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Abstract

Harsanyi (1967/68) introduced higher order belief types in order to cap-
ture all possible uncertainty of Bayesian players about payoffs, other play-
ers’ beliefs about payoffs, and so on. It is natural to say that two such
higher order belief types are close if they behave similarly in strategic sit-
uations and obtain similar outcomes. I argue that all the types in most of
the type spaces studied in the economics and game theory literature are
nongeneric with respect to this strategic topology on higher order belief
types. For example, all the types in finite type spaces where players’ beliefs
are derived from a common support and all the types in continuum type
spaces with uniformly bounded densities belong to a nongeneric set.

1. Introduction

Economists usually represent incomplete information by assuming a fixed set of
types for each player. Each type has beliefs about states of the world and other
players’ types. Each mapping from a player’s types into beliefs over states of the
world and other players’ types are informally assumed to be common knowledge.

*I am grateful for valuable discussions on this material with Dirk Bergemann, Ed-
die Dekel, John Geanakoplos and Bart Lipman. Updated versions will be available at
http://www.econ.yale.edu/"sm326/typical .pdf.



A natural question to ask is: what are reasonable assumptions to impose on
players’ beliefs in this setting?

One response is to assume that players’ beliefs are derived from a common
prior on the fixed type space and to assume the common prior is “generic”.’ This
is a sensible view to take if one takes literally the view that type sets and common
prior are publicly revealed to the players.

However, one standard justification for assuming common knowledge of the
type sets and their beliefs over others’ types is Harsanyi’s (1967/68) argument
that there is a canonical way of representing players’ possible types that makes
the common knowledge assumptions vacuous. Harsanyi proposed that a player’s
type should be a description of his beliefs about states of the world (payoff-relevant
events), his beliefs about other players’ beliefs about states of the world, and so
on.

With this canonical representation of types, the fixed type spaces often studied
in economics can be understood as subsets of the space of all possible higher order
belief types. It is natural to ask if the standard type spaces are “representative”
(or “generic”, or “typical”) of higher order belief types as a whole. In order to do
this, one must ask what is a natural topology to impose on the higher order belief
types. A mathematically natural topology to employ is the product topology:
a sequence of higher order belief types converges if each level of higher order
beliefs converges.? This implies that what happens in the tail of the sequence of
higher order beliefs does not much matter. But if one is interested in type spaces
to study strategic problems, it is natural to say that two types are close if they
behave similarly and /or obtain similar outcomes in a variety of strategic problems.
The one consistent lesson from the whole literature on strategic behavior and
higher order beliefs is that tails do matter. In other words, there is a large
difference between an event being common knowledge and that event being mutual
knowledge to some large finite level.?

But there is nothing about the assumption of Bayesian rationality that limits
the tail behavior of higher order beliefs. To illustrate this point, consider the
simple case where there are two states of the world, 0 and 1, and two players, 1
and 2. We can ask what is player 1’s expected value of the state; what is player 1’s
expectation of player 2’s expectation of the state; what is player 1’s expectation
of player 2’s expectation of player 1’s expectation of the state; and so on. This
will generate a sequence of numbers between zero and one. Any higher order
belief type of player 1 can thus be mapped into such sequences. In section 2, we

IThis approach is quite common in the literature. See, for example, Cremer and McLean
(1988).

2This topology is employed in this context by Mertens and Zamir (1985) and Lipman (2001).

3 As in, for example, Geanakoplos and Polemarchakis (1982) and Rubinstein (1989).



will describe a class of games where two types will behave similarly and obtain
similar outcomes if and only if they are close in the uniform topology of higher
order expectations, i.e., if the supremum of the differences between their higher
order expectations is small. In section 3, we will show that any sequence of higher
order expectations might emerge on common knowledge type spaces. However,
most standard common knowledge type spaces studied in the economics literature
have the property that such higher order expectations converge either to a point
or to a cycle. This includes finite type spaces and continuum type spaces with
uniformly bounded densities.

An interpretation of this result, a discussion of related literature and conclu-
sions are postponed to a final section.

2. The Uniform Topology on Higher Order Expectations

2.1. The Higher Order Belief Types

Consider a two player higher order belief type space construction with two payoff
relevant states, S = {0,1}. A player’s first order belief is his belief about the
states, S. His second order belief is his belief about the states S and the first
order belief of the other player. His nth order belief (for any n > 2) is his belief
about the states S and the (n — 1)th belief of the other player. A type of a player
specifies his nth order beliefs, for all n > 1, with the property that beliefs at
different levels are coherent: for any n, beliefs at two different levels higher than
n, projected onto the space of beliefs about states S and the nth level beliefs, are
always the same. Formally, write A (X) for set of probability measures over the set
X. Atypet = (61,62,....) € X2 A (X,,), where Xo = S and X,, = S X A (X,,_1).
Write T for the set of coherent types.

2.2. Higher Order Expectations Types

Here we describe one very simple notion of closeness of types that is easy to
visualize. For each type t, let £, (t) be the nth order expectation of s € S. Thus

El (t) is type t’s expected value of s; &, () is type t’s expected value of the other

player’s expected value of s; &, (t) is type t’s expected value of the other player’s
expected value of his expected value of s; and so on. Thus if ¢ = (61,6, ....),

& (t) = & (81) =61 [{1}]

(1) = &(8,) = / £ (6)db,

(5,61)€{0,1} xA({0,1})



L0 = L= [ G )d

(5,6, 1) ESXA(Xp )

Thus R
£:T — 0,1

While universal types are nasty objects, we may sometimes be able to focus on
such iterated expectations represented by a sequence of numbers between 0 and

1.

2.3. The Uniform Topology

Now one natural topology on types is generated by applying the uniform topology
to the projection of T onto [0,1]™. Thus we have pseudo-metric d with

o~

a(1,0) =sup £, (0 &, (0)].

We write t¥ —¢ ¢ if d (tk, t) — 0. We refer to the induced topology as the uniform
topology on higher order expectations.

2.4. The Higher Order Expectations (HOE) Game

We will consider a particularly simple game where it is possible to characterize
behavior as a function of higher order beliefs. The game parameterized by

n=0

A€ {)\:()\0,)\1,....)eRf+:Z)\n:1} = A. (2.1)

Each of two players picks an action a; € [0,1]™. Player i’s payoff is
U; (CLZ‘, aj, S) = —)\0 (aﬂ — S)2 - Z )\n (ai,n+1 - ajn)2 .
n=1

Now consider the incomplete information game, where payoffs are parameterized
by A € A and players’ higher order beliefs about s are described by their universal
types. A pure strategy in this game is a function o : T" — [0, 1], This game has a
unique equilibrium where (independent of A € A) each player sets his action equal

~

to & (t). In fact, this is the unique strategy profile surviving iterated deletion of
strictly dominated strategies, since by induction on n, we have that if pure strategy
o survives n rounds of iterated deletion, then oy (t) = &, (¢) for all k < n.



2.5. The Strategic Topology for the HOE Game

Define the strategic distance between two types t, ' to be the maximum loss of
expected utility if type ¢ behaves as if he is type t' (or vice-versa). Formally,
writing @ (a,t, A) for the expected utility of a type ¢ player who chooses action
a in the A-game, when he expects his opponent to follow his (unique) optimal
strategy,

o0

U(a,t,A) ==Y 61(s) o (a1 — 5)° Z/ (anﬂ_gn(éb)?d(sw(t),

ses 1(5% s)

and d* (A, t,1') for the difference in expected payofl if ¢ behaves as if he is type t/,
instead of following his optimal strategy,

d* (Nt t) = w (), 6, N) —u; ()t N,
the strategy distance between a pair of types is

d (t,t') = sup (max {d" (ALt d* (A, 0)}).
AEA

2.6. Result

Now we show that the strategic topology for the HOE game is the iterated expecta-
tions topology. This is an easy implication of the following exact characterization

of d** (¢,t'):

Lemma 2.1. d** (t,¢') = sup (£, (t) =&, ()%
n=1,2,...

PROOF. If a player is of type t, his expected payoff to following his optimal
action is

URSTEES SUACE GYCEN I D ISW GRURIACA) RUNNGS

seSs n= 1(5% s)

His expected payofl to behaving as if he were type t' is

BEW) 1N == Y61 () d (& (1)~ 5) Z [ G -6 e) donn 0.

ses (57,4 s)



Recall that El (t) is the expected value of s under 6 () and each En 41 () (for

n > 1) is the expected value of En (67) under 8,11 (t), when &, is the belief of the
opponent; and recall that for any random variable £ with expectation T,

E@—-c¢)’=@—-¢)’+EE-7).
Thus

(o (&) -s)

(6O -6 0)
=3 T A (G ()~ & (50) b (1)

n= 1(5// s)

=S (G =)

u(€), ) =

\

o~

R B GIGEA0)) j{jlx (o )~ Ea )
This in turn implies that
PO = BEW) LN W)Y
_ AO(El(t’ s t) +ZA (nﬂ (t) §n+1(t))2

= d*(\1)0)
So
= (t,t') = ilelllz (max {d* (\,t,t') ,d" (\, 1, 0)})
= i{gj_}{z ()\0 (£1< 1 t ) +Z)\ ( n+1 _£n+1 (t)) )
= s (5 (1)=&, O

Now we immediately have

Proposition 2.2. The uniform topology on higher order expectations and the
strategic topology are the same.

This says that two types’ expected utility is almost the same in the higher order
beliefs game if and only if they are close in the iterated expectations topology.
Of course, it is also clear that their optimal actions are also close (in the uniform
closeness sense) if and only they are close in the iterated expectations topology.
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2.7. Some Properties of “Typical Types”
Let

Ty = {t el:dzxe [0,1]N such that EnNer (t) — xm as n — oo, for each m = 1,...,N}

Thus R
T = {tET:Ela:E [0,1] such that &, (%) —>a:asn—>oo}

Thus T% is the set of types whose higher order expectations converge to N-cycles.
Samet (1998) has shown that all types derived from finite type spaces where the
common prior holds belong to T}. This will also be true for types drawn from
continuum type spaces with common prior characterized by a uniformly bounded,
continuous density (Morris (2002)).

Without the common prior, all types derived from finite type spaces with
common support priors will belong to Ti. This will also be true for types drawn
from continuum type spaces where each player’s prior is given by a uniformly
bounded continuous density (Morris (2002)).

Clearly, the set Ty will be non-generic in the space T under the uniform topol-
ogy on higher order expectations, under any formal topological or probabilitistic
notion of genericity. We will check that this is true for one simple topological
notion of genericity. We will show that T3 is a closed set while the complement

of Ty is dense in T
Proposition 2.3. (1) Ty =Ty; (2) T/Ty =T

PROOF. (1) Let t* € Ty and t* —, t. The former implies that exists z* > 0
such that &,, (tk> — 2% as n — co. Without loss of generality, we can assume
¥ — 2% as k — oo. The latter implies that EQn (tk> — EQn (t)‘ < &F for all n

(where ¥ — 0). Now for all k,

Now for any § > 0, choose k such that £f < 3
choose N such that EQn (tk> — k| < %6 for all n > N. By (2.2),

< %6 and then

— x| <é

EQn <t>

for all n > N. Thus EQn (t) — a* as n — oco. A similar argument shows that

EQn 11 (t) also converges as n — oo.



(2) Let t € Ty, so that E% (t) — z} and E2n+1 (t) — 23 as n — co. Let ¥ — 0
and consider a type t* with

E B max (a:{ + &", 1) , if n is even
2n< ) - min <$T—5k70>7if7’bis odd

max <a7§ + £F, 1) , if n is even

2> k
and §opnyq (t ) = { min (a:§ — 5k70> , if n is odd

By construction, t* — t as k — oo, but each t* ¢ T.

Thus we conclude that all of the types in most of the type spaces studied by
economists are not generic according to any notion of genericity based on strategic
closeness.

We should finally note that finite spaces even without the common support
assumption generate types in Tx, where NN is twice the number of types of the
player (this can be shown using the arguments in Morris (2002)). Since one could
presumably also show that the set of types ]Lé T’Y 1s nongeneric, we have that all

finite types belong to a nongeneric set.

3. Example

For any = € [0, 1], we exhibit a common knowledge discrete type space containing
a type t with £ (t) = x. Tet Ty =Ty = {1,2,....}; S = {0,1}. Let player 1’s prior
be given by

abrk ifty =ty =kand s =1
Py ((t1,t2,8)) = of (L—at),ifty =1y =kand s =0
0, otherwise
bk ifty=k ty=k+1land s=1
Py ((ti,t2,8) = < o (1—nk),ifto=k t1=k+1lands=0
0, otherwise

where each ¥ € [0,1], each of € (0,1) and

o0

E _
E o = 1.
k=1

Tet
1,ifs=1

* / _ 5
X<hk£%_{&ﬁs:0



Writing F; (X) for i’s expectation of random variable z, we have

k

*

Ey (X™)[(k,K',s)] = m
Ei By (X*) (kK s)] = =
E By By (X*) (kK s)] = ot
BBy BBy (XY [(k, K, 8)] = wht!
and, by induction,
(B Ey)" By (X*) (kK s)) = aftn
(BLE)" (XY [(k, K, s)] = aptm

forall n > 0. So

= _(t1 to _t14+1 _to+1

£<t1) - <7T1 Ty, Ty 5 Ty 7)

Since 7, and 7y can be chosen arbitrarily, we have shown that any sequence of
higher order expectations can arise on a common knowledge type space.

4. Discussion and Conclusion

4.1. An Interpretation of the Result

Under any natural strategic topology on higher order belief types, the types usu-
ally studied in the economics and game theory literature are atypical. What are
the practical implications of this claim?

First, arguments that “typical types” can be identified by fixing a type space
and picking a “generic” prior on the space make no sense if we think type spaces
are trying to capture incomplete information.

Second, consider Harsanyi’s (1967/68) hope that incomplete information could
incorporated without loss of generality by looking at the space of higher order
belief types. It is occasionally argued that Mertens and Zamir’s (1985) observation
that finite types are dense in the set of higher order belief types, under the product
topology, justifies the assumption of finite type spaces without loss of generality.
This makes no sense: by using the product topology as a notion of closeness, one is
merely assuming that the tails of higher order beliefs do not matter. The general
point is that the type spaces actually studied - including finite type spaces - are
not at all representative of all higher order belief types. If one wants to restrict
attention to such well-behaved type spaces, one should be clear that apparent
“technical” or “tractibility” assumptions are devices to build in the substantive
content of the common knowledge assumption. Finite types and continuum types
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with bounded densities, may be interesting models to study. But it would be
preferable to upfront and explicit about the common knowledge assumptions in
our type spaces.

Third, although it will often be impossible to work with the space of all pos-
sible higher order beliefs, it is sometimes possible to find type spaces that are
tractible and yet capture typical properties of higher order belief types. Two ex-
amples illustrate this point. First, coordination problems have interesting features
when players are well informed about payoffs but do not have approximate com-
mon knowledge of payoffs (Rubinstein (1989), Carlsson and van Damme (1993),
Morris and Shin (1998, 2000)). The information structures giving rise to a large
divergence between first order belief and common belief look extreme and con-
trived to some, viewed from the small type / asymmetric information perspective.
However, they have tails that matter and thus seem more natural higher order
belief type perspective. Second, a crucial property in mechanism design is the be-
lief extraction property: if one knows a player’s beliefs about other players’ types,
one can deduce that player’s beliefs over payofl relevant events (see, e.g., Cremer
and McLean (1988)). This property holds for “generic” priors over a fixed finite
type space, but nonetheless fails on the universal type space (Neeman (1999) and
Bergemann and Morris (2001)). Neeman (1999) proposed a tractable, finite type
space failing the belief extraction property for use in mechanism design.

4.2. Implications for the Universal Type Space Construction?

Mertens and Zamir (1989) and extensions show that if some topological structure
is imposed on the construction of higher order belief types, the construction “clos-
es” in the following sense. There exists a homeomorphism f : T — A (S x T)),
such that for any type t = (61, 62, ....), the belief f (t) € A (S x T') correctly repro-
duces all the finite level beliefs. For example, Brandenburger and Dekel (1993)
show how this is a corollary of Kolmogorov’s Existence Theorem if the belief
spaces are Polish spaces (complete separable metric spaces).

This construction uses the product topology on higher order belief types. The
product topology is not natural if one is interested in using the construction to
study strategic problems. The arguments in this note certainly have implications
for the interpretation of the universal type space of Mertens and Zamir (1985).
For example, the continuity of f is with respect to the strategically irrelevant
product topology. We would like to pursue these implications in later work. How-
ever, the argument in this note do not depend on whether the higher order beliefs
construction closes. This note restricts attention to countable hierarchies of be-
liefs and games where countable hierarchies are certainty sufficient to characterize
rational behavior.
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4.3. A General Strategic Topology

The strategic topology constructed in this note was illustrative. It sufficed to
make the genericity arguments we wanted to make. However, it would obviously
be interesting to provide a general construction. Here, we briefly discuss some
issues that arise.

The two players and two payoff-relevant states were notationally convenient,
but presumably not too important. The main issue is what happens if we define
strategic closeness using other games or classes of games. This is discussed in the
next section. Then we discuss what topologies might result.

4.3.1. Alternative Games

The particular game chosen to generate the strategic topology is complicated (the
action space is [0,1]) and is more than a little contrived to deliver the right
results. One would like to show similar strategic topologies would be generated
(1) if simpler, more intuitive, games were substituted for the HOB game; and (2)
if natural classes of games were studied instead. We discuss these two questions
in turn.

A Continuum Action Coordination Game A game is parameterized by
A € [0,1). Each of two players picks an action a; € [0,1]. Player i’s payofl is

u; (a5,a5,8) = — (1= A) (a; — 8)* — A (a; — a;)°.

Morris and Shin (2001) show that the optimal action is this game for type t is to

set his action equal to

Yo =NATE ().

n=1
Employing the same notation as above, the expected utility of a type ¢ player
who chooses action a in the A-game, when he expects his opponent to follow his
(unique) optimal strategy,

ses n=1

U(a,t,A) == (1=X)) 61(s) (a—s)"=\ / <a = a-nart, (t”)) df (t),
(t",9)

where f () is the belief of type t over the (s,t"), where t” is the type of the other
player. Now

o0

IO =3 =N (€0 -6,()

n=1
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so the strategy distance between a pair of types is

o 2

0= me (S0-0e G£0-60))
xefo,l)  \ o=y

This is a weaker topology than the iterated expectations topology, but still is

highly sensitive to what happens in the tail of the iterated expectations.

Both this game and the higher order expectations game have the feature that
for any fixed A, we can choose N such that beliefs above level N do not effect
strategic outcomes too much. In other words, the order of quantifiers becomes
crucial. One can also show that in a binary action coordination game, in the spirit
of Rubinstein (1989), the dependence of arbitrarily high beliefs will hold in a fixed
game. However, in order to analyze that game, it is necessary to consider whether
the countable additive hierarchies of beliefs exhaust players’ uncertainty (i.e., the
question addressed by Mertens and Zamir (1985)) and we have been trying to
bypass that issue in this note.

A Class of Games The right way to define strategic closeness would be to fix a
class of simple games (say, with finite actions and bounded utility), and say that
two types are close if they behave similarly and obtain similar outcomes in almost
all games. In such a definition, one would need a solution concept from rational
behavior. Of course, this was sidestepped in the examples above by focussing on
games where there was a unique rationalizable outcome, always. Presumably, the
most natural thing to do would be to look at the set of rationalizable behavior
for each type and each game and use a set-based notion of similar behavior.

4.3.2. Alternative Topologies

The special feature of games described in this note was that, because of linearity,
only higher order expectations, and not the whole of higher order beliefs, were
important in explaining players’ behavior. In general, the whole structure of
higher order beliefs will matter. Monderer and Samet (1996) and Kajii and Morris
(1997) describe strategic topologies for fixed state spaces (the former fixes beliefs
and varies partitions, while the latter fixes partitions and varies beliefs). In the
latter case, the strategic topology is stronger than the weak topology on priors but
is weaker than the topology of uniform convergence of conditional probabilities.
By analogy, the strategy topology on higher order belief types for a general class of
games is probably weaker than requiring uniform closeness of beliefs at all levels.
However, it will be stronger than the uniform topology of higher order expectations
in this note. Of course, those types that are nongeneric in the uniform topology

12



of higher order expectations would continue to be nongeneric in the stronger
topology.
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