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Abstract

Linking Behavioral Economics, Axiomatic Decision Theory

and General Equilibrium Theory

Katsutoshi Wakai

2002

My dissertation links behavioral economics, axiomatic decision theory and general equi-

librium theory to analyze issues in �nancial economics. I investigate two behavioral con-

cepts: time-variability aversion, i.e., the aversion to volatility (�uctuation in payo¤s over

time) and uncertainty aversion, i.e., the aversion to uncertainty of state realizations. Chap-

ter 1 develops a new intertemporal choice theory by endogenizing discount factors based on

time-variability aversion, and shows that the new model can explain widely noted stylized

facts in �nance. I �nd that (1) time-variability aversion can be represented by time-varying

discount factors based on very parsimonious axioms; (2) under the assumption of dynamic

consistency, time-variability aversion implies gain/loss asymmetry in discount factors (3)

the gain/loss asymmetry boosts e¤ective risk aversion over states by extreme dislike of

losses while maintaining positive average time-discounting. This intertemporal substitution

mechanism explains why the risk premium of equity needs to be very high relative to the

risk-free rate.

Chapter 2 provides the conditions under which the no-trade theorem of Milgrom &

Stokey (1982) holds for an economy of agents whose preferences follow uncertainty aversion



as captured by the multiple prior model of Gilboa and Schmeidler (1989). First, I prove

that given the agents�knowledge of the �ltration, dynamic consistency and consequentialism

imply that a set of ex-ante priors must satisfy the recursive structure. Next, I show that with

perfect anticipation of ex-post knowledge, the no-trade theorem holds under the economy

such that agents follow dynamically consistent multiple prior preferences.

Chapter 3 examines risk-sharing among agents who are uncertainty averse. The main

objective is to provide conditions in the exchange economy such that agents�e¤ective priors

(and equilibrium consumptions) will be comonotonic and their marginal rates of substitution

(weighted by these priors) will be equalized when agents have heterogeneous multiple prior

sets. One set of su¢ cient conditions is for each agent�s multiple prior set to be symmetric

(or to be de�ned by a convex capacity) around the center of the simplex.
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Chapter 1

Introduction
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1.1 Introduction

My dissertation links behavioral economics, axiomatic decision theory and general equilib-

rium theory to analyze issues in �nancial economics. The behavioral issues I investigate are

time-variability aversion and uncertainty aversion. The analysis develops new theories and

combines them with estimation and calibration.

Chapter 1 develops a new behavioral notion, time-variability aversion, and then applies

this idea to a consumption-saving problem to derive implications for asset pricing. Con-

ventionally, risk aversion is regarded as dislike of variations in payo¤s of random variables

within a period. By contrast, time-variability is variation in payo¤s over time. In princi-

ple, an agent could be averse to such variation even in the absence of risk. For example,

Loewenstein & Prelec (1993) show that, in experiments, agents prefer smooth allocations

over time even under certainty, and their preferences for smoothing cannot be explained by

a time-separable discounted utility representation.

I de�ne time-variability aversion to mean that an agent is averse to mean-preserving

spreads of utility over time. To capture this idea, I provide a representation, adapting a

method developed in a di¤erent context by Gilboa & Schmeidler (1989). In this represen-

tation, risk aversion is captured by the concavity of a von Neumann-Morgenstern utility

function. Time-variation aversion is captured by the agent selecting a sequence of (normal-

ized) discount factors (from a given set) that minimizes the present discounted value of a

given payo¤ stream. I provide an axiomatization for this representation. More formally, the

assignment of discount factors is determined recursively. At each time t, the agent compares
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present consumption with the discounted present value of future consumption from t+1 on-

ward and then selects the time-t discount factor to minimize the weighted sum of these

two values. These recursive preferences are non-time-separable and dynamically consistent

by construction (but they di¤er in form and implication from those used by Epstein & Zin

(1989)). Intuitively, this representation exhibits time-variability aversion by allocating a

high discount factor when tomorrow�s consumption is low (and vice versa).

The derived utility representation is applied to a representative-agent economy. Euler

equations show that the marginal rate of substitution is underweighted in good states and

overweighted in bad states. This intertemporal substitution mechanism e¤ectively boosts

relative risk aversion over tomorrow�s consumptions (which also explains the equity premium

and risk-free rate puzzles). I also run empirical tests using UK data. The estimates from

Euler equations show that the discount factor is lower when consumption growth is positive

and higher when consumption growth is negative. Thus, estimated discount factors vary in

a manner consistent with time-variability aversion.

Chapters 2 and 3 concern uncertainty aversion as captured by the multiple prior model

of Gilboa and Schmeidler (1989). Chapter 2 provides the conditions under which the no-

trade theorem of Milgrom & Stokey (1982) holds for an economy of agents whose preferences

follow the multiple prior representation. I �rst investigate individual behavior, and derive

the conditions under which agents�preference relations satisfy dynamic consistency with

respect to their private information described by the partition of states (or the �ltration).

The main result is the converse of the proposition in Sarin & Wakker (1998): Given the
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agents�knowledge of the �ltration, dynamic consistency and consequentialism imply that

a set of ex-ante priors must satisfy the recursive structure. In addition, each conditional

preference must be in the class of multiple prior preferences, and the set of priors must be

updated by the Bayes rule point-wise. Second, I examine the maintained assumption of

the knowledge of �ltrations and study the conditions required for the no-trade theorem to

hold. The requirements under which agents stay at the ex-ante Pareto optimal allocations

are as follows: (1) All agents have a set of �ltrations as their ex-ante knowledge of potential

ex-post private information; (2) All agents�preference relations satisfy dynamic consistency

and consequentialism with respect to all �ltrations in their ex-ante knowledge sets; (3) Ex-

post information is one of the �ltrations in their ex-ante knowledge set. As opposed to

the subjective prior model, agents who follow the multiple prior model need to know the

structure of their ex-post information.

Chapter 3 examines risk-sharing among agents who are uncertainty averse, which causes

them to behave as though they had multiple priors. Formally, I consider a general equi-

librium model of dynamically complete markets. I �rst consider the case where each agent

has the same set of multiple priors, i.e., each agent faces the same uncertainty. Under a

weak condition on an aggregate endowment process, I con�rm that the previously know

result that a convex capacity is a su¢ cient condition to achieve full insurance, that is, all

agents�consumptions are comonotonic (increasing together) with the aggregate endowment

and their marginal rates of substitution are equalized. Given the convex capacity, agents�s

�e¤ective�prior need to be equalized and the model reduces to the standard common single-
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prior case. I then consider the case where agents have heterogeneous multiple prior sets.

In this case, I provide conditions such that agents�e¤ective priors (and equilibrium con-

sumptions) will be comonotonic and their marginal rates of substitution (weighted by these

priors) will be equalized. One set of su¢ cient conditions is for each agent�s multiple prior set

to be symmetric (or to be de�ned by a convex capacity) around the center of the simplex.
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Chapter 2

A Model of Consumption Smoothing

with an Application to Asset Pricing
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2.1 Introduction

Conventionally, risk aversion is regarded as the dislike of variations in payo¤s of random

variables within a period. By contrast, time-variability is variation in payo¤s over time.

Historically, attitude toward time-variability has gained less attention in economics because

a discounted utility representation with concave von Neumann-Morgenstern utility functions

already implies a preference for consumption smoothing over time. However, time-preference

is highly complex. For example, Loewenstein and Thaler (1989) show that discount rates for

gains are much higher than for losses. Loewenstein and Prelec (1993) show in experiments

that agents prefer smooth allocations over time even under certainty, and their preferences

for smoothing cannot be explained by a time-separable discounted utility representation.

The purpose of this paper is to develop a new behavioral notion, time-variability aver-

sion, and then apply this idea to a consumption-saving problem to derive implications for

asset pricing. First we de�ne time-variability aversion to mean that an agent is averse

to mean-preserving spreads of utility over time. This idea is captured axiomatically and

transformed into a non-time-separable utility representation that separates time-variability

aversion from risk aversion. Second, we apply this utility representation under uncertainty,

and solve asset pricing equations for a representative-agent economy. The resulting Euler

equations are applied to a simple numerical example where our formula can explain the

equity-premium and risk-free-rate puzzles.1 Third, we use UK data to test whether or not

1Mehra and Prescott (1985) argue that under the rational expectation hypothesis, the coe¢ cient of the

relative risk aversion must be very high to explain the ex-post risk premium in the US stock markets (the
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our utility representation is empirically supported.

In the representation, risk aversion is captured by the concavity of a von Neumann-

Morgenstern utility function. Time-variation aversion is captured by the agent selecting

a sequence of (normalized) discount factors from a given set that minimizes the present

discounted value of a given payo¤stream. I provide an axiomatization for this representation

by adapting a method developed in a di¤erent context by Gilboa and Schmeidler (1989).

More formally, the assignment of discount factors is determined recursively. At each time

t, the agent compares present consumption with the discounted present value of future

consumption from t+1 onward and then selects the time-t discount factor to minimize the

weighted sum of these two values. These recursive preferences are dynamically consistent by

construction. Intuitively, this representation exhibits time-variability aversion by allocating

a high discount factor when tomorrow�s consumption is low (and vice versa).

To apply this notion under uncertainty, an agent �rst considers time-variability aver-

sion on a state-by-state basis and then aggregates discounted utility indices on each state

with probability weights. Again, this operation is applied recursively, and discount fac-

tors depend on tomorrow�s states. When the derived utility representation is applied to a

representative-agent economy, the Euler equations show that the marginal rate of substitu-

tion is underweighted in good states, and overweighted in bad states.2 This intertemporal

equity-premium puzzle). Weil (1989) also points out that under the very high relative risk aversion, the

discount factor must be more than one to be consistent with the growth rate in per capita consumption,

and covariance between this growth rate and stock returns (the risk-free-rate puzzle).

2Our formula involves indeterminacy of asset prices if one of future consumptions is equal to current one.
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substitution mechanism e¤ectively boosts relative risk aversion over tomorrow�s consump-

tions and increases the agent�s demand for bonds over stocks. This intuition is then applied

to a simple numerical example of a two-period economy under which the risk-free rate and

�rst and second moments of the equity premium are matched to those in the empirical data

of Campbell, Lo and Mackinlay (1997). For this simple example, the utility representation

that incorporates time-variability aversion resolves the equity-premium and risk-free-rate

puzzles. To con�rm whether time-variability aversion is an observed phenomenon, I also run

empirical tests using UK data.3 ;4 The estimates from Euler equations show that a discount

factor is lower when consumption growth is positive and higher when consumption growth is

negative. Thus, estimated discount factors vary in a manner consistent with time-variability

aversion.

Historically, there are three lines of attempts to de�ne attitudes toward time-variability.

The �rst approach suggested by Epstein and Zin (1989) is to consider intertemporal substi-

tution by a recursive aggregator function that has present utility and a continuation value

as arguments.5 In their model, an agent �rst considers risk aversion and then considers

The most general form of asset pricing necessarily involves inequalities to incorporate this indeterminacy.

However, in a �nite economy, we can focus on consumptions that do not involve any ties. See Section 5-1.

3The most rigorous tests must use lifetime consumption data to evaluate the evolution of discount factors.

4The reason we select the UK data is that the distribution of per capita consumption growth seems to

be close to stationary.

5Koopmans (1960) utilizes an aggregator function for a certain consumption stream. Kreps and Porteus

(1978) examine issues under uncertainty and derive an aggregator function. Du¢ e and Epstein (1992) apply
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intertemporal substitution. By contrast, in our representation, an agent �rst considers in-

tertemporal substitution and then considers risk. This reverse ordering requires preference

relations to be de�ned on a slightly enlarged act space.6

The second approach is to de�ne utility on di¤erences of consumptions over time: for ex-

ample, the behavioral models of Kahneman and Tversky (1979) and Loewenstein and Prelec

(1992, 1993) and the habit-formation model of Constantinides (1990). These models involve

status quo preference with some notion of gain/loss asymmetry. Our utility representation

is based only on aversion to �uctuations of payo¤s over time but it also captures a notion

similar to status quo preference and gain/loss asymmetry without being dependent on a his-

torical habit level. For an axiomatic approach, Gilboa (1989) applies the non-additive prior

model of Schmeidler (1989) over time and derives a utility representation that depends on

the di¤erence between adjacent consumptions. Shalev (1997) extends the Gilboa�s results

to incorporate non-symmetric weights to evaluate the gap between adjacent consumptions.

Our formula is di¤erent in two ways. First, we use a recursive structure so that an agent

compares present consumption with a discounted value of all future consumption. Sec-

ond, our formula guarantees dynamic consistency whereas their models involve dynamic

inconsistency.7

The third approach is to derive state dependent discount factors under an additively

the approach by Epstein and Zin (1989) to a continuous time setting.

6See Section 2.4 and 2.7.

7Sarin and Wakker (1998) and Grant, Kajii and Polak (2000) show that the non-additive prior model

cannot be de�ned under a recursive structure. See Section 2.3.
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separable framework. In a discrete-time setting, Epstein (1983) derives a model under which

discount factors depend on the level of consumptions up to the current date. In a continuous-

time deterministic setting, Uzawa (1968) models a similar utility function. Shi and Epstein

(1993) develop time-varying discount factors that depend on a historical habit level. The

main departure of our formula from others is to incorporate explicit time-variability aversion

over periods, which is a forward looking behavior and generates a non-di¤erentiable shift of

discount factors.

In terms of empirical implications, our model shares qualitative features with habit for-

mation, loss aversion and uncertainty aversion: time-variability aversion e¤ectively changes

risk aversion over tomorrow�s states. However, the main advantage of our model comes

from the theoretical aspect: it is based on more parsimonious axioms and the interpreta-

tion of empirical results is straight forward. In addition, to distinguish these models, we

can �nd alternative tests. First, for habit formation, we can test whether or not the present

utility depends on a habit level. Second, for loss aversion, a desirable test is to investigate

whether an agent only considers tomorrow�s value or considers all future values. The di¤er-

ence between our model and the uncertainty aversion can be tested by a carefully framed

experiment.

The paper proceeds as follows. In Section 2.2, we provide an overview of the paper.

In Section 2.3, we axiomatize the notion of time-variability aversion under certainty and

derive the utility representation with multiple discount factors. In Section 2.4, we extend the

representation with time-variability aversion under uncertainty. In Section 2.5, we derive
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equilibrium asset pricing equations, and apply them to a simple numerical example to show

that our model can explain the equity-premium and risk-free-rate puzzles. In addition, we

provide empirical tests of our model using UK data. In Section 2.6, we compare our model

with other intertemporal utility functions. In Section 2.7, we provide axioms that derive

the utility representation with multiple discount factors under uncertainty. In Section 2.8,

we discuss our conclusion and future avenues of research.

2.2 Time-Variability vs. Atemporal Risk

In this section, we de�ne the notion of time-variability aversion and provide an overview of

the utility representation we are going to develop. Suppose that an agent faces a decision

problem in a two-period economy under certainty. Assume that there is a utility function

U(x0,x1) that represents the agent�s tastes. For example, we then use the discounted utility

representation:

(2.2.1) U(x0,x1) = u(x0) + �u(x1)

This formula express impatience by 0< � < 1, and captures a desire for consump-

tion smoothing by the concavity of u(:). However, as we mentioned in the introduction,

intertemporal preferences do not seem to follow a time-separable representation. The lim-

itation becomes clearer once we introduce uncertainty. Suppose that there are S states of

nature tomorrow. Under the subjective prior model (or expected utility theory), an agent�s

preference is expressed by a utility representation:
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(2.2.2) E[U(x0,x1;s)] =
PS
s=1 �sU(x0,x1;s)

where �s stands for the prior for state s. Now, if we apply (2.2.1) for (2.2.2):8

(2.2.3) E[U(x0,x1;s)] = u(x0) + �
PS
s=1 �su(x1;s)

By the standard argument, the preference for consumption smoothing over states is

expressed by the concavity of u (atemporal risk aversion), which is identical to the pref-

erence for consumption smoothing over time. However, the preference for smoothing over

time expresses an attitude toward intertemporal substitution under certainty whereas the

preference for smoothing over states expresses an attitude toward atemporal substitution

under uncertainty. It is an artifact of the model that these two notions become identical.

In this paper, we return to a formula in (2.2.2). Our representation takes the following

form:

(2.2.4) E[U(x0,x1;s)] =
PS
s=1 �sW (u(x0),u(x1;s))

where W is a non-time-separable aggregator function over current and future utilities.

Atemporal risk attitude is expressed by characteristics of u(:), and intertemporal attitude

toward time-variability (by which we mean �uctuation of u(:) over time) is expressed byW .

An agent �rst considers intertemporal substitution and then considers risk. This operation

is the reverse of the order in the model suggested by Epstein and Zin (1989).

In the next section, we axiomatically derive a particular form of W as a functional

representation of discount factors. In Section 2.4, we discuss the application of W under

8 In this case, (2.2.1) is considered as a von Neumann-Morgenstern utility function.
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uncertainty. From now on, time-preferences refers to the structure of W (movement of dis-

count factors) that incorporates time-variability aversion. The attitude toward atemporal

risk will be called risk-preferences. We use the term intertemporal preferences to denote

overall preference relations either under certainty or under uncertainty. Intertemporal pref-

erences consist of time-preferences, risk-preferences and subjective priors.

2.3 Multiple Discount Factors under Certainty

2.3.1 Multiple Discount Factors: Examples

In this subsection, we provide a simple example that motivates our particular representation.

Suppose that an agent faces a intertemporal decision problem of a two-period economy under

certainty. The agent has three choices; a sequence that yields a utility of 2 in each period;

a sequence that yield a utility of 1 followed by a utility of 3; and a sequence that yields a

utility of 3 followed by a utility of 1:

Sequence 1. s1 = (u0,u1) = (2,2)

Sequence 2. s2 = (u0,u1) = (1,3)

Sequence 3. s3 = (u0,u1) = (3,1)

For any agent with preferences of the form of u0 + �u1, the agent will strongly prefer

s2 or s3 to s1 (unless � = 1 in which case she is indi¤erent between all three.). However,

an agent who is averse to time-variability might prefer s1 to s2 or s3 because s2 hedges the

14



movement of s3, and s1 is a mixture of s2 and s3. To capture this notion, suppose that

preferences between three sequences are expressed by:

s2 ' s3 but s1 =
1

2
s2� 1

2
s3 � s3

One way to express these preference relations is to assume the following representation

of discount factors:

U(s) = Min�2�[(1� �)u0 + �u1] with � = [0:3; 0:7]

Then the value of each sequence becomes:

Sequence 1. U(s1) = 2.0, � 2 [0:3; 0:7].

Sequence 2. U(s2) = 1.6, � = 0.3.

Sequence 3. U(s3) = 1.6, � = 0.7.

For the sequences 2 and 3 (uneven), the �uctuation of atemporal utilities over time

decreases the overall value. By assigning a higher discount factor for ut = 1 and a lower

discount factor for ut0 = 3, an agent shifts relative time-preferences from t0 to t, which gives

her a strong incentive to move consumptions from ut = 3 to ut = 1. By achieving complete

smoothing, an agent can improve her overall utility level. Since this representation involves

a set of discount factors, we de�ne this representation as a multiple discount factors model.

Note that any strictly concave function of u1 and u2 can represent the preference rela-

tions in this example. However, our formula has three advantages. First, it is based on very

simple axioms, so we can easily understand why an agent follows our model. The advan-

tage of an axiomatic approach becomes more evident in the derivation of the representation
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under uncertainty in Section 2.7. Second, interpretation of time-preferences is direct; we

model discount factors themselves. Since our formula becomes a weighted summation of

atemporal utilities at an e¤ective selection of discount factors, the departure from the dis-

counted utility model is minimal. Our model shares the tractability of the discounted utility

model. Third, in addition to the preference for smoothing, our formula also captures the

notion of gain/loss asymmetry. For example, the e¤ective selection of discount factors is 0.3

for the sequence 2 and 0.7 for the sequence 3. If we consider the di¤erence in consumptions

to be gains and losses, the non-di¤erentiable shift of discount factors at u0 = u1 can explain

the asymmetric attitude toward gains and losses. This result becomes crucial for explaining

asset pricing.

2.3.2 Representation of Intertemporal Preferences

In this subsection, we derive a utility representation with multiple discount factors under

certainty. To separate time-variability aversion from risk aversion, we de�ne preference

relations over sequences of consumption lotteries by adapting the Anscombe-Aumann (1963)

framework with a temporal interpretation. Let X be a set of outcomes, and Y be a set of

probability distributions over X that satis�es:

Y = {yj y: X ! [0; 1] where y has a �nite support.}

For convenience, we call y 2 Y a lottery and Y a lottery space. Let T = {0,1,...,T} be
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a �nite set of periods from 0 to T and � be the algebra on T.9 Let f be an act where f : T

! Y , and h be a constant act that assigns identical y 2 Y for all t 2 T denoted as y. De�ne

A as a collection of all f , and Ac as a collection of all constant acts. We also de�ne the

following operation: [�f � (1��)g](t)=�f(t) + (1��)g(t). In addition, let ft = f(t) 2 Y .

Now, we assume that the following axioms hold for acts in A:

Axiom 2.3.1: Weak Order

8f; g; h 2 A; (i) f � g or g � f (ii) f � g and g � h) f � h.

Axiom 2.3.2: Continuity

8f; g; h 2 A with f � g � h, 90 < � , � <1

s.t. �f � (1� �)h � g and g � �f � (1� �)h.

Axiom 2.3.3: Strict Monotonicity

8f; g 2 A s.t. f = (y1,...,yT ) and g = (y01,...,y0T ), if yt � yt08t 2 T then f � g

In addition, if for some t, yt � yt0 then f � g.

Axiom 2.3.4: Nondegeneracy

9f; g 2 A s.t. f � g.

Axiom 2.3.5: Constant-Independence10

8f; g 2 A and 8h 2 Ac, 8� 2 (0; 1), f � g , �f � (1� �)h � �g � (1� �)h.

9The result may be extended to an in�nite horizon by using the extension theorem in Gilboa and Schmei-

dler (1989).

10 It is called certainty-independence in Gilboa and Schmeidler (1989).
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Axiom 2.3.6: Time-Variability Aversion11

8f; g 2 A and 8� 2 (0; 1), f ' g ) �f � (1� �)g � f .

The key axioms are Axioms 2.3.5 and 2.3.6. To understand the signi�cance, we compare

them with the independence axiom in Anscombe and Aumann (1963) (for all f; g; h 2 A

and for all � 2 (0; 1), f � g , �f � (1 � �)h � �g � (1 � �)h). Under this axiom, the

example in the previous subsection becomes:

(1,3) � (3,1) ) (2,2) � (1,3) � (3,1)12

Clearly, the independence axiom is too strong to admit time-variability aversion. On

the other hand, under Axioms 2.3.5:

(1,3) � (3,1) ) 1

2
(1,3)�1

2
(5,5) � 1

2
(3,1)�1

2
(5,5) ) (3,4) � (4,3)

Under this limited independence axiom, the relative di¤erence between (1,3) and (3,1)

are not altered among (3,4) and (4,3). Time-variability determines preference ordering, and

the shift of a utility level does not change the preference ordering. This feature resembles

the characteristics of the reference relations based on di¤erences from a reference point. In

addition, time-variability aversion expresses the desire to smooth allocations over time that

is analogous to the de�nition of atemporal risk aversion. Under Axiom 2.3.6 with strict

inequality:

11 It is called uncertainty aversion in Gilboa and Schmeidler (1989).

120.5(1,3)�0:5(3; 1) = (0.5�1 + 0:5 � 3,0.5�3 + 0:5 � 1) = (2,2). All numbers are considered to be utils.
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(2,2) � (1,3) � (3,1)

Clearly, the mixture is better than the original. Hedging the movement of atemporal

utility indices over time increases overall utility.

Gilboa and Schmeidler (1989) have proved that the above axioms imply the following

representation of preference relations over A:

Theorem 2.3.1: Adaptation of Gilboa and Schmeidler (1989)13

A binary relationship on A satis�es Axioms 3-1-1 to 3-1-6 if and only if there exists a

non-empty, closed and convex set of �nitely additive discount factors on �, �0; with
PT
t=0 �t

= 1 and �� > 0 80 � � � T such that:

(2.3.1) 8f; g 2 A, f � g , U0(f) � U0(g)

where U0(f) �min�2�0
PT
t=0 �tu(ft)

Moreover, under these conditions, �0 is unique and u: Y ! R is a unique up to a

positive a¢ ne transformation.14

Under Axioms 2.3.1 to 2.3.3, the representation becomes W (u(f0),...,u(fT )), and then

Axioms 2.3.5 and 2.3.6 determine the structure of W . Under the representation of (2.3.1),

time-variability aversion is captured by the agent selecting discount factors to minimize the

weighted sum of atemporal von Neumann-Morgenstern utility indices. Attitude toward risk

13We call propositions proved by other authors theorems.

14The preference relations over Y is de�ned by the following way as is de�ned in monotonicity: ht � h0t

, h � h0 s.t. h, h0 2 Ac. This relationship is represented by the utility function itself, i.e., ht � h0t ,

min
PT

t=1 �tu(ht) �min
PT

t=1 �tu(h
0
t), and u(ht) is de�ned by min

PT
t=1 �tu(ht) = u(h):
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is expressed by a von Neumann-Morgenstern utility function u(:).15 In terms of (2.2.4),

we derive W for an entire stream of consumption lotteries and (2.3.1) becomes non-time-

separable. In fact, time-variability aversion is independent of the structure of u(:), which

can be concave or convex. In addition, some point b� 2 �0 can be regarded as a base-

line time-preference to calculate the net present value of von Neumann-Morgenstern utility

indices in absence of time-variability aversion.

However, if we apply (2.3.1) for more than two-periods, we face dynamic inconsistency.

To resolve this di¢ culty, we need to apply the multiple discount factors recursively. Let Tt

be a �nite set of periods from time t to T and T�t be a �nite set of periods from time 0 to

t � 1. De�ne f t as a function: f t : Tt ! Y and f�t as a function: f�t : T�t ! Y . If T�t

is empty, f t de�nes an act f and vice versa. Preference relations on A conditional on time

t is denoted by �t. A collection of all conditional preference relations {�t} on A follows

additional axioms:

Axiom 2.3.7: Independence of History up to t� 1

f = (a�t,f t), g = (b�t,gt), f 0 = (c�t,f t), g0 = (d�t,gt).

Then f �t g , f 0 �t g0.

Axiom 2.3.8: Dynamic Consistency

8f = (a�t,yt; f t+1); g =(a�t,yt,gt+1) 2 A, f �t g () f �t+1 g.

15Note that u(ft) =
PS

s=1 psu(ft;s). Literally, ft is a consumption lottery.
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Given the above axioms, (2.3.1) needs to be rewritten by the following form:16 ;17

Proposition 2.3.1:

Suppose that the agent�s preference relations on A satisfy Axioms 2.3.1 to 2.3.6 at time

1 and let U0 and �0 be as in Theorem 2.3.1. Then a binary relationship {�t} on A satis�es

Axioms 2.3.7 to 2.3.8 if and only if there exist {[�t,�t]}1�t�T such that:

(2.3.2) 8t;8f; g 2 A,

f �t g , Ut(f) � Ut(g)

where {Ut(f)}0�t�T are recursively de�ned by:

Ut(f) �min�t+12[�t+1;�t+1][(1� �t+1)u(ft) + �t+1Ut+1(f)]

and UT (f) � u(fT )

(2.3.3) 0 < �t � �t < 1 8t s.t. 1� t � T

Moreover:

16Eichberger and Kelsey (1996) utilize Machina (1989)�s notion for examining a dynamically consistent

updating rule for the non-additive prior model of Schmeidler (1989). They show that if agent�s preference

satis�es strict uncertainty aversion, a dynamically consistent update rule does not produce the conditional

preference that con�rms the non-additive prior model. Wakai (2001) also show that an identical result holds

for the multiple priors model.

17Wakai (2001) shows this result in a original formulation of Gilboa and Schmeidler (1989). Epstein

and Schneider (2001) recursively use Axioms 2.3.1 to 2.3.6 for conditional preference relations, and derive

similar conclusion. Sarin and Wakker (1998) also show that a recursive multiple priors are dynamically

consistent. In addition, Wakai (2001) shows that under the assumption of sequential consistency of Sarin

and Wakker (1998) and dynamic consistency, the recursive multiple priors is necessary and su¢ cient to

generate consequentialism.
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(2.3.4) [�t,�t] is uniquely de�ned.

Proof:

See Appendix 2.A:

Given dynamic consistency, Wt(u(ft),...,u(fT )) becomes Wt(u(ft); Ut+1(f)), which is

time-dependent and recursive. Dynamic consistency also contributes to one distinct feature:

gain/loss asymmetry. More speci�cally, to avoid time-variability, an agent assigns a higher

discount factor for the discounted present value of future utility from t+1 onward when it

is lower than the utility of present consumption (and vice versa). An increase from the

present utility requires a lower discount factor, and a decrease from the present utility

requires a higher discount factor. However, (2.3.2) and loss aversion of Kahneman and

Tversky (1979) are di¤erent. Formula (2.3.2) considers all future prospects to compare

with a present reference level. The loss aversion only compares a future value at t+1 with a

present reference level. In addition, formally, Formula (2.3.2) does not assume the existence

of a reference point nor gain/loss asymmetry. An agent who is averse to time-variability

will smooth consumptions over time by simply comparing two numbers (which makes one

number as a reference point).18 This di¤erence should be clear because u does not include

a reference point.

Finally in this subsection, we de�ne time-variability-seeking by reversing the inequality

18Gains and losses from a reference point can only be de�ned by comparing two numbers.
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in Axiom 2.3.6:

Axiom 2.3.9: Time-Variability-Seeking

8f; g 2 A and 8� 2 (0; 1), f ' g ) �f � (1� �)g � f

Proposition 2.3.2:

A binary relationship {�t} on A satis�es Axioms 2.3.1 to 2.3.8 by replacing Axiom 2.3.6

with 2.3.9 if and only if there exist {[�t,�t]}1�t�T such that:

(2.3.5) 8t;8f; g 2 A,

f �t g , Ut(f) � Ut(g)

where {Ut(f)}0�t�T are recursively de�ned by:

Ut(f) �max�t+12[�t+1;�t+1][(1� �t+1)u(ft) + �t+1Ut+1(f)]

and UT (f) � u(fT )

(2.3.6) 0 < �t � �t < 1 8t s.t. 1� t � T

Moreover:

(2.3.7) [�t,�t] is uniquely de�ned.

(2.3.8) u: Y ! R is a unique up to a positive a¢ ne transformation.

Proof:

See Appendix 2.A:

Given the above construction, we consider the discounted utility representation to be

time-variability neutral.
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2.3.3 Interpretation of Discount Factors

In this subsection, we compare an e¤ective selection of discount factors from (2.3.2) with

discount factors in the discounted utility model. First, the discounted utility model is:

U0(f) =
PT
t=0 �

tu(ft)

On the other hand, Formula (2.3.2) is rewritten by using the e¤ective selection of dis-

count factors for a given consumption stream:

��t+1 2 argmim�t+12[�t+1;�t+1][(1� �t+1)u(ft) + �t+1Ut+1(f)]

and

U0(f) = [(1� ��1)u(f0) + ��1U1(f)]

= (1� ��1)[u(f0) +
��1

(1� ��1)
U1(f)]

= (1� ��1)[u(f0) +
��1

(1� ��1)
[(1� ��2)u(f1) + ��2U2(f)]

= (1� ��1)[u(f0) +
��1(1� ��2)
(1� ��1)

u(f1) +
��1�

�
2

(1� ��1)
U2(f)]

= (1� ��1)[b�0u(f0) + b�1u(f1) + b�2u(f2) + :::+ b�Tu(fT )]
Hence, a normalized discount factor between adjacent time periods becomes:

(t,t+1) (0� t < T ): [1,
b�t+1b�t ] = [1,�

�
t+1(1� ��t+2)
(1� ��t+1)

] where ��T+1 � 0

If it is normalized at time 0:

at t (1� t � T ): b�t = ��1 :::�
�
t (1� ��t+1)
(1� ��1)

where ��T+1 � 0
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Discount factors in our formulation have three roles. First, it re-normalizes the level

of utility from time t+1 onward to a level at time t, which makes the comparison possi-

ble. Second, it re�ects the agent�s base-line time-preference between two dates (roughlyb�t+1(1� b�t+2)
(1� b�t+1) for some b�t+1 2 [�t+1,�t+1] and b�t+2 2 [�t+2,�t+2]). Third, it expresses time-

variability aversion. By the �rst property, discount factors at each time must add up to

one to make Ut(ft; :::; fT ) = u(ft) if all f� are identical for t � � � T . Ut(ft; :::; fT ) also

summarizes time-variability of future consumption. If there is a �uctuation in (ft; :::; fT ),

Ut(ft; :::; fT ) � Ut(f; :::; f) where f is the net present value of (ft; :::; fT ) under a base-line

time-preference that does not involve time-variability aversion. Clearly, an agent does not

prefer time-variability. For this reason, Ut(ft; :::; fT ) can be regarded as a time-variability-

adjusted present discounted value of future consumption.

2.3.4 Application of (2.3.2) to a Consumption-Saving Problem under Certainty

To analyze the implications of (2.3.2), we restrict our attention to a space of degenerate

consumption lotteries. Suppose that an agent faces a two-period decision problem in a par-

tial equilibrium setting. Assume that an agent follows (2.3.2). We consider two alternatives

under which the agent�s attitude toward risk is di¤erent:

Case 1: Time-variability aversion and risk aversion

Max x2Bmin�2[0:2;0:8][(1� �)u(c0) + �u(c1)] with a concave u

B = {(c0,c1)j p0c0 + p1c1 =I and c0; c1 2 R+}
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Relative price
p1
p0
<
0:2

0:8

0:2

0:8
� p1
p0
� 0:8

0:2

0:8

0:2
<
p1
p0

Allocations c0 < c1 c0 = c1 c0 > c1

In this case, for a wide range of relative prices (i.e., interest rates), an agent does not

want to move consumptions away from an even allocation. This result re�ects gain/loss

asymmetry implied in multiple discount factors.

Case 2: Time-variability aversion and risk-seeking

Max x2Bmin�2[0:2;0:8][(1� �)u(c0) + �u(c1)] with u(c) = c2

B = {(c0,c1)j p0c0 + p1c1 =I and c0; c1 2 R+}

Relative price
p1
p0
<

p
0:8

2�
p
0:8

p
0:8

2�
p
0:8
� p1
p0
� 2�

p
0:8p
0:8

2�
p
0:8p
0:8

<
p1
p0

Allocations c0 = 0; c1 =
I

p2
c0 = c1 c0 =

I

p1
; c1 = 0

Note that if an agent is time-variability neutral, a risk-seeking agent always allocates

all consumption at one of two periods. However, under very high time-variability aver-

sion implied by a wide range of discount factors, even for the risk-seeking agent, optimal

allocations become even for a wide range of relative prices. This example indicates that

time-variability aversion is a di¤erent notion from atemporal risk aversion. We can also

apply a similar construction to the case where an agent is time-variability-seeking. In this

case, a risk-averse agent never prefers even allocations.
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2.4 Multiple Discount Factors under Uncertainty

2.4.1 Representation of Intertemporal Preferences under Uncertainty

In this subsection, we de�ne the utility representation of multiple discount factors under

uncertainty. In the most naive way, we can apply (2.3.2) to an objective probability space of

consumption streams. However, this application is not dynamically consistent even though

(2.3.2) is dynamically consistent under certainty.19 To resolve this problem, we need to

de�ne preference relations recursively over a state space.

The economy has the following structure. De�ne T = {0,1,...,T} as a �nite set of periods

from 0 to T . At each time after time 0, there is a �nite state space 
= {1,...,S}.20 The entire

state space becomes 
T , and !t = (!t�1,!) 2 
t stands for a history of state realizations

from time 1 to time t. We also de�ne !T�t to be a path from time t+ 1 to time T so that

!T = (!t,!T�t). In addition, we write !T as (!1,...,!T ) where !t 2 
 for 1� t � T . We

assume that 
0 = {;}, !0 = !0 = ;, and (!1,...,!T ) = (!0,!1,...,!T ). A process {xt}0�t�T

is a collection of functions xt such that xt: 
t ! R at each t. We de�ne xt(!t) as a value

of xt at !t.

As axiomatically derived in Section 2.7, an agent who follows time-variability aver-

sion evaluates a consumption process {ct}0�t�T at (t,!t) by the following value process

19See Appendix 2-B.

20 In Section 2.7, we derive the utility representation under a more general state setting using a �ltration.
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{Vt(c)}0�t�T :21

(2.4.1) Vt(c)(!
t)

� Et[Min�t+1(!t;!0)2[�t+1;�t+1](1� �t+1(!t; !0))u(ct(!t))

+ �t+1(!t; !0)Vt+1(c)(!t; !0)]

where !0 2 
 and VT (c)(!T ) � u(cT (!T ))

with 0<�t � �t < 1 8t s.t. 1� t � T

Et[:] and [�t,�t] is uniquely de�ned, [�t,�t] are independent of states.

u: Y ! R is a unique up to a positive a¢ ne transformation.

The expectation is based on a subjective prior and �t and �t depend only on time. The

crucial result is that an agent �rst considers intertemporal substitution on each tomorrow�s

state !0 and then aggregate utility indices across states with probability weights. Clearly,

the selection of �t+1(!t; !0) depends on tomorrow�s state !0. Also Vt(c)(!t) depends only

on a future payo¤s of c, which implies history independence. This operation, Vt(c)(!t); is

recursively applied. Note that if there are not �uctuations in payo¤s over states !t at every

point of time, (2.4.1) becomes (2.3.2) (i.e., Vt(c)(!t) = Ut(c)).

Now we show by a simple two-period example that (2.4.1) captures time-variability

aversion. Assume that there are two states in 
 and that (0.5,0.5) is a probability for (state

1, state 2). There are two contracts that pay consumption goods with the following utility

at each time and state:

21We use an uncertain sequence of consumption lotteries as primitives in the derivation of (2.4.1) in Section

2.7.
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Contract A Contract B

StatenTime t=0 t=1

!2=1 u1 = 4 u2;1 = 5

!2=2 u1 = 4 u2;2 = 3

StatenTime t=0 t=1

!2=1 u1 = 4 u2;1 = 4

!2=2 u1 = 4 u2;2 = 4

We investigate three di¤erent preference relations. First, Agent 1 follows the discounted

utility model:

(2.4.2) V0(c)(!0) = A[u0 + �E[u1;!]] with � = 0:9 and A =
1

1:9

Agent 2 follows (2.4.1):

(2.4.3) V0(c)(!
0) = E[Min�2�[(1� �)u0 + �u1;!]] with � =[0:3; 0:7]

In addition, to show that we need to apply time-variability aversion �rst before we

consider risk, assume that Agent 3 follows:22

(2.4.4) V0(c)(!
0) = Min�2�[(1� �)u0 + �E[u1;!]] with � =[0:3; 0:7]

The di¤erence between (2.4.3) and (2.4.4) is that the order of application of time-

variability aversion is reversed. Equation (2.4.4) follows the model of Epstein and Zin

(1989).

22Although we do not provide a proof, this representation can be axiomatized by a standard recursive

argument.
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Then, V0(c)(!0) of Contract A and Contract B becomes:

Contract A Contract B

Discounted utility of (2.4.2) 4 4

Time-variability aversion of (2.4.3) 3.8 4

Time-variability aversion of (2.4.4) 4 4

Note that (2.4.2) and (2.4.4) achieve the identical results even though (2.4.4) incorpo-

rates time-variability aversion over time because (2.4.4) �rst aggregates the movement of

payo¤s over tomorrow�s states and only considers time-variability in terms of risk-adjusted

average payo¤s. This example implies that to capture time-variability aversion more pre-

cisely, we need to consider intertemporal substitution before we consider risk. Under this

key construction, variable allocations in Contract A decrease overall utility as we see in

(2.4.3).

Next, we examine the connection between intertemporal substitution and risk aversion.

In terms of (2.2.4), we can write (2.4.1) as:

Vt(c)(!
t) = Et[Wt(u(ct(!

t)),Vt+1(c)(!t; !0))]

At the e¤ective choice of discount factors, Wt becomes linear. Then the concavity of a

von Neumann-Morgenstern function captures risk aversion over tomorrow�s states. However,

the assignment of discount factors changes the e¤ective risk attitude. If Vt+1(c)(!t; !0)

distributes over !0 2 
 around the today�s u(ct(!t)),Wt(u(ct(!
t)),Vt+1(c)(!t; !0)) e¤ectively

generates higher risk aversion over tomorrow�s states than u implies. As we saw in the
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numerical examples above, (2.4.3) has higher e¤ective risk aversion for Contract B than

(2.4.2) or (2.4.4) does.

Finally in this subsection, the representation for time-variability-seeking becomes:

(2.4.5) Vt(c)(!
t)

� Et[Max�t+1(!t;!0)2[�t+1;�t+1](1� �t+1(!t; !0))u(ct(!t))

+ �t+1(!t; !0)Vt+1(c)(!t; !0)]

where !0 2 
 and VT (c)(!T ) � u(xT (!T ))

with 0<�t � �t < 1 8t s.t. 1� t � T

Et[:] and [�t,�t] is uniquely de�ned, [�t,�t] are independent of states.

u: Y ! R is a unique up to a positive a¢ ne transformation.

Again, the discounted utility representation is considered to be time-variability neutral.

2.4.2 Interpretation of Discount Factors

In this subsection, we compare the e¤ective selection of discount factors of (2.4.1) with those

from the discounted utility model. First, the discounted utility model under uncertainty

becomes:

Vt(c)(!
t) =Et[

PT
�=t �

��1u(c� (!� ))]

= u(ct(!
t))+Et[�u(ct+1(!t; !0))+Et+1[

PT
�=t+2 �

��1u(c� (!� ))]]

= u(ct(!
t)) + �Et[u(ct+1(!t; !0))+Et+1[

PT
�=t+2 �

��1u(c� (!� ))]]
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Under this representation, an average normalized discount factor between adjacent time

periods (i.e., Et[�]) is always � at any point of time and state. On the other hand, (2.4.1) is

rewritten by using the e¤ective selection of discount factors for a given consumption stream:

��t+1(!
t; !0)

2 argmin Et[Min�t+1(!t;!0)2[�t+1;�t+1](1� �t+1(!t; !0))u(ct(!t))

+ �t+1(!t; !0)Vt+1(c)(!t; !0)]

Then:

Vt(c)(!
t)

= Et[(1� ��t+1(!t; !0))u(ct(!t)) + ��t+1(!t; !0)Vt+1(c)(!t; !0)]

= Et[(1� ��t+1(!t; !0))u(ct(!t))

+ ��t+1(!
t; !0)Et+1[(1-��t+2(!

t; !0; !00))u(ct+1(!t; !0))+��t+2(!
t; !0; !00)Vt+2(c)(!t; !0; !00)]]

= At(!t)[u(ct(!t))

+ Et[
��t+1(!

t; !0)At+1(!t; !0)

At(!t)
u(ct+1(!

t; !0))

+ Et+1[
��t+2(!

t; !0; !00)

At+1(!t; !0)
Vt+2(c)(!

t; !0; !00)]]]

where At(!t) = Et[(1� ��t+1(!t; !0))] with ��T+1(!T+1) � 0 (i.e., AT (!T ) = 1).

Hence, an average normalized discount factor (i.e., average time-preference) between

adjacent time periods becomes:

(t,t+1) (0� t < T ) at !t: [1,Et[
��t+1(!

t; !0)At+1(!t; !0)

At(!t)
]]

A discount factor at (t,!t) normalized at the level of time 0 becomes:
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at (t,!t) (1� t � T ): ��1(!
1):::��t (!

t)At(!
t)

A0(!0)

First, an average normalized discount factor incorporates a global nature of a consump-

tion process from time t onward and it is state dependent. This result contracts with a

constant average normalized discount factor � under the discounted utility model. In the

next section, this result plays a crucial role in explaining asset pricing. Second, at each

(t,!t), a normalized discount factor at the level of time 1 has a similar structure to the one

under certainty; however, discount factors are not based on a particular consumption path

on !t. They re�ect the movement of the value process {Vt(c)} that incorporates uncertainty

implied in the evolution of states.

2.5 Implications for Asset Pricing under Multiple Discount Factors

2.5.1 Asset Pricing Equation

In this subsection, we apply the utility representation of (2.4.1) to a representative-agent

economy to derive asset pricing equations. The economy has the same state structure as in

the previous section. Let D++ 2 R++ be a compact subspace of R with positive elements

and D+ 2 R+ be a compact subspace of R with non-negative elements. Let et(!t) 2 D++

and ct(!t) 2 D+ be an endowment and consumption for the representative agent at time t

on !t 2 
t. Assume that there are I assets with zero supply and let dit(!t) and qit(!t) 2 D+

be a dividend and price for asset i at time t on !t 2 
t. Let dt(!t) = (d1t (!
t); :::; dIt (!

t))

and qt(!t) = (q1t (!
t); :::; qIt (!

t))2 DI+ be a collection of asset dividends and prices at time
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t on !t 2 
t. Let �it(!t) 2 R be a holding of asset i, and �t(!t) = (�1t (!
t); :::; �Nt (!

t)) be

a collection of asset holdings at time t on !t 2 
. Let {x�}t���T be a conditional process

from (t,!t) where x� is a function such that x� : 
��t ! R++. Assume that u is increasing,

continuous, concave, and di¤erentiable on (0,M) where M is a large number that exceeds

the maximum value of et(!t) at all (t,!t). In addition, at equilibrium, {qt}0�t�T must

satisfy rational expectations with qiT (!
T ) � 0 8!T 2 
T and i 2 I. The representative

agent solves the following problem at each (t,!t):

Vt(c)(!
t) � Et[Min�t+1(!t;!0)2[�t+1;�t+1](1� �t+1(!t; !0))u(ct(!t))

+ �t+1(!t; !0)Vt+1(c)(!t; !0)]

where !0 2 
 and VT (c)(!T ) � u(cT (!T ))

with 0<�� � �� < 1 8� s.t. t < � � T

s.t.

For all � � t, !� = (!��1; !) 2 
�

q� (!
� )�� (!

� ) + c� (!
� ) = ���1(!��1)[q� (!� ) + d� (!� )] + e� (!� )

�t�1(!t�1) � 0 and ��1(!�1) � 0

qiT (!
T ) � 0 8!T 2 
T and i 2 I.

infi;�;!� �i� (!
� ) > �1

Let � � RS
T+1

++ be a collection of {�t}0�t�T where each �t(!t�1; !) 2 [�t; �t] with

0<�t � �t < 1 for 1 � t � T , and we de�ne �0(!0) � 1. We de�ne �� is a subset of � such

that:
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��

= {{��}0���T 2 �j at each (t; !t) where 0 � t � T :

Et[Min�t+1(!t;!0)2[�t+1;�t+1](1� �t+1(!t; !0))u(ct(!t))

+ �t+1(!t; !0)Vt+1(c)(!t; !0)] =Vt(c)(!t)}

This set is a collection of sequences of discount factors under which the value of a

consumption process is identical to the optimal value. Now an equilibrium is a price process

{qt}0�t�T such that {c�}t���T = {e�}t���T and {�i�}t���T = {0} at all (t; !
t). Given these

notations, an equilibrium asset prices becomes as follows:

Proposition 2.5.1:

{qt}0�t�T is an equilibrium price process if and only if there exists a discount factor

process f��t g0�t�T 2 �� such that:

At all (t,!t) where 0 � t < T :

(2.5.1) qit(!
t)=Et[

��t+1(!
t; !0)At+1(!t; !0)

At(!t)

u0(et+1(!t; !0))

u0(et(!t))
(qit+1(!

t; !0) + dit+1(!
t; !0))]8i

(2.5.2) At(!t)=Et[(1� ��t+1(!t; !0))] with ��T+1(!T+1) � 0 (AT (!T ) = 1).

At all (T ,!T ):

(2.5.3) qiT (!
T ) � 0 i 2 I.

Moreover, at almost all endowments, �� is a singleton.

Proof:

See Appendix 2.D:
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Note that (2.4.1) is not di¤erentiable if et(!t) = et+1(!t; !0) at some (t; !t) as we saw

in the example in Section 2.3.3. In this case, the economy has a continuum of equilibrium

prices. By incorporating the possibility of indeterminacy of prices, an asset pricing equation

holds under some sequence of discount factors f��t g1�t�T 2 ��.23 However, in our economy,

since time and states are �nite, the set of endowments that generates indeterminacy of

equilibrium prices has measure zero. Then at almost all endowments, the value function is

di¤erentiable under a unique element of f��t g1�t�T 2 ��. The di¤erence between (2.5.1)

and a usual Euler equation under the discounted utility representation is that (2.5.1) has

state dependent normalized discount factors, which e¤ectively change the marginal rate of

substitution. This discount factors re�ect the nature of a consumption sequence from time

t onward.

2.5.2 Calibration: Equity-Premium and Risk-Free-Rate Puzzles

In this subsection, we apply equilibrium asset pricing equations to a simple numerical ex-

ample to show that our model is capable of explaining both the equity-premium and risk-

free-rate puzzles.24 Suppose that the economy consists of two-periods and four states and

that an agent�s subjective prior is equal to the objective probability. From Table 8.1 of

Campbell, Lo and Mackinlay (1997) at P.308:

23For more detailed treatment of indeterminacy, see Appendix 2-C.

24We can extend this study for a multi-period setting. Under the stationary economy, we expect to see a

similar result using a stationary range of normalized discount factors.
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Variable Mean S.D. � �

Consumption growth 0.0172 0.0328 1.000 0.0011

Stock return 0.0601 0.1674 0.4902 0.0027

CP return 0.0183 0.0544 -0.1157 -0.0002

Stock-CP return 0.0418 0.1774 0.4979 0.0029

where CP stands for a commercial paper, S.D. stands for standard deviation, � is corre-

lation with consumption growth, and � is covariance with consumption growth. The heart

of the equity-premium and risk-free-rate puzzles is:

1. An agent follows the discounted utility model with an atemporal CRRA utility func-

tion.

2. 
 needs to be very high (
 > 10) to explain the equity premium.

3. � (�xed discount factor) needs to be higher than 1 to explain the equity premium.

First, we de�ne a distribution of consumptions at time 1 to match the mean and stan-

dard deviation of the above table. We set consumption growth, MRS (marginal rate of

substitution), and the probabilities of state realizations as follows:25 ;26

25The consumption growth is calculated by solving two equations: 0.0172 = 0.7x + 0.3y and 0.0011 =

0.7x2 + 0.3y2 - (0.7x + 0.3y)2. Then x = 0.0172+0.3
p
0:0011=0:7=0:3 and y = 0.0172-0.7

p
0:0011=0:7=0:3

26We use the results from quarterly UK data from Q3/1975 to Q1/1998 to infer objective probability.
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Consumption growth MRS and Probability

StatenTime t=1

!2=1 1.0389

!2=2 1.0389

!2=3 0.9665

!2=4 0.9665

StatenVariable MRS Prob.

!2=1 (1.0389)�
 0.35

!2=2 (1.0389)�
 0.35

!2=3 (0.9665)�
 0.15

!2=4 (0.9665)�
 0.15

Under this assumption, the consumption growth has (mean, S.D.) = (0.0172,0.0332).

In this economy, any asset price is determined by two random variables that span a con-

sumption space. Therefore, we de�ne stock payo¤s as follows:

Stock payo¤s

StatenTime t=1

!2=1 �(1.0389-c) + c+ "

!2=2 �(1.0389-c) + c� "

!2=3 �(0.9665-c) + c+ "

!2=4 �(0.9665-c) + c� "

where c is a mean of consumption payo¤s and " is an idiosyncratic error, which is

orthogonal to consumption payo¤s. Then:

Cov(r!,c!) = �
�c2

P s

E[r!] =
c

P s

where r! is a gross stock return at state !, c! is a consumption payo¤ at !, and P s is

a stock price. From the above equations:
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� =
Cov(r!; c!)

�c2
c

E[r!]
=
0:0027

0:0011

1:0172

1:0601
= 2.3552

Next, we need to set prices for the stock and the risk-free rate and an idiosyncratic

shock ". The following numbers explain prices, correlation between consumption and stock

returns, and variance of stock returns:

Stock price = 0.9594

CP price = 0.9820

" = 0.14

Now, we investigate whether or not we observe the equity-premium and risk-free-rate

puzzles in this economy. Suppose that an agent follows the discounted utility model with

an atemporal CRRA utility function. We need to �nd (�,
) to solve the above two prices.

Under the discounted utility model, we require (�,
) = (13.7, 1.0991) to explain the above

prices. To summarize:


 � CP return Exp. rtn. of stock Risk premium

13.7 1.0991 0.0183 0.0602 0.0418

Variable Mean S.D. � �

Consumption growth 0.0172 0.0332 1.0000 0.0011

Stock return 0.0602 0.1671 0.4973 0.0028

CP return 0.0183 n.a. n.a. n.a.

Stock-CP return 0.0418 n.a. n.a. n.a.
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Although 
 =13.7 is lower than 
 = 19 of Campbell, Lo and Mackinlay (1997), we still

observe the equity-premium and risk-free-rate puzzles in this economy.

Now we investigate whether or not the model with multiple discount factors can resolve

the equity-premium and risk-free-rate puzzles. Since we can always set �1 and �1 to match

the equity premium and the risk-free rate in the empirical data, appropriate tests are: (1)

whether or not �1 < �1; (2) whether or not a low 
 and a low average time-preference

can explain the equity premium and risk-free rate. To �nd a (�1, �1, 
) that explains the

empirical moments, we need to solve the following equations that de�ne the risk premium

of the consumption asset and the risk-free rate (i.e., Equation (2.5.1)):

�1[0:7(1:0389)
�
 � �(1:0389� c) + c] + �1[0:3(0:9665)�
 � �(1:0389� c) + c]

[0:7(1� �1) + 0:3(1� �1)]
= 0.9594

�1[0:7(1:0389)
�
 ] + �1[0:3(0:9665)�
 ]

[0:7(1� �1) + 0:3(1� �1)]
= 0.9820

where 0.9594 in the �rst equation is a price of stock and 0.9820 is a price of risk-free

rate that explains the empirical data. The solutions for these equations are [�1; �1] =

[0.3546,0.8255] under 
 = 2, and with [�1; �1] = [0.3814,0.7686] under 
 = 4. Then an

average time-preference and a risk premium become:


 [�1; �1] E0[
��1(!0; !2)

A0(!0)
] CP return E(r) of stock Risk premium

2 [0.3546,0.8255] 0.9835 0.0183 0.0602 0.0418

4 [0.3814,0.7686] 0.9902 0.0183 0.0602 0.0418

Note that by construction, these examples with multiple discount factors generate vari-

ance, covariance and correlation identical to those in the table for the discounted utility
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model. Then, the normalized discount factors (
��1(!0; !2)

A0(!0)
) become:27

Normalized discount factors

State 
=2 
=4

!2=1 0.7033 0.7591

!2=2 0.7033 0.7591

!2=3 1.6375 1.5296

!2=4 1.6375 1.5296

First, the examples show that �1 < �1 . Since an agent assigns a lower discount factor

for state 1 and state 2 than for state 3 and state 4, an agent underweights the MRS of

state 1 and state 2 and overweights the MRS of state 3 and state 4. This intertemporal

substitution mechanism e¤ectively boosts risk aversion over time 1 consumption. To hold

assets that are correlated with her consumption, an agent requires more premium than she

does under the discounted utility model. This result explains the equity-premium puzzle.

In fact, this mechanism expresses �gain/loss�asymmetry of a future value from a current

consumption level.28 ;29

27The preference-adjusted prior (see Appendix 2-D) becomes: for 
 = 2, (0.249,0.249,0.251,0.251), for 


= 4, (0.266,0.266,0.234,0.234).

28For comparison, Benartzi and Thaler (1995) apply a myopic notion of loss aversion and argue that loss

aversion that has a recent asset value as a reference point can explain the equity premium puzzle. Barberis

and Haung (2000) also apply loss aversion to a individual asset behaviors and argue that it explains excess

volatility and some of cross-sectional patterns of asset returns.

29Other atemporal models under uncertainty show similar asymmetry. For example, the dual theory of
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Second, average normalized discount factors (i.e., average time-preference),

E0[
��1(!0; !2)
A0(!0)

], becomes less than 1, which resolves the risk-free-rate puzzle. In fact, a range

of discount factors is not symmetric. For example, at 
 = 2, [�1; �1] = [0.3546,0.8255].

Since � = 0:5 corresponds to unit normalized time-preference, this range implies that on

average, an agent weights the future more than she weights the present under certainty.

However, under uncertainty, since the probability of positive consumption growth is much

higher than the probability of negative consumption growth, an average normalized discount

factor becomes less than 1. In addition, for the discounted utility model, if we apply 
 = 2

in the formula (8.2.8) of Campbell, Lo and Mackinlay (1997), it requires � =1.014. In our

example, we also need � = 1.0127 for it to have about 1.83% of CP return under 
 = 2.

Clearly, without considering the equity-premium puzzle, a smooth function (in this case,

the discounted utility model with a CRRA utility of 
 = 2) still shows the risk-free-rate

puzzle. The results suggest that there would be a non-di¤erentiable shift in MRS around

the present consumption level, which strongly supports our results.

Third, the range of discount factors narrows as 
 increases. In addition, an agent

becomes less impatient on average, i.e., E1[
��2(!

1; !2)

A1(!1)
] increases. In fact, as 
 increases,

(2.4.1) approaches the CRRA model with a �xed discount factor and it converges at 
 =

13.7. This result implies that we need to have lower 
 to resolve the equity-premium and

Yaari (1987) or disappointment aversion of Gul (1991) imply that under a two-state economy, an indif-

ference curve kinks when two consumptions are identical. Segal and Spivak (1990, 1997) connects non-

di¤erentiability with an attitude toward risk, and they de�ne the risk attitude at non-di¤erentiable point as

�rst-order risk aversion.
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risk-free-rate puzzles together.

2.5.3 Estimation: Simple Test for UK Data

In this subsection, we provide a simple empirical test of (5-1-1) using UK data. We select

UK data because the UK most resembles a stable economy, so we can observe positive and

negative per capita consumption growths in a relatively short period of data. Our analysis

is limited, especially in terms of data length.30 However, in spite of this limitation, we show

below that estimated discount factors from UK data move in a manner consistent with

time-variability aversion.

First, assume that the economy follows the same state structure as we de�ne in Section

2.5.1,31 that (2.5.1) holds with a CRRA utility function, and that the subjective prior is

equal to the objective probability. Then a price for asset i is expressed by the following

moment condition:

qit(!
t) = Et[

��t+1(!
t; !0)At+1(!t; !0)

At(!t)

�
ct+1(!

t; !0)

ct(!t)

��

(qit+1(!

t; !0) + dit+1(!
t; !0))]

where 
 is a coe¢ cient of relative risk aversion and At(!t) is de�ned by (2.5.2). In

addition, we assume that:

30For the most appropriate applications, we should use (2.4.1) for an individual consumptions, and es-

timates discount factors generation-by-generation. Since it is out of scope of this paper, we only consider

aggregated economy.

31Again, we can use a more general state space.
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(2.5.4) At(!
t) = At(!

0t) for all !t; !0t 2 
t at all t

(2.5.5)
��t+1(!

t; !0)At+1(!t; !0)

At(!t)
= �u if ct+1(!t; !0) > ct(!t)

(2.5.6)
��t+1(!

t; !0)At+1(!t; !0)

At(!t)
= �d if ct+1(!t; !0) � ct(!t)

(2.5.7) �u > �d

These assumptions simplify the estimation of �t and �t (in fact, we only need to estimate

two normalized discount factors �u and �d).32 We justify these assumptions because the UK

economy seems to be relatively stable during data periods. Then the above asset pricing

equation becomes:

(2.5.8) Et[�(!0)
�
ct+1(!

t; !0)

ct(!t)

��
 (qit+1(!t; !0) + dit+1(!t; !0))
qit(!

t)
] = 1

where �(!0) follows (2.5.5) and (2.5.6). Now let rit(!
t), rft (!

t) and qft (!
t) be a return of

a stock, a risk-free rate, and a price of risk-free asset respectively. A simple manipulation

of (2.5.8) yields the following equation:

(2.5.9) 1 - qft (!
t) =

rft+1(!
t)

1 + rft+1(!
t)
= Et[�(!0)

�
ct+1(!

t; !0)

ct(!t)

��

rit+1(!

t; !0)]

32On the other hand, Epstein and Zin (1990) and Bekaert, Hodrick, and Marshall (1997) utilize �rst-order

risk aversion (de�ned by Segal and Spivak (1990)) under the recursive utility model of Epstein and Zin

(1989). The non-di¤erentiability in their models comes from an atemporal non-expected utility model of

Yaari (1987). Our model is based on time-variability aversion, and provides much parsimonious logic why we

observe non-di¤erentiability in marginal rate of substitution. The results in Sections 2.5.2 and 2.5.3 suggest

that our model faces less restriction on a structure of non-di¤erentiability and could explain asset prices

better than Epstein and Zin (1990) or Bekaert, Hodrick, and Marshall (1997).
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(2.5.10)
rft+1(!

t)

1 + rft+1(!
t)
= �(!0)

�
ct+1(!

t; !0)

ct(!t)

��

rit+1(!

t; !0) + "it+1(!
t; !0)

Note that rft+1(!
t; !0) depends only on !t so that we can write rft+1(!

t; !0) = rft+1(!
t)

and take it out of the expectation operator. Equation (2.5.10) is rewritten by using dummy

variables dmu and dmd where dmu is one if �(!0) = �u and zero otherwise, and dmd is one

if �(!0) = �d and zero otherwise.

(2.5.11)
rft+1(!

t)

1 + rft+1(!
t)

= �u � dmu

�
ct+1(!

t; !0)

ct(!t)

��

rit+1(!

t; !0)

+�d � dmd

�
ct+1(!

t; !0)

ct(!t)

��

+ "it+1(!

t; !0)

Before proceeding to the results, we mention two limitations. First, assumptions (2.5.4)

to (2.5.7) are not innocuous. In reality, discount factors can move in a more complicated

manner. For more precise investigation, we should model the movement of discount factors

more carefully. Second, we do not directly use (2.5.8). Since (2.5.8) generates the regression

where a dependent variable is a vector of one (i.e., no variations), it is hard to see a statistical

relationship between the movement of the marginal rate of substitution and asset prices.

In fact, (2.5.8) always gives us discount factors around one whereas (2.5.11) can result in

discount factors di¤erent from one.

Now, we apply (2.5.11) to UK data. The data covers a period from the third quarter of

1975 to the �rst quarter of 1998. (86 data points. Since estimation is extremely sensitive to
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outliers, we exclude Q1/76, Q1/86, Q1/87, Q4/87 and Q3/90.33)34 During this period, there

are 61 quarters of positive consumption growths and 25 quarters of negative consumption

growth.35 First, we perform unconditional regressions of (2.5.11). Note that we do not

estimate a coe¢ cient of relative risk aversion. Instead, we assume the number and estimate

�u and �d. We also perform two additional tests for the following parameter restrictions:

Restriction 1: H0: � = �u = �d H1: �u 6= �d

Restriction 2: H0: �u � 0:7 + �d � 0:3 = 0:98 H1: Not H0

The �rst restriction tests whether or not two normalized discount factors are statistically

di¤erent. Under the second restriction, we assume that an average normalized discount

factor is 0.98. (The ratio of positive consumption growths to the number of data points is

0.7.)

Now we examine the results.36

33FT500 industrial returns: Q1/76: 17.25, Q1/86: 18.10, Q1/87: 20.50, Q4/87: -28.40, Q3/90: -18.60.

34Consumption is summation of non-durable and service expenditures. As de�ators, we use the retail

price index. Stock returns are based on FT500 industrial de�ated by the retail price index monthly and

converted to quarterly �gures. For risk-free rates, we use 3 month bank bill at the end of the previous

quarter. We subtract in�ation rate from 3 month bank bill. Except 3 month bank bill, growth rates are

based on arithmetic returns.

35From Q2/1956 to Q1/1998, there are 121 positive growth and 47 negative growth. The percentage of

negative growth is 28 %, which is close to 30% of data we use for estimation. This result indicates that the

UK economy seems to be fairly stable after 1956.

36Standard deviations are based on HCSE.
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Gamma 2 4 6 8 10 20 21

�u 0.2850 0.2908 0.2966 0.3024 0.3081 0.3370 0.3399

�d 0.5410 0.5321 0.5231 0.5140 0.5048 0.4579 0.4532

t value for �u 2.0716 2.0807 2.0898 2.0987 2.1075 2.1498 2.1538

t value for �d 3.0245 3.0197 3.0161 3.0139 3.0131 3.0312 3.0352

R2 0.1018 0.1020 0.1023 0.1025 0.1028 0.1040 0.1041

� from Restriction 1 0.3365 0.3420 0.3473 0.3524 0.3571 0.3760 0.3773

Wald for Restriction 1 0.8104 0.7337 0.6590 0.5865 0.5165 0.2152 0.1906

Power of Restriction 1 0.1280 0.1136 0.1011 0.0903 0.0811 0.0553 0.0542

�u from Restriction 2 0.8099 0.8285 0.8470 0.8653 0.8835 0.9702 0.9785

�d from Restriction 2 1.3951 1.3496 1.3044 1.2597 1.2156 1.0038 0.9836

Wald for Restriction 2 28.217 27.851 27.480 27.105 26.726 24.791 24.595

The regressions show that �u > �d, and the gap between them narrows as 
 increases.

Under Restriction 2, we �rst see that a range of normalized discount factors is consistent with

assumption (2.5.7) although the Wald statistics are quite high.37 Second, we see that the

range of normalized discount factors shrinks as 
 goes up, and at 
 = 21, a range vanishes.

We consider this point to be an implied relative risk aversion of �xed discount factors.

Third, at 
 = 2 and 
 = 4, a range of normalized discount factors roughly corresponds to

that of the numerical examples in the previous subsection (note that the previous example

37All regressions are very sensitive to outliers. This result clearly implies that our data size is too small

to make statistical test valid. Also it is well know that Wald statistics are not reliable in small samples.
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uses US data). In addition, R2 and t values for �u and �d are nearly constant at any level

of 
. This result shows that under time-variability aversion, a model with a low 
 does

not decrease overall explanatory power relative to a model with a high 
. If we have a

normative criteria for the level of 
 that is less than 10, we should select (2.4.1) to explain

the movement of asset returns. Moreover, under �u = �d, � increases as 
 goes up, which is

consistent with the results of the numerical examples in the previous subsection.

By contrary, one negative result is that we cannot reject the null hypothesis of �u = �d.

However, the Wald statistic still decreases as 
 increases, which indicates that at the lower

level of 
, �u and �d become more distinguishable. In addition, a data size is too small

to conclude whether or not �u = �d is a reasonable assumption. For example, if we test a

parameter restriction of �u - �d = 0.25, the Wald statistic becomes 3.17. To obtain a similar

level of the Wald statistic in the opposite direction, we need to set �u - �d = -0.75.38 Clearly,

data implies that �u - �d is more likely to be negative. More precisely, we report the power

of the tests assuming that the estimated coe¢ cients are true value. Clearly, the power of the

test of Restriction 1 is too low to conclude that �u = �d is statistically supported. The low

power is primarily due to the small gap in the estimated coe¢ cients relative to its variance,

so we need more data to reduce the variance of the estimates.

Next, we apply GMM to (2.5.11) to test conditional relationships. The instruments we

use are a constant, the lag of per capita consumption growth rate, the lag of retail price

38The Wald statistic is 3.02.
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growth rate, the lag of stock returns, the lag of risk-free rates.39

Gamma 2 4 6 8 10 20 21

�u 2.1302 2.1965 2.2638 2.3322 2.4017 2.7657 2.8035

�d 3.7021 3.6222 3.5434 3.4658 3.3893 3.0215 2.9860

Wald for �u 40.269 41.455 42.631 43.797 44.949 50.459 50.983

Wald for �d 23.667 23.855 24.057 24.275 24.507 25.862 26.014

Over-identifying restr. 22.703 22.344 21.978 21.605 21.226 19.242 19.036

� from Restr. 1 2.4198 2.4708 2.5215 2.5716 2.6209 2.8405 2.8585

Wald for Restr. 1 3.3457 2.8837 2.4345 2.0027 1.5933 0.1349 0.0702

Power for Restri. 1 0.9171 0.8222 0.6825 0.5171 0.3572 0.0521 0.0506

�u from Restr. 2 0.9057 0.9038 0.9022 0.9008 0.8998 0.9016 0.9025

�d from Restr. 2 1.1612 1.1658 1.1699 1.1732 1.1757 1.1712 1.1691

Wald for Restr. 2 26.904 27.396 27.890 28.387 28.888 31.417 31.672

First, this linear GMM is essentially identical to an instrumental variable regression.

Since the correlations between explanatory variables and instruments are very low, the

estimates are not very reliable.40 This low correlations explain the large coe¢ cients in the

above table.41 In addition, there are two di¤erences between the estimates in GMM and

39Estimates and statistics are based on the optimal weights from the instrumental variable regressions.

40Note that the critical values for 5% and 1% of Chi-square distribution for the test of over-identifying

restriction are (7.815,11.341) for the GMM.

41 If an original regression works, there is no need for an instrumental variable regression because it is
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the estimates in unconditional regressions. The �rst di¤erence is that the null hypothesis of

Restriction 1 is rejected at a 10% con�dence level at 
 =2 and 
 =4. The second di¤erence is

that under Restriction 2, the range of normalized discount factors is narrower than the range

under unconditional regressions, and it does not shrink under Restriction 2 as 
 increases.

However, in general, the normalized discount factors in GMM still capture time-variability

aversion.

2.6 Comparison with Other Intertemporal Utility Functions

2.6.1 Recursive Utility, Gilboa (1989) and Shalev (1997)

In this section, we compare the multiple discount factors model with other intertemporal

utility functions. We only focus on the utility functions that involve movement of discount

factors. First, let c = (c0,...,cT ) be a stream of consumptions from time 0 to time T .

(2.6.1) V0(c) = W (u(c0),V1(c1; :::; cT )) (Koopmans: 1960)

(2.6.2) U(c) = u(c0) +
PT
1 u(ct) exp(�

Pt�1
�=0 v(c� )) (Epstein: 1983)

Our formula (2.3.2) shares a structure similar to (2.6.1). The multiple discount factors

simply de�ne the way an aggregator function works (although an aggregator function is

time-dependent). Epstein (1983) has path-dependent discount factors. However, the level

of discount factors depends on the level of historical consumptions, not on the di¤erence

always less e¢ cient than the original regression.
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between current and future consumptions. In addition, (2.6.2) is time additive and does

not provide gain/loss asymmetry as time-variability aversion suggests.

Gilboa (1989) applies the non-additive prior model of Schmeidler (1989) over a sequence

of lotteries and derives a utility function that depends not only on consumption itself but also

the di¤erence of adjacent consumptions. Shalev (1997) modi�es Gilboa (1989)�s formulation

and introduces di¤erent weights for positive and negative increments.

(2.6.3) U(c) =
PT
0 [�tu(ct) + �tju(ct)� u(ct�1)j] with �0 = 0 (Gilboa:1989)

(2.6.4) U(c) = u(c0) +
PT
0 �

+
t max[u(ct)�u(ct�1); 0]+��t min[u(ct)�u(ct�1); 0]

with �+0 = �
�
0 = 0 (Shalev: 1997)

First, both formulas incorporate a reference point, and Shalev (1997) also captures

gain/loss asymmetry over time. However, neither formula satis�es dynamic consistency,

i.e., the choice for (c1; :::; cT ) at time 0 might not be optimal at time 1. This result is due

to Sarin and Wakker (1998) and Grant, Kajii and Polak (2000): the rank dependent utility

function cannot have a recursive structure. On the other hand, the multiple priors model by

Gilboa and Schmeidler (1989) can have dynamically consistent preference relations.42 Given

42Sarin and Wakker (1998) indicate in a simple example that the multiple priors model of Gilboa and

Schmeidler (1989) can be dynamically consistent and allow a recursive structure. Epstein and Schneider

(2001) prove the existence of recursive multiple priors preference. Wakai (2001) also shows that the ex-

ante multiple priors set must be recursive if it satis�es dynamic consistency and independence of irrelevant

alternatives. Moreover at each time, the updated preference must be a class of the multiple priors and a set

of priors is derived applying Bayes rule point-wise.
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this theoretical advantage, we apply the multiple priors model for a stream of consumptions

and produce dynamically consistent preference relations.43 ;44 The dynamic consistency has

a clear implication: an agent compares present consumption and a discounted present value

of all future consumption.

Second, our formula automatically assigns a lower discount factors for higher future

consumption. On the other hand, (2.6.4) is silent about the magnitude of �+t and �
�
t .
45

2.6.2 Loss Aversion and Habit Formation

In this subsection, we compare formulas (2.3.2) and (2.4.1) with the loss aversion of Tversky

and Kahneman (1979,1991) and Loewenstein and Prelec (1992,1993), and the habit forma-

tion function of Constantinides (1990). First, prospect theory (Tversky and Kahneman,

1979) provides a static utility representation of risk-preferences based on experimental and

behavioral studies, and it has the following form of a utility function on a random variable

x:

(2.6.5) u(x) =
P
�(p)V (x� r)

43The usage of the recursive multiple priors began in Epstein and Wang (1994, 1995).

44The multiple priors model is in general dynamically inconsistent because revealing more information

about states is inconsistent with the original ambiguity unless an agent knows how information is going to

be revealed over time, i.e., only when an agent know the �ltration of state realizations.

45For Shalev (1997) formula to have �+t < ��t , it requires more assumptions for agents�behavior. However,

if there are only two periods, Shalev (1997) and our model is essentially identical.

52



where p de�nes a probability distribution of x, �(p) is a probability weight function,

r is a reference point, and V is a value function. The summation is over the support of

p. V shows gain/loss asymmetry, i.e., loss aversion, by non-di¤erentiable shift of V at the

reference point r. The reference point r is a predetermined level that is based on current

information so that r represents some intertemporal consideration.

To apply (2.6.5) to a consumption-saving problem, there are two approaches. The �rst

approach is to apply loss aversion to gain/loss of asset returns (see Barberis and Huang

(2000)). The second approach is to incorporate loss aversion on consumption streams. To

be consistent with our motivation of consumption smoothing, we only focus on the second

approach. In fact, (2.6.4) of Shalev (1997) is motivated by the second objective. In a more

experimental approach, Loewenstein and Prelec (1992,1993) suggest two alternatives:

(2.6.6) u(c) =
PT
t=0 �(t)V (ct � r)

(2.6.7) u(c) =
PT
t=0 u(ct) + �

+
PT
t=0max[dt; 0]� ��

PT
t=0min[dt; 0]

where �(t) is a function of discount factors (we assume that it is the exponential discount-

ing although they assume hyperbolic discounting.), 0<�+ < �� and dt =
t+ 1

T + 1

PT
�=0 u(c� )

-
Pt
�=0 u(c� ) (di¤erence in cumulative utility). V (ct � r) in (2.6.6) is a direct application

of (2.6.5). On the other hand, our representation of (2.3.2) is based only on aversion to

�uctuations of payo¤s over time and does not pre-specify the existence of reference points.

Gain/loss asymmetry is expressed in (2.3.2) because an agent compares only two numbers

at each time due to a recursive structure. In (2.6.7), Loewenstein and Prelec (1993) aim
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to explain loss aversion based on global characteristics of a consumption sequence. Our

formula (2.3.2) shares an idea similar to (2.6.7) because time-variability aversion explains

global characteristics. In (2.3.2), an agent compares present consumption and a discounted

present value of future consumption and applies an argument similar to loss aversion be-

tween them. To this end, we can consider (2.3.2) to be a hybrid of (2.6.6) and (2.6.7).

The di¤erence between (2.3.2) and (2.6.7) is that (2.3.2) has a recursive formula whereas

(2.6.7) considers di¤erences and base-line preference (
PT
t=0 u(ct)) separately and it is not

dynamically consistent.

Constantinides (1990) (recently by Campbell and Cochrane (1999,2000)) introduces a

utility function that depends on historical consumption, which is a variant of reference-based

approaches (the habit formation model). His formula becomes:

(2.6.8) V (c) = E[
PT
t=0 �

t�1u(ct � xt)]

where x0 = 0 and xt = f(c0; :::; ct�1). This formula is an application of (2.6.5) over

consumptions. The term u(ct � xt) represents an idea similar to an existence of reference

points on consumption growth in (2.6.5) although ct � xt should not be negative under the

CRRA u and does not have gain/loss asymmetry in the original work of Constatninides

(1990) (there is no loss by de�nition). In fact, the habit formation model is not quite what

its name suggests; it mainly expresses forward-looking concerns. The di¤erence between

(2.4.1) and (2.6.8) is that (2.4.1) only focuses on future time-variability and u is history-

independent. This feature makes analysis easier. The value function (2.6.8) has history-

dependent u(ct � xt).

54



2.6.3 Comparison of Empirical Implications

Our model can explain the equity-premium and risk-free-rate puzzles. This result is not

surprising given that our model shares similar qualitative features with habit formation,

loss aversion and uncertainty aversion. The main advantage of our model comes from

the theoretical aspect: it is based on more parsimonious axioms and the interpretation of

empirical results is straight forward. However, to provide more intuitions for our model, we

investigate detailed di¤erences in empirical implications among these models.

First, the main di¤erence between our model and the habit formation model is whether

u is history dependent or not. We can test this claim directly by designing experimental

questions or observing the sequential choices of individuals over time. However, evidence

for history dependence itself does not deny the existence of time-variability aversion. Time-

variability is an expression of time-preference for consumption smoothing and there are

many experimental evidences that support this notion. In addition, by allowing history

dependence, we can rewrite (2.3.2) with history dependent u while keeping multiple discount

factors. To this end, we can consider the test for history dependence to be a test of u, not

the test of time-variability aversion.

Second, the test of loss aversion depends on the interpretation of its concept. The value

function (2.3.2) can be categorized in the class of models of loss aversion if we apply a broader

interpretation. In fact, gain/loss asymmetry from a reference point is closely related to the

preference for smoothing, and we can naively consider (2.3.2) to be an axiomatization of both

concepts. In other words, time-variability aversion is a source of loss aversion. However,
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(2.3.2) has a clear di¤erence from (2.6.6). If we consider (2.6.6) to be a genuine form of

loss aversion, we can test whether an agent only considers tomorrow�s value or considers all

future values to assess gain/loss asymmetry.

Our model derives implications for equilibrium asset prices similar to those of a model

with multiple priors.46 ;47 The main di¤erence between them is that in the multiple priors

model, an agent uses an �e¤ective� prior that is di¤erent from the objective probability.

An agent is uncertain about the probability of state realizations and selects the worst

possible guess from a choice of priors to evaluate a given consumption stream. This prior

overestimates the probability of states that yield lower consumption and underestimates the

probability of states that yield higher consumption. This operation makes the ex-post equity

premium higher relative to the ex-ante equity premium because an agent uses a biased prior

instead of objective probability. (Positive returns happen more than she expected. The ex-

post boosts of equity returns explains the equity-premium puzzle.) On the other hand, in

our model with the rational expectation hypothesis, an agent uses the objective probability

to calculate asset prices and expected values but still does not like stocks because stocks are

correlated with consumption and she is concerned about bad consumption states. Ex-ante

and ex-post expected returns are identical. The interpretation based on preference-adjusted

priors de�ned in Appendix 2.D and 2.E o¤ers a simple convenient analogy between these

46Two models are theoretically di¤erent. See Appendix 2-E.

47 In general, our model shares similarity with the models that involve atemporal �rst-order risk aversion.

However, the source of non-di¤erentiability is very di¤erent from those in atemporal non-expected utility

models.
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two models.

Empirically, to test the multiple priors model, we need to estimate the set of priors.

We cannot simply consider our results to be the support of the multiple priors because at

equilibrium we can always �nd a set of multiple priors that justify our results (constructing

from an equilibrium preference-adjusted prior). In addition, we need to know how an agent

updates the multiple priors over time when an agent learns the statistical properties of the

economy. It is not reasonable to assume that an agent never learns and keeps the same

degree of ambiguity over time.

Finally, to compare with the discounted utility model, we need to conduct experiments

under which some questions only involve risk-preferences and other questions involves in-

tertemporal preferences. Then we can investigate the di¤erence between atemporal risk

aversion and risk aversion with intertemporal choice.

2.7 Derivation of the Representation of (2.4.1)

As we see in Appendix 2.B, if we apply (2.3.2) to an objective probability space of con-

sumption streams, it is not dynamically consistent. To restore dynamic consistency, a

standard approach is to use recursive preferences of Epstein and Zin (1989) with subjective

priors. However, under Epstein and Zin (1989), intertemporal substitution is considered

after certainty-equivalence is calculated. As we shown in Section 4-1, this approach does

not utilize time-variability aversion su¢ ciently. To reverse the order of aggregation, we need

to de�ne preference relations on a slightly bigger act space.
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In an actual derivation of the representation, an agent needs to consider the following

thought experiment for Contract A and B in Section 2.4.1 at time 0:

1. I know that I am at state 1.

2. However, I also care about payo¤s in state 2 even though this state was never realized.

3. To incorporate this concern, I need to weight a utility of payo¤s in state 1 and state

2.

4. So even though [4,5] is better than [4,4], I would prefer Contract B.

The reason why we need to consider this thought experiment is to locate a subjective

prior outside a utility index of each state. This thought experiment incorporates the fact

that the true state is either state 1 or state 2 even when an agent is at time 0. She consider

a consumption stream to be certain at each state, and applies time-variability aversion on

a state-by-state basis. Then she considers as if only one of them were true and aggregates

utility from each stream of consumption with some weights.

Now we derive a utility representation with multiple discount factors under uncertainty.

In this section, we use a more general structure of state evolution. There is a �nite state

space 
 with S elements. Time horizon is �nite, and let T = {1,...,T} be a set of time from

0 to T . Let Ft be a �ltration at time t, i.e., a partition of 
 that is �ner than F� 81 � � < t,

and any event in Ft must be a subset of some event of Ft�1. Assume that F1={
} and

FT ={1,...,S} with Ft(!) denoting an event in Ft that contains a state ! 2 
. Note that
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by the nature of �ltration, the knowledge of Ft(!) summarizes all history up to t. Assume

that Y is a lottery space de�ned in Section 3-2. Let f! be a state act: f!:T! Y , i.e., f!

= (y0,...,yT ) 2 Y T+1, and f t be a time act: f t:
 ! Y , i.e., f t = (y1,...,yS)0 2 Y S . Let

f be an act:f :(T,
) ! Y , i.e., f = (f1,...,fT ) = (f1,...,fS) 2 Y S(T+1). Also denote f t(!)

2 Y as a lottery in f t at !, and f!(t) 2 Y as a lottery in f! at t, and ft;! as a lottery

at (t,!). The primitives that an agent forms preference relations are forward measurable

acts. A forward measurable act is a function: f : (T,
)! Y such that f = (f0,...,fT ), and

f t is measurable with respect to Ft+1 where 0 � t < T and fT is measurable with respect

to FT . De�ne a collection of all such functions as Af . This space is bigger than the space

of acts that are measurable with respect to the �ltration Ft. The forward measurability

states that an agent cares how an act assigns lotteries at t on each event Ft+1 in Ft(!). On

the other hand, if an agent is only concerned about preference relations on measurable acts

with respect to Ft, an agent only considers tomorrow�s uncertainty, not a path from today

to tomorrow on each event Ft+1 in Ft(!). In other words, under forward measurability,

an agent hypothetically constructs preference relations as if she knows which event will

occur tomorrow. After forming preference relations on Af , an agent uses them to evaluate

Ft-measurable acts.

Now we de�ne subspaces of Af . A constant act is a function, ht(!) = y 8(t; !) 2 (T;
),

that will also be denoted by y. Ac is a collection of all constant acts. A certainty act is a

function, ht(!) = yt 8(t; !) 2 (T;
), that will also be denoted by y!. Acty is a collection of

all certainty acts. A t-constant act is a certainty act with f t = f � 8� s.t. t � � � T . Ac(t)
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is a collection of all t-constant acts. A (t,t0)-state-constant act is a forward measurable act

such that each f � of t � � � T is a measurable with respect to Ft+1, and that f!(t0) =

f!(�) 8� s.t. t � t0 � � � T at 8! 2 
. Acs(t;t0) is a collection of all (t,t0)-state-constant

acts. Clearly, Ac � Acs(t;t0) � Af and Ac � Ac(t) � Acty � Af . The following table

summarizes allocation of lotteries in each subgroups. Suppose that we are at time 0 for

T=2.

Filtration (0 to 2) Af Ac

t = 0 t = 1 t = 2

F1 F2;1 F3;1

F1 F2;1 F3;2

F1 F2;2 F3;3

F1 F2;2 F3;4

t = 0 t = 1 t = 2

y1;1 y2;1 y3;1

y1;1 y2;2 y3;2

y1;2 y2;3 y3;3

y1;2 y2;4 y3;4

t = 0 t = 1 t = 2

y y y

y y y

y y y

y y y

Acty Ac(2) Acs(1;2)

t = 0 t = 1 t = 2

y1 y2 y3

y1 y2 y3

y1 y2 y3

y1 y2 y3

t = 0 t = 1 t = 2

y1 y y

y1 y y

y1 y y

y1 y y

t = 0 t = 1 t = 2

y1;1 y1 y1

y1;1 y1 y1

y2;2 y2 y2

y2;2 y2 y2

At each (t; !), an agent has her preference relations on Af with �(t;!). All conditional

preferences in the collection of {�(t;!)}� {�(t;!): (t; !)2 (T;
)} satisfy the following axioms:
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Axiom 2.7.1: Outcome Dependence

Conditional preference relations �(t;!)on Af are based on Ft(!).

Axiom 2.7.2: Independence of History up to t � 1 and of Irrelevant Al-

ternatives

8f; q 2 A : If f � (!0) = g� (!0) on 8!0 2 Ft(!) for 8� s.t. t � � � T , then f '(t;!) g.

Axiom 2.7.3: Indi¤erence among !0 2 Ft(!)

8f; q 2 A : �(t;!)is identical to �(t;!0)if Ft(!) = Ft(!0)

Axiom 2.7.4: Dynamic Consistency

For f; g 2 Af if f t(!0) = gt(!0) and f �(t+1;!0) g on 8!0 2 Ft(!) then f �(t;!) g.

Axiom 2.7.1 is the key axiom for these preference relations. It states that an agent

behaves as if she knows at time t that an event Ft+1(!) will occur tomorrow, but takes

into consideration unrealized events in Ft(!). Axioms 2.7.2 and 2.7.3 state that preference

relations only depend on assignment of future lotteries on Ft(!). Again we consider dynamic

consistency as a normative criteria. Now the collection of all preference relations {�(t;!)}

on Af also satisfy axioms below:

Axiom 2.7.5: Weak Order

8f; g; h 2 Af ; (i) f �(t;!) g or g �(t;!) f (ii) f �(t;!) g and g �(t;!) h) f �(t;!) h.

Axiom 2.7.6: Continuity

8f; g; h 2 Af with f �(t;!) g �(t;!) h, 90 < � , � <1

s.t. �f � (1� �)h �(t;!) g and g �(t;!) �f � (1� �)h.

61



Axiom 2.7.7: Nondegeneracy in Ac

9f; g 2 Ac s.t. 8h 2 Af f �(t;!) h and h �(t;!) g and f �(t;!) g

Axiom 2.7.8: Strict Monotonicity on Time among Acty

For f; g 2 Acty s.t. f! = (yt,...,yT ) and g! = (y0t,...,y0T ).

If y� �(t;!) y0� 8t � � � T , then f �(t;!) g.

In addition, if for some � , y� �(t;!) y� 0 then f �(t;!) g.

Axiom 2.7.9: Constant-Independence among Acty

8 f; g 2 Acty and 8h 2 Ac:

8� 2 (0; 1), f �(t;!) g , �f � (1� �)h �(t;!) �g � (1� �)h

Axiom 2.7.10: Time-Variability Aversion among Acty

8 f; g 2 Acty s.t. f �(t;!) g, 8� 2 (0; 1); �p � (1� �)f �(t;!) g

Axiom 2.7.11: Weak Independence Axiom among Acs(t;t)

For f; g; h 2 Acs(t;t), f �(t;!) g () 1
2h+

1
2f �(t;!)

1
2h+

1
2g

Axiom 2.7.12: Strict Monotonicity on States among Acs(t;t+1)

For f; g 2 Acs(t;t+1), if f!
0 �(t;!) g!

0 8!0 2 Ft(!) then f �(t;!) g

In addition, if for some !0, f!
0 �(t;!) g!

0
then f �(t;!) g.

Axioms 2.7.5 to 2.7.10 are equivalent to Axioms 2.3.1 to 2.3.6.48 Axioms 2.7.11 and

2.7.12 ensure the existence of a subjective prior. However, Axiom 2.7.12 is more than a

state-independence axiom that derives a subjective prior among Acs(t;t) at Ft(!). An agent

needs to consider Acs(t;t+1) (which is a bigger act space) to apply time-variability aversion

48Note that we only need Axioms 2.7.8 and 2.7.10 for �(1;!)given Axioms 2.7.2 to 2.7.4.
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on a state-by-state basis. This axiom also separates decisions between time t and time t+1

from decisions among time t+ 1 onward. An agent does not want to consider the e¤ects of

mixing future lotteries (from t + 1 onward) on di¤erent Ft+1 since she knows that at time

t+ 1, she would not consider irrelevant alternatives. An agent only wants to consider how

she feels if she were at Ft+1 today and then aggregates those utilities.

Given the above axioms, preference relations {�(t;!)} on Af can be represented by the

following formula:

Proposition 2.7.1:

A binary relationship {�(t;!)} on Af satis�es Axiom 2.7.1 to 2.7.12 if and only if there

exists {[�t,�t]}1�t�T such that:

(2.7.1) 8f; g 2 Af ,

f �(t;!) g , V(t;!)(f) � V(t;!)(g)

where {V(t;!)(f)}(t;!)2(T;
) are recursively de�ned by:

V(t;!)(f) � Et[Min�t+1;!02[�t+1;�t+1][(1� �t+1;!0)u(f
t(!))

+�t+1;!0V(t+1;!0)(f)] jFt(!)]

and VT;!(f) � u(fT (!))

(2.7.2) 0 < �t � �t < 1 8t s.t. 1� t � T

(2.7.3) ��t+1;!0 = �
�
t+1;!00 at !

0; !00 2 Ft+1 � Ft(!)

where ��t+1;!0 2argmim�t+1;!02Dt [(1� �t+1;!0)u(f
t(!0)) + �t+1;!0V(t+1;!0)(f)]

Moreover,

(2.7.4) Et[:jFt(!)] and [�t,�t] is uniquely de�ned, [�t,�t] are independent of states.
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(2.7.5) u: Y ! R is a unique up to a positive a¢ ne transformation.

Proof:

Appendix 2.F:

Note that in an actual situation, only Ft-measurable acts are available. However, an

agent can use the above utility functions for them because a set of Ft-measurable acts is a

subset of Af . In addition, a selection of discount factors at time t is based on tomorrow�s

event Ft+1, not on each state in Ft+1 because preference relations are de�ned on forward

measurable acts. Finally, for time-variability-seeking, we need to reverse the inequality

in Axiom 2.7.10. Then the representation has �max�instead of �min�as we mentioned in

Section 2.3.1 and Appendix 2.A.

2.8 Conclusion and Extensions

In this paper, we axiomatized the behavioral notion of time-variability aversion and then de-

rived the representation. Our model makes the following contributions: (1) time-variability

aversion is captured as a separate attitude from risk-aversion, and an axiomatic derivation

provides a clear picture of an agent�s motives; (2) under uncertainty, intertemporal sub-

stitution is considered before risk is considered; (3) the formula is very parsimonious, and

at an e¤ective selection of discount factors, Euler equations become very tractable; (4) the
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multiple discount factors capture the notion of gain/loss asymmetry, which explains asset

behavior better than the discounted utility model.

In this paper, we only focus on the behavior of aggregate asset pricing. However, we

believe that the most appropriate and interesting application of our utility representation

is found in life-time consumption-saving problems. For example, we can investigate either

empirically or by simulations the change of time-preferences through generations. For an-

other dimension of research, we can perform an empirical test across countries to examine

the di¤erences in time-preferences and consumption-saving behavior.
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Appendix 2.A: Proof of Proposition 2.3.1 and 2.3.2

For Proposition 2.3.1, refer to Wakai (2001). For Proposition 2.3.2, reverse all inequal-

ities in the proof of Gilboa and Schmeidler (1989) and apply the same argument as in

Proposition 2.3.1.�

Appendix 2.B: Problem of Dynamic Consistency under Uncertainty

We can naively apply (2.3.2) to an objective probability space of consumption streams.

However, this application is not dynamically consistent. We illustrate this point by the

following example. Suppose that there are three dates and four states. On date 0, an agent

does not have any information about states. On date 1, an agent is informed that either

(state1,state2) or (state2, state3) happened. On date 2, an agent knows all information

about states. The probability of state realization is (0.25,0.25,0.25,0.25). Now an agent

assigns a utility index following (2.3.2) with u(c) =c and [�t; �t]=[0.3,0.7] for t =1 and 2,

and evaluates the following stream of consumptions:

Contract A Contract B

StatenTime 0 1 2

1 1.5 2 2

2 1.5 2 1

3 1.5 2 2

4 1.5 2 1

StatenTime 0 1 2

1 1.5 3 1

2 1.5 3 1

3 1.5 2 2

4 1.5 2 1
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Utility

ContractnTime 0 1 at (1,2)

Contract A 1.5050 1.65

Contract B 1.5175 1.60

Clearly, on date 0, an agent chooses Contract B, but after she realizes that she is

at (state1, state2), she selects Contract A. This example violates dynamic consistency.

Technically speaking, the reason why we face a problem of dynamic consistency is that

under a payo¤ vector approach, an agent forms preference relations on an entire space of

acts that do not consider how a state evolves. Since a dynamic consistency is related to

the evolution of states, inconsistency emerges over time unless agent�s preferences are time

additive.

We can learn from this example that we need to use the recursive structure to resolve

dynamic consistency. Having a dynamically consistent utility function (2.3.2) on each state

is not enough because this function is not time additive.

Appendix 2.C:

The Proof follows Epstein and Wang (1994).

Step 1:

Theorem 2.C.1: (Aubin: 1979. P.118)

(2.C.1) P is compact

(2.C.2) 9 a neighborhood U of x s.t. for any y 2 U :
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p! f(y; p) is upper semi-continuous

(2.C.3) 8p 2 P, y ! f(y; p) is convex and di¤erentiable from the right.

(2.C.4) g(y) =suppf(y; p)

(2.C.5) P0 = {p 2 Pjg(x) = f(x; p)}

Then

Dg(x)(y) = suppDf(x; p)(y)

Let F (c,�) = Vt(c)(!
t), and �(t; !) be a collection of {�t+1(!t; !)}!2
 where each

�t+1(!
t; !) 2 [�t+1; �t+1] with 0 < �t+1 � �t+1 <1. It is clear that�(t; !) is compact, F (c,�)

is upper semi-continuous in �, and F (c,�) is concave and di¤erentiable at all � 2 �(t; !). By

changing sup to inf, we can derive the right and left derivatives as supergradients instead

of subgradients by the right di¤erentiability of u. Then:

DVt(c)(!
t)(y) = inf�DF (c; �)(y) (right)

DVt(c)(!
t)(y) = sup�DF (c; �)(y) (left)

Note that by changing the sign of y, we can use the right di¤erentiability to derive the

left derivative.

Step 2:

Utility function (2.4.1) is non-time-separable and, as a result, discount factors depend

on future states. To derive asset prices, we need to perturb all points in time and states

because discount factors move over time. We construct equilibrium prices by backward

induction to address this connection explicitly.
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Proposition 2.C.1:

{qt}0�t�T is an equilibrium price for asset i if and only if at all (t; !t), there exits

{���gt+2���T 2 ���(t+ 2; !t; !) such that:

(2.C.6) min�2��(t+1;!t)maxi2I

jEt[(1-�t+1(!t; !))u0(et(!t))(�qit(!t))

+�t+1(!
t; !)At+1(!

t; !)u0(et+1(!t; !))(qit+1(!
t; !) + dit+1(!

t; !))]j=0

where At+1(!t; !) =Et+1[(1� ��t+2(!t; !; !0))].

(2.C.7) ��(t+ 1; !t) is recursively de�ned as:

��(t+ 1; !t)

= {{�t+1(!t; !)g!2
 2 [�t+1; �t+1]S j

Et[(1� �t+1(!t; !))u(et(!t)) + �t+1(!t; !)Vt+1(e)(!t; !)] = Vt(e)(!t; !)}.

(2.C.8) ���(t+ 2; !t; !)

= {{���gt+2���T j the same {q�gt+1���T�1 recursively satis�es (2.C.6)}

(2.C.9) qiT (!
T ) = 0 8!T 2 
T and i 2 I.

Proof:

Necessity:

Suppose that {qt}0�t�T is an equilibrium price with {ct}0�t�T = {et}0�t�T and {�it}0�t�T

= {0}. By assumption, qiT (!
T ) = 0 8!T 2 
T and i 2 I. In addition, under the ratio-

nal expectation, asset prices are dynamically consistent and determined recursively. At

(T � 1,!T�1), consider the perturbation of the optimal policy by:
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(2.C.10) cT�1(!
T�1) = eT�1(!

T�1)� �(� � qT�1(!T�1)) and �T�1 = ��

(2.C.11) cT (!
T�1; !) = eT (!

T�1; !) + �� � dT (!T�1; !) on ! 2 


(2.C.12) � 2 RI and � 2 R

This perturbation must make the representative agent worse o¤.

02 argmax�fVt(e+ �(0; :::0;�(� � qT�1(!T�1)); f� � dT (!T�1; !)g!2
))(!t)g

Apply Step 1 and de�ne ��(T � 1; !T�1) � RS++ as:

(2.C.13) ��(T; !T�1)

= {{�T (!T�1; !)g!2
 2 [�T ; �T ]S j

ET�1[(1� �T (!T�1; !))u(eT�1(!T�1))

+�T (!
T�1; !)VT (e)(!

T�1; !)] = VT�1(e)(!
T�1)}

Then the �rst-order conditions become:

From a right derivative:

Min�2��(T;!T�1)

ET�1[(1� �T (!T�1; !))u0(eT�1(!T�1))(�� � qT�1(!T�1))

+�T (!
T�1; !)u0(eT (!

T�1; !))(� � dT (!T�1; !))] � 0

From a left derivative:

Max�2��(T;!T�1)

ET�1[(1� �T (!T�1; !))u0(eT�1(!T�1))(�� � qT�1(!T�1))
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+�T (!
T�1; !)u0(eT (!

T�1; !))(� � dT (!T�1; !))] � 0

Now, let �0 = ��. Then the left derivative becomes:

-Min�2��(T;!T�1)

ET�1[(1� �T (!T�1; !))u0(eT�1(!T�1))(��0 � qT�1(!T�1))

+�T (!
T�1; !)u0(eT (!

T�1; !))(�0 � dT (!T�1; !))] � 0

,

Min�2��(T;!T�1)

ET�1[(1� �T (!T�1; !))u0(eT�1(!T�1))(��0 � qT�1(!T�1))

+�T (!
T�1; !)u0(eT (!

T�1; !))(�0 � dT (!T�1; !))] � 0

Combining two inequalities:

(2.C.14) Min�2��(T;!T�1)

ET�1[(1� �T (!T�1; !))u0(eT�1(!T�1))(�� � qT�1(!T�1))

+�T (!
T�1; !)u0(eT (!

T�1; !))(� � dT (!T�1; !))]� 0

8� 2 RN

Rewrite (2.C.14):

(2.C.15) sup�2RImin�2��(T;!T�1)G(�; �) � 0

Since G(:; �) is linearly homogeneous, (2.C.15) is equivalent to:

(2.C.16) max�2
min�2��(T;!T�1)G(�; �) � 0
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where 
 is the convex hull of {�ith coordinate vector: i=1,...,N}. Since 
 and

��(T; !T�1) are convex and compact, and G(�; �) is linear in both arguments, applying

Minmax theorem, there exists �� and �� such that:

max�2
min�2��(T;!T�1)G(�; �) = G(�
�; ��) = min�2��(T;!T�1)max�2
G(�; �)

Now suppose thatG(��; ��) < 0. Then by the fact that � 2 
 , -� 2 
, G(���; ��) > 0.

Then max�2
G(�; ��) � G(���; ��) > 0. Clearly, (��;��) is not a solution of

min�2��(T;!T�1)max�2
G(�; �), which violates minmax theorem. Since G(:; �) is linearly

homogeneous, and � 2 
 , -� 2 
, for all �0 2 
:

(2.C.17) G(�0; ��) = min�2��(T;!T�1)max�2
G(�; �) = 0

Since for each �, G(�; �) is liner, max{G(�; �) under � 2 
} is attained on the set of

extreme points of 
. Therefore:

(2.C.18) min�2��(T;!T�1)maxi2I

jET�1[(1-�T (!T�1; !))u0(eT�1(!T�1))(�qiT�1(!T�1))

+�T (!
T�1; !)u0(eT (!

T�1; !))(diT (!
T�1; !)]j=0

Let �� 2 ��(T; !T�1) be an optional choice of discount factors. De�ne ���(T; !T�1) as:

(2.C.19) ���(T; !T�1) = {� 2 ��(T; !T�1)j G(�; �) = G(�; ��)

under identical qiT�1(!
T�1)}

Now consider the perturbation of the optimal policy at (T � 2,!T�2) by:
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(2.C.20) cT�2(!
T�2) = eT�2(!

T�2)� �(� � qT�2(!T�2)) and �T�2 = ��

(2.C.21) cT�1(!
T�2; !) = eT�1(!

T�2; !) + �� � (qT�1(!T�2; !) + dT�1(!T�2; !))

(2.C.22) � 2 RI and � 2 R

This perturbation must make the representative agent worse o¤.

02 argmax�fVt;!(e+ �(0; :::0;�(� � qT�2(!T�2));

f� � (qT�1(!T�2; !) + dT�1(!T�2; !))g!2
; 0))g

Apply Step 1 and de�ne ��(T � 1; !T�2) � RS++ as:

(2.C.23) ��(T � 1; !T�2)

= {{�T�1(!T�2; !)g!2
 2 [�T�1; �T�1]S j

ET�2[(1� �T�1(!T�2; !))u(eT�2(!T�2))

+ �T�1(!
T�2; !)VT�1(e)(!

T�2; !)] = VT�2(e)(!
T�2)}

Applying the same argument for time T -1, we conclude that under the rational expec-

tations, there exits ��T (!
T�2; !; !0) 2 ���(T; !T�2; !) under which the following equation

holds:

(2.C.24) min�2��(T�1;!T�2)maxi2I

jET�2[(1-�T�1(!T�2; !))u0(eT�2(!T�2))(�qiT�2(!T�2))

+�T�1(!
T�2; !)(1� ��T (!T�2; !; !0))

�u0(eT�1(!T�2; !))(qiT�1(!T�2; !) + diT�1(!T�2; !))]j=0

Let AT�1(!T�2; !) =ET�1[(1� ��T (!T�2; !; !0))]. Then:
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(2.C.25) min�2��(T�1;!T�2)maxi2I

jET�2[(1-�T�1(!T�2; !))u0(eT�2(!T�2))(�qiT�2(!T�2))

+�T�1(!
T�2; !)AT�1(!

T�2; !)

�u0(eT�1(!T�2; !))(qiT�1(!T�2; !) + diT�1(!T�2; !))]j=0

De�ne ���(T � 1 : T; !T�2) � RS2++

(2.C.26) ���(T � 1 : T; !T�2)

= {� 2 ��(T � 1; !T�2)� f���(T; !T�2; !)g!2
j

the same {qt}T�2�t�T�1 satis�es (2.C.18) and (2.C.25)}

The identical procedures is used to derive:

(2.C.27) min�2��(t+1;!t)maxi2I

jEt[(1-�t+1(!t; !))u0(et(!t))(�qit(!t))

+�t+1(!
t; !)At+1(!

t; !)u0(et+1(!t; !))(qit+1(!
t; !) + dit+1(!

t; !))]j=0

where t � � < T with At+1(!t; !) =Et+1[(1 � ��t+2(!t; !; !0))], and ��(t + 1; !t) is

recursively de�ned as:

(2.C.28) ��(t+ 1; !t)

= {{�t+1(!t; !)g!2
 2 [�t+1; �t+1]S j

Et[(1� �t+1(!t; !))u(et(!t)) + �t+1(!t; !)Vt+1(e)(!t; !)] = Vt(e)(!t; !)}

Also ���(t+ 2 : T; !t+1) is used to obtain (2.C.28) where:
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(2.C.29) ���(t+2; !t+1) = {{��gt+2���T j the same {q�gt+1���T�1 recursively satis�es

(2.C.27)}

Then we obtain (2.C.6) to (2.C.9).

Su¢ ciency:

Suppose that (2.C.6) to (2.C.9) hold. Then with �t�1(!t�1) � 0 8!t�1 2 
t�1 and ��

8� s.t. t � � � T :

(2.C.30) e� (!
� )� c� (!� )� �� (!� ) � q� (!� ) = ����1(!��1)(q� (!� ) + d� (!� ))

(2.C.31) There is some b� 2 ��(� + 1; !� ) such that
E� [A� (!� )u0(e� (!� ))(�q� (!� )) � �t(!)]

� �E� [b��+1(!� ; !)A�+1(!�+1; !)
�u0(e�+1(!� ; !))(qi�+1(!� ; !) + di�+1(!� ; !)) � �� (!� )]

with A� (!� ) =E� [1� b��+1(!� ; !)].
(2.C.32) u(c� (!

� ))� u(e� (!� )) � �u0(e� (!� ))(e� (!� )� c� (!� ))

where (2.C.31) is from (2.C.6) (i.e., there exists b� 2 ��(� +1; !� ) that satis�es (2.C.16)
at (�; !� )) and (2.C.32) is from the concavity of u. First, observe that:

Et[(1-b�t+1(!t; !))u(ct(!t)) + b�t+1(!t; !)Vt+1(c)(!t; !))] � Vt(c)(!t)
Then:
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Vt(c)(!
t)� Vt(e)(!t)

� Et[At(!t)(�u0(et(!t))(et(!t)� ct(!t))) + b�t+1(!t; !)(Vt+1(c)(!t; !)� Vt+1(e)(!t; !))]
= Et[At(!t)(�u0(et(!t))�t(!t) � qt(!t) + b�t+1(!t; !)(Vt+1(c)(!t; !)� Vt+1(e)(!t; !))]
� Et[b�t+1(!t; !)At+1(!t+1; !)(�u0(et+1(!t; !))�t(!t) � (qit+1(!t; !) + dit+1(!t; !)))
+b�t+1(!t; !)(Vt+1(c)(!t; !)� Vt+1(e)(!t; !))]
= Et[b�t+1(!t; !)At+1(!t+1; !)u0(et+1(!t; !))
�(et+1(!t; !)� ct+1(!t; !)� �t+1(!t; !) � qt+1(!t; !))

+b�t+1(!t; !)(Vt+1(c)(!t; !)� Vt+1(e)(!t; !))]
� Et[b�t+1(!t; !)[At+1(!t+1; !)(�u0(et+1(!t; !))�t+1(!t; !) � qt+1(!t; !))
+(Vt+2(c)(!

t; !; !0)� Vt+2(e)(!t; !; !0))]]

...

= Et[b�t+1(!t; !)b�t+2(!t; !; !0):::b�T (!t; !T�t)
[(�u0(eT (!t; !T�t))�T�1(!t; !T�t) � (qiT (!t; !T�t) + diT (!t; !T�t)))

+(u(cT (!
t; !T�t))� u(eT (!t; !T�t)))]]

= Et[b�t+1(!t; !)b�t+2(!t; !; !0):::b�T (!t; !T�t)
[(u0(eT (!

t; !T�t))(eT (!
t; !T�t)� cT (!t; !T�t))) + (u(cT (!t; !T�t))� u(eT (!t; !T�t)))]]

� 0

Hence, {et}0�t�T is optimal if asset prices follow (2.C.6) to (2.C.9).�

To gain more insight from (2.C.6), we provide an additional proposition that describes

the property of equilibrium prices. Let � � RST+1++ be a collection of {�t}0�t�T where each

�t(!
t�1; !) 2 [�t; �t] with 0<�t � �t < 1 for 0 < t � T , and we de�ne �0(!0) =1.
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Proposition 2.C.2:

{qt}0�t�T is an equilibrium price for asset i if and only if 9� 2 �� such that at all (t; !t):

(2.C.33) Et[(1-�t+1(!t; !))(�qit(!t))

+�t+1(!
t; !)At+1(!

t; !)
u0(et+1(!t; !))

u0(et(!t))
(qit+1(!

t; !) + dit+1(!
t; !))] = 0 8i.

(2.C.34) The set of equilibrium prices are closed.

(2.C.35) At(!t) =E� [1� �t+1(!t; !)].

(2.C.36) ��

= {� 2 �j at all (t; !t) s.t. 0� t < T :

Et[(1� �t+1(!t; !))u(et(!t))+ �t+1(!t; !)Vt+1(e)(!t; !)] = Vt(e)(!t)

and �0(!0) �1.}.

Proof:

From Proposition 2.C.1, there exist discount factors �� 2 �� � RS
T+1

++ that achieve

minmax points of (2.C.6) from 1 to T � 1. Since u is increasing, we can divide (2.C.6) by

u0(et(!t)). Now take a sequence of equilibrium prices. For each points, they must satisfy

(2.C.6) to (2.C.9). By the continuity of G(�; �) and compactness of � and 
, the limiting

point of (�;�) is also in � and 
 (because a range is compact). Hence, a set of equilibrium

prices and a set of corresponding �� is closed.�

Equality (2.C.6) is a global characteristic that shows that asset prices simultaneously

satisfy the same conditions under identical discount factors. Equality (2.C.33) restates the
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property of equilibrium prices implied by (2.C.6), and it shows that at any equilibrium, there

is a sequence of discount factors � 2 �� that justify all asset prices. Given (2.C.33), we can

write asset prices by Euler equations with some discount factors. The closure property of

(2.C.35) is clear given compactness of � and continuity of u.

Appendix 2.D:

If there are no ties between u(et(!t)) and Vt+1(c)(!t; !), a selection of discount factors

is unique. Then Vt(c)(!t) is di¤erentiable at e and by the nature of representative agent

model, asset prices are uniquely determined. From (2.D.33):

Et[(1-�t+1(!t; !))(�qit(!t))

+�t+1(!
t; !)At+1(!

t; !)
u0(et+1(!t; !))

u0(et(!t))
(qit+1(!

t; !) + dit+1(!
t; !))] = 0 8i.

Then:

(2.D.1) At(!
t)(�qit(!t))

+Et[�t+1(!t; !)At+1(!t; !)
u0(et+1(!t; !))

u0(et(!t))
(qit+1(!

t; !) + dit+1(!
t; !))]=0

(2.D.2) At(!
t) =Et[(1� �t+1(!t; !))]

By simple manipulation:

(2.D.3) At(!
t)(�qit(!t)) + Bt(!t)Et[

u0(et+1(!t; !))

u0(et(!t))
(qit+1(!

t; !) + dit+1(!
t; !))]=0

(2.D.4) Bt(!
t) =Et[�t+1(!t; !)At+1(!t; !)]

(2.D.5) �t;�(!
t; !) = �(!t; !)

�t+1(!
t; !)At+1(!

t; !)

Bt(!t)
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where �(!t; !) is the probability of state ! at time t+ 1 on the path from !t. Hence:

(2.D.6) qit(!
t) = Et[

�t+1(!
t; !)At+1(!

t; !)

At(!t)

u0(et+1(!t; !))

u0(et(!t))
(qit+1(!

t; !)+dit+1(!
t; !))]

(2.D.7) qit(!
t) =

Bt(!
t)

At(!t)
Et;�[

u0(et+1(!t; !))

u0(et(!t))
(qit+1(!

t; !) + dit+1(!
t; !))]

(2.D.8) At(!
t) = Et[(1� �t+1(!t; !))]

(2.D.9) Bt(!
t) = Et[�t+1(!t; !)At+1(!t; !)]

(2.D.10) �t;�(!
t; !) = �(!t; !)

�t+1(!
t; !)At+1(!

t; !)

Bt(!t)

In (2.D.7), equilibrium prices are determined as if the representative agent used a

�preference-adjusted prior��t;�(!t; !) with �preference-adjusted average normalized discount

factors�
Bt(!

t)

At(!t)
. Then (2.D.7) becomes a standard Euler equation. However, note that the

representative agent never uses this preference-adjusted priors for her decision making. The

equilibrium asset pricing simply implies that the usage of preference-adjusted priors can

be justi�ed at equilibrium. Equation (2.D.7) is the just mathematically equivalent way to

write Equation (2.D.6).�

Appendix 2.E

For this comparison, we focus on a two-period economy with two states. Let consump-

tions be (c0,c1;1,c1;2), and u be increasing. We de�ne the intertemporal version of the

multiple priors model of Gilboa and Schmeidler (1989) from Epstein and Schneider (2001):

(2.E.1) V (c) = A[u(c0) + �Minp2P [pu(c1;1) + (1� p)u(c1;2)]]]
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where P is a convex and closed set of priors for state 1. Now we de�ne the multiple

discount factors of (2.4.1) under the priors of state realizations (0.5,0.5) as follows:

(2.E.2) V (c) = 0.5[Min�2[�;�]�u(c0) + (1� �)u(c1;1)]

+0:5[Min�2[�;�]�u(c0) + (1� �)u(c1;2)]]

with � = 0.3 and � = 0.7

First we investigate two cases:

Case 1: c0<c1;1 and c0>c1;2

V (c) = 0:50[u(c0) +
0:5

0:5
(
0:3 � 0:5
0:5

u(c1;1) +
0:7 � 0:5
0:5

u(c1;2))]

Case 2: c0>c1;1 and c0<c1;2

V (c) = 0:50[u(c0) +
0:5

0:5
(
0:7 � 0:5
0:5

u(c1;1) +
0:3 � 0:5
0:5

u(c1;2))]

The above choices of discount factors can be justi�ed by the multiple priors model with

A = 0.5, � = 1 and P = [0.3,0.7]. For example, we can consider [
0:3 � 0:5
0:5

,
0:7 � 0:5
0:5

] to be

a �preference-adjusted prior�for (state 1 and state 2) under Case 1. However, as the next

choice shows, (2.E.2) cannot be represented by (2.E.1).

Case 3: c0<c1;1 and c0<c1;2 and c1;1>c1;2

(2.E.3) V (c) = 0:70[u(c0) +
0:3

0:7
(0:5u(c1;1) + 0:5u(c1;2))]
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First, the multiple priors model selects the prior of (0.3,0.7) instead of (0.5,0.5). The

selection of (0.5,0.5) cannot be justi�ed by P = [0.3,0.7]. Second, � moves from 1 to
0:3

0:7

and A moves from 0.5 to 0:7. This movement of the time-preference is absent in (2.E.1).

To conclude that (2.E.2) cannot be represented by (2.E.1), we need to assume some

functional form in u, and show that (2.E.3) cannot be written as (2.E.1). Assume that u is

risk neutral, and that (c0,c1;1,c1;2) = (1,3,2). (2.E.3) can be rewritten as:

(2.E.4) V (c) ' 0:5[u(c0) + 0:54(0:3u(c1;1) + 0:7u(c1;2))]

or

(2.E.5) V (c) ' 0:5[u(c0) + 1(�0:75u(c1;1) + 1:75u(c1;2))]

Clearly, the prior of (0.3,0.7) cannot justify the preference-adjusted discount factor of

1, and the preference-adjusted discount factor of 1 cannot justify the preference-adjusted

prior of (0.3,0.7).

The above examples show that the recursive multiple priors model by Epstein and

Schneider (2001) and our formula (2.4.1) are di¤erent. Since our model is based on in-

tertemporal substitution (i.e., time-variability aversion), an agent does not consider the set

of priors over states. �Preference-adjusted priors�o¤er mere convenience to express the qual-

itative feature of time-variability aversion. In fact, the multiple discount factors model is

more parsimonious than the multiple priors model because the degree of freedom to change

the priors are much higher than the degree of freedom to change discount factors over time.
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Appendix 2.F

Su¢ ciency:

Step 1:

There exits a closed and convex set of discount factors, �(t;!);

with �� > 0 and
PT
�=t ��=1 s.t.

For f; g 2 Acty, f �(t;!) g ,

W(t;!)( f)=W(t;!)( f t,f t+1,...fT )=W(t;!)( f t(!),...,fT (!))

= Min�2�(t;!) [
PT
�=t ��u(t;!)(f

� (!))]

� Min�2�(t;!) [
PT
�=t ��u(t;!)(g

� (!))]=W(t;!)( g)

Moreover, �(t;!) is a unique, and u(t;!) is unique up to a positive a¢ ne transformation.

From Axioms 2.7.1 to 2.7.3 and 2.7.5 to 2.7.10, there is a utility function that represents

preference relations on Ac at (t,!), which is a von Neuman-Morgenstern utility function on

Y . Denote this representation as u(t;!)(y) for y 2 Y . Since there is no uncertainty here, by

Axioms 2.7.8 to 2.7.10, we obtain Theorem 2.3.1 over time from t to T . By Axiom 2.8.7

(strict monotonicity), �� > 0.

Step 2:

At 0� t < T , assignment of discount factors must follow �(t;!) = D(t;!)
 �(t;!) s.t.

For f 2 Acty:

82



W(t;!)( f)= Min�t+12D(t;!) [(1� �t+1)u(t;!)(f t(!))

+�t+1min�2�(t;!) [
PT
�=t+1 ��u(t;!)(f

� (!))]

For f 2 Ac(t+1):

W(t;!)( f)=W(t;!)( f t(!),f t+1(!))=W(t;!)( f t,f t+1,...fT )

= Min�t+12D(t;!) [(1� �t+1)u(t;!)(f t(!)) + �t+1u(t;!)(f t+1(!))]

where Dt = [�t+1,�t+1] with 0<�t+1 � �t+1 < 1.

At T, W(T;!)( f) = u(T;!)(f
T (!))

The �rst result is from Proposition 2.3.1 applying between t and t+1 under Axiom 2.7.4.

Given this result, the second result is immediate. In fact, for f 2 Ac(t+1), assignment of

discount factors among lotteries from t+1 to T is indeterminate. Even without dynamic

consistency, assignment of discount factors only depends on f t(!) and f t+1(!) because all

future consumptions are same from t+1 onward, and minimizing a weighted sum under

multiple discount factors for an entire sequence is achieved if and only if we allocation the

lowest discount factors on u(t;!)(f t(!)) when u(t;!)(f t(!)) > u(t;!)(f t+1(!)) and vice versa.

We do not consider the shape of �(t;!) at this point. The last result is also immediate from

Step 1.

From Step 3 to Step 10, we assume that 0� t < T:

Step 3:

For f; g 2 Acs(t;t),
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There exits a weight on an event Ft+1 s.t. {�(Ft+1jFt(!))g with �(Ft+1jFt(!)) > 0

8Ft+1 � Ft(!) and
P
Ft+1�Ft(!) �(Ft+1jFt(!)) = 1:

f �(t;!) g ,

U(t;!)(f) =
P
Ft+1�Ft(!) u(t;!)(f

t(!0))�(Ft+1jFt(!))

� U(t;!)(g) =
P
Ft+1�Ft(!) u(t;!)(g

t(!0))�(Ft+1jFt(!))

where for each Ft+1, we select one of f t(!0) and gt(!0) on !0 2 Ft+1.

Moreover,

�(Ft+1jFt(!)) is unique, and u(t;!) is unique up to a positive a¢ ne transformation.

First, Acs(t;t) is a mixture space. From Axioms 2.7.5 to 2.7.8, and 2.7.11, preference

relation on Acs(t;t) is represented by (Kreps:1988):

f �(t;!) g

, U(t;!)(f) � U(t;!)(g) where U(t;!)(f) =
P
Ft+1�Ft(!) FFt+1(f).

Now Axiom 2.7.12, FFt+1(f) must represent the preference relation of f 2 Ac(t) � Acty.

By the linearity of FFt+1(f), and Step 1:

FFt+1(f) = aFt+1u(t;!)(f
t+1(!0)) + bFt+1 where we select one of f

t+1(!0) on !0 2 Ft+1.

Note that u(t;!) is unique up to a positive a¢ ne transformation. Following Kreps (1988),

this proves the existence of a unique subjective prior � over Ft+1 � Ft(!) s.t. �(Ft+1jFt(!))

=
aFt+1P

Ft+1�Ft(!) aFt+1
, �(Ft+1jFt(!)) > 0 8Ft+1 � Ft(!) and

P
Ft+1�Ft(!) �(Ft+1jFt(!)) = 1.

Then the above formula becomes:
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U(t;!)(f) =
P
Ft+1�Ft(!) u(t;!)(f

t(!0))�(Ft+1jFt(!)) where for each Ft+1, we select one of

f t(!0) on !0 2 Ft+1 (because f t(!0) = f t(!00) on !0; !00 2 Ft+1 ).

Non-negativity of �(Ft+1jFt(!)) is from Axiom 2.7.12. Note that �(Ft+1jFt(!)) is a

weight for Ft+1, not for !0 s.t. !0 2 Ft+1.

Step 4:

8 f 2 Af , 9g 2 Ac s.t. f '(t;!) g 81 � t � T and ! 2 
.

Axioms 2.7.5 to 2.7.7, for any f 2 Af , there is a constant act that achieves the same

utility on �(t;!).

Step 5:

For any f 2 Af , there is a g 2 Acs(t;t+1):

(i) f t(!0)=gt(!0) on !0 2 Ft(!)

(ii) g!
00
(�) = g!

00
(� 0) on !00 2 Ft+1(!0) � Ft(!) for all �; � 0 s.t. t < �; � 0 � T

(iii) f '(t+1;!) g

Then f '(t;!) g: Call this g as G(t;!)(f).

By applying Step 4 at time t+1 and Axiom 2.7.4 (dynamic consistency), we can replace

all lotteries in f from t+1 to T on an event Ft+1 to an identical lottery.
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Step 6:

For any f; g 2 Af , f �(t;!) g , G(t;!)(f) �(t;!) G(t;!)(g)

By Axiom 2.7.5 (transitivity).

Step 7:

For any f 2 Af , there is a g 2 Acs(t;t) s.t. f '(t;!) g: Call this g as K(t;!)(f).

Under Axiom 2.7.12, any act in Acs(t;t+1) is represented by an act in Acs(t;t) by replacing

each state act to a constant state act with g!
0
that is calculated by the formula in Step 2.

Using the results in Step 6:

g!
0
� = (1� �(t+1;!0))G(t;!)(f)!

0
t + �(t+1;!0)G(t;!)(f)

!0
t+1 8t � � � T

where �(t+1;!0) = argmin�t+1;!02D(t;!) [(1� �t+1;!0)u(t;!)(G(t;!)(f)
!0
t )

+�t+1;!0u(t;!)(G(t;!)(f)
!0
t+1)]

Since K(t;!)(f) 2 Acs(t;t), by applying formula U(t;!)(:) in Step 3:

U(t;!)(K(t;!)(f))

=
P
Ft+1�Ft(!) u(t;!)(K(t;!)(f)

t(!0))�(Ft+1jFt(!))

=
P
Ft+1�Ft(!) u(t;!)((1� �(t+1;!0))G(t;!)(f)

!0
t + �(t+1;!0)G(t;!)(f)

!0
t+1)�(Ft+1jFt(!))

=
P
Ft+1�Ft(!)[(1��(t+1;!0))u(t;!)(G(t;!)(f)

!0
t )+�(t+1;!0)u(t;!)(G(t;!)(f)

!0
t+1)]�(Ft+1jFt(!))

=
P
Ft+1�Ft(!)[min�t+1;!02D(t;!) [(1� �t+1;!0)u(t;!)(G(t;!)(f)

!0
t )

+�t+1;!0u(t;!)(G(t;!)(f)
!0
t+1)] ]�(Ft+1jFt(!))
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=
P
Ft+1�Ft(!)[min�t+1;!02D(t;!) [(1� �t+1;!0)u(t;!)(f

t(!0))

+�t+1;!0u(t;!)(G(t;!)(f)
!0
t+1)] ]�(Ft+1jFt(!))

Step 8:

For any f; g 2 Af , f �(t;!) g , K(t;!)(f) �(t;!) K(t;!)(g) , U(t;!)(K(t;!)(f)) �

U(t;!)(K(t;!)(f)) where U(t;!)(:) is de�ned in Step 3.

By transitivity (Axiom 2.7.5),

f �(t;!) g , G(t;!)(f) �(t;!) G(t;!)(g), K(t;!)(f) �(t;!) K(t;!)(g)

, U(t;!)(K(t;!)(f)) � U(t;!)(K(t;!)(f))

Step 9:

For any f 2 Af , there is a g 2 Ac:

At all (� ,!00) s.t. t � � � T and !00 2 Ft(!) :

g� (!00) =
P
Ft+1�Ft(!)[(1��(t+1;!0))G(t;!)(f)

!0
t +�(t+1;!0)G(t;!)(f)

!0
t+1]�(Ft+1jFt(!)) 2 Y

where for each Ft+1, we select one of G(t;!)(f)!
0
t and G(t;!)(f)!

0
t+1 on !

0 2 Ft+1 � Ft(!).

And �(t+1;!0) is an e¤ective discount factor from W(t;!)(:) in Step 2 applying to G(t;!)(f)

at !0. Then f '(t;!) g: Call this g as C(t;!)(f) and g� (!0) as y(t;!)(f):

Since g 2 Ac, apply u(t;!) over y(t;!)(f) :

u(t;!)(y(t;!)(f))

= u(t;!)(
P
Ft+1�Ft(!)[(1� �(t+1;!0))G(t;!)(f)

!0
t + �(t+1;!0)G(t;!)(f)

!0
t+1]�(Ft+1jFt(!)))
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=
P
Ft+1�Ft(!)[(1��(t+1;!0))u(t;!)(G(t;!)(f)

!0
t )+�(t+1;!0)u(t;!)(G(t;!)(f)

!0
t+1)]�(Ft+1jFt(!))

=
P
Ft+1�Ft(!)min�t+1;!02D(t;!) [(1� �t+1;!0)u(t;!)(f

t(!0))

+�t+1;!0u(t;!)(G(t;!)(f)
!0
t+1)]]�(Ft+1jFt(!))

= V(t;!)(K(t;!)(f))

= V(t;!)(C(t;!)(f))

Hence, g � C(t;!)(f) '(t;!) f :

Note that W(t;!)(C(t;!)(f)) = u(t;!)(y(t;!)(f)): De�ne u(t;!)(y(t;!)(f))=Z(t;!)(f).

Then Z(t;!)(f) =W(t;!)(C(t;!)(f)):

Step 10:

For any f; g 2 Af ,

f �(t;!) g , C(t;!)(f) �(t;!) C(t;!)(g)

,W(t;!)(C(t;!)(f)) �W(t;!)(C(t;!)(g))

, Z(t;!)(f) � Z(t;!)(g)

where W(t;!)(:) is de�ned in Step 2 and Z(t;!)(:) is de�ned in Step 9.

The �rst equality follows from Axiom 2.7.5 (transitivity), and the second equality follow

from Step 2. The third equality follows from Step 9.

Step 11:

{�(t;!)} on Af satis�es Axioms 2.7.1 to 2.7.12 if and only if:

There exists Dt = [�t+1,�t+1] with 0 < �t+1 � �t+1 < 1 8t with 0� t < T s.t.
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For any f; g 2 Af , f �(t;!) g , V(t;!)(f) � V(t;!)(g)

where {V(t;!)(f)}(t;!)2(T;
) is recursively de�ned by :

V(t;!)(f) �Et[Min�t+1;!02Dt [(1� �t+1;!0)u(f
t(!0)) + �t+1;!0V(t+1;!0)(f)]jFt(!)]]

and

V(T;!)(f) � u(fT (!))

and

��t+1;!0 = �
�
t+1;!00 at !

0; !00 2 Ft+1 � Ft(!)

where ��t+1;!0 2argmim�t+1;!02Dt [(1� �t+1;!0)u(f
t(!0)) + �t+1;!0V(t+1;!0)(f)]

Moreover,

Dt is unique and only depends on t, and u is unique up to a positive a¢ ne transforma-

tion.

To satisfy Step 1 and Axiom 2.7.4 (dynamic consistency) for certain acts at time 0,

u(0;!) = u(t;!0) on all (t,!0) 2 (T,
). In addition, D(t;!) only depends on t otherwise it

violates Axiom 2.7.4 at time t-1 among certain acts. Also, Dt must follow Proposition 3.1.1

otherwise it violates Axiom 2.7.4 at some (t-1,!) among certain acts.

De�ne Z(0;!)(f) = V(0;!)(f): From Step 9:

V(0;!)(f) = Z(0;!)(C(1;!)) = u(y(0;!)(f))

= u(
P
F1�F0(!)[(1� �(1;!0))G(0;!)(f)

!0
0 + �(1;!0)G(0;!)(f)

!0
1 ]�(F1jF0(!)))

=
P
F1�F0(!)min�1;!02D0 [(1� �1;!0)u(f

0(!0)) + �1;!0u(G(0;!)(f)
!0
1 )]]�(F1jF0(!))

Clearly, from Step 9, G(0;!)(f) '(1;!0) C(1;!0)(f) and G(0;!)(f) 2 Acs(0;1), we can use an
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act that assigns G(0;!)(f)1(!0) from 1 to T on !00 2 F1 as C(1;!0)(f) at F1. Then y(1;!0)(f)

= G(0;!)(f)1(!0) Since Z(C(1;!0)(f)) = V(1;!0)(f) = u(y(1;!0)(f)) = u(G0(f)1(!0)):

V(0;!)(f)

=
P
F1�F0(!)min�1;!02D0 [(1� �1;!0)u(f

0(!0)) + �1;!0V(1;!0)(f)]]�(F1jF0(!))

Applying the same procedure for V(1;!0)(f):

V(1;!0)(f)

=
P
F2�F1(!0)min�2;!002D1 [(1� �2;!00)u(f

1(!00)) + �2;!00V(2;!00)(f)]]�(F2jF1(!0))

Then at any (t; !) with 0� t < T :

V(t;!)(f)

=
P
Ft+1�Ft(!)min�t+1;!02Dt [(1� �t+1;!0)u(f

t(!0)) + �t+1;!0V(t+1;!0)(f)]]�(Ft+1jFt(!))

and at T , from Step 2:

V(T;!)(f) = u(f
T (!))

Applying the argument in a reverse order, V(t;!)(f) is de�ned recursively from time T

by keep replacing V(t;!)(f) by y(t;!)(f). Next, we de�ne �(!) by:

�(!) = �(F1jF0(!))�(F2jF1(!)):::�(FT jFT�1(!))

Then, �(!) satis�es:

(i)
P
!2
 �(!) = 1 and �(!) > 08! 2 
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(ii) �(Ft+1jFt(!)) =
P
!02Ft+1 �(!

0)P
!02Ft(!) �(!

0)

This satis�es the condition for �(!) to be probability measure with conditional proba-

bility of (ii). By Step 3, this measure is unique. Let Et[jFt(!)] be a conditional probability

operator on Ft(!). Under Axiom 2.7.3, V(t+1;!0)(f) = V(t+1;!00)(f) for all !0; !00 2 Ft+1.

However, note that an e¤ective choice of discount factors at time t depends on Ft+1, not on

each !0 2 Ft+1. Then we can use �(!) to write V(t;!)(f) as:

V(t;!)(f) =Et[min�t+1;!02Dt [(1� �t+1;!0)u(f
t(!0)) + �t+1;!0V(t+1;!0)(f)]jFt(!))]

and ��t+1;!0 = �
�
t+1;!00 at !

0; !00 2 Ft+1 � Ft(!)

where ��t+1;!0 2argmim�t+1;!02Dt [(1� �t+1;!0)u(f
t(!0)) + �t+1;!0V(t+1;!0)(f)]

Necessity:

Axioms 2.7.1 to 2.7.6 are immediate. By the nature of a von Neuman Morgenstern utility

function u, 2.7.7 is satis�ed. For certainty acts, from Theorem 2.3.1, the formula Satis�es

Axioms 2.7.8 to 2.7.10. By the linearity of weights, Axiom 2.7.11 is satis�ed. Finally, since

the formula has state-by-state application of multiple discount factors of W(t;!0), Axiom

2.7.12 is satis�ed.�

91



References

[1] Anscombe, F.J., and R.J. Aumann (1963):�A De�nition of Subjective Probability,�

Annals of Mathematical Statistics, 34, 199-205.

[2] Aubin, J. (1979): Mathematical Methods of Game and Economic Theory, North-

Holland.

[3] Bekaert, G., R. Hodrick, and D. Marshall (1997): �The Implications of First-Order

Risk Aversion for Asset Market Risk Premiums,�Journal of Monetary Economics, 40,

3-39.

[4] Barberis, N., and M. Huang (2000): �Mental Accounting, Loss Aversion, and Individual

Stock Returns,�Mimeo.

[5] Benartzi, S., and R. Thaler (1995): �Myopic Loss Aversion and the Equity Premium

Puzzle,�Quarterly Journal of Economics, 110, 73-92.

[6] Campbell, J., and J. Cochrane (1999): �By Force of Habit: A Consumption-Based Ex-

planation of Aggregate Stock Market Behavior,�Journal of Political Economy, 107(2),

205-251.

[7] Campbell, J., and J. Cochrane (2000): �Explaining the Poor Performance of

Consumption-based Asset Pricing Models,�The Journal of Finance, 2863-2878.

[8] Campbell, J., A. Lo, and A.C. MacKinlay (1997): The Econometrics of Financial

Markets, Princeton University Press.

92



[9] Constantinides, G. (1990): �Habit Formation: A Resolution of the Equity Premium

Puzzle,�The Journal of Political Economy, 98(3), 519-543.

[10] Du¢ e, D., and L. Epstein (1992): �Stochastic Di¤erential Utility,� Econometrica,

60(2), 353-394.

[11] Eichberger, J., and D. Kelsey (1996): �Uncertainty Aversion and Dynamic Consis-

tency,�International Economic Review, 37(3), 625-640.

[12] Epstein, L. (1983): Stationary Cardinal Utility and Optimal Growth under Uncer-

tainty,�Journal of Economic Theory, 31, 133-152.

[13] Epstein, L., and M. Schneider (2001): �Recursive Multiple-Priors,�Mimeo.

[14] Epstein, L., and T. Wang (1994): �Intertemporal Asset Pricing under Knightian Un-

certainty,�Econometrica, 63(3), 283-322.

[15] Epstein, L., and T. Wang (1995): �Uncertainty, Risk-Neutral Measures and Security

Price Booms and Crashes,�Journal of Economic Theory, 67, 40-82.

[16] Epstein, L., and S. Zin (1989): �Substitution, Risk Aversion, and the Temporal Be-

havior of Consumption and Asset Returns: a Theoretical Framework,�Econometrica,

57(4), 937-969.

[17] Epstein, L., and S. Zin (1990): ��First-Order Risk Aversion and the Equity Premium

Puzzle,�Journal of Monetary Economics, 26, 387-407.

93



[18] Gilboa, I. (1989): �Expectation and Variation in Multi-Period Decisions,�Economet-

rica, 57(5), 1153-1169.

[19] Gilboa, I., and D. Schmeidler (1989): �Maxmim Expected Utility with Non-unique

Prior,�Journal of Mathematical Economics, 18, 141-153.

[20] Grant S., A. Kajii, and B. Polak (2000): �Temporal Resolution of Uncertainty and

Recursive Non-expected Utility Models,�Econometrica, 68, 425-434.

[21] Gul, F. (1991): �A Theory of Disappointment Aversion,�Econometrica, 59(3), 667-

687.

[22] Kahneman, D., and A. Tversky (1979): �Prospect Theory: An Analysis of Decision

under Risk,�Econometrica, 47(2), 263-291.

[23] Kahneman, D., and A. Tversky (1991): �Loss Aversion in Riskless Choice: A

Reference-Dependent Model,�Quarterly Journal of Economics, 1039-1061.

[24] Koopmans, T. (1960): �Stationary Ordinal Utility and Impatience,� Econometrica,

28(2), 287-309.

[25] Kreps, D, and E. Porteus (1978): �Temporal Resolution of Uncertainty and Dynamic

Choice Theory,� Econometrica, 185-200.

[26] Kreps, D (1988): Note on the Theory of Choice (Western Press).

[27] Loewenstein G., and D. Prelec (1992): �Anomalies in Intertemporal Choice: Evidence

and an Interpretation,�Quarterly Journal of Economics, 107(2), 573-597.

94



[28] Loewenstein G., and D. Prelec (1993): �Preferences for Sequences of Outcomes,�Psy-

chological Review, 100(1), 91-108.

[29] Loewenstein G., and R. Thaler (1989): �Anomalies: Intertemporal Choice,� Journal

of Economic Perspective, 3(4), 181-193.

[30] Machina, M. (1989): �Dynamic Consistency and Non-Expected Utility Models of

Choice Under Uncertainty,�Journal of Economic Literature, 1622-1668.

[31] Mehra, R., and E. Prescott (1985): �The Equity Premium: A Puzzle,� Journal of

Monetary Economics, 15, 145-161.

[32] Sarin B., and P. Wakker (1998): �Dynamic Choice and NonExpected Utility,�Journal

of Risk and Uncertainty, 17, 87-119.

[33] Schmeidler, D. (1989): �Subjective Probability and Expected Utility without Additiv-

ity,�Econometrica, 57(3), 571-587.

[34] Segal, U., and A. Spivak (1990): �First Order versus Second Order Risk Aversion,�

Journal of Economic Theory, 51, 111-125.

[35] Segal, U., and A. Spivak (1990): �First-Order Risk Aversion and Non-Di¤erentiability,�

Economic Theory, 9, 179-183.

[36] Shalev, J. (1997): �Loss Aversion in a multiple-period model,�Mathematical Social

Sciences, 33, 203-226.

95



[37] Shi, S., and L. Epstein (1993): �Habit and Time Preference,�International Economic

Review, 34(1) 61-84.

[38] Uzawa, H. (1968): �Time Preference, the Consumption Function, and the Optimum

Asset Holdings,�in J.N. Wolfe, ed., Capital and Growth: Papers in Honour of Sir John

Hicks (Chicago: Aldine, 1968).

[39] Wakai, K. (2001): �Conditions for Dynamic Consistency and No Speculation under

Multiple Priors,�Mimeo (revised and included in this dissertation as Chapter 2).

[40] Weil, P. (1989): �The Equity Premium Puzzle and the Risk-Free Rate Puzzle,�Journal

of Monetary Economics, 24, 401-421.

[41] Yaari, M. (1987): �The Dual Theory of Choice under Risk,� Econometrica, 55(1),

95-115.

96



Chapter 3

Conditions for Dynamic Consistency

and No-Trade Theorem under Multiple Priors
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3.1 Introduction

The no trade theorem of Milgrom-Stokey (1982) was followed by large literature that investi-

gates when this theorem holds.1 Dow-Madrigal-Werlang (1990) show that state separability

is an essential element for this theorem to hold, and devised a counter example using the

non-additive prior model of Schmeidler (1989). On the other hand, in a �nancial setting,

Epstein-Wang (1994,1995) apply the multiple priors model of Gilboa-Schmeidler (1989) to

the recursive utility framework, which guarantees dynamic consistency without considering

a speci�c updating rule. Recently, Sarin-Wakker (1998) show that under the multiple priors

model, if a set of priors con�rms a recursive structure, preference relations satisfy sequential

consistency, consequentialism, and dynamic consistency. Clearly, the multiple priors model

is well-behaved compared with other non-expected utility models. The purpose of this pa-

per is to determine under what conditions the no trade theorem holds for the economy of

agents with multiple priors.

The crucial condition comes from the argument of Dow-Madrigal-Werlang (1990): state

separability. The beauty of the no trade theorem is that agents never speculate on any ex-

post knowledge. The result of Dow-Madrigal-Werlang (1990) implies that the most general

form of the no trade theorem does not hold under the multiple priors model. However,

the result of Sarin-Wakker (1998) gives us hope that under some ex-ante knowledge about

ex-post partitions, we might restore the no trade theorem. The main assumption of the no

trade theorem of Milgrom-Stokey (1982) is that agents follow the subjective prior model

1For example, Geanakoplos (1989) and Morris (1994).
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using the Bayes�update rule. The intuition is that if the multiple priors model satis�es

the similar conditional property to the Bayes�rule over a number of ex-post partitions, we

should expect the no trade theorem to hold over those partitions.

In order to con�rm this intuition, we must �rst closely investigate the property of indi-

vidual behavior. In other words, under what conditions does an agent behave dynamically

consistently? We are interested in the evolution of preference relations and the conditions

on ex-ante multiple priors set that generates dynamically consistent conditional preference

over time. For this analysis, Sarin-Wakker (1998) �nd the su¢ cient conditions for an ex-

ante multiple priors set to guarantee dynamic consistency, consequentialism, and sequential

consistency. However, they de�ne sequential consistency by a folding back operation and do

not derive a update rule from the original preference relations. Instead, they construct the

multiple priors model that satis�es the recursive structure of multiple priors. On the other

hand, in this paper, we directly derive conditional preference relations with some update

rule for a set of priors given dynamic consistency. In other words, we derive the necessary

conditions for the multiple priors model to satisfy dynamic consistency, consequentialism,

and sequential consistency. It turns out that dynamic consistency and sequential consistency

(or consequentialism) implies the recursive structure of an ex-ante multiple priors set. The

result implies that an agent can use a conditional update rule that is similar to the Bayes�

rule, especially the maximum likelihood rule proposed by Gilboa-Schmeidler (1993). This

approach clari�es the connection between dynamic consistency and conditional preference

relations, which is the Bayes�rule under the multiple priors.
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Given this result, we extend the notion of dynamic consistency over a number of ex-

post partitions. The essential assumption of the no trade theorem is that agents can have

any ex-post partitions as their private information. (In this paper, we treat initial private

signals as one of the ex-post partitions.) By repeatedly applying conditions for dynamic

consistency over multiple ex-post partitions, we can derive the conditions where an ex-ante

knowledge incorporates all of those ex-post partitions. Clearly, the more ex-post partitions

an agent anticipates, the more restrictions are necessary for an ex-ante multiple priors set

to guarantee dynamic consistency. In the limit of this operation, the multiple priors model

must converge to the subjective prior model in order to guarantee dynamic consistency. In

other words, if we consider the multiple priors model as a normative standard, ignorance

about ex-post partitions forces an agent to have a single prior. This is an alternative view

of the relationship between the multiple priors model and the subjective prior model.

Finally, we apply the conditions derived above to a multiple agents setting. As expected,

we show that dynamic consistency of individual preference becomes the su¢ cient condition

for the no trade theorem to hold. Most importantly, agents must know which ex-post

partitions are possible to be realized. However, agents do not need to know exactly which ex-

post partition is going to be realized. In other words, agents must know all contingencies of

possible evolutions of ex-post partitions. This condition is certainly a strong one. However,

we can allow di¤erences in private information, which is the central objective of the no

trade result. For the multiple priors model, agents must be slightly more sophisticated than

agents with subjective priors. This view supports the idea that the subjective prior model
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is a limiting form of the multiple priors model under ultimate ignorance about ex-post

partitions. As long as agents are sophisticated enough, they can form their multiple priors.

The paper proceed as follows: in section 3.2, we �rst show the limitation of the mul-

tiple priors model regarding state separability. Then we prove the main propositions that

show that dynamic consistency and sequential consistency (or consequentialism) imply the

recursive structure of multiple priors. Next, in section 3.3, we formally de�ne the knowl-

edge structure, and extend the recursive multiple priors to incorporate multiple ex-post

partitions. We also investigate the limiting nature of the multiple priors model. Finally, in

section 3.4, we prove the no trade theorem under the multiple priors model.

3.2 Consistency for Individual Preference

In this section, we derive the conditions under which the multiple priors model guarantees

consistency for a dynamic choice problem. Let 
 be a �nite state of nature (N0 states)

and � be the algebra on 
. For any element ! of 
, we have a set of outcomes denoted

by XK=X � X � ::: � X that has �nite elements in each X (NX elements).2 There are

T + 1 sessions of trades, i.e., one ex-ante trade and T ex-post trades. An agent observes

an ex-post partition (or event) Pt;i(!) at each t where {Pt} = {Pt;1,...,Pt;Nt} and Nt is the

number of events in {Pt}. In this section, we assume that an agent knows an evolution

of ex-post partitions {Pt}T1 at t = 0. We defer a formal analysis of ex-ante and ex-post

knowledge until the next section.

2The same results hold if we use simple probability distributions over an arbitrary set of X.
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Now we de�ne preference relations. An act ft;i at ! 2 Pt;i is de�ned as a function ft;i:

Pt;i ! �(XK) where �(XK) is the set of probability distributions over XK . Also Nt;i

be the number of states in Pt;i. De�ne Ft;i as a set of possible functions at Pt;i and let

At;i � Ft;i be a set of choices available at Pt;i from which an agent can select the optimal

act. Let F ct;i be a space of acts over P
c
t;i (complement of Pt;i) and A

c
t;i and f

c
t;i are de�ned

respectively. In particular, F0 = �Ft;i, so any permutation of ft;i is possible. In addition,

let F t;i be a collection of conditional acts that assigns the identical element of �(XK) for

each ! 2 Rt;i. We call these acts constant acts. De�ne F
c
t;i and F 0 respectively. Finally,

let f(!) be a element of �(XK) that is assigned on ! 2 
.

The preference is all based on the information we have learned up to t. First, we assume

that the following axioms hold for acts in F0 at t = 0:

Axiom 3.2.1: Weak Order

8f; g; h 2 F0; (i) f � g or f � g (ii) f � g and g � h) f � h

Axiom 3.2.2: Continuity

8f; g; h 2 F0 with f � g � h, 90 < � , � <1

s.t. �f � (1� �)h � g and g � �f � (1� �)h.

Axiom 3.2.3: Monotonicity

8f; g 2 F0 , if f(!) � g0(!)8! 2 
 ) f � g

where h(!) � h0(!) i¤ h � h0 s.t. h; h0 2 F 0

Axiom 3.2.4: Nondegeneracy

9f; g 2 F0 s.t. f � g
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Axiom 3.2.5: Certainty-Independence

8f; g 2 F0 and 8h 2 F 0, 8� 2 (0; 1), f � g i¤ �f � (1� �)h � �g � (1� �)h

Axiom 3.2.6: Uncertainty Aversion

8f; g 2 F0 and 8� 2 (0; 1), f ' g ) �f � (1� �)g � f

Gilboa-Schmeidler (1989) show that the above axioms imply the following representation

of preference relations on F0:

Theorem 3.2.1: (Gilboa-Schmeidler :1989)3

A binary relationship on F0 satis�es Axioms 3.2.1 to 3.2.6 if and only if it is represented

by the following formula:

8f; g 2 F0, f � g i¤ minp2C0
R
u � fdp � minp2C0

R
u � fdp

where C0 is a unique non-empty, closed and convex set of �nitely additive probability

measures on �; and u is a unique up to a positive a¢ ne transformation, which con�rms the

VNM expected utility from.4

Note that u � f = (..., u(f(!)) ,...), i.e., a vector of utility. Given Axiom 3.2.1 to 3.2.6,

among constant acts h 2 F 0, the independence axiom and the expected utility theorem

hold. In other words, and u(f(!)) =
PNK

X
1 psu(x1; :::; xK).

3We call propositions proved by other authors theorems.

4The preference relations over �(XK) is de�ned by the following way as follows: h(!) � h0(!) i¤ h � h0

s.t. h, h0 2 F 0. (This de�nition is used in the de�nition of monotonicity.) This binary relationship is

represented by the utility function itself, i.e., h(!) � h0(!) i¤ min
R
u � h(!)dp �min

R
u � h0dp, and u(h(!))

is de�ned by min
R
u � hdp = u(h(!)):
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Throughout this paper, we assume the following three conditions:

Assumption 3.2.1: Nondeluded Partitions5

An agent has nondeluded partitions, i.e., ! 2 Pt;i(!)6

Assumption 3.2.2: Full Support

Let �0 be a prior from C0: Then �0(!) > 08! 2 
;8�0 2 C0

Assumption 3.2.3: Complete Markets

All permutations of feasible ex-post acts ft;i 2 At;i is in an ex-ante feasible set, i.e., A0

= �At;i

Now, we de�ne conditional preference relations, dynamic consistency, and related no-

tions as follows:

De�nition 3.2.1: Conditional Preference on Ft;i Given an a 2 F ct;i

Let f0 = (ft;i,a) and g0 = (gt;i,a) where ft;i; gt;i 2 Ft;i, and a 2 F ct;i. A preference

relation on ft;i; gt;i given a is called a conditional preference at Pt;i given a and written by

�Pt;i(a) :

5From Geanakoplos (1989)

6We always assume nondeluded partitions; otherwise, an agent�s behavior is too irrational to be described.

The problem is aggravated if we consider the interaction of agents because it is very hard to build some

rational consensus if agent�s partition is not nondeluded. In other words, we cannot apply the logic of

common knowledge.
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De�nition 3.2.2: Consequentialism

A preference relation �Pt;i(a) satis�es consequentialism if it is independent of a 2 F ct;i.

We call it �Pt;i .

De�nition 3.2.3: Sequential Consistency

Suppose that � satis�es the multiple priors model. Then � satis�es sequential consis-

tency if �Pt;i(a) satis�es the multiple priors model 8Pt;i 8a 2 F ct;i.

De�nition 3.2.4: Ex-post Dynamic Consistency (or simply, Dynamic Con-

sistency)7

Let f0 = (ft;i,a) and g0 = (gt;i,a) where ft;i; gt;i 2 Ft;i, and a 2 F ct;i.

A preference relation on F0 satis�es ex-post dynamic consistency if:

8f0; g0 2 F0, f0 � g0 if and only if ft;i �Pt;i(a) gi 8 Pt;i, 8a 2 F ct;i.

De�nition 3.2.5: Monotonicity on Events8

Suppose that agent�s preference relations on Ft;i satis�es consequentialism.

A preference relation on F0 satis�es monotonicity on events if:

At 8t, for f0; g0 2 F0, if ft;i �pt;i gt;i 8Pt;i ) f0 � g0

First, for convenience, whenever we apply ex-post dynamic consistency, we refer to it

7Dynamic consistency could be de�ned for a subset of A0; however, this partial ordering does not yield

attractive characteristics for applications.

8Monotonicity on events is a necessary condition of the preference that satis�es dynamic consistency and

consequentialism. Under this condition, each event in a partition behaves as if it were a state.
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as dynamic consistency unless we think that it is confusing. (In the next section, we will

de�ne ax-ante dynamic consistency.) In addition, note that if Axioms 3.2.1 to 3.2.6 are

satis�ed for conditional preference relations, it is represents by the multiple priors model.

Sequential consistency de�ned here is a similar condition introduce by Sarin-Wakker

(1998) but we de�ne it on a conditional preference given an a 2 F ct;i.9 As far as the notion

of dynamic consistency is concerned, our notion of dynamic consistency is the one introduced

by Machina (1989) where consistency is de�ned over each conditional preference relations

given an a 2 F ct;i and does not guarantee consequentialism. In fact, Machina�s notion

requires that the original preference relations are used for any stage of choice. Eichberger-

Kelsey (1996) utilize Machina�s notion for examining a dynamically consistent updating

rule for the non-additive prior model of Schmeidler (1989). They show that if an agent�s

preference relation satis�es strict uncertainty aversion, a dynamically consistent update rule

does not produce the conditional preference that con�rms the non-additive prior model, i.e.,

sequential consistency is violated. Now we apply their result to the multiple priors model:

Proposition 3.2.1:

Suppose agent�s preference relations con�rm the multiple priors model with Assumption

9Sarin-Wakker (1998) de�ne sequential consistency as follows: a preference relation � satis�es sequential

consistency if � con�rms the multiple priors model when �Pt;i satis�es the multiple priors model 8Pt;i. This

de�nition is based on backward induction or a holding back operation. Clearly, consequentialism is assumed.

Note that we de�ne sequential consistency in a forward looking manner: if the multiple priors model holds

for �, then �Pt;i(a) must con�rm the multiple priors model. In other words, we consider a preference update

from the original one over time. Note that our de�nition does not assume consequentialism.
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3.2.1 to 3.2.3, and with the following additional condition:

(Strict uncertainty aversion: Eichberger-Kelsey (1996))

8f0; g0 2 F0 that does not assign elements in �(XK) with same utility for all ! 2 
.

8� 2 (0; 1); f0 � g0 ) � f0 � (1� �) g0 � g0.

Then a dynamically consistent conditional preference �Pt;i(a) does not con�rm the mul-

tiple prior model (i.e., sequential consistency is violate) if 1 < Nt;i < N0.10

Proof:

Suppose that N0 > Nt;i >1 is the cardinality of Pt;i. Let f0 = (ft;i,a) be an act in F0

where ft;i does not assign the same element from �(XK) on all ! 2 Pt;i. By monotonicity

and continuity on F0, 9f0 that assigns the same element from �(XK) on each ! 2 Pt;i and

assign a for P ct;i, and f0 ' f0. W.O.L.G., assume that a 6= f t;i. Then by de�nition of a

dynamically consistent conditional preference, ft;i 'Pt;i(a) f t;i. Now, by strict uncertainty

aversion, � f0�(1��) f � f , which implies that � ft;i�(1��) f t;i �Pt;i(a) f t;i = � f t;i�(1�

�) f t;i. However, since f t;i assigns the identical element on ! 2 Pt;i, this inequality violates

certainty-independence on Pt;i. Since certainty-independence is a necessary condition for

the multiple priors model, �Pt;i(a) cannot be represented by the multiple priors model. �

Proposition 3.2.1 is a discouraging result for dynamic consistency of the multiple priors

10We need to have at least two states in Pt;i; otherwise, the argument does not have any bite. If Nt;i =1,

by dynamic consistency and monotonicity on F0, it is obvious that f0 that assigns an element in �(XK)

with a higher utility on Pt;i achieves a higher value. In other words, there is a single prior over Pt;i, which

is a point mass.
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model. Since under a set of multiple priors with a strictly concave utility function, we can

easily observe the preference with strict uncertainty aversion, the above result implies that

the multiple priors model may not satisfy sequential consistency in general. We observe a

similar result for consequentialism:

Proposition 3.2.2:

Suppose agent�s preference relations con�rm the multiple priors model with Assump-

tion 3.2.1 to 3.2.3 and with strict uncertainty aversion. Then a dynamically consistent

conditional preference �Pt;i(a) does not con�rm consequentialism if 1 < Nt;i < N0.

Proof:

Suppose that N0 > Nt;i >1 is the cardinality of Pt;i, and that agent�s preference satis�es

dynamic consistency and consequentialism. Let f0 and f0 be an act in F0 in the proof of

Proposition 3.2.1. Clearly, ft;i 'Pt;i(a) f t;i, and � ft;i � (1� �) f t;i �Pt;i(a) f t;i. Now let f 00

= (ft;i,b) and f
0
0 = (f t;i,b) where b assigns the same element as in f t;i from �(XK) on each

! 2 Rct;i: Suppose that consequentialism holds. Then ft;i 'Pt;i(b) f t;i and � ft;i � (1 � �)

f t;i �Pt;i(b) f t;i. Dynamic consistency implies that f 00 ' f
0
0 and � f

0
0 � (1� �) f

0
0 � f

0
0 = �

f
0
0 � (1� �) f

0
0, which contradicts certainty-independence on F0. �

Although Proposition 3.2.1 and Proposition 3.2.2 show that dynamic consistency with-

out strict uncertainty aversion might produce the violation of sequential consistency or

consequentialism,11 it is not constructive to investigate general conditions for dynamic con-

11Sequential consistency is a conditional property whereas strict uncertainty aversion is an aggregate
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sistency because dynamically consistent preference relations always exist under Machina�s

notion. In a normative sense, we want to restrict our attention to the same family of pref-

erences with more strict notion of state separation under dynamic decision, and investigate

the conditions to ensure dynamic consistency. The multiple priors model loses tractability if

we only assume sequential consistency or consequentialism. Fortunately, as we will see later,

under the dynamically consistent multiple priors model, these two notions are equivalent.

Before exploring this relationship, we need to de�ne more notations. Let �0 be a prior

from C0 and �0(Pt;i) be
P
!2Pt;i �0(!) and �0(P

c
t;i) be

P
!2P ct;i

�0(!) where P ct;i is the com-

plement of Pt;i. We also de�ne �0;t;i = (�0(!k+1); ... , �0(!k+1+It;i)) as the corresponding

entry of probabilities over ! 2 Pt;i under �0 where It;i is the cardinality of Pt;i and k =Pi�1
j=1 It;j . For a �xed �0, the intersection between C0 and a hyperplane {�

0
0j
P
!2Pt;i �0(!)

= �0(Pt;i)} (or a line if Pt;i has a single element) forms a non-empty, closed and convex set.

Note that this set is identical among �0 and �00 as long as �0(P
c
t;i) = �

0
0(P

c
t;i): Hence without

loss of generality, we de�ne the collection of �0;t;i in this intersection as C0(Pij�0(P ct;i)),

which is conditional on �0(P ct;i), not on �0;t;ic that is de�ned over ! 2 P ct;i by the same way

as for �0;t;i.

First, the following proposition derives the conditions on C0 that satis�es dynamic

consistency and sequential consistency. Then the next proposition shows the equivalence of

sequential consistency and consequentialism under dynamic consistency.

property. Hence, from the violation of strict uncertainty aversion, we cannot infer the violation of sequential

consistency.
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Proposition 3.2.3: Necessary and Su¢ cient Conditions on C0 to Guaran-

tee Dynamic Consistency and Sequential Consistency

Suppose that agent�s preference relations con�rm the multiple priors model with C0

that satis�es Assumptions 3.2.1 to 3.2.3. Then given ex-post partitions {Pt}T1 , dynamic

consistency and sequential consistency are satis�ed if and only if the following conditions

are satis�ed:

(3.2.1) C0(Pt;ij�0(P ct;i))=�0(Pt;i) = C0(Pt;ij�00(P ct;i))=�00(Pt;i) 8�00(P ct;i) 6= �0(P ct;i)

81 � t � T; 81 � i � Nt

(3.2.2) 9Ct that is a non-empty, closed and convex set of probability measures

over (Pt;1; :::; Pt;Nt)

(3.2.3) �Pt;i(a) is represented by the multiple priors model with C0(Pt;ij�0(P ct;i))=�0(Pt;i)

and ut;i(a)(:), where ut;i(a)(:) is a positive a¢ ne transformation

of the original u(:) and �0 is the optimal prior for f0 = (ft;i; a) 2 F0

under �.

(The conditional update is the Bayes�rule under multiple priors.)12

Proof:

See Appendix 3.A. �

12For example, time preference is incorporated through discount factors. At t = 0, u = �T bu, and at t =
� , u = �T�� bu.
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Proposition 3.2.4: Dynamic Consistency and Consequentialism, (3.2.1),

(3.2.2), (3.2.3)

Suppose that agent�s preference relations con�rm the multiple priors model with C0

that satis�es Assumptions 3.2.1 to 3.2.3. Then given ex-post partitions {Pt}T1 , dynamic

consistency and consequentialism are satis�ed if and only if (3.2.1), (3.2.2) and (3.2.3) are

satis�ed.

Proof:

See Appendix 3.B.�

Conditions (3.2.1) to (3.2.3) imply that an agent must use the Bayes�rule for updating

her multiple priors set over time. This Bayes�rule is de�ned as follows: given the optimal

prior �0 for an act f0, collect priors �00 2 C0 that achieve �0(Pt;i) = �00(Pt;i). Then use the

elements in �00 over Pt;i as the elements in the multiple priors set at Pt;i. Finally normalize it

by �0(Pt;i). This operation gives us C0(Pt;ij�0(P ct;i))=�0(Pt;i). In other words, we con�rms

the intuition of Esptein-Breton (1993): dynamically consistent beliefs must be Bayesian.

(Epstein-Berton�s result is restricted to a subclass of the non-additive prior model.)

From Proposition 3.2.3 and Proposition 3.2.4, it is also clear that under dynamic con-

sistency, sequential consistency and consequentialism are equivalent. In fact, it is quite sur-

prising that a weakly conditional notion of sequential consistency and dynamic consistency

guarantee a strongly unconditional notion of consequentialism, and that consequentialism

itself forces the preference relations to satisfy sequential consistency when dynamic consis-
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tency is assumed. In addition, Conditions (3.2.1), (3.2.2), and (3.2.3) summarize the nature

of consequentialism. Under dynamic consistency and consequentialism, monotonicity on

events holds, and each event Pt;i becomes a new state under Ct. Hence, the multiple priors

set C0 is de�ned by the recursive operation over other multiple priors sets, which is essen-

tially the structure Sarin-Wakker (1998) apply. We de�ne this structure as the recursive

multiple priors set.

Now we summarize our results:

Corollary 3.2.1:

Suppose that under given {Pt}T1 , agent�s preference relations satisfy the dynamically

consistent multiple priors model with Assumptions 3.2.1 to 3.2.3. The following conditions

are equivalent:

(1) consequentialism

(2) sequential consistency

(3) Conditions (3.2.1), (3.2.2), and (3.2.3)

In fact, Condition (3.2.3) implies that any conditional updating C0(Pt;ij�0(P ct;i))=�0(Pt;i)

works because it is identical for all possible �0(Pt;i). Especially, this condition implies that

an agent can use the following update rule proposed by Gilboa-Schmeidler (1993):

De�nition 3.2.6: Maximum Likelihood Rule (Gilboa-Schmeidler: 1993)

Ct;i = {�0j �0(Pt;i) =max�002C0�
0
0(Pt;i)}. This set is equivalent to C0(Pt;ij�0(P ct;i)) where

�0(P
c
t;i) is derived from the optimal prior for an act f that assigns the highest element f(!)
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of �(XK) to a state ! 2 P ct;i and assigns g(!) 2 �(XK) s.t. g(!) � f(!) to a state ! 2 Pt;i:

In other words, this update rule produces the most pessimistic view given the realization of

Pt;i.

The above update rule produces consequentialism. In fact, our result can be restated

for an agent who uses the maximum likelihood rule:

Corollary 3.2.2:

Suppose that agent�s preference relations con�rm the multiple priors model with C0

and Assumptions 3.2.1 to 3.2.3, and that the agent updates her multiple priors set by the

maximum likelihood rule with the identical utility function over time, i.e., the preference

relations satisfy sequential consistency and consequentialism. Given {Pt}T1 , agent�s prefer-

ence relations satisfy dynamic consistency if and only if Conditions (3.2.1) and (3.2.2) are

satis�ed.

This corollary relates our results to the one by Eichberger-Kelsey (1996) where they show

the maximum likelihood rule does not always generate dynamically consistent behavior.

Here, we derive the necessary and su¢ cient conditions for this update rule to produce

dynamically consistent behavior. The original C0 must con�rm the recursive nature of

Conditions (3.2.1) and (3.2.2). In some sense, an agent must specify how to form conditional

preferences ex-ante. If the agent keeps sequential consistency and consequentialism with

some conditional update rule as a normative objective, dynamic consistency is satis�ed only

under the recursive multiple priors set.
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In a nutshell, Proposition 3.2.3 and Proposition 3.2.4 provide a quite reasonable formu-

lation of conditional property on C0, which essentially requires the recursive structure of

multiple priors sets. This result con�rms the �ndings by Sarin-Wakker (1998) that under

the multiple priors model an agent can stay in the same family of representation over the

course of history as long as she has a recursive multiple priors set. Their proposition is

essentially equivalent to the su¢ ciency of our Propositions 3.2.3 and 3.2.4, i.e., Conditions

(3.2.1), (3.2.2), and (3.2.3) imply dynamic consistency, consequentialism, and sequential

consistency. Our main results here are a converse of their proposition.

Once we assume dynamic consistency, the necessary conditions for sequential consistency

and consequentialism are Conditions (3.2.1), (3.2.2), and (3.2.3), where C0 is a recursive

multiple priors set, and utility functions for a updated preference must be within a positive

a¢ ne transformation of the original utility function. In other words, we derive the structure

of the original multiple priors set that satis�es dynamic consistency, consequentialism, and

sequential consistency. In fact, the proposition of Sarin-Wakker (1998) is based on backward

induction or a holding back operation under the recursive preference. Here, we consider

a updating scheme from the original preference, and construct conditional preference re-

lations by forward looking behavior. Note again that dynamic consistency itself does not

guarantee consequentialism nor sequential consistency as Proposition 3.2.1 and Proposition

3.2.2 suggest. We need to assume a recursive multiple priors set in order to achieve these

two properties, and it is the necessary conditions under dynamically consistent preference

relations.
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Now we understand the necessary and su¢ cient conditions for a agent with multiple

priors to behave dynamically consistently. The next question is whether the non-degenerate

multiple priors set C0 that satis�es Conditions (3.2.1) and (3.2.2) exists. The answer is �yes�

but not always.13 The recursive multiple priors set must satisfy the following tight structure.

Note that for the subjective prior model, Conditions (3.2.1) and (3.2.2) are automatically

satis�ed.

Proposition 3.2.5: Existence of C0

An ex-ante multiple priors set C0 that satis�es Conditions (3.2.1) and (3.2.2) exists if

the following conditions hold for ex-post partitions:

Let eP be the �nest partitions constructed by 8fPt;ig s.t. 1 � t � T , 81 � i � Nt
i.e., Pt;i � ePm or ePm n Pt;i= ;.
(3.2.4) 9 a set of multiple priors eCm over states in a event ePm where eCm is

non-empty, closed, and convex.

(3.2.5) 9 a set of multiple priors eC over events ePm where eC is non-empty,
closed, and convex.

Let {Rj} be a meet of {Pt;i}.

(3.2.6) For a meet Rj in which there are no overlaps among {Pt;i}, {Pt;i} can

be rearranged to form { bP
}�1 that is a non-increasing sequence of partitions
and each bP
;j corresponds to some Pt;i except { bP�}J1 = { ePm}k+Jk

13Given that the subjective prior model is a subset of the multiple priors model, this answer is �always�.

We will see the connection between these models in the next section.
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where Rj = [k+lk
ePm. If bP
;i = [k0+lk0

bP
+1;j with l > 1, then 9 a set of multiple
priors eC
;i over events { bP
+1;j}k0+lk0 where eC
;i is non-empty, closed, and
convex.

(3.2.7) Suppose that at ! 2 Pt;i(!), there are Pt0;j and Pt0;j+1 s:t: Pt;i \ Pt0;j 6= ;

and Pt;i \ Pt0;j+1 6= ;. Let Rj be the meet among all {Pt;i(!)}Tt=1 at !, and

� be any prior from eC. Then �( ePm)=�( ePm0) is �xed between any two events

in { ePm}k+lk where Rj = [k+lk
ePm.

Proof:

See Appendix 3.C.�

This proposition imposes restrictions on an ex-ante multiple priors set C0. A su¢ cient

condition for C0 to satisfy dynamic consistency is a recursive structure over the �nest

partition with an adjustment (3.2.7).14 The most interesting observation here is that if

ex-post partitions are not nested, then we must have a �xed ratio of probability over the

events in the meet that includes non-nested events even though we can have multiple priors

over states within each event. Clearly, this construction indicates the connection between

the multiple priors model and the subjective prior model. This observation is formalized

once we de�ne the connection between ex-ante and ex-post partitions in the next section.

14A necessary condition permits slightly more movement in eC under Condition (3.2.7). However, it is

hard to state it explicitly as a proposition.
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3.3 Ex-ante and Ex-post Knowledge

In this section, we formalize the relationship between ex-ante knowledge and ex-post knowl-

edge. First we introduce ex-ante partitions and also formally de�ne ex-post partitions.

1. Qt is an ex-ante partition of 
 that summarizes the ex-ante knowledge of information

process over T given the knowledge up to t with a generic element Qt(s; j;m) for

0� t � s � T , 1� i � Is;m, and 1� m � Mt(s) where where Is;m is the cardinality

of {Qt(s; :;m)} and Mt(s) is the cardinality of conjectures in {Qt(s; 1; :)}. For each s

s.t. t � s � T , an agent conjectures all possible ex-post partitions. In other words,

Qt(s; i;m) is the i-th event of the m-th conjecture about ex-post partitions at time s

when an agent is at time t15.

2. Pt is an ex-post partition of 
 that summarizes ex-post knowledge about information

available up to time t where 1� t � T . A generic element is Pt;i where the subscript i

of Pt;i stands for the i-th event in Pt. Note that an agent learns not only Pt;i(!) but

15An agent must form beliefs how ex-post partitions evolve. When an ex-post partition Pt;i is realized,

she needs to reform her beliefs at Pt;i. There are three ways she can do this. If she has perfect memory, she

only forms partitions over ! 2 Pt;i and the rest of states forms another partition. If she forgets everything

or is not con�dent of what she has learned at all, she must form beliefs about all partitions over ! 2 
. If

she has a partial memory or is not perfectly con�dent of what she has learned, she can form partitions that

includes states in Pt;i, but not necessarily over ! 2 
. For this case, she must categorize the states that is

not included for these partitions as one alternative.
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also all other {Pt;i} in Pt. P1 is considered to be a private signal.1617

3. P0 = ;; Q0(0; 1; 1) = 
; M0(0) = 1; Qt(t; :; 1) = Pt.

Information processes are as follows: at t = 0, an agent forms an ex-ante partition

Q0(s; i;m) and trades. At t = 1, the agent receives a private information partition P1 and

trades. After trades, the agent forms an ex-ante partition Q1(s; i;m). At t = 2, the agent

forms an ex-post partition P2 based on the information from trades and prices at t = 1;

and additional private information and trades, and so on.

Given the above notations, the de�nitions of conditional preference, consequentialism,

sequential consistency, monotonicity on events are de�ned over ex-ante partitions by the

identical constructions in De�nitions 3.2.1 to 3.2.5 (simply replacing Pt;i with Qt(s;i;m)).

Here we only de�ne ex-ante dynamic consistency:

De�nition 3.3.1: Ex-ante Dynamic Consistency at time t

Suppose that an agent is at time t: Let f0 = (fs;i,a) and g0 = (gs;i,a) where fs;i; gs;i 2 Fs;i,

and a 2 F cs;i. Preference relations on F0 satisfy ex-ante dynamic consistency if:

8f0; g0 2 F0, f0 � g0 if and only if fs;i �Ws;i(a) gs;i 8 Ws;i= Qt(s;i;m)

81 � t � s � T;8 1 � m �Mt(s).

16 If an agent only learns Ph
t;i(!), she cannot infer the meet of {P

h
t;i(!)}. In this case, the agent either

believes her partition for sure or ignores her private information completely and stays in the ex-ante knowl-

edge.

17Usually, a signal is called an interim partition (or ex-ante partition in Milgrom-Stokey (1982)). For

details of ex-ante, interim, and ex-post relationship, refer Morris (1994).
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Note that ex-ante dynamic consistency is a notion of consistency among ex-ante conjec-

tures. Now we de�ne the following two structures of ex-ante knowledge:

De�nition 3.3.2: Perfect Anticipation18

An agent has perfect anticipation if 8t � s � T and 8Ps, 9m s.t. Ps;i = Qt(s; i;m) 8i

s.t. 1� i � Is;m. In other words, the agent with perfect anticipation has a correct guess at

an ex-post partition Ps in an ex-ante partition Qt.

De�nition 3.3.3: Ex-ante Sophisticated

Without loss of generality, t0 > t. An agent has an ex-ante sophisticated partition under

the following condition: If 9m s.t. Qt0(t0; :; 1) = Qt(t
0; :;m), then 8s s.t. t0 � s � T and

8m0 s.t. 1� m0 �Mt0(s); 9m s.t. Qt(s; :;m) = Qt0(s; :;m0). In other words, if the agent has

a correct guess at an ex-post partition at t0, then all conjectures in Qt0(s; i;m) become a

subset of Qt(s; i;m).

De�nition 3.3.4: Ex-post Sophisticated

An agent has ex-post sophisticated knowledge if she does not revise C0 as long as ex-post

partitions are within ex-ante partitions, i.e., her knowledge satis�es perfect anticipation.

Clearly, under perfect anticipation, an agent has a right conjecture, but does not know

which one is the true one. Ex-ante sophistication is an innocuous consistency requirement

18This de�nition includes perfect knowledge : an agent has perfect knowledge if Qt;T (s; i; 1) = Ps;i for all

t; i; and s s.t. t � s � T and Mt;T (s) = 1. In other words, the agent with perfect knowledge knows ex-ante

how much information is available, and how it is processed.
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for the ex-ante knowledge structure. Ex-post sophistication is a strong assumption. This

assumption eliminates the case where an agent changes her taste as she knows more about

the truth as long as her knowledge satis�es perfect anticipation. In other words, an agent

must incorporate ex-ante how to change her taste over time within perfectly anticipated

ex-post partitions, and she must forms C0 to satisfy ex-ante dynamic consistency. Given

this consistency, it is very irrational for an agent to change the multiple priors set upon

receiving an anticipated ex-post partition.

In the most general case, if we do not assume perfect anticipation, Pt can be any partition

of 
 over time, and there is no consistency between ex-ante and ex-post partitions. Clearly,

this situation is problematic because the original preference must be based on an ex-ante

partition Q0 and a revelation of inconsistent partition Pt with Q0 can lead to a correction of

the original preference relations, which makes our analysis invalid. In fact, this is precisely

the point that Milgrom-Stokey (1982) focus on, and their no trade theorem holds without

assumption of perfect anticipation, i.e., it does not require any relationship between ex-ante

and ex-post partitions. However, as we will see later, the multiple priors model requires

a strong tie between ex-ante and ex-post partitions for dynamic consistency to hold. The

crucial intuition is that the original preference relations have a stronger connection to an

ex-ante partition Q0 than the subjective prior model does. The structure of a set of multiple

priors hinges on ex-ante knowledge in Q0 about Pt, and if an agent has inconsistent initial

beliefs, sequential consistency no longer holds or an updated preference relations become

dynamically inconsistent. C0 is only valid at t = 0, and an agent can use a di¤erent C0
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for calculating conditional preference relations at di¤erent times. Even worse, the utility

function could change, or the agent could have a di¤erent family of preferences. Under this

condition, it is clear that we do not observe any consistency. We at least need minimum

rationality or connection between ex-ante knowledge and ex-post knowledge and rationality

on the agent�s behavior.

Now we formalize the relationship between ex-ante and ex-post partitions. So far, we

have only shown the conditions for dynamic consistency under ex-post partitions. How-

ever, an agent should form her beliefs or preference based on her ex-ante knowledge at the

beginning; in other words, the structure of C0 must re�ect the ex-ante beliefs about the

evolution of ex-post partitions. Conditions (3.2.1) and (3.2.2) are a mere coincidence if we

ignore this relationship. In order to behave dynamically consistently over time, an agent

must form the preference relations that takes into account her own hypothetical behavior

in the future. Otherwise, it is illogical to assume that dynamic consistency is one of agent�s

ex-post objectives. Hence we �rst assume the following knowledge and rationality:

Assumption 3.3.1:

Preference relations on F0 must satisfy ex-ante dynamic consistency, ex-ante sophisti-

cation, and ex-post sophistication.

Assumption 3.3.1 is to ensure internal consistency and is innocuous. Given this as-

sumption, the following proposition summarizes how much an agent should know about the

evolution of ex-post partitions at the beginning.
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Proposition 3.3.1: Informational Requirement for Dynamic Consistency

Under Assumptions 3.2.1 to 3.2.3 and 3.3.1, an ex-ante partition Q0 must satisfy Con-

ditions (3.2.1) and (3.2.2) for the conjectures about ex-post partitions. Then the agent�s

behavior satis�es ex-post dynamic consistency if the agent�s ex-ante partitions satisfy per-

fect anticipation.

Proof:

If ex-ante partitions satisfy perfect anticipation and ex-ante dynamic consistency under

Conditions (3.2.1) and (3.2.2) for the conjectures about ex-post partitions, by de�nition,

ex-post partitions must satisfy Conditions (3.2.1) and (3.2.2), which implies that ex-post

dynamic consistency holds if an agent does not change her taste by increasingly or decreas-

ingly being informed over time. By Assumption 3.3.1, this never happens. �

This result is very intuitive. Clearly, an agent must anticipate all possible evolutions of

ex-post partitions at the beginning, and this conjecture must be right. It does not necessarily

require perfect knowledge about ex-post partitions, but rather requires the knowledge of all

possible evolutions of ex-post partitions for avoiding the risk of missing some information or

possible contingency. Then the agent forms the C0 that satis�es Conditions (3.2.1), (3.2.2),

(3.2.4), (3.2.5), (3.2.6), and (3.2.7), i.e., dynamic consistency over all possible evolutions

of her conjectured ex-post partitions. On the other hand, the C0 might be able to justify

additional ex-post partitions as a mere coincidence. In this case, this ex-post partition

would have been incorporated into the ex-ante partitions given that the agent would not
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have changed the C0 by the presence of this knowledge. However, it is most likely that she

would have change her preference if an agent had anticipated {Pt}.19

Clearly, we need much stronger conditions for dynamic consistency here than under the

subjective prior model. In general, dynamic consistency is not a robust notion under the

multiple priors model. We state it in the following corollary:

Corollary 3.3.1: Dynamic Inconsistency for the Multiple Priors Model

There is no set C0 with multiple elements that satis�es Conditions (3.2.1) and (3.2.2)

for all evolutions of ex-post partitions.

It is clear from Proposition 3.3.1 that we need to impose Conditions (3.2.1) and (3.2.2)

on conjectured ex-post partitions in Q0 in order to guarantee dynamic consistency. As we

add more ex-post partitions to Q0, we eventually reach the �nest partition in which each

event has a single state. Under this partition, Proposition 3.2.5 shows that an agent must

have a single prior to satisfy the su¢ cient condition for dynamic consistency.20 Clearly,

these observations lead us to have an alternate view about the relationship between the

subjective prior model and the multiple priors model.

19 It it especially true for the states in which an agent assigns a single prior because the Bayes�rule works

over those states. However, if an agent faces an unexpected ex-post partition, she would change an ex-ante

partition Qt, which would change C0 or Ct+1. This behavior is not internally consistent.

20We can easily construct partitions under which a single prior becomes the necessary condition. For

example, partition {P 1
t } has P

1
t;i={!2i�1; !2i}, P

2
t;1={!1}, P

2
t;i={!2i; !2i+1}.
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Corollary 3.3.2: Information and Multiple Priors

Suppose that Assumptions 3.2.1 to 3.2.3 and 3.3.1, and Axioms 3.2.1 to 3.2.6 hold.

Then:

1. If an agent has perfect anticipation, the agent forms the multiple priors C0

2. If agent�s perfectly anticipated knowledge becomes increasingly uninformative, i.e.,

Q0 includes more ex-post partitions, the multiple priors set C0 shrinks, and it will

converge to a single point when Q0 induces the �nest partition in which each event

has a single state !.

This view is quite informative. Given the multiple priors model as a normative stan-

dard, if accuracy of information is decreased and an agent tries to form the �nest perfectly

anticipated ex-ante partitions, eventually, the agent is forced to have a single prior. We

generally consider the agent with a multiple priors set to be more naive than the agent

with a subjective prior because the multiple priors are formed on some uncertainty. Here,

we argue that the most uninformative form of a set of multiple priors is a subjective prior.

Clearly, the interpretation of ex-ante knowledge structure gives us a new insight into the

connection between the multiple priors model and the subjective prior model. In other

words, the multiple priors model is well-behaved compared with other non-expected utility

models because of this limit structure.
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3.4 Consistency under Equilibrium

In the previous section, we showed the conditions under which an agent with multiple priors

behaves dynamically consistently. The next question is under what conditions equilibrium

allocations satisfy dynamic consistency, i.e., the no trade theorem holds. After Milgrom-

Stokey (1982), a large literature developed on this topic. Instead of examining a complex

setting, we want to focus on a simpli�ed version of Milgrom-Stokey (1982) and investigate

the conditions on a set of multiple priors to guarantee the no trade theorem. Speci�cally, a

state space is restricted to payo¤-relevant ones so that we ignore concordant conditions21.

The critical assumptions on the utility function and information structure used in

Milgrom-Stokey (1982) are:

(3.4.1) Individuals follow the subjective prior model.

(3.4.2) Individuals use the Bayes�rule to update their prior.

(3.4.3) Individuals receive private information in a form of partition at the beginning

(ex-post partition at t = 1), and they learn ex-post partitions through trades.

Ex-post partitions are not necessarily in ex-ante knowledge. (The number

of trading sessions are also arbitrary.)

Condition (3.4.2) is hidden or taken as given in most of the literature; however, it is a very

critical assumption. It guarantees that we can use the Fubini theorem (the Bayes�rule) to

21We can include payo¤ irrelevant states. For this case, agents must have concordant sets of multiple

priors for the no trade theorem to hold.
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update the prior. Under the Fubini theorem, we can apply the iterated expectation, which

is the core of the proof of Milgrom-Stokey (1982). The beauty of the no trade theorem

is that it holds under any ex-post partitions, and the ex-ante knowledge about ex-post

partitions are totally irrelevant. In fact, Dow-Madrigal-Werlang (1990) show that the state

additivity of utility functions is a crucial assumption for the no trade theorem to hold under

all possible private information (ex-post partitions). They use the non-additive prior model

by Schmeidler (1989) to show a counter example for the no trade theorem. For the following

development, we state the result of Dow-Madrigal-Werlang (1990):

De�nition 3.4.1:

A utility function U for f 2 F0 has a state additive structure if U(f) =
P
W (f(!); !)

! 2 


Theorem 3.4.1: (Dow-Madrigal-Werlang: 1990)

The no trade theorem of Milgrom-Stokey (1982) holds if and only if all agents�preference

relations satisfy a state additive structure.

Note �rst that Conditions (3.4.1) and (3.4.2) guarantee that an agent has a state ad-

ditive utility function. The essence of state additivity is that individual behavior becomes

dynamically consistent under any ex-post partitions. However, under the multiple priors

model, the utility of an act f0 2 F0 cannot be expressed by the state additive structure

unless C0 is a singleton, which is the subjective prior model. Since the multiple priors
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model violates this condition, we need to assume that agents must know something about

ex-post partitions. In other words, the �nest partition in Q0 formed from conjectured ex-

post partitions must have more than one element on some event in order for C0 not to be

a singleton.

Now given these results, we can conjecture that under a dynamically consist multiple

priors set C0; equilibrium allocations stay the same after receiving private information. We

prove this results now:

We follow the basic setting in the previous section with the following minor extensions:

� Number of agents: H

� Endowment: eh : 
! �(XK)

� Utility function: uh : �(XK)! R where uh is state independent

� Informational partition: Qht;T (ex-ante); P
h
t (ex-post)

� Multiple prior set: Ch0 (initial);

Cht;i for P
h
t;i (updated after receiving information)

� Private signal: P h1 with P
h
1;i(!)

� Feasible Trade: eh + �h � 0 and
Ph
1 �

h � 0

Note that the de�nition of feasible trade implies that the assumption of complete mar-

kets, i.e., agents can span any consumptions. Now Proposition 3.4.1 summarizes our intu-

ition:
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Proposition 3.4.1: No Trade Theorem under Multiple Priors with Perfect

Anticipation

Suppose that all traders have a concave Bernoulli utility function, that their preference

relations follow the multiple priors model that satis�es the conditions of Proposition 3.2.3,

that they have perfectly anticipated ex-ante knowledge Q0(s; i;m) with Assumption 3.3.1,

that initial allocation e=(e1; :::; eH) is ex-ante Pareto-optimal, and that each trader h ob-

serves the private information conveyed by the partition P h1 . Suppose that it is common

knowledge at ! that all agents are rational and behave dynamically consistently, that they

do not trade unless they can weakly improve their utility, and that the ex-post market must

clear. Then, there is no trade that ex-post Pareto dominates e.

Proof:

The proof is almost the repetition of Milgrom-Stokey (1982). Let R(!) be the meet of

(P 1t;i(!); :::; P
H
t;i (!)) for 1� t � T . By assumption, it is common knowledge at ! that � is

a feasible trade and mutually acceptable. In other words, whenever agents agree to trades,

it must be weakly preferred than a null trade on all ex-post partitions, i.e., �h must satisfy

eht;i + �
h
t;i � eht;i on P ht;i 8P ht;i.2223 If �h(!) 6= 0 on ! 2 P ht;i wherever they agree to trade, then

22This result comes from the common knowledge assumption. In other words, the common knowledge

forces agents to coordinate a certain action on a certain event. Otherwise, there might be some trade under

which an agent with the �nest Ph(!) exploits the opportunity by selling some endowment at Ph0(!)nPh(!)

in exchange of the endowment at Ph(!), but both of them feel happy ex-post.

23 If markets are incomplete, it is not always possible to construct trades under which eht;i + �ht;i � eht;i.
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the minimum agreement among agents about possible states is obtained under the meet of

(P 1t;i(!); :::; P
H
t;i (!)), which is R(!).

24 Then 8!0 2 R(!) and 8h at P ht;i(!), by sequential

consistency:

(3.4.4) min�t;i2Cht;i
R
(u � (eh + �h))d�t;i � min�t;i2Cht;i

R
(u � eh)d�t;i

Suppose that 9h s.t. (3.4.4) holds strictly at some P ht;i(!0), and let �� the feasible trade

de�ned by:

��h � �h1R(!) 8h

where 1R(!) = 1 for ! 2 R(!); and 1R(!) = 0 otherwise. Since �h is feasible, under the

assumption of complete markets, the restriction of �h to R(!) is also feasible. When an

agent evaluates ��h ex-ante:

min�02Ch0
R
(u � (eh + ��h))d�0

= min
�2Ct

h

R
[
P
min�t;i2Cht;i

R
(u � (eht;i + �ht;i1R(!)))d�t;i]d�

= min
�2Ct

h

R
[
P
Pt;i�R(!)min�t;i2Cht;i

R
(u � (eht;i + �ht;i)1R(!))d�t;i

+
P
Pt;i"R(!)min�t;i2Cht;i

R
(u � eht;i)1Rc(!)d�t;i]d�

= min
�2Ct

h

R
[1R(!)

P
Pt;i�R(!)mim�t;i2Cht;i

R
(u � (eht;i + �ht;i))d�t;i

This implies that agents cannot infer from trades that disadvantageous trades imply bene�cial trades for

others, which in turn leads to speculation. In other words, there is no way to distinguish speculative trades

from rational transactions on the meet R(!).

24Agents do not need to know each others�partitions. They only need to know that there is a meet, an

they carry out hypothetical calculation as in the proof in their head.
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+ 1Rc(!)
P
Pt;i"R(!)mim�t;i2Cht;i

R
(u � eht;i)d�t;i]d�

� min
�2Ct

h

R
[1R(!)

P
Pt;i�R(!)mim�t;i2Cht;i

R
(u � eht;i)d�t;i

+ 1Rc(!)
P
Pt;i"R(!)mim�t;i2Cht;i

R
(u � eht;i)d�t;i]d�

= min�02Ch0
R
(u � eh)d�0

where Rc(!) denotes the complement of R(!), the second equality follows R(!) �

P ht;i(!
0) for ! 2 R(!), and the fourth inequality is due to (3.4.4) and monotonicity on

events by dynamic consistency and consequentialism. In fact, all equalities and inequalities

are based on the recursive multiple priors, which are from perfect anticipation of ex-post

partitions and ex-ante dynamic consistency. Since for h, the above inequality is strict, ��h

ex-ante Pareto dominates a null trade, which contradicts that e is ex-ante Pareto optimal.

Hence there are no feasible trades on R(!) that strictly Pareto improve e. Since the above

result holds for any meet including 
 itself, we conclude that there are no feasible trades

that strictly ex-post Pareto improve e. In addition, if all agents are strictly risk-averse,

there is no other equilibrium that assigns the identical utility for all agents with di¤erent

allocations (local uniqueness). Therefore, there is no trade that agents agree on.�

As in Milgrom-Stokey (1982), the critical assumption is that agents only agree to trade

when trades improve their utility on P ht;i. The common knowledge of this result implicitly

discloses the meet R(!). In fact, there is a trade to move to another ex-ante optimal

allocation with identical utility as long as a subset of individuals have quasi-concave utility

functions. However, the main result of Proposition 3.4.1 is that there are no trades that

strictly Pareto improve the original allocation.
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From the results of the previous section, it is clear that the no trade theorem does not

hold under some ex-post partitions that are outside an ex-ante partition Q0. We need ex-

ante knowledge of ex-post partitions. In addition, we need to assume dynamic consistency

for individual behavior, which is a hidden assumption in Milgrom-Stokey (1982) under

rational expectations. Under perfect anticipation, P ht;i behaves as if it were a single state,

and the existence of Ct ensures the monotonicity of {ft;i} over {P ht;i}.

3.5 Conclusion

In this paper, we investigate the conditions under which the economy of agents with multiple

priors demonstrates the no trade theorem. Our key intuition is that an agent must behave

dynamically consistently over a number of ex-post partitions. Then we �rst show that

the conditions for dynamic consistency. The main result is that dynamic consistency and

sequential consistency (or consequentialism) implies the recursive multiple priors set under

which an agent must use a conditional update rule. We extend this result for multiple

ex-post partitions, and show that we can construct the multiple priors model as long as the

�nest partition has some event in which there is more than a single state. Then we proved

the no trade theorem for the multiple priors model. The crucial assumption is individual

consistency under a dynamic choice problem and perfect anticipation of ex-post partitions.

Given this restriction on a knowledge structure, di¤erences on private information do not

lead to speculative trades.
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Appendix 3.A: (Proof of Proposition 3.2.3)

Su¢ ciency: (3.2.1), (3.2.2), and (3.2.3) ) dynamic consistency, sequential consis-

tency

First, note that Condition (3.2.3) implies sequential consistency. So we need to show

dynamic consistency. Given (3.2.1) and (3.2.2), let an act f0 = (ft;i; a) and an act g0 =

(gt;i; a) s.t. f0; g0 2 F0 and ft;i �Pt;i(a) gt;i. De�ne � 2 Ct as the optimal prior for f0. Then:

min�02C0
R
(u � f)d�0

= min�2Ct
R
[min�t;i2Ct;i

R
(u � ft;i)d�t;i +

P
j 6=imin�t;j2Ct;j

R
(u � a)d�t;j ]d�

�
R
[min�t;i2Ct;i

R
(u � gt;i)d�t;i +

P
j 6=imin�t;j2Ct;j

R
(u � a)d�t;j ]d�

� min�2Ct
R
[min�t;i2Ct;i

R
(u � gt;i)d�t;i+

P
j 6=imin�t;j2Ct;j

R
(u � a)d�t;j ]d�

= min�02C0
R
(u � g)d�0

where the �rst and the last equalities are from (3.2.1) and (3.2.2), and the second

inequality is from (3.2.3): min�t;i2Ct;i
R
(ut;i � ft;i)d�t;i � min�t;i2Ct;i

R
(ut;i � gt;i)d�t;i ,

min�t;i2Ct;i
R
(u � ft;i)d�t;i � min�t;i2Ct;i

R
(u � gt;i)d�t;i. Clearly, f0 � g0.

Conversely, suppose f0 � g0. Then:

min�02C0
R
(u � f)d�0

= min�2Ct
R
[min�t;i2Ct;i

R
(u � ft;i)d�t;i +

P
j 6=imin�t;j2Ct;j

R
(u � a)d�t;j ]d�

� min�2Ct
R
[min�t;i2Ct;i

R
(u � gt;i)d�t;i+

P
j 6=imin�t;j2Ct;j

R
(u � a)d�t;j ]d�

= min�02C0
R
(u � g)d�0
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By monotonicity (it hold over Pt;i because of the existence of Ct), this only hold when

min�t;i2Ct;i
R
(u � ft;i)d�t;i � min�t;i2Ct;i

R
(u � gt;i)d�t;i. By (3.2.3), ut;i(a) = �u + �, which

implies ft;i �Pt;i(a) gt;i:

Necessity: dynamic consistency, sequential consistency ) (3.2.1), (3.2.2), and (3.2.3)

(Step 1) ut;i(a)(:) is a positive a¢ ne transformation of u(:)

By sequential consistency, there is a utility function for each conditional preference

given a 2 F ct;i. Let ut;i(a)(:) be a utility function given a. Suppose that ut;i(a)(:) is not

a positive a¢ ne transformation of u(:). Then indi¤erence sets over �(XK) are di¤erent

somewhere. W.L.O.G., for x; y 2 �(XK), x � y on ut;i(a)(:) but x ' y on u(:). Let ft;i be

a conditional act that assigns x for each ! 2 Pt;i, and gt;i be a conditional act that assigns

y for each ! 2 Pt;i. Let an act f0 = (ft;i; a) and an act g0 = (gt;i; a). Then by monotonicity

under conditional acts (sequential consistency) and unconditional acts on F0, ft;i �Pt;i(a) gt;i

but f ' g, which contradicts dynamic consistency. Hence, ut;i(a)(:) is an positive a¢ ne

transformation of u(:). From now on, W.L.O.G., we assume that ut;i(a)(:) = u(:).

(Step 2) Condition (3.2.1)

Nt;i =1

(i) For Pt;i that has a single state, Assumption 3.2.2 (full support) implies

C0(Pt;ij�0(P ct;i)) =�0(Pt;i) =1 under any �0.25

25Dynamic consistency and monotonicity on F0 also imply that conditional preference over acts in Ft;i is
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Nt;i >1

(ii) First, we will show that conditional preferences are identical among acts in F0

that assign an identical probability distribution from �(XK) on ! 2 P ct;i, i.e., among a

generic element f0 = (ft;i,a). Let F 0;(a) be a set of acts that assigns a on P ct;i. By dynamic

consistency, for f0 and g0 2 F 0;(a), f0 � g0 i¤ ft;i �Pt;i(a) gt;i. Now let F 0 be a set of acts

that assign an identical element from �(XK) on ! 2 
, and F t;i be a set of conditional acts

of Ft;i that assign an identical element on ! 2 Pt;i. Then by certainty-independence on F0, if

8h 2 F 0, 8� 2 (0; 1), f � g i¤�f�(1��)h � �g�(1��)h. Then by dynamic consistency,

8ht;i 2 F t;i, 8� 2 (0; 1), ft;i �Pt;i(a) gt;i i¤ �ft;i � (1 � �)ht;i �Pt;i(a) �gt;i � (1 � �)ht;i.

Note �rst that it is obvious that conditional preference relations �Pt;i(a) and �Pt;i(b)are

identical if u(a(!)) = u(b(!)) because the utility for an act f0 is based on the weighted

sum of u(f0(!)) so that the exact shape of a distribution of f0(!) does no matter. (Hence

dynamic consistency implies �Pt;i(a) and �Pt;i(b) are identical if u(a(!)) = u(b(!)).)

Now, suppose that �Pt;i(a)and �Pt;i(b)are di¤erent, and u(a(!)) > u(b(!)). Suppose also

that b is not a element in�(XK) that yields a minimum utility. Then indi¤erence sets under

�Pt;i(a) and �Pt;i(b) are di¤erent somewhere. W.L.O.G., for ft;i; gt;i 2 Ft;i, ft;i �Pt;i(a) gt;i

but ft;i 'Pt;i(b) gt;i . By continuity and monotonicity on F0, there is a constant act hc 2 F 0

that assigns c(!) on ! 2 
 s.t. u(a(!)) > u(b(!)) > u(c(!)) and u(�a(!) + (1 � �)c(!))

= u(b(!)) with some � 2 (0; 1). By ft;i �Pt;i(a) gt;i , dynamic consistency, and certainty-

independence on F0, �f � (1 � �)hc � �g � (1 � �)hc. By dynamic consistency and the

identical to the preference of probability distribution over �(XK), which is independent of a 2 F c
t;i.
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result in the previous paragraph, �ft;i� (1��)ht;i �Pt;i(b) �gt;i� (1��)ht;i. However, this

inequality contradicts the assumption of ft;i 'Pt;i(b) gt;i. By the same argument, if a is not

an element in �(XK) that yields a maximum utility, it leads to a contradiction. Hence,

If �Pt;i(a) and �Pt;i(b)are not identical, a(!) must be a maximum element in �(XK), b(!)

must be a minimum element in �(XK), and all others give identical preference relations.

However, by continuity of preference and closeness of C0, this is impossible. Therefore, a

conditional preference over F 0;(a) is independent of a where a is a constant act over P ct;i.

(iii) Let Ct;i;c be the multiple priors set that represents the conditional preference for

acts in F0 that assign an identical element from �(XK) on ! 2 P ct;i, i.e., acts with a generic

element f0 = (ft;i,a). Suppose that under some �0(Pt;i); Ct;i;c 6= C0(Pt;ij�0(P ct;i))=�0(Pt;i).

Let Ct;i = C0(Pt;ij�0(P ct;i))=�0(Pt;i) for short. First we assume that A=Ct;inCt;i;c 6= ;. Note

that Ct;i and Ct;i;c does not depend on a 2 F
c
t;i where F

c
t;i is a set of acts that assigns

an identical element from �(XK) on ! 2 P ct;i. Let e�t;i be a boundary point of Ct;i;c that
satis�es e�t;i 2 @A and 8" s.t. 90 < "; B("; e�t;i) includes points in A and Ct;i;c. Then there
is a sequence of �nt;i 2 A that converges to e�t;i. In other words, e�t;i is the element of Ct;i;c
that faces A. By applying the supporting hyperplane theorem, 9 a sequence of �n with

norm one that satis�es �n � �t;i > �n � �nt;i if �t;i 2 Ct;i;c. By �niteness of state space, there

is a subsequence (�n
k

t;i ; �
nk) s.t. �n

k ! �. By continuity of linear function, � � �t;i � � � e�t;i
if �t;i 2 Ct;i;c. By a positive a¢ ne transformation, we can de�ne a support of the original

utility u(:) of �(XK) as [-L,L] with L� max j�(!)j where � is a vector used for a support

function for Ct;i;c.
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Let an act f0 = (ft;i,a) s.t. � = u�ft;i. Clearly, u�ft;i serves as a vector for the support

function of Ct;i;c at e�t;i, i.e.:
(A)

R
u � ft;id�t;i �

R
u � ft;ide�t;i where �t;i 2 Ct;i;c

For the above subsequence of �n
k

t;i 2 A that converges to e�t;i, R u�ft;ide�t;i > R u�ft;id�nkt;i .
By �niteness of the state space, 9e�0t;i 2 Ct;i s.t. e�0t;i = argminR u � ft;id�t;i where �t;i 2 Ct;i.
The existence of the element �n

k

t;i in A implies:
26

R
u � ft;id�t;i �

R
u � ft;ide�0t;i where �t;i 2 Ct;i in particular, �t;i = �nkt;i .

Clearly,

(B)
R
u � ft;ide�t;i > R u � ft;id�nkt;i � R u � ft;ie�0t;i

Now de�ne ft;i as a act that assigns the identical probability distribution from �(XK)

on ! 2 Pt;i and satis�es
R
u � ft;id�n

k

t;i =
R
u � ft;id�n

k

t;i . Since ft;i is constant over Pt;i,R
u � ft;id�n

k

t;i =
R
u � ft;ide�t;i = R u � ft;ide�0t;i = R u � ft;id� where � 2 �(Pt;i). Hence:

(C)
R
u � ft;id�n

k

t;i �
R
u � ft;ie�0t;i

Note that from the separating hyperplane theorem and (B), it is clear that � /1. By

sequential consistency, given a, the preference must satisfy the multiple priors model within

ft;j 2 Ft;i. This implies that given a, �u � ft;i and �u � ft;i must have the same preference

order as in u � ft;i and u � ft;i as long as maxj�u � ft;ij < L and maxj�u � ft;ij < L. Let

26 In fact, e�0t;i is in A. Otherwise, e�0t;i 2 Ct;i \ Ct;i;c. Then R u � ft;ide�0t;i > R u � ft;id�nkt;i .
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f 0t;i be an act that satis�es �u � ft;i = u � f 0t;i, and f
0
t;i be an act that satis�es �u � f t;i =

u � f 0t;i. Since �Pt;i(a) is independent of a as long as a is constant over ! 2 Pt;i, W.O.L.G.,

9� s.t. f 0t;i(!) = a(!) where ja(!)j << L. Let f 00 be an act in F0;(a) with f
0
t;i for Pt;i

and with a for P ct;i, and g
0
0 be an act in F0 with f

0
t;i for Pt;i and with a for P

c
t;i. Then by

dynamic consistency, f 00 � g00. Let �0 = (e�00;t;i,�c0;t;i) where e�00;t;i = e�0t;i � �0(Pt;i). Then by
(C),

R
u�g00d�0 �

R
u�f 00d�0. Since g00 is a constant act,

R
u�g00d�0 = min�2C0

R
u�g00d� �

min�2C0
R
u � f 00d�, which implies g00 � f 00. This is a contradiction.

(iv) We know that there is no Ct;i s.t. A = Ct;inCt;i;c 6= ;. Now, suppose that

9Ct;i s.t. A=Ct;i;cnCt;i 6= ;. By repeating the same argument as in (iii), 9 ft;i and f t;i,

s.t. min�t;i2Ct;i
R
u � ft;id�t;i >

R
u � ft;id�0t;i � min�t;i2Ct;i;c

R
u � ft;id�t;i where ft;i 2 F

c
t;i

and �0t;i 2 A. Note that by construction, ft;i is not a constant act. Again by the same

operation as in (iii), de�ne f 0t;i and f
0
t;i. Suppose that �0 is the optimal prior for f

0
0 = (

f 0t;i; a). Then since a 2 F ct;i is a constant, any probability distribution over {a(!)} will yield

the same integral over {a(!)}. Hence, if �0 = (e�t;i,�ct;i) is the optimal prior for f 00, then e�t;i
= argmin�t;i2Ct;i

R
u�f 0t;id�t;i. Also by construction,

R
u�g00d�0 = min�2C0

R
u�g00d�. Now

by assumption, A=Ct;i;cnCt;i 6= ;, which implies that f
0
t;i � f 0t;i. By dynamic consistency,

g00 � f 00. However, by construction, f 00 � g00, which is a contradiction. Clearly the preference

order becomes inconsistent, so Ct;i;c = Ct;i. Hence, if �0 is an optimal prior for f 0t;i = �ft;i,

then Ct;i = Ct;i;c.

Next, since a 2 F ct;i is a constant act and f t;i 2 F t;i is a constant act, if �f t;i(!) > a(!),

�0(Pt;i) assigns the lowest probability over Pt;i, and if �f t;i(!) < a(!), �0(Pt;i) assigns the
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highest probability over Pt;i. Let �L0 (Pt;i) be the lowest �0(Pt;i) and �
H
0 (Pt;i) be the highest

�0(Pt;i). Take a sequence of acts �fnt;i that converges to �f t;i, where f
n
t;i does not assign the

identical elements from �(XK). For this sequence, by continuity, �n0 (Pt;i) must converge to

�L0 (Pt;i) if �f t;i(!) > a(!), and to �
H
0 (Pt;i) if �f t;i(!) < a(!), where �

n
0 is the optimal prior

for fn0 = (�fnt;i,a). Since Ct;i;c = Ct;i at all �n0 (Pt;i), again by continuity of the preference

and closeness of C0, Ct;i;c = Ct;i at �f t;i(!) > a(!) or �f t;i(!) < a(!).

Now by assumption, there is some Ct;i s.t. A=Ct;i;cnCt;i 6= ; at �0 where �0(Pt;i) does not

assign the highest or lowest probability on Pt;i. Then there is 
 s.t. 
�L0 (Pt;i)�(1�
)�H0 (Pt;i)

=�0(Pt;i). However, since Ct;i;c = Ct;i at �L0 and �
H
0 , 9�t;i 2 Ct;i at �0 s.t. �Lt;i = �Ht;i 6= �t;i.

Let e�L0 = (e�Lt;i,�c;Lt;i ), e�H0 = (e�Ht;i,�c;Ht;i ), and �0 = (e�t;i,�ct;i), where e�Lt;i = �Lt;i � �L0 (Pt;i), e�Ht;i =
�Ht;i � �H0 (Pt;i), and e�t;i = �t;i � �0(Pt;i). Then, 
e�Lt;i � (1 � 
)e�Ht;i 6= e�t;i, which contradicts
the convexity of C0. Hence, there is no Ct;i s.t. A = Ct;i;cnCt;i 6= ;. Therefore, Ct;i;c =

C0(Pt;ij�0(P ct;i))=�0(Pt;i) 8�0 2 C0.

(v) For the case such that Ct;i \Ct;i;c = ;, let �n be a sequence that separates these

two sets and converges to a boundary point of Ct;i;c. Then we can use (iii) to show that it

contradicts dynamic consistency.

(Step 3) Condition (3.2.2)

Next, we will show Condition (3.2.2). Given (3.2.1), any �0 2 C0 is de�ned by

(�0;t;1,...,�0;t;Nt) where Nt is the cardinality of Pt. For �0; �
0
0 2 C0 and � 2 (0,1), ��0

+ (1-�)�00 = (...,��0(Pt;i)qt;i + (1-�)�00(Pt;i)q
0
t;i,...) 2 C0, where qi;t = �0;t;i=�0(Pt;i) 2
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C0(Pt;ij�0(P ct;i))=�0(Pt;i). Now, ��0(Pt;i)qt;i + (1-�)�00(Pt;i)q0t;i = [��0(Pt;i)+(1��)�00(Pt;i)]

[�t;iqt;i + (1-�t;i)q0t;i] where �t;i = ��0(Pt;i)=[��0(Pt;i)+ (1��)�00(Pt;i)]. Clearly, �t;i 2 (0; 1)

and by convexity of C0(Pt;ij�0(P ct;i)) = �0(Pt;i), [�t;iqt;i + (1-�t;i)q0t;i]2 C0(Pt;ij�0(P ct;i)) =

�0(Pt;i). De�ne Ct as the collection of [�0(Pt;1),...,�0(Pt;Nt)]. The non-emptiness is obvious.

Suppose not convex. Then by the above calculation, 9�0; �00 2 C0 and � 2 (0,1), ��0 +

(1-�)�00 =2 C0, which violates convexity of C0. By the same logic, if Ct is not closed, it

violates closeness of C0.

(Step 4) C0(Pt;ij�0(P ct;i))=�0(Pt;i) = the multiple priors set for Pt;i at �0 for given

a 2 F ct;i

We have shown that given a 2 F
c
t;i, Ct;i;c = C0(Pt;ij�0(P ct;i))=�0(Pt;i) serves as the

multiple priors set for ft;i 2 Ft;i. Finally, we need to show that a conditional preference on

Ft;i given a 2 F ct;i has C0(Pt;ij�0(P ct;i))=�0(Pt;i) as the multiple priors set. Note that a is

not a constant act any more.

Suppose that C0(Pt;ij�0(P ct;i))=�0(Pt;i) is not a multiple priors set for a conditional pref-

erence on Ft;i given a 2 F ct;i but a =2 F
c
t;i. 9 ft;i; gt;i s.t. ft;i �Pt;i(a) gt;i but min

R
u � ft;id�t;i

= min
R
u � gt;id�t;i under C0(Pt;ij�0(P ct;i)) = �0(Pt;i). By dynamic consistency, f0 � g0.

Then by Conditions (3.2.1) and (3.2.2):

min�02C0
R
(u � f)d�0

= min�2Ct
R
[min�t;i2Ct;i

R
(u � ft;i)d�t;i +

P
j 6=imin�t;j2Ct;j

R
(u � a)d�t;j ]d�

= min�2Ct
R
[min�t;i2Ct;i

R
(u � gt;i)d�t;i +

P
j 6=imin�t;j2Ct;j

R
(u � a)d�t;j ]d�
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= min�02C0
R
(u � g)d�0

This implies f0 ' g0, which is a contradiction.�

Appendix 3.B: (Proof of Proposition 3.2.4)

Su¢ ciency: (3.2.1), (3.2.2), and (3.2.3) ) dynamic consistency, consequentialism

Condition (3.2.1), (3.2.2), and (3.2.3) implies consequentialism because of the recursive

structure of multiple priors. The proof of dynamic consistency is identical to the one in

Appendix 3.A.

Necessity: dynamic consistency, consequentialism ) (3.2.1), (3.2.2), and (3.2.3)

(Step 1) dynamic consistency and consequentialism implies sequential consistency

Let f0 be an act in F0 with f0 = (ft;i,a) where a 2 F ct;i, and let F0;(a) be a set of acts that

assigns a on P ct;i. Let h0 2 F 0, where F 0 is a set of acts that assigns an identical element

from �(XK) on ! 2 
. Assume f0 and g0 are in F0;(a). Then by certainty independence

on F0, for 8h 2 F 0 and 8� 2 (0; 1), if f0 � g0 then �f0 � (1 � �)h0 � �g0 � (1 � �)h0.

Let b(!) = �a(!) � (1 � �)h(!). By dynamic consistency, 8ht;i 2 F t;i where ht;i has an

identical element from �(XK) on Pt;i, if ft;i �Pt;i(b) gt;i, then �ft;i � (1 � �)ht;i �Pt;i(b)

�gt;i � (1 � �)ht;i. By consequentialism, �ft;i � (1 � �)ht;i �Pt;i(a) �gt;i � (1 � �)ht;i

8a 2 F ct;i. Conversely, by certainty independence on F0, for 8h 2 F 0 and 8� 2 (0; 1), if

�f0 � (1� �)h0 � �g0 � (1� �)h0, then f0 � g0. By dynamic consistency, for 8ht;i 2 F t;i,

if �ft;i � (1 � �)ht;i �Pt;i(b) �gt;i � (1 � �)ht;i, then ft;i �Pt;i(b) gt;i. By consequentialism,
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ft;i �Pt;i(a) gt;i 8a 2 F ct;i. This implies that certainty-independence holds under �Pt;i. Also

by uncertainty aversion, 8f0; g0 2 F0;(a) and 8� 2 (0; 1), f ' g ) �f � (1 � �)g � f .

Again, by dynamic consistency and consequentialism, 8ft;i; gt;i 2 Ft;i and 8� 2 (0; 1),

ft;i 'Pt;i(a) gt;i ) �ft;i � (1� �)g �Pt;i(a) f , which implies that uncertainty aversion holds

under �Pt;i(a). Other Axioms also hold by the same construction. Hence, the conditional

preference �Pt;i(a) is represented by the multiple priors model. By consequentialism, this

preference is independent of elements on F ct;i, so we write it as �Pt;i. Clearly, ut;i(a)(:) can

be di¤erent up to a positive a¢ ne transformation.

(Step 2) ut;i(a)(:) is an positive a¢ ne transformation of u(:)

Suppose that ut;i(a)(:) is not an positive a¢ ne transformation of u(:). Then indi¤erence

sets over �(XK) are di¤erent somewhere. W.L.O.G., for x; y 2 �(XK), x � y on u(:) but

x ' y on ut;i(a)(:). Let ft;i be a conditional act that assigns x for each ! 2 Pt;i, and gt;i be

a conditional act that assigns y for each ! 2 Pt;i. Let an act f0 = (ft;i; a) and an act g0

= (gt;i; a). Then by monotonicity on F0, f0 � g0. By dynamic consistency, ft;i �Pt;i(a) gt;i,

which is a contradiction. Hence, ut;i(a)(:) is an positive a¢ ne transformation of u(:). From

now on, W.L.O.G., we assume that ut;i(:) = u(:).

(Step 3) Condition (3.2.1)

(i) By the same reason in the proof of Proposition 3.2.4, we only need to prove for

Pt;i that includes more than one state.

(ii)-(iii) These are identical to (iii)-(iv) of (Step 2) of the proof of Proposition 3.2.3.
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(Step 4) Same as in (Step 3) of the proof of Proposition 3.2.3�

Appendix 3.C: (Proof of Proposition 3.2.5)

For any ex-post partition Pt;i, Pt;i = [k+lk
ePm with l � 1. If there are no overlap between

Pt;i and Pt0;j , by Condition (3.2.4) and (3.2.6), there is a multiple priors set Ct;i de�ned by

elements
Q�
�=0 �
+�;i0(

bP
;i0(!)) at ! 2 Pt;i where Pt;i = bP
;i0 and �
+�;i0( bP
;i0(!)) 2 eC
+�;i0 .
Clearly, this set is non-empty, closed, and convex, which implies Condition (3.2.1).

Condition (3.2.4) and (3.2.6) implies that if there is an overlap between Pt;i and Pt0;j at

!, all Ct;i is a singleton for Pt;i � Rj where Rj is the meet of {Pt;i(!)} and Rj = [k+lk
ePm.

In other words, � 2 eC treats Rj as a single event, and within Rj , a prior is �xed over

{ ePm}k+lk . Hence within Rj , any combinations of { ePm} justify Condition (3.2.1).
Finally, Condition (3.2.5) implies that there is a multiple priors set bC over {Rj}. From

bC, we can form Ct over {Pt;i} by the following calculation:

� For Pt;i � Rj that includes an overlap, �0(Pt;i) = b�jPk+l
k �m where Pt;i = [k+lk

ePm
and b�j 2 bC.

� For Pt;i � Rj that does not include an overlap, �0(Pt;i) = b�j Q

�=0 ��;i0(

bP�;i0(!)) where
b�j 2 bC and ��;i0( bP�;i0(!)) 2 eC�;i0 .

This Ct is de�ned over {Pt;i}, which satis�es Condition (3.2.2). �
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Chapter 4

Aggregation of Agents with Multiple Priors

and Homogeneous Equilibrium Behavior

145



4.1 Introduction

Ellsberg (1961) suggests through his famous paradox that under the presence of uncer-

tainty, information is too vague to be represented by probabilities. Gilboa-Schmeidler (1989)

capture this behavioral intuition through a utility representation in which aversion to un-

certainty is expressed as if an agent selected the most pessimistic prior from a give set to

evaluate an uncertain outcome (i.e., the multiple prior model). The implications of this new

concept are investigated under many settings. For example, Epstein-Wang (1994) demon-

strate the possibility under which we can utilize a familiar construction of the representative

agent in a dynamic general equilibrium setting even though agents follow the multiple prior

model. In their example, all agents share the same �e¤ective�prior at equilibrium regard-

less of their initial endowment, and this prior is the most pessimistic prior in the set used

to evaluate an aggregate endowment process. In a di¤erent example, Ozdenoren (2000)

examines the e¤ects of the aggregation of uncertainty-averse agents in an auction model.

He shows that under the regularity condition, uncertainty-averse agents bid higher than

non-uncertainty-averse agents because they have a pessimistic view toward the behavior of

others. The implications from the above two examples are particularly interesting because

uncertainty aversion creates a distinct bias in agents�behavior at equilibrium.

In this paper, we are interested in deriving conditions under which agents�risk-sharing

becomes homogeneous at equilibrium. More precisely, we apply the multiple prior model

to a multiple-agents economy, and investigate the possibility that agents select priors with

similar bias and share similar equilibrium allocations. The paper examine two cases: (1)
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the case where each agent has the same set of multiple priors, i.e., each agent faces the same

uncertainty; (2) the case where agents have heterogeneous multiple prior sets.

In order to investigate the question above, we �rst examine the single agent economy as

a benchmark case. We focus on a special structure of the multiple prior set under which an

e¤ective prior depends only on the order of consumptions (i.e., the convex-capacity). Under

the convex-capacity, we relax the assumption of a stationary endowment process used in

Epstein-Wang (1994). We show that if an endowment grows in a reasonably stable way, the

agent selects the most pessimistic prior with respect to tomorrow�s endowment, not with

respect to the continuation value of the future endowment. Then, we extend this condition

to the multiple-agents economy where each agent faces the same uncertainty. Under similar

conditions on the aggregate endowment to those in the benchmark case, we con�rm the

previously known result that the convex capacity is a su¢ cient condition to achieve full

insurance, that is, all agents�consumptions are comonotonic (increasing together) with the

aggregate endowment and their marginal rates of substitution are equalized. The e¤ective

priors are identical among agents, which justi�es the construction of the representative

agent. The existence of the representative agent reduces the complex economy to the one

where all individuals behave as if they were expected utility maximizers with the common

subjective prior. In other words, agents have globally optimal consumptions with respect

to the common prior. Clearly the aggregation forces agents to agree on their beliefs, and

the original heterogeneity in endowments and beliefs must disappear at equilibrium.

We then consider the case where agents have heterogeneous multiple prior sets. In this
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case, we provide conditions such that agents�e¤ective priors (and equilibrium consumptions)

will be comonotonic and their marginal rates of substitution (weighted by these priors) will

be equalized. More speci�cally, we derive the structure of commonality among agents�

multiple-priors set. One set of su¢ cient conditions is for each agent�s multiple prior set

to be symmetric (or to be de�ned by a convex capacity) around the center of the simplex.

Intuitively, by locating multiple prior sets around the center, we can avoid heterogeneous

tastes regarding states, whereas under the nesting feature, agents share similar uncertainty.

In addition, the multiple prior model introduces local risk aversion at the allocations where

all consumptions are identical (Segal and Spivak (1990) call this risk attitude �rst-order

risk aversion). Given a su¢ cient commonality among agents�multiple-priors sets, this risk

characteristic forces all agents to behave similarly. Moreover, under heterogeneous multiple

prior sets, all agents have locally optimal consumptions relative to their most pessimistic

priors. This result contrasts with that of the homogeneous convex-capacity case where

consumptions are globally optimal with respect to the most pessimistic prior. We can also

show that for the nested multiple prior sets, the more uncertainty averse the agent is, the

less volatile her/his consumption over states.

We then examine how the equilibrium prices evolve. In a single-agent model, Epstein-

Wang (1994) show that there is a continuum of equilibrium prices if there are multiple

choices of e¤ective priors. Under a multiple-agents economy, we need a restriction on each

individual endowment to generate a continuum of equilibrium prices. One set of su¢ cient

conditions is that each agent has identical endowments over at least two states that are also
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identical among agents.

Finally, we compare our results with other models. Chateauneuf-Dana-Tallon (2000)

show a similar risk-sharing property under a two-period economy where agents have convex-

capacity. Our model has two di¤erences. First, we examines a dynamic economy. Second,

our result includes the analysis of a general multiple prior set. In terms of the relationship

between a degree of uncertainty and volatility of optimal allocations, Liu (1998) examines

a special case of convex-capacity and concludes that if an agent becomes more uncertainty-

averse, she/he can bear more volatility in equilibrium allocations. We can easily show that

Liu�s result is a special case of our results under heterogeneous multiple prior sets.

We organize the paper as follows: First, we de�ne the economy in Section 4.2 mostly

following the notations and formulations of Epstein-Wang (1994, 1995). In Section 4.3,

we examine the single-agent economy and construct the benchmark case where the agent

possesses the same pessimism over time. In Section 4.4, we extend the results of Section

4.3 and derive the conditions under which full insurance is achieved. In Section 4.5, we

derive similar conditions for heterogeneous multiple prior sets. In Section 4.6, we examine

the possibility that a continuum of equilibrium prices exists. Most of the proofs are in

appendices.
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4.2 Stochastic Exchange Economy with Uncertainty Aversion

4.2.1 Intertemporal Utility Function and Structure of Beliefs

We use the dynamic utility structure for the discrete states and �nite-horizon economy. It

is de�ned by:

(4.2.1) V (c)=E [
PT
1 ut(ct)]

The problem here is how to de�ne the expectation operator. In the rational expectations

model, we assume that all agents have the homogenous knowledge about the true �objective

probability�of the evolution of economy, and use this probability law to calculate the above

utility. On the other hand, in the Savage model, this probability is derived as the subjective

probability measure.

Gilboa-Schmeidler (1989) axiomatize the notion of uncertainty aversion. In their multiple-

priors model, agents behave as if they had a preference over acts which is equivalent to the

minium expected value with respect to the closed and convex probability set. In other

words, applying their idea1, (4.2.1) would be written as:

(4.2.2) V (c)=infm2PE [
PT
1 ut(ct)]

1 In Gilboa-Schmeidler (1989), the utility function and the multpile-priors set jointly represent the agent�s

preference over uncertain outcome. Here we intentionally make a argument that when the agent become

uncertain about the future payo¤s, she/he makes the closed and convex multiple-priors set around her/his

subjective single prior which is used under non-uncertain situation. We give the rationale behind this

assumption in Section 4.5.

150



where P is a closed and convex set of priors2

However, (4.2.2) does not generally derive the dynamically consistent choice behav-

ior (Epstein-Wang 1994 p.293-294)3. Since we want to investigate the dynamic consump-

tion/investment behavior, (4.2.2) is essentially intractable. Hence, we need to impose the

more structure on the set of priors, which requires that each conditional distribution at t

also has the closed and convex set of priors:

(4.2.3) V (c)= u1(c1) + infm2P1(!1)E 1[u2(c2)+infm2P2(!1)E 2[u3(c3)

+...infm2PT�1(!T�1)ET�1[uT (cT )]...]]

where Pt(!t) is a closed and convex set of priors at t for the history !t 4

Or more concisely,

(4.2.4) V (c)= u1(c1) + infm2P1(!1)E 1[V (c2,...cT )]

where P1(!1) is a closed and convex set of priors at t=1

for the history !1; V (c2,...cT ) is de�ned as (4.2.3) from t=2,T5

2 In Appendix 4.A, we show that (4.2.2) is a special case of the dynamic version of Gilboa-Schmeidler

(1989).

3Precise argument of dynamic consistency is found in Appendix 4.A.

4 In Appendix 4.A, we show that (4.2.3) is a special case of the dynamic version of Gilboa-Schmeidler

(1989). Also in the same section, we show that (4.2.3) delivers the dynamically consistent evolution of

multiple-priors sets, i.e., the agent�s preference con�rms the dynamically consistent multiple-priors model.

5 In this �nite-horizen model, (4.2.3) and (4.2.4) are a equivalent formulation. The proof is in Appendix

4.A.
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In the next subsection, we show that (4.2.3) and (4.2.4) deliver the dynamically consis-

tent behavior.

Now, we de�ne the above argument more precisely. The set of discrete states is 
 with

discrete topology D(
) (N: number of states), and the evolution of state spaces is de�ned

as 
T with discrete topology D(
T ) (T is �nite). Denote !t = (!1,!2,...,!t)2 
t. We also

use (!1;s,!2;s,...,!t;s) to specify the particular realization of states over time. Note that we

only focus on the �nite states and �nite-time horizon model because the behavior of (4.2.4)

becomes very discontinuous in the continuous states case (or in the in�nite-time horizon)6.

Since the continuous states can be approximated by �nite states, the only conceptual limit

seem to be the �nite time horizon. However, given the utility for the distance future is

decreasing, after su¢ ciently large T, we would neglect the rest of the time. In order words,

we avoid the continuous states and in�nite-time horizon model because we want to allow

more general endowment evolution and derive clear intuition on the aggregated behavior

of agents with multiple-priors without considering the discontinuous tail behavior. (On the

other hand, the focus of Epstein-Wang (1995) is exactly the discontinuous tail behavior of

multiple-priors model as its de�ning characteristics; see Appendix 4.F)

De�ne M(
) as the space of all probability measures over D(
), and assign non-zero

probability for each element of D(
). Assume that each agent has the probability kernel

6 In Appendix 4.F, we summarize the results from Epstein-Wang (1995), which shows the discontinous

behavior of the continuous states model.
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correspondence Pht : 

t ! M(
) for each t7. We assume that there is no objective proba-

bility law, which is essentially equivalent to saying that there is no learning in this model.

However, by the non-time-homogenous structure of prior sets can imply that agents actu-

ally behave as if they learned something over time even though there is no reference to the

objective realization of states.

For notational convenience, we de�ne the following integral: For a set P 2 M(
), and

for any bounded measurable function f : 
! R,

(4.2.5)
R

 fdP � min{

R

 fdm : m 2 P}

where the minimum exist because of the �nite state space (by Weirstrause theorem: the

minimum over a compact set 2 RNexists). We call this value as an �expected value� for

the function f as the extension of standard terminology. We also use E[f ] as the short hand

notation of (4.2.5).

The consumption process {X t} is the adapted process over D(
T ). In other words,

X t is D(
t)-measurable for all t. Hence, the consumption processes form t to T is in the

complete normed vector space:

Xt = {�X={X �}: {X �} is an adapted, real valued process

s.t. X � (!� )� 0 8�=t,T , !� 2 
� ; kX k = sup� sup!� jX � (!� )j <1 }

Utilities over Xt are de�ned with a probability corresponds and a vNM instantaneous

utility functions uht : R+ ! R+ assumed to be continuous, increasing, strictly concave, and

7The name �kernel� is justi�ed by the convolution like formula of integration for each !t.
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normalized to be uht (0)=0
8. The assumption of strictly concavity of uht is for the expositional

purposes for the case of identical multiple priors, but it is crucial for the case of heterogenous

sets of multiple priors.9 In fact, as we see in section 4.4.3, for the economy of risk-neutral

agents, the presence of uncertainty changes the equilibrium behavior drastically, which is

another reason why we want to separate the strictly concave utility from the weakly concave

case.

For each tc in Xt, a utility process {V h
t (
tc)}T1 is de�ned as the unique element of Xt s.t.:

8t �1 and !t in 
t :

(4.2.6) V h
t (
tc;!t)=uht (ct(!

t))+
R
V h
t+1(c;!

t,!)dPh(!t;!)

We can consider V h
t (c;!

t) to be the utility of the continuation consumption process tc�

{ct}=(ct,..,cT ) conditional on the history !t. Given of equivalence of (4.2.3) and (4.2.4)

(i.e. (4.2.6)), we can uniquely de�ne V h
t (c;!

t) by backward induction.

4.2.2 The Structure of the Economy

We adapt the standard stochastic exchange economy. There is a single perishable consump-

tion good over D(
T ) and there are H agents who have their endowment process eh =

8ut(0)=0 assumption is used to guarantee that the utility process {Vt}T1 is bounded, i.e. Vt <1. Under

this assumption, the utility process is in fact in X.

9For the identical prior case, the reader can easily verify the most of the results holds under minor

modi�cation. We will mention the general concave utility case at footnotes whenever it seems helpful.
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{eht (!
t)} 2 Xt . The aggregate endowment for the whole economy is de�ned as e =

PH
1 e

h:

For simplicity, assume that all endowments are positive:

(4.2.7) eht (!
t)>0 for 8!t 2 
t

There are K securities (N�K<1), where the dividend process for the ith security

is d i={d i;t}2 Xt. Particularly, we assume that these K securities can span all possible

consumption in Xt, i.e. the asset markets are dynamically complete. In each period, the

available securities are trades in a competitive market, and they have prices q i = {q i;t}2 Xt,

where the consumption good is treated as a numeraire at each !t. Let q t=(q1;t,...,qK;t) and

q={q t}2 XKt . We assume that each agent has zero endowment of shares for K securities so

that the total supply of these securities is zero.

At the beginning of each period, each agent plans consumption and investment for

available securities for the current and all future periods by (tch,t�h), where tch 2 Xt and

t�h= {�h� }2 XKt with �h�=(�
h
1;� ,..,�

h
K;� ). We call (

tch,t�h) as (t,!t)-feasible if it satis�es the

following budget constraints:

(4.2.8) q� � �h� + c� = �h��1 � [q�+d� ] + eh� 8� � t

�h0 (!
0) = 0

infi;�;!� �i;� (!� ) > - 1

The third inequality is restriction on short sale, which guarantees the existence of equi-

librium. Now, agents maximize their utility value V h
t (
tc;!t) by solving the following opti-

mization: For each t,
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(4.2.9) Max(c;�) V h
t (
tc;!t)= uht (ct(!

t))+
R
V h
t+1(

t+1c;!t,!)dPh(!t;!)

s.t. (4.2.8)

The solution for this optimization achieves (t,!t)-optimal allocation (tch ,t�h).

Finally, an equilibrium is a price process {q t}T1 and allocation {(c
h
t ,�

h
t )}

T
1 such that:

8(t,!t) s.t. 1� t � T,

(4.2.10) (tcht ,
t�ht ) is (t,!

t)-optimal for all agentsPH
1 c

h
t (!

t) = et(!t)PH
1 �

h
t (!

t) = 0

At an equilibrium, agents use q as the expectations for future prices and these prices

are in fact ful�lled in the subsequent time periods. As we show in Appendix 4.B, the

consumption ch is dynamically consistent, in other words the (t,!t)-optimal consumption

plan remains optimal for later dates.

As opposed to Epstein-Wang (1995), this economy has the following property. An

Arrow-Debrue complete markets equilibrium is generically implemented by a dynamic equi-

librium by randomly picking N securities from the K asset pool (Kreps (1982)). More

strongly, it is easily seen that a dynamic equilibrium always corresponds to an Arrow-Debreu

counterpart by generating Arrow-Debrue securities from dynamic trading. Hence, by exam-

ining the Arrow-Debrue equilibrium, we can investigate the property of the corresponding

dynamic equilibrium. The proof of the existence of equilibrium for an Arrow-Debreu econ-

omy is given in Appendix 4.C.
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4.2.3 Special Case

For the rest of this paper, we focus mainly on the speci�c structure of multiple-priors sets.

From Schmeidler (1989), de�ne the multiple-priors set P from the non-additive prior �

which satis�es the following properties:

(4.2.11) (i) v(;) = 0 and v(
) = 1

(ii) For A,B2 D(
) s.t. A�B, v(A)�v(B)

(iii) v is the convex capacity:

s.t. A,B2 D(
); v(A)+v(B)�v(A\B)+v(A[B)

(iv) P = {m2M(
): m(A) � v(A)} (core)

The resulting P has very convenient property. It has the Choquet integral formulation:

(4.2.12) minp2P
R
u(x)dP =

R
u(x)dv =

PN
i=1(ui � ui+1)v([ij=1sj) 10

=
PN
i=1 ui(v([ij=1sj)� v([

i�1
j=1sj))

=
PN
i=1 uipi

where u1>u2>...>uN �0, uN+1= 0 = v([0j=1sj) and s i corresponds to the state of ui.

We call this P the core of convex capacity v or capacity-based P in short. It is apparent

from the de�nition (iv) and the above expression that the identical prior is used to calculate

the expected value among consumptions with the same strong order of utilities. In fact, by

10As we mention in Appendix 4.A, the non-additive prior model can be derived on degenerated lotteries

on R for each state.
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the continuity of preference, the weak order of u at any point does not change the above

calculation, so the same prior can be used. More speci�cally, we say that the utility vector

u and u 0 are comonotonic if:

(4.2.13) [u(!)-u(!0)][u 0(!)-u 0(!0)] �0 8!; !0 2 


In other words, among comonotonic consumptions, there is a single prior for the expecta-

tion operator. Later in Section 4.4, we show that the uniqueness of prior among comonotonic

consumptions is essential for the existence of the dynamic representative agent. From the

de�nition of (4.2.12), it is also apparent that switching the utility of two consecutive states

in the utility order only changes the probability of these two states. More speci�cally, in

(4.2.12), if we have eu = ( eu1,... euN ) where eui = ui+1, eui+1 = ui, euj = uj 8j 6= i; i+ 1.
PN
i=1 eui(v([ij=1sj)� v([i�1j=1sj)) =

PN
i=1 euiepi

Clearly, ep = (ep1,...,epN ) is di¤erent only at epi and epi+1.11
In addition, for the multiple-priors model, the following inequality holds (which we need

in Section 4.4 and Section 4.5). For u and u 0, if P is a closed and convex set:

(4.2.14)
R
(u+u 0)dP �

R
udP +

R
u 0dP

and equality holds when u and u 0 are comonotonic if P is capacity-based.

11 In fact, any permutation of utilities for k consecutive states in the utility order changes only the proba-

bility of thoes states.
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Now, given this capacity-based P, we can rewrite the agents� problem for consump-

tion/investment decision in a more tractable formula.

Max(c;�) V h
t (
tc;!t)= uht (ct(!

t))+
R
V h
t+1(

t+1c;!t,!)dPh(!t;!)

(4.2.15) = Max(cm;�m)m=1;MMax(c;�)2(c;�)m

V h
t (
tc;!t)= uht (ct(!

t))+
R
V h
t+1(

t+1c;!t,!)dPh(!t;!)

where among (c; �)m , V h
t+1(

t+1c;!t,!) becomes comonotonic

In (4.2.15), agents �rst divide the (t,!t)-feasible allocation into M parts where in each

partition agents behave as if they were subjective prior optimizers for the choice of V h
t (
tc;!t,!)

with the �xed prior, and solve the local optimization. Then they choose (c; �)m that achieves

the highest value from these local maxima. This interpretation will be particularly impor-

tant for the interpretation of equilibrium allocations and prices in the later section. The

proof of this statement is found in Appendix 4.D.

4.2.4 Utility Supergradients and Asset Prices

Finally in this subsection, we state the results about di¤erentiability, which will be used

in Section 4.5.3 and Section 4.6. Since the formula by Gilboa-Schmeidler (1989) is point-

wise minimum, the di¤erentiability does not necessarily follow. However, by utilizing the

results from Aubin (1978), we can de�ne the left and right derivative for the utility process

{V h
t (
tc;!t)}. We just restate the results from Epstein-Wang (1994) in a single-period model

without current consumptions. Note that the similar result holds for the T-periods model.
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Lemma 4.2.1:

Assume one period economy without the current consumptions. Let {xh} = {xh2(!2)}

be positive. De�ne the convex-valued, compact-valued correspondence Qh: 
!M(
) by:

(4.2.16) Qh(!1)={m2 P h(!1)j Vh(x) =
R
uh2(x

h
2(!2))dm =

R
uh2(x

h
2(!2))dP

h(!1; !)}

Then the one-side derivative of Vh(x) at x and in the direction h = fh2 where fh2 2 RN
, and � 2 R are given by

(4.2.17)
d

d�
V (x+ �h)j0+ = minmf

R
u0(x2(!2))fh2dm : m 2 Qh(!1)g

d

d�
V (x+ �h)j0� = maxmf

R
u0(x2(!2))fh2dm : m 2 Qh(!1)g

In addition, at equilibrium, take the perturbation in the budget set: fh2 s.t. h2(!2)=�,
h2(!02)=-�q(!2)=q(!

0
2) where q(!2) is the state price at !2. Then:

(4.2.18) 9m 2 Qh(!1) s.t. 8!2; !02 2 

R
fu

0(x2(!2))

u0(x2(!02))
-
q(!2)

q(!02)
gdm = 0

The proof of (4.2.16) and (4.2.17) is in Appendix 4.E, which is just an application of

Aubin (1979)�s result. The equation for the state price ratio (4.2.18) is from Epstein-Wang

(1994: p.297).

The natural interpretation of Lemma 4.2.1 is as follows: Assume that there are two

states and agents have the sets of capacity-based multiple priors. Then the indi¤erence

curve has a kink at x 2(!2) = x 2(!02). At this kink point, the derivative cannot be de�ned.

If fh2 = (1,-1), then
d

d�
V (x + �h)j0+ de�nes the �attest tangent line and

d

d�
V (x + �h)j0�

de�nes the steepest tangent line. From (4.2.18), if at equilibrium x 2(!2) = x 2(!02), we can

conclude that
d

d�
V (x + �h)j0+ =

p(!2)

p(!02)
� q(!2)

q(!02)
� =

p(!2)

p(!02)
=

d

d�
V (x + �h)j0�, where

[p(!2); p(!02)] is the optimal choice of prior for x 2(!2) > x 2(!02), and [p(!2),p(!
0
2)] is for
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x 2(!2) < x 2(!02):

4.3 Single Agent Economy

4.3.1 Background

For continuous states and in�nite-time horizon setting, Epstein-Wang (1994) apply the

multiple-priors model to a Lucus representative agent economy. They derive the existence

of equilibrium with recursive utility and the several distinct features of the multiplicity

of priors as opposed to the single-prior model. They justify the use of the representative

agent model by examining the possibility of its construction from heterogenous agents with

identical sets of priors that are capacity-based. In this paper, we want to extend their

results and investigate the more general conditions where multiple agents behave in a similar

fashion. Before proceeding in this direction, it is critically important to derive a benchmark

case, i.e. a single agent economy. This setting is traditionally called a representative-agent

economy. However, since we want to construct the representative agent from multiple-agents

economy later, we reserve the terminology �representative agent� for this arti�cial object,

and de�ne this economy as a �single-agent economy�. In this section, we want to �nd the

conditions where the single agent behaves similarly over time. In the following sections of

multiple agents economies, we examine what conditions for the single agent economy must

be altered or narrowed. Note that the single agent economy is de�ned as H=1.
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4.3.2 General Order Property of Utility Process

First, we would like to investigate when the single agent behaves as if she/he had the same

or similar prior over time or when the agent�s behavior shows similar pessimism throughout

time. In a one-period model, the agent�s utility is de�ne by the most pessimistic prior

over the tomorrow�s endowment distribution over 
. Naturally, we can conjecture that the

agent simply behaves as if she/he follows the most pessimistic prior with respect to the

endowment process {et} over time. However, this conjecture does not really capture the

evolution of time, i.e. the connection of today�s endowment and tomorrow�s endowment,

and tomorrow�s endowment and the following day�s endowment, and so on. In fact, this

connection is the essence of dynamic decision making. Now we show the example that our

simple conjecture is false:

First, we assume that there are two states 
 = (!1,!2) and three dates. Assume that

ut is identical over time, and P1(!1) = P2(!1; !2;1) = P2(!1; !2;2), where they are all

capacity-bases. Endowment process is given as follows:

At t=1, [!1] = [e1]

At t=2,

2664 (!1; !2;1)
(!1; !2;2)

3775 =
2664 e1;1
e1;2

3775

At t=3,

2664 (!1; !2;1; !3;1)
(!1; !2;1; !3;2)

3775 =
2664 e1;1;1
e1;1;2

3775,
2664 (!1; !2;2; !3;1)
(!1; !2;2; !3;2)

3775 =
2664 e1;2;1
e1;2;2

3775
The utility process {Vt(te)} is de�ned:
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At t=1, [!1] =
�
u(e1) +

R
V1;�dP (�)

�
At t=2,

2664 (!1; !2;1)
(!1; !2;2)

3775 =
2664 u(e1;1) +

R
u(e1;1;�)dP (!1; !2;1; �)

u(e1;2) +
R
u(e1;2;�)dP (!1; !2;2; �)

3775 =
2664 V1;1
V1;2

3775

At t=3,

2664 (!1; !2;1; !3;1)
(!1; !2;1; !3;2)

3775 =
2664 u(e1;1;1)
u(e1;1;2)

3775,
2664 (!1; !2;2; !3;1)
(!1; !2;2; !3;2)

3775 =
2664 u(e1;2;1)
u(e1;2;2)

3775
First, suppose that e1;1;1 > e1;1;2 and e1;2;1 < e1;2;2. Then the agent uses a di¤erent

prior at (!1; !2;1) from that at (!1; !2;2) to calculate the expected value for the endowment

process over 
: Obviously this result implies that the agent behaves very di¤erently at t=2.

Next, suppose that the endowments have the same order at t=3, i.e., e1;1;1 > e1;1;2

and e1;2;1 > e1;2;2. The agent�s utility is de�ned by the identical prior at (!1; !2;1) and

(!1; !2;2). However, if V1;1 < V1;2, her/his utility at t=1 must be based on the di¤erent

prior from that at t=2. In this case, the agent changes the direction of pessimism over

time. It happens even though e1;1 > e1;2 because e1;1;1 > e1;1;2 and e1;2;1 > e1;2;2 does not

guarantee
R
u(e1;1;�)dP (!1; !2;1; �) >

R
u(e1;2;�)dP (!1; !2;2; �). In fact, the changing prior

is the essential di¤erence between a single prior economy and a multiple-priors one.

From the above example, in order to have the same pessimism over 
 and t, we need

to have the identical order of the endowment process over 
 at any history of !t, and the

utility process {V t(te;!t�1; !t)} follows the comonotonic movement with the endowment

process {et(!t�1; !t)} over 
 8!t�1 T�t>1. Now we are ready to formalize this intuition:

Proposition 4.3.1:

In a single agent economy, under the following conditions, the agent behaves as if she/he
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had the same prior 8T > t � 1, which is the most pessimistic prior over {et(!t)}. In

other words, the utility process {Vt(te;!t�1; !t)} becomes comonotonic with the endowment

process {et(!t�1; !t)} over 
 8!t�1 T�t>1.

(4.3.1) et(!t�1,!) 6= et(!t�1,!0) !; !0 2 
 (strong order of endowment)

(4.3.2) et(!t�1,!)> et(!t�1,!0) ) et 0(!t
0�1,!)> et 0(!t

0�1,!0)

8T � t; t0 > 1; !; !0 2 
 ,!t�1 2 
t�1, !t0�1 2 
t0�1

(comonotonic order of endowments over 
 for all {et(!t)})

(4.3.3) et(!t�1,!t)> et(!t�1,!0t) )

Et[Vt+1(t+1e;!t�1,!t,!t+1)]=Et[Vt+1(t+1e0;!t�1,!0t,!t+1)]

) Vt(te;!t�1,!t) > Vt(te0;!t�1,!0t)

8T > t > 1; !t; !0t; !t+1 2 
, !t�1 2 
t�1

(comonotonic order of the endowment {et(!t�1,!t)} and {Vt(te;!t�1,!)})

(4.3.4) The agent has an identical capacity-based multiple-priors set over 
 8!t:

Pt = Pt0 8t; t0 s.t. 1 � t; t0 � T (independent prior set)

Proof:

The agent chooses her/his endowment as an optimal consumption plan. By the backward

induction, at T-1, its expected utility is:

V T�1(T�1e;!T�1) = uT�1(eT�1(!T�1)) +
R
ut(eT (!T�1,!T ))dP(!T�1,!T )

By Condition (4.3.1) and increasing ut , V T�1(T�1e;!T�1) is de�ned by the most pes-

simistic prior over {eT (!T�1,!T )}. Then, at T-2:
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V T�2( T�2e;!T�2) = uT�2(eT�2(!T�2)) +
R
V T�1(T�1e;!T�2,!T�1)dP(!T�2,!T�1)

= uT�2(eT�2(!T�2)) +
R
{uT�1(eT�1(!T�2; !T�1))

+
R
uT (eT (!T�2,!T�1,!0T ))dP(!

T�2,!T�1,!0T )}dP(!
T�2,!T�1)

= uT�2(eT�2(!T�2)) +
R
{uT�1(eT�1(!T�2; !T�1))

+ ET�1[V T (T e;!T�1,!T )]}dP(!T�2,!T�1)

By Condition (4.3.3) and increasing ut , V T�2(T�2e;!T�2) is de�ned by the most pes-

simistic prior over {eT�1(!T�2; !T�1)}. By mathematical induction, V t(te;!t) is de�ned

by the most pessimistic prior over {et+1(!t; !t+1)} 8T > t � 1. Finally, by Condition

(4.3.2) and (4.3.4), this de�ning prior is identical over time. �

Condition (4.3.3), i.e., the comonotonicity of the endowment process {et(!t�1; !t)} and

the utility process {V t(te;!t�1; !t)} over 
 is crucial. If they are not comonotonic, the

agent could potentially choose her/his de�ning prior which is not most pessimistic over

{et}. Conditions (4.3.1) and (4.3.4) are used to guarantee the uniqueness of this de�ning

prior over 
, whereas Conditions (4.3.2) and (4.3.4) ensure the uniqueness of this prior over

time.

4.3.3 Su¢ cient Conditions for the Order Property of Utility Process

Condition (4.3.3) is very intuitive. However, since it is de�ned by the expected value of the

utility process, we cannot see the direct connection to the endowment process. In this sec-
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tion, we want to derive the conditions for the endowment process {et} to guarantee (4.3.3),

which are the su¢ cient conditions that do not involve the restrictions on the utility func-

tions. We can easily guess the situation for two-periods case. In the above example, appar-

ently if e1;1;s = e1;2;s 8s = 1 and 2, then
R
u(e1;1;�)dP (!1; !1; �) =

R
u(e1;2;�)dP (!1; !2; �):

Clearly, the endowment at t=2 is the only variable that the agent must consider to assess

her/his utility process. The next guess is what conditions make
R
u(e1;1;�)dP (!1; !1; �) �R

u(e1;2;�)dP (!1; !2; �). First, this inequality is satis�ed when e1;1;1 > e1;2;1 and e1;1;2 >

e1;2;2. Second, if the endowment distribution of t=3 at (!1; !2) is the mean-preserving-

spread of the endowment distribution of t=3 at (!1; !1), then this {et} satis�es the above

inequality with respect to the identical prior for both side of inequality.

These intuitions carry over to the case of more than two periods. In a general time

horizon, however, we must think that all subtrees satisfy the above intuition and the ag-

gregation of subtrees by backward induction still maintains the similar structure over time.

Now the comparison of endowments becomes multi-dimensional because each subtree can

be nested into another subtree. The next example captures this multiple connection of

endowment distribution:

Suppose we add one more dates to the above example. We de�ned the evolution as

follows:

At t=4,

2664 (!1; !2;1; !3;1; !4;1)
(!1; !2;1; !3;1; !4;2)

3775 =
2664 e1;1;1;1
e1;1;1;2

3775
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2664 (!1; !2;1; !3;2; !4;1)
(!1; !2;1; !3;2; !4;2)

3775 =
2664 e1;1;2;1
e1;1;2;2

3775
2664 (!1; !2;2; !3;1; !4;1)
(!1; !2;2; !3;1; !4;2)

3775 =
2664 e1;2;1;1
e1;2;1;2

3775
2664 (!1; !2;2; !3;2; !4;1)
(!1; !2;2; !3;2; !4;2)

3775 =
2664 e1;2;2;1
e1;2;2;2

3775
The utility process {Vt(e)} is de�ned:

At t=1, [!1] =
�
u(e1) +

R
V1;�dP (�)

�
At t=2,

2664 (!1; !2;1)
(!1; !2;2)

3775 =
2664 u(e1;1) +

R
V1;1;�dP (!1; !2;1; �)

u(e1;2) +
R
V1;2;�dP (!1; !2;2; �)

3775 =
2664 V1;1
V1;2

3775

At t=3,

2664 (!1; !2;1; !3;1)
(!1; !2;1; !3;2)

3775=
2664 u(e1;1;1) +

R
u(e1;1;1;�)dP (!1; !2;1; !3;1�)

u(e1;1;2) +
R
u(e1;1;2;�)dP (!1; !2;1; !3;2�)

3775=
2664 V1;1;1
V1;1;2

3775
2664 (!1; !2;2; !3;1)
(!1; !2;2; !3;2)

3775=
2664 u(e1;2;1) +

R
u(e1;2;1;�)dP (!1; !2;2; !3;1�)

u(e1;2;2) +
R
u(e1;2;2;�)dP (!1; !2;2; !3;2�)

3775=
2664 V1;2;1
V1;2;2

3775

At t=4,

2664 (!1; !2;1; !3;1; !4;1)
(!1; !2;1; !3;1; !4;2)

3775 =
2664 u(e1;1;1;1)
u(e1;1;1;2)

3775
2664 (!1; !2;1; !3;2; !4;1)
(!1; !2;1; !3;2; !4;2)

3775 =
2664 u(e1;1;2;1)
u(e1;1;2;2)

3775
2664 (!1; !2;2; !3;1; !4;1)
(!1; !2;2; !3;1; !4;2)

3775 =
2664 u(e1;2;1;1)
u(e1;2;1;2)

3775
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2664 (!1; !2;2; !3;2; !4;1)
(!1; !2;2; !3;2; !4;2)

3775 =
2664 u(e1;2;2;1)
u(e1;2;2;2)

3775
Now we can easily see that the relationship between e1;1;1;1 and e1;2;1;1 and between

e1;1;1;2 and e1;2;1;2 must be de�ned in order to have V1;1;1 � V1;2;1. A similar consideration

is required for the mean-preserving-spread case.

To summarize, we propose three su¢ cient conditions:

Proposition 4.3.2:

Under time-state-homogenous multiple-priors set (4.3.4), the endowment process {et}

that follows (4.3.1) and (4.3.2) guarantees (4.3.3) if it satis�es any one of the following

conditions:

(4.3.5) Markov structure:

et(!t) = et(!t) 8T � t = 1

(4.3.6) State monotonic:

et(!t�1,!t) � et(!0t�1,!t)

if e� (!� ) > e� (!0� ) for some � : T� t>�>1

where !t�1 and !0t�1 are identical except at �

(4.3.7) Mean-preserving-spread:R x
0 G(et(!

0t�1; !t))det(!0t�1; !t) �
R x
0 F (et(!

t�1; !t))det(!t�1; !t)

if e� (!� ) > e� (!0� ) for some � : T� t>�>1

where !t�1 and !0t�1 are identical except at �

F is the distribution function of {et(!t�1; !t)} at !t�1, and
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G is the distribution function of {et(!0t�1; !t)} at !0t�1

The distribution functions are based on the identical most pessimistic prior

Proof: Appendix 4.G:

Condition (4.3.5) says that the coherent endowment process generates constant evolution

of the utility process over !t, which does not alter the comonotonicity of {et(!t�1; !t)} and

{V t(te;!t�1; !t)} over 
. Condition (4.3.6) is more general. It implies that some positive

tilt toward favorite direction would not harm the comonotonicity of the endowment and

utility process. Condition (4.3.7) is essentially equivalent to the notion of second order

stochastic dominance. Since we assume the concave utility, some endowment processes

which satisfy (4.3.7) produce exactly the same result as that of (4.3.6), not through the

direct dominance over non-stochastic endowment numbers, but through the integration

with the utility functions.

The above conditions are su¢ ciently general. For example, the binomial approximation

of Brownian motion satis�es (4.3.6), whereas it is easy to produce the martingale process

{et} which satis�es some of the conditions. Note that both of them are de�ned on the most

pessimistic prior over et(!t).

4.3.4 Time and State Heterogenous Prior Set

Now, consider another generalization over the structure of uncertainty. So far, we have as-

sumed the independent capacity-based multiple-priors case. The essence of Proposition 4.3.1
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and Proposition 4.2.2 carries over if we make P a time-heterogeneous-i.i.d. process because

all de�ning conditions are based on the order property of {V t(te)} within time. Moreover,

if we make P narrower for the state where the current endowment is higher, clearly (4.3.3)

is preserved under (4.3.1), (4.3.2) and (4.3.6). In other words, P can follow Markov struc-

ture at any t so long as appropriate nesting is taken because
R
Vt+1(te;!t,!)dP(!t;!) �R

Vht+1(
te;!t,!)d eP (!t;!) if eP(!t;!) � P(!t;!). In addition, the order of the utility process

within time over !t 2 
t that is implied by Proposition 4.3.2 stay same because (4.3.5) and

(4.3.6) guarantee the history wise dominance12. Finally, we need to adjust the de�nition

of the mean-preserving spread process because of heterogeneity of Pt(!t) over 
. We sum-

marize above intuitions in Corollary 4.3.1 without the proof. (The proof is essentially the

repetition of Proposition 4.3.1 and Proposition 4.3.2.)

Corollary 4.3.1:

In Proposition 4.3.1, if we replace Condition (4.3.4) with (4.3.8) and (4.3.9), and replace

Condition (4.3.3) with and one of (4.3.5), (4.3.6), (4.3.10) with (4.3.11), the agent behaves

as if she/he had the most pessimistic prior over {et} 8T > t � 1. In other words, the utility

process {Vt(te;!t�1; !t)} becomes comonotonic with the endowment process {et(!t�1; !t)}

over 
 8!t�1 T�t>1. Note that the direction of pessimism is constant over time.

(4.3.8) At each t, Pt(!t) � Pt(!0t) if et(!t�1; !t) > et(!t�1; !0t)

where Pt is either capacity-based or a general multiple-priors set

(4.3.9) Pt(!
t�1; !t) = Pt(!0t�1; !t) (time-heterogenous Markov)

12For more detail, see Appendix 4.G.
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(4.3.10) Mean-preserving-spread:R x
0 G(et(!

0t�1; !t))det(!0t�1; !t) �
R x
0 F (et(!

t�1; !t))det(!t�1; !t)

if e� (!� ) > e� (!0� ) for some � : T� t>�>1

F is the distribution function of {et(!t�1; !t)} at !t�1, and

G is the distribution function of {et(!0t�1; !t)} at !0t�1

The distribution functions are based on the most pessimistic prior

conditional on !t�1

(4.3.11) "-open neighborhood around (4.3.5), (4.3.6) or (4.3.10) with the norm on

D(
T )

Condition (4.3.8) de�nes the appropriate nesting of multiple-priors sets. We can inter-

pret this condition as if the agent became less uncertain about the future if the good state

were realized so that the expected value increased. Condition (4.3.9) preserves the order

relationship between {V t(te;!t�1; !t)} and {V t(te 0;!0t�1; !t)} over 
, which is essential for

the dynamic ordering of {V t(te)} process. The mean-preserving-spread is now rede�ned

by the conditional distribution condition (4.3.10) instead of the unique prior. (because of

(4.3.8) and (4.3.9), conditioning is taken by the time and the current state, not by the whole

history.) Now F and G are adjusted accordingly to incorporate the underlying probabil-

ity change. Condition (4.3.11) is just "-perturbation of the de�ning endowment process.

If " is small enough, the distortion of the static order of E t[V t+1(t+1e;!t; !t+1)j!t] stays

within the range of the gap among {et(!t�1; !t)}. Then the {V t(te;!t�1; !t)} becomes

comonotonic with {et(!t�1; !t)} over 
 8!t�1 T�t>1.
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Finally, we want to state Corollary 4.3.2 without proof. This Corollary does not di-

rectly related to the objective of this paper. However, in the later sections, it becomes

useful. It states the conditions where the single agent utility process becomes comonotonic

with the aggregate endowment process so that the agent selects the most pessimistic prior

with respect to the aggregate endowment at each !t. The di¤erence of Corollary 4.3.2 and

Corollary 4.3.1 is Condition (4.3.2). Here, we do not assume that the order of the aggregate

endowment process over 
 is identical over time, which implies that the direction of pes-

simism over 
 can change over time. Given this change, in order to ensure that the agent

chooses the most pessimistic prior over 
, we need to make {V t(te)} constant over all the

history of !t. This implies that the single agent only focus on the order of {et(!t�1; !t)}

in order to decide the prior used to evaluate the {V t(!t)} process. In other words, the

continuation value of the future endowment does not alter the order of utility process at !t,

and the multiple-periods decision making becomes the repetition of a single period�s one.

Apparently under this condition, the single agent always chooses the most pessimistic prior

only with respect to the aggregate endowment process.

Corollary 4.3.2:

In a single agent economy, under (4.3.12) and (4.3.13) with (4.3.14), the agent behaves

as if she/he had the most pessimistic prior over {et} 8T > t � 1. In other words, the utility

process {Vt(te;!t�1; !t)} becomes comonotonic with the endowment process {et(!t�1; !t)}

over 
 8!t�1 T�t>1. Note that the direction of pessimism is not necessarily constant over

time.
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(4.3.12) et(!
t�1; !) 6= et(!

t�1; !0) !; !0 2 


(strong order of the endowment)

(4.3.13) Time-heterogenous Markov structure:

et(!
t) = et(!t)8T � t = 1

(4.3.14) The agent has either a time-heterogeneous capacity-based multiple-priors set

or a time-heterogeneous general multiple-priors set

over 
 within time 8T>t �1 with:

Pt(!
t�1; !t) = Pt(!0t�1; !0t) (i.i.d. prior set within time)

(4.3.15) "-open neighborhood around (4.3.12) and (4.3.13) with the norm on D(
T )

Conditions (4.3.12) is for the uniqueness of the prior selection under the capacity-based

multiple-priors set. Condition (4.3.13) without (4.3.2) implies that the order of the endow-

ment over 
 can change over time. Finally, Condition (4.3.14) makes the utility process con-

stant. Again, Condition (4.3.15) is just "-perturbation of the de�ning endowment process.

4.4 Multiple Agents Economy with the Identical Capacity-Based

Multiple-Priors Sets

4.4.1 Background

Given the results for the single agent economy, we now investigate the conditions where

multiple agents behave similarly over time, i.e., they behave as if they had an identical
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prior over time, which is the most pessimistic prior over the aggregate endowment process.

In other words, we would like to see the consistent behavior among all agents.

This analysis is closely related to constructing a representative agent. In fact, Epstein-

Wang (1994) construct the dynamic representative agent under the multiple-agents economy

with uncertainty aversion, where the dynamic representative agent summarizes the multiple-

agents economy under which all agents behave as if they had the identical prior over time.

In this paper, we have a di¤erent motivation, i.e., deriving the conditions for agents to

have homogeneous behavior. However, if all agents share the same uncertainty, these two

motivations become almost identical. In fact, if we can construct the dynamic representative

agent, all agents must have identical prior, although it may not share the same pessimism

over time. Here, instead of deriving all possible conditions for the existence of the dynamic

representative agent, we focus on our main goal of agents�consistent behavior, which is the

subset of the dynamic representative agent case. In section 4.4.5. we argue that in fact, our

restriction is very natural and constructive, and the restriction to the coherent aggregate

endowment process captures most of the intuitions and ideas for the dynamic representative

agent economy.

Naturally, we can expect that the conditions under which the single-agent behaves sim-

ilarly over time are applied to the multiple-agents case, but these conditions would be

narrower because each agent now has an arbitrary endowment process. Surprisingly, under

the dynamically complete markets, we can allow the heterogeneous utility function and

endowment process for each individual in order for the dynamic representative agent to
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exist. The equilibrium is of full risk sharing where all agent have comonotonic consumption

with respect to the aggregate endowment process. However, not all of conditions for the

aggregate endowment of the single agent economy deliver the above results. In order to

make all agents move similarly, the aggregate endowment must evolve coherently. We will

see the result in section 4.4.3.

4.4.2 De�nition of the Representative Agent

Before proceeding to the main proposition of this section, �rst we want to de�ne the notion

of the dynamic representative agent. In complete markets, the standard Pareto optimality

results imply that there are weights �h such that the weighted sum of individual utility

functions becomes the social welfare function for the representative agent, and the solution

of this linear function corresponds to a competitive equilibrium allocation with some en-

dowment process. More formally, in the Arrow-Debreu complete markets economy, there is

a social welfare function:

(4.4.1) V1(e)=Max(c1;:::;cH)
P
�hVh1(c

h)

s.t.
P
ch = e

The single-agent economy with this utility function and aggregate endowment process

produces the identical allocation for a multiple-agents economy with some individual en-

dowment process.13 We call this agent as a static representative agent. The name static

13For general concave utility functions, there is a case where the range of � is small, i.e., not all � is
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is used because in general, the utility function (4.4.1) does not evolve in a dynamically

consistent way. In other words, (4.4.1) is de�ned at the beginning of the economy and

all subsequent allocations are predetermined before any uncertainty is resolve in the later

dates. This feature is well-know �Walras auctioneer�. More precisely, the auctioneer has

(4.4.1) as the objective function and he decides everything at the beginning. There is no

sense of dynamics here. Mathematically, this intuition means that allocations of (4.4.1) for

t=2 do not coincide with the solution of V2(e)=Max
P
�Vh2(c

h). The utility weight � only

makes sense at the beginning, not in the later dates.

On the other hand, if we can �nd the recursive function V such that:

(4.4.2) V1(e)=Max(c1;:::;cH){
P
�uh1(c

h) +
P
�
R
V h
2(c

h)dPh(!1)}

=Max(c1;:::;cH){
P
�uh1(c

h) +
R P

�V h
2(c

h)dPh(!1)}

=Max(c1;:::;cH){u1(e1) +
R
V 2(e)dP(!1)}

s.t.
P
ch = e

where u1(e) =
P
�uh1(c

h), V 2(e) =
P
�V h

2(c
h)

then it is clear that V satis�es dynamic consistency. For this reason, we call (4.4.2)

the dynamic representative agent. For this dynamic representative agent, the utility weight

� solves the optimization at any point of history, i.e., the solution of {ch}T2 from V1 is

equivalent to the solution of {ch}T2 from V2. For the common subjective prior model whereP

is a singleton, Constantinides (1982) shows that we can construct the dynamic representative

feasible. Suppose T=2, H=2, u1=k1x, u2=k2x. Then only (�1,�2) = (1/k1,1/k2) solves (4.4.1) meaningfully.

Otherwise, one agent must consume everything.
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agent by maximizing
P
�uht (c

h
t (!t)) for each !

t.14 Epstein-Wang (1994) use his argument

to prove the existence of the dynamic representative agent for the identical capacity-based

multiple-priors case.15

Clearly, (4.4.2) requires the integration of V at each period. In other words, we must have

a single common prior for all Vh. It is precisely why we start the analysis of homogeneous

capacity-based multiple-priors model under which there is possibility that all agents behave

as if they had the identical prior over time. The capacity-based assumption is critical

because the common multiple-priors set does not guarantee that agents select the identical

prior among comonotonic consumptions.

4.4.3 Single Period Economy

It is very informative to investigate the equilibrium properties for a single period econ-

omy before we move to the dynamic setting. It captures most of fundamental issues in

equilibrium, and later we consider the dynamic connection of single period economies.

Now assume that Condition (4.3.1) (e(!) 6= e(!0) !; !0 2 
 : strong order of endow-

ment) holds, P is capacity-based, and there is no consumption at t=1.

First, we want to show that the equilibrium consumptions are comonotonic among all

14 If some agents have di¤erent subjective priors, it is not optimal to use the solution of max
P
�huht (c

h
t (!

t))

because the weights must be adjusted to take the di¤erence of priors into account. The proof of the non-

existence of the dynamic representative agent with heterogeneous single priors is found in Appendix 4.H.

15 In Section 4.4.5, we mention some su¢ cient conditions where the dynamic representative agent exist.
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agents. By the argument of Section 4.4.2, there is a static representative agent for this

economy where (4.4.1) holds with the utility weights �h. By Du¢ e (1996), the Pareto

optimal allocation must solve (4.4.1). In order words, any Arrow-Debreu equilibrium must

solve (4.4.1). Following Constantinides (1982), de�ne the optimization:

(4.4.3) u(e) = Max {
P
�huh(xh) :

P
xh = e }

Let the optimal allocation vector be ch(e)= {ch(e(!)) for the solution of (4.4.3) at

each ! 2 
 }. Now we argue that ch(e) is increasing in e. From F.O.C. of (4.4.3),

ru(e)=(�1u01(c1) ,..., �Hu0H(cH)) //1. If e(!i)>e(!j) then 9 h s.t. ch(e(!i)) > ch(e(!j)),

so u0h(ch(e(!i))) < u0h(ch(e(!j))), which implies u0h
0
(ch

0
(e(!i))) < u0h

0
(ch

0
(e(!j))) 8h0 by

the strictly concave utility functions16.

Now we want to prove that this allocations maximize (4.4.1). For any other feasible

allocations x, by (4.2.14):

(4.4.4)
P
�h
R
uh(xh)dPh(!) �

R P
�huh(xh)dP (!)

�
R P

�huh(xh)dP (!)

�
R P

�huh(ch(e(!))dP (!)

=
R
u(e)dP(!)

with strictly inequality for non-comonotonic allocations, where P (!) is the optimal prior

that minimizes
R P

�huh(xh)dP (!), and P (!) is the most pessimistic prior with respect to

the aggregate endowment. Since ch(e) achieves the highest value among the comonotonic

16 In Appenxid 4.I, we show that under general concave utility functions, xh(e) becomes non-decreasing.
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consumptions, it is the optimal solution for given �. Hence, all agents�consumption must

be comonotonic with each other.17 In other words, the aggregate endowment order is the

su¢ cient statistic to summarize the behavior of individual consumptions.

We also o¤er a direct proof. First we assume that all agents have the identical most

pessimistic prior over the aggregate endowment. Then we can prove that resulting allo-

cations are all comonotonic to the aggregate endowment and con�rm the selection of the

most pessimist prior. Next, assume that there is another equilibrium where consumptions

are not comonotonic with each other. Let � be for this allocation. Then, by (4.2.14), we

know that this � does not support non-comonotonic allocations. (Note that we do not

need (4.4.3). Under any common single prior, we know that the full risk-sharing is the

only solution, which dominated the non-comonotonic allocations.) This result implies that

non-comonotonic allocations are not Pareto optimal, which contradicts the assumption.

Therefore, only equilibria that solve (4.4.1) are comonotonic ones.

To con�rm the argument above, we show now that agents behave as if each were a single

prior optimizer with the identical most pessimistic prior. Suppose that all agents have

the identical most pessimistic prior. Standard F.O.C.s imply that all agents must have

comonotonic order of consumptions because there is always someone who must consume

more at the state where aggregate endowment is higher. More precisely, if e(!i)>e(!j)

then 9 h s.t. ch(e(!i)) > ch(e(!j)) By F.O.C.:

17 If all uh is globally strictly concave, for given �h, there is a single equilibrium allocation. Otherwise,

they may be multiple equilibrium allocations.
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p(!i)u
0h(ch(!i))

p(!j)u0h(ch(!j))
=
u0h

0
(ch

0
(!i))

u0h0(ch0(!j))
=
u0h

0
(ch

0
(!i))

u0h0(ch0(!j))
=
p(!i)u

0h0(ch
0
(!i))

p(!j)u0h
0(ch0(!j))

so by the uniqueness of state prices under complete asset markets, all other agents must

have ch
0
(e(!i)) > ch

0
(e(!j)). This fact is already implied by (4.4.3). The maximization at

each state without probability weights only makes sense if its solutions are globally optimal

with respect to the identical prior. In terms of the e¢ ciency of allocations, given the above

observations, we know that equilibrium allocations are full risk sharing, i.e., the consump-

tion order is strongly comonotonic18. Clearly, the economy is observationally equivalent to

the one with a common subjective prior, where this single prior is the most pessimistic one

with respect to the aggregate endowment. In order words, we e¤ectively reduce the multi-

ple agents economy with identical capacity-based multiple-priors sets to the multiple agents

economy with the common subjective prior. However, there is a clear distinction between

them. For the case of the common subjective prior model, we �assume�the common prior,

and cannot de�ne the pessimism unless there is an objective probability law, whereas for the

case of the identical capacity-based multiple-priors model, we �derive� the common prior

from the aggregation of agents, and the optimal prior is the most pessimistic one among

the agents� priors. Hence the pessimism is clearly de�ned without any reference to the

objective probability law. In other words, the pessimism is internal concept among agents�

beliefs, and at equilibrium, all agents share the common pessimism, i.e., the aggregation of

uncertainty averse agents forces them to have homogeneous bias.

Now we formally state the above result as Lemma 4.4.1.

18The analogy holds for general concave utility functions by weak order.
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Lemma 4.4.1:

In a multiple-agents economy, under (4.4.5) with (4.4.6), all agents behave as if they had

the same prior, which is the most pessimistic prior over {e(!)}, regardless of their initial

endowment. Moreover, the consumption is �interior� or strongly comonotonic with the

aggregate endowment, which means that there are no ties among the agents�s consumptions,

and the equilibrium allocations are globally optimal with respect to the most pessimistic

prior.

(4.4.5) e(!) 6= e(!0) !; !0 2 


(strong order of the aggregate endowment)

(4.4.6) All agents have identical capacity-based multiple-priors sets over 
:

P h = P h
0

By the property of the optimal value function, u(e) is continuous, increasing, strictly

concave in e19. With the maximal value with respect to � at each state, given the �xed prior,

clearly (4.4.1) achieves the optimal value with u replacing
P
�huh. Now the economy has

the arti�cial single agent at t=2, which is the condition for the existence of the dynamic

representative agent. By now, it is clear that in the dynamic setting, we can anticipate

the presence of the dynamic representative agent because the equilibrium allocations are

comonotonic everywhere and the identical priors are chosen by all individuals over time.

The presence of u implies that the arti�cial single agent represents the economy by (4.4.2).

Finally, we want to investigate the analogy between risk aversion and uncertainty aver-

19Strict concavity follows because all agents have a strictly concave utility.
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sion. Note �rst that a risk-averse agents�indi¤erence curve is convex. Now, assume that

agents become uncertainty averse over their original subjective prior, i.e., ph 2 int(Ph)

where ph is the original subjective prior. De�ne the indi¤erence curve uh(ch)=uh(ch)

where ch=(c,...,c). By (4.2.5), at any point of the original indi¤erence curve except ch, the

new indi¤erence curve must lie strictly on the interior of the upper contour set de�ned by

the original indi¤erence curve, i.e.:

R
uh(ch)dph = min

R
uh(ch)dPR

uh(ch)dph > min
R
uh(ch)dPR

uh(ch)dph = min
R
uh(kch)dP where k >1

So under uncertainty aversion, the original consumption ch that gives the same utility

before does not achieve the level we need. Hence we need more consumptions in order for

the level of utility to stay constant, i.e., we need more consumptions on the array of ch, i.e.

kch where k>1.

This feature is the essence of uncertainty aversion.20 Agents behave as if they pro-

gressively became more risk-averse. The term progressive is used because of the following

reason. Suppose that an agent has prior ph at ch: By "-trades that gives the same utility

as uh(ch), this agents chooses a di¤erent prior. Next, from this new allocation, the agent

20 It is well known that the expected utility maximizer will take " risky position over c as long as it is

actuarily favorable. In other words, they are locally risk neutral. However, agents with uncertainty aversion

do not necessarily take this position because the indi¤erence curve moves inward around c, i.e., they become

locally risk averse in some range of state prices.
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trades another " to the more distant direction from ch: Now the prior which is optimal for

the �rst trade is no longer optimal, and the more pessimistic prior must be used. In other

words, each time agents move away from the even allocations, the prior moves in the direc-

tion that makes the indi¤erence curve more inward bending. For the case of capacity-based

multiple-priors set, this progressive change only happens when the consumption order is

changed. For the more general multiple-priors case, this progressive change can happen

virtually for all movement.

This similarity between risk aversion and uncertainty aversion is most evident for the

case of risk-neutral agents. Suppose all agents are risk-neutral with a common single prior,

and agents have non-comonotonic initial endowment. By F.O.C. of the individual optimiza-

tion, all state prices must be equal to their state probability.21 Given these state prices, the

optimal value of the agent�s utility is �xed (uh=ah+bhWh: Wh=q �e=p�e). It is obvious

that initial endowment is one of the equilibria. In fact, there is a continuum of equilibria

which is not comonotonic. Here agents can trade the Arrow-Debreu asset at the price that

is the state probability. As long as markets clear, any points on the budget line are opti-

mal. However, things will change drastically once we introduce uncertainty over risk-neutral

agents. Since it is possible to have a comonotonic order of consumptions for all agents, all

other non-comonotonic allocations are dominated by (4.4.4). Clearly, by introduction of

uncertainty, suddenly, every agent must have comonotonic consumption. This result re-

sembles the case for the strictly concave utility functions. Under identical capacity-based

21More precisely, the state price vector is parallel to the state probability vector.
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multiple-priors sets, agents are still risk neutral within the consumptions of the same order.

However, they behave as if they became risk averse for the di¤erent order of consumptions.

Now summarize the above �ndings:

Lemma 4.4.2:

Under the presence of uncertainty, risk averse or risk neutral agents behave as if they

became progressively risk averse as they move their allocations away from the even alloca-

tion.

4.4.4 Dynamic Setting

Now, we are ready for the extension of the results of Section 4.3. In Section 4.4.2, we

show that if all agents share the identical prior at equilibrium, the dynamic representative

agent exists, and the dynamic representative agent must behave consistently over time

if all agents have the identical pessimistic prior over time. Clearly, an agent in a single

agent economy must behave similarly over time if the dynamic representative agent needs

to behave consistently. Therefore, in order to investigate the conditions for all agents to

behave homogeneously, we can restrict our attention to the conditions for the single agent

economy, and examine which conditions are valid for the multiple agents case.

The di¢ culty is how to aggregate individuals and derive their behavior under the con-

ditions of the single-agent economy. From Section 4.4.3, we know that for any equilibrium

of the multiple-agents economy, there is a static representative agent. Conversely, for any
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static representative agent equilibrium must corresponds to the equilibrium of the multiple-

agents economy with some individual endowment processes. Therefore, by examining the

static representative agent economy, we e¤ectively investigate the multiple agents econ-

omy.22 In other words, as long as the allocations ch solve (4.4.1), they must solve individ-

ual optimization (4.2.9) with some endowment processes. Clearly, when all agents behave

homogeneously, there is a dynamic representative agent, which is a subset of the static

representative agent economy. Now the central question becomes: Under which conditions

of the single agent economy does the dynamic representative agent exit?23 The answer for

this question is given in Proposition 4.4.1 and Corollary 4.4.1.

In the dynamic setting, we have to consider two-dimensional heterogeneity. One is

within time, the other is across time. In order to have identical prior selection, the aggregate

endowment must have similar structures within and across time. For the single agent case,

these similarities are summarized in Proposition 4.3.1 and Proposition 4.3.2. Here, we only

focus on the su¢ cient conditions in Proposition 4.3.2 and combine both propositions to

22For some equilibria under the static representative agent economy, eh(!) = 0 for some !. Since we

assume eh > 0, the equilibrium set of the static representative agent economy would be bigger than that of

multiple agents one.

23The dynamic representative agent economy is still the multiple agents economy. Although the allocation

property is identical to that of the single agent case, the equilibrium price evolution would be di¤erent.

(Pareto optimality is nothing to do with equilibrium prices.) The equilibrium prices must be agreed among

agents in the dynamic representative agent economy, whereas in the single agent case, the only one person

decides them.
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have Proposition 4.3.1, where multiple agents with the identical capacity-based multiple-

priors sets behave as if they had the identical single prior over time. The only di¤erence

between the single agent economy and the multiple agents one is that we are no longer able

to have Condition (4.3.7) (mean-preserving-spread) because this condition is concerned

with the single agent endowment distribution, whereas here, we have H agents and their

consumption distribution does not necessarily con�rm (4.3.7) even though the aggregate

endowment does. Although we could develop conditions like (4.3.7), it must depend on

the form of the utility functions or individual endowment processes. We consider it to be

too restrictive because we want to derive the conditions only on the aggregate endowment

process.

Now �rst state the main result for multiple agents economy with the identical capacity-

based multiple-priors sets:

Proposition 4.4.1: (Extension of Epstein-Wang:1994)

In a multiple-agents economy, under (4.4.7), (4.4.8), (4.4.11) with any one of (4.4.9)

or (4.4.10), all agents behave as if they had the same prior 8T > t � 1, which is the

identical most pessimistic prior over {et(!t)}, regardless of their initial endowment. In

other words, the utility process {Vht (c
h;!t�1; !t)} becomes comonotonic with the aggregate

endowment process {et(!t�1; !t)} over 
 at 8!t�1 T�t>1. Moreover, the consumption

process is �interior�or strongly comonotonic with the aggregate endowment process, which

means that there are no ties among the next period�s consumptions emerging from the same

node. Note that the direction of pessimism is constant over time.
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(4.4.7) et(!t�1,!)6= et(!t�1,!0) !; !0 2 


(strong order of the aggregate endowment)

(4.4.8) et(!
t�1; !) > et(!t�1; !0)) et 0(!

t0�1; !) > et 0(!
t0�1; !0)

8T � t; t0 > 1; !; !0 2 
 ,!t�1 2 
t�1, !t0�1 2 
t0�1

(comonotonic order of aggregate endowments over 
 for all et(!t))

(4.4.9) Markov structure (aggregate endowment):

et(!
t) = et(!t)8T � t = 1

(4.4.10) State monotonic (aggregate endowment):

et(!
t�1; !t) � et(!0t�1; !t)

if e� (!� ) > e� (!0� ) for some � : T� t>�>1

where !t�1 and !0t�1 are identical except at �

(4.4.11) All agents have identical capacity-based multiple-priors sets

over 
 8!t: P ht = P ht0 (independent prior set)

8h; h0 2 H P ht = P
h0
t (identical prior set among agents)

Proof:

The proof is the extension of Epstein-Wang (1994). We only utilize the property of

Pareto optimality of the Arrow-Debreu equilibrium, in other words, equation (4.4.1). Since

(4.4.10) includes (4.4.9) as the special case, we only need to prove the case of (4.4.7), (4.4.8),

(4.4.10) and (4.4.11).

First, given �, apply (4.4.3) for each !t to get ut(et(!t)), and call the solution for
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ut(et(!
t))24as ct(et(!t)) = (cht (et(!

t)), ... ,cht (et(!
t))). Then from Section 4.4.3, cht (et(!

t))

is an increasing function of et(!t). It is apparent that {cht (!
t�1; !t)} is comonotonic with

{et(!t�1; !t)} over 
 at 8!t�1 T�t>1, and {cht (!t�1; !t)} satis�es the same properties

as those of the aggregate endowment process, especially (4.4.10). Hence, for 8h, their

consumptions ensure (4.3.3) of Proposition 4.3.1, and all agents behave as if they had the

identical prior over time.

Now, we need to show that ct(et(!t)) Pareto dominates other allocations, especially

non-comomotonic ones by using (4.4.1). For any other feasible allocations {x t(!t)}, by

(4.4.4) at !t�1 t>1, de�ne Ght�1(x
h
t (!

t�1; �)), G t�1(x t(!t�1; �)), Ght�1(cht (et(!t�1; �))) and

G t�1(ct(et(!t�1; �))):

G t�1(x t(!t�1; �)) =
P
�hGht�1(x

h
t (!

t�1,�))

=
P
�h
R
uht (x

h
t (!

t�1; !t))dP h(!t�1; !t)

�
R P

�huht (x
h
t (!

t�1; !t))dP (!t�1; !t) by (4.4.11)

�
R P

�huht (c
h
t (et(!

t�1; !t)))dP (!t�1; !t) by (4.4.3)

=
R
ut(et(!

t�1; !t))dP (!t�1; !t) by (4.4.3)

=
P
�h
R
uht (c

h
t (et(!

t�1; !t)))dP (!t�1; !t) by the argument above

=
P
�hGht (c

h
t (et(!

t�1; !t)))

= G t�1(ct(et(!t�1; �)))

where P h(!t�1; !t) is the optimal prior selection at !t�1 when agent h follows the

allocations {xht (!
t)}, and P (!t�1; !t) is the most pessimistic prior over {et(!t�1; !t)}. Since

24ut only depends on time, not on the state.
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ut(et(!
t�1; !t)) is increasing, strictly concave, and continuous, at t>2, by (4.4.7), (4.4.8)

and (4.4.10), {G t�1 (ct(et (!t�2; !t�1; �)))} is comonotonic with {et�1(!t�2; !t�1)} over 


at 8!t�2. From the above results, G t�1(ct(et(!t�2; !t�1; �))) � G t�1(x t(!t�2; !t�1; �)) at

8!t�2 with strict inequality for non-comonotonic consumptions. Hence,

G t�2(x t(!t�2; �)) =
P
�hGht�2(x

h
t (!

t�2,�))

=
P
�h
R
Ght�1(x

h
t (!

t�2; !t�1; �))dP h(!t�2; !t�1)

�
R P

�hGht�1(x
h
t (!

t�2; !t�1; �))d eP (!t�2; !t�1)
=
R
Gt�1(xt(!t�2; !t�1; �))d eP (!t�2; !t�1)

�
R
Gt�1(xt(!t�2; !t�1; �))dP (!t�2; !t�1)

�
R
Gt�1(ct(et(!t�2; !t�1; �)))dP (!t�2; !t�1)

=
R P

�hGht�1(c
h
t (et(!

t�2; !t�1; �)))dP (!t�2; !t�1)

=
P
�h
R
Ght�1(c

h
t (et(!

t�2; !t�1; �)))dP (!t�2; !t�1)

=
P
�hGht�2(c

h
t (et(!

t�2; �)))

= G t�2(ct(et(!t�2; �)))

where P h(!t�2; !t�1) is the optimal prior selection at !t�2 when agent h follows the

allocations {xht (!
t)}, P (!t�2; !t�1) is the most pessimistic prior for the aggregate endow-

ment process {et�1(!t�2; !t�1)} over 
 at !t�2; and eP (!t�2; !t�1) is the optimal prior
selection at !t�2 which gives the most pessimistic value for {G t�1(x t(!t�2; !t�1; �)))}. Re-

peat the argument above up to t-k=1, where k is the number of above operation, then

G1(x t(!1; �)) � G1(ct(et(!1; �))) with the strict inequality for non-comonotonic consump-
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tions.25 Now, applying the same exercise for 8t s.t. T�t>1, and combining all inequal-

ities,
PT
1G1(ct(et(!1; �))) �

PT
1G1(x t(!1; �)). Therefore,

P
�hEh[

P
uht (c

h
t (et(!

t)))] �P
�h eEh[Puht (x

h
t (!

t))] with strict inequality for non-comonotonic {x t(!t)}. Since the above

inequality holds for all possible choice of �h which solves (4.4.1), all Arrow-Debreu equilibria

must have comonotonic consumptions for 8h and agents behave as if they had the identical

most pessimistic prior over {et(!t)} 8t.�

The results are very intuitive. Since the solution of (4.4.1) is comonotonic with {et(!t)},

all individual allocations satisfy the same conditions as those of the aggregate endowment.

It implies that e¤ectively, all agents face the identical situation of Proposition 4.3.1 and

Proposition 4.3.2. Apparently, under these conditions, all agents must choose the identical

most pessimistic prior over time. Pareto domination over other allocations is just the

repeated application of the single period results.

Next, we want to con�rm the similar results to Corollary 4.3.1 without proof. For the

case of the identical capacity-based multiple-priors sets, the generalization of the structure

of uncertainty does not distort homogeneous behavior among agents:

Corollary 4.4.1:

In Proposition 3, if we replace Condition (4.4.11) with (4.4.12) and (4.4.13), and add

Condition (4.4.14), all agents agent behave as if they had the identical time-state heteroge-

neous most pessimistic prior over {et} 8T > t � 1, regardless of their initial endowment. In

25By (4.4.10), the pointwise domination of non-stochastic consumptions implies

{G t�j(ct(et(!t�j�1,!t�j ,�)))} is comonotonic with {et�j(!t�j�1,!t�j ,�)}.
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other words, the utility process {Vht (c
h;!t�1; !t)} becomes comonotonic with the aggregate

endowment process {et(!t�1; !t)} over 
 at 8!t�1 T�t>1. Moreover, the consumption

process is �interior�or strongly comonotonic with the aggregate endowment process, which

means that there are no ties among the next period�s consumptions emerging from the same

node. Note that the direction of pessimism is consistent over time.

(4.4.12) All agents have identical capacity-based multiple-priors sets over 
 8!t

and at each t, Pt(!t) � Pt(!0t) if et(!t�1; !t) > et(!t�1; !0t)

(4.4.13) Pt(!
t�1; !t) = Pt(!0t�1; !t) (time-heterogenous Markov)

(4.4.14) "-open neighborhood around (4.4.9), (4.4.10) with the norm on D(
T )

This result is very natural because from (4.4.1) and (4.4.3), we know that all con-

sumptions hold the same property as those of the aggregate endowment. This property

implies that each agent e¤ectively faces Corollary 4.3.1. Pareto dominations of other al-

locations are essentially identical to the above argument of Proposition 4.4.1, where the

comonotonic order of the utility process is preserved under (4.4.12) and (4.4.13). Condi-

tion (4.4.14) is again just "-perturbation of the de�ning endowment process. If " is small

enough, the distortion of static order of E t{V h
t+1(c

h;!t; !t+1)} stays within the range of

the gap among {cht (et(!
t�1; !t))}. Then the {V h

t (c
h;!t�1; !t)} becomes comonotonic with

{cht (et(!
t�1; !t))} over 
 at 8!t�1 T�t>1.

Finally in this subsection, we formally state the background properties of equilibrium:

Corollary 4.4.2:

In the economy of Proposition 4.4.1 and Corollary 4.4.1, the equilibrium is globally
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optimal with respect to the most pessimistic prior, which means that all agents behave as if

they were subjective prior maximizers. Since all agents have identical priors, the equilibrium

behavior is essentially observationally equivalent to that of the common subjective prior

model. In other words, there is a dynamic representative agent.

4.4.5 Su¢ cient Conditions for the Existence of the Dynamic Representative

Agent

In this �nal subsection, we want to investigate the su¢ cient conditions for the dynamic

representative agent to exit. It is obvious from Section 4.4.3 that in order to have the

dynamic representative agent, all agents must have identical prior at each !t. For the

case of consistent pessimism, we derive the su¢ cient conditions in Proposition 4.4.1 and

Corollary 4.4.1. Here, we want to brie�y investigate the other case where the aggregate

endowment process does not evolve coherently, i.e., Condition (4.4.8) does not hold. In

other words, we want to examine the case where agents have the most pessimistic prior

with respect to the aggregate endowment even though the pessimism is not similar over

time.

The problem here is evident. As we see in (4.4.2), in order for all agents to have

comonotonic consumptions, the utility process {V h
t (c

h;!t�1; !)} must be comonotonic with

other agents� utility processes over 
 at each !t�1. Now, suppose that agents� utility

processes {V h
t (c

h;!t�1; !)} are strictly comonotonic so that prior selection is identical at

8!t�1 t>1. Then from (4.2.15), we can di¤erentiate this process locally, and for all agents,
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Sp(!t�1; !t)

Sp(!t�1; !0t)
=
p(!t�1; !t)u0ht (c

h
t (et(!

t�1; !t)))

p(!t�1; !0t)u
0h
t (c

h
t (et(!

t�1; !0t)))

=
p(!t�1; !t)u0h

0
(ch

0
t (et(!

t�1; !t)))

p(!t�1; !0t)u
0h0(ch

0
t (et(!

t�1; !0t)))

Clearly, this equality only holds when all agents�consumption process {cht (e
t (!t�1; !))}

are comonotonic. In order to clear markets, the only possibility is that all agents must

have comonotonic consumptions with respect to the aggregate endowment process. In this

situation, we can apply (4.4.3) and, by the same argument as in the proof of Proposition

4.4.1, we can construct the dynamic representative agent.

Now when does this construction work? Apparently, if we apply (4.4.3) for each !t, the

agents consumption process {cht (e
t(!t�1; !))} will be comonotonic to the aggregate endow-

ment process {et(!t�1; !)}. However, the converse of the above construction does not work

in general. In other words, comonotonic consumptions with respect to the aggregate endow-

ment process do not necessarily produce the comonotonic utility process simply because the

utility process is the summation of the continuation value of the future consumptions and

the utility of present consumption. If these two numbers are not comonotonic, it is highly

likely that the prior selection does not con�rm the most pessimistic prior with respect to

the present consumption.

In Section 4.3 and 4.4, we focus on the well-ordered aggregate consumption process

to avoid this problem. In general, if the order property (4.4.8) does not hold, we are

not sure that the consumption process is comonotonic with the utility process. Moreover,

the conditions for the existence of the dynamic representative agent become contingent on

the number of agents, their utility functions and endowment processes, and the aggregate
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endowment process. The mixture of these properties does not lead to the constructive

argument, rather leads to �nd coincidence. However, there is a case that only requires

conditions on the aggregate endowment process. If we have a simple Markov structure

within time, all continuation value becomes constant.26 Therefore, agents only use their

current consumptions to decide their priors. To summarize this intuition without proof:

Corollary 4.4.3:

In a multiple-agents economy, under (4.4.15) and (4.4.16) with (4.4.17), there is a dy-

namic representative agent, where all agents behave as if they had the identical time-

heterogeneous most pessimistic prior over {et} 8T > t � 1, regardless of their initial en-

dowment. In other words, the utility process {Vht (c
h;!t�1; !t)} becomes comonotonic with

the endowment process {et(!t�1; !t)} over 
 at 8!t�1 T�t>1. Moreover, the consumption

process is �interior�or strongly comonotonic with the aggregate endowment process, which

means that there are no ties among the next period�s consumptions emerging from the same

node. Note that the direction of pessimism is not necessarily constant over time.

(4.4.15) et(!
t�1; !) 6= et(!

t�1; !0)!; !0 2 


(strong order of the aggregate endowment)

(4.4.16) Markov structure (aggregate endowment):

et(!
t) = et(!t)8T � t = 1

(4.4.17) All agents have identical capacity-based multiple-priors sets

26For a general concave utility, the continuation value does not necessarily become constant. However,

non-constant continuation value is Pareto dominated by the constant continuation one.
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over 
 within time 8T>t �1:

Pt(!
t�1; !t) = Pt(!0t�1; !0t) (i.i.d. prior set within time)

8h; h0 2 H P ht (!
t�1) = P h

0
t (!

t�1) (identical prior set among agents)

(4.4.18) "-open neighborhood around (4.4.15) and (4.4.16) with the norm on D(
T )

We omit the proof because it is the simple repetition of that of Proposition 4.4.1. Condi-

tion (4.4.15) ensures the strong comonotonicity of consumptions. Condition (4.4.16) without

(4.4.8) implies that the order of the aggregate consumption over 
 can change over time.

Finally, Condition (4.4.17) makes the utility process constant. Again, Condition (4.4.18) is

just "-perturbation of the de�ning endowment process.

4.5 Multiple Agents Economy with Heterogeneous Multiple Prior Sets

4.5.1 Background

Up to now, we have focused on agents with homogeneous uncertainty. In this section,

we introduce heterogeneous prior sets, and ask similar questions: Is it possible for all

agents to behave similarly at the equilibrium? More precisely, can we derive the conditions

under which all agents behave as if they had the most pessimistic prior over the aggregate

endowment process at each !t? We would like to answer these questions progressively in

the following subsections.

This task is di¢ cult unless the agents share some �common� characteristics. For ex-

ample, in the single prior economy, if agents have di¤erent priors, we can anticipate the
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di¤erent consumption order over 
 among agents even though their prior probabilities are

comonotonic with each other. The similar results is expected if agents have multiple-priors

sets which do not have any common element. In this case, the di¤erence of the prior sets

is most likely to be priced or re�ected into the allocation order. In order to agree with

Arrow-Debreu security prices, it would be better to have the di¤erent order of consump-

tions because their priors show su¢ ciently heterogeneous preferences over states. However,

simply having common elements in their prior sets is not su¢ cient to avoid this dispersion.

It turns out that the order of the prior probability over 
 which minimizes the expected

value of allocation x must be comonotonic among agents 8x. Or more strongly, the optimal

prior probability must be ordered oppositely to the allocation, which implies that all prior

sets are around the center of probability simplex.

The reader may wonder why we suddenly need the strong conditions. In fact, the reason

is rather simple. We need to utilize the property of the Arrow-Debreu equilibrium, i.e., state

prices. In order to have a clear Pareto domination with state prices, the probability order

is essential. In fact, the same situation is applied for the identical capacity-based multiple-

priors sets. The reason why we can move the prior sets to the non-center position is that the

equilibrium allocation is globally optimal with respect to the identical most pessimistic prior.

In other words, there is a dynamic representative agent, and the prior probability does not

matter for deriving optimal allocations for give �; so that the equilibrium allocations from

the multiple-priors set around the center of the probability simplex represents all other cases.

However, under heterogeneous multiple-priors sets, we cannot utilize the Pareto domination
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of (4.4.4). Even if the equilibrium allocations were globally optimal with respect to the most

pessimistic prior for all agents, it would not guarantee that under the translated multiple-

priors sets, we could achieve the same allocations. We cannot summarize the economy

with heterogeneous multiple-priors sets by the representative case, i.e., there is no dynamic

representative agent.

The main results of this section are Lemma 4.5.1 and Proposition 4.5.1. The distinct

feature of a stochastic exchange economy with heterogeneous uncertainty aversion is that

agents still maintain homogeneous order of consumptions. This result implies that the in-

troduction of heterogeneity over the identical capacity-based multiple-priors set around the

center of probability simplex does not distort similarity among agents at equilibrium, which

shows the robustness of Proposition 4.4.1 in Section 4.4. Clearly this robustness feature is

the fundamental di¤erence from the common subjective prior model, where a su¢ ciently

large perturbation of the prior usually distorts the comonotonicity of consumptions. In

addition, as opposed to the identical capacity-based multiple-priors case, the equilibrium

allocations are not observationally equivalent to those of the heterogeneous single prior

model. In fact, we cannot observe weakly comonotonic order of consumptions in the latter

case. Since these results are critical for this section, we will examine them thoroughly in

Section 4.5.3.

Another objective of this section is to compare di¤erent attitudes toward uncertainty

among agents. Since by de�nition, the identical capacity-based multiple-priors set does not

o¤er any heterogeneity in the attitude of uncertainty, we also pay special attention to this
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analysis. The implication is simple. The more uncertainty averse the agent becomes, the

less volatile the consumption over 
, which is very natural because the agent behaves as if

she/he became more risk averse as she/he becomes more uncertainty averse.

In this section, �rst we de�ne the three di¤erent type of commonality among agents�

multiple-priors sets in Section 4.5.2. Then in Section 4.5.3, we investigate thoroughly a

single-period model and derive intuitions for the economy with heterogeneous multiple-

priors agents. This result is extended to the dynamic setting and we derive the main result

of this paper in Section 4.5.4. We also brie�y discuss the similar results to Corollary 4.5.1

in Section 4.5.4.

4.5.2 De�nition of Commonality among Heterogeneous Multiple-Priors Sets

In order to compare the di¤erence of a certain property, we need to assume some common-

ality. For example, in order to compare the di¤erent attitude toward risk, we assume that

the di¤erent curvature of concave utility functions, di¤erent expected utility with respect to

the same money lotteries, etc. In Section 4.4, similar behavior is observed for agents with

the identical capacity-based multiple-priors sets because their attitude toward uncertainty

is homogeneous. In order to see similar results, we need to introduce some common prop-

erties among heterogeneous multiple-priors sets. First, we want to de�ne the commonality

in the capacity-based multiple-priors sets.

First de�ne the commonality among capacity-based multiple-priors sets:
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De�nition 4.5.1:

Agents have the translationally homogeneous capacity-based multiple-priors set (THCB)

each other if their prior sets satisfy the following conditions:

(4.5.1) \H1 Ph � " � Ph 8h where " is non-empty open set

(4.5.2) p 2 int(\H1 P h) where p is the center of probability simplex

Let ph be the prior which minimizes the expected utility for xh

(4.5.3) ph=p + eph 8ph 2 Ph
(4.5.4) eph = (eph!1 ; :::; eph!N )

where eph and allocation xh=(xh!1 ; :::;xh!N ) are weakly oppositely comonotonic:
if xh!n(1) > ::: > x

h
!n(N)

, then eph!n(1) � ::: � eph!n(N)
(n(1),..., n(N)) is the correspondence between the allocation order and states

In a word, THCB are the heterogenous capacity-based multiple-priors sets which are

located closely together around the center of probability simplex although their shape would

be di¤erent. After decomposing each prior to the center of probability simplex and residual,

the optimal selection of residual becomes weakly oppositely comonotonic to the order of the

allocation. Note that this feature, i.e., Condition (4.5.4) is not guaranteed by the existence

of the center of probability simplex in the strictly interior of Ph.

The second commonality we investigate is comonotonically homogeneous uncertainty

aversion, which has the following property:
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De�nition 4.5.2:

Agents are comonotonically homogeneous uncertainty averse (CHUA) with each other

if their prior sets satisfy the following conditions:

(4.5.1) \H1 Ph � " � Ph 8h where " is non-empty open set

(4.5.2) p 2 int(\H1 P h) where p is the center of probability simplex

(4.5.5) Ph � Ph08h; h0

(4.5.6) Ph is symmetric:

8ph 2 Ph: ph=p + eph, 9bph 2 Ph s.t. bph=p - eph
This case is very simple. All symmetric prior sets are nested, and the center of symmetry

must be the center of the probability simplex. It is as if agents had the same single prior

(the center of the probability simplex) and heterogenous uncertainty aversion. Under this

prior sets, any reorder of the allocation gives the same utility, which is the reason why

we call it as comonotonically homogeneous. In other words, agents behave as if they did

not care about the name of states. They only cares about the order of consumptions, and

how it is ordered does not change agents preferences. In other words, agents do not have

preference over states. Technical relationship between CHUA and the preference over acts

is found in Appendix 4.J.

Third commonality is used only for the two-states case.

De�nition 4.5.3:

Agents have nested multiple-priors sets (NP) each other if their prior sets satisfy the

following conditions:
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(4.5.1) \H1 Ph � " � Ph 8h where " is non-empty open set

(4.5.5) Ph � Ph08h; h0

For the two-states case, there is only one degree of freedom for probability assignment.

For this reason, we only require (NP) to have all agents behave similarly.

4.5.3 Single Period Economy

Now we examine a single period economy and gain most of intuitions for the heterogenous

multiple-priors sets case. First we state Lemma 4, which proves the comonotonic equilibrium

consumptions among agents for three di¤erent multiple-priors settings.

Lemma 4.5.1:

In a multiple-agents economy, under multiple states with (4.5.7) and any one of (4.5.8)

or (4.5.9), or under two states with (4.5.7) and (4.5.10), each agent behaves as if she/he had

the most pessimistic prior over {e(!)} which is heterogeneous among agents, regardless of

her/his initial endowment. Moreover, the consumption is weakly comonotonic with the ag-

gregate endowment, which means that there could be ties among the agent�s consumptions,

and the equilibrium allocations are locally optimal with respect to the most pessimistic

prior. Under (4.5.8) and (4.5.9), state prices are strictly oppositely comonotonic with the

aggregate endowment.

(4.5.7) e(!) 6= e(!0) !; !0 2 


(strong order of the aggregate endowment)
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(4.5.8) Translationally homogeneous capacity-based multiple-priors set

(4.5.9) Comonotonically homogeneous uncertainty aversion

(4.5.10) Nested multiple-priors sets

Proof: Appendix 4.K

Lemma 4.5.1 shows that under the conditions stated, agents with heterogenous multiple-

priors sets behave as if they had the most pessimistic prior with respect to the aggregate

endowment tomorrow. Since the results are analogous to the case of previous section, we

call this economy a semi-dynamic representative agent economy. We want to emphasize

that this allocation is locally optimal with respect to the most pessimistic prior as opposite

to the case of the identical capacity-based multiple-priors sets, where we obtain the globally

optimal solutions relative to the identical most pessimistic prior.

For the case of multiple states (N>2), the proof heavily relies on Condition (4.5.18)

or Condition (4.5.9). The basic intuition of these conditions is that agents seem to care

only the order of consumptions, not on which state they have a higher or lower consump-

tion. In other words, the relative importance of the state is irrelevant here. Under these

conditions, it is better for all agents to have the same consumption order as the aggregate

endowment process because it is most easily implemented and the reorder of this allocation

gives very close or identical utility. Other combinations of consumptions inevitably involves

the disagreement of the prior probability order, which makes it harder for the prices of

Arrow-Debreu securities to be matched among agents. In fact, Condition (4.5.4) or Con-

dition (4.5.6) ensures that the order of prior probability is oppositely comonotonic to the
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allocation. This condition and strict concavity of utility functions imply that state prices

must be oppositely comonotonic to the allocation. Conversely, it is clear from the proof

of Lemma 4.5.1 that given state prices, agents optimal consumptions must be oppositely

comonotonic to the order of state prices. Now at equilibrium, agents must agree on state

prices. Given the above individual behavior, all consumptions are inevitably comonotonic.

In other words, the budget set induced by state prices touch the same side of indi¤erence

curve for all agents. Note that this prior probability order property (4.5.4) or (4.5.6) holds

only when the prior sets are located around the center. Having the center as an interior

point does not guarantee these conditions.

For two-states case, the prior set does not need to be located around the center of

the probability simplex because there is only one degree of freedom for the probability

determination. By Condition (4.5.10), all ph can be written as: ph = p + eph s.t. 9p =
(p1,p2) 2 Ph 8h where eph1 <0 and eph2 >0 when ch(!1) > ch(!2), and eph1 >0 and eph2 <0 when
ch(!1) < ch(!2). In other words, one of eph is positive and the other is negative. Then for
the agent with ch(!1) 6= ch(!2); F.O.C of (4.2.15) implies:

SP (!1)

SP (!2)
=
p1 + eph1
p2 + eph2 u

0h(ch(!1))

u0h(ch(!2))

Clearly, if ch(!1) > ch(!2) and ch0(!1) < ch
0
(!2); the state price ratio does not match.

The same logic does not work for the multiple states case (N>2), because if p does not have

identical numbers for all states, we cannot conclude that the state price ratios are di¤erent.

In other words, there is more than one degree of freedom for the prior probability determina-

tion, and the increase of indeterminacy shadows the relationship among probability ratios.
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For example, assume that agents have THCB and strongly ordered consumptions. Suppose

that 9h; h0 s.t. ch(!i) > ch(!i+1) and ch
0
(!i) < c

h0(!i+1). F.O.C. of (4.2.15) implies:

SP (!i)

SP (!i+1)
=

pi + ephi
pi+1 + ephi+1 u0h(ch(!i))

u0h(ch(!i+1))
=

pi + eph0i
pi+1 + eph0i+1 u0h

0
(ch

0
(!i))

u0h0(ch0(!i+1))

We only know that ephi < ephi+1 and eph0i > eph0i+1, and this condition is not enough to show
pi + ephi

pi+1 + ephi+1 < pi + eph0i
pi+1 + eph0i+1 unless pi = pi+1.

The above argument must hold for the identical capacity-based multiple-priors sets case.

Now we consider why we can move the identical capacity-based multiple-priors sets to the

non-center position. First, note that for the capacity-based multiple-priors set, we can move

the prior set to the center of the probability simplex where it satis�es the condition (4.5.4).

Let the original prior be ph = p + eph + p0 and the new prior be bph = p + eph where p is
the center of probability simplex. Then by Lemma 4.4.1 and Lemma 4.5.1, all agents must

have strongly comonotonic consumptions. The di¤erence between the identical capacity-

based multiple-priors case and heterogenous multiple-priors sets is that by Lemma 4.4.1,

the former achieve the global optimum under the most pessimistic prior. We restate (4.4.2).

For any other allocation xh, the optimal ch satis�es:

P
�h
R
uh(xh)dbph = P

�h
R
uh(xh)d(p + eph)

�
R P

�huh(xh)d(p+ep)
�
R P

�huh(ch)d(p+ ep)
where p+ ep is the most pessimistic prior with respect to the aggregate endowment. Now

we translate this prior back to the original location.
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P
�h
R
uh(xh)dph =

P
�h
R
uh(xh)d( p + eph + p0)

=
P
�hf

R
uh(xh)d( p + eph) + R uh(xh)dp0g

�
R
f
P
�huh(xh)d( p + ep) + R P�huh(xh)dp0g

�
R P

�huh(ch)d( p + ep) + R P�huh(ch)dp0

=
R P

�huh(ch)d(p+ ep+ p0)
The second last inequality holds because the consumption ch is strongly comonotonic

and globally optimal with respect to identical priors: p+ ep and p0. From F.O.C. of (4.2.15):

pi + epi
pi+1 + epi+1 u0h(ch(!i))

u0h(ch(!i+1))
=

pi + epi
pi+1 + epi+1 u0h

0
(ch

0
(!i))

u0h0(ch0(!i+1))
)

u0h(ch(!i))

u0h(ch(!i+1))
=

u0h
0
(ch

0
(!i))

u0h0(ch0(!i+1))
)

pi + p
0
i + epi

pi+1 + p
0
i+1 + epi+1 u0h(ch(!i))

u0h(ch(!i+1))
=

pi + p
0
i + epi

pi+1 + p
0
i+1 + epi+1 u0h

0
(ch

0
(!i))

u0h0(ch0(!i+1))

In other words, for the same �h, the same ch is optimal, i.e., the allocations are in-

dependent of priors. Of course, the endowment and state prices for the new and original

equilibrium allocations are di¤erent, but for the same �h, the same allocations must be

globally optimal with respect to the most pessimistic prior for each case. In other words, a

single multiple-priors set represents all other translated multiple-priors sets.

From the above results, it must be clear why we cannot move the heterogeneous multiple-

priors sets away from the center of probability simplex. Suppose that each agent has the

strongly comonotonic consumptions and they are globally optimal with respect to the most

pessimistic prior. However, since every agent has the di¤erent prior, the above calcula-

tions do not hold. In other words, even though allocations are globally optimal, for any
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movement of the heterogeneous multiple-priors sets, we must reconsider whether agents

have comonotonic consumptions. In general, we only have locally optimal consumptions to

which we cannot apply the above argument at all. Clearly, for the heterogeneous multiple-

priors sets case, there is no way for the single location of multiple-priors sets to represent

other translated ones.

Next, we want to investigate the di¤erence between the heterogeneous subjective prior

model and heterogeneous multiple-priors one. The critical assumption of Condition (4.5.2)

and (4.5.9) is that the state prices must be oppositely comonotonic to the consumptions,

and at ch = (ch; ..., ch ), the indi¤erence curve kinks inwards by shifting the prior probability

order. However for the single subjective prior model, even if agents have the same order

of priors, by moving consumptions slightly away from ch, we can still maintain the state

prices order. In other words, uncertainty aversion makes the indi¤erence curve kinked at

ch; whereas the expected utility maximizer with the single subjective prior does not have a

kink in her/his indi¤erence curve.

More precisely, uncertainty averse agents are locally risk averse at ch:27 Condition (4.5.2)

and Condition (4.5.9) ensure that at ch, the right and left derivatives between two state

prices become [
phi
phj
,
phj

phi
] by (4.2.17) where

phi
phj
< 1 <

phj

phi
. Clearly, if

SP (!i)

SP (!j)
> 1, the budget

hyperplane must touch where ch(!i) � ch(!j) 8h and vice versa. On the other hand,

27For the capacity-based multiple-priors set, at any ch(!i) = ch(!j), the indi¤erence curve has a kink

because the capacity-based case assumes comonotonic independence instead of certainty independence. In

other words, there are �nitely many discountinuous probability shifts among strongly ordered consumptions

(not smooth change as in the general multple-priors case).
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with the single subjective prior, every agent becomes locally risk neutral at ch. Moreover,

the probability to judge the actuarially fairness28 is not identical.29 This heterogeneous

judgement implies that at ch, given state prices, some assets are actuarially favorable for one

agent and unfavorable for another agent, which makes their consumptions non-comonotonic

with each other. The above argument becomes even clearer if we assume that there are

two hypothetical trades. First we would trade assets and achieve ch that is in the budget

set, then we would take a risky position over ch. Clearly, the actuarial judgement at

ch determines the order of consumptions, and homogeneity of this judgement is essential

for comonotonic consumptions. Note that when all agents have the identical prior, the

probability to assess actuarially fairness is identical. Hence for any asset, all agents agree

whether they are actuarially favorable. This is the reason why agents have a full risk-sharing

allocation for the identical prior case.

The above result is particularly interesting. Condition (4.5.2) and (4.5.9) can be inter-

preted as if agents became heterogeneously uncertainty averse over the common capacity-

based multiple-priors set that is located at the center of the probability simplex. The in-

troduction of heterogeneity does not distort the homogeneous equilibrium behavior among

agents. This is a clear distinction from the common subjective prior model, where a su¢ -

ciently large perturbation of the prior probability usually results in non-comonotonic con-

28 If the Arrow-Debreu price is equal to the state probability, the asset prices become actuarily fair, i.e.,

the expected return is identical to the acquisition cost of the asset.

29 If the expected return is greater than one, it is actuarily favorable.
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sumptions. In other words, uncertainty aversion induces more commonality among agents�

behavior.

Finally, we want to examine the e¤ect of a di¤erent level of uncertainty.30 Consider the

two-states case with Condition (4.5.10), and assume that there are two agents with identical

utility functions and endowments but with di¤erent prior set, Ph
0 � Ph. For these agents,

F.O.C. of (4.2.15) with non-binding constraint implies:

SP (!1)

SP (!2)
=
p1 + eph1
p2 + eph2 u

0h(ch(!1))

u0h(ch(!2))
=
p1 + eph01
p2 + eph02 u

0h0(ch
0
(!1))

u0h0(ch0(!2))

with eph1 =- eph2 , eph01 =- eph02 , and eph01 < eph1 < 0, 0 < eph2 < eph02 when e(!1) > e(!2), ch(!1)

> ch(!2), and ch
0
(!1) > c

h0(!2). This condition implies:

u0h(ch(!1))

u0h(ch(!2))
<
u0h

0
(ch

0
(!1))

u0h0(ch0(!2))

Under the identical budget set and consumption order, in order to achieve this inequality,

ch
0
(!1) and ch

0
(!2) must be closer than ch(!1) and ch(!2). Therefore, the more uncertainty

averse the agent becomes, the less volatile the consumption. The reader can verify by using

a speci�c function that essentially the same results hold for the multiple states case with

Condition (4.5.9): nested and symmetric priors. The above result con�rms that uncertainty

aversion magni�es the e¤ects of risk aversion in Lemma 4.4.2. (The identical prior with

more concave uh
0
produces the same results as in the above case.) As in Lemma 4.4.2, the

uncertainty aversion rede�ne the utility functions V (x ) by (4.2.2). The new utility function

becomes globally more concave than the original function, and two important properties of

30 In Appendix 4.L, we de�ne the more-uncertainty-averse-than relation.
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expected utility are also preserved: translation invariance and homogeneity of the preference

over acts. Clearly the argument for the risk aversion imply the same results. The only clear

distinction between risk aversion and uncertainty aversion is the local attitude of actuarial

judgement at ch, which is shown in our results as comonotonic consumptions among agents.

4.5.4 Dynamic Setting

Now, we are ready for the extension of the results of Section 4.3 and Section 4.4.4. In

Section 4.5.3, we show the conditions for heterogenous multiple-priors sets to produce the

comonotonic consumptions among agents. Here, we keep these conditions and consider the

dynamic linkage of state evolution, and seek the answer for the same question as in Section

4.4.4: under what conditions does each agent behave as if she/he had the most pessimistic

prior to the aggregate endowment process?

As opposed to the identical capacity-based multiple-priors sets case, heterogeneous

multiple-priors do not produce the dynamic representative agent by the argument in Sec-

tion 4.5.3. Moreover importantly, as in Section 4.5.3, the equilibrium consumptions are

generally locally optimal with respect to the most pessimistic prior. The second result is

extremely crucial because as we will see in the proof later, without global optimality, we

cannot employ the same logic of Pareto domination by (4.4.4). This result forces us only

to utilize the results for the competitive equilibrium in Lemma 4.5.1. Now we face two

fundamental problems for the linkage of the dynamic evolution of states.

The �rst problem is the relative order among the aggregate endowment within time.
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Given the strong order [Condition (4.4.7)] and the comonotonic order of the aggregate en-

dowment process over time [Condition (4.4.8)], we now investigate the state monotonic Con-

dition (4.4.10). In the proof of Proposition 4.4.1, the critical condition is that cht (et(!
t))

is increasing in et(!t). This condition no longer holds for the case of the heterogeneous

multiple-priors sets because we now have the local optima with respect to the most pes-

simistic prior. In other words, we cannot use the construction of Constantinides (1982)

(4.4.3). De�ne the similar optimization as:

(4.5.11) u(e) = Max {
P
�hph(!t�1; !t)uht (c

h
t ) :

P
cht = et(!

t) }

where ph(!t�1; !t) is the conditional probability from the most pessimistic prior over 
 at

!t�1 for agent h. It is clear that this solution cht (et(!
t)) does not necessarily increase in et(!t)

because the probability ph(!t�1; !t) shifts according to the movement of et(!t). In fact,

the solution from (4.5.11) corresponds to the solution of the heterogeneous subjective prior

model, where the agent�s subjective prior is the most pessimistic one relative to the aggregate

endowment. It is clear that the solutions {cht (et(!
t))} are not necessarily comonotonic with

each other, which implies that {cht (et(!
t))} from heterogeneous multiple-priors model are

not globally optimal in general. Under this result, it is very hard to verify the implication

of Condition (4.4.10). This condition implies that there is some !t�1 and !0t�1, where at

!t�1 the aggregate endowment process over 
 next period is monotonically greater than that

from !0t�1. In other words, the utility frontier shifts outwards. However, even though we �x

the utility weights �, since the allocations are only locally optimal, it is possible that 9h s.t.R
uht (c

h
t (et(!

t�1; !t))) dP h(!t�1; !t) >
R
uht (c

h
t (et(!

0t�1; !t))) dP h(!0t�1; !t) whereas 9h0 s.t.
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R
uh

0
t (c

h0
t (et(!

t�1; !t))) dP h
0
(!t�1; !t) <

R
uh

0
t (c

h0
t (et(!

0t�1; !t))) dP h
0
(!0t�1; !t). Hence, we

cannot compare the equilibrium allocations {cht (et(!
t�1; !t))} with {cht (et(!

0t�1; !t))}. This

is simply the restatement of the fact that the same � does not necessarily guarantee that

the separating hyperplane touches the homogeneous side of the utility frontier, where all

agents have
R
uht (c

h
t (et(!

t�1; !t))) dP h(!t�1; !t) >
R
uht (c

h
t (et(!

0t�1; !t))) dP h(!0t�1; !t) if

{et(!t�1; !t)} � {et(!0t�1; !t)}.

The second problem is the relative order of the aggregate endowment over time. The

above argument clearly indicates that even though {cht (et(!
t))g might achieve the global

optimum with respect to the most pessimistic prior at 8!t, it does not necessarily guarantee

that {cht�1(et�1(!
t�1))g achieves the globally optimum with respect to the most pessimistic

prior at 8!t�1. The consumptions must be globally optimal with respect to the most

pessimistic prior over time, otherwise it is most likely that the prior over the utility process

{V ht (c;!
t�1; !t)} shifts over time.

Clearly from the above observation, we can no longer utilize Condition (4.4.10). How

about (4.4.9)? It turns out to be �ne. Since the same � and the same distribution of

the aggregate endowment over 
 necessarily ensure the identical solution because of the

strict concavity of uh;31 we can e¤ectively make the expected value of the utility vector:R
uht (c

h
t (et(!

t�1; !t))) dP h(!t�1; !t) constant 8 !t�1, 81 < t � T . Now we are ready to

state Proposition 4.5.1, which is the main result of this paper:

31The strict concavity of uh implies the strict concavity of the utility frontier.

211



Proposition 4.5.1:

In a multiple-agents economy with (4.5.12), (4.5.13), (4.5.14) and (4.5.15), under mul-

tiple states (N>2) with any one of (4.5.6) or (4.5.17), or under two states with (4.5.18),

each agent behaves as if she/he had the most pessimistic prior over {et(!t)} 8T > t � 1,

with constant pessimism over time, regardless of her/his initial endowment. In other words,

the utility process {Vht (!
t�1; !t)} and consumption process {cht (!

t�1; !t)} become weakly

comonotonic with the aggregate endowment process {et(!t�1; !t)} over 
 8!t�1 T�t>1,

and under multiple states (N>2), state prices are strictly oppositely comonotonic with the

aggregate endowment process {et(!t�1; !t)} over 
 8!t�1 T�t>1.

(4.5.12) et(!
t�1; !) 6= et(!

t�1; !0) !; !0 2 


(strong order of the aggregate endowment)

(4.5.13) et(!
t�1; !) > et(!t�1; !0)) et 0(!

t0�1; !) > et 0(!
t0�1; !0)

8T � t; t0 > 1; !; !0 2 
 ,!t�1 2 
t�1, !t0�1 2 
t0�1

(comonotonic order of aggregate endowments over 
 for all et(!t))

(4.5.14) Markov structure (aggregate endowment):

et(!
t) = et(!t)8T � t = 1

(4.5.15) All agents have time-homogeneous i.i.d. multiple prior set

over 
 8!t: P ht = P ht0 (independent prior set)

(4.5.16) Translationally homogeneous capacity-based prior set

(4.5.17) Comonotonically homogeneous uncertainty aversion

(4.5.18) Nested prior sets

212



Proof:

We utilize the property of Pareto optimality of the Arrow-Debrue equilibrium and

Lemma 4.5.1. First, apply Lemma 4.5.1 over !t 2 
 at the history !t�1 to get the al-

location {ct(et(!t�1; !t))} = ({cht (et (!
t�1; !t))} ,..., {cht (et(!

t�1; !t))}). We know that

{ct(et(!t�1; ; !t))} is the Arrow-Debreu equilibrium for this segregated economy (one period

without consumption at !t�1). For any other feasible allocations {x t(!t)} at !t�1, de�ne

Ght�1(x
h
t (!

t�1; �)), G t�1(x t(!t�1; �)), Ght�1(cht (et(!t�1; �))), and G t�1(ct(et(!t�1; �))):

G t�1(x t(!t�1; �)) =
P
�hGht�1(x

h
t (!

t�1,�))

=
P
�h
R
uht (x

h
t (!

t�1; !t))dP h(!t�1; !t)

�
P
�h
R
uht (c

h
t (et(!

t�1; !t)))d bP h(!t�1; !t) (By Lemma 4.5.1)
=
P
�hGht�1(c

h
t (et(!

t�1,�)))

= G t�1(ct(et(!t�1; �)))

where P h(!t�1; !t) is the optimal prior selection at !t�1 when agent h follows the alloca-

tion {xht (!
t)}, and bP h(!t�1; !t) is the most pessimistic prior with respect to {et(!t�1; !t)}

for agent h. By strict concavity of uh, as we see in Appendix 4.M, Ght�1(x
h
t (!

t�1,�))

becomes strictly concave in {xht (!
t�1,!t)}. This implies that the utility frontier UF =

(G1t�1(x
1
t (!

t�1,�)), ... ,GHt�1(xHt (!t�1,�))) is strictly concave. Therefore, for any given �,

there is only one tangent point on the UF, i.e., Ght�1(c
h
t (et(!

t�1,�))) that is uniquely deter-

mined. By (4.5.14), it is obvious that Ght�1(c
h
t (et(!

t�1,�))) are constant 8 !t�1.
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From the above results, Gt�1(ct(et(!t�2; !t�1; �))) � Gt�1(x t(!t�2; !t�1; �)) 8!t�2 with

strict inequality for non-comonotonic allocations. Hence,

G t�2(x t(!t�2; �)) =
P
�hGht�2(x

h
t (!

t�2,�))

=
P
�h
R
Ght�1(x

h
t (!

t�2; !t�1; �))dP h(!t�2; !t�1)

�
P
�h
R
Ght�1(x

h
t (!

t�2; !t�1; �))dP

=
R P

�hGht�1(x
h
t (!

t�2; !t�1; �))dP

=
R
Gt�1(xt(!t�2; !t�1; �))dP

�
R
Gt�1(ct(et(!t�2; !t�1; �)))dP

=
R P

�hGht�1(c
h
t (et(!

t�2; !t�1; �)))dP

=
P
�h
R
Ght�1(c

h
t (et(!

t�2; !t�1; �)))dP

(A) =
P
�h
R
Ght�1(c

h
t (et(!

t�2; !t�1; �)))d bP h(!t�2; !t�1)
=
P
�hGht�2(x

h
t (!

t�2; �))

= Gt�2(ct(et(!t�2; �)))

where P h(!t�2; !t�1) is the optimal prior choice for the allocation process {xht (!
t)} at

!t�2, P is a strictly interior point that satis�es Condition (4.5.1) (P 2 int(\H1 P h)), and

bP h(!t�2; !t�1) is the optimal prior choice for the allocation process {cht (et(!t))} at !t�2.
Note that equation (A) holds because {Ght�1(c

h
t (et(!

t�2; !t�1; �)))} are constant over !t�1

2 
 8!t�2. Repeat the argument above up to t-k=1, where k is the number of above op-

eration, then G1(x t(!1; �)) � G1(ct(et(!1; �))) with strict inequality for non-comonotonic

allocations. Now, we can apply the same exercise for 8t s.t. T�t>1. Combining all in-

equalities,
PT
1G1(ct(et(!1; �))) �

PT
1G1(x t(!1; �)). Therefore,

P
�h bEh[Puht (c

h
t (et(!

t)))]
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�
P
�hEh[

P
uht (x

h
t (!

t))] with strict inequality for non-comonotonic {x t(!t)}.

Now {
PT
t Gt(c� (e� (!

t�1; �)))} � {
PT
t Gt(x � (!

t�1; �))} and {
PT
t Gt(c� (e� (!

t�1; �)))} are

constant over !t at 8!t�1. Hence {
PT
t Gt(c� (e� (!

t�1; �)))} and {ct(et(!t�1; !t))} become

comonotonic, i.e., {V h
t (!

t�1; !t)} and {et(!t�1; !t)} become comonotonic over !t 2 
 at

8!t�1 T � t > 1. Since the above inequality holds for all possible choice of �h which solves

(4.4.1), at any Arrow-Debreu equilibrium, each agent must have comonotonic consumption

and utility process, and the agent behaves as if they had the most pessimistic prior over

{et(!t)} 8t. Finally, from Lemma 4.5.1, for multiple-states case (N>2), state prices are

strongly oppositely comonotonic to {et(!t)} 8t:�

The critical assumption is the strict concavity of utility functions, which ensures that

the separating hyperplane touches at the single point on the utility frontier. This results

makes
R
uht (c

h
t (et(!

t�1; !t)))dP h(!t�1; !t) identical for all !t�1. Given this uniqueness and

Markov assumption of Condition (4.5.4), we repeat the similar Pareto domination argu-

ment as in the proof of Proposition 4.4.1. However, it is not clear that Gt�1(x t(!t�1; �))

� Gt�1(ct(et(!t�1; �))) at 8!t�1 implies that Gt�2(x t(!t�2; �)) � Gt�2(ct(et(!t�2; �))) be-

cause each agent has a di¤erent prior. Condition (4.5.1) (9 strictly interior points for

intersection of all agents multiple-priors sets) ensures that it is in fact the case. Now we

essentially neutralize the e¤ects of the dynamic connection of consumption process, so the

problem becomes the repetition of the single period optimization.

As for the extension of the structure of uncertainty, we face the similar di¢ culty as in

Proposition 4.5.1. We cannot compare the equilibrium allocations over !t 2 
 at !t�1 and
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!
0t�1 if Pt�1(!t�1) � Pt�1(!0t�1) at et�1(!t�1) > et�1(!0t�1). Since the prior probability

changes, it would be harder for cht (et(!
t)) to be increasing in et(!t) even though allocations

were globally optimal with respect to the most pessimistic prior. Similarly, "-perturbation

does not hold, either. However, the prior set can vary over time because of the time separable

utility structure, Markov endowment process (4.5.14), and order property of (4.5.13). We

can generalize the structure of uncertainty as Corollary 6 without proof:

Corollary 4.5.1:

In Proposition 4.5.1, if we replace Condition (4.5.15) with (4.5.19), each agent behaves

as if she/he had the most pessimistic prior over {et} 8T > t � 1, with constant pessimism

over time, regardless of her/his initial endowment. In other words, the utility process

{Vht (!
t�1; !t)} and consumption process {cht (!

t�1; !t)} become weakly comonotonic with

the aggregate endowment process {et(!t�1; !t)} over 
 8!t�1 T�t>1, and under multiple

states (N>2), state prices are strictly oppositely comonotonic with the aggregate endowment

process {et(!t�1; !t)} over 
 8!t�1 T�t>1.

(4.5.19) P ht (!
t�1; !t) = P ht (!

0t�1; !0t) (time-heterogenous i.i.d.)

Finally, Corollary 4.4.3 is replaced by Corollary 4.5.2 for the heterogeneous multiple-

priors sets case. This Corollary is obvious from the proof of Proposition 4.5.1, which hinges

on the assumption of separation of the optimization over time. Under very stationary evo-

lution of aggregate endowments and prior sets, optimal consumptions become comonotonic

with each other.
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Corollary 4.5.2:

In a multiple-agents economy under (4.5.12), (4.5.14) and (4.5.19) under multiple states

(N>2) with any one of (4.5.16) or (4.5.17), or under two states with (4.5.18), each agent

behaves as if she/he had the most pessimistic prior over {et} 8T > t � 1, regardless of

her/his initial endowment. In other words, the utility process {Vht (!
t�1; !t)} and consump-

tion process {cht (!
t�1; !t)} become weakly comonotonic with the aggregate endowment

process {et(!t�1; !t)} over 
 8!t�1 T�t>1, and under multiple states (N>2), state prices

are strictly oppositely comonotonic with the aggregate endowment process {et(!t�1; !t)}

over 
 8!t�1 T�t>1. Note that the direction of pessimist is not necessarily consistent over

time.

4.6 Continuum of Equilibrium Prices

4.6.1 Single Agent Economy (Epstein-Wang: 1994)

In this section, we investigate the possibility of the existence of continuum of equilibria for

multiple-agents economy. In this area of research, �rst Dow-Werlang (1992) have shown

that from a riskless position there is a range of prices where an agent does not take any

risky investment. This result hinges on the assumption that the initial allocations are

riskless. As we saw in Section 4.2.4, if an allocation admits the multiple choices of optimal

priors, the indi¤erence curve becomes non-di¤erentiable. The range of price Dow-Werlang

(1992) prove essentially captures the di¤erences of the right and left derivatives at the initial
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riskless allocation.

The argument is extended considerably by Epstein-Wang (1994). They show by the

representative agent Lucus model that there is a continuum of equilibrium prices when

there are multiple choices of optimal priors. In fact, in order to prove the continuum of

equilibria, it is su¢ cient to examine a single period model because once the prices become

a continuum over one period sometime in the future, there will be a continuum of prices

today. The connection between single-period price indeterminacy and multiple period price

indeterminacy is thoroughly investigated by Epstein-Wang (1994), so we avoid repetition.

Formally, we summarize results of Epstein-Wang (1994) for the single agent case as

Lemma 4.6.1:

Lemma 4.6.1: (Epstein-Wang:1994)

For a single-agent economy, under the following conditions, there is a continuum of

equilibrium prices for asset i from �=1 to �=t:

(a) Qt�1(!t�1)32 has multiple elements of priors

(b) p; p0 2 Qt�1(!t�1); p(!t�1; !t;s) 6= p0(!t�1; !t;s)

and p(!t�1; !t;s0) 6= p0(!t�1; !t;s0)

(c) di;t(!
t�1; !t;s) 6= di;t(!t�1; !t;s0)

This condition is very intuitive. If the multiple elements of priors achieve the same value,

the left and right derivatives are di¤erent. This implies that Arrow-Debreu security prices

at (!t�1,!t;s) and (!t�1,!t;s0) become indeterminate. The price that falls within this range

32Q(!) is de�ned at Section 4.2.4.
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essentially supports the equilibrium allocations. Clearly if asset i pays di¤erent dividends

over these states, its price becomes the continuum. Note that this analysis critically depends

on the �xed consumption process {et}. In addition, Condition (a) is necessary. We must

have the multiple elements in the convex-compact set Qt�1(!t�1), which is only possible

when the multiple-priors set has a �at boundary somewhere. For the general multiple-priors

set with a very smooth boundary, we cannot observe the continuum of equilibrium unless

all aggregate endowments are identical over 
.

4.6.2 Multiple Agents Economy

From the argument in the previous subsection, it is clear that for the general multiple-priors

set, we cannot construct the universal conditions where the continuum of equilibria exist.

Especially, it is hard to derive the conditions that satis�es Condition (a) in Lemma 4.6.1.

Even though agents share the similar structure in their multiple-priors sets (similar �at

boundary somewhere), the di¤erent individual wealth does not guarantee that all agents�

consumptions con�rm Condition (a) at equilibrium. The only situation where we are sure

that there is the continuum of equilibria is that in which the aggregate endowments are

identical over 
.33 However, this case corresponds to the riskless economy, and we are not

interested in this case.34

On the contrary, as for the capacity-based multiple-priors set, because of the structure

33From the proof of Lemma 4.5.1, we know that if e(!) = e(!0), then ch(e(!)) = ch(e(!0)) for all agents.

34 In fact, this is the case for the sunspot equilibria.
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on the prior sets from Section 4.2.3, Condition (b) in Lemma 4.6.1 are equivalent to the

following condition:

(b)0 et(!t�1,!t;s)=et(!t�1,!t;s+i) i=1,k where k>1

Now the condition is expressed by the endowment, and we hope that we can derive the

condition on the endowment for the multiple agents economy to produce the continuum of

equilibria.35 Note that Condition (b)0 guarantees Condition (a) in Lemma 4.6.1.

First, from the argument for Lemma 4.4.1 and the proof of Lemma 4.5.1, under a

single period economy, it is clear that for any �, we have even consumptions ch2(e2(!2;s))

= ch2(e2(!2;s+1)) over the states where e2(!2;s) = e2(!2;s+1). Note that we assume the

strong order property (4.4.7) or (4.5.11) for other states. Now suppose that we �x these

allocations, i.e., �x �. By changing the prior over the states where e2(!2;s) = e2(!2;s+1),

we could potentially generate a continuum of equilibrium prices as in the single agent

economy as long as F.O.C. of (4.2.18) holds.36 However, there is a critical di¤erence from

the single agent economy. The Arrow-Debreu equilibrium is the combination of allocations

and equilibrium prices. Here we �x the allocations. In general, for di¤erent prices, agents�

endowments achieve di¤erent levels of wealth, which implies that the equilibrium allocations

35Epstein-Wang (1994) o¤ers very heuristic justi�cation for the existence of a continuum of equilibrium

under multiple-agents case.

36From Section 4.2.3, we know that only the probability of consective states change. The similar construc-

tion is not possible for the general multple-priors set because the elements in Qt�1(!t�1) can have di¤erent

probability over the states where the aggregate endowment is not identical.
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will change. In order to investigate the possibility of a continuum of equilibria, we must

show that there is an in�nite combination of (ch,q), which is virtually impossible to con�rm

for the general endowment structure. The only hope is that we can �nd the conditions

where equilibrium allocations always stays the same so that we can apply the single agent

argument. It is now clear that we need the conditions for the individual endowment to

guarantee that changing the prices among states where e2(!2;s) = e2(!2;s+1) does not

change the budget set or the set of feasible allocations. It is only possible when eh2(!2;s)

= eh2(!2;s+1) 8h. Under this endowment, now we need to con�rm F.O.C.s in order to have

the identical optimal consumptions and continuum of equilibrium prices. In fact, for the

capacity-based multiple-priors set, either homogeneous or heterogeneous with THCB, we

can con�rm that both the constant wealth level and F.O.C.s and a continuum of equilibria

exits for the economy of Proposition 4.4.1 and Proposition 4.5.1.37 We summarize the

results as Proposition 4.6.1.

Proposition 4.6.1:

For a multiple-agents economy of Proposition 4.4.1 with the identical capacity-based

multiple-priors set or Proposition 4.5.1 with THCB,38 under the following conditions, there

is a continuum of equilibrium prices for asset i from �=1 to �=t:

37The results hold for the economy of Corollary 4.4.1, 4.4.2, 4.4.3, 4.5.1, and 4.5.2 with capacity-based

multiple-priors sets.

38For two-states case, the conditions for a continuum of equilibria is to have identical endowment over all


; which is a riskless economy.
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(a) Qht�1(!
t�1)39 has multiple elements of priors

(b)0 eht (!
t�1; !t;s) = eht (!

t�1; !t;s+i) i = 1; k where k � 18h

(c) di;t(!
t�1; !t;s) 6= di;t(!t�1; !t;;s+j) for some j s.t. 1� j � k

Proof: Appendix 4.M

The only di¤erence between Lemma 4.6.1 and Proposition 4.6.1 is (b)0, which requires

the degenerate individual endowment (without uncertainty over two states). This condition

indicates that the existence of the continuum of equilibrium prices seemingly trivial events

if there are large number of agents.

4.7 Conclusion

We have constructed the conditions on the aggregate endowment process and the structure

of uncertainty that result in all agents behaving as if they had the most pessimistic prior with

respect to the aggregate endowment process regardless of their initial endowment. In other

words, agents have the similar bias for their prior selection and consumption decision, and

if they share the structure of uncertainty, the dynamic representative agent exists, where we

can reduce the economy with uncertainty aversion to the one with the common subjective

prior. Clearly our results are in line with Ozdenoren (2000). In addition, as opposed to

Esptein-Wang (1994), we also show that the existence of continuum of equilibrium prices

are non-generic.

39Q(!) is de�ned at Section 4.2.4.

222



4.8 Extension

We have investigated the conditions where all agents behave homogeneously, and also gained

insight into how uncertainty is shared among agents. However, we did not examine the dif-

ference between the heterogeneous subjective prior model and the heterogeneous multiple-

priors model thoroughly. The natural extension of this work is to examine the case where

agents�prior sets are not located around the center but share common elements. We expect

that there is less possibility that all agents have similar consumptions. However, the intu-

ition from the results in this paper suggests that the local risk aversion at ch would reduce

the dispersion or volatility of consumptions among agents. This question becomes clearer

when we allow the situations where multiple-priors sets do not share common elements,

which corresponds to the case of true generalization of the heterogeneous subjective prior

case. Through further investigation of this comparison, we hope that the nature of aggre-

gation of agents with uncertainty aversions becomes better understood. This comparison

would also complement the results in this paper, and lead to the clear understanding of the

impact of uncertainty aversion on asset price volatility. Finally, we would like to extend

the analysis to the incomplete markets. Here, we would expect that we need conditions for

individual endowments and asset structures in order for all agents share the similar bias.
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Appendix 4.A: Representation Theorem of Uncertainty Aversion under

Multiple-Periods Economy

Gilboa and Schmeidler (1989) axiomatize the notion of uncertainty aversion into the

decision process with multiple-priors. In this model, an agent has a closed and convex set

of priors instead of a single subjective prior, and the preference over acts are de�ned as

the minimum of the expected utility among the given set of priors. Schmeidler (1989) also

shows that the connection between the multiple-priors model and the non-additive prior

model. In fact, if the set of priors coincide with the core of the capacity, then the expected

utility de�ned by the Choquet integral is equivalent to the minimum of the expected utility

among the priors in the core of the capacity. Here we just state the decision rule under the

multiple-priors by Gilboa and Schmeidler (1989).

Theorem 4.A.1:

With C-independence40 and uncertainty aversion41, an agent behaves as if she/he had

a set of probability measure that is closed and convex, and his preference over acts are

determined by the minimax criterion:

f � g i¤mimp2P
R
u(f)dp � mimp2P

R
u(g)dp

where P is a set of probability measure that is closed and convex.

40C-independence says that taking the convex combination between acts and a constant act does not

change the order of preference over acts.

41For an act f and g, and � 2 (0,1), f ' g implies �f + (1-�)g � f:
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Now, we extend this representation theorem into the multiple-periods setting. By ap-

propriate adjustment of lottery space and C-independence axiom, their result is extended

to the dynamic setting. Let L = (L1,L2,...,LT ) be the lotteries over 
T = (
�
� :::�
)

where elements of L satisfy the measurability requirement for the evolution of state on

(
 � 
 � ::: � 
). De�ne an act as correspondence from 
T ! L . Let LcT be the acts

which have same sublotteries for all elements in Lt. Then Theorem 4.A.1 holds over the

whole structure of economy:

Theorem 4.A.2:

In the dynamic case, with CT-independence42 and uncertainty aversion, an agent be-

haves as if she/he had a set of probability measure that is closed and convex, and his

preference over acts are determined by the minimax criterion:

f � g i¤ minp2P
R
u(f)dp � minp2P

R
u(g)dp

where P is a set of probability measure that is closed and convex.

The set of priors are de�ned over whole histories, rather than each conditional distribu-

tion over states at each time. Here, the utility function is de�ned for a lottery, which is not

necessarily time-separable.

For the construction of the set of multiple-priors modeled over a single-period, Gilboa-

Schmeidler (1989) assume that there is the set of probability distributions at each state

over X, where X has only �nite elements. Instead of their formula, here we assume that

42CT-independence means that taking the convex combination between acts and LcT does not alter the

order of preference.
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X=R but there is only degenerated probability distributions over X. However, our structure

guarantees the continuity of preference, and it su¢ ces to show that Theorem 4.A.1 and

Theorem 4.A.2 hold43.

Now, we need to consider the issue of dynamic consistency. The �rst issue is how

to update the multiple-priors set. As Eichberger and Kelsey (1996) address, under the

formulation of Theorem 4.A.2, after the initial date, an agent�s preference no longer con�rms

the multiple-priors model in general. In order to avoid this inconsistency, we directly impose

the conditions that makes the �nal date�s prior set closed and convex regardless of where

we calculate it, i.e., the set of conditional distributions is closed and convex at any point

of history. Under this condition, the agent becomes everywhere uncertainty averse, i.e., the

agent has the dynamically consistent multiple-priors.

The second issue is the dynamic consistency of the optimal choice. Machina (1989)

proposes that the notion of the dynamic consistency for non-expected utility models. He

argues that an agent must incorporate the states which did not happen in the past and will

not reach in the following history in order to evaluate the future lotteries. In this case, the

original choice stays optimal. This notion essentially changes the dynamic problem to the

static one. However, the interest of our study is precisely the dynamic behavior over time.

Hence, we want to impose the stronger notion of dynamic consistency, i.e., the future utility

does not depend on the past and unreachable future. This condition separates the decision

over time, which is a standard notion of the dynamic consistency. For this purpose, we want

43The same argumene holds for the non-additive probability measure by Schmeidler (1989).
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to impose the structure (4.2.2), time-separability of the utility function over consumptions.

Now we are ready to show that this prior structure (4.2.3) is the special case of the

general formula (4.2.2).

Proposition 4.A.1:

(4.2.3) V(c)= u1(c1) + infm2P1(!1)E1[u2(c2)+infm2P2(!2)E2[u3(c3)

+...infm2PT�1(!T�1)ET [uT (cT )]...]]

where Pt(!t) is a closed and convex set of priors at t for the history !t

con�rms (4.2.2):

1. Probability distribution at the �nal date is closed and convex by multiplying each

conditional prior probability from t to T.

2. Given the allocation, the set of optimal choice of priors will not change over time.

In other words, the conditional distribution which is originally optimal at t=1 must

be optimal at t>1. Hence, the backward induction de�ned by (4.2.4) is equivalent to

(4.2.3).

Proof:

(a) Closed and convex multiple prior set at T

Let pt(!t; !t+1) is the prior probability for !t+1 over 
 at !t. From any � = t to T-1,

we can calculate the probability distribution from !t onward over !T 2 {(!t; :::; !T )}. Let
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pT (!t) be the probability of each history and PT (!t) is the set of priors at the �nal date

from !t. Then:

pT (!t)=pt(!t; !t+1)pt+1(!t+1; !t+2)...pT�1(!T�1; !T )

epT (!t)=ept(!t; !t+1)ept+1(!t+1; !t+2)...epT�1(!T�1; !T )
Now, take a convex combination of pT (!t) and epT (!t)

�tpT (!t)+(1-�t)epT (!t)
={�tpt(!t; !t+1)+(1-�t)ept(!t; !t+1)}
�{�t+1pt+1(!t+1; !t+2)...pT�1(!T�1; !T )+(1-�t+1)ept+1(!t+1; !t+2)...epT�1(!T�1; !T )}
where �t+1 = �tpt(!t; !t+1)/{�tpt(!t; !t+1)+(1-�t)ept(!t; !t+1)}
Now repeat the same calculation:

�tpT (!t)+(1-�t)epT (!t)
={�tpt(!t; !t+1)+(1-�t)ept(!t; !t+1)}{�t+1pt+1(!t+1; !t+2)+(1-�t+1)ept+1(!t+1; !t+2)}��

�

�{�T�1pT�1(!T�1; !T )+(1-�T�1)epT�1(!T�1; !T )}
Now, by assumption, ��p� (!� ; !�+1)+(1-�� )ep� (!� ; !�+1) 2 P� (!� ; !�+1) 8� s.t. t �

� � T. Hence �tpT (!t)+(1-�t)epT (!t) 2 PT (!t), which implies PT (!t) is convex. Since
each P� (!� ; !�+1) is closed, the above calculation con�rms that PT (!t) follows the same
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property. In fact, it is clear that the probability distribution over any subtrees are closed

and convex.

(b) Invariance of the optimal selection of priors over time

First �x the allocation. Let Q(x ;!1) be the set of priors which gives the lowest value

of (4.2.3). Suppose the prior is changed at !t s.t. t>1. Then it implies that at t>1,

minPt(!t)[Ep
0
t(!

t)(
PT
t u(xt))] < Ept(!

t)(
PT
t u(xt)), where pt(!

t) 2 Q(x ;!t) is the optimal

choice of prior at the beginning, and p0t =2 Q(x ;!t) is the revised prior at t. Now, use the

original prior from �= 1 to t-1:

Ep1;t�1 [
Pt�1
1 u(xt) + Ep

0
t(!

t)(
PT
t u(x

0
t(!

t)))]]

< Ep1;t�1 [
Pt�1
1 u(xt) + Ept(!

t)(
PT
t u(xt(!

t)))]]

The new selection of prior p0t achieves smaller expected utility, which contradicts that

pt is optimal choice at the beginning. This result implies the equivalence of (4.2.3) and

(4.2.4).�

Appendix 4.B: Dynamic Consistency of (4.2.9)

Let {x t} be the optimal consumption chosen at t =1 for �=1 to �=T by (4.2.9). Suppose

that there is another feasible allocation {x0t} which has the identical evolution except one his-

tory after !0t, where it gives higher utility. In other words, minPt(!0t)[Ep
0
t(!

0t)(
PT
t u(x

0
t(!

0t)))]

> minPt(!0t)[Ept(!
0t)(
PT
t u(xt(!

0t)))] , where pt(!0t) is the optimal choice of prior for {x t}

at the beginning, and p0t(!
0t) is the optimal prior for {x0t} at !

0t. Assume that the agent
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revises her/his consumption process at !0t. Then using the identical consumption for other

history,

minP1;t�1E
p01;t�1 [

Pt�1
1 u(xt) + Ep

0
t(
PT
t u(x

0
t(!

t)))]]

> Ep
0
1;t�1 [

Pt�1
1 u(xt) + Ept [

PT
t=1 u(xt(!

t))]]

� minP1;t�1Ep1;t�1 [
Pt�1
1 u(xt) + Ept(

PT
t u(xt(!

t)))]]

where p01;t�1 is the optimal choice of prior at the beginning for {x
0
t} given p

0
t is �xed,

where p0t(!
t) = pt(!t) for !t 6= !0t, and p1;t�1 is the optimal choice of prior at the beginning

for {xt} given pt is �xed. The second inequality holds because of minPt[Ep
0
t(
PT
t u(x

0
t(!

0t)))]

> minPt[Ept(
PT
t u(xt(!

0t)))] and the equivalence of other evolution. By Appendix 4.A, we

know that the utility process does not alter the prior selection over time, in other words,

the optimal prior at t>1 is also optimal at t=1. Therefore, the above selection of prior is

optimal for {x0t} and it gives higher utility at the beginning, which violates the optimality

of {x t}. By repeating the same construction, the above inequality holds for any {x0t} that

gives higher utility at an arbitrary point. Hence allocations are dynamically consistent,

ex-ante and ex-post e¢ cient, and backward induction must work.�

Appendix 4.C: Proof of the Existence of an Arrow-Debreu Equilibrium

under Uncertainty Aversion

It is su¢ cient to show that the preference relation is convex. This condition is satis�ed

if its upper contour set is convex. De�ne C={y2 X1jy� z}. Let x,y2 C. Then �
R
u(x)dP

+ (1-�)
R
u(y)dP �

R
[�u(x) + (1� �)u(y)]dP �

R
u(�x+ (1� �)y)dP.
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In addition, we also want to show that the optimal priors for any allocation is on the

boundary of P. Suppose not. Then there is � s.t. � � 1 = 0, and it assigns the number

which has the opposite order to the allocation. Then if p is the prior the agent chooses, p

+ "� 2 P. So
R
u(x)dpa >

R
u(x)d( p + "�), which contradicts.�

Appendix 4.D: Proof of (4.2.15)

From Section 4.2.3, for the case of capacity-based multiple priors, we can rewrite the

agent�s optimization problems as follows:

Proposition 4.D.1.

In the capacity-based multiple-priors model, the agent selects the (t,!t)-optimal alloca-

tion {(cht ,�
h
t )} by the following optimization:

Max(cm;�m)m=1;MMax(c;�)2(c;�)mV
h
t (
tc;!t)= uht (ct(!

t))+
R
Vht+1(

t+1c;!t,!)dP h(!t;!)

where among (c; �)m , Vht+1(c;!
t,!) becomes comonotonic.

The solution of this optimization is �Max of the local Maxes�.

Proof:

If the solution is interior, it is obvious because the prior is uniquely determined. We only

need to show that a corner solution {ct} is optimal for any sub-optimization which includes

this allocation in the feasible set. From Section 4.2.3, by the property of the Choquet

integral, the prior probability change only on the states which have equal consumptions.
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Hence, minPt[Ept(
PT
t u(ct))] obtains the identical value under any priors that correspond

to the sub-optimization that includes {ct} in the feasible set. This result implies that at the

corner solutions, we achieve the same solution among the sub-optimizations that includes

{ct} in the feasible set, and this solution dominates others in every subdivision. Therefore,

the optimal priors that justi�es {ct} are multiple (in fact continuum from the argument in

Section 4.2.4).�

Appendix 4.E: Proof of Lemma 4.1.1

Follow Aubin (1979: p.118):

Theorem 4.E.1:

(i) P is compact

(ii) 9 a neighborhood U of x s.t. for any y 2 U :

p ! f (y ;p) is upper semi-continuous

(iii) 8p 2 P, y ! f (y ;p) is convex and di¤erentiable from the right.

(iv) g(y)=suppf (y ;p)

(v) P0 = {p2 Pj g(x )=f (x ;p)}

Then

Dg(x )(y)=suppDf (x ;p)(y)

Here, our model satisfy (i)-(iii) by f (y ;p)=
R
u(y)dp (general integral). By changing sup

to inf, we can derive the right and left derivative as supergradients instead of subgradients

by the right di¤erentiability of u (in fact, u is di¤erentiable):
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Dg(x )(y)=infP0Df(x ;p)(y) (right) where g(y)=minP0
R
u(y)dp

Dg(x )(y)=supP0Df (x ;p)(y) (left) where g(y)=minP0
R
u(y)dp

Note that by changing the sign of y, we can use the right di¤erentiability to derive the

left derivative.

Appendix 4.F: Continuous States v.s. Discrete States

Epstein-Wang (1994) use very smooth evolution of endowments and sets of multiple-

priors to avoid the potential discontinuity of V at the limit. In the second paper (1995), they

show the existence of equilibrium of the general multiple-priors model under a continuous

states and in�nite horizon economy. In this paper, we avoid the continuous states and

in�nite-time horizon model because we want to allow more general evolution of endowments

and prior sets and derive a clear intuition on the aggregated behavior of agents with multiple

priors without considering the limit behavior of V. However, it is helpful to know the

di¢ culty in the continuous states case, which gives us another intuition behind the multiple-

priors model. As Bewley (1972) points, in the continuous states case, we need some smooth

condition for preference to guarantee clear representation of price behavior. In the multiple-

priors model, it turns out that this assumption is violated if the optimal choice of prior does

not move continuously at the limit. In other words, the tail behavior of multiple-priors model

is potentially very discontinuous. The following three points are clear distinctions between

the model with a single prior and the model with multiple priors.
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(a) Non-measurability of utility process {V t(tc)}

First, we show for the �nite state case, (4.2.2) { V t(tc)=infm2PE [
PT
t u� (c� )] } can be

de�ned as minimum. Clearly, there are only �nite ut(ct(!t)) and V t(tc) is continuous with

respect to m. By Weierstrass�s Theorem, over compact P � � � RNT
, the minimum exists.

For the in�nite state space, de�ne the integral for each mi: x i(!t) =
R PT

t u� (c� )dmi. If

x i converge in Cauchy, then minimum is de�ned as x . This is possible if m 2 ba(
T�t+1)44,

where ba is the space of �nitely additive signed measure over 
T�t+1 , i.e., the dual space

of L1 , which is a complete normed vector space. However, here we only use the countably

additive probability measure P, which is not a complete space. Now we can only calculate

in�mum from uncountable number of x i(!t). Then the set A={!tj inffxi(!t)g < �}={!tj

[ { x i(!t)<�}} is not necessarily Borel set because the intersection is uncountable.

(b) Arrow Debreu equilibrium may not be supported as the dynamic equilibrium

Let x be any allocation process over continuous states and in�nite-time horizon. Then

we can write:

v(!t)�x (!t) =
R
x(!t)dv(!t) =

P1
t

R
x� (!

��1; !� )dv� (!��1; !� )

where v(!t)2 ba(T� 
1;
Pad);

Pad is � algebra on T� 
1 generated by adapted

processes, and ba(T� 
1;
Pad) is �nitely additive signed measure over

Pad. Let !0 = ;

44The details of in�nite comodities economy should be refered to Bewley (1972), Gilles (1989), Stokey-

Lucus (1989).
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and T be the time set = {1,2,...}.45

Evolution of this process does not necessarily imply the dynamically consistent behavior,

i.e., generally there is no 9evt(!t) s.t. v(!t)�x (!t) =
R
x(!t)dv(!t) =

R
[
R
x(!t; !t+1)

dvt+1(!
t; !t+1)] devt(!t). In other words, the Fubini theorem does not hold because the

monotone convergent theorem fails46. Note that an Arrow-Debreu equilibrium is the element

� with consumption c s.t. v �c�v �x ) V(c) � V(x ). However, from the above result, v

does not necessarily support the dynamic consistency.

(c) Conditions for the existence of risk neutral measure

Now, we assume dynamic consistency. The following Epstein-Wang (1995), �rst de�ne:

cQt(!t) = {� 2 P baj V �(c)=
P1
t

R
u� (c)d�� where V �(c) is the optimal value}

where P ba is the �(ba;D) closure of P in ba, c is the optimal consumption.

Then Epstein-Wang (1995) show that 8� 2 cQt(!t); we can de�ne �0 2 ba s.t. d�0

= u0(c)d�. Now following Epstein-Wang (1994,1995), for some � 2 cQt(!t), the standard
F.O.C. must hold for all assets. In other words, given dividend process {d i;t}, the asset

price q i;t 8i:

q i;t =
R u0(c(!t; !t+1))

u0(c(!t))
(qi;t+1(!

t; !t+1) + di;t+1(!
t; !t+1))d�t(!

t; !t+1)

45See Kandori (1988).

46Although the product measure of v can be de�ned in a usual way, the limit of integral is not identical to

the integral of limit. As in Bewley (1972), v contains the purely �nitely additive componets, which prevents

the usage of the montone convergent theorem.
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=
R
(qi;t+1(!

t; !t+1) + di;t+1(!
t; !t+1))d�

0
t(!

t; !t+1)

q�i;t =
R
(q�i;t+1(!

t; !t+1) + d
�
i;t+1(!

t; !t+1))d�
00
t (!

t; !t+1)

where d�0t =
u0(c(!t; !t+1))

u0(c(!t))
d�t, d�00t =

1

q1;t
d�0t, q

�
i;t =

qi;t
q1;t
,

q�i;t+1(!
t; !t+1) =

qi;t+1
q1;t+1 + d1;t+1

, d�i;t+1(!
t; !t+1) =

di;t+1
q1;t+1 + d1;t+1

In order for �00t to be probability measure, �t must be countably additive measure instead

of �nitely additive signed measure. Epstein-Wang (1995) show that if P is continuous at

certainty, the charge in �t disappear, which implies that �00t will be probability measure.

P is continuous at certainty if P(An)%1 8An % 
47

Appendix 4.G: Proof of Proposition 4.3.2

For (4.3.6), at T -2, the expected utility is:

V T�2(T�2e;!T�2) = uT�2(eT�2(!T�2)) +
R
V T�1(T�1e;!T�2,!T�1)dP(!T�2,!T�1)

= uT�2(eT�2(!T�2)) +
R
{uT�1(eT�1(!T�2; !T�1))

+
R
uT (eT (!T�2,!T�1,!0T ))dP(!

T�2,!T�1,!0T )}dP(!
T�2,!T�1)

By assumption, at T -1, !T�1 = (!T�2; !T�1), and the only di¤erence among {!T�1}

is the realization of !T�1. Now by (4.3.1), (4.3.2), (4.3.4) and (4.3.6), if eT�1(!T�2; !T�1)

> eT�1(!T�2; !0T�1):

47� = � +  , where  is purely �nitely additive. Then 9 Bn decending s.t.  (
nBn) ! 0, �(Bn) !0. In

a di¤erent way,  (
nAn) =  (Bn)9 0.
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(4.G.1)
R
uT (eT (!T�2,!T�1,!0T ))dP(!

T�2,!T�1,!0T )

�
R
uT (eT (!T�2,!0T�1,!

0
T ))dP(!

T�2,!0T�1,!
0
T )

Since by (4.3.1), (4.3.2), and (4.3.4), the integral is de�ned by the identical prior for

both sides of equations, the pointwise domination of endowments by (4.3.6) implies the

above inequality.48 Clearly, the above inequality is (4.3.3). Hence the utility process

{VT�1(T�1e;!T�2,!T�1)} and the endowment process {eT�1(!T�2; !T�1)} becomes comonotonic

over !T�1 2 
 at !T�2, and the most pessimistic prior over

{eT�1(!T�2; !T�1)} is chosen.

Now, at T-3, we can group {!T } and {!T�1} by the realization of !T�2. Then by

(4.3.6), {eT (!T�3; !T�2; !T�1; !T )} � {eT (!T�3; !0T�2; !T�1; !T )}49 and

{eT�1(!T�3; !T�2; !T�1)} � {eT�1 (!T�3; !0T�2; !T�1)}

if eT�2(!T�3; !T�2) > eT�2(!T�3; !0T�2). Then by (4.3.1), (4.3.2), (4.3.6):

(4.G.2)
R
uT (eT (!T�3; !T�2,!T�1,!0T ))dP(!

T�3; !T�2,!T�1,!0T )

�
R
uT (eT (!T�3; !0T�2,!T�1,!

0
T ))dP(!

T�3; !0T�2,!T�1,!
0
T )

and

(4.G.3)
R
uT�1 (eT�1(!T�3; !T�2,!0T�1))dP(!

T�3; !T�2,!0T�1)

48Under time-state heterogeneous prior conditions (4.3.8) and (4.3.9), the above inequality is still sustained.

49{x (!)} � {y(!)} means that x (!) � y(!) 8!.
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�
R
uT�1 (eT�1(!T�3; !0T�2,!

0
T�1))dP(!

T�3; !0T�2,!
0
T�1)

50.

Here by backward induction with the result for T -2, P(!T�3; !T�2,!T�1) is the most

pessimistic prior over {eT�1(!T�3; !T�2,!T�1)} s.t.

P(!T�3; !T�2,!T�1) = P(!T�3; !0T�2,!T�1). In other words, From T -2 to T -1, we use the

identical prior for integration. Given this prior, the above pointwise domination of {!0T�2}

by {!T�2} implies:

R
fuT�1 (eT�1(!T�3; !T�2,!T�1))

+
R
uT (eT (!T�3; !T�2,!T�1,!0T ))dP(!

T�3; !T�2,!T�1,!0T )}dP(!
T�3; !T�2,!T�1)

�
R
uT�1 (eT�1(!T�3; !0T�2,!T�1))

+
R
uT (eT (!T�3; !0T�2,!T�1,!

0
T ))dP(!

T�3; !0T�2,!T�1,!
0
T )}dP(!

T�3; !0T�2,!T�1)
51

This inequality is

ET�2[VT�1(T�1e;!T�3,!T�2,!T�1)] � ET�2[VT�1(T�1e 0;!T�3,!0T�2,!T�1)], which implies

(4.3.3). Applying the same argument for all t : T>t�1, we verify (4.3.3).

(4.3.5) is the special case of (4.3.6), which makes all utility process constant over {!t}52.

(4.3.7) directly de�nes (4.G.1), (4.G.2), and (4.G.3)53, and the same argument holds for

all t. (4.3.3) is evident.�

50 (4.G.2) and (4.G.3) holds under (4.3.8) and (4.3.9).

51This inequality holds under (4.3.8) and (4.3.9) because P (!T�3,!T�2,!T�1) � P (!T�3,!T�2,!T�1).

52Under (4.3.8) and (4.3.9), the utility process no longer constant over {!t}.

53 (4.G.2) and (4.G.3) hold under (4.3.8) and (4.3.9).
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Appendix 4.H: Proof of Non-existence of the Dynamic Representative

Agent under Di¤erent Subjective Priors

Assume that agents solve the optimization of (4.2.1) with non-identical subjective priors.

There is a representative agent V 1(e) at t=1 de�ned by (4.4.1).

(4.4.1) V 1(e)=Max(c1;:::;cH)
P
�hV h

1(c
h)

s.t.
P
ch = e

From Section 4.3, we utilize the similar construction of (4.4.3) by changing the utility

weights at each !t:

(4.H.1) ut(et(!t)) = Max {
P
�ht (!

t)uh(chet(!
t)) :

P
cht (et(!

t)) = et(!
t) }

where �h = �h � pht�1(!
t�1,!t). In other words, the utility weight is a multiple of

the original utility weight �h and the subjective probability of the state. This allocation

dominates other allocations by a similar argument in Section 4.3, so they are optimal for

given �. (The sum of the pointwise maxima of the �xed weight must be the maximum of

the whole structure.) Now, rewrite (4.4.1) as (4.H.2):

(4.H.2) V 1(e)=Max(c1;:::;cH){
P
�huh1(c

h
1 (!1)) +

P
�h
R
V h
2(c

h
2(!1; !))dP

h(!1; !)}

s.t.
P
cht = et 8T � t � 1

De�ne V 2(e):

(4.H.3) V 2(e)=Max(c2;:::;cH){
P
�huh2(c

h
2 (!

2)) +
P
�h
R
V h
3(c

h
3(!

2; !)))dPh(!2; !)}
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=
P
�hV h

2(c
h)

s.t.
P
cht = et 8T � t � 2

Applying (4.H.1), we can obtain the allocations {ect}T2 from (4.H.3). However, allocations
{ec2} does not deliver the optimal allocations {c2} of V1 at t = 2 because {c2} need the

probability weight, whereas {ec2} only use �h. Hence, (4.4.1) cannot be written in the

recursive formula, so it does not con�rms the dynamic consistency.�

Appendix 4.I: Proof of Non-decreasing Function of xh(e).

From F.O.C. of (4.4.3), ru(e)=(�1u01(c1),...,�Hu0H(cH))//1. Let e(!i)>e(!j). Then 9

h s.t. ch(e(!i)) > ch(e(!j)) and u0h(ch(e(!i))) � u0h(ch(e(!j))), which implies

u0h
0
(ch

0
(e(!i))) � u0h

0
(ch

0
(e(!j))) 8h0. The only concern is the case of u0h(ch(e(!i))) =

u0h(ch(e(!j))). In this case, all agents with the strictly concave uh have a constant ch(e(!i))

= ch(e(!j)), and among risk neutral agents (at least locally around ch(e(!i)) and ch(e(!j))),

the solution ch(e(!i)) becomes indeterminate because in�nite combinations of consumptions

could deliver the same aggregate utility
P
�huh(ch(e)).54 However, it is always possible to

make x s.t. ch(e(!i)) � ch(e(!j)) among them. By the same argument in Section 4.4.3, by

(4.2.14), all allocations which is not comonotonic is strictly dominated by the non-decreasing

allocations. Hence, we can only restrict our attention to the case of non-decreasing ch(e).

Appendix 4.J: Comonotonically Homogeneous Uncertainty Aversion

54For risk neutral agents (at least locally) with �h = 1/kh, where uh=a+khxh, �hu0h(ch) = xh.
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First we de�ne comonotonically homogeneous uncertainty aversion.

De�nition 4.J.1:

Preference of acts follows comonotonically homogeneous uncertainty aversion (CHUA):

(a) � is represented by the multiple-priors model

(b) f � g if g(s) is the reorder of state lotteries of f (s)

Given this de�nition, we prove the following Proposition:

Proposition 4.J.1:

An agent has CHUA i¤ their multiple-priors set is symmetric, where the center of

symmetry must be the center of the probability simplex.

Proof:

Su¢ ciency is obvious. We prove the necessity for two di¤erent cases in order to derive

more intuitions for the capacity-based multiple-priors set:

(a) Capacity-based multiple-priors set

Step 1) The center of probability simplex is in the multiple-priors set

Suppose not. Then there is a state mimp(s) = �(s) > 1
N and mimp(s0) = �(s0) < 1

N .

Consider two acts: f (s) � f (s0) = f (s00) for 8s0; s00 6= s, g(s)=f(s0), g(s0)=f(s) and g(s00)

= f (s00) for 8s00 6= s; s0. In other words, g is the reorder of f. Now clearly,
R
u � fdP >R

u � gdP , which violates the assumption.
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Step 2) Optimal prior probability and state lottery preference are oppositely comonotonic

Suppose not. Take an act f where state lotteries have the strong order55 and f (s)

� f (s + 1), p(s) > p(s + 1). Now change the order of these two state lotteries. By the

property of the Choquet integral in Section 4.2.3, only p(s) and p(s + 1) are adjusted to

ep(s) and ep(s + 1). In order to have the identical expected utility for this new reordered

act, apparently, p(s) = ep(s + 1) and p(s + 1) = ep(s). However, by using this new prior,
the original act can have lower utility, which contradicts the optimal selection of p at the

beginning.

Step 3) Prior set is symmetric

Suppose not. Then de�ne N-1 step acts:

Act 1: u(f (1)) > u(f (2)), and u(f (2)) = u(f (s)) where s=[2,N]

Act 2: u(f (2)) > u(f (3)), and u(f (2)) = u(f (s)) where s=[1,2], u(f (3)) = u(f (s))

where s=[3,N]

...

Act N-1: u(f (N-1)) > u(f (N)), and u(f (N-1)) = u(f (s)) where s=[1,N-1]

For ith step act,
R
u � fdP = u(f (1))

Pi
1 p(s) + u(f (i+1))

PN
i+1 p(s). In order to match

the value of this integral for any permutation of any step acts, p must follow the same

permutation. Hence the prior set is symmetric at the center of probability simplex. (If the

55This act exists because of the non-degeneracy and continuity of f (s).
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center of symmetry is not the center of probability simplex, we cannot have this permutation

property.)

(b) General multiple prior case

Step 1) The center of probability simplex is in the prior set : Same as above

Step 2) Optimal prior probability and state lottery preference are oppositely comonotonic

Suppose not. 9 act f s.t. f (s) � f (s + 1), p(s) > p(s + 1). De�ne act g which is just

the reorder of these two state lotteries of act f. Then
R
u � fdp =

R
u � gdp0 where p is the

optimal prior for f and p0 is the optimal prior for g. By the de�nition of multiple-priors set:

R
u � gdp �

R
u � gdp0 =

R
u � fdp.R

(u � g � u � f)dp � 0

(u(g(s))� u(f(s)))p(s) + (u(g(s+ 1))� u(f(s+ 1)))p(s+ 1) � 0

(u(f(s))� u(f(s+ 1)))(p(s+ 1) - p(s) ) � 0 (* u(g(s)) = u(f(s0)), u(g(s0)) = u(f(s)))

Hence p(s+ 1) � p(s), which contradicts the assumption.

Step 3) Prior set is symmetric

Suppose not. 9 act f with the optimal prior p. By Step 1 and Step 2, we can rewrite p

= p + ep where p is the center of probability simplex, and ep�1 = 0 and satis�es the property:
if f(sn(1)) > ... > f(sn(N)) then epsn(1) � ... � epsn(N). For the reordered act g of act
f with optimal p0 = p + ep0. Let epg be the permutation of ep associated with the reorder.

243



Then,
R
u � fdp =

R
u � gdp0 implies ep0 = epg + l where l � (u � g) = 0. By assumption (not

symmetric), p00 = p + kepg =2 P if k = 1. Also if k > 1; then
R
u � fdp >

R
u � gdp0. Hence

k < 1. Now by supporting hyperplane theorem, 9 � s.t. � � p00 � � � p000 where p000 2 P .

Since the a¢ ne transformation of the utility function does not change the representation of

preference, we can take � = u � h. Take reorder of h (opposite permutation of f to g), and

call it h0. Then
R
u � hdp00 >

R
u � h0dp (p is not necessarily the optimal prior for h0), which

contradicts the assumption.�

Appendix 4.K: Proof of Lemma 4.5.1:

(a) Translationally homogeneous capacity-based multiple-priors set (4.5.8)

We de�ne the agents�optimization problem by (4.2.15). The reader can easily verify by

investigating its bordered Hessian56 that F.O.C. is necessary and su¢ cient.

First, arrange the optimal consumptions of agent h by ch(!nh(1)) �...� ch(!nh(N)). Now

suppose that there is an agent h whose ch(!nh(i)) > c
h(!nh(i+1)) at e(!nh(i)) < e(!nh(i+1))

57.

Then by optimality conditions with inequality constraints (Constraints are de�ned over the

utility order: ...�uh(ch(!nh(i)))� uh(ch(!nh(i+1)))� ...), and from Condition (4.5.8):

SP (!nh(i))

SP (!nh(i+1))
=
p+ eph

nh(i)
� �hi�1

p+ eph
nh(i+1)

+ �hi

u0h(ch(!nh(i)))

u0h(ch(!nh(i+1)))
< 1

Where ph
nh(i)

stands for the agent h�s prior probability of the state !nh(i) if this state

56 In fact, since the Hessian of Lagurangian is negative de�nite, the second order condition is satis�ed.

57e(!nh(i)) � e(!nh(j+1)) does not change the conclusion.
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utility is i -th position. SP (!nh(i)) is the equilibrium state price for the state !nh(i), and �
h
i�1

is the Lagrange multiplier for the inequality constraint uh(ch(!nh(i�1)))� uh(ch(!nh(i))).

Now by Condition (4.5.7), 9 h0 s.t. ch0(!nh(i)) < ch
0
(!nh(i+1))

58. Arrange the optimal

consumptions for this agents, ch
0
(!nh0 (1)) �...� ch

0
(!nh0 (N)). Now, let n

h0(k)=nh(i), and

nh0(m)=nh(i+1). By assumption, ch
0
(!nh0 (m)) > c

h0(!nh0 (k)). Rearrange the consumptions

so that these consumptions locate as close as possible. Then, the order of consumption

becomes: ...� ch
0
(!nh0 (m)) > .. > ch

0
(!nh0 (k)) � ... Hence, the optimality conditions and

Condition (4.5.8) imply:

SP (!nh(i))

SP (!nh(i+1))
=

p+ eph0
nh

0 (k)
+ �h

0
k

p+ eph0
nh

0 (m)
� �h0m�1

u0h
0
(ch

0
(!nh0 (k)))

u0h0(ch(!nh0 (m)))
> 1

This state price ratio does not match with the state price ratio of agent h, which con-

tradicts the optimality. Hence, 8h, ch(!i) � ch(!j) if e(!i) > e(!j), i.e., the consumption

order is comonotonic to the order of the aggregate endowment 8h. This consumption order

can justify the selection of the most pessimistic prior over the aggregate endowment 8h.

(b) Comonotonically homogeneous uncertainty aversion (4.5.9)

First, by Condition (4.5.7), arrange the aggregate consumption by e(!1) >...> e(!N ).

Then 8i s.t. 1 � i < N, there is an agent h whose ch(!i) > ch(!i+1). Suppose the state

price SP (!i) is higher than the state price SP (!i+1), i.e., SP (!i) > SP (!i+1). Then by

selling the goods at !i and buying the goods at !i+1, agent h can achieve the new allocation

ech(!i) = ch(!i+1), ech(!i+1) = ch(!i), and ech(!j) = ch(!j) for 8j 6= i; i+ 1 with additional
58For the case of e(!nh(i)) � e(!nh(i+1)), by the assumption of c

h(!nh(i)) > ch(!nh(i+1)), the same

argument holds.
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commodity left at !i. Now without commodity left at !i, the new allocation have the same

utility as the original allocation because of the symmetry of prior set (4.5.9). Then by

distributing additional commodities over all states while keeping the utility ratio constant,

the new allocation has a higher utility than the original allocation, which contradicts the

optimality of ch. Hence SP (!i) � SP (!i+1). By repeating the same argument, state prices

must be weakly oppositely comonotonic to the aggregate endowment:

e(!1) > e(!2) > ... > e(!N ) ) SP (!1) � SP (!2) � ... � SP (!N )

Now suppose that all state prices are identical. Then agents can make all consumptions

identical, i.e., ech(!i)= 1
N

PN
1 c

h(!j) 8i, and this allocation is in the budget set. By the strict

concavity of utility function, the new allocation strictly dominates the optimal consumption

for all h with any prior in Ph, so all agents follow the same procedures. However, by (4.5.7),

this allocation does not clear markets. Since at equilibrium, markets must clear, agents do

not choose the optimal allocation under the budget set at the beginning, which violates

the optimality of the Arrow-Debreu equilibrium. So 9 SP (!i) < SP (!i+1). Now, suppose

9h0 s.t. ch0(!k) < ch
0
(!m) where k � i and m � i+1. Then by selling the goods at !m

and buying the goods at !k, agent h0 can achieve the new allocation ech0(!k) = ch
0
(!m),

ech0(!m) = ch
0
(!k), and ech0(!j) = ch

0
(!j) for 8j 6= k;m with additional commodity left at

!m. Again by distributing additional commodities over all states while keeping the utility

ratio constant, this new allocation has a higher utility because of the symmetry of prior set

(4.5.9), which contradicts the optimality of ch
0
. Hence, ch(!k) � ch(!m) 8h where k � i

and m � i+1.

246



Now suppose that there are r (r<N-1) strict inequalities for the state prices. De-

�ne r(i) as the state where SP (!r(i)) < SP (!r(i)+1) and r(i) < r(j) if i < j. Clearly

from the above argument, ch(!k) � ch(!m) 8h where k � r(i) and m � r(j) s.t. r(i) <

r(j), SP (!r(i)) < SP (!r(j)). Now assume that 9r(i) s.t. SP (!r(i�1)+s) = SP (!r(i)) for

s=1 to r(i) � r(i � 1): Following the construction in the previous paragraph: ech(!k) =
1

r(i)�r(i�1)
Pr(i)�r(i�1)
1 ch(!r(i�1)+s) for k s.t. r(i -1)<k� r(i), and keeping ch(!) for other

! as it is. Clearly ech is the budget set. Then by strictly concavity of the utility function,
the new allocation strictly dominates the optimal ch 8h with any prior in Ph. However,

this allocation does not clear markets, which implies that agents do not choose the opti-

mal allocation under the budget set at the beginning. This violates the optimality of the

Arrow-Debreu equilibrium. Hence, 9!k s.t. SP (!k) < SP (!k+1) for r(i -1)<k<r(i).

By repeating this argument, Condition (4.5.7) induces SP (!1) < SP (!2) < ... <

SP (!N ), and this implies ch(!1) � ch(!2) � ... � ch(!N ) 8h. Hence the consumption

order is comonotonic to the order of the aggregate endowment 8h, and this consumption

order can justify the selection of the most pessimistic prior over the aggregate endowment

8h.

In case of e(!i) = e(!i+1), if we assume that 9h s.t. ch(!i) > ch(!i+1), by the argument

above, SP (!i) � SP (!j): However, we must have h s.t. ch(!i) > ch(!i+1), which implies

SP (!i) = SP (!j). Under these prices, ch(!i) 6= ch(!i+1) is not optimal, which contradicts

the optimality of ch. By the same reason, the assumption that 9h s.t. ch(!i) < ch(!i+1)

contradicts the optimality of ch. Hence, ch(!i) = ch(!i+1) 8h: Now the relationship between
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SP (!k) and SP (!k+1) is not clear. However, from the argument above, that among the

states where e(!i) > e(!j); SP (!i) � SP (!j): Keeping ch(!i) = ch(!i+1) 8h and repeat

the above construction of dominating allocations, we conclude that ch(!1) � ch(!2) � ...

� ch(!N ) 8h with equality when e(!i) = e(!j).

(c) Two states with Nested multiple-priors sets (4.5.10)

For two state case, we can rewrite the agent optimization problem as (4.2.15). Following

the proof in (a), arrange the aggregate endowment by e(!1) > e(!2). Now by Condition

(4.5.10), all ph can be written as: ph = p + eph s.t. 9p = (p1,p2) 2 \Ph 2 Ph 8h where eph1
<0 and eph2 >0 when ch(!1) > ch(!2), and eph1 >0 and eph2 <0 when ch(!1) < ch(!2). Now

suppose that there is an agent h whose ch(!1) < ch(!2)
59. Then by optimality conditions

with inequality constraints (Constraints are de�ned over the utility order: uh(ch(!1)) �

uh(ch(!2)):

SP (!1)

SP (!2)
=
p1 + eph1
p2 + eph2 u

0h(ch(!1))

u0h(ch(!2))
(Not binding)

Now by Condition (5.3.1), 9 h0 s.t. ch0(!1) > ch
0
(!2). The optimality conditions and

Condition (4.5.10) imply:

SP (!1)

SP (!2)
=
p1 + eph01
p2 + eph02 u

0h0(ch
0
(!1))

u0h0(ch0(!2))
(Not binding)

By the above construction, we know that
p1 + eph1
p2 + eph2 > p1 + eph01

p2 + eph02
and

u0h(ch(!1))

u0h(ch(!2))
>
u0h

0
(ch

0
(!1))

u0h0(ch(!2))
. Clearly, these state price ratios do not match each other,

which contradicts. Therefore, ch(!1)� ch(!2) 8h, i.e. the consumption order is comonotonic

59e(!1) � e(!2) does not change the conclusion.
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to the order of the aggregate endowment 8h. This consumption order can justify the

selection of the most pessimistic prior over the aggregate endowment 8h. �

Appendix 4.L: De�nition of more-uncertainty-averse-than relation

De�nition 4.L.1:

Agent h0 is more uncertainty averse than agent h if:

(a) uh = uh
0

(b) Ph � Ph0

Proposition 4.L.1:

Under (a), (b) and the following condition are equivalent:

(c) C h
0
(f; u) < C h(f; u) 8f

where C h(f; u) is the certainty equivalent of f for agent h.

Proof:

Suppose that (b) holds. For non-constant act f,
R
u � fdP h0 <

R
u � fdP h ,

R
u � gh0dP h0

=
R
u � fdP h0 ; and

R
u � ghdP h =

R
u � fdP h, where gh and gh0 are constant degenerated

acts, and certainty equivalent of f for agent h and agent h0. Now suppose that (c) and :(b).

Since Ph and Ph
0
are closed and convex sets with PhnPh0 6= �, by separating hyperplane

theorem, 9f s.t.
R
u � fdP h0 >

R
u � fdP h, which contradicts the assumption.�

Appendix 4.M: Strict Concavity of Gh
t�1(x

h
t (!

t�1,�))
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�Ght�1(x
h
t (!

t�1,�)) + (1-�)Ght�1(exht (!t�1,�))
=
R
�uht (x

h
t (!

t�1,�))dP h(!t�1; �) +
R
(1� �)uht (exht (!t�1,�))d eP h(!t�1; �)

�
R
[�uht (x

h
t (!

t�1,�)) + (1� �)uht (exht (!t�1,�))] dP 0h(!t�1; �)
�
R
[�uht (x

h
t (!

t�1,�)) + (1� �)uht (exht (!t�1,�))] dP 00h(!t�1; �)
<
R
uht (�x

h
t (!

t�1,�)+(1-�)exht (!t�1,�)) dP 00h(!t�1; �)
= Ght�1(�x

h
t (!

t�1,�)+(1-�)exht (!t�1,�))
where P (!t�1; �), eP (!t�1; �), P 0(!t�1; �), and P 00(!t�1; �) are the optimal prior for

{uht (x
h
t (!

t�1,�))}, {uht (exht (!t�1,�))}, {[�uht (xht (!t�1,�)) + (1� �)uht (exht (!t�1,�))]},
{uht (�x

h
t (!

t�1,�)+(1-�)exht (!t�1,�))}�
Appendix 4.N: Proof of Proposition 4.6.1

(a) Identical capacity-based multiple-priors sets

For the identical capacity-based multiple-priors sets, agents�optimization can be written

as (4.2.15). Given the results from Lemma 4.4.1 we know that all agents have comonotonic

consumptions to the aggregate endowment process. Now assume a single period economy

with e2(!2;s)=e2(!2;s+1). Other aggregate endowments con�rm the strong order of Condi-

tions (4.4.7). It is clear from the argument of Lemma 4.4.1 that ch2(!2;s) = ch2(!2;s+1) 8h:

Suppose that all equilibrium allocations are �xed. From F.O.C. of (4.2.15):

SP (!2;s�1)

SP (!2;s)
=

p2;s�1
p2;s + �hs

u0h(ch2(!2;s�1))

u0h(ch2(!2;s))
=

p2;s�1
p2;s + �h

0
s

u0h
0
(ch

0
2 (!2;s�1))

u0h0(ch
0
2 (!2;s))
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SP (!2;s)

SP (!2;s+1)
=

p2;s + �
h
s

p2;s+1 � �hs
u0h(ch2(!2;s))

u0h(ch2(!2;s+1))
=

p2;s + �
h0
s

p2;s+1 � �h0s
u0h

0
(ch

0
2 (!2;s))

u0h0(ch
0
2 (!2;s+1))

SP (!2;s+1)

SP (!2;s+2)
=
p2;s+1 � �hs
p2;s+2

u0h(ch2(!2;s+1))

u0h(ch2(!2;s+2))
=
p2;s+1 � �h

0
s

p2;s+2

u0h
0
(ch

0
2 (!2;s+1))

u0h0(ch
0
2 (!2;s+2))

where �hs is the Lagrange multiplier from the constraints uh2(c
h
2(!2;s)) � uh2(ch2(!2;s+1)).

Note that from the second equation,
p2;s + �

h
s

p2;s+1 � �hs
=

p2;s + �
h0
s

p2;s+1 � �h0s
, which implies �hs = �h

0
s :

In order to keep the wealth level constant,

gSP (!1; !2;s)eh2(!1,!2;s) +gSP (!1; !2;s+1)eh2(!1,!2;s+1)
= SP (!1; !2;s)eh2(!

1,!2;s) + SP (!1; !2;s+1)eh2(!
1,!2;s+1)

where SP is the original state price andgSP is the new state price. Note that we keep

other state prices unchanged. The above equality implies:

k(p2;s + �
h
s )u

0h(ch2(!2;s))e
h
1(!

1,!2;s) + k(p2;s+1 � �hs )u0h(ch2(!2;s+1))eh2(!1,!2;s+1)

= ku0h(ch1(!2;s))[(p2;s + �
h
s ) + (p2;s+1 � �hs )]eh2(!1,!2;s)

= ku0h(ch1(!2;s))[p2;s + p2;s+1]e
h
2(!

1,!2;s)

= ku0h(ch1(!2;s))[(p2;s +
f�hs ) + (p2;s+1 �f�hs )]eh2(!1,!2;s)

= k(p2;s +f�hs )u0h(ch2(!2;s))eh2(!1,!2;s) + k(p2;s+1 �f�hs )u0h(ch2(!2;s+1))eh2(!1,!2;s+1)
where �hs is the original Lagrange multiplier and

f�hs is the new one60, k is a common
factor which was cancelled by taking state price ratio. Clearly, the wealth level stays the

same, and the original consumptions are feasible and satisfy F.O.C.s. Since �hs ;
f�hs 2 [0,

60 In fact, from the second equation, we know that e�hs = e�h0s :
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jp2;s+1 � p2;sj], we prove the existence of a continuum of equilibrium prices for the �xed

optimal allocation {ch2(!2;s)}.

For the general case where e2(!2;s)=e2(!2;s+j) for j=1 to J, from F.O.C. of (4.2.15):

SP (!2;s+k)

SP (!2;s+k+1)
=

p2;s+k � �hs+k�1 + �hs+k
p2;s+k+1 � �hs+k + �hs+k+1

u0h(ch2(!2;s+k))

u0h(ch2(!2;s+k+1))

=
p2;s+k � �h

0
s+k�1 + �

h0
s+k

p2;s+k+1 � �h
0
s+k + �

h0
s+k+1

u0h
0
(ch

0
2 (!2;s+k))

u0h0(ch
0
2 (!2;s+k+1))

Clearly
PJ
0 (��hs+k�1 + �hs+k) = 0 (* �hs�1 = 0; �hs+J = 0). Now take �hs+k = �h

0
s+k

61.

Then the original consumptions are optimal for this selection, and since we can take �hs+k 2

[0, maxi;j jp2;s+i�p2;s+j j], there is a continuum of equilibria for the �xes optimal allocations.

(b) Heterogeneous capacity-based multiple-priors sets (THCB)

For heterogeneous capacity-based multiple-priors sets, again from the argument in Sec-

tion 4.6.2, we must consider two issues: constant wealth level and F.O.C.s. Clearly for the

former condition, by the same reason in the identical capacity-based multiple-priors set, we

need eh2(!2;s) = e
h
2(!2;s+1) 8h for the states where state prices are going to change. e2(!2;s)

= e2(!2;s+1) also implies ch2(!2;s) = ch2(!2;s+1) 8h. Now we need to investigate F.O.C.s.

From (4.2.18):

SP (!2;s�1)

SP (!2;s)
=
ph2;s�1
ph2;s

u0h(ch2(!2;s�1))

u0h(ch2(!2;s))
=
ph

0
2;s�1
ph

0
2;s

u0h
0
(ch

0
2 (!2;s�1))

u0h0(ch
0
2 (!2;s))

SP (!2;s)

SP (!2;s+1)
=

ph2;s

ph2;s+1

u0h(ch2(!2;s))

u0h(ch2(!2;s+1))
=

ph
0
2;s

ph
0
2;s+1

u0h
0
(ch

0
2 (!2;s))

u0h0(ch
0
2 (!2;s+1))

SP (!2;s)

SP (!2;s+1)
=
ph2;s+1

ph2;s+2

u0h(ch2(!2;s+1))

u0h(ch2(!2;s+2))
=
ph

0
2;s+1

ph
0
2;s+2

u0h
0
(ch

0
2 (!2;s+1))

u0h0(ch
0
2 (!2;s+2))

61Agents can choose any prior as long as it clears the markets.
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Fixed allocations and probability for other states. From the second equation:

(4.N.1)
ph2;s

ph2;s+1
=

ph
0
2;s

ph
0
2;s+1

) ph
0
2;s = p

h
2;s

ph
0
2;s+1

ph2;s+1
and ph

0
2;s+1 = p

h
2;s+1

ph
0
2;s

ph2;s

Now move the probability between these states slightly.62 Then the new state prices

must satisfy the same F.O.C.s as above. De�ne [eph2;s; eph2;s+1] = [ph2;s+ "h; ph2;s+1� "h] be the
new probability for agent h and [eph02;s; eph02;s+1] = [ph02;s+"h0 ; ph02;s+1� "h0 ] be the new probability
for agent h0: From the second equality,

(4.N.2)
eph2;seph2;s+1 = eph02;seph02;s+1 ) eph02;s = eph2;s eph02;s+1eph2;s+1 and eph02;s+1 = eph2;s+1 ep

h0
2;seph2;s

Now in order for the �rst equation of F.O.C.s to hold, from (4.N.1) and (4.N.2):

eph02;s+1eph2;s+1 = ph
0
2;s+1

ph2;s+1
)
ph

0
2;s+1

ph2;s+1
=
ph

0
2;s+1 � "h

0

ph2;s+1 � "h
) "h

0
= "h

ph
0
2;s+1

ph2;s+1

Clearly this construction is possible for all other agents h0. Then in order for the third

equation of F.O.C.s to hold, from (4.A.1) and (4.A.2):

eph02;seph2;s = ph
0
2;s

ph2;s
)
ph

0
2;s

ph2;s
=
ph

0
2;s + "

h0

ph2;s + "
h
) "h

0
= "h

ph
0
2;s

ph2;s

Since
ph

0
2;s+1

ph2;s+1
=
ph

0
2;s

ph2;s
from (4.N.1), the same probability which satis�es the �rst equation

of F.O.C.s solves the third equation of F.O.C.s. Hence there is continuum of the new

probability assignment which satisfy the original F.O.C.s. In addition, since eph2;s + eph2;s+1
= ph2;s + "

h + ph2;s+1� "h = ph2;s + ph2;s+1, the original consumptions are feasible and on the

budget line. Hence we prove a continuum of equilibrium prices for the �xed allocations.

62Again, from Section 4.2.3, only the probabilities of consective states (identical consumptions) change.
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For the general case where e2(!1,!2;s)=e2(!1,!2;s+j) for j=1 to J. From F.O.C. of

(4.2.18):

SP (!2;s)

SP (!2;s+j)
=

ph2;s

ph2;s+j

u0h(ch2(!2;s))

u0h(ch2(!2;s+j))
=

ph
0
2;s

ph
0
2;s+j

u0h
0
(ch

0
2 (!2;s))

u0h0(ch
0
2 (!2;s+j))

Clearly,

(4.N.3)
ph2;s

ph2;s+j
=

ph
0
2;s

ph
0
2;s+j

) ph
0
2;s = p

h
2;s

ph
0
2;s+j

ph2;s+j
and ph

0
2;s+j = p

h
2;s+j

ph
0
2;s

ph2;s

Fix the equilibrium allocations and the probabilities of the states where the aggregate

endowments are not same. De�ne [eph2;s; eph2;s+j ] = [ph2;s + "
h
s ; p

h
2;s+j+ "hs+j ] to be the new

probability for agent h and [eph02;s; eph02;s+j ] = [ph02;s+"h0s ; ph02;s+1+ "h0s+j ] to be the new probability
for agent h0: By the same construction as (4.N.2):

(4.N.4)
eph2;seph2;s+j = eph02;seph02;s+j ) eph02;s = eph2;s eph02;s+jeph2;s+j and eph02;s+j = eph2;s+j ep

h0
2;seph2;s

From (4.N.3) and (4.N.4):

eph02;s+jeph2;s+j = ph
0
2;s+j

ph2;s+j
)
ph

0
2;s+j

ph2;s+j
=
ph

0
2;s+j � "h

0
s+j

ph2;s+j � "hs+j
) "h

0
s+j = "

h
s+j

ph
0
2;s+j

ph2;s+j

Combining all F.O.C.s, "h
0
= "h~�h0 where "h and "h0are the perturbations of the prior

probabilities and ~ de�nes the element-wise multiplication. Clearly �h0 = [
ph

0
2;s

ph2;s
;
ph

0
2;s+1

ph2;s+1
; ...,

ph
0
2;s+J

ph2;s+J
]. Repeated application of (4.N.3),

ph
0
2;s

ph2;s
=
ph

0
2;s+j

ph2;s+j
8j = 1; J and 8h: This result im-

plies that "h
0
= "h �

ph
0
2;s

ph2;s
, where "h � 1 = "h

0 � 1 = 0. Hence we can de�ne the probability

perturbations for each agent which satisfy the original F.O.C.s, and the original consump-

tions are feasible and on the budget line. Hence we prove a continuum of equilibrium prices

for the �xed allocations. �
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