WHY CAPACITY OBLIGATIONS AND CAPACITY MARKETS?

Paul L. Joskow

http://web.mit.edu/pjoskow/www/

June 3, 2005

DO COMPETITIVE ELECTRICITY MARKETS LEAD TO UNDER-INVESTMENT IN GENERATING CAPACITY?

- Growing concern among policymakers in the U.S. and Europe --concerned about high prices and blackouts
- Investment in new generating capacity has slowed considerably in the U.S., Canada and the UK
- Growing number of plants have announced intention to close down
- Growing electricity demand and forecasts of pending shortages absent significant capacity additions
- Investment community argues that competitive markets yield too little revenue with too much volatility to stimulate "adequate" investment in generation
- Pressures for changes in market rules: long-term contracts, capacity obligations, supplementary capacity payments
- Changes (at least in the Northeast) need to be compatible with
 - retail competition
 - locational cost variations
 - market power mitigation

ARE INVESTMENT INCENTIVES A PROBLEM IN THE U.S.?

- There is excess generating capacity in many regions of the U.S. at the present time
 - With capacity significantly in excess of optimal reserve margins, prices and "rents" to cover capital costs should be very low
 - Excess exuberance during boom/bubble led to too much investment
 - Increases in natural gas prices have undermined economics of CCGTs
 - One view is "that's life in competitive markets"
 - Also, investors in existing generating capacity have incentives to lobby for additional sources of revenue
 - But empirical evidence indicates that there really is a problem in the organized Eastern markets despite investment experience during the "bubble"

NEW U.S. GENERATING CAPACITY

<u>YEAR</u> 1997	CAPACITY ADDED 4,000	(MW)
1998	6,500	
1999	10,500	
2000	23,500	
2001	48,000	
2002	55,000	
2003	50,000	
2004	<u>20,000</u> 217,5000	Source: EIA

GENERATING CAPACITY UNDER CONSTRUCTION March 2005

ISO-NE 3 Mw

NY-ISO 3,700 Mw (3,200 NYC)

PJM (traditional/APS) 1,800 Mw

ERCOT (Texas) 785 Mw

CA-ISO 4,500 Mw

Source: Argus

IDEALIZED "PEAK PERIOD" WHOLESALE MARKET PRICE PATTERNS

LONG RUN EQUILIBRIUM "PEAKER" INVESTMENT CONDITIONS (simplified)

Investment:

$$C_k = \Sigma(p_i - c) = E(w_i) + E(v_i)$$

Marginal cost of peaker = expected marginal net revenue (rent)

Demand/supply balance during "scarcity" conditions:

$$p_j = w_j(q_j, X_j, r_j, K)$$
 [operating reserve deficiency]
 $p_i = v_i(q_i, X_i, r_L, K)$ [load shedding]

An optimal level of capacity K^* and associate "planned Reserve Margin" $R = K - E(q_p)$ is implied by the above relationships and the probability distribution of peak demand realizations and generating unit availability

SCARCITY RENTS PRODUCED DURING OP-4 CONDITIONS (\$1000 Price Cap)

(\$/Mw-Year)

YEAR	ENERGY		OPERATING	OP-4 HOURS/		
	<u>MC=50</u>	MC=100	RESERVES	(Price Cap Hit)		
2002	\$ 5,070	\$ 4,153	\$ 4,723	21 (3)		
2001	\$15,818	\$14,147	\$11,411	41 (15)		
2000	\$ 6,528	\$ 4,241	\$ 4,894	25 (5)		
1999	\$18,874	\$14,741	\$19,839	98 (1)		
Mean	\$ 11,573	\$ 9,574	\$10,217	46 (6)		

Peaker Fixed-Cost Target: \$60,000 - \$70,000/Mw-year

PJM

Table 2-31 - New entrant gas-fired combustion turbine plant (Dollars per installed MW-year): Theoretical net revenue for calendar years 1999 to 2004

Year	Energy	Capacity	Spin	Regulation	Reactive	Total
1999	\$62,065	\$16,677	\$0	\$0	\$2,390	\$81,131
2000	\$16,476	\$20,200	\$0	\$0	\$2,390	\$39,066
2001	\$39,269	\$30,960	\$0	\$0	\$2,390	\$72,619
2002	\$23,232	\$11,516	\$0	\$0	\$2,390	\$37,139
2003	\$12,154	\$5,554	\$0	\$0	\$2,390	\$20,099
2004	\$8,063	\$5,376	\$0	\$0	\$2,390	\$15,829
Average:	\$26,876	\$15,047			\$2,390	\$44,313

Annualized 20 Year Fixed Cost: \$72,000

Source: PJM State of the Market Report 2004

Figure 2-6 - Average monthly load-weighted markup indices: Calendar year 2004 100% Markup index Adjusted markup index 80% 60% 40% 20% 0% Feb Sep Oct Jan Mar Apr May Jun Jul Aug Nov Dec -20%

Source: PJM State of the Market Report 2004

Source: New York ISO (2005)

WHY DON'T "ENERGY-ONLY" MARKETS PROVIDE ADEQUATE PRICE SIGNALS?

- Several factors "truncate" the upper tail of the distribution of spot energy prices
 - Price caps and other market power mitigation mechanisms
 - Where did \$1000/Mwh come from?
 - Prices are too low during operating reserve deficiency conditions for a variety of challenging implementation problems
 - Administrative rationing of scarcity rather than demand/price rationing of scarcity depresses prices
 - "Reliability" actions ahead of market price response keep prices low
 - SO dispatch decisions that are not properly reflected in market prices (OOM; too few "products" to manage the network?)
- Consumer valuations may be inconsistent with traditional reliability criteria
 - The implicit value of lost load associated with one-day of a single firm load curtailment event in ten-year criterion is very high and inconsistent with reliability of the distribution system (NPCC ~ \$300,000/Mwh)
 - Administrative rationing increases the cost of outages to consumers

Price Duration Curves in Highest 5% of Hours New York State Average Real-Time Price

Frequency of Real-Time Constraints and Mitigation New York City Load Pockets in 2004

Source: NYISO (2005)

Figure 12 - Day-Ahead and Real-Time Spark Spreads for a Gas-Fired Unit with an 8MMBtu/MWh Heat Rate, January 12 - January 19, 2004

Figure 30 - Supply Stack for 1 SPD Run, January 15, Hour Ending 7 p.m.

Source: ISO NE

Figure 29 - Supply Stack for 1 SPD run, January 15, Hour Ending 2:00 p.m.

Table 30 - Demand Response Program Enrollments, August 1, 2004

	Ready to Respond Assets (MW)					Appr	oved Assets	(MW)		
Zone	No. of Assets	RT Price Response	Demand Response 30 min.	Demand Response 2 Hr	Profiled	No. of Assets	RT Price Response	Demand Response 30 min.	Demand Response 2 Hr	Profiled
СТ	126	30.7	145.8	0.4	0.0	10	1.1	1.8	0.0	0.0
ME	5	1.5	0.0	1.0	76.0	0	0.0	0.0	0.0	0.0
NEMA	117	39.4	3.3	1.5	1.4	1	0.0	24.0	0.0	0.0
NH	2	0.2	0.4	0.0	0.0	0	0.0	0.0	0.0	0.0
RI	12	3.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0
SEMA	83	8.5	0.5	0.0	0.0	10	1.0	0.0	0.0	0.0
VT	17	7.5	0.1	0.0	5.9	0	0.0	0.0	0.0	0.0
WCMA	99	12.7	2.2	9.3	0.0	7	0.9	0.3	0.0	0.0
Total	461	103.4	152.3	12.3	83.2	28	3.0	26.1	0.0	0.0

Source: ISO New England

EASTERN ISOs ANTICIPATED THIS PROBLEM

- Market designs included capacity obligations that required LSEs to acquire capacity equal to ~ 1.18 of peak load
- PJM (but not NE or NY) applied transmission "deliverability" criteria to generators seeking to be "capacity resources"
- Capacity trading/credit markets have been introduced to allocate capacity and determine capacity prices
- Capacity prices are supposed to provide a market-clearing "safety valve" for imperfections in energy and operating reserve markets (see Joskow-Tirole 2004)
- Investors argue these features are inadequate:
 - Prices are too volatile
 - Price caps on capacity prices (deficiency charges) as well
 - Locational considerations are not adequately reflected
- Other problems have emerged:
 - Market power problems in capacity as well as energy markets
 - Payments for capacity that is not available at peak
 - Capacity prices not properly reflected in spot prices further undermining demand-side responses

INITIAL CAPACITY MARKET DESIGN

Figure 4-9 - The PJM Capacity Market's net excess vs. capacity credit market-clearing prices: January 2000 to December 2004

WHAT TO DO?

- Continue to improve the performance of the spot market for energy and operating reserves
 - Raise the price caps to reflect reasonable estimates of VOLL
 - Allow prices to rise faster and higher under OP4 conditions
 - Minimize use of OOM or define a wider array of wholesale market products that are fully integrated with markets for related products (e.g. NE Forward reserve market)
 - Continue efforts to bring active demand side into the spot market for energy and reserves
 - Re-evaluate reliability criteria to better reflect consumer valuations

WHAT TO DO?

- Implement "capacity price" or "capacity obligation" mechanisms as a "safety valve" to produce adequate levels to support investment consistent with reliability criteria
 - "safety valve," not be a permanent major source of net revenues
 - Consistent with continued evolution of spot wholesale markets and demand side participation
 - Capacity values (peaker rents) should be low when actual capacity is greater than K*
 - Capacity values (peaker rents) should be high when actual capacity is significantly less than K*
 - On average (expected value) capacity price should work out to the cost of a peaker $C_{\rm k}$.
 - Smoothing around K* makes sense since there is reliability value when K > K*
 - Capacity <u>payment</u> target should net out peaker scarcity rents that are produced by the spot market (C_k – peaker scarcity rents)
 - Demand side should see a price (payment) consistent with the VOLL that underlies the reserve margin and peaker construction and carrying cost assumptions