have at most a countable number of disconti-
nuity points, we can have that 𝑥 (𝜃) < 𝑥 (𝜃) for at most a countable number of points 𝜃.
To summarize, we have so far shown that, in any equilibrium of any transparent communi-
cation mechanism, there exists a unique conditional expectation 𝑥 (𝜃), and hence a unique
corresponding transfer 𝑡 (𝜃), in almost every state. We now construct an equilibrium under a
communication mechanism with 𝑀𝑆 = Θ that is outcome equivalent to the original commu-
nication mechanism in the sense that, for almost every 𝜃, the induced conditional expectation
and the resulting transfer is the same, and the outcome is monotone partitional. Consider
the direct communication mechanism (Θ, 𝑡).3 Define Φ (𝜃) = {𝜃′ ∈ Θ : 𝑥 (𝜃′) = 𝑥 (𝜃)} to be
the set of states in which the conditional expectation induced is the same as that induced in
state 𝜃. By the monotonicity of 𝑥 (𝜃′), Φ (𝜃) is a possibly degenerate interval. To complete
the proof, let the pure strategy of the agent in the direct communication mechanism be as
follows: for all 𝜃′ ∈ Φ (𝜃), send message 𝜑 (𝜃) = E𝐹

[︁
𝜃|𝜃 ∈ Φ (𝜃)

]︁
. This strategy leads the

receiver to hold posterior beliefs identical to those in the original equilibrium of the indirect
transparent communication mechanism, and so the conditional expectation of the receiver in
state 𝜃 is the same in the two equilibria. Thus, this pure strategy equilibrium of the direct
contract (Θ, 𝑡) is outcome equivalent to the original equilibrium. Finally, observe that by
construction 𝜑 (𝜃) = E𝐹

[︁
𝜃|𝜑 (𝜃)

]︁
because 𝜑 is measurable with respect to the sigma-algebra

generated by the map Φ : Θ → 2Θ. Therefore, 𝜑 induce a monotone partitional outcome 𝜋.
This completes the proof that (i) implies (iii).

For the converse, let 𝜑 the monotone partition inducing 𝜋 and define

𝑡𝜑 (𝜃) = 𝑉 (𝜑 (𝜃) , 𝜃)−
∫︁ 𝜃

0

𝑉𝜃 (𝜑 (𝑠) , 𝑠) 𝑑𝑠− 𝑆𝜑 (0)

for some constant 𝑆𝜑 (0) ≥ 0. Next, consider the direct mechanism (Θ, 𝑡𝜑) and the corre-
sponding equilibrium such that the strategy of the sender is 𝛼𝑆 (𝜃) = 𝛿𝜑(𝜃) for all 𝜃 ∈ Θ,
the strategy of the receiver is 𝛼𝑅 (𝑥) = E𝐹

[︁
𝜃|𝜑
(︁
𝜃
)︁
= 𝑥

]︁
for all 𝑥 ∈ 𝑋 = Θ, and the belief

map of the receiver is 𝛽 (·|𝑥) = 𝐹
(︁
·|𝜑
(︁
𝜃
)︁
= 𝑥

)︁
for all 𝑥 ∈ 𝑋 = Θ. It is immediate to see

that the proposed candidate equilibrium of the transparent mechanism (Θ, 𝑡) is indeed an
equilibrium because 𝜑 is a monotone partition and that 𝑡𝜑 has been constructed by using
standard envelope formula.

3Observe that the first part of the proof showed that the equilibrium transfer is uniquely defined for
almost all 𝜃. Here, with an abuse of notation, we let 𝑡 (𝜃) denote the uniquely defined transfer over a
full-measure subset of Θ and let 𝑡 (𝜃) = 0 for all the other states.
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A.6 Additional Appendix: D1 Refinement
In this section, we show that, given any communication mechanism, if there exists a corre-
sponding equilibrium that satisfies (1) and (2), then this survives a continuous-state-and-
action version of the D1 refinement.4 First, we observe that the only relevant out-of-path
message for the D1 test is 𝑚𝑆 = ∅. In fact, suppose that there exists a message 𝑚𝑆 ∈ 𝑀𝑆

that is not in the support of the equilibrium considered. Then we can just redefine the
mechanism so that 𝑚𝑆 is not available for the sender. The original equilibrium will still be
an equilibrium for the new communication mechanism. Next, we define what it means that
an equilibrium fails the D1 test with respect to 𝑚𝑆 = ∅.

Definition 21. Fix a communication mechanism (𝑀𝑆,𝑀𝑅, 𝜎) and a corresponding equilib-
rium (𝛼𝑆, 𝛼𝑅, 𝛽). We say that thus equilibrium fail the D1 test with respect to 𝑚𝑅 = ∅ if
there are types 𝜃, 𝜃′ ∈ Θ such that 𝜃 ∈ supp(𝛽(·|∅)) and

{︀
𝑥 ∈ 𝑋 : 𝑆*

𝜎,(𝛼𝑆 ,𝛼𝑅,𝛽)(𝜃) ≤ 𝑉 (𝑥, 𝜃)
}︀
⊂
{︀
𝑥 ∈ 𝑋 : 𝑆*

𝜎,(𝛼𝑆 ,𝛼𝑅,𝛽)(𝜃
′) < 𝑉 (𝑥, 𝜃′)

}︀
, (89)

where 𝑆*
𝜎,(𝛼𝑆 ,𝛼𝑅,𝛽)(𝜃) is the expected payoff of type 𝜃 given the communication mechanism 𝜎

and equilibrium (𝛼𝑆, 𝛼𝑅, 𝛽).5

Observe that the two sets in (89) are in 𝑋. This follows because the message 𝑚𝑅 is payoff
irrelevant for the receiver, hence 𝐵𝑅(Θ,∅) = 𝑋, where 𝐵𝑅(Θ,∅) is the set of the receiver’s
bets response for some state 𝜃 ∈ Θ and given message 𝑚𝑅 = ∅.

Lemma 9. Fix a communication mechanism (𝑀𝑆,𝑀𝑅, 𝜎) and a corresponding equilibrium
(𝛼𝑆, 𝛼𝑅, 𝛽) that satisfies (1), (2), and such that 𝑆*

𝜎,(𝛼𝑆 ,𝛼𝑅,𝛽)(𝜃) = 0. Then, this equilibrium
does not fail the D1 test with respect to 𝑚𝑅 = ∅.

Proof. Consider an equilibrium as in the statement. Because by assumption 𝛽(·|∅) = 𝛿0,
the only state that we need to check is 𝜃 = 0. Therefore, we have

{︀
𝑥 ∈ 𝑋 : 𝑆*

𝜎,(𝛼𝑆 ,𝛼𝑅,𝛽)(𝜃) ≤ 𝑉 (𝑥, 𝜃)
}︀
= {𝑥 ∈ 𝑋 : 0 ≤ 𝑉 (𝑥, 0)} = 𝑋

where the first equality follows from the assumption that 𝑆*
𝜎,(𝛼𝑆 ,𝛼𝑅,𝛽)(0) = 0 and the second

equality follows from the fact that 𝑉 (0, 0) = 0 and 𝑉 is strictly increasing in 𝑥. This shows
4See for example Fudenberg and Tirole (1991). See also Rappoport (2022) and Quigley and Walter

(2023) for models that combine mechanism design and information design, that have infinitely many states
and actions, and where the D1 refinement is invoked to refine out-of-path beliefs of the receiver conditional
on no participation of the sender.

5The notation ⊂ means “strict subset of.”
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that equation 89 cannot hold in this case.
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Appendix B

Appendix to The Bounds of Mediated
Communication

B.1 Proofs

B.1.1 Preliminaries

We start with some preliminary mathematical definitions and results. For every set 𝐷 ⊆
∆(Ω), let ri co(𝐷) denote the relative interior of the convex hull of 𝐷. Recall that the
relative interior of a convex set 𝐶 is the set of points 𝜇 ∈ 𝐶 such that there exists an open
neighborhood 𝑁(𝜇) with 𝑁(𝜇) ∩ aff(𝐶) ⊆ 𝐶. For any convex 𝐶 with a nonempty relative
interior, the following algebraic property holds: for all 𝜇 ∈ ri𝐶, 𝜇′ ∈ aff 𝐶, there exists 𝜆 > 1

satisfying 𝜆𝜇+ (1− 𝜆)𝜇′ ∈ 𝐶.

Lemma 10 (Lemma 3 of Lipnowski and Ravid (2020), and a symmetric version).

(1) If 𝐹 : [0, 1] ⇒ R is a Kakutani correspondence with min𝐹 (0) ≤ 0 ≤ max𝐹 (1), and
𝑥̄ = inf{𝑥 ∈ [0, 1] : max𝐹 (𝑥) ≥ 0}, then 0 ∈ 𝐹 (𝑥̄).

(2) If 𝐹 : [0, 1] ⇒ R is a Kakutani correspondence with max𝐹 (0) ≥ 0 ≥ min𝐹 (1), and
𝑥̄ = inf{𝑥 ∈ [0, 1] : min𝐹 (𝑥) ≤ 0}, then 0 ∈ 𝐹 (𝑥̄).

Proof. (1) is shown in Lipnowski and Ravid (2020), and (2) can be shown using a similar
argument. Since 𝑥̄ is the infimum, there exists a weakly decreasing sequence {𝑥−

𝑛 }∞𝑛=1 ⊆ [𝑥̄, 1]

that converges to 𝑥̄ and min𝐹 (𝑥−
𝑛 ) ≤ 0 for all 𝑛 = 1, 2, . . .. Take a strictly increasing sequence

{𝑥+
𝑛 }∞𝑛=1 ⊆ [0, 𝑥̄] that converges to 𝑥̄ (and constant 0 sequence if 𝑥̄ = 0). By definition of 𝑥̄,

we have max𝐹 (𝑥+
𝑛 ) ≥ 0 ≥ min𝐹 (𝑥−

𝑛 ) for all 𝑛 = 1, 2, . . ..
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Taking subsequence if necessary, {min𝐹 (𝑥−
𝑛 )}∞𝑛=1 converges to 𝑦 ≤ 0. By upper hemi-

continuity of 𝐹 , 𝑦 ∈ 𝐹 (𝑥̄), hence min𝐹 (𝑥̄) ≤ 0. A similar argument shows that 0 ≤
max𝐹 (𝑥̄). As 𝐹 is convex-valued, 0 ∈ 𝐹 (𝑥̄).

Lemma 11.

(1) For any 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) that attains value 𝑠, there exists 𝜏 ′ ∈ 𝒯𝐶𝑇 (𝑝) with | supp(𝜏 ′)| ≤ 𝑛

that also attains value 𝑠.

(2) There exists 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) with finite support that attains value 𝑠 such that 𝐻(𝑠) =

aff(supp(𝜏)) ∩∆(Ω).

Proof. (1) Take any 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) that attains value 𝑠. The main Theorem in Rubin and
Wesler (1958) implies 𝑝 ∈ co(supp(𝜏)). By Caratheodory’s Theorem, 𝑝 is the convex sum of
at most 𝑛 points in supp(𝜏).1

(2) Let 𝒯 := {𝜏 ∈ 𝒯𝐶𝑇 (𝑝) : 𝜏 attains value 𝑠, | supp(𝜏)| < ∞}. Fix any 𝜏0 ∈ 𝒯 . If
aff(supp(𝜏)) ⊆ aff(supp(𝜏0)) for every 𝜏 ∈ 𝒯 , then 𝐻(𝑠) = aff(supp(𝜏0)) ∩ ∆(Ω) by def-
inition. Suppose not, then there exists 𝜏 ′ ∈ 𝒯 such that aff(supp(𝜏 ′)) is not contained
in aff(supp(𝜏0)). Take 𝜏1 = (𝜏0 + 𝜏 ′)/2 ∈ 𝒯 . We have aff(supp(𝜏0)) ∪ aff(supp(𝜏 ′)) ⊆
aff(supp(𝜏1)), which is strictly larger than aff(supp(𝜏0)). Hence, dim aff(supp(𝜏1)) > dim aff(supp(𝜏0)).2

Repeat this process until we find 𝑛 ∈ N such that aff(supp(𝜏)) ⊆ aff(supp(𝜏𝑛)) for all 𝜏 ∈ 𝒯 .
This operation must terminate after finite steps since ∆(Ω) is finite-dimensional and thereby
dim aff(supp(𝜏𝑛)) ≤ 𝑛− 1.

B.1.2 The Mediation Problem

Proof of Theorem 1. We first show the only if direction. Suppose 𝜏 ∈ ∆(∆(Ω)) and
𝑉 : ∆(Ω) → R are induced by some communication equilibrium outcome 𝜋 ∈ ∆(Ω × 𝐴).
Note that 𝜏 is the pushforward measure of marg𝐴 𝜋 ∈ ∆(𝐴) under map 𝜑 : 𝐴 → ∆(Ω) with
𝜑(𝑎) = 𝜋𝑎. For every 𝜔 ∈ Ω,∫︁

Δ(Ω)

𝜇(𝜔) d𝜏(𝜇) =

∫︁
𝐴

𝜑(𝑎)(𝜔) dmarg𝐴 𝜋(𝑎) =

∫︁
𝐴

𝜋𝑎(𝜔) dmarg𝐴 𝜋(𝑎)

=

∫︁
Ω×𝐴

I[𝜔̃ = 𝜔] d𝜋(𝜔̃, 𝑎) = 𝑝(𝜔).

1The set supp(𝜏) ⊆ Δ(Ω) lies in an affine space homeomorphic to R𝑛−1.
2Since aff(supp(𝜏0)) ⊆ aff(supp(𝜏1)), dimaff(supp(𝜏1)) = dimaff(supp(𝜏0)) if and only if aff(supp(𝜏1)) =

aff(supp(𝜏0)).
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where I denotes the indicator function. The first equality is by 𝜏 = (𝜑)# marg𝐴 𝜋, the second
equality is by definition, the third one is by the law of iterated expectations, and the last
one is by Consistency of 𝜋. Hence, 𝜏 satisfies Consistency*.

Since 𝑉 is induced by 𝜋, 𝑉 (𝜇) is the conditional expectation of 𝑢𝑆 with respect to marg𝐴 𝜋,
conditional on 𝜑(𝑎) = 𝜇. Note that by Obedience, 𝜋 is supported on 𝑎 ∈ 𝐴*(𝜇) only, where
𝐴*(𝜇) = argmax𝑎∈𝐴 E𝜇[𝑢𝑅(𝜔, 𝑎)] is nonempty-compact-valued and weakly measurable by the
measurable maximum theorem (Aliprantis and Border, 2006b, Theorem 18.19). Therefore,
𝑉 (𝜇) ∈ [min𝑎∈𝐴*(𝜇) 𝑢𝑆(𝑎),max𝑎∈𝐴*(𝜇) 𝑢𝑆(𝑎)] and 𝑉 is measurable, so Obedience* is satisfied.

By Honesty of 𝜋 and the fact that 𝑢𝑆 does not depend on 𝜔, we have E𝜋𝜔 [𝑢𝑆] = E𝜋𝜔′ [𝑢𝑆]

for any 𝜔, 𝜔′ ∈ Ω. Note that by Consistency, we have

d𝜋𝜔

dmarg𝐴 𝜋
(𝑎) =

𝜋𝑎(𝜔)

𝑝(𝜔)
for all 𝜔 ∈ Ω.

Therefore,∫︁
𝐴

𝑢𝑆(𝑎) d𝜋
𝜔(𝑎) =

∫︁
𝐴

𝑢𝑆(𝑎)
𝜋𝑎(𝜔)
𝑝(𝜔)

dmarg𝐴 𝜋(𝑎)

=

∫︁
𝐴

E
[︁
𝑢𝑆(𝑎)

𝜋𝑎(𝜔)
𝑝(𝜔)

| 𝜑(𝑎) = 𝜇
]︁
dmarg𝐴 𝜋(𝑎) =

∫︁
𝐴

E[𝑢𝑆
𝜇(𝜔)
𝑝(𝜔)

|𝜑−1(𝜇)] dmarg𝐴 𝜋(𝑎)

=

∫︁
𝐴

𝑉 (𝜑(𝑎))𝜑(𝑎)(𝜔)
𝑝(𝜔)

dmarg𝐴 𝜋(𝑎) =

∫︁
Δ(Ω)

𝑉 (𝜇)𝜇(𝜔)
𝑝(𝜔)

d𝜏(𝜇),

where the second equality is by iterated expectation, the third one is simply rewriting, the
fourth one is by 𝑉 = 𝑉 𝜋, and the last equality is by the fact that 𝜏 = (𝜑)# marg𝐴 𝜋. There-
fore, there exists a constant 𝑐 ∈ R such that

∫︀
Δ(Ω)

𝑉 (𝜇)𝜇(𝜔)
𝑝(𝜔)

d𝜏(𝜇) =
∫︀
Δ(Ω)

𝑉 (𝜇)𝜇(𝜔
′)

𝑝(𝜔′) d𝜏(𝜇) = 𝑐

for every 𝜔, 𝜔′ ∈ Ω. It follows that for all 𝜔 ∈ Ω,
∫︀
Δ(Ω)

𝑉 (𝜇)𝜇(𝜔) d𝜏(𝜇) = 𝑐 · 𝑝(𝜔), so∫︁
Δ(Ω)

𝑉 (𝜇) d𝜏(𝜇) =
∑︁
𝜔′∈Ω

∫︁
Δ(Ω)

𝑉 (𝜇)𝜇(𝜔′) d𝜏(𝜇) = 𝑐 ·
∑︁
𝜔′∈Ω

𝑝(𝜔′) = 𝑐.

As we have shown that 𝜏 satisfies (BP), it follows that for any 𝜔 ∈ Ω,∫︁
Δ(Ω)

𝑉 (𝜇)𝜇(𝜔) d𝜏(𝜇) =

(︂∫︁
Δ(Ω)

𝑉 (𝜇) d𝜏(𝜇)

)︂
𝑝(𝜔)

=

(︂∫︁
Δ(Ω)

𝑉 (𝜇) d𝜏(𝜇)

)︂(︂∫︁
Δ(Ω)

𝜇(𝜔) d𝜏(𝜇)

)︂
,

which implies that Cov𝜏 (𝑉 (𝜇), 𝜇(𝜔)) = 0 for every 𝜔 ∈ Ω, so Honesty* holds.

Next, we show by construction that for any 𝜏 ∈ ∆(∆(Ω)) and 𝑉 ∈ V that satisfy
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Consistency* and Honesty*, there exists a communication equilibrium outcome 𝜋 with
E𝜏 [𝑉 ] = E𝜋[𝑢𝑆]. Since 𝑉 ∈ V, by Lemma 2 of Lipnowski and Ravid (2020), there ex-
ists 𝜆 : ∆(Ω) → ∆(𝐴) such that for all 𝜇 ∈ ∆(Ω), 𝜆(𝜇) ∈ argmax𝛼∈Δ(𝐴) E𝜇[𝑢𝑅(𝛼, 𝜔)] is a
mixed best response for the receiver with posterior 𝜇, and 𝑉 (𝜇) =

∫︀
𝐴
𝑢𝑆(𝑎) d𝜆(𝜇)(𝑎).

Define 𝜋 ∈ ∆(Ω × 𝐴) by 𝜋({𝜔} × 𝐷) =
∫︀
Δ(Ω)

𝜇(𝜔)𝜆(𝜇)(𝐷) d𝜏(𝜇) for any 𝜔 ∈ Ω and
any Borel 𝐷 ⊆ 𝐴. We show that 𝜋 is a desired communication equilibrium outcome. First,
note that for any 𝜔 ∈ Ω, 𝜋(𝜔,𝐴) =

∫︀
Δ(Ω)

𝜇(𝜔)𝜆(𝜇)(𝐴) d𝜏(𝜇) =
∫︀
Δ(Ω)

𝜇(𝜔) d𝜏(𝜇) = 𝑝(𝜔) by
Consistency*, so 𝜋 satisfies Consistency.

For Obedience, note that a version of the conditional distribution 𝜋𝑎 is determined by
𝜋𝑎(𝜔) =

∫︀
Δ(Ω)

𝜆(𝜇)(𝑎)∫︀
Δ(Ω) 𝜆(𝜇)(𝑎) d𝜏(𝜇)

𝜇(𝜔) d𝜏(𝜇). Since 𝑎 ∈ 𝐴*(𝜇) for any 𝑎 ∈ supp(𝜆(𝜇)), 𝑎 ∈
𝐴*(𝜋𝑎) for any 𝑎 ∈ supp(𝜋), so 𝜋 satisfies Obedience.

Finally, by construction we have 𝜋𝜔(𝐷) =
∫︀
Δ(Ω)

𝜇(𝜔)
𝑝(𝜔)

𝜆(𝜇)(𝐷) d𝜏(𝜇) for any Borel 𝐷 ⊆ 𝐴.
That is, 𝜋𝜔 is an average of 𝜆(𝜇) ∈ ∆(𝐴). So

E𝜋𝜔 [𝑢𝑆] =

∫︁
Δ(Ω)

𝜇(𝜔)
𝑝(𝜔)

(︂∫︁
𝐴

𝑢𝑆(𝑎) d𝜆(𝜇)(𝑎)

)︂
d𝜏(𝜇) =

∫︁
Δ(Ω)

𝜇(𝜔)
𝑝(𝜔)

𝑉 (𝜇) d𝜏(𝜇),

where the first equality is by linearity and the second one is by the definition of 𝜆. Hence 𝜋

satisfies Honesty as 𝜏 satisfies Honesty*. This also shows that E𝜋[𝑢𝑆] =
∫︀
Δ(Ω)

𝑉 (𝜇) d𝜏(𝜇).

Next, define 𝐼 := [min𝜇∈Δ(Ω) 𝑉 (𝜇),max𝜇∈Δ(Ω) 𝑉 (𝜇)], where the minimum and maximum
are attained because of the semi-continuity of 𝑉 , 𝑉 . We now introduce an auxiliary program

sup
𝜂∈Δ(Δ(Ω)×𝐼)

∫︁
Δ(Ω)×𝐼

𝑠 d𝜂(𝜇, 𝑠) (𝜂-MD)

subject to:
∫︁
Δ(Ω)×𝐼

𝜇 d𝜂(𝜇, 𝑠) = 𝑝 (𝜂-BP)

𝜂(Gr(V)) = 1 (𝜂-OB)∫︁
Δ(Ω)×𝐼

𝑠(𝜇− 𝑝) d𝜂(𝜇, 𝑠) = 0, (𝜂-TT)

where Gr(V) ⊆ ∆(Ω) × 𝐼 denotes the graph of V. The three constraints (𝜂-BP), (𝜂-OB),
and (𝜂-TT) correspond to Consistency*, Obedience* and Honesty*, respectively. Note that
for any 𝜂 feasible in this program, 𝜏 = margΔ(Ω) 𝜂 and 𝑉 (𝜇) = E𝜂[𝑠|𝜇] are feasible under
mediation. Moreover, for any (𝜏, 𝑉 ) feasible under mediation, 𝜂(𝜇, 𝑠) = 𝜏(𝜇)I[𝑠 = 𝑉 (𝜇)] is
also feasible under the auxiliary program. So mediation has the same value as this auxiliary
program, and the existence of a solution for one program implies the existence of a solution
for the other one and vice versa.
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Proof of Proposition 14. We first show the auxiliary program has an optimal solution
𝜂*. Note that the integrand of the first and third constraints are continuous. Hence, for any
sequence of feasible 𝜂𝑛 that converges weakly to 𝜂, we have 𝑝 =

∫︀
𝜇 d𝜂𝑛 →

∫︀
𝜇 d𝜂 and 0 =∫︀

𝑠(𝜇− 𝑝) d𝜂𝑛 →
∫︀
𝑠(𝜇− 𝑝) d𝜂. Note that Gr(V) is closed since V is upper hemi-continuous

and closed-valued, so 1 = lim sup𝑛 𝜂𝑛(Gr(V)) ≤ 𝜂(Gr(V)) by the Portmanteau Theorem.
Hence, 𝜂(Gr(V)) = 1, and 𝜂 is also feasible under the auxiliary program. Therefore, the
feasibility set of the auxiliary program is compact in the weak topology. As the objective
function is continuous, there exists 𝜂* ∈ ∆(∆(Ω) × 𝐼) that solves the auxiliary program.
Then, 𝜏 * = margΔ(Ω) 𝜂

* and 𝑉 *(𝜇) = E𝜂* [𝑠|𝜇] are the desired solution that solves the
mediation problem.

Fix the optimal 𝑉 * we constructed, and consider the mediation problem with a fixed
selection 𝑉 *. We endow ∆(∆(Ω)) with the weak* topology induced by bounded and mea-
surable functions over ∆(Ω). Then, the objective

∫︀
𝑉 * d𝜏 is affine and continuous in 𝜏 since

𝑉 * is bounded and measurable. Since the maps 𝜇 ↦→ 𝜇(𝜔) and 𝜇 ↦→ 𝑉 *(𝜇)(𝜇(𝜔) − 𝑝(𝜔))

are measurable for all 𝜔 ∈ Ω, the set 𝒯𝑀𝐷(𝑝 | 𝑉 *) := {𝜏 ∈ 𝒯𝐵𝑃 (𝑝) : (𝑉
*, 𝜏) satisfies (TT)}

is closed. Theorem 1 of Maccheroni and Marinacci (2001) then implies that 𝒯𝑀𝐷(𝑝 | 𝑉 *)

is compact. This set is also convex, Bauer’s maximum principle implies that there exists
a solution 𝜏 ′ which is an extreme point of 𝒯𝑀𝐷(𝑝 | 𝑉 *). Theorem 2.1 of Winkler (1988)
then implies the size of the support of 𝜏 ′ is bounded by the number of linearly independent
moment constraints plus one, that is, | supp(𝜏 ′)| ≤ 2(𝑛− 1) + 1 = 2𝑛− 1.

Finally, fix any measurable selection 𝑉 ∈ V and consider the mediation problem with
fixed selection 𝑉 . We can rewrite the value of the problem using a Lagrange multiplier
𝑔 ∈ R𝑛 on the truth-telling constraint

sup
𝜏∈𝒯𝐵𝑃 (𝑝)

inf
𝑔∈R𝑛

∫︁
Δ(Ω)

𝑉 (𝜇)(1 + ⟨𝑔, 𝜇− 𝑝⟩) d𝜏(𝜇). (90)

Next, define the function 𝑀(𝜏, 𝑔) :=
∫︀
Δ(Ω)

(1 + ⟨𝑔, 𝜇 − 𝑝⟩)𝑉 (𝜇) d𝜏(𝜇). Again, we endow
∆(∆(Ω)) with the weak* topology induced by bounded and measurable functions over ∆(Ω).
The function 𝑀(𝜏, 𝑔) is continuous by definition because 𝑉 (𝜇) is measurable and bounded.
In the same topology, the set 𝒯𝐵𝑃 (𝑝) is closed because the map 𝜇 ↦→ 𝜇(𝜔) is measurable for
all 𝜔 ∈ Ω. With this, Theorem 1 in Maccheroni and Marinacci (2001) implies that 𝒯𝐵𝑃 (𝑝)

is compact. Finally, given that 𝑀(𝜏, 𝑔) is affine and continuous, and that both 𝒯𝐵𝑃 (𝑝) and
R𝑛 are convex, we can apply Sion’s minimax theorem to exchange the sup and inf in (90).
Therefore, the value can be rewritten as inf𝑔∈R𝑛 sup𝜏∈𝒯𝐵𝑃 (𝑝)

∫︀
𝑉 (𝜇)(1 + ⟨𝑔, 𝜇 − 𝑝⟩) d𝜏(𝜇) =

inf𝑔∈R𝑛 cav(𝑉 𝑔)(𝑝), where 𝑉 𝑔(𝜇) = 𝑉 (𝜇)(1 + ⟨𝑔, 𝜇 − 𝑝⟩), and the last equality follows from
Kamenica and Gentzkow (2011). Maximizing over all measurable selections, we have the
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desired representation of the optimal mediation value.

B.1.3 Binary State

Proof of Proposition 15. The equivalence between (i) and (ii) is immediate from Theo-
rem 2 (see the proof in Appendix B.1.4). We now show the equivalence between (ii) and
(iii). The if direction is immediate. For the only if direction, suppose that 𝒱𝐵𝑃 (𝑝) = 𝒱𝐶𝑇 (𝑝).
Take any optimal 𝜏 * ∈ 𝒯𝐶𝑇 (𝑝) with finite support and a selection 𝑉 ∈ V such that
𝑉 (𝜇) = 𝒱𝐵𝑃 (𝑝) 𝜏 *–almost surely. Note that 𝑉 ≤ 𝑉 , so 𝑉 = 𝑉 𝜏 *–almost surely, oth-
erwise persuasion would attain a strictly higher value. By Corollary 1 of Dworczak and
Kolotilin (2022), there exists 𝑓 ∈ R2 such that 𝑉 (𝜇) ≤ ⟨𝑓, 𝜇⟩ for all 𝜇 ∈ ∆(Ω) and
𝑉 (𝜇) = ⟨𝑓, 𝜇⟩ for all 𝜇 ∈ supp(𝜏 *). When 𝜏 * is non-degenerate, 𝑓 = (𝒱𝐵𝑃 (𝑝),𝒱𝐵𝑃 (𝑝)),
hence 𝒱𝐵𝑃 (𝑝) ≥ 𝑉 (𝜇) on ∆(Ω). This means that 𝒱𝐵𝑃 (𝑝) = 𝒱𝐶𝑇 (𝑝) is the maximum value
of 𝑉 . Then 𝑝 ∈ co(supp(𝜏 *)) ⊆ co(argmax𝑉 ). If 𝜏 * is degenerate, then 𝑉 (𝑝) = ⟨𝑓, 𝑝⟩ and
𝑉 (𝜇) ≤ ⟨𝑓, 𝜇⟩ for all 𝜇 ∈ ∆(Ω), which means 𝑉 is superdifferentiable at 𝑝.

Proof of Proposition 16. When Ω is binary, ∆(Ω) is a 1-dimensional set. We abuse the
notation and use 𝜇 to denote the first entry of the receiver’s posterior belief. By assumption,
𝒱𝐶𝑇 (𝑝) > 𝑉 (𝑝). For any 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) that attains 𝒱𝐶𝑇 (𝑝), the support of 𝜏 is non-degenerate.
Hence, aff(supp(𝜏)) is one-dimensional, and the full-dimensionality condition holds at 𝑝.

We show that V(𝜇)−𝒱𝐶𝑇 (𝑝) is mono-crossing if and only if cheap talk is not improvable.
The statement in the proposition then follows from Corollary 15 (see the proof in Appendix
B.1.5).

Suppose V(𝜇) − 𝒱𝐶𝑇 (𝑝) is not mono-crossing, then there exists 𝜇̃ ∈ [0, 1] such that
𝑉 (𝜇̃) > 𝒱𝐶𝑇 (𝑝). Without loss of generality, assume 𝜇̃ > 𝑝. Then, 𝑉 (𝜇) ≤ 𝒱𝐶𝑇 (𝑝) for
all 𝜇 ≤ 𝑝, otherwise cheap talk would attain a strictly higher value than 𝒱𝐶𝑇 (𝑝) at 𝑝.
Let 𝜇1 := inf{𝜇 ≥ 𝑝 : 𝑉 (𝜇) ≥ 𝒱𝐶𝑇 (𝑝)}. By upper hemi-continuity, we have 𝜇1 > 𝑝

since 𝑉 (𝑝) < 𝒱𝐶𝑇 (𝑝), and 𝒱𝐶𝑇 (𝑝) ∈ V(𝜇1) by Lemma 10. Hence, 𝑉 (𝜇) ≤ 𝒱𝐶𝑇 (𝑝) for any
𝜇 ∈ [0, 𝜇1). As V(𝜇) − 𝒱𝐶𝑇 (𝑝) is not mono-crossing, there must exist 𝜇3 > 𝜇2 ≥ 𝜇1 such
that 𝑉 (𝜇2) > 𝒱𝐶𝑇 (𝑝) > 𝑉 (𝜇3). Otherwise, for every 𝜇2 ≥ 𝜇1 such that 𝑉 (𝜇2) > 𝒱𝐶𝑇 (𝑝), we
have 𝑉 (𝜇3) ≥ 𝒱𝐶𝑇 (𝑝) for all 𝜇3 > 𝜇2, which means V(𝜇) − 𝒱𝐶𝑇 (𝑝) is mono-crossing from
below, a contradiction.3 Note that 𝑝 < 𝜇2 < 𝜇3, hence cheap talk is improvable at 𝑝.

3If there does not exist such a 𝜇2 ≥ 𝜇1, then 𝑉 (𝜇) ≤ 𝒱𝐶𝑇 (𝑝) for all 𝜇 ∈ [0, 1], which also implies
V(𝜇)− 𝒱𝐶𝑇 (𝑝) is mono-crossing.
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For the reverse direction, suppose V(𝜇)− 𝒱𝐶𝑇 (𝑝) is mono-crossing, we show that cheap
talk is not improvable at 𝑝. If 𝑉 (𝜇) ≤ 𝒱𝐶𝑇 (𝑝) on [0, 1], the claim is trivial. Suppose that
there exists 𝜇̃ such that 𝑉 (𝜇̃) > 𝒱𝐶𝑇 (𝑝) and, without loss of generality, assume that 𝜇̃ > 𝑝.
Then, 𝑉 (𝜇) ≤ 𝒱𝐶𝑇 (𝑝) for all 𝜇 ∈ [0, 𝑝]. Let 𝜇* := inf{𝜇 ≥ 𝑝 : 𝑉 (𝜇) > 𝒱𝐶𝑇 (𝑝)}. By def-
inition we have 𝑉 (𝜇) ≤ 𝒱𝐶𝑇 (𝑝) for all 𝜇 ∈ [0, 𝜇*). As V(𝜇) − 𝒱𝐶𝑇 (𝑝) is mono-crossing, it
must be the case that for any 𝜇 > 𝜇*, 𝑉 (𝜇) ≥ 𝒱𝐶𝑇 (𝑝). Otherwise, if there exists 𝜇̂ > 𝜇*

such that 𝑉 (𝜇̂) < 𝒱𝐶𝑇 (𝑝), then, by definition of 𝜇*, there exists 𝜇′ < 𝜇* + (𝜇̂ − 𝜇*)/2 such
that 𝑉 (𝜇′) > 𝒱𝐶𝑇 (𝑝). But then 𝜇′ < 𝜇̂ and 𝑉 (𝜇′) > 𝒱𝐶𝑇 (𝑝) > 𝑉 (𝜇̂), which violates the
mono-crossing assumption. By Lemma 2.6, {𝑉 𝐶𝑇 < 𝒱𝐶𝑇 (𝑝)} = co{𝑉 < 𝒱𝐶𝑇 (𝑝)} ⊆ [0, 𝜇*]

and {𝑉 𝐶𝑇 > 𝒱𝐶𝑇 (𝑝)} = co{𝑉 > 𝒱𝐶𝑇 (𝑝)} ⊆ [𝜇*, 1], so cheap talk is not improvable at 𝑝.

Proof of Proposition 17. We use 𝜇 to denote the first entry of the receiver’s posterior.
Since 𝑉 (𝜇)−𝒱𝐶𝑇 (𝑝) is single-crossing at 𝑝, 𝒱𝐶𝑇 (𝑝) = 𝑉 (𝑝) and [𝑉 (𝜇)−𝑉 𝐶𝑇 (𝑝)](𝜇−𝑝) is

non-negative/non-positive for any 𝜇 ∈ ∆(Ω). Therefore, the shifted truth-telling constraint
for the mediation problem

∫︀
Δ(Ω)

[𝑉 (𝜇)−𝒱𝐶𝑇 (𝑝)](𝜇−𝑝) d𝜏(𝜇) = 0 implies that 𝑉 (𝜇) = 𝒱𝐶𝑇 (𝑝)

for any 𝜇 ∈ supp(𝜏), hence 𝒯𝑀𝐷(𝑝) = 𝒯𝐶𝑇 (𝑝). As no disclosure is optimal under cheap talk,
no disclosure is also optimal under mediation.

Proof of Corollary 13. We use 𝜇 to denote the first entry of the receiver’s posterior. The
claim is straightforward when 𝑉 is concave. If 𝑉 is quasiconvex, then either 0 or 1 attains
its maximum value. Without loss of generality, assume 𝑉 (0) ≤ 𝑉 (1), and let 𝑝 := sup{𝜇 ∈
[0, 1] : 𝑉 (𝜇) = 𝑉 (0)}. By continuity of 𝑉 , 𝑉 (𝑝) = 𝑉 (0). For every 𝜇 ∈ [0, 𝑝], we have
𝑉 (𝜇) ≤ 𝑉 (0) by quasiconvexity, while 𝑉 (𝜇) > 𝑉 (0) for every 𝜇 ∈ (𝑝, 1], as otherwise there
exists 𝜇̂ > 𝑝 such that 𝑉 (𝜇̂) ≤ 𝑉 (0) contradicts the definition of 𝑝.

For every prior 𝑝 ∈ (0, 𝑝], we have 𝒱𝐶𝑇 (𝑝) = 𝑉 (0). The argument above shows that
{𝜇 ∈ [0, 1] : 𝑉 (𝜇) < 𝑉 (0)} ⊆ [0, 𝑝] and {𝜇 ∈ [0, 1] : 𝑉 (𝜇) > 𝑉 (0)} ⊆ (𝑝, 1], so cheap talk is
not improvable at 𝑝. By Theorem 3 (see the proof in Appendix B.1.5), 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝)

for every 𝑝 ∈ (0, 𝑝).
For every prior 𝑝 ∈ (𝑝, 1), we have 𝑉 (𝑝) > 𝑉 (0). The quasiconvexity of 𝑉 implies that

𝑉 (𝜇) ≥ 𝑉 (𝑝) for every 𝜇 > 𝑝. Otherwise, if there exists 𝜇̂ > 𝑝 with 𝑉 (𝜇̂) < 𝑉 (𝑝), then
𝑉 (𝑝) > max{𝑉 (0), 𝑉 (𝜇̂)}, contradicting quasiconvexity. A similar argument shows that
𝑉 (𝜇) ≤ 𝑉 (𝑝) for every 𝜇 < 𝑝. Hence, 𝒱𝐶𝑇 (𝑝) = 𝑉 (𝑝). As {𝑉 > 𝑉 (𝑝)} ⊆ (𝑝, 1] and
{𝑉 < 𝑉 (𝑝)} ⊆ [0, 𝑝), cheap talk is not improvable at 𝑝, hence 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝) by Theorem
3.
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Finally, consider 𝑉 (𝜇) = 0 for 𝜇 ∈ [0, 1/2) and 𝑉 (𝜇) = −(𝜇−1/2)(𝜇−3/4) for 𝜇 ∈ [1/2, 1].
This 𝑉 is non-monotone and quasiconcave. At any 𝑝 ∈ (0, 1/2), cheap talk is improvable
and the full-dimensionality condition holds at 𝑝. Hence, 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝) by Theorem 3.

B.1.4 Persuasion vs. Mediation

The following lemma leads to a general version of Theorem 2: mediation is fully interim
efficient4 if and only if cheap talk is fully interim efficient.

Lemma 12. If 𝜏 ∈ 𝒯𝑀𝐷(𝑝) is fully interim efficient with selection 𝑉 ∈ V such that∫︀
𝑉 (𝜇)(𝜇− 𝑝) d𝜏 = 0 , then 𝜏 ∈ 𝒯𝐶𝑇 (𝑝).

Proof. For every 𝜔 ∈ Ω, the conditional distribution 𝜏𝜔 ∈ ∆(∆(Ω)) satisfies the Radon-
Nikodym derivative d𝜏𝜔

d𝜏
(𝜇) = 𝜇(𝜔)

𝑝(𝜔)
, so

∑︁
𝜔∈Ω

(︂∫︁
Δ(Ω)

𝑉 (𝜇) d𝜏𝜔(𝜇)

)︂
𝜆(𝜔) =

∑︁
𝜔∈Ω

(︂∫︁
Δ(Ω)

𝑉 (𝜇)𝜇(𝜔)
𝑝(𝜔)

d𝜏(𝜇)

)︂
𝜆(𝜔) =

∫︁
Δ(Ω)

𝑉 (𝜇)⟨𝜆
𝑝
, 𝜇⟩ d𝜏(𝜇)

Since 𝜏, 𝑉 solves the optimization problem as in (36), 𝑉 = 𝑉 almost surely with respect to 𝜏 .
Otherwise, suppose there exists a measurable set 𝐷 ⊆ ∆(Ω) such that 𝜏(𝐷) > 0 and 𝑉 (𝜇) >

𝑉 (𝜇) for all 𝜇 ∈ 𝐷. Since 𝜆 is strictly positive,
∫︀
𝑉 (𝜇)⟨𝜆

𝑝
, 𝜇⟩ d𝜏(𝜇) >

∫︀
𝑉 (𝜇)⟨𝜆

𝑝
, 𝜇⟩ d𝜏(𝜇),

yielding a contradiction.
By Corollary 1 of Dworczak and Kolotilin (2022), there exists 𝑓 ∈ R𝑛 such that 𝑉 (𝜇)⟨𝜆

𝑝
, 𝜇⟩ ≤

⟨𝑓, 𝜇⟩ for all 𝜇 ∈ ∆(Ω) and 𝑉 (𝜇)⟨𝜆
𝑝
, 𝜇⟩ = ⟨𝑓, 𝜇⟩ for all 𝜇 ∈ supp(𝜏). Since 𝜏 satisfies truth-

telling with selection 𝑉 = 𝑉 , (iii) of Theorem 1 implies Cov𝜏 (𝑉 , ⟨𝑓, ·⟩) = 0. Let 𝑍(𝜇) :=

⟨𝜆
𝑝
, 𝜇⟩ and define 𝜏 ∈ ∆(∆(Ω)) by the Radon-Nikodym derivative d𝜏

d𝜏
(𝜇) = 𝑍(𝜇). Then,

Cov𝜏 (𝑉 , ⟨𝑓, ·⟩) = Cov𝜏 (𝑉 , 𝑉 𝑍) = E𝜏 [𝑉
2𝑍]−E𝜏 [𝑉 ]E𝜏 [𝑉 𝑍] = E𝜏 [𝑉

2𝑍]−E𝜏 [𝑉 𝑍]2 = Var𝜏 [𝑉 ],
where the second last equality is by (TT) and the last equality is by the definition of 𝜏 .
Therefore, 𝑉 is constant over supp(𝜏), which is the same as supp(𝜏) since 𝑍(𝜇) > 0 for all
𝜇 ∈ ∆(Ω).

Proof of Theorem 2. The if direction is immediate. The only if direction, follows from
Lemma 12 by observing that if 𝜏 ∈ 𝒯𝑀𝐷(𝑝) attains the optimal Bayesian persuasion value,

4See the definition in Section 2.8, equation 36.

164



then 𝜏 is fully interim efficient for 𝜆 = 𝑝.

We next state and prove a continuous-state version of Theorem 2.

Theorem 5. Assume that Ω is a compact metric space and that V = 𝑉 is singleton-valued
with 𝑉 being Lipschitz continuous. Then Mediation attains the Bayesian persuasion value
if and only if cheap talk attains it too, that is,

𝒱𝐵𝑃 (𝑝) = 𝒱𝑀𝐷(𝑝) ⇐⇒ 𝒱𝐵𝑃 (𝑝) = 𝒱𝐶𝑇 (𝑝).

Proof. The if direction is immediate. For the only if direction, note that if 𝜏 ∈ 𝒯𝑀𝐷(𝑝)

attains the optimal persuasion value, then Corollary 1 of Dworczak and Kolotilin (2022)
implies there exists a Lipschitz function 𝑓 on Ω such that 𝑉 (𝜇) ≤

∫︀
Ω
𝑓(𝜔) d𝜇(𝜔) for all

𝜇 ∈ ∆(Ω) and 𝑉 (𝜇) =
∫︀
Ω
𝑓(𝜔) d𝜇(𝜔) for all 𝜇 ∈ ∆(Ω) for all 𝜇 ∈ supp(𝜏). Similar argument

as in the proof of Lemma 12 implies that 𝑉 is constant on the support of 𝜏 , and hence 𝜏 is
feasible under cheap talk.

Proof of Proposition 18. We show the following lemma, which implies the desired result.

Lemma 13. For every 𝑠 ≥ 𝑉 (𝑝) attainable under cheap talk, if there exists 𝜇 ∈ 𝐻(𝑠) such
that 𝑉 𝐶𝑇 (𝜇) > 𝑠, then there exists 𝜏 ∈ 𝒯𝐵𝑃 (𝑝) such that

∫︀
𝑉 (𝜇) d𝜏(𝜇) > 𝑠.

To see this, take any 𝑠 ≥ 𝑉 (𝑝) attainable under cheap talk such that there exists 𝜇̂ ∈ 𝐻(𝑠)

with 𝑉 𝐶𝑇 (𝜇̂) > 𝑠. Hence, there exists 𝜏 ∈ 𝒯𝐶𝑇 (𝜇̂) that attains a higher value than 𝑠.
Take 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) attaining value 𝑠 that spans out 𝐻(𝑠). That is, 𝜏 =

∑︀𝑘
𝑖=1 𝜏𝑖𝛿𝜇𝑖

, 𝜏𝑖 > 0

for all 𝑖,
∑︀𝑘

𝑖=1 𝜏𝑖 = 1, and aff(supp(𝜏)) ∩ ∆(Ω) = 𝐻(𝑠). There exists 𝛼 > 1 such that
𝛼𝑝 + (1 − 𝛼)𝜇̂ ∈ co(supp(𝜏)) since 𝑝 ∈ ri co(supp(𝜏)) and 𝜇̂ ∈ 𝐻(𝑠). Therefore, there exist
𝜏 ′𝑖 ≥ 0,

∑︀
𝜏 ′𝑖 = 1 such that 𝛼𝑝+ (1− 𝛼)𝜇̂ =

∑︀
𝜏 ′𝑖𝜇𝑖. Then,

𝜏 =
𝑘∑︁

𝑖=1

𝜏 ′𝑖
𝛼
𝛿𝜇𝑖

+ 𝛼−1
𝛼

𝜏

is feasible under Bayesian persuasion, as 1
𝛼

∑︀
𝜏 ′𝑖𝜇𝑖 +

𝛼−1
𝛼

𝜇̂ = 1
𝛼
(𝛼𝑝 + (1 − 𝛼)𝜇̂) + 𝛼−1

𝛼
𝜇̂ = 𝑝.

Note that
∫︀
𝑉 d𝜏 > 𝑠 since

∫︀
𝑉 d𝜏 > 𝑠, 𝑉 (𝜇𝑖) ≥ 𝑠 for all 𝑖, and 𝛼−1

𝛼
> 0.
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By Lemma 13, if there exists 𝜇 ∈ 𝐻* such that 𝑉 𝐶𝑇 (𝜇) > 𝑉 𝐶𝑇 (𝑝), then 𝒱𝐵𝑃 (𝑝) > 𝒱𝐶𝑇 (𝑝).
By Theorem 2, this implies 𝒱𝐵𝑃 (𝑝) > 𝒱𝑀𝐷(𝑝).

Proof of Corollary 14. The if direction holds by Proposition 18, because there exists
𝜇 ∈ ∆(Ω) = 𝐻* such that 𝑉 𝐶𝑇 (𝜇) ≥ 𝑉 (𝜇) > 𝑉 𝐶𝑇 (𝑝). For the only if direction, sup-
pose 𝑉 (𝜇) ≤ 𝒱𝐶𝑇 (𝑝) for any 𝜇 ∈ ∆(Ω). As cheap talk attains the global maximum, we have
𝒱𝐵𝑃 (𝑝) = 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝).

We now prove a more general version of Lemma 2.5 that uses the following definition.

Definition 22. We say that 𝑠 ≥ 𝑉 (𝑝) satisfies the full-dimensionality condition at 𝑝 if
𝐻(𝑠) = ∆(Ω).

Observe that the full-dimensionality condition holds at 𝑝 if and only if 𝒱𝐶𝑇 (𝑝) satisfies
the full-dimensionality condition at 𝑝.

Proof of Lemma 2.5. For any 𝑠 ≥ 𝑉 (𝑝) attainable under cheap talk, we first prove the
equivalence of the following two statements:

(i) 𝑠 satisfies the full-dimensionality condition at 𝑝;

(ii) 𝑠 can be attained under cheap talk at every prior in an open neighborhood of 𝑝.

Suppose 𝑠 can be attained under cheap talk at all 𝑝′ ∈ 𝑁 , which is an open neighborhood of
𝑝. Then there exists 𝑛 affinely independent points 𝑝0, . . . , 𝑝𝑛−1 ∈ 𝑁 such that 𝑝 is contained
in the relative interior of the 𝑛−1–simplex co{𝑝0, . . . , 𝑝𝑛−1}.5 That is, there exists 𝛼𝑖 ∈ (0, 1)

such that
∑︀𝑛−1

𝑖=0 𝛼𝑖𝑝𝑖 = 𝑝. By assumption, there exists 𝜏𝑖 ∈ 𝒯𝐶𝑇 (𝑝𝑖) with finite support that
attains value 𝑠 for every 𝑖 = 0, . . . , 𝑛− 1. Note that 𝜏 =

∑︀𝑛
𝑖=0 𝛼𝑖𝜏𝑖 is in 𝒯𝐶𝑇 (𝑝) and attains

value 𝑠. Moreover, aff(supp(𝜏)) = aff(∪𝑛
𝑖=0 supp(𝜏𝑖)) contains aff {𝑝0, . . . , 𝑝𝑛−1}, which is

𝑛−1–dimensional. Therefore, aff(supp(𝜏)) contains ∆(Ω), hence 𝐻(𝑠) = ∆(Ω) by definition.
For the other direction, suppose 𝐻(𝑠) = ∆(Ω). Take any 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) with finite support

that spans out 𝐻(𝑠). Then 𝑝 ∈ ri co(supp(𝜏)) = int co(supp(𝜏)) since co(supp(𝜏)) is 𝑛 − 1-
dimensional. Therefore, there exists an open neighborhood 𝑁 of 𝑝 that 𝑁 ⊆ co(supp(𝜏)).
This implies that for any 𝑝′ ∈ 𝑁 , there exists 𝜏 ′ ∈ 𝒯𝐶𝑇 (𝑝

′) that attains value 𝑠 with
supp(𝜏 ′) ⊆ supp(𝜏).

5To see this, take 𝑛− 1 points 𝑝1, . . . , 𝑝𝑛−1 in 𝑁 such that {𝑝𝑖 − 𝑝} is linearly independent. Since 𝑁 is
open, there exists 𝜀 ∈ (0, 1) such that −𝜀

∑︀𝑛−1
𝑖=1 (𝑝𝑖 − 𝑝)/(1 − (𝑛 − 1)𝜀) + 𝑝 ∈ 𝑁 . Set 𝑝0 = −𝜀

∑︀𝑛−1
𝑖=1 (𝑝𝑖 −

𝑝)/(1− (𝑛− 1)𝜀) + 𝑝, we have 𝑝 = (1− (𝑛− 1)𝜀)𝑝0 + 𝜀
∑︀𝑛

𝑖=1 𝑝𝑖.
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The equivalence stated in the main text then follows from taking 𝑠 = 𝑉 𝐶𝑇 (𝑝).

B.1.5 Mediation and Cheap Talk

Let V𝐶𝑇 : ∆(Ω) ⇒ R be the correspondence of sender’s payoff under some cheap talk
equilibrium with prior 𝜇 ∈ ∆(Ω), that is,

V𝐶𝑇 (𝜇) := {𝑠 ∈ R : ∃ 𝜏 ∈ 𝒯𝐶𝑇 (𝜇) attaining value 𝑠}.

By Corollary 3 and Section C.2.1 of Lipnowski and Ravid (2020), V𝐶𝑇 is non-empty, convex,
and compact-valued. The upper and lower envelopes of V𝐶𝑇 are exactly the quasiconcave
and quasiconvex envelopes 𝑉 𝐶𝑇 and 𝑉 𝐶𝑇 that we defined in Section 2.3.

Proof of Lemma 2.6. We prove this result through a constructional approach that has a
similar idea as the proof of Theorem 1 of Lipnowski and Ravid (2020), using Lemma 10.6 We
establish the first equivalence and the second could be obtained with a symmetric argument.
The only if direction is immediate from Lemma 11. Suppose there exist a 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) with
value 𝑠′ > 𝑠, then by Lemma 11 it is without loss to consider a 𝜏 with finite support, and
𝑉 (𝜇) ≥ 𝑠′ > 𝑠 for all 𝜇 ∈ supp(𝜏). Bayes-plausibility then implies 𝑝 ∈ co{𝑉 > 𝑠}.

For the if direction, suppose 𝑝 ∈ co{𝑉 > 𝑠}, then there exists finitely many points
{𝜇𝑖}𝑘𝑖=1 ⊆ {𝑉 > 𝑠} such that 𝑝 =

∑︀
𝛼𝑖𝜇𝑖 for some 𝛼𝑖 ∈ [0, 1],

∑︀
𝛼𝑖 = 1. We now construct

a cheap talk equilibrium 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) with value strictly higher than 𝑠, starting from points
{𝜇+

𝑖 }𝑘𝑖=1. Let 𝑉 + := min𝑖 𝑉 (𝜇𝑖)− 𝑠.
Suppose 𝑉 (𝑝) ≥ 𝑠+𝑉 +. Then 𝜏 = 𝛿𝑝 can attain 𝑉 (𝑝) ≥ 𝑠+𝑉 + > 𝑠. If 𝑉 (𝑝) < 𝑠+𝑉 +, let

𝜆𝑖 := inf{𝜆 ∈ [0, 1] : 𝑉 ((1−𝜆)𝑝+𝜆𝜇𝑖) ≥ 𝑠+𝑉 +} for 𝑖 = 1, . . . , 𝑘. By upper hemi-continuity
of V, 𝜆𝑖 > 0 for any 𝑖 (otherwise there exists a sequence {𝜇𝑚} in co{𝑝, 𝜇𝑖} converges to 𝑝

with 𝑉 (𝜇𝑚) ≥ 𝑠 + 𝑉 +, but 𝑉 (𝑝) < 𝑠 + 𝑉 +, contradicts the upper hemi-continuity). Let
𝜇̂𝑖 := (1 − 𝜆𝑖)𝑝 + 𝜆𝑖𝜇𝑖 for all 𝑖. By lemma 10 (i), 𝑠 + 𝑉 + ∈ V(𝜇̂𝑖) for all 𝑖. Moreover,
𝑝 =

∑︀𝑘
𝑖=1 𝛼̂𝑖𝜇̂𝑖, where 𝛼̂𝑖 =

𝛼𝑖

𝜆𝑖
/
∑︀

𝑗
𝛼𝑗

𝜆𝑗
for all 𝑖. Therefore, 𝜏 =

∑︀
𝑖 𝛼̂𝑖𝛿𝜇̂𝑖

∈ 𝒯𝐶𝑇 (𝑝) can attain
value 𝑠+ 𝑉 + > 𝑠.

Proof of Lemma 2.6. For any 𝑠 ≥ 𝑉 (𝑝), the first equivalence follows from Theorem 1 of
Lipnowski and Ravid (2020). For the only if direction, suppose 𝑉 𝐶𝑇 (𝑝) > 𝑠, then there

6Note that Lipnowski and Ravid (2020) also assume 𝑠 ≥ 𝑉 (𝑝), which is not needed here. Because in
Lipnowski and Ravid (2020) the result is showing 𝑠 can be attained under cheap talk, while here we only
want to show the highest value attainable under CT is higher than 𝑠.
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exists 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) that attains a value 𝑠′ > 𝑠. Theorem 1 of Lipnowski and Ravid (2020)
implies that 𝑝 ∈ co{𝑉 ≥ 𝑠′} ⊆ co{𝑉 > 𝑠}. For the if direction, suppose 𝑝 ∈ co{𝑉 > 𝑠},
then there exists finitely many points {𝜇𝑖}𝑘𝑖=1 ⊆ {𝑉 > 𝑠} such that 𝑝 =

∑︀
𝛼𝑖𝜇𝑖 for some

{𝛼𝑖}𝑘𝑖=1 ⊆ [0, 1],
∑︀𝑘

𝑖=1 𝛼𝑖 = 1. Let 𝑠 := min𝑖 𝑉 (𝜇𝑖), we have 𝑝 ∈ co{𝑉 ≥ 𝑠}. Theorem 1 of
Lipnowski and Ravid (2020) then implies that 𝑉 𝐶𝑇 (𝑝) ≥ 𝑠 > 𝑠.

For any 𝑠 < 𝑉 (𝑝), the first equivalence is automatically true as both 𝑉 𝐶𝑇 (𝑝) ≥ 𝑉 (𝑝) > 𝑠

and 𝑝 ∈ co{𝑉 > 𝑠} are true. The second equivalence follows from a symmetric argument.7

Proof of Theorem 3.

First Statement: This statement can be shown through an explicit construction. To
show this, we consider the auxiliary program (𝜂-MD) as in the proof of Proposition 14. The
variable in (𝜂-MD) is a probability measure 𝜂 ∈ ∆(∆(Ω) × 𝐼), and we use (𝜇, 𝑟) to denote
arbitrary elements in ∆(Ω) × 𝐼. Take any 𝜏 =

∑︀ℎ
𝑖=1 𝜏𝑖𝛿𝜇𝑖

∈ 𝒯𝐶𝑇 (𝑝) attaining value 𝑠 that
spans out 𝐻(𝑠). By construction, we have 𝑝 ∈ ri co(supp(𝜏)). Let 𝜂 :=

∑︀ℎ
𝑖=1 𝜏𝑖𝛿(𝜇𝑖,𝑠).

Suppose 𝑠 ≥ 𝑉 (𝑝) attainable under cheap talk is locally improvable at 𝑝. By definition,
there exists 𝜇̃ ∈ 𝐻(𝑠) and 𝜆 ∈ [0, 1) such that 𝑉 𝐶𝑇 (𝜆𝜇̃ + (1 − 𝜆)𝑝) > 𝑠 > 𝑉 𝐶𝑇 (𝜇̃). Let
𝜇̂ := 𝜆𝜇̃+(1−𝜆)𝑝. By Lemma 2.6, there exist 𝜏+ =

∑︀𝑧
𝑗=1 𝛽𝑗𝛿𝜇+

𝑗
∈ 𝒯𝐶𝑇 (𝜇̂) that attains value

𝑠+ 𝑉 + for some 𝑉 + > 0 and 𝜏− =
∑︀𝑤

𝑘=1 𝛾𝑘𝛿𝜇−
𝑘
∈ 𝒯𝐶𝑇 (𝜇̃) that attains value 𝑠− 𝑉 − for some

𝑉 − > 0. Let 𝜂+ :=
∑︀𝑧

𝑗=1 𝛽𝑗𝛿(𝜇+
𝑗 ,𝑠+𝑉 +) and 𝜂− :=

∑︀𝑤
𝑘=1 𝛾𝑘𝛿(𝜇−

𝑘 ,𝑠−𝑉 −).

Let 𝜉 :=
1
𝜆
𝑉 −

𝑉 ++
1
𝜆
𝑉 −

. Then,

E(𝜉𝜂++(1−𝜉)𝜂−) [(𝑟 − 𝑠)(𝜇− 𝑝)] =𝜉𝑉 +(𝜇̂− 𝑝)− (1− 𝜉)𝑉 −(𝜇̃− 𝑝)

=
(︀
𝜆𝜉𝑉 + − (1− 𝜉)𝑉 −)︀ (𝜇̃− 𝑝) = 0.

Let 𝜇* := 𝜉𝜇̂ + (1 − 𝜉)𝜇̃ ∈ 𝐻(𝑠). Since 𝑝 ∈ ri co(supp(𝜏)), there exists 𝛼 > 1 such that
𝛼𝑝+ (1− 𝛼)𝜇* ∈ co(supp(𝜏)). Therefore, there exists 𝜏 ′𝑖 ≥ 0,

∑︀
𝜏 ′𝑖 = 1 such that 𝛼𝑝+ (1−

𝛼)𝜇* =
∑︀

𝜏 ′𝑖𝜇𝑖. Let 𝜂′ denote
∑︀

𝑖 𝜏
′
𝑖𝛿(𝜇𝑖,𝑠).

Finally, consider
𝜂 := 1

𝛼
𝜂′ + 𝛼−1

𝛼
𝜉𝜂+ + 𝛼−1

𝛼
(1− 𝜉)𝜂−.

By construction, 𝜂 satisfies (𝜂-BP) and (𝜂-OB). It also satisfies the truth-telling constraint

7See footnote 15 of Lipnowski and Ravid (2020).
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(𝜂-TT) since

E𝜂 [𝑟(𝜇− 𝑝)] = 𝑠E𝜂 [𝜇− 𝑝] + 𝛼−1
𝛼

E(𝜉𝜂++(1−𝜉)𝜂−) [(𝑟 − 𝑠)(𝜇− 𝑝)] = 0,

where the last equality is by (𝜂-BP) and our construction of 𝜉. The expected utility under
𝜂 is

E𝜂[𝑟] = 𝑠+ 𝛼−1
𝛼

𝜉𝑉 + − 𝛼−1
𝛼

(1− 𝜉)𝑉 − = 𝑠+ ( 1
𝜆
− 1)𝛼−1

𝛼
𝑉 +𝑉 −

𝑉 ++
1
𝜆
𝑉 −

> 𝑠, (91)

as desired.
Finally, take 𝜏 = margΔ(Ω) 𝜂 and 𝑉 (𝜇) = E𝜂[𝑟|𝜇]. (𝑉 , 𝜏) is implementable under media-

tion and attains exactly the same value as 𝜂, which is higher than 𝑠.

Second Statement: By definition, 𝑠 is improvable at 𝑝 if and only if there exists 𝜇 ∈
{𝑉 𝐶𝑇 < 𝑠} such that

{𝑉 𝐶𝑇 > 𝑠} ∩ [𝑝, 𝜇) ̸= ∅,

where [𝑝, 𝜇) denote the line segment connecting 𝑝 and 𝜇, including the end point 𝑝 while
excluding 𝜇. Let 𝐷+(𝑠) := {𝑉 > 𝑠} and 𝐷−(𝑠) := {𝑉 < 𝑠}. By Lemma 2.6, {𝑉 𝐶𝑇 >

𝑠} = co𝐷+(𝑠) and {𝑉 𝐶𝑇 < 𝑠} = co𝐷−(𝑠). Suppose 𝑠 is not improvable at 𝑝, then for any
𝜇 ∈ co𝐷−(𝑠), co(𝐷+(𝑠)) ∩ [𝑝, 𝜇) = ∅. Therefore,

co(𝐷+(𝑠))
⋂︁⎛⎝ ⋃︁

𝜇∈co𝐷−(𝑠)

[𝑝, 𝜇)

⎞⎠ = ∅.8 (92)

For any affine set 𝑀 ⊆ R𝑛, we say that 𝑀 is orthogonal to 𝑠 if for every (𝜏, 𝑉 ) ∈
𝒯𝑀𝐷(𝑝)×V satisfying (TT) and every 𝜇 ∈ supp(𝜏), we have 𝑉 (𝜇) ̸= 𝑠 only if 𝜇 ∈ 𝑀 . The
second statement of Theorem 3 then follows from the following lemma.

Lemma 14. Suppose (92) holds and that there exists an affine set 𝑀 ⊆ R𝑛 such that 𝑝 ∈ 𝑀

and such that 𝑀 is orthogonal to 𝑠. Then either 𝒱𝑀𝐷(𝑝) ≤ 𝑠 or there is an affine set
𝑀 ′ ⊆ R𝑛 such that dim𝑀 ′ = dim𝑀 − 1, 𝑝 ∈ 𝑀 ′, and such that 𝑀 ′ is orthogonal to 𝑠.

With this lemma, we may start from an initial affine set 𝑀0 = aff(∆(Ω)). Note that
𝑝 ∈ 𝑀0 and 𝑀0 is orthogonal to 𝑠. The claim implies either 𝒱𝑀𝐷(𝑝) ≤ 𝑠, which is the
desired property, or that there exists an 𝑛 − 2-dimensional affine set 𝑀1 such that 𝑝 ∈ 𝑀1

and such that 𝑀1 is orthogonal to 𝑠. Repeat this algorithm, and it terminates either when the
desired property 𝒱𝑀𝐷(𝑝) ≤ 𝑠 holds, or when we reach a 0-dimensional affine set 𝑀𝑛−1 = {𝑝}.
In the latter case, since 𝑉 (𝑝) ≤ 𝑠, and for any 𝜏 ∈ 𝒯𝑀𝐷(𝑝) and 𝑉 ∈ V that (𝜏, 𝑉 ) satisfies

8We use the convention that ∪𝜇∈𝑆 [𝑝, 𝜇) = {𝑝} if 𝑆 = ∅.
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(TT), 𝑉 (𝜇) = 𝑠 for any 𝜇 ∈ supp(𝜏) ∖ {𝑝} by orthogonality, so
∫︀
𝑉 d𝜏 ≤ 𝑠. By assumption,

𝑠 is attainable under cheap talk, so we have 𝒱𝑀𝐷(𝑝) = 𝑠.
Now we prove the lemma. Suppose 𝐷+(𝑠) = ∅, then the claim is trivially true since

𝒱𝑀𝐷(𝑝) ≤ 𝑠 holds. Suppose 𝐷+(𝑠) ̸= ∅. We next show that (92) implies that there exists
a 𝑔 ∈ R𝑛 such that ⟨𝑔, 𝜇⟩ ≤ 0 for all 𝜇 ∈ 𝑆+ := co(𝐷+(𝑠) ∩ 𝑀) and ⟨𝑔, 𝜇⟩ ≥ 0 for all
𝜇 ∈ 𝑆− :=

⋃︀
𝜇∈co(𝐷−(𝑠)∩𝑀)[𝑝, 𝜇).

To see this, first observe that 𝑆− is convex. If co(𝐷−(𝑠) ∩ 𝑀) = ∅, then 𝑆− = {𝑝}.
If co(𝐷−(𝑠) ∩ 𝑀) ̸= ∅, take any 𝜇1 = 𝛼1𝜇̂1 + (1 − 𝛼1)𝑝, 𝜇2 = 𝛼2𝜇̂2 + (1 − 𝛼2)𝑝 for some
𝜇̂1, 𝜇̂2 ∈ co(𝐷−(𝑠)∩𝑀) and 𝛼1, 𝛼2 ∈ (0, 1). For any 𝜆 ∈ (0, 1), 𝜆𝜇1+(1−𝜆)𝜇2 = (𝜆𝛼1+(1−
𝜆)𝛼2)

(︁
𝜆𝛼1

𝜆𝛼1+(1−𝜆)𝛼2
𝜇̂1 +

(1−𝜆)𝛼2

𝜆𝛼1+(1−𝜆)𝛼2
𝜇̂2

)︁
+(𝜆(1−𝛼1)+(1−𝜆)(1−𝛼2))𝑝, where 𝜆𝛼1

𝜆𝛼1+(1−𝜆)𝛼2
𝜇̂1+

(1−𝜆)𝛼2

𝜆𝛼1+(1−𝜆)𝛼2
𝜇̂2 ∈ co(𝐷−(𝑠) ∩𝑀).9

Since 𝑆+ and 𝑆− are nonempty convex sets that does not intersect, Theorem 11.3 of
Rockafellar (1970) then implies there exists a hyperplane in R𝑛−1 separating 𝑆+ and 𝑆−

properly. That is, there exists 𝑔 ∈ R𝑛 such that ⟨𝑔, 𝜇⟩ ≥ 𝑐 ≥ ⟨𝑔, 𝜇′⟩ for all 𝜇 ∈ 𝑆−, 𝜇′ ∈ 𝑆+

for some 𝑐 ∈ R, and hyperplane {𝜇 ∈ R𝑛 : ⟨𝜇, 𝑔⟩ = 𝑐} does not contain both sets. Take
𝑔 = 𝑔 − c ∈ R𝑛,10 we have the desired hyperplane 𝐻 := {𝜇 ∈ R𝑛 : ⟨𝜇, 𝑔⟩ = 0} that separates
𝑆+ and 𝑆− properly.

Note that co(𝐷−(𝑠)∩𝑀) ⊆ 𝑆−, so 𝐷−(𝑠)∩𝑀 is contained in the same closed half-space
determined by 𝐻 as 𝑆−. This implies that (𝑉 (𝜇) − 𝑠)⟨𝑔, 𝜇⟩ ≤ 0 for all 𝜇 ∈ ∆(Ω) ∩ 𝑀

and 𝑉 ∈ V. For any 𝜏 ∈ 𝒯𝑀𝐷(𝑝) and 𝑉 ∈ V such that (𝜏, 𝑉 ) satisfies (TT), since 𝑀 is
orthogonal to 𝑠, 𝑉 (𝜇) = 𝑠 for all 𝜇 ∈ supp(𝜏) ∖𝑀 , and thereby

0 ≥
∫︁
Δ(Ω)

(𝑉 (𝜇)− 𝑠)⟨𝑔, 𝜇⟩ d𝜏(𝜇) =
(︂∫︁

Δ(Ω)

𝑉 (𝜇) d𝜏(𝜇)− 𝑠

)︂
⟨𝑔, 𝑝⟩, (93)

where the last equality is by (zeroCov) and (BP).
By construction 𝑝 ∈ 𝑆−, so ⟨𝑔, 𝑝⟩ ≥ 0. If ⟨𝑔, 𝑝⟩ > 0, (93) implies that

∫︀
𝑉 d𝜏 ≤ 𝑠 for any

𝜏 ∈ 𝒯𝑀𝐷(𝑝) and 𝑉 ∈ V such that (𝜏, 𝑉 ) satisfies (TT), so 𝒱𝑀𝐷(𝑝) ≤ 𝑠. If ⟨𝑔, 𝑝⟩ = 0, we
show that 𝐻 ∩ 𝑀 is an affine set of dimension dim𝑀 − 1 which is orthogonal to 𝑠. Note
that 𝐻 does not contain 𝑀 as it separates 𝑆+ and 𝑆− properly, and 𝐻 ∩𝑀 is non-empty
because it contains 𝑝. Therefore, 𝐻 ∩ 𝑀 is an affine set of dimension dim𝑀 − 1. Since
⟨𝑔, 𝑝⟩ = 0, (93) implies that for every 𝜏 ∈ 𝒯𝑀𝐷(𝑝) and 𝑉 ∈ V such that (𝜏, 𝑉 ) satisfies
(TT), 𝜏 must be supported on 𝜇 ∈ ∆(Ω) such that (𝑉 (𝜇) − 𝑠)⟨𝑔, 𝜇⟩ = 0. This means that
for every implementable (𝑉, 𝜏) under mediation and every 𝜇 ∈ supp(𝜏), either 𝑉 (𝜇) = 𝑠 or
⟨𝑔, 𝜇⟩ = 0. Therefore, for every 𝜇 ∈ supp(𝜏), if 𝑉 (𝜇) ̸= 𝑠, then 𝜇 must lie on the hyperplane

9When 𝜆𝛼1

𝜆𝛼1+(1−𝜆)𝛼2
𝜇̂1 +

(1−𝜆)𝛼2

𝜆𝛼1+(1−𝜆)𝛼2
𝜇̂2 = 𝑝, it follows that 𝜆𝜇1 + (1− 𝜆)𝜇2 = 𝑝 ∈ 𝑆−.

10Here, c = (𝑐, . . . , 𝑐) ∈ R𝑛.

170



𝐻. It follows that 𝐻 ∩𝑀 is orthogonal to 𝑠, which establishes the lemma.

Proof of Corollary 16. Since the full-dimensionality condition holds at 𝑝, Corollary 15
implies that 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝) if and only if cheap talk is improvable at 𝑝.

Suppose cheap talk is improvable at 𝑝, then there exists 𝜇 ∈ ∆(Ω) such that 𝑉 𝐶𝑇 (𝜆𝜇 +

(1 − 𝜆)𝑝) > 𝑉 𝐶𝑇 (𝑝) > 𝑉 𝐶𝑇 (𝜇) for some 𝜆 ∈ [0, 1). By assumption, 𝑉 (𝑝) < 𝑉 𝐶𝑇 (𝑝),
so 𝜆𝜇 + (1 − 𝜆)𝑝 ∈ co{𝑉 < 𝑉 𝐶𝑇 (𝑝)} = {𝑉 𝐶𝑇 < 𝑉 𝐶𝑇 (𝑝)} by Lemma 2.6. Therefore,
𝑉 𝐶𝑇 (𝜆𝜇+ (1− 𝜆)𝑝) > 𝑉 𝐶𝑇 (𝑝) > 𝑉 𝐶𝑇 (𝜆𝜇+ (1− 𝜆)𝑝).

Suppose there exists 𝜇 ∈ ∆(Ω) such that 𝑉 𝐶𝑇 (𝜇) > 𝑉 𝐶𝑇 (𝑝) > 𝑉 𝐶𝑇 (𝜇), then 𝜇 ∈ {𝑉 𝐶𝑇 >

𝑉 𝐶𝑇 (𝑝)} = co{𝑉 > 𝑉 𝐶𝑇 (𝑝)} by Lemma 2.6. Since 𝑉 is continuous, {𝑉 > 𝑉 𝐶𝑇 (𝑝)} is open
and so is its convex hull. Moreover, we have 𝜇 ̸= 𝑝 because 𝑉 𝐶𝑇 (𝜇) > 𝑉 𝐶𝑇 (𝑝). Therefore,
there exists 𝜆 ∈ (0, 1) such that 𝑉 𝐶𝑇 (𝜆𝜇+ (1− 𝜆)𝑝) > 𝑉 𝐶𝑇 (𝑝), so cheap talk is improvable
at 𝑝.

Proof of Corollary 17. Suppose that full disclosure is optimal for mediation, then it is
feasible under cheap talk and attains a value 𝑠 ∈ R as it is deterministic. Hence, full
disclosure is also optimal under cheap talk, and the full-dimension condition holds at 𝑝.
Corollary 15 then implies that 𝑠 is not improvable at 𝑝.

Suppose full disclosure is feasible under cheap talk and attains value 𝑠 that is not improv-
able at 𝑝. Then Theorem 3 implies that 𝒱𝑀𝐷(𝑝) = 𝑠, hence that full disclosure is optimal
for mediation.

B.1.6 Moment Mediation: Quasiconvex Utility

Proof of Theorem 4. By Proposition 1 of Lipnowski and Ravid (2020), when 𝑇 is multi-
dimensional and 𝑣 strictly quasiconvex, no disclosure is never optimal under cheap talk.
Suppose the full-dimensionality condition holds at 𝑝, by Corollary 14, 𝒱𝐵𝑃 (𝑝) = 𝒱𝑀𝐷(𝑝) if
and only if {𝑉 > 𝒱𝐶𝑇 (𝑝)} = ∅, which means cheap talk attains the global maximum value.
This leads to the dichotomy in the theorem statement, and we need to show max𝑉 > 𝒱𝐶𝑇 (𝑝)

implies max𝑉 > 𝒱𝐵𝑃 (𝑝) > 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝).
Note that if 𝒱𝐵𝑃 (𝑝) = max𝑉 , it must be the case that 𝑉 (𝜇) = max𝑉 for all 𝜇 in

the support of any optimal 𝜏 ∈ 𝒯𝐵𝑃 (𝑝), which implies 𝒱𝐵𝑃 (𝑝) = 𝒱𝐶𝑇 (𝑝), contradiction.
Hence, what remains to show is that 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝). By Corollary 16 and Lemma 2.6,
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𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝) if and only if co𝐷+∩co𝐷− = ∅, where 𝐷+ = {𝜇 ∈ ∆(Ω) : 𝑉 (𝜇) > 𝒱𝐶𝑇 (𝑝)}
and 𝐷− = {𝜇 ∈ ∆(Ω) : 𝑉 (𝜇) < 𝒱𝐶𝑇 (𝑝)}. We next show that under strict quasiconvexity
and max𝑉 > 𝒱𝐶𝑇 (𝑝), the intersection is always non-empty, hence 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝).

Let 𝐷̄+ = {𝑥 ∈ 𝑋 : 𝑣(𝑥) > 𝒱𝐶𝑇 (𝑝)} and 𝐷̄− = {𝑥 ∈ 𝑋 : 𝑣(𝑥) < 𝒱𝐶𝑇 (𝑝)}, both are open
by continuity of 𝑣. We first show that co 𝐷̄+ ∩ co 𝐷̄− ̸= ∅. Since max𝑉 > 𝒱𝐶𝑇 (𝑝), we have
𝐷̄+ ̸= ∅. Take any open ball in 𝐷̄+, there exist two points 𝑥1, 𝑥2 in this open ball such that
𝑥1, 𝑥2, and 𝑇 (𝑝) are not colinear. Note that by strict quasiconvexity, we have 𝑇 (𝑝) ∈ 𝐷̄−.
Moreover, there exists a unique 𝜆𝑖 ∈ (0, 1) such that 𝑣(𝜆𝑖𝑥𝑖 + (1 − 𝜆𝑖)𝑇 (𝑝)) = 𝒱𝐶𝑇 (𝑝)

for 𝑖 = 1, 2 since 𝑣 is continuous and strictly quasiconvex. Here, existence follows by the
intermediate value theorem, whereas strict quasiconvexity implies uniqueness. By strict
quasiconvexity, 1

2
(𝜆1𝑥1 + 𝜆2𝑥2) + (1− 1

2
(𝜆1 + 𝜆2))𝑇 (𝑝) ∈ 𝐷̄−. Since 𝐷̄− is open, there exists

𝜀 > 0 such that 1
2
((𝜆1 + 𝜀)𝑥1 + (𝜆2 + 𝜀)𝑥2) + (1 − 1

2
(𝜆1 + 𝜆2 + 2𝜀))𝑇 (𝑝) ∈ 𝐷̄−. Note that

𝑥′
𝑖 = (𝜆𝑖+ 𝜀)𝑥𝑖+(1−𝜆𝑖− 𝜀)𝑇 (𝑝) ∈ 𝐷̄+, and we have 1

2
𝑥′
1+

1
2
𝑥′
2 ∈ 𝐷̄−, so co 𝐷̄+∩ co 𝐷̄− ̸= ∅.

Finally, take any 𝜇𝑖 ∈ ∆(Ω) such that 𝑇 (𝜇𝑖) = 𝑥′
𝑖 for 𝑖 = 1, 2, we have 𝜇𝑖 ∈ 𝐷+. Since

𝑇 (1
2
𝜇1 +

1
2
𝜇2) =

1
2
𝑥′
1 +

1
2
𝑥′
2,

1
2
𝜇1 +

1
2
𝜇2 ∈ 𝐷−, the claim holds.

Proof of Proposition 19. Since 𝑣 is minimally edge non-monotone, there exists a state
𝑤 ∈ argmin𝜔∈Ω 𝑉 (𝛿𝜔) such that for any 𝜔 ∈ Ω ∖ {𝜔}, 𝑓𝜔(𝜆) := 𝑉 (𝜆𝛿𝜔 + (1− 𝜆)𝛿𝜔) is neither
weakly increasing nor weakly decreasing in 𝜆 ∈ [0, 1].

We show that 𝑓𝜔 is strictly quasiconvex on [0, 1]. Note that for any 𝜆 ̸= 𝜆′ ∈ [0, 1]

𝑓𝜔(𝛼𝜆+ (1− 𝛼)𝜆′) = 𝑣(𝛼𝑇 (𝜇) + (1− 𝛼)𝑇 (𝜇′))

≤ max{𝑣(𝑇 (𝜇)), 𝑣(𝑇 (𝜇′))} = max{𝑓𝜔(𝜆), 𝑓𝜔(𝜆′)},

where 𝜇 = 𝜆𝛿𝜔 + (1 − 𝜆)𝛿𝜔, 𝜇′ = 𝜆′𝛿𝜔 + (1 − 𝜆′)𝛿𝜔. The first equality is by definition
and linearity of 𝑇 , the inequality is by (strict) quasiconvexity of 𝑣, and the last equality
is by definition. Moreover, the inequality is strict if and only if 𝑇 (𝜇) ̸= 𝑇 (𝜇′). Suppose
𝑇 (𝜇) = 𝑇 (𝜇′), then by linearity of 𝑇 , 𝑇 (𝛿𝜔) = 𝑇 (𝛿𝜔), which means 𝑓𝜔 is a constant on [0, 1].
This contradicts with the assumption that 𝑓𝜔 is non-monotone, hence 𝑇 (𝜇) ̸= 𝑇 (𝜇′) and 𝑓𝜔

is strictly quasiconvex.

As 𝑓𝜔 is strictly quasiconvex and non-monotone, there must be a unique 𝜆𝜔 ∈ (0, 1] such
that 𝑓𝜔(𝜆𝜔) = 𝑓𝜔(0). Suppose 𝑓𝜔(𝜆) > 𝑓𝜔(0) for all 𝜆 > 0, then there exists 𝜆2 > 𝜆1 > 0

such that 𝑓𝜔(𝜆1) > 𝑓𝜔(𝜆2) > 𝑓𝜔(0) (otherwise 𝑓𝜔 is weakly increasing). But 𝜆1 ∈ (0, 𝜆2), so
𝑓𝜔(𝜆1) > 𝑓𝜔(𝜆2) > 𝑓𝜔(0) violates the strict quasiconvexity, contradiction. So there must be
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a 𝜆̂𝜔 ∈ (0, 1] such that 𝑓𝜔(𝜆̂𝜔) ≤ 𝑓𝜔(0). By continuity of 𝑣, there exists 𝜆𝜔 ∈ [𝜆̂𝜔, 1] such
that 𝑓𝜔(𝜆𝜔) = 𝑓𝜔(0). The uniqueness is by strict quasiconvexity.

The argument above holds for any 𝜔 ∈ Ω ∖ {𝜔}. Let 𝜇𝜔 := 𝜆𝜔𝛿𝜔 + (1 − 𝜆𝜔)𝛿𝜔, we have
𝑉 (𝜇𝜔) = 𝑉 (𝛿𝜔) for any 𝜔 ∈ Ω ∖ {𝜔}. Set ∆̃ := co{𝛿𝜔, {𝜇𝜔 : 𝜔 ∈ Ω ∖ {𝜔}}}. This is an
𝑛− 1–simplex as {𝛿𝜔, {𝜇𝜔 : 𝜔 ∈ Ω ∖ {𝜔}}} is affinely independent with 𝑛 points. Moreover,
for any 𝑝 ∈ ∆̃, there is 𝜏 ∈ 𝒯𝐶𝑇 (𝑝) that supports on {𝛿𝜔, {𝜇𝜔 : 𝜔 ∈ Ω ∖ {𝜔}}} that attains
𝑉 (𝛿𝜔). Since 𝑣(·) is strictly quasiconvex, the composition 𝑉 = 𝑣 ∘ 𝑇 is quasiconvex, hence
𝑉 (𝜇) ≤ 𝑉 (𝛿𝜔) for any 𝜇 ∈ ∆̃. This shows that {𝑉 > 𝑉 (𝛿𝜔)} is contained in the convex set
∆(Ω) ∖ ∆̃, by Lemma 2.6, 𝒱𝐶𝑇 (𝑝) ≤ 𝑉 (𝛿𝜔) for any 𝑝 ∈ ∆̃. Therefore, the full-dimensionality
condition holds for all priors 𝑝 ∈ ∆̃.

Moreover, if 𝑉 (𝛿𝜔) < max𝜇∈Δ(Ω) 𝑉 (𝜇), then for any 𝑝 ∈ ∆̃, 𝒱𝐶𝑇 (𝑝) < max𝑉 . As the
full-dimensionality condition holds, Theorem 4 shows that max𝑉 > 𝒱𝐵𝑃 (𝑝) > 𝒱𝑀𝐷(𝑝) >

𝒱𝐶𝑇 (𝑝) > 𝑉 (𝑝).

B.1.7 Moment-measurable Illustrations

In this appendix, we generalize the illustration in Section 2.7.1 and provide supporting
computations for the illustration in Section 2.7.1.

Salesman with Reputation Concerns

Here, we generalize our illustration in Section 2.7.1. A seller is trying to convince a buyer to
purchase a good with multiple features 𝜔 ∈ Ω ⊆ R𝑘

+ and assume that 0 ∈ Ω. The buyer is
uncertain about 𝜔, and their payoff from purchasing this good only depends on the posterior
mean on the quality of these features 𝑇 (𝜇) = E𝜇(𝜔) ∈ R𝑘. In particular, we assume that Ω

is a finite set such that 𝑇 is full-rank. In the main text, this assumption is implied by the
fact that Ω = {0, 1}𝑘 with 𝑘 > 1. In general, recall that 𝑋 = 𝑇 (∆(Ω)) and that in this case
𝑇 (Ω) = {𝑇 (𝛿𝜔) ∈ 𝑋 : 𝜔 ∈ Ω} = Ω.

The buyer’s payoff with posterior mean 𝑥 is 𝑅(𝑥) for some function 𝑅 : R𝑘 → R that is
continuously differentiable, convex, and strictly increasing with 𝑅(0) = 0.11 The buyer has
an outside option with value 𝜀 ∈ R with distribution 𝐺 that has a strictly positive density,
is strictly convex, and such that 𝑅(𝑋) ⊆ supp𝐺. Therefore, the buyer purchases the good
if and only if 𝑅(𝑥) ≥ 𝜀. For example, in Section 2.7.1 we considered 𝑅(𝑥) = ⟨𝑦, 𝑥⟩ for some
𝑦 ∈ R𝑘

++ with
∑︀𝑘

𝑖=1 𝑦𝑖 = 1 and a power distribution 𝐺 with full support on [0, 1].
The expected revenue for the seller when 𝑥 is the realized vector of conditional expecta-

tions is 𝐺(𝑅(𝑥)). The seller has also reputation concerns, that is, the overall seller’s expected

11Strictly increasing in the sense that 𝑅(𝑥) < 𝑅(𝑥′) for all 𝑥 < 𝑥′ componentwise.
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payoff with posterior mean 𝑥 is 𝑣(𝑥) = 𝐺(𝑅(𝑥))−⟨𝜌, 𝑥⟩, where 𝜌 ∈ R𝑘
++ measures the seller’s

reputation concern. Our key assumption on the seller’s payoff is

𝐺(𝑅(𝑥)) > ⟨𝜌, 𝑥⟩ > ⟨𝐺′(0)∇𝑅(0), 𝑥⟩ ∀𝑥 ∈ Ω ∖ {0} , (94)

where ∇𝑅(0) is the gradient of 𝑅 at 0. This implies that the seller’s payoff when the buyer
is sure that the state is 0 is strictly lower than any other degenerate buyer’s belief, that is,
𝐺(𝑅(𝑥))− ⟨𝜌, 𝑥⟩ > 0 for all 𝑥 ∈ Ω ∖ {0}. In general, this assumption captures the fact that
the reputation concerns of the seller are mild. In Section 2.7.1, assumption 94 was implied by
the fact that 𝐺(𝜀) = 𝜀𝑛 for some 𝑛 ≥ 2 and 𝑦𝑛𝑖 > 𝜌𝑖 for all 𝑖 ∈ {1, ..., 𝑘}. To see this, it suffices
to check ⟨𝑦, 𝑥⟩𝑛 > ⟨𝜌, 𝑥⟩ > 0 for all 𝑥 ∈ Ω ∖ {0}. Note that (

∑︀𝑘
𝑖=1 𝑦𝑖𝑥𝑖)

𝑛 ≥ ∑︀𝑛
𝑖=1 𝑦

𝑛
𝑖 𝑥

𝑛
𝑖 >∑︀𝑛

𝑖=1 𝜌𝑖𝑥
𝑛
𝑖 =

∑︀𝑛
𝑖=1 𝜌𝑖𝑥𝑖. The first inequality holds by the fact that 𝑦𝑖, 𝑥𝑖 ≥ 0, the second

inequality follows from assumption, and the last equality holds because 𝑥𝑖 ∈ {0, 1}.

By assumption, the composition 𝐺 ∘ 𝑅 is strictly convex, hence the seller’s payoff 𝑣 is
strictly convex. We show that the seller’s payoff 𝑣(𝑥) is minimally edge non-monotone given
𝑇 . Fix any 𝑥 ∈ Ω∖{0}. It suffices to check that 𝜑(𝛼) := 𝑣(𝛼𝑥) is non-monotone in 𝛼 ∈ [0, 1].
The derivative of 𝜑 is 𝜑′(𝛼) = 𝐺′(𝑅(𝛼𝑥))⟨∇𝑅(𝛼𝑥), 𝑥⟩ − ⟨𝜌, 𝑥⟩. By assumption 94, we have

𝜑′(0) = ⟨𝐺′(0)∇𝑅(0), 𝑥⟩ − ⟨𝜌, 𝑥⟩ < 0

and
𝜑(1) = 𝐺(𝑅(𝑥))− ⟨𝜌, 𝑥⟩ > 0 = 𝐺(𝑅(0))− ⟨𝜌,0⟩ = 𝜑(0).

Because 𝜑′ is continuous, it follows that 𝜑 is non-monotone.

By Proposition 19, there exists an (𝑛−1)-simplex ∆̃ ⊆ ∆(Ω) where the full-dimensionality
condition holds. This simplex can be explicitly constructed. For all 𝑥 ∈ Ω∖{0}, let 𝛼𝑥 ∈ (0, 1)

denote the unique solution of 𝑣(𝛼𝑥) = 0 and define 𝜇𝑥 = 𝛼𝑥𝛿𝑥. With this,

∆̃ := co{𝛿0, {𝜇𝑥 : 𝑥 ∈ Ω ∖ {0}}}

is the desired simplex. Proposition 19 also implies that the seller strictly benefits from hiring
a mediator when the prior is in ∆̃. Moreover, since the seller’s payoff at state 0 is strictly
lower than other states, the dichotomy in Theorem 4 implies that the seller attains an even
higher payoff under Bayesian persuasion than mediation at priors in ∆̃.

If the seller’s reputation concern becomes more relevant, that is 𝜌 increases in each entry,
then 𝛼𝜔 increases because 𝐺(𝛼𝑥⟨𝑦, 𝑥)⟩) = 𝛼𝑥⟨𝜌, 𝑥⟩ and 𝐺 is strictly increasing. Therefore,
the full-dimension region ∆̃ expands with the reputation concern.
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Financial Intermediation under Mean-Variance Preferences

In this example, the issuer’s payoff function is 𝑣(𝑥) = 𝑅(𝑥) = 𝛾𝑥2
1 + 𝑥1 − 𝛾𝑥2 for some

𝛾 > 0. This is convex but not strictly quasiconvex in 𝑥, so we cannot conclude as in Section
2.7.1 that no disclosure is always suboptimal under cheap talk. However, we can show this
explicitly for every 𝑝 ∈ ∆̃ as constructed in subsection 2.7.1. Let ℓ :=

∑︀𝑛−1
𝑗=1

𝑝(𝜔𝑗)

𝛼𝑗
and

𝜇̂𝑖 := 𝛼𝑖ℓ𝛿𝜔𝑖
+ (1− 𝛼𝑖ℓ)𝛿0 for all 𝑖 = 1, . . . , 𝑛− 1. Observe that 𝑝 =

∑︀𝑛−1
𝑖=1

𝑝(𝜔𝑖)
𝛼𝑖ℓ

𝜇̂𝑖, and since
𝑝 ∈ ∆̃, ℓ ≤ 1, as otherwise none of 𝜇̂𝑖 lies in the line segment [𝛿0, 𝜇𝑖], which implies that
𝑝 ∈ ∆(Ω) ∖ ∆̃, a contradiction. Hence, 𝜇̂𝑖 ∈ [𝛿0, 𝜇𝑖] for every 𝑖. By the convexity of 𝑣,
𝑉 = 𝑣 ∘ 𝑇 is also convex, so 𝑉 (𝑝) ≤ ∑︀ 𝑝(𝜔𝑖)

𝛼𝑖ℓ
𝑉 (𝜇̂𝑖). We have shown in the main text that

for every 𝑖 = 1, . . . , 𝑛 − 1, 𝑉 is strictly convex along the edge of the simplex connecting
𝛿0 and 𝛿𝜔𝑖

. Recall that 𝑉 (𝜇𝑖) = 𝑉 (𝛿0) = 0 for every 𝑖, which implies that 𝑉 (𝜇𝑖) < 0 by
strict convexity of 𝑉 along the segment [𝛿0, 𝜇𝑖], so 𝑉 (𝑝) < 0. This shows that there exists a
distribution of posteriors feasible under cheap talk that secures a payoff to the sender that
is strictly higher than that under no disclosure.

We now show that for any 𝑝 ∈ ∆̃, 𝒱𝐵𝑃 (𝑝) > 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝) > 𝑉 (𝑝). Since 𝒱𝐶𝑇 (𝑝) =

0 < 𝑉 (𝛿𝜔𝑛−1), cheap talk does not attain the global maximum value, which implies 𝒱𝐵𝑃 (𝑝) >

𝒱𝑀𝐷(𝑝) by Proposition 18. By Corollary 16 and Lemma 2.6, 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝) if and only if
co𝐷+ ∩ co𝐷− = ∅, where 𝐷+ = {𝜇 ∈ ∆(Ω) : 𝑉 (𝜇) > 0} and 𝐷− = {𝜇 ∈ ∆(Ω) : 𝑉 (𝜇) < 0}.

As in the proof of Theorem 4, we consider the upper and lower contour sets of 𝑣 at value
𝒱𝐶𝑇 (𝑝) = 0, that is, 𝐷̄+ = {𝑥 ∈ 𝑋 : 𝑥2

1 + 𝑥1/𝛾 > 𝑥2} and 𝐷̄− = {𝑥 ∈ 𝑋 : 𝑥2
1 + 𝑥1/𝛾 < 𝑥2},

both are open by continuity of 𝑣. Since max𝑉 > 𝒱𝐶𝑇 (𝑝), we have 𝐷̄+ ̸= ∅. Take any open
ball in 𝐷̄+, there exist two points 𝑥, 𝑥′ in this open ball such that 𝑥, 𝑥′ and 𝑇 (𝑝) are not
colinear. Since 𝑉 (𝑝) < 0, we have 𝑇 (𝑝) ∈ 𝐷̄−. Moreover, there exists a unique 𝜆 ∈ (0, 1)

such that 𝑣(𝜆𝑥 + (1 − 𝜆)𝑇 (𝑝)) = 0 since 𝑣 is continuous. Here, uniqueness comes from the
fact that any line can intersect the set {𝑥 ∈ 𝑋 : 𝑥2

1 + 𝑥1/𝛾 = 𝑥2} at most once. Similarly,
there exists a unique 𝜆′ ∈ (0, 1) such that 𝑣(𝜆′𝑥′ + (1− 𝜆′)𝑇 (𝑝)) = 0.

Note that {𝑥 ∈ 𝑋 : 𝑥2
1 + 𝑥1/𝛾 ≤ 𝑥2} is strictly convex, so 1

2
(𝜆𝑥 + 𝜆′𝑥′) + (1 − 1

2
(𝜆 +

𝜆′))𝑇 (𝑝) ∈ 𝐷̄−. Since 𝐷̄− is open, there exists 𝜀 > 0 such that 1
2
((𝜆 + 𝜀)𝑥 + (𝜆′ + 𝜀)𝑥′) +

(1 − 1
2
(𝜆 + 𝜆′ + 2𝜀))𝑇 (𝑝) ∈ 𝐷̄−. Note that 𝑥̂ = (𝜆 + 𝜀)𝑥 + (1 − 𝜆 − 𝜀)𝑇 (𝑝) ∈ 𝐷̄+ and

𝑥̂′ = (𝜆′ + 𝜀)𝑥′ + (1− 𝜆′ − 𝜀)𝑇 (𝑝) ∈ 𝐷̄+, and we have 1
2
𝑥̂+ 1

2
𝑥̂′ ∈ 𝐷̄−, so co 𝐷̄+ ∩ co 𝐷̄− ̸= ∅.

Finally, take any 𝜇, 𝜇′ ∈ ∆(Ω) such that 𝑇 (𝜇) = 𝑥̂ and 𝑇 (𝜇′) = 𝑥̂′, we have 𝜇, 𝜇′ ∈ 𝐷+

and 1
2
𝜇+ 1

2
𝜇′ ∈ 𝐷−, so co𝐷+ ∩ co𝐷− ̸= ∅ and 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝).

B.2 Non-existence of Dual Solution
In this section, we present a binary-state example where the dual problem of optimal medi-
ation does not have a solution.
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Assume that V = 𝑉 is singleton-valued. The dual problem of mediation is to find two
Lagrange multipliers 𝑓, 𝑔 ∈ R𝑛 that solve the following minimization problem:

inf
𝑓,𝑔∈R𝑛

⟨𝑓, 𝑝⟩

subject to:

⟨𝑓, 𝜇⟩ ≥ (1 + ⟨𝑔, 𝜇− 𝑝⟩)𝑉 (𝜇) ∀𝜇 ∈ ∆(Ω),

(D)

where ⟨·, ·⟩ stands for the standard inner product on R𝑛 and we treat 𝜇 ∈ ∆(Ω) as vectors
in the simplex ∆𝑛−1.

We now exhibit a binary-state example where the minimum in (D) is not attained. Sup-
pose the sender has preference 𝑉 (𝜇) = 4𝜇(𝜇− 1/2)+1/4. When the common prior 𝑝 = 1/2,
the corresponding dual problem of mediation does not have a solution. To see this, note that
the dual problem can be written as

inf
𝑓0,𝑓1,𝑔∈R

1
2
𝑓1 + 𝑓0

subject to: 𝑓1𝜇+ 𝑓0 ≥ (1 + 𝑔(𝜇− 1
2
))(1

4
+ 4𝜇(𝜇− 1

2
)).

Let 𝑉 𝑔(𝜇) := (1+ 𝑔(𝜇− 1
2
))(1

4
+4𝜇(𝜇− 1

2
)). Note that when 𝑔 < 0, the lowest line above 𝑉 𝑔

is a tangent line of 𝑉 𝑔 at 𝜇* = 1
2
− 1

2𝑔
that passes through (0, 𝑉 𝑔(0)). That is, 𝑓1 = 𝑔

4
− 1

𝑔

and 𝑓0 =
1
4
(1− 𝑔

2
) = 𝑉 𝑔(0). Then the value 𝑓1/2+𝑓0 =

1
4
− 1

2𝑔
↓ 1

4
as 𝑔 → −∞. Also observe

that 𝑔 ≥ 0 is never an optimal solution of the dual, since (𝑉 𝑔(0) + 𝑉 𝑔(1))/2 = 5
4
+ 𝑔

2
> 5

4
.

Therefore, the infimum value of this dual problem cannot attained by any 𝑓1, 𝑓0, 𝑔 ∈ R.

B.3 Mean-measurable Mediation

B.3.1 Implementation

In this subsection, we consider a special case of the setting of Section 2.7 where the moment
function leads to the receiver’s posterior mean. We focus on Euclidean state spaces Ω ⊆ R𝑘

for some 𝑘 ≥ 1 and moment function 𝑇 (𝜇) = E𝜇(𝜔). Let 𝑋 := 𝑇 (∆(Ω)) ⊆ R𝑘 be the set
of all possible posterior means. Assume the sender’s payoff only depends on the receiver’s
posterior mean, i.e., 𝑉 (𝜇) = 𝑣(𝑇 (𝜇)) for some continuous 𝑣 : R𝑘 → R.

Differently from Section 2.7, here we do not focus on distributions over posteriors 𝜏 ∈
∆(∆(Ω)), but rather on the induced distributions of posterior means 𝑞 ∈ ∆(𝑋). We say
𝑞 ∈ ∆(𝑋) is implementable under mediation if there exists 𝜏 ∈ 𝒯𝑀𝐷(𝑝) that induces 𝑞.

In this setting, we can adapt Theorem 1 as follows. For any 𝑞 ∈ ∆(𝑋) and 𝑣 : 𝑋 → R,
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define the corresponding distorted distribution 𝑞𝑣 ∈ ∆(𝑋) by

d𝑞𝑣

d𝑞
(𝑥) =

𝑣(𝑥)∫︀
𝑣(𝑧) d𝑞(𝑧)

.

Let 𝑉 (𝜇) = 𝑣(𝑇 (𝜇)). The following are equivalent:

(i) 𝑞 ∈ ∆(𝑋) is implementable under mediation;

(ii) There exists a dilation12 D : 𝑋 → ∆(𝑋) such that D𝑞 = D𝑞𝑣 = 𝑝;

(iii) There exists 𝜋 ∈ ∆(Ω × 𝑋) such that margΩ 𝜋 = 𝑝, marg𝑋 𝜋 = 𝑞, E𝜋[𝜔|𝑥] = 𝑥 for
𝜋-almost all 𝑥, and Cov𝜋 (𝑣, 𝑔) = 0 for all 𝑔 ∈ RΩ.

Note that when there is no truth-telling constraint, by Strassen’s Theorem,13 condition
(ii) reduces to the Bayes-plausibility condition in the linear persuasion literature, which is
𝑞 ⪯𝑐𝑣𝑥 𝑝. With the truth-telling constraint, Strassen’s Theorem implies both 𝑞 and 𝑞𝑣 are
mean-preserving contractions of 𝑝.

Proof. We first show that (i) and (ii) are equivalent. Suppose 𝑞 ∈ ∆(𝑋) is implementable
under mediation, then there exists 𝜏 ∈ 𝒯𝑀𝐷(𝑝) that induces 𝑞, that is, 𝑞 is the pushforward
measure of 𝜏 under map 𝑇 . We construct a dilation D : 𝑋 → ∆(𝑋) by D𝑥 = E𝜏 [𝜇|𝑇 (𝜇) = 𝑥].
By construction we have 𝑥 =

∫︀
𝑦 dD𝑥(𝑦) for all 𝑥 and

∫︀
D𝑥 d𝑞(𝑥) =

∫︀
𝜇 d𝜏(𝜇) = 𝑝. Note

that
∫︀
D𝑥𝑣(𝑥) d𝑞(𝑥) =

∫︀
𝑉 (𝜇)𝜇 d𝜏 = 𝑝

∫︀
𝑉 d𝜏 = 𝑝

∫︀
𝑣 d𝑞, where the first and third equalities

are obtained by iterated expectation and 𝑉 (𝜇) = 𝑣(𝑇 (𝜇)), and the second by truth-telling.
Hence, the dilation constructed satisfies D𝑞 = D𝑞𝑣 = 𝑝.

Conversely, suppose there exists a dilation D such that D𝑞 = D𝑞𝑣 = 𝑝. Then let
𝜏 ∈ ∆(∆(Ω)) be the pushforward measure of 𝑞 under dilation D, that is, 𝜏(𝑅) = 𝑞(D−1(𝑅))

for all measurable 𝑅 ⊆ ∆(Ω). By change of variable, we obtain
∫︀
𝜇 d𝜏 =

∫︀
D𝑥 d𝑞 = 𝑝 and∫︁

𝑉 (𝜇)𝜇 d𝜏 =

∫︁
𝑣(𝑥)D𝑥 d𝑞(𝑥)

= 𝑝 ·
∫︁

𝑣(𝑥) d𝑞(𝑥) = 𝑝

∫︁
𝑉 (𝜇) d𝜏(𝜇)

12A map D : 𝑋 → Δ(𝑋) is called a dilation if 𝑥 =
∫︀
𝑦 dD𝑥(𝑦) for all 𝑥, and the map 𝑥 ↦→ D𝑥(𝑓) is

measurable for all 𝑓 ∈ 𝐶(𝑋). The product D𝑞 is defined as by D𝑞(𝑆) =
∫︀
D𝑥(𝑆) d𝑞(𝑥) for all measurable

𝑆 ⊆ 𝑋.
13Let 𝑋 be a compact convex metrizable space and 𝑝, 𝑞 are Borel probability measures on 𝑋. Strassen’s

Theorem states that 𝑞 ⪯𝑐𝑣𝑥 𝑝 if and only if there exists a dilation D such that 𝑝 = D𝑞, see Strassen (1965);
Aliprantis and Border (2006b). This result has been widely applied in the linear persuasion literature, see
Gentzkow and Kamenica (2016); Kolotilin (2018b); Dworczak and Martini (2019).
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where the first and third equalities follow by a change of variable, and the second one follows
by D𝑞𝑣 = 𝑝. Overall, this simple that 𝜏 ∈ 𝒯𝑀𝐷(𝑝).

The equivalence between (ii) and (iii) is straightforward. Note that given a dilation D

that satisfies (ii), we may construct 𝜋 ∈ ∆(Ω×𝑋) by 𝜋(·|𝑥) = D𝑥 with marg𝑋 𝜋 = 𝑞. The
definition of dilation and D𝑞 = 𝑝 ensures E𝜋[𝜔|𝑥] = 𝑥 and margΩ 𝜋 = 𝑝. For any 𝑔 ∈ RΩ,∫︀
Ω×𝑋

𝑣(𝑥)𝑔(𝜔) d𝜋 =
∫︀
𝑋
𝑣(𝑥)

(︀∫︀
Ω
𝑔(𝜔) dD𝑥(𝜔)

)︀
d𝑞(𝑥) = (

∫︀
𝑔 d𝑝)(

∫︀
𝑣(𝑥) d𝑞), where the first

equality is by iterated expectation and the second is by D𝑞𝑣 = 𝑝. For the converse, a similar
argument shows that we can construct a dilation D that satisfies (ii) by D𝑥 = 𝜋(·|𝑥) given
any 𝜋 that satisfies (iii).

B.3.2 One-dimensional Mean

In this subsection, we consider another special case of the setting of the previous subsection:
the one where the mean function is one-dimensional. Formally, assume that Ω ⊂ R and that
𝑇 (𝜇) = E𝜇[𝜔]. That is, the state is one-dimensional, and the sender’s value function depends
on the receiver’s conditional expectation only: 𝑉 (𝜇) = 𝑣(E𝜇[𝜔]). This is the most studied
case in the Bayesian persuasion literature.

Let 𝑣 denote the quasiconcave envelope of 𝑣. Observe that, in general, the quasiconcave
envelope of 𝑣 evaluated at the prior mean can be strictly larger than the actual optimal
cheap talk value, that is, we can have 𝑣(𝑇 (𝑝)) > 𝒱𝐶𝑇 (𝑝). However, 𝑣(𝑥) is still helpful in
studying the value comparison between cheap talk and mediation.

The binary state case is a special case of a one-dimensional mean, and we show that
many intuitions from Proposition 16 extend. Unlike the binary case, the full-dimensionality
condition may not hold even if no disclosure is suboptimal under cheap talk. In the next
proposition, we provide a sufficient condition on the prior 𝑝 such that a mono-crossing
condition in 𝑣(𝑥) characterizes the comparison between mediation and cheap talk.

Suppose 𝑉 (𝜇) = 𝑣(𝑇 (𝜇)) for some continuous 𝑣 on R.

(1) If 𝑣(𝑇 (𝑝)) = 𝑣(𝑇 (𝑝)), then no disclosure is optimal under cheap talk. In this case,
𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝) if and only if no disclosure is optimal for mediation.

(2) If 𝑣(𝑇 (𝑝)) < 𝑣(𝑇 (𝑝)) and 𝑝 ∈ int co{𝜇 : 𝑣(𝑇 (𝜇)) = 𝑣(𝑇 (𝑝))}, then 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝) if
and only if 𝑣(𝑥)− 𝑣(𝑇 (𝑝)) is mono-crossing.

The first statement says that 𝑣 is equal to its quasiconcave envelope at 𝑥𝑝 := 𝑇 (𝑝), then
the only way that mediation is not strictly valuable is when no disclosure is optimal. When
there is a wedge at 𝑥𝑝 between 𝑣 and its quasiconcave envelope and the full-dimensionality
condition holds, then, similarly to the binary-state case, mediation is worthless if and only if
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the sender’s shifted utility function is mono-crossing. Here, full dimensionality is implied by
the condition 𝑝 ∈ int co{𝜇 : 𝑣(𝑇 (𝜇)) = 𝑣(𝑇 (𝑝))}, which also implies that 𝒱𝐶𝑇 (𝑝) = 𝑣(𝑇 (𝑝)).

Before proving Proposition B.3.2, we introduce the relaxed mediation problem and state
and prove a useful lemma. First, observe that point (iii) of Proposition B.3.1 implies that if
𝑞 ∈ ∆(𝑋) is implementable under mediation then∫︁

𝑋

𝑣(𝑥)(𝑥− 𝑇 (𝑝)) d𝑞(𝑥) =

∫︁
𝑋

𝑣(𝑥)𝑥 d𝑞(𝑥)−
(︂∫︁

𝑋

𝑣(𝑥) d𝑞(𝑥)

)︂(︂∫︁
𝑋

𝑥 d𝑞(𝑥)

)︂
= Cov𝜋𝑞(𝑣, 𝑇 ) = 0

where 𝜋𝑞 is the implementable joint distribution over Ω × 𝑋 whose marginal is 𝑞. Second,
we use this observation to define the relaxed mediation problem as:

sup
𝑞∈Δ(𝑋)

∫︁
𝑋

𝑣(𝑥) d𝑞(𝑥) (95)

subject to:
∫︁
𝑋

𝑥 d𝑞(𝑥) = 𝑇 (𝑝) (96)∫︁
𝑋

𝑣(𝑥)(𝑥− 𝑇 (𝑝)) d𝑞(𝑥) = 0. (97)

The first constraint relaxes (BP) by only requiring consistency with the prior mean as op-
posed to the entire prior distributions. The second constraint relaxes (zeroCov) as explained
above.

Similarly, we can relax the cheap talk problem analyzed in the main text by replacing the
zero-variance condition Var𝜏 (𝑉 ) = 0 with a weaker zero-variance condition involving only
the distribution of conditional expectations: Var𝑞(𝑣) = 0. Therefore, the relaxed cheap talk
problem is defined as in (95) by replacing the second constraint with the latter zero-variance
condition.

Lemma 15. The following statements are true:

(1) 𝒱𝐶𝑇 (𝑝) ≤ 𝑣(𝑇 (𝑝)).

(2) If 𝑝 ∈ int co{𝜇 : 𝑣(𝑇 (𝜇)) = 𝑣(𝑇 (𝑝))}, then 𝒱𝐶𝑇 (𝑝) = 𝑣(𝑇 (𝑝)) and the full-dimensionality
condition holds at 𝑝.

Proof. (1): Note that 𝑣(𝑇 (𝑝)) is the value of the relaxed cheap talk problem. For any
𝜏 ∈ 𝒯𝐶𝑇 (𝑝), the induced distribution over posterior mean 𝑞𝜏 ∈ ∆(𝑋) defined by pushforward
𝑇 is feasible in the relaxed cheap talk problem. As

∫︀
Δ(Ω)

𝑉 (𝜇) d𝜏(𝜇) =
∫︀
𝑋
𝑣(𝑥) d𝑞𝜏 , we have

𝒱𝐶𝑇 (𝑝) ≤ 𝑣(𝑇 (𝑝)).
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(2): Suppose 𝑝 ∈ int co{𝜇 : 𝑣(𝑇 (𝜇)) = 𝑣(𝑇 (𝑝))}, then there exists an open neighborhood
𝑁 of 𝑝 such that 𝑣(𝑇 (𝑝)) can be attained under cheap talk under any prior 𝑝′ ∈ 𝑁 . By (i),
𝒱𝐶𝑇 (𝑝) = 𝑣(𝑇 (𝑝)). By Lemma 2.5, the full-dimensionality condition holds at 𝑝.

Proof of Proposition B.3.2. (1) is clear by (1) of Lemma 15.
For (2), as 𝑝 ∈ int co{𝜇 : 𝑣(𝑇 (𝜇)) = 𝑣(𝑇 (𝑝))}, (2) of Lemma 15 implies 𝒱𝐶𝑇 (𝑝) = 𝑣(𝑇 (𝑝))

and the full-dimensionality condition holds at 𝑝. So 𝑣(𝑇 (𝑝)) < 𝑣(𝑇 (𝑝)) implies that no
disclosure is suboptimal under cheap talk. By Corollary 16, 𝒱𝑀𝐷(𝑝) = 𝒱𝐶𝑇 (𝑝) if and only if
{𝑉 𝐶𝑇 > 𝑣(𝑇 (𝑝))} ∩ {𝑉 𝐶𝑇 > 𝑣(𝑇 (𝑝))} = ∅, which is equivalent to

co{𝜇 ∈ ∆(Ω) : 𝑉 (𝜇) > 𝑣(𝑇 (𝑝))} ∩ co{𝜇 ∈ ∆(Ω) : 𝑉 (𝜇) < 𝑣(𝑇 (𝑝))} = ∅ (98)

by Lemma 2.6.
Using a similar argument as in the proof of Proposition 16, we can show that 𝑣(𝑥) −

𝑣(𝑇 (𝑝)) is mono-crossing if and only if co{𝑥 ∈ 𝑋 : 𝑣(𝑥) > 𝑣(𝑇 (𝑝))} ∩ co{𝑥 ∈ 𝑋 : 𝑣(𝑥) <

𝑣(𝑇 (𝑝))} = ∅. We now show this condition is equivalent to (98). For simplicity, let 𝐷̄+(𝐷̄−)

denote {𝑥 ∈ 𝑋 : 𝑣(𝑥) > (<)𝑣(𝑇 (𝑝))} and 𝐷+(𝐷−) denote {𝜇 ∈ ∆(Ω) : 𝑉 (𝜇) > (<)𝑣(𝑇 (𝑝))}.
By continuity of 𝑣, co 𝐷̄+ and co 𝐷̄− are open convex subsets of 𝑋 ⊆ R, which are either

empty or open intervals. If any of co 𝐷̄+ and co 𝐷̄− is empty, then the claim holds trivially,
so we focus on the case when both convex hulls are non-empty.

Suppose co 𝐷̄+ ∩ co 𝐷̄− = ∅, then there exists 𝑥̂ ∈ 𝑋 that separates co 𝐷̄+ and co 𝐷̄−.
Without loss, assume sup co 𝐷̄− ≤ 𝑥̂ ≤ inf co 𝐷̄+, and by openness 𝐷̄− ⊆ {𝑥 < 𝑥̂}, 𝐷̄+ ⊆
{𝑥 > 𝑥̂}. Then for any 𝜇 ∈ 𝐷−, 𝑉 (𝜇) = 𝑣(𝑇 (𝜇)) < 𝑣(𝑇 (𝑝)), hence we have 𝑇 (𝜇) < 𝑥̂.
Similarly, any 𝜇 ∈ 𝐷+ is contained in the positive half-space determined by {𝜇 ∈ ∆(Ω) :

𝑇 (𝜇) = 𝑥̂}. Therefore, co𝐷+ and co𝐷− are strictly separated by the hyperplane {𝜇 ∈
∆(Ω) : 𝑇 (𝜇) = 𝑥̂} and has no intersection.

Suppose co 𝐷̄+ ∩ co 𝐷̄− ̸= ∅. Then either co 𝐷̄+ ∩ 𝐷̄− ̸= ∅ or 𝐷̄+ ∩ co 𝐷̄− ̸= ∅.14 Without
loss, suppose the former is true. Then there exists 𝑥̂ ∈ 𝐷̄− and {𝑥𝑖}𝑘𝑖=1 ⊆ 𝐷̄+ such that
𝑥̂ =

∑︀
𝛼𝑖𝑥𝑖 for some 𝛼𝑖 ∈ (0, 1),

∑︀
𝑖 𝛼𝑖 = 1. Since 𝑋 = 𝑇 (∆(Ω)), there exists 𝜇𝑖 ∈ ∆(Ω)

such that 𝑇 (𝜇𝑖) = 𝑥𝑖 for all 𝑖 = 1, . . . , 𝑘, hence 𝜇𝑖 ∈ 𝐷+. Note that
∑︀

𝑖 𝛼𝑖𝜇𝑖 ∈ ∆(Ω) and
𝑇 (
∑︀

𝑖 𝛼𝑖𝜇𝑖) = 𝑇 (𝑥̂), which means
∑︀

𝑖 𝛼𝑖𝜇𝑖 ∈ 𝐷−. Therefore, co𝐷+ ∩ co𝐷− ̸= ∅.

14If there exists {𝑥𝑖}𝑘𝑖=1 ⊆ 𝐷̄+ and {𝑦𝑗}𝑚𝑗=1 ⊆ 𝐷̄− with
∑︀

𝛼𝑖𝑥𝑖 =
∑︀

𝛽𝑗𝑦𝑗 for some 𝛼𝑖, 𝛽𝑗 ∈ (0, 1) and∑︀
𝑖 𝛼𝑖 =

∑︀
𝑗 𝛽𝑗 = 1. Without loss, assume the points are ordered by indices. Suppose 𝑦𝑗 /∈ co{𝑥𝑖}𝑘𝑖=1 =

[𝑥1, 𝑥𝑘] for all 𝑗 = 1, . . . ,𝑚. Then there must be some 𝑦𝑗1 < 𝑥1 and 𝑦𝑗2 > 𝑥𝑘, which means [𝑥1, 𝑥𝑘] is
contained in co{𝑦𝑗}𝑚𝑗=1. It follows that co 𝐷̄− ∩ 𝐷̄+ ̸= ∅.
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Next, we derive a sufficient condition on 𝑣(𝑥) such that there exists a non-trivial set of
priors 𝑝 ∈ ∆(Ω) where the full-dimensionality assumption in Proposition B.3.2 is satisfied.

If there exists 𝑥̂ ∈ 𝑋 such that 𝑣(𝑥̂) > 𝑣(𝑥̂) and 𝑣(𝑥)− 𝑣(𝑥̂) is not mono-crossing on 𝑋,
then the set

∆(𝑥̂) := {𝜇 ∈ ∆(Ω) : 𝑇 (𝜇) = 𝑥̂} ∩ int co{𝜇 ∈ ∆(Ω) : 𝑣(𝑇 (𝜇)) = 𝑣(𝑥̂)}

is nonempty and, for all 𝑝 ∈ ∆(𝑥̂), we have 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝).

Proof. We first show ∆(𝑥̂) = {𝜇 ∈ ∆(Ω) : 𝑇 (𝜇) = 𝑥̂}∩int co{𝜇 ∈ ∆(Ω) : 𝑣(𝑇 (𝜇)) = 𝑣(𝑥̂)} ≠

∅. Note that 𝑋 is a closed interval in R. Let 𝑥 = min𝑋 = 𝑇 (𝛿𝜔), 𝑥̄ = max𝑋 = 𝑇 (𝛿𝜔̄) for
some 𝜔, 𝜔̄ ∈ Ω. Since 𝑣(𝑥̂) > 𝑣(𝑥̂), there exists 𝑥1 < 𝑥̂ < 𝑥2 in 𝑋 such that 𝑣(𝑥1) = 𝑣(𝑥2) =

𝑣(𝑥̂). Moreover, since 𝑣(𝑥) − 𝑣(𝑥̂) is not mono-crossing, there exists 𝑥′ ̸= 𝑥̂ ∈ 𝑋 such that
𝑣(𝑥′) > 𝑣(𝑥̂). By continuity, there exists 𝑥 in int co{𝑥̂, 𝑥′} with 𝑣(𝑥) = 𝑣(𝑥̂). So it is without
loss to assume at least one of 𝑥1, 𝑥2 is in the interior of 𝑋.

If 𝑥1 > 𝑥, then the hyperplane 𝐻1 := {𝜇̃ ∈ R𝑛 : 𝑇 (𝜇̃) = 𝑥1} either intersects the interior
of ∆(Ω) or contains the line segment co{𝛿𝜔, 𝛿𝜔̄}. To see this, observe that 𝐻1 contains a
point in the relative interior of co{𝛿𝜔, 𝛿𝜔̄} by linearity of 𝑇 and 𝑥1 > 𝑥. With this, there
are two cases. If 𝐻1 contains co{𝛿𝜔, 𝛿𝜔̄} then the claim at the beginning of this paragraph
trivially follows. If instead 𝐻1 does not contain the line segment co{𝛿𝜔, 𝛿𝜔̄}, Theorem 3.44 of
Soltan (2019) implies that 𝐻1 cuts co{𝛿𝜔, 𝛿𝜔̄}, that is, the line segment co{𝛿𝜔, 𝛿𝜔̄} intersects
both open halfspaces of R𝑛 determined by 𝐻1, proving the claim also in this case.

Next, observe that it is not possible for 𝐻1 to contain co{𝛿𝜔, 𝛿𝜔̄} as it implies 𝑋 = {𝑥1} is
a singleton, yielding a contradiction. So 𝐻1 intersects the interior of ∆(Ω) and 𝐻1∩∆(Ω) =

{𝜇 ∈ ∆(Ω) : 𝑇 (𝜇) = 𝑥1} has dimension 𝑛 − 2 by Corollary 3.45 of Soltan (2019). Hence,
there exist 𝑛− 2 affinely independent points 𝜇1, . . . , 𝜇𝑛−2 in {𝜇 ∈ ∆(Ω) : 𝑇 (𝜇) = 𝑥1}, paired
with any point 𝜇0 ∈ {𝜇 ∈ ∆(Ω) : 𝑇 (𝜇) = 𝑥2}, we have an 𝑛−1–dimensional simplex that has
non-empty intersection with {𝜇 ∈ ∆(Ω) : 𝑇 (𝜇) = 𝑥̂}. As 𝑥1 < 𝑥̂ < 𝑥2, a similar argument
shows that {𝜇 ∈ ∆(Ω) : 𝑇 (𝜇) = 𝑥̂} intersects the interior of this 𝑛− 1–dimensional simplex,
hence ∆(𝑥̂) ̸= ∅. Similarly, if 𝑥2 < 𝑥̄, we also have ∆(𝑥̂) ̸= ∅. Proposition B.3.2 then implies
that for any prior 𝑝 ∈ ∆(𝑥̂), 𝒱𝑀𝐷(𝑝) > 𝒱𝐶𝑇 (𝑝).

Similar to Proposition 17, we can derive simple sufficient conditions such that no disclo-
sure is the only implementable outcome under both cheap talk and mediation.

181



Corollary 19. Suppose 𝑉 (𝜇) = 𝑣(𝑇 (𝜇)) for some continuous 𝑣 on R. If 𝑣(𝑥) − 𝑣(𝑇 (𝑝)) is
single-crossing at 𝑥 = 𝑇 (𝑝), then 𝒯𝑀𝐷(𝑝) = 𝒯𝐶𝑇 (𝑝) and all cheap talk equilibria are optimal.
Hence, no disclosure is optimal for mediation.

In particular, for any monotone 𝑣, 𝑣(𝑥) − 𝑣(𝑇 (𝑝)) is single-crossing at 𝑇 (𝑝). So non-
monotonicity on 𝑣 is necessary for mediation to outperform cheap talk strictly.

Proof. Since 𝑣(𝑥) − 𝑣(𝑇 (𝑝)) is single-crossing at 𝑇 (𝑝), 𝑣(𝑇 (𝑝)) = 𝑣(𝑇 (𝑝)) and [𝑣(𝑥) −
𝑣(𝑇 (𝑝))](𝑥−𝑇 (𝑝)) is non-negative/non-positive for any 𝑥 ∈ 𝑋. Therefore, the shifted truth-
telling constraint

∫︀
[𝑣(𝑥) − 𝑣(𝑇 (𝑝))](𝑥 − 𝑇 (𝑝)) d𝑞(𝑥) = 0 for the relaxed mediation problem

in (95) implies that 𝑣(𝑥) = 𝑣(𝑇 (𝑝)) for any 𝑥 ∈ supp(𝑞) and any feasible 𝑞 ∈ ∆(𝑋) under
the relaxed mediation problem. Note that for any implementable 𝜏 ∈ 𝒯𝑀𝐷(𝑝) in the media-
tion problem, the push forward 𝑞𝜏 is feasible in the relaxed mediation problem in 95, which
means 𝑉 (𝜇) = 𝑣(𝑇 (𝑝)) for any 𝜇 ∈ supp(𝜏), hence 𝜏 ∈ 𝒯𝐶𝑇 (𝑝). As no disclosure is opti-
mal under cheap talk and 𝒯𝑀𝐷(𝑝) = 𝒯𝐶𝑇 (𝑝), no disclosure is also optimal under mediation.

B.4 Additional Examples
In this appendix, we collect some additional examples mentioned in the main text.

B.4.1 Mediation’s Trilemma

Recall the mediation trilemma that the following three properties cannot hold at the same
time: (1) Information is public; (2) The payoff of the sender is state-independent; (3) Me-
diation is fully interim efficient and strictly better than cheap talk. In this subsection, we
provide examples where (3) holds when we relax one of (1) and (2).

An example without transparent motives where (1) and (3) holds: Consider a
binary state space Ω = {0, 1} and the prior on 𝜔 = 1 is 𝑝 = 1/2. The sender’s indirect utility
is state-dependent and singleton-valued 𝑉 (𝜇, 𝜔) = 𝐺(𝜇)− 𝜔

𝜇
, where

𝐺(𝜇) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4𝜇 if 𝜇 ∈ [0, 1/4)

−2𝜇+ 3/2 if 𝜇 ∈ [1/4, 1/2)

2𝜇− 1/2 if 𝜇 ∈ [1/2, 3/4)

−4𝜇+ 4 if 𝜇 ∈ [3/4, 1]

We show that 𝜏 = 1
2
𝛿1/4 +

1
2
𝛿3/4 is feasible under mediation and is fully interim efficient

for 𝑝, and cheap talk is strictly worse than mediation.
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By definition (36), 𝜏 is fully interim efficient with respect to 𝑝 if it solves

max
𝜏∈𝒯𝐵𝑃 (𝑝)

𝑝

∫︁ 1

0

𝑉 (𝜇, 1) d𝜏 1(𝜇) + (1− 𝑝)

∫︁ 1

0

𝑉 (𝜇, 1) d𝜏 0(𝜇).

Bayes-plausibility implies that the objective function becomes
∫︀ 1

0
𝐺(𝜇) d𝜏 −1, hence 𝜏 is the

unique solution of this maximization problem because it is supported on the global maximum
of 𝐺.

Note that
∫︀ 1

0
1
𝜇
d𝜏 0(𝜇) = 1

2
41−1/4
1−1/2

+1
2
4
3
1−3/4
1−1/2

= 10/3 > 2 =
∫︀ 1

0
1
𝜇
d𝜏 1(𝜇) and

∫︀ 1

0
𝐺(𝜇) d𝜏 0(𝜇) =∫︀ 1

0
𝐺(𝜇) d𝜏 1(𝜇) = 1. The truth-telling constraints for mediation

∫︀
𝑉 (𝜇, 0) d𝜏 0(𝜇) ≥

∫︀
𝑉 (𝜇, 0) d𝜏 1(𝜇)

and
∫︀
𝑉 (𝜇, 1) d𝜏 1(𝜇) ≥

∫︀
𝑉 (𝜇, 1) d𝜏 0(𝜇) are satisfied. So 𝜏 is implementable under me-

diation. However, cheap talk with state-dependent utility requires 𝑉 (𝜇, 𝜔) = 𝑉 (𝜇′, 𝜔)

for all 𝜔 ∈ {0, 1} and 𝜇, 𝜇′ ∈ supp(𝜏𝜔). So 𝜏 is not feasible under cheap talk because
𝑉 (1/4, 1) = −3 ̸= −1/3 = 𝑉 (3/4, 1). As 𝜏 is the unique solution of the maximization prob-
lem (36) and 𝜏 is not feasible under cheap talk, cheap talk attains a strictly lower value than
mediation.

An example without public communication where (2) and (3) holds: There is
a binary state space Ω = {0, 1} and two receivers. The pair of posteriors on 𝜔 = 1 is
𝜇 = (𝜇1, 𝜇2) ∈ [0, 1]2, and the prior is 𝑝 = (1/2, 1/2). The sender has a state-independent
indirect utility 𝑉 (𝜇) = 𝐺(𝜇1) − 𝜌𝜇2, where 𝐺 : [0, 1] → [0, 1] is a strictly increasing and
strictly convex CDF, and 𝜌 > 1 is a constant. A communication mechanism induces a joint
distribution of the receivers’ posterior beliefs 𝜏 ∈ ∆([0, 1]2).

Because 𝑉 is separable for 𝜇1 and 𝜇2, for Bayesian persuasion we can focus on the
marginal distributions of posteriors 𝜏𝑖 ∈ ∆([0, 1]) with 𝑖 ∈ {1, 2}. Given that 𝐺 is strictly
convex, the uniquely optimal distribution of posteriors for 1 is the one induced by full
disclosure: 𝜏 *1 = 1/2𝛿0+1/2𝛿1. Because 𝑉 is linear in 𝜇2, any information policy for receiver
2 is optimal because (BP) implies that

∫︀ 1

0
𝜇2 d𝜏2(𝜇2) = 1/2 for all feasible 𝜏2.

It can be shown using analogous steps to those in the proof of Theorem 1 that the imple-
mentation for mediation with additively separable sender’s preference can be characterized
by the following aggregate truth-telling constraint over marginals15

∫︁ 1

0

𝐺(𝜇1)(𝜇1 − 1
2
) d𝜏1(𝜇1)− 𝜌

∫︁ 1

0

𝜇2(𝜇2 − 1
2
) d𝜏2(𝜇2) = 0. (99)

We next show that the mediator can attain the optimal persuasion value for the sender while
satisfying (99). Consider a candidate pair of marginal distributions of beliefs (𝜏 *1 , 𝜏2) where

15Details of the proof of the characterization of the feasible distributions of receivers’ beliefs are available
upon request.
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𝜏 *1 corresponds to full disclosure. Equation 99 then becomes

1

4
= 𝜌

∫︁ 1

0

𝜇2(𝜇2 − 1
2
) d𝜏2(𝜇2).

Now observe that for all feasible 𝜏2, we have
∫︀ 1

0
𝜇2(𝜇2 − 1

2
) d𝜏2(𝜇2) ∈ [0, 1/4], where the

minimum and maximum elements of the interval are respectively attained by no disclosure
and full disclosure for receiver 2. In addition, by convexity of the set of Bayes plausible 𝜏2,
there exists a feasible 𝜏2 such that

∫︀ 1

0
𝜇2(𝜇2 − 1

2
) d𝜏2(𝜇2) = 𝑐, for every 𝑐 ∈ [0, 1/4]. Take a

Bayes plausible 𝜏 *2 such that
∫︀ 1

0
𝜇2(𝜇2− 1

2
) d𝜏 *2 (𝜇2) = 1/(4𝜌) and observe that (𝜏 *1 , 𝜏 *2 ) satisfies

(99) by construction. In particular, (𝜏 *1 , 𝜏 *2 ) is optimal for Bayesian persuasion, hence the
mediator can attain the optimal persuasion value.

A joint distribution 𝜏 is implementable under cheap talk if and only if 𝑉 (𝜇1, 𝜇2) =

𝑉 (𝜇′
1, 𝜇

′
2) for any 𝜇, 𝜇′ ∈ supp(𝜏). This implies that full disclosure for receiver 1 is not

implementable under cheap talk. To see this, fix two points (1, 𝜇′
2) and (0, 𝜇2) in the support

of a candidate cheap talk distribution that induces full disclosure for receiver 1, and assume
that these posteriors are respectively induced by the pairs of private messages (𝑚′

1,𝑚
′
2) and

(𝑚1,𝑚2). The sender has a profitable deviation at (𝑚1,𝑚2) by privately sending (𝑚′
1,𝑚2)

to the receivers. Indeed, 𝑉 (1, 𝜇2) > 𝑉 (0, 𝜇2), that is the deviation yields a strictly higher
than the one obtained by sending (𝑚1,𝑚2). This shows that no cheap talk equilibrium can
sustain full disclosure for receiver 1, hence that the optimal persuasion and mediation value
cannot be attained under cheap talk.

B.4.2 Informativeness of Optimal Mediation

The comparison between the sender’s optimal mediation plan and the sender’s preferred
cheap talk equilibria is ambiguous. In the illustration in the introduction, the sender’s
optimal cheap talk equilibrium is no disclosure when the prior 𝑝 is in a neighborhood of
0.6, while the optimal mediation plan discloses some information about the state. We now
present an example where there exists an open ball of priors such that full disclosure is
optimal under cheap talk but not under mediation.

Consider a binary state space Ω = {0, 1} and let 𝜇 ∈ [0, 1] denote the posterior belief
on 𝜔 = 1. The sender’s indirect utility function is 𝑉 (𝜇) = sin(3𝜋𝜇− 𝜋). For any prior
𝑝 ∈ (0, 1/3), full disclosure is optimal under cheap talk and cheap talk has value 0. Note
that no disclosure is suboptimal under cheap talk and 𝑉 is not mono-crossing, Proposition
16 implies that full disclosure is suboptimal under mediation.
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B.5 Correlated equilibria in long cheap talk and repeated

games
In this appendix, we discuss more in detail the implications of our results for the comparison
of correlated and Nash equilibria in long cheap talk and repeated games with asymmetric
information where the sender’s payoff is state independent.

Fix a finite set of states Ω, a finite action set 𝐴, and utility functions 𝑢𝑅(𝜔, 𝑎) and 𝑢𝑆(𝑎)

for the receiver and the sender respectively. Following the notation in Forges (2020), let
𝐷𝑃0(𝑝) denote the basic decision problem described by the previous primitive objects.

The long cheap talk game is an extension of the basic decision problem 𝐷𝑃0(𝑝) by allow-
ing the sender and receiver to exchange messages simultaneously for several rounds before
the receiver takes an action. Formally, let two finite sets 𝑀𝑆 and 𝑀𝑅 be the sender and
receiver’s message spaces, respectively. Following Lipnowski and Ravid (2020)’s notation,
we let 𝐻<∞ :=

⨆︀∞
𝑡=0(𝑀𝑆 ×𝑀𝑅)

𝑡 and 𝐻∞ := (𝑀𝑆 ×𝑀𝑅)
N. The sender observes the realized

state 𝜔 ∈ Ω at 𝑡 = 0. Then at each time 𝑡 = 1, 2, . . ., the sender sends message 𝑚𝑡 ∈ 𝑀𝑆 and
the receiver sends 𝑚̃𝑡 ∈ 𝑀𝑅 simultaneously. Finally, after seeing the sequence of messages
ℎ∞ ∈ 𝐻∞, the receiver chooses an action 𝑎 ∈ 𝐴. A strategy for the sender is a measur-
able function 𝜎 : Ω ×𝐻<∞ → ∆𝑀𝑆 and a strategy for the receiver is a pair of measurable
functions 𝜎̃ : 𝐻<∞ → ∆𝑀𝑅 and 𝜌 : 𝐻∞ → ∆𝐴. We denote the long cheap talk game as
𝐶𝑇∞(𝑝).

Under transparent motives, Proposition 4 of Lipnowski and Ravid (2020) shows that ev-
ery sender payoff attainable in a Nash equilibrium of 𝐶𝑇∞(𝑝) is also attainable in a perfect
Bayesian equilibrium of the one-shot cheap-talk game. Therefore, the highest sender’s ex-
pected payoff that is induced by a Nash equilibrium of 𝐶𝑇∞(𝑝) coincides with the one-shot
highest cheap talk value 𝒱𝐶𝑇 (𝑝). A correlated equilibrium of 𝐶𝑇∞(𝑝) is a Nash equilibrium
of an extension of 𝐶𝑇∞(𝑝) where the players privately receive correlated signals before the
beginning of the game. Forges (1985) shows that the set of correlated equilibrium payoffs
of the long cheap talk game 𝒞(𝐶𝑇∞(𝑝)) is the same as the set of all communication equi-
librium payoffs of the basic decision problem ℳ(𝐷𝑃0(𝑝)). Therefore, the highest sender’s
expected payoff induced by a correlated equilibrium of 𝐶𝑇∞(𝑝) coincides with the sender’s
payoff induced by the sender’s preferred communication equilibrium 𝒱𝑀𝐷(𝑝).

A different class of games we consider is a simplified version of the infinitely repeated
sender-receiver game introduced in Hart (1985). There are two action sets 𝐴𝑆, 𝐴𝑅 for the
sender and receiver, respectively. The sender observes the realized state 𝜔 ∈ Ω at 𝑡 = 0.
Then at each time 𝑡 = 1, 2, . . ., the sender chooses action 𝑎𝑡 ∈ 𝐴𝑆 and the receiver chooses
𝑎̃𝑡 ∈ 𝐴𝑅 simultaneously. The action of the receiver is the only one that is payoff-relevant,
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and the sender’s payoff does not depend on the state. That is, the sender’s payoff at time 𝑡 is
𝑢𝑆(𝑎̃𝑡) and the receiver’s payoff at time 𝑡 is 𝑢𝑅(𝜔, 𝑎̃𝑡). The actions are observed every period,
and players have perfect recall. The players’ overall payoffs are defined as the liminf of the
expected time average of the one-period payoffs. That is, 𝑈𝑆 := lim inf𝑇→∞ E[ 1

𝑇

∑︀𝑇
𝑡=1 𝑢𝑆(𝑎̃𝑡)]

and 𝑈𝑅 := lim inf𝑇→∞ E[ 1
𝑇

∑︀𝑇
𝑡=1 𝑢𝑅(𝜔, 𝑎̃𝑡)]. This is the transparent-motive case of the re-

peated games of pure information transmission as defined in Forges (2020), and we denote
it as Γ∞(𝑝).

The correlated equilibria of Γ∞(𝑝) are defined similarly, and Forges (1985) shows that
the set of correlated equilibrium payoffs of this game 𝒞(Γ∞(𝑝)) coincides with the set of com-
munication equilibrium payoffs of the basic decision problem ℳ(𝐷𝑃0(𝑝)). Therefore, the
highest sender’s expected payoff induced by a correlated equilibrium of Γ∞(𝑝) is the same
as the sender’s payoff in a sender’s preferred communication equilibrium 𝒱𝑀𝐷(𝑝). More-
over, Lemma 2 and 4 of Habu, Lipnowski, and Ravid (2021) imply that every sender’s
Nash-equilibrium payoff of Γ∞(𝑝) corresponds to a sender’s payoff of a one-stage cheap talk
equilibrium.
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Appendix C

Appendix to Optimally Coarse Contracts

C.1 Proofs

C.1.1 Proof of Lemma 5

(1) =⇒ (2) Let 𝐶 : 𝑋 ⇒ 𝑋 be a regular contractibility correspondence and define
𝛿(𝑦) = min𝐶(𝑦) and 𝛿(𝑦) = max𝐶(𝑦) for all 𝑦 ∈ 𝑋. By Axiom 5, 𝛿 and 𝛿 exist. By Axiom
3, we have that 𝛿 and 𝛿 are increasing functions. By Axiom 1, we know that 𝑦 ≥ 𝛿(𝑦) and
𝑦 ≤ 𝛿(𝑦) for all 𝑦 (part (ii) of 2). Moreover, by Lemma 17.29 in Aliprantis and Border
(2006a), 𝛿 is lower semicontinuous and 𝛿 is upper semicontinuous.

We now show part (i) of 2, that 𝐶(𝑦) = [𝛿(𝑦), 𝛿(𝑦)]. Assume by contradiction there exists
some 𝑦 ∈ 𝑋 and 𝑥 ∈ [𝛿(𝑦), 𝛿(𝑦)] such that 𝑥 /∈ 𝐶(𝑦). Consider first the case where 𝑥 < 𝑦.
By the definition of 𝛿, 𝛿(𝑦) ∈ 𝐶(𝑦) and 𝛿(𝑦) < 𝑥. As 𝑥 < 𝑦, by Axiom 3, we have that
𝐶(𝑥) ≤𝑆𝑆𝑂 𝐶(𝑦). Thus, as 𝑥 ∈ 𝐶(𝑥) and 𝛿(𝑦) ∈ 𝐶(𝑦), we know that max{𝑥, 𝛿(𝑦)} = 𝑥 ∈
𝐶(𝑦). This is a contradiction. Consider now the case where 𝑦 < 𝑥. Again, 𝛿(𝑦) ∈ 𝐶(𝑦) and
𝑥 < 𝛿(𝑦). By Axiom 3, we have that min{𝑥, 𝛿(𝑦)} = 𝑥 ∈ 𝐶(𝑦). This is a contradiction.

We next show parts (iii), (iv), and (v) of 2. Fix 𝑥, 𝑦 ∈ 𝑋 and assume that 𝑥 ∈ [𝛿(𝑦), 𝛿(𝑦)),
which implies 𝑥 ∈ 𝐶(𝑦). We start with part (iii), and mirror the argument for part (iv).
Suppose 𝑥 < 𝑦. As 𝐶 is monotone, we know that 𝛿(𝑥) ≤ 𝛿(𝑦). Suppose by contradiction
that 𝛿(𝑥) < 𝛿(𝑦). But then, given the other properties of 𝛿, for all 𝑧 ∈ (𝛿(𝑥), 𝛿(𝑦)) we would
have that 𝑧 ∈ 𝐶(𝑥) but 𝑧 /∈ 𝐶(𝑦), which contradicts Axiom 2. For part (iv), consider the
same scenario but reversed. Suppose 𝑥 > 𝑦. As 𝐶 is monotone, we know that 𝛿(𝑥) ≥ 𝛿(𝑦).
Imagine this held at strict inequality. Then there would exist 𝑧 ∈ (𝛿(𝑦), 𝛿(𝑥)) such that
𝑧 ∈ 𝐶(𝑦) and 𝑧 /∈ 𝐶(𝑥), while 𝑦 ∈ 𝐶(𝑥). This violates Axiom 2. It is immediate that
𝛿(0) = 0 by Axiom 4 as 𝐶(0) = {0}.

(2) =⇒ (3) We start with an ancillary lemma.
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Lemma 16 (Fixed Point Lemma). Consider two functions 𝛿(𝑥) and 𝛿(𝑥) as in point (2) of
Lemma 5. Then for all 𝑧 ∈ 𝛿(𝑋) and 𝑧 ∈ 𝛿(𝑋), it holds 𝛿(𝑧) = 𝑧 and 𝛿(𝑧) = 𝑧.

Proof. Let 𝑧 = 𝛿(𝑥) for some 𝑥 ∈ 𝑋. It follows that 𝑧 ∈ [𝛿(𝑥), 𝑥]. If 𝑧 = 𝑥, then we have
that 𝛿(𝑧) = 𝛿(𝑥) = 𝑧. Alternatively, if 𝑧 < 𝑥, given property (iii) in part (2) of Lemma 5,
we must have 𝛿(𝑧) = 𝛿(𝑥) = 𝑧. The proof for 𝑧 ∈ 𝛿(𝑋) is symmetric, using property (iv) in
part (2) of Lemma 5.

Let 𝛿 and 𝛿 be as in (2) and define 𝐷 = 𝛿(𝑋) and 𝐷 = 𝛿(𝑋). First, observe that

max
𝑧≤𝑥:𝑧∈𝐷

𝑧 = max
𝑧≤𝑥:𝑧∈𝛿(𝑋)

𝑧 ≥ 𝛿(𝑥) (100)

by construction. Let 𝑧 = max𝑧≤𝑥:𝑧∈𝐷 𝑧 and assume by contradiction that 𝑧 > 𝛿(𝑥). If 𝑧 = 𝑥,
then 𝑥 ∈ 𝛿(𝑋) and by Lemma 16 we have that 𝑥 = 𝛿(𝑥) < 𝑧, yielding a contradiction. If
instead 𝑧 < 𝑥, then by Lemma 16 and the property (iii) of 𝛿, we have 𝑧 = 𝛿(𝑧) = 𝛿(𝑥),
yileding a contradiction. With this, we conclude that 𝑧 = 𝛿(𝑥). With symmetric steps,
we can show that min𝑧≥𝑥:𝑧∈𝐷 𝑧 = 𝛿(𝑥). Next, observe that necessarily we have 𝛿(0) = 0,
𝛿(𝑥) = 𝑥, and 𝛿(0) = 0 proving that 0 ∈ 𝐷 and 0, 𝑥 ∈ 𝐷. Finally, we need to show that 𝐷

and 𝐷 are closed. Take a sequence 𝑧𝑛 ∈ 𝐷 such that 𝑧𝑛 → 𝑧. Given that 𝑋 is closed, we
have that 𝑧 ∈ 𝑋 and therefore 𝛿(𝑧) ≤ 𝑧. Given that every 𝑧𝑛 is in 𝐷, Lemma 16 implies
that 𝛿(𝑧𝑛) = 𝑧𝑛 for all 𝑛. Given that 𝛿 is upper semicontinuous, it follows that

𝑧 = lim
𝑛→∞

𝑧𝑛 = lim
𝑛→∞

𝛿(𝑧𝑛) ≤ 𝛿(𝑧)

which implies that 𝑧 = 𝛿(𝑧) (as 𝑧 ≥ 𝛿(𝑧)) and therefore that 𝑧 ∈ 𝐷. This shows that 𝐷 is
closed. A symmetric argument shows that 𝐷 is closed.

(3) =⇒ (2) Let 𝐷 and 𝐷 be as in (3) and define 𝐶 as in equation 38. We want to
show that 𝐶 is a regular contractibility correspondence. Toward this goal define 𝛿(𝑥) =

max𝑧≤𝑥:𝑧∈𝐷 𝑧 and 𝛿(𝑥) = min𝑧≥𝑥:𝑧∈𝐷 𝑧 and observe that 𝐶(𝑥) = [𝛿(𝑥), 𝛿(𝑥)]. It is immediate
to see that both these functions are monotone increasing, such that 𝛿(𝑥) ≤ 𝑥 ≤ 𝛿(𝑥), and
respectively upper semicontinuous and lower semicontinuous by Lemma 17.30 in Aliprantis
and Border (2006a). To see this, observe that the correspondences 𝑥 ⇒ {𝑧 ∈ 𝐷 : 𝑧 ≤ 𝑥} and
𝑥 ⇒

{︀
𝑧 ∈ 𝐷 : 𝑧 ≥ 𝑥

}︀
are both upper hemicontinuous. Next, assume that 𝑦 ∈ [𝛿(𝑥), 𝑥) and

let 𝑧 = 𝛿(𝑥). We have 𝛿(𝑦) ≤ 𝑧 by monotonicity. Moreover, by assumption 𝑧 ≤ 𝑦 and 𝑧 ∈ 𝐷,
so that 𝑧 ≤ 𝛿(𝑦) by definition. We then must have 𝑧 = 𝛿(𝑦). Symmetrically, assume that
𝑦 ∈ (𝑥, 𝛿(𝑥)] and let 𝑧 = 𝛿(𝑥). We have 𝛿(𝑦) ≤ 𝑧 by monotonicity. Moreover, by assumption
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𝑧 ≥ 𝑦 and 𝑧 ∈ 𝐷, so that 𝑧 ≥ 𝛿(𝑦) by definition. We then must have 𝑧 = 𝛿(𝑦). Finally, as
0 ∈ 𝐷, we have that 𝛿(0) = 0.

(2) =⇒ (1) Fix 𝛿 and 𝛿 that satisfy (2). 𝐶(𝑦) = [𝛿(𝑦), 𝛿(𝑦)] is regular. 𝐶 is reflexive since
because of (ii), closed because the intervals of the construction are closed, and monotone
because 𝛿, 𝛿 are monotone. To show transitivity, consider 𝑥 ∈ 𝐶(𝑦) and, first, the case 𝑥 < 𝑦.
From (iii), we have 𝛿(𝑥) = 𝛿(𝑦). Moreover, from monotonicity, 𝛿(𝑥) ≤ 𝛿(𝑦). Therefore,
𝐶(𝑥) ⊆ 𝐶(𝑦). Next, consider the case where 𝑥 > 𝑦. From (iv), we have 𝛿(𝑥) = 𝛿(𝑦).
Moreover, from monotonicity, 𝛿(𝑥) ≥ 𝛿(𝑦). Therefore, 𝐶(𝑥) ⊆ 𝐶(𝑦). Moreover, if 𝑥 = 𝑦,
clearly 𝐶(𝑥) ⊆ 𝐶(𝑦). Given that these arguments hold for any 𝑥, this shows transitivity.
Finally, as 𝛿(0) = 𝛿(0), we have that 𝐶(0) = {0}, which establishes excludability. These
arguments together establish that 𝐶 is regular.

C.1.2 Proof of Theorem 1

We prove the result in three parts. First, we present a characterization of implementable
allocations. Second, we use this characterization to derive the principal’s control problem.
Third, we solve this control problem for the optimal contract.

Part 1: Implementation

We begin by establishing a general taxation principle with partial contractibility. Given a
regular contracting correspondence 𝐶, we say that 𝑇 : 𝑋 → R̄ is monotone with respect to
𝐶 if 𝑇 (𝑥) ≥ 𝑇 (𝑦) for all 𝑥, 𝑦 ∈ 𝑋 such that 𝑦 ∈ 𝐶(𝑥). We now show monotonicity of the
tariff with respect to 𝐶 is necessary and sufficient for implementability (Definition 14).

Lemma 17 (𝐶-Monotone Taxation Principle). Fix a regular contractibility correspondence
𝐶. A final outcome function 𝜑 is implementable given 𝐶 if and only if there exists a tariff
𝑇 : 𝑋 → R̄ that is monotone with respect to 𝐶 and such that:

𝜑(𝜃) ∈ argmax
𝑥∈𝑋

{𝑢(𝑥, 𝜃)− 𝑇 (𝑥)} (101)

and 𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) ≥ 0 for all 𝜃 ∈ Θ. In this case, 𝜑 is supported by 𝜉 = 𝜑 and 𝑇 .

Proof. (Only if) We begin by proving the necessity of the existence of a monotone tariff
with respect to 𝐶. Suppose that 𝜑 is implementable. It follows that there exists (𝜉, 𝑇 ) that
support 𝜑. In particular, observe that (O) implies that 𝜑(𝜃) ∈ 𝐶(𝜉(𝜃)) for all 𝜃 ∈ Θ. Next
define 𝑇 : 𝑋 → R̄ as:

𝑇 (𝑥) = inf
𝑦∈𝑋

{𝑇 (𝑦) : 𝑥 ∈ 𝐶(𝑦)} (102)
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We next show that 𝜑 is also supported by (𝜑, 𝑇 ). By (O) of (𝜑, 𝜉, 𝑇 ), we have

𝑢(𝜑(𝜃), 𝜃) ≥ 𝑢(𝑥, 𝜃) (103)

for all 𝑥 ∈ 𝐶(𝜑(𝜃)) ⊆ 𝐶(𝜉(𝜃)) (by transitivity) and for all 𝜃 ∈ Θ, yielding (O) of (𝜑, 𝜑, 𝑇 ).
By (IR) of (𝜑, 𝜉, 𝑇 ) and the definition of 𝑇 , we have

𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) ≥ 𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜉(𝜃)) ≥ 0 (104)

for all 𝜃 ∈ Θ, yielding (IR) of (𝜑, 𝜑, 𝑇 ). Next, assume toward a contradiction that (𝜑, 𝜑, 𝑇 )

does not satisfy (IC), that is, there exists 𝜃 ∈ Θ and 𝑦 ∈ 𝑋 such that

max
𝑥∈𝐶(𝑦)

𝑢(𝑥, 𝜃)− 𝑇 (𝑦) > 𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) (105)

By the definition of 𝑇 , there exists a sequence 𝑧𝑛 ∈ 𝑋 such that 𝑦 ∈ 𝐶(𝑧𝑛) for all 𝑛 and
𝑇 (𝑧𝑛) ↓ 𝑇 (𝑦). Thus, there exists 𝑛 large enough such that

max
𝑥∈𝐶(𝑧𝑛)

𝑢(𝑥, 𝜃)− 𝑇 (𝑧𝑛) ≥ max
𝑥∈𝐶(𝑦)

𝑢(𝑥, 𝜃)− 𝑇 (𝑧𝑛)

> 𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) ≥ 𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜉(𝜃))

= max
𝑥∈𝐶(𝜉(𝜃))

𝑢(𝑥, 𝜃)− 𝑇 (𝜉(𝜃))

(106)

The first inequality follows from 𝐶(𝑦) ⊆ 𝐶(𝑧𝑛) since 𝑦 ∈ 𝐶(𝑧𝑛). The second strict inequality
follows from Equation 105 and the fact that 𝑇 (𝑧𝑛) ↓ 𝑇 (𝑦). The third inequality follows
from the construction of 𝑇 . The final equality follows as (𝜑, 𝜉, 𝑇 ) satisfies (O). However, the
previous inequality yields a contradiction of (IC) of (𝜑, 𝜉, 𝑇 ), proving that (𝜑, 𝜑, 𝑇 ) satisfies
(IC). This shows that (𝜑, 𝜑, 𝑇 ) is implementable, hence that Equation 101 holds and that
𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) ≥ 0 for all 𝜃 ∈ Θ.

Finally, we argue that 𝑇 is monotone with respect to 𝐶. Fix 𝑥, 𝑦 ∈ 𝑋 such that 𝑦 ∈ 𝐶(𝑥).
By Transitivity of 𝐶 we have

{𝑥̂ ∈ 𝑋 : 𝑥 ∈ 𝐶(𝑥̂)} ⊆ {𝑥̂ ∈ 𝑋 : 𝑦 ∈ 𝐶(𝑥̂)} (107)

yielding that 𝑇 (𝑦) ≤ 𝑇 (𝑥), as desired.
(If) We now establish sufficiency. Suppose that there exists a tarrif 𝑇 : 𝑋 → R̄ that is

monotone with respect to 𝐶 and such that Equation 101 holds and 𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) ≥ 0

for all 𝜃 ∈ Θ. We will show that (𝜑, 𝜑, 𝑇 ) is implementable. (IR) is immediately satisfied.
Next, we show that (IC) is satisfied. Suppose, toward a contradiction, that it were not. That
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is, there exist 𝜃 ∈ Θ, 𝑦 ∈ 𝑋, and 𝑥 ∈ 𝐶(𝑦) such that

𝑢(𝑥, 𝜃)− 𝑇 (𝑦) > max
𝑥̂∈𝐶(𝜑(𝜃))

𝑢(𝑥̂, 𝜃)− 𝑇 (𝜑(𝜃)) ≥ 𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) (108)

But then, we have the following contradiction of monotonicity of 𝑇 in 𝐶:

𝑢(𝑥, 𝜃)− 𝑇 (𝑦) > 𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) ≥ 𝑢(𝑥, 𝜃)− 𝑇 (𝑥) (109)

where the second inequality uses the fact that 𝜑(𝜃) solves the program in Equation 101.
Finally, we show that (O) is satisfied. Toward a contradiction, assume that it were not.That
is, there exists 𝜃 ∈ Θ and 𝑥 ∈ 𝐶(𝜑(𝜃)) such that:

𝑢(𝑥, 𝜃) > 𝑢(𝜑(𝜃), 𝜃) (110)

However, by monotonicity of 𝑇 in 𝐶, we know that 𝑇 (𝜑(𝜃)) ≥ 𝑇 (𝑥). Thus,

𝑢(𝑥, 𝜃)− 𝑇 (𝑥) > 𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) (111)

yielding a contradiction to IC, which we just showed. This proves sufficiency.
Finally, the fact that any implementable final outcome function can be implemented as

part of an allocation (𝜑, 𝜑, 𝑇 ) follows by the construction in the necessity part of our proof.

With this taxation principle in hand, we now characterize implementation:

Lemma 18 (Implementation). A final outcome function 𝜑 is implementable under 𝐶, as-
sociated with upper and lower image sets (𝐷,𝐷), if and only if it is monotone increasing
and such that: (i) if agent preferences are monotone increasing, then 𝜑(Θ) ⊆ 𝐷, (ii) if pref-
erences are monotone decreasing, then 𝜑(Θ) ⊆ 𝐷. Moreover, 𝜑 is supported by 𝜉 = 𝜑 and
tariff:

𝑇 (𝑥) = 𝑇 (0) + 𝑢(𝑥, 𝜑−1(𝑥))−
∫︁ 𝜑−1(𝑥)

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠 (112)

where 𝜑−1(𝑠) = inf{𝜃 ∈ Θ : 𝜑(𝜃) ≥ 𝑠}.

Proof. (Only If for First Part) If 𝜑 is implementable, then there exists (𝜉, 𝑇 ) that support
𝜑. By Lemma 17, we may take that 𝜉 = 𝜑. By (IC) and Lemma 17, there exists a transfer
function 𝑡 : Θ → R such that 𝑢(𝜑(𝜃), 𝜃) − 𝑡(𝜃) ≥ 𝑢(𝜑(𝜃′), 𝜃) − 𝑡(𝜃′) for all 𝜃, 𝜃′ ∈ Θ. As 𝑢

is strictly single-crossing, Proposition 1 in Rochet (1987) then implies that 𝜑 is monotone.

191



Without loss of generality, consider the case with monotone increasing preferences and toward
a contradiction suppose that 𝜑(𝜃) ̸∈ 𝐷. Deviating to 𝛿(𝜑(𝜃)) > 𝜑(𝜃) is a strict improvement
for the agent. Thus, if 𝜑 is implementable, then it is monotone, and 𝜑(Θ) ∈ 𝐷 (or 𝜑(Θ) ∈ 𝐷

with montone decreasing preferences) holds.
(If For First Part) Without loss of generality, we gain prove this part for he case with

monotone increasing preferences. Now suppose that 𝜑(𝜃) ∈ 𝐷 holds for all 𝜃 ∈ Θ and 𝜑 is
monotone increasing. Define the function 𝑡 : Θ → R as

𝑡(𝜃) = 𝐾 + 𝑢(𝜑(𝜃), 𝜃)−
∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠 (113)

for some 𝐾 ≤ 0, and the tariff 𝑇 : 𝑋 → R as

𝑇 (𝑥) = inf
𝜃′∈Θ

{𝑡(𝜃′) : 𝑥 ∈ 𝐶(𝜑(𝜃′))} (114)

Fix 𝑥, 𝑦 ∈ 𝑋 such that 𝑦 ∈ 𝐶(𝑥). By Transitivity, for all 𝜃 ∈ Θ, if 𝑥 ∈ 𝐶(𝜑(𝜃)), then
𝑦 ∈ 𝐶(𝜑(𝜃)). This shows that

{𝜃 ∈ Θ : 𝑥 ∈ 𝐶(𝜑(𝜃))} ⊆ {𝜃 ∈ Θ : 𝑦 ∈ 𝐶(𝜑(𝜃))} (115)

Therefore, applying the construction of 𝑇 , 𝑇 (𝑥) ≥ 𝑇 (𝑦). Thus, 𝑇 is monotone with respect
to 𝐶.

As 𝑇 is monotone with respect to 𝐶, if we can show that 𝜑(𝜃) ∈ argmax𝑥∈𝑋{𝑢(𝑥, 𝜃) −
𝑇 (𝑥)} and 𝑢(𝜑(𝜃), 𝜃) − 𝑇 (𝜑(𝜃)) ≥ 0, then we have shown by Lemma 17 that 𝜑 is imple-
mentable.

We start with the second condition. For every 𝜃 ∈ Θ, we have

𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) ≥ 𝑢(𝜑(𝜃), 𝜃)− 𝑡(𝜃) =

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠− 𝑍 (116)

Note that the right-hand side of this last equation is monotone increasing in 𝜃 since it is
continuously differentiable with derivative 𝑢𝜃(𝜑(𝜃), 𝜃) ≥ 0 for all 𝜃 ∈ Θ, owing to the fact that
𝑢 is monotone increasing over Θ. Given that 𝑍 ≤ 0, we have that 𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) ≥ 0

for all 𝜃 ∈ Θ.
We are left to prove that (𝜑, 𝑇 ) satisfy Equation 101. We first prove that, for all 𝜃, 𝜃′ ∈ Θ:

𝑢(𝜑(𝜃), 𝜃)− 𝑡(𝜃) ≥ max
𝑥∈𝐶(𝜑(𝜃′))

𝑢(𝑥, 𝜃)− 𝑡(𝜃′) (117)

This is a variation of the standard reporting problem under consumption function 𝜑 and
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transfers 𝑡, where each agent, on top of misreporting their type, can also consume everything
allowed by 𝐶. Violations of this condition can take two forms. First, an agent of type 𝜃

could report type 𝜃′ and consume 𝑥 = 𝜑(𝜃′). We call this a single deviation. Second, an
agent of type 𝜃 could report type 𝜃′ and consume 𝑥 ∈ 𝐶(𝜑(𝜃′)) ∖ {𝜑(𝜃′)}. We call this a
double deviation. Under our construction of transfers 𝑡 and monotonicity of 𝜑, by a standard
mechanism-design argument (e.g., Nöldeke and Samuelson, 2007), there is no strict gain to
any agent of reporting 𝜃′ and consuming 𝑥 = 𝜑(𝜃′). Thus, there are no profitable single
deviations under (𝜑, 𝑡).

We now must rule out double deviations. Suppose that 𝜃 imitates 𝜃′ and plans to take
final action 𝑥 ̸= 𝜑(𝜃′). As 𝜑(𝜃′) ∈ 𝐷 (in the monotone increasing case), 𝑥 < 𝜑(𝜃′). But in
that case, simply taking action 𝜑(𝜃′) is better. But then this is a single deviation, which we
have ruled out. The same logic applies in the monotone decreasing case.

To derive the tariff, we can simply set 𝑇 (𝑥) = 𝑡(𝜑−1(𝑥)). This yields the claimed formula.

Part 2: Control Problem

We now use this characterization of implementation to turn the principal’s problem into an
optimal control problem:

Lemma 19. When agents have monotone increasing preferences, any optimal final outcome
function solves:

𝒥 (𝐷) := max
𝜑

∫︁
Θ

𝐽(𝜑(𝜃), 𝜃) d𝐹 (𝜃)

s.t. 𝜑(𝜃′) ≥ 𝜑(𝜃), 𝜑(𝜃) ∈ 𝐷, 𝜃, 𝜃′ ∈ Θ : 𝜃′ ≥ 𝜃

(118)

When agents have monotone decreasing preferences, replace 𝐷 with 𝐷.

Proof. We begin by eliminating the proposed allocation and transfers from the objective
function of the seller. From the proof of Lemma 18, we have that transfers for any incentive
compatible triple (𝜉, 𝜑, 𝑡) are given by:

𝑡(𝜃) = 𝑍 + 𝑢(𝜑(𝜃), 𝜃)−
∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠 (119)

for some constant 𝑍 ∈ R. Thus, any 𝜉 that supports 𝜑 leads to the same seller payoff and
can therefore be made equal to 𝜑 without loss of optimality. Moreover, we know that 𝜑 being
incentive compatible is equivalent to 𝜑 being monotone increasing and 𝜑(𝜃) ∈ 𝐷.

193



Plugging in the expression (119), we can simplify the expression for the seller’s total
transfer revenue as the following:∫︁

Θ

𝑡(𝜃) d𝐹 (𝜃) =

∫︁
Θ

(︂
𝑍 + 𝑢(𝜑(𝜃), 𝜃)−

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠

)︂
d𝐹 (𝜃)

=

∫︁
Θ

(𝑍 + 𝑢(𝜑(𝜃), 𝜃)) d𝐹 (𝜃)−
∫︁ 1

0

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠 d𝐹 (𝜃)

(120)

Using this expression for total transfer revenue, and the characterization of implementation
from Lemma 18, we write the seller’s problem as

max
𝜑,𝑍

∫︁
Θ

(︂
𝜋(𝜑(𝜃), 𝜃) + 𝑍 + 𝑢(𝜑(𝜃), 𝜃)−

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠

)︂
d𝐹 (𝜃)

s.t. 𝜑(𝜃′) ≥ 𝜑(𝜃), 𝜑(𝜃) ∈ 𝐷 ∀𝜃, 𝜃′ ∈ Θ : 𝜃′ ≥ 𝜃

𝑢(𝜑(𝜃), 𝜃)−
(︂
𝑍 + 𝑢(𝜑(𝜃), 𝜃)−

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠

)︂
≥ 0 ∀𝜃 ∈ Θ

(121)

We further simplify this by applying integration by parts on the double integral of 𝑢𝜃(𝜑(𝑠), 𝑠)

over 𝜃 and 𝑠:∫︁ 1

0

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠 d𝐹 (𝜃) =

[︂
𝐹 (𝜃)

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠); 𝑠) d𝑠

]︂1
0

−
∫︁ 1

0

𝐹 (𝜃)𝑢𝜃(𝜑(𝜃), 𝜃) d𝜃

=

∫︁ 1

0

(1− 𝐹 (𝜃))𝑢𝜃(𝜑(𝜃), 𝜃) d𝜃

=

∫︁ 1

0

(1− 𝐹 (𝜃))

𝑓(𝜃)
𝑢𝜃(𝜑(𝜃), 𝜃) d𝐹 (𝜃)

(122)

Plugging into the seller’s objective, we find that the principal solves:

max
𝜑,𝑍

∫︁
Θ

(𝐽(𝜑(𝜃)) + 𝑍) d𝐹 (𝜃)

s.t. 𝜑(𝜃′) ≥ 𝜑(𝜃), 𝜑(𝜃) ∈ 𝐷 ∀𝜃, 𝜃′ ∈ Θ : 𝜃′ ≥ 𝜃

𝑢(𝜑(𝜃), 𝜃)−
(︂
𝑍 + 𝑢(𝜑(𝜃), 𝜃)−

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠

)︂
≥ 0 ∀𝜃 ∈ Θ

(123)

It follows that it is optimal to set 𝑍 ∈ R as large as possible such that:

𝑉 (𝜃) = 𝑢(𝜑(𝜃), 𝜃)−
(︂
𝑍 + 𝑢(𝜑(𝜃), 𝜃)−

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠)d𝑠

)︂
≥ 0 ∀𝜃 ∈ Θ (124)

We know that 𝑉 ′(𝜃) = 𝑢𝜃(𝜑(𝜃), 𝜃) ≥ 0 as 𝑢(𝑥, ·) is monotone over Θ. Thus, the tightest such
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constraint occurs when 𝜃 = 0. Hence, the maximal 𝑍 must satisfy:

𝑉 (0) = −𝑍 ≥ 0 (125)

This implies that 𝑍 is optimally 0 and ensures that the (IR) constraint holds for all types.
Hence, the seller’s program is:

max
𝜑

∫︁
Θ

𝐽(𝜑(𝜃), 𝜃) d𝐹 (𝜃)

s.t. 𝜑(𝜃′) ≥ 𝜑(𝜃), 𝜑(𝜃) ∈ 𝐷 ∀𝜃, 𝜃′ ∈ Θ : 𝜃′ ≥ 𝜃

(126)

This completes the proof.

Part 3: The Optimal Contract

We first solve the pointwise problem in the control problem from Lemma 19 and then verify
that this solution is monotone. The pointwise problem is max𝑥∈𝐷 𝐽(𝜑(𝜃), 𝜃), where the
maximum exists as 𝐽 is continuous and 𝐷 is compact. As 𝐽 is strictly quasi-concave, this
maximum is either 𝜑(𝜃) or 𝜑(𝜃). When ∆𝐽(𝜃) > 0, it is 𝜑(𝜃). When ∆𝐽(𝜃) < 0, it is 𝜑(𝜃).
When ∆𝐽(𝜃) = 0, either is optimal. Thus, if it is monotone, the claimed solution is optimal
(as it is supported on 𝐷).

We next show that the claimed solution is monotone. Consider 𝜃, 𝜃′ such that 𝜃′ > 𝜃.
If 𝜑*(𝜃) = 𝜑(𝜃) and 𝜑*(𝜃′) = 𝜑(𝜃′), then 𝜑*(𝜃′) ≥ 𝜑*(𝜃) because 𝜑 is increasing; similarly
if 𝜑*(𝜃) = 𝜑(𝜃) and 𝜑*(𝜃′) = 𝜑(𝜃′). If 𝜑*(𝜃) = 𝜑(𝜃) and 𝜑*(𝜃′) = 𝜑(𝜃′), then 𝜑*(𝜃′) ≥
𝜑*(𝜃) because 𝜑 is increasing and 𝜑 ≥ 𝜑. The only remaining case is if 𝜑*(𝜃) = 𝜑(𝜃) and
𝜑*(𝜃′) = 𝜑(𝜃′). Suppose toward a contradiction that 𝜑(𝜃) > 𝜑(𝜃′). We first observe that
𝜑𝑃 (𝜃′) < 𝜑(𝜃); otherwise 𝜑(𝜃′) = max{𝑦 ∈ 𝐷 : 𝑦 ≤ 𝜑𝑃 (𝜃′)} ≥ 𝜑(𝜃). Moreover, since
𝜑𝑃 (𝜃′) ≥ 𝜑𝑃 (𝜃), it must be the case that 𝜑(𝜃′) = 𝜑(𝜃). We next observe that 𝜑𝑃 (𝜃) > 𝜑(𝜃′);
otherwise, 𝜑(𝜃) = min{𝑦 ∈ 𝐷 : 𝑦 ≥ 𝜑𝑃 (𝜃)} ≤ 𝜑(𝜃′). Again, since 𝜑𝑃 (𝜃′) ≥ 𝜑𝑃 (𝜃), we must
have 𝜑(𝜃) = 𝜑(𝜃′). But now we have the following contradiction: 𝐽(𝜑(𝜃), 𝜃) ≥ 𝐽(𝜑(𝜃), 𝜃) by
optimality of 𝜑(𝜃); 𝐽(𝜑(𝜃), 𝜃′) > 𝐽(𝜑(𝜃), 𝜃′) by strict single crossing; 𝐽(𝜑(𝜃′), 𝜃′) > 𝐽(𝜑(𝜃′), 𝜃′)

because 𝜑(𝜃) = 𝜑(𝜃′) and 𝜑(𝜃) = 𝜑(𝜃′); but 𝐽(𝜑(𝜃′), 𝜃′) ≤ 𝐽(𝜑(𝜃′), 𝜃′) from the presumed
optimality of 𝜑(𝜃′) for type 𝜃′. This completes the argument that 𝜑* is monotone.

The claim that 𝜉* = 𝜑* and the formula for the optimal tariff follow immediately from
applying Lemma 18.
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C.1.3 Proof of Proposition 20

We first derive the optimal allocation. As 𝐽 is strictly single-crossing, 𝐽(𝑥𝑘, 𝜃)−𝐽(𝑥𝑘−1, 𝜃) =

0 has no solution if and only if (i) 𝐽(𝑥𝑘, 0)−𝐽(𝑥𝑘−1, 0) > 0 and (ii) 𝐽(𝑥𝑘, 1)−𝐽(𝑥𝑘−1, 1) < 0.
As 𝐽 is strictly quasi-concave, if 𝐽(𝑥𝑘, 0)− 𝐽(𝑥𝑘−1, 0) > 0, then 𝐽(·, 0) is strictly increasing
at 𝑥𝑘−1, and therefore at all 𝑥𝑗 for 𝑗 ≤ 𝑘 − 1. Thus, if 𝐽(𝑥𝑘, 0) − 𝐽(𝑥𝑘−1, 0) > 0 holds for
𝑘, it holds for all 𝑗 ≤ 𝑘. Define 𝑘 = max{𝑘 ∈ {1, . . . , 𝐾} : 𝐽(𝑥𝑘, 0) − 𝐽(𝑥𝑘−1, 0) > 0},
with the convention that 𝑘 = 1 if this set is empty. Similarly, if 𝐽(𝑥𝑘, 1) − 𝐽(𝑥𝑘−1, 1) < 0,
then 𝐽(·, 1) is strictly decreasing at 𝑥𝑘. Thus, if 𝐽(𝑥𝑘, 1) − 𝐽(𝑥𝑘−1, 1) < 0 holds for 𝑘, it
holds for all 𝑗 ≥ 𝑘. Define 𝑘 = min{𝑘 ∈ {1, . . . , 𝐾} : 𝐽(𝑥𝑘, 1) − 𝐽(𝑥𝑘−1, 1) < 0}, with the
convention that 𝑘 = 𝐾 if this set is empty. As 𝐽 is strictly single crossing, 𝑘 > 𝑘. We now
have that 𝐽(𝑥𝑘, 𝜃) − 𝐽(𝑥𝑘−1, 𝜃) = 0 has a solution if and only if 𝑘 ∈ {𝑘 + 1, . . . , 𝑘 − 1} (if
𝑘 = 𝑘 + 1, then this set is empty). For all 𝑘 ≥ 𝑘, we have that 𝜃𝑘 = 1. For all 𝑘 ≤ 𝑘, we
have that 𝜃𝑘 = 0. For all 𝑘 ∈ {𝑘 + 1, . . . , 𝑘 − 1}, we have that 𝜃𝑘 is the unique solution to
𝐽(𝑥𝑘, 𝜃𝑘) = 𝐽(𝑥𝑘−1, 𝜃𝑘). As 𝐽 is strictly quasi-concave, we know that 𝜑𝑃 (𝜃𝑘) ∈ (𝑥𝑘−1, 𝑥𝑘),
which implies that 𝜑(𝜃𝑘) = 𝑥𝑘−1 and 𝜑(𝜃𝑘) = 𝑥𝑘. Thus, by Theorem 1, we have that
𝜑*(𝜃) = 𝑥𝑘 for all 𝜃 ∈ (𝜃𝑘, 𝜃𝑘+1].

We now derive the tariff that supports this allocation. Applying Equation 52 from Lemma
18, we have that:

𝑇 (𝑥𝑘) = 𝑢(𝑥𝑘, 𝜃𝑘)− I[𝑘 ≥ 2]
𝑘−1∑︁
𝑗=1

∫︁ 𝜃𝑗+1

𝜃𝑗

𝑢𝜃(𝑥𝑗, 𝑠) d𝑠

= 𝑢(𝑥𝑘, 𝜃𝑘)− I[𝑘 ≥ 2]
𝑘−1∑︁
𝑗=1

[︁
𝑢(𝑥𝑗, 𝜃𝑗+1)− 𝑢(𝑥𝑗, 𝜃𝑗)

]︁
= 𝑢(𝑥1, 0) + I[𝑘 ≥ 2]

𝑘∑︁
𝑗=2

[︁
𝑢(𝑥𝑗, 𝜃𝑗)− 𝑢(𝑥𝑗−1, 𝜃𝑗)

]︁
(127)

where the second equality computes the integrals and the final equality telescopes the sum-
mation. Observing that 𝑥1 = 0 and 𝑢(0, 0) = 0 completes the proof.

C.1.4 Proof of Proposition 21

We first show that 𝒟 is a compact set. The set of closed subsets of 𝑋 is compact when
endowed with the Hausdorff distance, so it is sufficient to show that 𝒟 is closed. Take a
sequence 𝐷𝑛 inside 𝒟 and assume that 𝐷𝑛 → 𝐷. We have that 𝐷 is closed and given that
𝑥 ∈ 𝐷𝑛 for all 𝑛, it follows that 𝑥 ∈ 𝐷, yielding that 𝐷 ∈ 𝒟 and that the latter is closed.
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By Lemma 19 and since 𝐽(𝑥, 𝜃) is strictly supermodular, we have

𝒥 (𝐷) =

∫︁
Θ

𝒥 (𝐷, 𝜃) d𝐹 (𝜃) (128)

where
𝒥 (𝐷, 𝜃) := max

𝑥∈𝐷
𝐽(𝑥, 𝜃) (129)

for all 𝜃 ∈ Θ. By Berge’s Maximum theorem, for every 𝜃 ∈ Θ, the map 𝐷 ↦→ 𝒥 (𝐷, 𝜃) is
continuous in the Hausdorff topology. Given that Θ is compact and 𝒥 (𝐷, 𝜃) is bounded it
follows that also the map 𝐷 ↦→ 𝒥 (𝐷) is continuous in the Hausdorff topology. With this,
the result follows by Weierstrass Theorem applied to (56).

C.1.5 Proof of Proposition 22

Fix a sequence {𝑎𝑚, 𝑥𝑚, 𝑏𝑚}∞𝑚=1 ⊆ 𝐷 such that 𝑥𝑚 ∈ (𝑎𝑚, 𝑏𝑚) and 𝐷 ∩ (𝑎𝑚, 𝑏𝑚) → {𝑥}. For
costs of distinguishing induced by 𝑑, using Lemma 5, we can re-express this cost in terms of
the maximum and minimum selections from 𝐶(𝑥), 𝛿(𝑥) and 𝛿(𝑥):

Γ(𝐶) =

∫︁ 𝑥

0

[︃∫︁ 𝑥

𝛿(𝑥)

𝑑(𝛿(𝑥), 𝑦) d𝑦 +

∫︁ 𝛿(𝑥)

0

𝑑(𝛿(𝑥), 𝑦) d𝑦

]︃
d𝑥 (130)

Defining 𝐼(𝑤) =
∫︀ 𝑥

𝑤
𝑑(𝑤, 𝑦) d𝑦, we have that:

Γ(𝐷)− Γ(𝐷 ∖ (𝑎𝑚, 𝑏𝑚)) =
∫︁ 𝑏𝑚

𝑎𝑚

(︀
𝐼
(︀
𝛿𝐷(𝑧)

)︀
− 𝐼 (𝑏𝑚)

)︀
d𝑧 (131)

By the mean value theorem, we have for every 𝑧 ∈ [𝑎𝑚, 𝑏𝑚] that there exists 𝑤 ∈ [𝛿𝐷(𝑧), 𝑏𝑚]

such that:

𝐼
(︀
𝛿𝐷(𝑧)

)︀
− 𝐼 (𝑏𝑚) = −𝐼 ′(𝑤)

(︀
𝑏𝑚 − 𝛿𝐷(𝑧)

)︀
=

(︂
𝑑(𝑤,𝑤)−

∫︁ 𝑥

𝑤

𝑑𝑤(𝑤, 𝑦) d𝑦

)︂(︀
𝑏𝑚 − 𝛿𝐷(𝑧)

)︀
≥ 𝑑(𝑤,𝑤)

(︀
𝑏𝑚 − 𝛿𝐷(𝑧)

)︀
≥ 𝑑(0, 𝑥)

(︀
𝑏𝑚 − 𝛿𝐷(𝑧)

)︀
(132)

where we obtain the derivative of 𝐼 by applying Leibniz’s rule, which is itself possible because
𝑑(𝑤, 𝑦) is continuously differentiable on (𝑤, 𝑥). The first inequality follows by noting that
𝑑(𝑧, 𝑦) is a decreasing function in its first argument when 𝑦 ≥ 𝑧, making

∫︀ 𝑥

𝑤
𝑑𝑤(𝑤, 𝑦) d𝑦 ≤ 0.

The second inequality follows by noting that 𝑑(𝑥, 𝑦) is minimized by (̃0, 𝑥). We therefore
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have that:

Γ(𝐷)− Γ(𝐷 ∖ (𝑎𝑚, 𝑏𝑚)) ≥ 𝑑(0, 𝑥)

∫︁ 𝑏𝑚

𝑎𝑚

(︀
𝑏𝑚 − 𝛿𝐷(𝑧)

)︀
d𝑧

= 𝑑(0, 𝑥)𝑏𝑚(𝑏𝑚 − 𝑎𝑚)− 𝑑(0, 𝑥)

∫︁ 𝑏𝑚

𝑎𝑚

𝛿𝐷(𝑧) d𝑧

(133)

Set 𝜖 = 𝑑(0, 𝑥). As 𝑑 is a distance, we have that 𝑑(0, 𝑥) > 0. As ℎ is strictly positive when
evaluated on a strictly positive argument, 𝑑(0, 𝑥) > 0. Thus, 𝜖 > 0. Using this 𝜖, costs of
distinguishing are therefore strongly monotone if:∫︁ 𝑏𝑚

𝑎𝑚

𝛿𝐷(𝑧) d𝑧 ≤ 𝑏𝑚(𝑏𝑚 − 𝑎𝑚)− (𝑥𝑚 − 𝑎𝑚)(𝑏𝑚 − 𝑥𝑚)

= 𝑏𝑚(𝑏𝑚 − 𝑥𝑚) + 𝑥𝑚(𝑥𝑚 − 𝑎𝑚)

=

∫︁ 𝑏𝑚

𝑎𝑚

𝛿𝑚(𝑧) d𝑧

(134)

where 𝛿𝑚 : [𝑎𝑚, 𝑏𝑚] → [0, 1] is given by:

𝛿𝑚(𝑧) =

⎧⎨⎩𝑥𝑚, 𝑧 ∈ [𝑎𝑚, 𝑥𝑚],

𝑏𝑚, 𝑧 ∈ (𝑥𝑚, 𝑏𝑚].
(135)

As 𝑎𝑚, 𝑥𝑚, 𝑏𝑚 ∈ 𝐷, observe that 𝛿𝐷(𝑧) ≤ 𝛿𝑚(𝑧) for all 𝑧 ∈ [𝑎𝑚, 𝑏𝑚], completing the proof.

**

𝑑(0, 𝑥)𝑏𝑚(𝑏𝑚 − 𝑎𝑚)− 𝜖(𝑏𝑚 − 𝑎𝑚)
2 =

𝑑(0, 𝑥)𝑏𝑚(𝑏𝑚 − 𝑎𝑚)− 2𝜖(𝑏𝑚 − 𝑥𝑚)(𝑥𝑚 − 𝑎𝑚)− 𝜖(𝑏𝑚 − 𝑥𝑚)
2 − 𝜖(𝑥𝑚 − 𝑎𝑚)

2

≥ 𝑑(0, 𝑥)

∫︁ 𝑏𝑚

𝑎𝑚

𝛿𝐷(𝑥) d𝑥

(136)

C.1.6 Proof of Lemma 6

Let 𝜑* denote the optimal allocation under 𝐷 and 𝜑*′ denote the optimal allocation under
𝐷

′
= 𝐷 ∖ (𝑎, 𝑏), as defined in Theorem 1. By Lemma 19, the difference in values under these

contractibility correspondences is

𝒥 (𝐷)− 𝒥 (𝐷
′
) =

∫︁ 1

0

(𝐽(𝜑*(𝜃), 𝜃)− 𝐽(𝜑*′(𝜃), 𝜃)) d𝐹 (𝜃) (137)
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First, we observe that 𝜑*(𝜃) ̸= 𝜑*′(𝜃) only if 𝜑*(𝜃) ∈ (𝑎, 𝑏). We denote the set of types who
receive such allocations by Θ(𝑎, 𝑏) = {𝜃 ∈ Θ : 𝜑*(𝜃) ∈ (𝑎, 𝑏)}. As 𝜑* is monotone, this is
an interval. If this interval is empty, then 𝒥 (𝐷) − 𝒥 (𝐷

′
) = 0 and the proof is finished.

If not, we construct the optimal 𝜑*′
. Define 𝜃(𝑦, 𝑧) as the type for which the principal is

indifferent between giving 𝑦 or 𝑧 > 𝑦, or the unique solution to 𝐽(𝑦, 𝜃(𝑦, 𝑧)) = 𝐽(𝑧, 𝜃(𝑦, 𝑧)).
By Theorem 1, the following assignment function is optimal:

𝜑*′(𝜃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎 if 𝜃 ∈ [inf Θ(𝑎, 𝑏), 𝜃(𝑎, 𝑏)],

𝑏 if 𝜃 ∈ (𝜃(𝑎, 𝑏), supΘ(𝑎, 𝑏)],

𝜑*(𝜃) otherwise.

(138)

where we observe that supΘ(𝑎, 𝑏) = (𝜑*)−1 (𝑏). Defining the left generalized inverse as
𝜑†(𝑧) = sup{𝜃 ∈ Θ : 𝜑(𝜃) ≤ 𝑧}, we also observe that inf Θ(𝑎, 𝑏) = (𝜑*)† (𝑎). Because of this,
we have that:

inf Θ(𝑎, 𝑏) =

⎧⎨⎩min𝑥∈𝐷:𝑥>𝑎 𝜃(𝑎, 𝑥), if it exists,(︀
𝜑𝑃
)︀−1

(𝑎), otherwise.
(139)

supΘ(𝑎, 𝑏) =

⎧⎨⎩max𝑥∈𝐷:𝑥<𝑏 𝜃(𝑏, 𝑥), if it exists,(︀
𝜑𝑃
)︀−1

(𝑏), otherwise.
(140)

We can now bound the loss in value from the deletion of (𝑎, 𝑏) from 𝐷. By the previous
arguments, we have that:

𝒥 (𝐷)− 𝒥 (𝐷
′
) =

∫︁ 𝜃(𝑎,𝑏)

inf Θ(𝑎,𝑏)

(𝐽(𝜑*(𝜃), 𝜃)− 𝐽(𝑎, 𝜃)) d𝐹 (𝜃)

+

∫︁ supΘ(𝑎,𝑏)

𝜃(𝑎,𝑏)

(𝐽(𝜑*(𝜃), 𝜃)− 𝐽(𝑏, 𝜃)) d𝐹 (𝜃)

(141)

We now proceed in three steps. We first bound the integrands, then bound the limits of
integration, and finally put the two together.

Step 1: Bounding the Integrands We first derive an upper bound for 𝐽(𝜑*(𝜃), 𝜃) −
𝐽(𝑥, 𝜃). We expand 𝐽(𝑥, 𝜃) to the second order around 𝜑*(𝜃). Using Taylor’s remainder
Theorem, and evaluating at 𝑥 = 𝜑*′(𝜃),

𝐽(𝜑*′(𝜃), 𝜃) = 𝐽(𝜑*(𝜃), 𝜃)+𝐽𝑥(𝜑
*(𝜃), 𝜃)(𝜑*′(𝜃)−𝜑*(𝜃))+

1

2
𝐽𝑥𝑥(𝑦(𝜃), 𝜃)(𝜑

*′(𝜃)−𝜑*(𝜃))2 (142)
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for some 𝑦(𝜃) ∈ [𝜑*(𝜃), 𝜑*′(𝜃)]∪ [𝜑*′(𝜃), 𝜑*(𝜃)]. We further apply Taylor’s remainder theorem
to take a first-order expansion of 𝐽𝑥(𝑥, 𝜃) around 𝑥 = 𝜑𝑃 (𝜃) and evaluate at 𝑥 = 𝜑*(𝜃):

𝐽𝑥(𝜑
*(𝜃), 𝜃) = 𝐽𝑥(𝜑

𝑃 (𝜃), 𝜃) + 𝐽𝑥𝑥(𝑧(𝜃), 𝜃)(𝜑
*(𝜃)− 𝜑𝑃 (𝜃))

= 𝐽𝑥𝑥(𝑧(𝜃), 𝜃)(𝜑
*(𝜃)− 𝜑𝑃 (𝜃))

(143)

where the first equality defines the point 𝑧(𝜃) ∈ [𝜑*(𝜃), 𝜑𝑃 (𝜃)]∪ [𝜑𝑃 (𝜃), 𝜑*(𝜃)] and the second
uses the fact that 𝐽𝑥(𝜑

𝑃 (𝜃), 𝜃) = 0 by definition, since 𝜑𝑃 maximizes 𝐽 and 𝐽 is strictly
quasiconcave in its first argument. Combining these expansions, we have that:

|𝐽(𝜑*′
(𝜃), 𝜃)− 𝐽(𝜑*(𝜃), 𝜃)| ≤ |𝐽𝑥(𝜑*(𝜃), 𝜃)||𝜑*′(𝜃)− 𝜑*(𝜃)|+ 1

2
|𝐽𝑥𝑥(𝑦(𝜃), 𝜃)|(𝜑*′(𝜃)− 𝜑*(𝜃))2

≤ |𝐽𝑥𝑥(𝑧(𝜃), 𝜃)|(𝜑*′(𝜃)− 𝜑*(𝜃))2 +
1

2
|𝐽𝑥𝑥(𝑦(𝜃), 𝜃)|(𝜑*′

(𝜃)− 𝜑*(𝜃))2

≤ 3

2
𝐽𝑥𝑥(𝜑

*′(𝜃)− 𝜑*(𝜃))2

(144)
Thus, defining 𝑐 = 𝜑*(𝜃(𝑎, 𝑏)), the integrand in the first line of Equation 141 is bounded
above by 3

2
𝐽𝑥𝑥(𝑐−𝑎)2 and the integrand in the second line of Equation 141 is bounded above

by 3
2
𝐽𝑥𝑥(𝑏− 𝑐)2.

Step 2: Bounding the Limits of Integration We first derive bounds for the limits
of integration. There are two approaches to this that we use. The first approach yields
Equation 58 and Equation 59. The second approach yields Equation 60.

In the first approach, we observe that 𝜃(𝑎, 𝑏)−inf Θ(𝑎, 𝑏), supΘ(𝑎, 𝑏)−𝜃(𝑎, 𝑏) ≤ supΘ(𝑎, 𝑏)−
inf Θ(𝑎, 𝑏) ≤

(︀
𝜑𝑃
)︀−1

(𝑏)−
(︀
𝜑𝑃
)︀−1

(𝑎). Both 𝜑𝑃 and (𝜑𝑃 )−1 are monotone and differentiable
functions under our maintained assumption that 𝐽 is twice continuously differentiable and
strictly supermodular in (𝑥, 𝜃). In this case, the slope of the inverse function is ((𝜑𝑃 )−1)′(𝑥) =

1
(𝜑𝑃 )′((𝜑𝑃 )−1(𝑥))

. Moreover, by the implicit function theorem, (𝜑𝑃 )′(𝜃) = 𝐽𝑥𝜃(𝜑
𝑃 (𝜃),𝜃)

𝐽𝑥𝑥(𝜑𝑃 (𝜃),𝜃)
. Therefore,

we can write the bound

((𝜑𝑃 )−1)′(𝑥) =
𝐽𝑥𝑥(𝑥, (𝜑

𝑃 )−1(𝑥))

𝐽𝑥𝜃(𝑥, (𝜑𝑃 )−1(𝑥))
≤ sup𝑦∈𝑋,𝜃∈Θ 𝐽𝑥𝑥(𝑦, 𝜃)

inf𝑦∈𝑋,𝜃∈Θ 𝐽𝑥𝜃(𝑦, 𝜃)
=

𝐽𝑥𝑥
𝐽𝑥𝜃

< ∞ (145)

where penultimate inequality uses the definitions of 𝐽𝑥𝑥 and𝐽𝑥𝜃; and the last inequality
follows from the fact that 𝐽 twice continuously differentiable and strictly supermodular over
the compact set 𝑋 ×Θ. Thus, we have that:

supΘ(𝑎, 𝑏)− inf Θ(𝑎, 𝑏) ≤ 𝐽𝑥𝑥
𝐽𝑥𝜃

(𝑏− 𝑎) (146)
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In the second approach, we suppose that 𝑎 < 𝑐 < 𝑏 are three sequential points in 𝐷, i.e,
𝑐 is isolated, and 𝑎 and 𝑏 are the closest elements to 𝑐 in 𝐷. In this case inf Θ(𝑎, 𝑏) = 𝜃(𝑎, 𝑐)

and supΘ(𝑎, 𝑏) = 𝜃(𝑐, 𝑏). We first bound 𝜃(𝑎, 𝑏)− 𝜃(𝑎, 𝑐).

To do this, we define 𝜃(𝑢) = 𝜃(𝑎, 𝑐 + 𝑢) and note that 𝜃(𝑏 − 𝑐) = 𝜃(𝑎, 𝑏) and 𝜃(0) =

𝜃(𝑎, 𝑐). Under this reformulation, the definition of 𝜃(𝑢) can be re-written as 𝐽(𝑐+𝑢, 𝜃(𝑢)) =

𝐽(𝑎, 𝜃(𝑢)). We now implicitly differentiate this to obtain

𝜃′(𝑢) =
−𝐽𝑥(𝑐+ 𝑢, 𝜃(𝑢))

𝐽𝜃(𝑐+ 𝑢, 𝜃(𝑢))− 𝐽𝜃(𝑎, 𝜃(𝑢))
(147)

We now apply Taylor’s remainder theorem to 𝜃(𝑢) around 𝑢 = 0, evaluated at 𝑢 = 𝑏− 𝑐, to
obtain

𝜃(𝑏− 𝑐) = 𝜃(0) + 𝜃′(𝑢̃)(𝑏− 𝑐) (148)

for some 𝑢̃ ∈ [0, 𝑏− 𝑐]. Using our definitions, this implies

𝜃(𝑎, 𝑏)− 𝜃(𝑎, 𝑐) = 𝜃(𝑏− 𝑐)− 𝜃(0) =
−𝐽𝑥(𝑐+ 𝑢̃, 𝜃(𝑢̃))

𝐽𝜃(𝑐+ 𝑢̃𝑡, 𝜃(𝑢̃))− 𝐽𝜃(𝑎, 𝜃(𝑢̃))
(𝑏− 𝑐) (149)

We now bound the numerator and denominator of the first fraction. For the numerator, we
apply Taylor’s remainder theorem to 𝐽𝑥(·, 𝜃(𝑢̃)) around 𝑥 = 𝜑𝑃 (𝜃(𝑢̃)) to write

𝐽𝑥(𝑐+ 𝑢̃, 𝜃(𝑢̃)) =𝐽𝑥(𝜑
𝑃 (𝜃(𝑢̃)), 𝜃(𝑢̃)) + 𝐽𝑥𝑥(𝑧, 𝜃(𝑢̃))(𝑐+ 𝑢̃− 𝜑𝑃 (𝜃(𝑢̃)))

=𝐽𝑥𝑥(𝑧, 𝜃(𝑢̃))(𝑐+ 𝑢̃− 𝜑𝑃 (𝜃(𝑢̃)))
(150)

for some 𝑧 ∈ [𝑐 + 𝑢̃, 𝜑𝑃 (𝜃(𝑢̃))], where we use 𝐽𝑥(𝜑
𝑃 (𝜃), 𝜃) = 0 in the second line. Moreover,

we have that (𝑐+ 𝑢̃−𝜑𝑃 (𝜃(𝑢̃))) ≤ 𝑏−𝑎. Therefore, we have that |𝐽𝑥(𝑐+ 𝑢̃, 𝜃𝑢̃)| < 𝐽𝑥𝑥(𝑏−𝑎).
For the denominator, we apply Taylor’s remainder theorem to 𝐽𝜃(·, 𝜃(𝑢̃)) around 𝑥 = 𝑎 to
write

𝐽𝜃(𝑐+ 𝑢̃, 𝜃(𝑢̃))− 𝐽𝜃(𝑎, 𝜃(𝑢̃)) = 𝐽𝑥𝜃(𝑧, 𝜃(𝑢̃))(𝑐+ 𝑢̃− 𝑎) (151)

for some 𝑧 ∈ [𝑎, 𝑐 + 𝑢̃]. We observe that 𝑐 + 𝑢̃ − 𝑎 ≥ 𝑐 − 𝑎. Therefore, |𝐽𝜃(𝑐 + 𝑢̃, 𝜃(𝑢̃)) −
𝐽𝜃(𝑎, 𝜃(𝑢̃))| ≥ 𝐽𝑥𝜃(𝑐− 𝑎). Combining these two bounds, we deduce that:

𝜃(𝑎, 𝑏)− 𝜃(𝑎, 𝑐) ≤ 𝐽𝑥𝑥(𝑏− 𝑎)

𝐽𝑥𝜃(𝑐− 𝑎)
(𝑏− 𝑐) (152)
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To bound, 𝜃(𝑐, 𝑏)− 𝜃(𝑎, 𝑏) we can apply analogous arguments. By doing this, we obtain:

𝜃(𝑎, 𝑏)− 𝜃(𝑐, 𝑏) ≤ 𝐽𝑥𝑥(𝑏− 𝑎)

𝐽𝑥𝜃(𝑏− 𝑐)
(𝑐− 𝑎) (153)

Step 3: Bounding the Value Combining steps 1 and 2. We can now derive the payoff
bound of Equation 59:

𝒥 (𝐷)− 𝒥 (𝐷
′
) =

∫︁ 𝜃(𝑎,𝑏)

inf Θ(𝑎,𝑏)

(𝐽(𝜑*(𝜃), 𝜃)− 𝐽(𝑎, 𝜃)) d𝐹 (𝜃)

+

∫︁ supΘ(𝑎,𝑏)

𝜃(𝑎,𝑏)

(𝐽(𝜑*(𝜃), 𝜃)− 𝐽(𝑏, 𝜃)) d𝐹 (𝜃)

≤
∫︁ 𝜃(𝑎,𝑏)

inf Θ(𝑎,𝑏)

3

2
𝐽𝑥𝑥(𝑐− 𝑎)2 d𝐹 (𝜃) +

∫︁ supΘ(𝑎,𝑏)

𝜃(𝑎,𝑏)

3

2
𝐽𝑥𝑥(𝑏− 𝑐)2 d𝐹 (𝜃)

≤ 3

2
𝐽𝑥𝑥[(𝑐− 𝑎)2 + (𝑏− 𝑐)2]

∫︁ supΘ(𝑎,𝑏)

inf Θ(𝑎,𝑏)

d𝐹 (𝜃)

≤ 3

2
𝐽𝑥𝑥[(𝑐− 𝑎)2 + (𝑏− 𝑐)2]

𝐽𝑥𝑥
𝐽𝑥𝜃

(𝑏− 𝑎)𝑓

=
3

2

𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑏− 𝑎)[(𝑐− 𝑎)2 + (𝑏− 𝑐)2]

(154)

Observing that (𝑐− 𝑎)2 + (𝑏− 𝑐)2 ≤ (𝑏− 𝑎)2, we also obtain Equation 58.

Finally, we obtain Equation 60 by combining step 1 with the second approach to step 2.
Doing this, we obtain:

𝒥 (𝐷)− 𝒥 (𝐷
′
) =

∫︁ 𝜃(𝑎,𝑏)

𝜃(𝑎,𝑐)

(𝐽(𝜑*(𝜃), 𝜃)− 𝐽(𝑎, 𝜃)) d𝐹 (𝜃)

+

∫︁ supΘ(𝑐,𝑏)

𝜃(𝑎,𝑏)

(𝐽(𝜑*(𝜃), 𝜃)− 𝐽(𝑏, 𝜃)) d𝐹 (𝜃)

≤
∫︁ 𝜃(𝑎,𝑏)

𝜃(𝑎,𝑐)

3

2
𝐽𝑥𝑥(𝑐− 𝑎)2 d𝐹 (𝜃) +

∫︁ 𝜃(𝑐,𝑏)

𝜃(𝑎,𝑏)

3

2
𝐽𝑥𝑥(𝑏− 𝑐)2 d𝐹 (𝜃)

≤ 3
𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑏− 𝑎)(𝑐− 𝑎)(𝑏− 𝑐)

(155)

Completing the proof.

C.1.7 Proof of Lemma 7

We prove the three claims in turn.
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1. Intervals Suppose that 𝐷 contains an interval 𝐼. Let 𝑥 be the midpoint of such an
interval and consider a sequence of points 𝑎𝑚 = 𝑥 − 𝑡

𝑚
, 𝑥𝑚 = 𝑥, and 𝑏𝑚 = 𝑥 + 𝑡

𝑚
, where

𝑡 > 0 is small enough such that (𝑥 − 𝑡, 𝑥 + 𝑡) is contained in 𝐼. We use Equation 58 from
Lemma 6. In particular, for every 𝑚, we have that:

𝒥 (𝐷)− 𝒥
(︂
𝐷 ∖

(︂
𝑥− 𝑡

𝑚
, 𝑥+

𝑡

𝑚

)︂)︂
≤ 12

𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
𝑡3𝑚−3 (156)

We observe that 𝐷 ∩ (𝑥− 𝑡
𝑚
, 𝑥+ 𝑡

𝑚
) = (𝑥− 𝑡

𝑚
, 𝑥+ 𝑡

𝑚
) for all 𝑚 by construction. Moreover,

the topological limit of (𝑥− 𝑡
𝑚
, 𝑥+ 𝑡

𝑚
) is {𝑥}. Thus, by strong monotonicity, there exists 𝑀

such that for all 𝑚 ≥ 𝑀 , we have that:

Γ(𝐷)− Γ

(︂
𝐷 ∖

(︂
𝑥− 𝑡

𝑚
, 𝑥+

𝑡

𝑚

)︂)︂
≥ 𝜖𝑡2𝑚−2 (157)

Thus, for all 𝑚 > max
{︁
𝑀, 12𝐽2

𝑥𝑥𝑓
𝐽𝑥𝜃

𝑡
𝜀

}︁
we have that:

𝒥 (𝐷)− Γ(𝐷) < 𝒥
(︂
𝐷 ∖

(︂
𝑥− 𝑡

𝑚
, 𝑥+

𝑡

𝑚

)︂)︂
− Γ

(︂
𝐷 ∖

(︂
𝑥− 𝑡

𝑚
, 𝑥+

𝑡

𝑚

)︂)︂
(158)

which contradicts the optimality of 𝐷.

2. Perfect and Nowhere Dense Sets As 𝐵𝑡(𝑥) ∩ 𝐷 is perfect for some 𝑡 > 0, every
element is an accumulation point. Moreover, as the set is nowhere dense, 𝐵𝑡(𝑥) ∩ 𝐷 must
contain an accumulation point that is isolated from one side. We focus on the case in which
the point is isolated from the left, i.e., there exists 𝑥* ∈ 𝐵𝑡(𝑥) ∩𝐷 such that 𝑦 = max{𝑧 ∈
𝐷 : 𝑧 < 𝑥*} exists; the argument is entirely symmetric if the point is isolated from the
right. We now construct a sequence with 𝑎𝑚 = 𝑦 and {𝑏𝑚} equal to a monotone decreasing
sequence of points in 𝐷 that converges to 𝑥* (as 𝑥* is a limit point, the Bolzano-Weierstrass
theorem implies that this is always possible). Thus, we have from statement 2 of Lemma 6
(Equation 59) that there exists a sequence of points 𝑧𝑚 ∈ (𝑥*, 𝑏𝑚) ∩𝐷 such that:

𝒥 (𝐷)− 𝒥 (𝐷 ∖ (𝑦, 𝑏𝑚)) = 𝒥 (𝐷)− 𝒥 (𝐷 ∖ [𝑥*, 𝑏𝑚))

≤ 3

2

𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑏𝑚 − 𝑥*)

[︀
(𝑏𝑚 − 𝑧𝑚)

2 + (𝑧𝑚 − 𝑥*)2
]︀
≤ 3

2

𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑏𝑚 − 𝑦)

[︀
(𝑏𝑚 − 𝑥*)2

]︀ (159)

We now fix the sequence 𝑥𝑚 = 𝑥* and observe that the topological limit of (𝑦, 𝑏𝑚) ∩ 𝐷 is
{𝑥*}. By strong monotonicity, we have that there exists 𝑀 such that for all 𝑚 ≥ 𝑀 , we
have that:

Γ(𝐷)− Γ(𝐷 ∖ (𝑦, 𝑏𝑚)) ≥ 𝜖(𝑥* − 𝑦)(𝑏𝑚 − 𝑥*) (160)
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As 𝑏𝑚 − 𝑥* is common to both terms we have that for all 𝑚 ≥ 𝑀 that:

Γ(𝐷)− Γ(𝐷 ∖ (𝑦, 𝑏𝑚))− (𝒥 (𝐷)− 𝒥 (𝐷 ∖ (𝑦, 𝑏𝑚)))

≥ (𝑏𝑚 − 𝑥*)

[︂
𝜖(𝑥* − 𝑦)− 3

2

𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑏𝑚 − 𝑥)(𝑏𝑚 − 𝑦)

]︂ (161)

As 𝑏𝑚 → 𝑥*, we have that there exists a 𝑀̂ such that
[︁
𝜖(𝑥* − 𝑦)− 3

2
𝐽2
𝑥𝑥𝑓
𝐽𝑥𝜃

(𝑏𝑚 − 𝑥)(𝑏𝑚 − 𝑦)
]︁
>

0 for all 𝑚 ≥ 𝑀̂ , which implies that for all 𝑚 ≥ max{𝑀, 𝑀̂}:

𝒥 (𝐷)− Γ(𝐷) < 𝒥 (𝐷 ∖ (𝑦, 𝑏𝑚))− Γ(𝐷 ∖ (𝑦, 𝑏𝑚)) (162)

This contradicts the optimality of 𝐷.

3. Countably Infinite Sets If 𝐷 is countably infinite it contains an accumulation point
𝑥. As 𝐷 does not contain any perfect sets, we know that every neigborhood of 𝑥 contains an
isolated point. Let {𝑥𝑚} ⊂ 𝐷 be a monotone sequence of isolated points such that 𝑥𝑚 → 𝑥.
As 𝑥𝑚 is isolated, we may define 𝑎𝑚 = max{𝑦 ∈ 𝐷 : 𝑦 < 𝑥𝑚} and 𝑏𝑚 = min{𝑦 ∈ 𝐷 : 𝑦 > 𝑥𝑚}.
By statement 3. in Lemma 6 (Equation 60), we have that:

𝒥 (𝐷)− 𝒥 (𝐷 ∖ {𝑥𝑚}) ≤ 3
𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑏𝑚 − 𝑎𝑚)(𝑥𝑚 − 𝑎𝑚)(𝑏𝑚 − 𝑥𝑚) (163)

By construction, we have that 𝑥𝑚 ∈ (𝑎𝑚, 𝑏𝑚). Moreover, 𝐷∩(𝑎𝑚, 𝑏𝑚) = {𝑥𝑚}, the topological
limit of which is {𝑥} as 𝑥𝑚 → 𝑥. Thus, by strong monotonicity, we have that there exists
𝑀 such that for all 𝑚 ≥ 𝑀 , we have that:

Γ(𝐷)− Γ(𝐷 ∖ {𝑥𝑚}) ≥ 𝜖(𝑥𝑚 − 𝑎𝑚)(𝑏𝑚 − 𝑥𝑚) (164)

Factoring (𝑥𝑚 − 𝑎𝑚)(𝑏𝑚 − 𝑥𝑚) from both expressions, we have that:

Γ(𝐷)− Γ(𝐷 ∖ {𝑥𝑚})− (𝒥 (𝐷)− 𝒥 (𝐷 ∖ {𝑥𝑚}))

≥ (𝑥𝑚 − 𝑎𝑚)(𝑏𝑚 − 𝑥𝑚)

[︂
𝜖− 3

𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑏𝑚 − 𝑎𝑚)

]︂ (165)

As 𝑎𝑚, 𝑏𝑚 → 𝑥, we have that there exists 𝑀̂ such that 𝜖−3𝐽2
𝑥𝑥𝑓
𝐽𝑥𝜃

(𝑏𝑚−𝑎𝑚) > 0 for all 𝑚 ≥ 𝑀̂ .
This implies that for all 𝑚 ≥ max{𝑀, 𝑀̂} that:

𝒥 (𝐷)− Γ(𝐷) < 𝒥 (𝐷 ∖ {𝑥𝑚})− Γ(𝐷 ∖ {𝑥𝑚}) (166)

which contradicts the optimality of 𝐷.
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C.1.8 Proof of Lemma 8

We have already show that 𝐷
* is finite under strong monotonicity. Thus, we can express

it as a sequence of ordered points. Take any three sequential points 𝑥𝑚−1, 𝑥𝑚, 𝑥𝑚+1 ∈ 𝐷
*.

We can apply statement 3 of Lemma 6 (Equation 60) to bound the loss from eliminating
contractibility at 𝑥𝑚:

𝒥 (𝐷
*
)− 𝒥 (𝐷

* ∖ {𝑥𝑚}) ≤ 3
𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑥𝑚 − 𝑥𝑚−1)(𝑥𝑚+1 − 𝑥𝑚)(𝑥𝑚+1 − 𝑥𝑚−1) (167)

Moreover, we can take constant sequences 𝑎𝑛 = 𝑥𝑚−1, 𝑥̃𝑛 = 𝑥𝑚 𝑏𝑛 = 𝑥𝑚+1 for all 𝑛 ∈ N.
𝑎𝑛, 𝑥̃𝑛, 𝑏𝑛 ∈ 𝐷

* for all 𝑛 ∈ N and 𝐷
* ∩ (𝑎𝑛, 𝑏𝑛) = {𝑥𝑚} for all 𝑛 ∈ N. Thus, strong

monotonicity of Γ implies that:

Γ(𝐷
*
)− Γ(𝐷

* ∖ {𝑥𝑚}) ≥ 𝜖(𝑥𝑚 − 𝑥𝑚−1)(𝑥𝑚+1 − 𝑥𝑚) (168)

Optimality of 𝐷* requires that 𝒥 (𝐷
*
)−𝒥 (𝐷

* ∖ {𝑥𝑚}) ≥ Γ(𝐷
*
)−Γ(𝐷

* ∖ {𝑥𝑚}). Combining
this with Inequalities 167 and 168, we have that:

3
𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑥𝑚 − 𝑥𝑚−1)(𝑥𝑚+1 − 𝑥𝑚)(𝑥𝑚+1 − 𝑥𝑚−1) ≥ 𝜖(𝑥𝑚 − 𝑥𝑚−1)(𝑥𝑚+1 − 𝑥𝑚) (169)

Dividing both sides by (𝑥𝑚+1 − 𝑥𝑚)(𝑥𝑚 − 𝑥𝑚−1) yields

𝑥𝑚+1 − 𝑥𝑚−1 ≥
𝜖

3

𝐽𝑥𝜃
𝐽2
𝑥𝑥𝑓

(170)

Thus, we have that:

𝑥̄ ≥ 𝑥𝐾* − 𝑥1 =

⌊𝐾*/2⌋∑︁
𝑗=1

𝑥2𝑗+1 − 𝑥2𝑗−1 ≥ 𝐾* 𝜖

6

𝐽𝑥𝜃
𝐽2
𝑥𝑥𝑓

(171)

Re-arranging this equation yields the desired bound.

C.1.9 Proof of Proposition 23

Using the representation we derived in Proposition 22, we have that costs of distinguishing
satisfy:

Γ𝐾(𝐷) =

∫︁ 𝑥

0

𝐼(𝛿(𝑥)) d𝑥 =
𝐾∑︁
𝑘=2

𝐼(𝑥𝑘)(𝑥𝑘 − 𝑥𝑘−1) (172)
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Thus, we have that:

Γ
(𝑘)
𝐾 (𝐷) = 𝐼 ′(𝑥𝑘)(𝑥𝑘 − 𝑥𝑘−1) + 𝐼(𝑥𝑘)− 𝐼(𝑥𝑘+1) (173)

where 𝐼 ′(𝑥𝑘) = −𝑑(𝑥𝑘, 𝑥𝑘) +
∫︀ 𝑥

𝑥𝑘
𝑑𝑤(𝑥𝑘, 𝑦) d𝑦 = −ℎ(0) +

∫︀ 𝑥

𝑥𝑘
𝑑𝑤(𝑥𝑘, 𝑦) d𝑦.

C.1.10 Proof of Proposition 24

We first introduce some preliminary notation. Given a vector (𝑥2, ..., 𝑥𝐾*−1) ∈ R𝐾*−2, we let
(𝑥𝑘+𝜀, 𝑥−𝑘) ∈ R𝐾*−2 the vector where we replace 𝑥𝑘 with 𝑥𝑘+𝜀 for some 𝑘 ∈ {2, ..., 𝐾* − 1}.
As Γ is strongly monotone, 𝐷 is finite. Thus, for {𝑥𝑘} to be optimal, as Γ is finitely
differentiable, it must be true that d

d𝜀
𝒥 (𝑥𝑘 + 𝜀, 𝑥−𝑘)|𝜀=0 = d

d𝜀
Γ(𝑥𝑘 + 𝜀, 𝑥−𝑘)|𝜀=0 for any

𝑘 ∈ {2, . . . , 𝐾* − 1}. The left-hand-side is

d

d𝜀
𝒥 (𝑥𝑘 + 𝜀, 𝑥−𝑘)|𝜀=0 =

∫︁ 𝜃𝑘+1

𝜃𝑘

𝐽𝑥(𝑥𝑘, 𝜃) d𝐹 (𝜃)+

𝜕

𝜕𝑥𝑘

𝜃𝑘

(︁
𝐽(𝑥𝑘, 𝜃𝑘)− 𝐽(𝑥𝑘−1, 𝜃𝑘)

)︁
𝑓(𝜃𝑘) +

𝜕

𝜕𝑥𝑘

𝜃𝑘+1

(︁
𝐽(𝑥𝑘+1, 𝜃𝑘+1)− 𝐽(𝑥𝑘, 𝜃𝑘+1)

)︁
𝑓(𝜃𝑘+1)

=

∫︁ 𝜃𝑘+1

𝜃𝑘

𝐽𝑥(𝑥𝑘, 𝜃) d𝐹 (𝜃)

(174)

where, in the second equality, we use the fact that 𝐽(𝑥𝑘, 𝜃𝑘) = 𝐽(𝑥𝑘−1, 𝜃𝑘) by definition. By
the definition that d

d𝜀
Γ(𝑥𝑘 + 𝜀, 𝑥−𝑘)|𝜀=0 = Γ𝑘(𝐷), we obtain Equation 64. Finally, again by

definition, we have that 𝑥1 = 0 and 𝑥𝐾* = 1

C.1.11 Proof of Proposition 25

We split the argument in two parts. We first calculate the optimal contract for fixed 𝐾. We
then solve for the optimal 𝐾*.

Optimal Contract for Fixed 𝐾 We leverage our characterization of the optimal contract
in Proposition 24 to set up the optimization problem in closed form. The virtual surplus
function in this setting is 𝐽(𝑥, 𝜃) = 𝛼(2𝜃 − 1)𝑥 − 𝛽 𝑥2

2
. Equation 62 gives the principal’s

interim payoff under the optimal contract conditional on any set of 𝐾 contractible actions
{𝑥𝑘}𝐾𝑘=1. Moreover, the 𝐾-interval partition of types is defined by the indifference condition
of Corollary 20. We therefore define the following value function describing the monopolist’s
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favorite 𝐾-item contract as the solution of a quadratic constrained optimization problem:

𝑉 (𝐾) = max
(𝑥1,...,𝑥𝐾)∈𝑋𝐾

{︃
𝐾∑︁
𝑘=1

∫︁ 𝜃𝑘+1

𝜃𝑘

(︂
𝛼(2𝜃 − 1)𝑥𝑘 − 𝛽

𝑥2
𝑘

2

)︂
d𝜃

− 𝛾

(︃
1− 𝑥2

1 −
𝐾∑︁
𝑘=2

𝑥𝑘(𝑥𝑘 − 𝑥𝑘−1)

)︃}︃
s.t. 0 ≤ 𝑥𝑘 ≤ 𝑥𝑘+1, ∀𝑘 ≤ 𝐾 − 1

𝑥1 = 0, 𝑥𝐾 = 1

𝜃𝑘 =
𝛽

4𝛼
(𝑥𝑘 + 𝑥𝑘−1) +

1

2
, 2 ≤ 𝑘 ≤ 𝐾

𝜃1 = 0, 𝜃𝐾+1 = 1

(175)

The first constraint requires that the 𝑥𝑘 be an ordered sequence. The second constraint
requires that 𝑥𝐾 = 1, since this action is always contractible. The third constraint solves for
the cut-off types 𝜃𝑘, to whom the principal is indifferent in allocating 𝑥𝑘 or 𝑥𝑘−1. The final
constraint gives the boundary conditions for the type space.

Applying Proposition 24, the first-order condition for 𝑘 ∈ {2, 𝐾 − 1} is

∫︁ 𝜃𝑘+1

𝜃𝑘

(𝛼(2𝜃 − 1)− 𝛽𝑥𝑘) d𝜃 − 𝛾(−2𝑥𝑘 + 𝑥𝑘−1 + 𝑥𝑘+1) = 0 (176)

This reduces to:

𝛾(−2𝑥𝑘 + 𝑥𝑘−1 + 𝑥𝑘+1) = (𝜃𝑘+1 − 𝜃𝑘)
[︁
𝛼(𝜃𝑘+1 + 𝜃𝑘 − 1)− 𝛽𝑥𝑘

]︁
=

𝛽2

16𝛼
(𝑥𝑘+1 − 𝑥𝑘−1)(𝑥𝑘+1 + 𝑥𝑘−1 − 2𝑥𝑘)

(177)

where, in the second equality, we use the fact that 𝜃𝑘 = 𝛽
4𝛼
(𝑥𝑘 + 𝑥𝑘−1) +

1
2
. This can in turn

be written as:
(𝑥𝑘+1 + 𝑥𝑘−1 − 2𝑥𝑘)

[︂
𝛽2

16𝛼
(𝑥𝑘+1 − 𝑥𝑘−1)− 𝛾

]︂
= 0 (178)

This equation has two solutions,

𝑥𝑘 =
𝑥𝑘+1 + 𝑥𝑘−1

2
, 𝑥𝑘+1 = 𝑥𝑘−1 +∆ (179)

where ∆ = 16𝛼𝛾
𝛽2 . We now separately consider each case.
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Case 1: Uniform Grid From the boundary conditions, we have that 𝑥1 = 0 and 𝑥𝐾 = 1.
Thus, we have that:

𝑥𝑘 =
𝑥𝑘+1 + 𝑥𝑘−1

2
=⇒ 𝑥𝑘 =

𝑘 − 1

𝐾 − 1
(180)

We can verify that this is a local maximum by checking the Hessian is negative definite at
this solution. We calculate that:

𝜕2𝒥
𝜕𝑥2

𝑘

= 𝐻𝒥
𝑘−1,𝑘−1 = − 𝛽2

4𝛼(𝐾 − 1)
+ 2𝛾 = 𝜅

𝜕2𝒥
𝜕𝑥𝑘𝜕𝑥𝑘+1

= 𝐻𝒥
𝑘,𝑘−1 = 𝐻𝒥

𝑘−1,𝑘 =
𝛽2

8𝛼(𝐾 − 1)
− 𝛾 = −1

2
𝜅

(181)

where we note that row and column 𝑘 − 1 of 𝐻𝒥 corresponds to the variable 𝑥𝑘. Thus, the
Hessian is a tridiagonal Toeplitz matrix, which implies that the Eigenvalues are, by Theorem
2.2 of Kulkarni, Schmidt, and Tsui (1999), given by:

𝜆𝑘 = 𝜅

(︂
1 + cos

(︂
𝑘 − 1

𝐾
𝜋

)︂)︂
(182)

for 𝑘 ∈ {2, . . . , 𝐾 − 1}. As cos
(︀
𝑘−1
𝐾

𝜋
)︀
> −1 for all such 𝑘, we have that sgn(𝜆𝑘) = sgn(𝜅).

Thus, the Hessian is negative definite if and only if:

𝐾 < 𝐾̄ = 1 +
𝛽2

8𝛼𝛾
(183)

We will later verify that this holds whenever 𝐾 is set optimally, confirming the optimality
of the uniform grid solution.

Case 2: Alternating Grid The first solution yields a uniform grid. Under the second
solution, it must be the case that even points form a uniform grid with spacing ∆ ≡ 16𝛼𝛾

𝛽2

and the odd points form a uniform grid with spacing ∆ ≡ 16𝛼𝛾
𝛽2 . When 𝐾 is odd, given

the boundary conditions that 𝑥1 = 0 and 𝑥𝐾 = 1, we have that this is possible only when
𝐾 = 2 + 2

Δ
, which is itself only possible when 𝛽2

8𝛼𝛾
is an odd integer. When 𝐾 is even, the

solution must be 𝑥𝑘 = 𝑘−1
2
∆ for 𝑘 odd, and 𝑥𝑘 = 1− 𝐾−𝑘

2
∆ for 𝑘 even. This is possible for

any even 𝐾 < 2 + 2
Δ

.

We next show that the alternating grid is not a local maximum of the objective function.
For a local maximum, a necessary condition is that the Hessian is negative semidefinite.
We will show the existence of a vector 𝑥 ∈ R𝐾−2 such that 𝑣 ̸= 0 an 𝑣′𝐻𝒥 𝑣 > 0, which
implies that 𝐻𝒥 is not negative semidefinite. To do this, we first evaluate the second-order
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conditions at the conjectured alternating grid solution. These simplify to

𝜕2𝒥
𝜕𝑥2

𝑘

= 𝐻𝒥
𝑘−1,𝑘−1 = −𝛽2

8𝛼
∆+ 2𝛾 = 0

𝜕2𝒥
𝜕𝑥𝑘𝜕𝑥𝑘+1

= 𝐻𝒥
𝑘,𝑘−1 = 𝐻𝒥

𝑘−1,𝑘 =
𝛽2

8𝛼
(𝑥𝑘+1 − 𝑥𝑘)− 𝛾

(184)

Using this, we define 𝑣𝑘 = 𝑒𝑘−1 − 𝑒𝑘, where 𝑒𝑘 denotes the unit vector in dimension 𝑘.
This direction corresponds to increasing 𝑥𝑘 and decreasing 𝑥𝑘+1. We calculate

𝑣′𝑘𝐻
𝒥 𝑣𝑘 = 2

(︂
𝛾 − 𝛽2

8𝛼
(𝑥𝑘+1 − 𝑥𝑘)

)︂
(185)

We now split the proof into two cases. First, consider the case in which 𝐾 > 4. In this case,
there must exist some 𝑥𝑘, 𝑥𝑘+1 such that 𝑥𝑘+1−𝑥𝑘 <

Δ
2
, since the grid is not uniform. Then,

𝑣′𝑘𝐻
𝒥 𝑣𝑘 > 2

(︂
𝛾 − ∆𝛽2

16𝛼

)︂
> 0 (186)

and, as desired, we have shown that the Hessian is not negative definite. Next, we consider
the case in which 𝐾 = 4. In this case, we take two candidate vectors. The first is 𝑢 = 𝑒1+𝑒2,
and we observe

𝑢′𝐻𝒥𝑢 = 2

(︂
𝛽2

8𝛼
(𝑥3 − 𝑥2)− 𝛾

)︂
(187)

The second is 𝑣1 = 𝑒1 − 𝑒2, and we observe

𝑣′1𝐻
𝒥 𝑣1 = 2

(︂
𝛾 − 𝛽2

8𝛼
(𝑥3 − 𝑥2)

)︂
= −𝑢′𝐻𝒥𝑢 (188)

We have therefore shown the desired result but for the case in which 𝑢′𝐻𝒥𝑢 = 𝑣′1𝐻
𝒥 𝑣1 = 0.

Here, 𝑥3 − 𝑥2 =
8𝛼𝛾
𝛽2 = Δ

2
. But this is precisely the case of the uniform grid.

Optimal 𝐾* We first prove a Lemma computing the costs and benefits of having 𝐾 tiers:

Lemma 20. The value to the monopolist of a 𝐾-item contract, or the solution to the program
in Equation 175, can be written as 𝑉 (𝐾) = Π̂(𝐾)− Γ̂(𝐾) where

Π̂(𝐾) =
𝛼− 𝛽

4
+

𝛽2

48𝛼

(2𝐾 − 3) (2𝐾 − 1)

(𝐾 − 1)2

Γ̂(𝐾) =
𝛾

2

𝐾 − 2

𝐾 − 1

(189)
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Proof. Using the representation in Equation 62, we write

Π̂(𝐾) =
𝐾∑︁
𝑘=1

∫︁ 𝜃𝑘+1

𝜃𝑘

(︂
𝛼(2𝜃 − 1)𝑥𝑘 − 𝛽

𝑥2
𝑘

2

)︂
d𝜃

=
𝐾∑︁
𝑘=1

[︂
𝛼𝑥𝑘𝜃

2 − 𝑥𝑘

(︂
𝛼 +

𝛽

2
𝑥𝑘

)︂
𝜃

]︂𝜃𝑘+1

𝜃𝑘

=
𝐾∑︁
𝑘=1

(︂
𝛼𝑥𝑘(𝜃𝑘+1 − 𝜃𝑘)(𝜃𝑘+1 + 𝜃𝑘)− 𝑥𝑘

(︂
𝛼 +

𝛽

2
𝑥𝑘

)︂
(𝜃𝑘+1 − 𝜃𝑘)

)︂

=
𝛽

2𝛼(𝐾 − 1)

𝐾−1∑︁
𝑘=2

(︂
𝛼𝑥𝑘(𝜃𝑘+1 + 𝜃𝑘)− 𝑥𝑘

(︂
𝛼 +

𝛽

2
𝑥𝑘

)︂)︂
+ (1− 𝜃𝐾)

(︂
𝛼𝜃𝐾 − 𝛽

2

)︂
(190)

where, in the fourth equality, we use that 𝜃𝑘+1 − 𝜃𝑘 =
𝛽

2𝛼(𝐾−1)
for 𝑘 < 𝐾 and that 𝜃𝐾+1 = 1

and 𝑥𝐾 = 1. We simplify the summation term as

𝐾−1∑︁
𝑘=2

(︂
𝛼𝑥𝑘(𝜃𝑘+1 + 𝜃𝑘)− 𝑥𝑘

(︂
𝛼 +

𝛽

2
𝑥𝑘

)︂)︂

=
𝐾−1∑︁
𝑘=2

(︂
𝛼𝑥𝑘

(︂
1 +

𝛽

𝛼
𝑥𝑘

)︂
− 𝑥𝑘

(︂
𝛼 +

𝛽

2
𝑥𝑘

)︂)︂

=
𝛽

2

𝐾−1∑︁
𝑘=2

𝑥2
𝑘

=
𝛽

2

𝐾−1∑︁
𝑘=2

(︂
𝑘 − 1

𝐾 − 1

)︂2

=
𝛽

12(𝐾 − 1)
(𝐾 − 2)(2𝐾 − 3)

(191)

where we use that 𝜃𝑘 + 𝜃𝑘+1 = 1 + 𝛽
𝛼
𝑥𝑘. To simplify the second term, we observe that

𝜃𝐾 =
1

2
+

𝛽

4𝛼

(︂
1 +

𝐾 − 2

𝐾 − 1

)︂
=

2𝛼(𝐾 − 1) + 𝛽(2𝐾 − 3)

4𝛼(𝐾 − 1)

1− 𝜃𝐾 =
2𝛼(𝐾 − 1)− 𝛽(2𝐾 − 3)

4𝛼(𝐾 − 1)

(192)
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Putting this together, we write

Π̂(𝐾) =
𝛽2

24𝛼(𝐾 − 1)2

(︂
(𝐾 − 2)(2𝐾 − 3) +

3

2𝛽2

(︀
4𝛼2(𝐾 − 1)2 − 𝛽2(2𝐾 − 3)2

)︀
−

3

𝛽

(︀
2𝛼(𝐾 − 1)2 − 𝛽(2𝐾 − 3)(𝐾 − 1)

)︀)︂
=

𝛼− 𝛽

4
+

𝛽2

48𝛼

(2𝐾 − 3) (2𝐾 − 1)

(𝐾 − 1)2

(193)

We next show the desired representation of Γ̂. This follows by direct calculation:

Γ̂(𝐾) = 𝛾

(︃
1−

(︂
1− 1

𝐾 − 1

)︂2

−
2∑︁

𝑘=2

𝑘 − 1

𝐾 − 1

1

𝐾 − 1

)︃

=
𝛾

2

(︂
1− 1

𝐾 − 1

)︂
=

𝛾

2

𝐾 − 2

𝐾 − 1

(194)

Completing the proof.

To derive 𝐾̃, we take the first derivative of 𝑉 :

𝑉 ′(𝐾) =
𝛽2

24𝛼(𝐾 − 1)3
− 𝛾

2(𝐾 − 1)2
(195)

We observe that 𝑉 ′(𝐾) > 0 if and only if

𝐾 < 𝐾̃ :=
𝛽2

12𝛼𝛾
+ 1 (196)

We now prove that |𝐾* − 𝐾̃| < 1. If 𝐾* − 𝐾̃ > 1, then we know that 𝑉 (𝐾* − 1) > 𝑉 (𝐾*)

as 𝑉 ′ < 0 for all 𝐾* − 1 < 𝐾 < 𝐾*; this contradicts optimality. Similarly, if 𝐾̃ −𝐾* > 1,
we know that 𝑉 (𝐾* + 1) > 𝑉 (𝐾*) as as 𝑉 ′ > 0 for all 𝐾* < 𝐾 < 𝐾* + 1; this contradicts
optimality. Recall that we needed to check if the Hessian was negative definite. This is
true so long as 𝐾* < 𝐾̄. As 𝐾̄ = 4

3
𝐾̃, this holds whenever 𝐾̃ ≥ 3. It remains to check

when 𝐾̃ ∈ (2, 3) and 𝐾* = 3. Direct calculation shows that indifference between 𝐾 = 2

and 𝐾 = 3 occurs when 𝛾 = 𝛽2

16𝛼
. At this point, 𝐾̃ = 7/3. Thus, whenever 𝐾* > 2 is

strictly optimal (which is when 𝛾 < 𝛽2

16𝛼
), we have that 𝐾* < 𝐾̄. The comparative statics

follow from standard monotone comparative statics arguments, after the observations that
𝑉𝐾𝛼 < 0, 𝑉𝐾𝛽 > 0, and 𝑉𝐾𝛾 < 0. Finally, 𝑉 (3) − 𝑉 (2) = 1

4

(︁
𝛽2

16𝛼
− 𝛾
)︁
. Thus, whenever

𝛾 < 𝛽2

16𝛼
we have that 𝑉 (3) > 𝑉 (2), which implies that 𝐾* ≥ 3.
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C.1.12 Proof of Proposition 26

We now consider the problem of maximizing total surplus subject to the implementability
constraint, or in which

𝑆(𝑥, 𝜃) := 𝑢(𝑥, 𝜃) + 𝜋(𝑥, 𝜃) = 𝛼𝑥𝜃 − 𝛽
𝑥2

2
(197)

We first derive the principal’s expected surplus as a function of the number of contractibil-
ity points. Using Equation 62, we calculate:

Π̂𝐶(𝐾) =
𝐾∑︁
𝑘=1

∫︁ 𝜃𝑘+1

𝜃𝑘

(︂
𝛼𝜃𝑥𝑘 − 𝛽

𝑥2
𝑘

2

)︂
d𝜃

=
𝐾∑︁
𝑘=1

[︂
𝛼

2
𝑥𝑘𝜃

2 − 𝑥𝑘

(︂
𝛽

2
𝑥𝑘

)︂
𝜃

]︂𝜃𝑘+1

𝜃𝑘

=
𝐾∑︁
𝑘=1

(︂
𝛼

2
𝑥𝑘(𝜃𝑘+1 − 𝜃𝑘)(𝜃𝑘+1 + 𝜃𝑘)− 𝑥𝑘

(︂
𝛽

2
𝑥𝑘

)︂
(𝜃𝑘+1 − 𝜃𝑘)

)︂

=
𝛽

𝛼(𝐾 − 1)

𝐾−1∑︁
𝑘=2

(︂
𝛼

2
𝑥𝑘(𝜃𝑘+1 + 𝜃𝑘)− 𝑥𝑘

(︂
𝛽

2
𝑥𝑘

)︂)︂
+ (1− 𝜃𝐾)

(︂
𝛼

2
(1 + 𝜃𝐾)−

𝛽

2

)︂
(198)

We simplify the summation term as

𝐾−1∑︁
𝑘=2

(︂
𝛼

2
𝑥𝑘(𝜃𝑘+1 + 𝜃𝑘)− 𝑥𝑘

(︂
𝛽

2
𝑥𝑘

)︂)︂

=
𝐾−1∑︁
𝑘=2

(︂
𝛼

2
𝑥𝑘

(︂
2𝛽

𝛼
𝑥𝑘

)︂
− 𝑥𝑘

(︂
𝛽

2
𝑥𝑘

)︂)︂

=
𝛽

2

𝐾−1∑︁
𝑘=2

𝑥2
𝑘

(199)

where we use that 𝜃𝑘 + 𝜃𝑘+1 =
2𝛽
𝛼
𝑥𝑘. Comparing to Equation 191 in the proof of Proposition

25, we observe that Π̂𝐶(𝐾) = 2Π̂(𝐾).

Using Lemma 20, it follows that the optimal contract with complete information and cost
scaling 𝛾 is the same as the optimal contract under a transformed problem with incomplete
information and 𝛾 = 𝛾

2
. Thus, 𝐾̃𝐶 = 2𝐾̃ − 1.
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C.1.13 Proof of Proposition 27

We start by using the change of variables formula for pushforward measures to rewrite the
cost as:

Γ(𝐶, 𝜑) =

∫︁
𝑋

𝑑(𝐶(𝑥), 𝑋 ∖ 𝐶(𝑥))d𝐹𝜑(𝑥) =

∫︁
Θ

𝑑(𝐶(𝜑(𝜃)), 𝑋 ∖ 𝐶(𝜑(𝜃))d𝐹 (𝜃) (200)

Using the representation of 𝑑 derived in Proposition 22 and observing that 𝛿 = 0 is without
loss of optimality, we can further simplify the cost as:

Γ(𝐶, 𝜑) =

∫︁
Θ

∫︁ 𝑥

𝛿(𝜑(𝜃))

𝑑(𝛿(𝜑(𝜃)), 𝑦)d𝐹 (𝜃) =

∫︁
Θ

𝐼(𝛿(𝜑(𝜃)))d𝐹 (𝜃) (201)

By Lemma 18, we have that 𝛿(𝜑(𝜃)) = 𝜑(𝜃) for any implementable mechanism. Thus,
conditional on 𝜑, we have that the cost must satisfy:

Γ(𝐶, 𝜑) = Γ̃(𝜑) =

∫︁
Θ

𝐼(𝜑(𝜃))d𝐹 (𝜃) (202)

We can subsume this cost into the virtual surplus. Define 𝜋̃(𝑥, 𝜃) = 𝜋(𝑥, 𝜃)− 𝐼(𝑥) and define
𝐽 = 𝜋̃ + 𝑢 − 1−𝐹

𝑓
𝑢𝜃. By the arguments of Lemma 19, we then have that any optimal final

action function solves:
max

𝜑:Θ→𝑋:𝜑 is increasing

∫︁
𝐽(𝑥, 𝜃)d𝐹 (𝜃) (203)

Let 𝑋+ = 𝜑*(Θ) be the image of a solution to this problem and let 𝑋− = 𝑋 ∖𝑋+. We have
that 𝐶(𝑥) = [0, 𝑥] for every 𝑥 ∈ 𝑋+. As 𝐹𝜑(𝑋

−) = 0, the choice of 𝐶(𝑥) for any 𝑥 ∈ 𝑋−

has no effect on costs or benefits. Thus, we can set 𝐶(𝑥) = [0, 𝑥] for every 𝑥 ∈ 𝑋− without
loss of optimality.

C.1.14 Proof of Proposition 28

We start with a preliminary lemma.

Lemma 21. If Γ has a clause-based representation Γ̂ then it is lower semicontinuous in the
Hausdorff topology of closed sets.

Proof. Given that Γ̂ : N → R is strictly increasing we have as 𝐾 → ∞ either Γ̂(𝐾)

asymptotes to some value 𝛾 ∈ R, potentially equal to ∞. In particular, it must be the case
that Γ̂(𝐷) = 𝛾 for all sets such that 𝑛(𝐷) = ∞. Consider a sequence of closed sets 𝐷𝑛 such
that 𝐷𝑛 → 𝐷 in the Hausdorff sense. There are four cases:
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1. If eventually 𝐷𝑛 and 𝐷 have infinite many points, then Γ̂(𝐷𝑛) = 𝛾 for all 𝑛 and
Γ̂(𝐷) = 𝛾, as desired.

2. If eventually 𝐷𝑛 has infinite many points, but 𝑛(𝐷) < ∞, then we have lim inf𝑛 Γ̂(𝐷𝑛) =

𝛾 > Γ̂(𝐷), as desired.

3. If every 𝐷𝑛 has finitely many points, but 𝑛(𝐷) = ∞, then by Hausdorff convergence
we must have that 𝑛(𝐷𝑛) → ∞. Monotonicity then implies that lim inf𝑛 Γ̂(𝐷𝑛) = 𝛾 =

Γ̂(𝐷), as desired.

4. If every 𝐷𝑛 and 𝐷 have all finitely many points, then by Hausdorff convergence we must
have that 𝑛(𝐷𝑛) → 𝑛(𝐷). Discrete convergence then implies that lim inf𝑛 Γ̂(𝐷𝑛) =

Γ̂(𝐷), as desired.

We now first prove that 𝐷
* is finite. We first rule out the case in which the cardinality

of 𝐷 is infinite but 𝐷 ̸= 𝑋, or contractibility is not perfect. Under clause-based costs,
Γ(𝐷) = Γ(𝑋), or there is no increase in cost to consider perfect contractibility. However,
𝒥 (𝑋) ≥ 𝒥 (𝐷). Therefore, there must also be a solution with perfect contractibility. It will
therefore suffice to show that perfect contractibility cannot be optimal.

To do this, we show that there is a strict payoff improvement from replacing perfect
contractibility with a uniform grid of 𝐾 points, evenly spaced with width 𝑥/𝐾. Recall
that 𝜑𝑃 denotes the assignment under perfect contractibility, let 𝜑*

𝐾 denote the assignment
under the grid, and let 𝐺𝐾 = {𝑥𝑖/𝐾}𝐾𝑖=1 ∈ 𝒟 denote the grid. To derive the benefits of
this contractibility correspondence, we apply a close variant of Lemma 6. Using the bound
derived in the proof of that result for |𝐽(𝜑𝑃 (𝜃), 𝜃)− 𝐽(𝑥, 𝜃)| for any 𝑥, we derive

𝒥 (𝑋)− 𝒥 (𝐺𝐾) =

∫︁ 1

0

(𝐽(𝜑𝑃 (𝜃), 𝜃)− 𝐽(𝜑*
𝑛(𝜃), 𝜃)) d𝐹 (𝜃)

≤
∫︁ 1

0

1

2𝐾2
𝐽𝑥𝑥 d𝐹 (𝜃) =

1

2𝐾2
𝐽𝑥𝑥

(204)

We next observe that, if costs are clause strongly monotone, for sufficiently large 𝑛

Γ(𝑋)− Γ(𝐺𝐾) ≥
∞∑︁

𝑗=𝐾

𝑗−𝛽𝜖 (205)

If 𝛽 ≤ 1, then Γ(𝑋) − Γ(𝐺𝐾) = ∞ and it is clearly preferred to set 𝐺𝐾 . If 𝛽 > 1, then we

214



note that

Γ(𝑋)− Γ(𝐺𝐾) ≥ 𝜖
∞∑︁

𝑗=𝐾

𝑗−𝛽 ≥ 𝜖

∫︁ ∞

𝐾

𝑠−𝛽 d𝑠 = 𝜖

[︂
− 1

𝛽
𝑠−𝛽+1

]︂∞
𝐾

=
𝜖

𝛽
𝐾−𝛽+1 (206)

where the first inequality uses the fact that 𝑠−𝛽 is a decreasing function for 𝑠 > 0, and
therefore the integral is smaller than its approximation via left end-point steps (i.e., the
sum). In this case, we have

𝒥 (𝐺𝐾)− Γ(𝐺𝐾) ≥ 𝒥 (𝑋)− Γ(𝑋) +

(︂
𝜖

𝛽
𝐾−𝛽+1 − 1

2
𝐽𝑥𝑥𝐾

−2

)︂
(207)

But, for 𝛽 < 3, there is a contradiction to optimality. In particular,

𝐾 >

(︂
𝛽

2𝜖
𝐽𝑥𝑥

)︂ 1
3−𝛽

→ 𝒥 (𝐺𝐾)− (Γ(𝐺𝐾)− 𝒥 (𝑋)− Γ(𝑋)) ≥ 0 (208)

Thus, an optimal contracting support cannot be full contractibility. Finally, by Lemma 21
we can invoke Proposition 21 to establish that the solution set is compact. In turn, this
yields the upper bound on the number of points of the optimal contracting supports.

We now derive the bound on the number of clauses. Our overall strategy will be to show
that, if the number of clauses exceeded the claimed upper bound, then we could remove
one clause and achieve a strict improvement. We first observe that, in a 𝐾 clause contract,
there must exist some ordered triple of points (𝑥𝑚−1, 𝑥𝑚, 𝑥𝑚+1) such that 𝑥𝑚+1 − 𝑥𝑚−1 <

2𝑥/(𝐾 − 2). Otherwise, there would be a contradiction:

𝑥𝐾 − 𝑥1 =

⌊𝐾/2⌋∑︁
𝑗=1

𝑥2𝑗+1 − 𝑥2𝑗−1 ≥ ⌊𝐾/2⌋ 2𝑥

𝐾 − 2

>

(︂
𝐾

2
− 1

)︂
2𝑥

𝐾
2
− 1

> 𝑥

(209)

We first apply the third statement of Lemma 6 to bound the loss from eliminating con-
tractibility at some point 𝑥𝑚:

𝒥 (𝐷
*
)− 𝒥 (𝐷

* ∖ {𝑥𝑚}) ≤ 3
𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑥𝑚 − 𝑥𝑚−1)(𝑥𝑚+1 − 𝑥𝑚)(𝑥𝑚+1 − 𝑥𝑚−1)

≤ 3

4

𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑥𝑚+1 − 𝑥𝑚−1)

3

(210)

where in the second inequality we use the fact that max𝑤+𝑦≤𝑧 𝑤𝑦 = 𝑧2/4. Next, applying

215



the clause strong monotonicity of Γ(𝐷) = Γ̂(𝑛(𝐷)) to a 𝐾-clause contract, we have

Γ̂(𝐾)− Γ̂(𝐾 − 1) ≥ 𝜖(𝐾 − 1)−𝛽 > 𝜖(𝐾 − 2)−𝛽 (211)

A sufficient condition for the principal to prefer to remove contractibility at point 𝑥𝑚 is if
the lower bound on cost reduction is larger than the upper bound on benefits loss, or

𝜖(𝐾 − 2)−𝛽 >
3

4

𝐽2
𝑥𝑥𝑓

𝐽𝑥𝜃
(𝑥𝑚+1 − 𝑥𝑚−1)

3 (212)

We now take 𝑥𝑚+1 − 𝑥𝑚−1 < 2𝑥/(𝐾 − 2) and re-arrange this to

𝐾 > 2 +

(︂
6𝐽2

𝑥𝑥𝑓

𝜖𝐽𝑥𝜃

)︂ 1
3−𝛽

(213)

Thus, if 𝐾 exceeds the right hand side, then we have found a contradiction to the optimality
of the clause-based contract.
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C.2 Additional Application: Optimally Coarse Quality

Certification
In this section, we apply our general results to a model of optimal quality certification
provided by a third-party certifier that charges a price for certification to the producer.
Our analysis combines and extends previous models of optimal certification provision by
considering a certifier that is not informed about the producer’s costs like in (as in Albano and
Lizzeri, 2001), that potentially cares about the final consumer’s utility (as in Zapechelnyuk,
2020), and for which testing is costly. This last feature is the main element of novelty of
our analysis with respect to the previous literature. We argue that this feature is natural
for the examples studied in this literature, such as optimal certification of bonds by rating
agencies or optimal certification of safety (e.g., for food, drugs, or cars) by a regulator.
An adaptation of our main Theorem to this setting will reveal that, when testing costs are
strongly monotone, every optimal certification policy entails a finite number of grades.

Our formalization of the basic economic environment closely follows the one in Zapechel-
nyuk (2020). Consider a producer choosing the price 𝑝 ≥ 0 and the quality 𝑥 ∈ 𝑋 = [0, 1]

of an indivisible good at cost (1− 𝜃)𝑥2/2 where 𝜃 ∈ [0, 1] is the ability of the producer and
is uniformly distributed. Consumers observe the price, receive some information about the
quality produced by a certifier, and form an estimate 𝑥̂ of the quality. They buy the good
𝑎 = 1 if and only if 𝑥̂− 𝑝 ≥ 𝑏 where 𝑏 ∈ [0, 1] is an outside option that the consumer forgoes
in case they buy the producer’s good. Consumers are heterogeneous in their outside option
𝑏, which is distributed according to 𝐺(𝑏) = 𝑏𝜏 for some 𝜏 > 0. With this, the revenue of the
producer and the consumer’s surplus given estimate 𝑥̂ are respectively

𝑟(𝑥̂) = max
𝑝≥0

{𝑝(𝑥̂− 𝑝)𝜏} =

(︂
𝜏

1 + 𝜏

)︂1+𝜏

𝑥̂1+𝜏 (214)

𝑠(𝑥̂) =
𝜏

1 + 𝜏
𝑟(𝑥̂) =

(︂
𝜏

1 + 𝜏

)︂2+𝜏

𝑥̂1+𝜏 (215)

where the unique optimal price is 𝑝*(𝑥̂) = 𝑥̂/(1 + 𝜏).

The certifier can commit to some rating rule that reveals information about the quality
𝑥 chosen by the producer. Formally, a rating rule is a right-continuous function 𝜁 : 𝑋 → R
that assigns a grade to each chosen quality. This rule partitions 𝑋 into sets of qualities 𝑥

mapped to the same rating 𝜁(𝑥) = 𝑧. Given a rating 𝑧, the receiver learns that the quality of
the producer’s good must be in 𝜁−1(𝑧). Because higher qualities require a higher effort for the
producer, the latter will always choose the lowest quality consistent with the desired rating,
and therefore in equilibrium the estimated quality given rating 𝑧 is 𝑥̂𝜁(𝑧) = min 𝜁−1(𝑧). With
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this, the set of qualities that can be chosen is equilibrium given 𝜁 is 𝐷𝜁 = 𝑥̂𝜁(𝜁(𝑋)) ⊆ 𝑋,
which by construction is a closed set always containing 0. It will be momentarily clear
that this set corresponds to the set 𝐷 in our general analysis, hence justifying our choice of
notation.

Besides committing to a rating rule, the certifier commits to a price rule 𝑇 (𝑧) that maps
each rating to the price payed by the producer to the certifier. Given the raiting and price
rules, the decision problem of a producer with ability 𝜃 is

sup
𝑧∈𝜁(𝑋)

{︀
𝑟(𝑥̂𝜁(𝑧))− (1− 𝜃)𝑥̂𝜁(𝑧)

2 − 𝑇 (𝑧)
}︀

that is, the producer picks the rating by trading off the expected revenue induced in equi-
librium with the minimum cost of effort consistent with that rating as well as the certifier
fee.

Given fee 𝑡 and quality estimate 𝑥̂, the total payoff of the certifier is (1 − 𝛽)𝑡 + 𝛽𝑠(𝑥̂),
that is the certifier potentially cares about both maximizing their profit and the consumers’
surplus, with relative weight 𝛽. Therefore, the certifier chooses a pair of rating and pricing
rules (𝜁, 𝑇 ) as well as a recommendation rule 𝑧 : Θ → 𝜁(𝑋) to maximize∫︁

Θ

(1− 𝛽)𝑇 (𝑧(𝜃)) + 𝛽𝑠(𝑥̂𝜁)𝑑𝐹 (𝜃)− Γ(𝜁) (216)

under the constraint that

𝑧(𝜃) ∈ argmax
𝑧∈𝜁(𝑋)

{︀
𝑟(𝑥̂𝜁(𝑧))− (1− 𝜃)𝑥̂𝜁(𝑧(𝜃))

2 − 𝑇 (𝑧)
}︀

(217)

Next, define

𝐽(𝑥, 𝜃) =

(︂
1− 𝛽 + 𝛽

𝜏

𝜏 + 1

)︂(︂
𝜏

1 + 𝜏

)︂1+𝜏

𝑥1+𝜏 − (1− 𝛽)(2− 𝜃)𝑥2. (218)

The certifier’s problem can be simplified as follows.

Lemma 22. The certifier’s problem is equivalent to:

sup
𝐷,𝜑:Θ→𝑋

∫︁
Θ

𝐽(𝜑(𝜃), 𝜃)𝑑𝐹 (𝜃)− Γ(𝐷) (219)

such that 𝐷 is closed, contains 0 and 𝜑 is nondecreasing and such that 𝜑(Θ) ⊆ 𝐷.

Because 𝐽 is strictly concave and supermodular, this problem falls under the umbrella
of our main analysis. Thus, we can invoke Theorem 2 to establish that all the optimal 𝐷*
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in the previous program are finite provided that the cost Γ is strongly monotone. In the
certification setting, the assumption corresponds to a restriction on the costs of testing the
difference between nearby quality grades.

In practice, the result implies that finite quality grades are optimal. This result is con-
sistent, for instance, with the ubiquitous letter grading of bonds (e.g., AAA vs. BAA)
and restaurants (e.g., sanitation grade A vs. B). Crucially, our result can rationalize grade
systems other than a two-grade pass-fail, as studied by Zapechelnyuk (2020).
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