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1.Introduction

Economic models estimated on data from one context are often used to guide predictions and

policy in a range of other contexts. For example, a model of information diffusion estimated on

data of microfinance takeup in one Indian village may be used to guide policy decisions about

the seeding of microfinance in another village, and a model of risk preferences estimated on

willingness-to-pay data for certain lotteries may be used to predict willingness-to-pay for new

lotteries. How can the generalizability of a model to new settings be assessed and predicted?

The generalizability of models is a classic concern in economics (Haavelmo, 1944; Chassang and

Kapon, 2022; DellaVigna and Pope, 2019), but has a new importance due to the increased popularity

of “black-box” machine learning prediction methods. Machine learning methods have been shown

to out-predict economic models (Hartford et al., 2016; Plonsky et al., 2019; Hofman et al., 2021) and

identify new interpretable regularities that existing models do not capture (Fudenberg and Liang,

2019; Peterson et al., 2021; Ludwig and Mullainathan, 2023). At the same time, many believe that

structured economic models capture regularities that generalize well across domains, and are more

reliable for making predictions in new contexts (Coveney et al., 2016; Athey, 2017; Beery et al.,

2018; Manski, 2021). Whether economic models in fact generalize better is an empirical question.

Our paper’s contribution is twofold. First, we provide a tractable approach for evaluating

cross-domain transfer performance based on techniques that generalize conformal inference (e.g.

Vovk et al., 2005; Barber et al., 2021; Angelopoulos et al., 2022). In our statistical model, behavior

in different economic contexts is governed by different distributions, which are themselves drawn

i.i.d. from a fixed but unknown meta distribution.1 Under this assumption, we derive finite-sample

forecast intervals for a large class of measures of transfer performance; these intervals can be used

to evaluate economic models, regression models, and black box algorithms alike.2 Second, we use

these forecast intervals to compare the generalizability of economic models and black box machine

learning methods in a specific economic application (predicting certainty equivalents for lotteries)

and find that economic models generalize better.

Our conceptual framework, described in Section 2, is an extension of the familiar notion of “out-of-

sample” evaluation to “out-of-domain” evaluation. In the standard out-of-sample test, a model’s free

1Section 3.2 and Appendix R.1 relax the i.i.d. assumption.
2 We use the term “forecast interval,” rather than “confidence interval,” to reflect the random nature of the target,
namely the realized (rather than expected, median, etc.) transfer error, but they can also be viewed as confidence
intervals for these random targets.
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parameters are estimated on a training sample, and the predictions of the estimated model are evalu-

ated on a test sample, where the observations in the training and test samples are disjoint but drawn

from the same distribution. We depart from this framework by supposing that the distribution of the

data varies across a set of “domains,” where these domain-specific distributions are drawn i.i.d. from

a meta-distribution. As Section 2 explains, our results apply to a large class of measures for the trans-

ferability for a model, which we call transfer errors. Transfer errors can be used to evaluate the per-

formance of many common empirical techniques, including using a model that is trained on a sample

from one domain to predict in a sample from an as-yet unobserved domain, and asking whether a

qualitative prediction based on estimated parameters from one sample will generalize to another.

Section 3 shows how to construct forecast intervals with guaranteed coverage probability for any

transfer error, using a meta-data set of samples from already observed domains. Our approach

is to split the observed domains in the meta-data set into training and test domains, estimate the

parameters of the model on the samples from the training domains, and evaluate its transfer error

on each of the test domains. Pooling these transfer errors across different choices of training and

test domains yields an empirical distribution of transfer errors. We show that for every quantile

τ , the interval bounded by the τ-th and (1−τ)-th quantiles of the pooled transfer error is a valid

forecast interval for the transfer error on a new, unseen domain (up to a finite-sample correction).

We also relax the i.i.d. sampling assumption, deriving a modified procedure for cases where the

distributions in training domains are drawn i.i.d. from one distribution, while the distribution in

the target domain is drawn from another. Both procedures (and all other methods described in

this paper) are implemented in an R package (transferUQ), available on Github.3

Section 4 applies these procedures to compare the transferability of economic models and black

box algorithms in a classic economic problem: predicting certainty equivalents for binary lotteries.

The samples correspond to observations from different subject pools, so a model’s transfer error

describes how well it predicts outcomes in one subject pool when estimated on data from another.

We evaluate two models of risk preferences, expected utility and cumulative prospect theory, and

two popular black box machine learning algorithms, random forest and kernel regression. We

find that although the black box algorithms outperform the economic models out-of-sample when

trained and tested on data from the same domain, the economic models generalize more reliably

across domains. Specifically, while the forecast intervals for the black box algorithms and economic

3https://github.com/lihualei71/transferUQ
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models overlap, the forecast intervals for the black box methods are wider, and their upper bounds

are substantially higher.

Why do the black boxes perform worse at transfer prediction in this setting? A natural

explanation, based on intuition from conventional out-of-sample testing, is that black boxes are

very flexible and hence learn idiosyncratic details that do not generalize across subject pools. But

when we restrict the analysis to a subset of samples involving the same set of lotteries, the resulting

forecast intervals are nearly identical across all of the prediction methods. This tells us that black

box methods do not always transfer worse. Instead, black boxes seem to transfer worse when the

primary source of variation across samples is a shift in the marginal distribution over features (i.e.,

which lotteries appear in the sample), rather than a shift in the distribution of outcomes conditional

on features (i.e., the distribution of certainty equivalents given fixed lotteries). We find further

evidence for this when we consider an alternative definition of the domains, where the transfer

task corresponds to training on some lotteries and predicting for others. Here the improvement of

the transfer performance of economic models over black box algorithms is even larger than in our

main analysis. Taken together, these results suggest that the crucial difference between economic

models of risk preferences and black box algorithms is not that one is more flexible than the other,

but rather that economic models do a better job of relating behavior across lotteries.

1.1. Related Literature. Although our results apply for a broad class of definitions of transfer

error, our primary motivation is evaluating how well an economic model estimated on data from

one domain predicts in another. Hofman et al. (2021) gives an in-depth argument for why this

important, calling for more work on the question “how well does a predictive model fit to one data

distribution generalize to another?” for social science models. This is exactly what we consider.

Predictive accuracy is not the only criterion that matters for evaluating models, but it has a

central role in experimental economics. As discussed by Harless and Camerer (1994), the poor

predictive performance of expected utility theory was a primary motivation for the development

of alternative models in behavioral economics, and both Harless and Camerer (1994) and Hey

and Orme (1994) provide early assessments of alternative theories on the basis of predictive

performance. More recently, several papers have evaluated how well the predictions of economic

models transfer across domains. For example, Külpmann and Kuzmics (2022) estimates various

game-theoretic models on 2×2 normal-form games and evaluates their predictive performance

on 3×3 normal-form games; Natenzon (2019) estimates discrete choice models on data for four
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choice menus and evaluates their predictive performance on a fifth menu; and Fudenberg and

Karreskog Rehbinder (2024) evaluates the cross-domain predictive accuracy of models of how

players learn in the infinitely-repeated prisoner’s dilemma, where the domains are various sets

of payoff matrices for the stage game. This paper provides a general framework that nests these

transfer problems, and formal statistical results for assessing transfer performance.

Our comparison of economic models and black box algorithms joins a small but growing body

of work comparing the value of these methods (Athey and Imbens, 2016; Fudenberg and Liang,

2019; Agrawal et al., 2020). Several recently published papers compare the predictive performance

of black box algorithms with that of more structured economic models in out-of-sample tests,

where the training and testing data are drawn from the same domain (Peysakhovich and Naecker,

2017; Noti et al., 2016; Plonsky et al., 2019; Camerer et al., 2019; Fudenberg and Liang, 2019;

Hirasawa et al., 2022; Hsieh et al., 2023). In contrast, our paper compares economic models and

black box algorithms from the perspective of transfer prediction. We find that although black

box methods are often very effective given a large quantity of data from the domain of interest,

they may be less effective at transferring predictions across domains.4

Finally, our theoretical framework and results lie at the intersection of several literatures in

economics, computer science, and statistics. These literatures consider several related but distinct

tasks: synthesizing evidence across different domains, improving the quality of extrapolation from

one domain to another, and quantifying the extent to which insights from one domain generalize

to another. Our results are most closely related to this third strand.

The first objective, synthesizing results across different domains, is a particular focus of the

literature on meta-analysis (Card and Krueger, 1995; DellaVigna and Pope, 2019; Bandiera et al.,

2021; Imai et al., 2020; Vivalt, 2020). Our goal is instead to assess the cross-domain forecast

accuracy of a model. These problems are related, and Meager (2019) and Meager (2022) in

particular provide posterior predictive intervals for new domains in the context they consider.

Unlike our approach, the predictive intervals reported in those papers are valid only under a

parametric model for the distribution of effects across domains.

4At a high level, this is similar to Gechter et al. (2019)’s finding that structural models deliver better policy
recommendations for new contexts than black box methods do.
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There is also a large literature that aims to extrapolate results from one domain to another.

Within computer science, the literature on domain generalization (Blanchard et al. 2011 and Muan-

det et al. 2013) develops models that generalize well to new unseen domains (Zhou et al., 2021). Sim-

ilarly, several papers within economics (e.g., Hotz et al. 2005 and Dehejia et al. 2021) use knowledge

about the distribution of covariates to extrapolate out-of-domain. Our focus is not on developing

new models or algorithms with good out-of-domain guarantees, but rather on developing forecast

intervals for the out-of-domain performance of models and algorithms that are used in practice.

Finally, the literature on external validity studies the extent to which results obtained in one

domain hold more generally. This paper does not focus on the generalizability of insights from

randomized control trials (e.g. Deaton, 2010; Imbens, 2010; DellaVigna and Linos, 2020) or labora-

tory experiments (e.g. Levitt and List, 2007; Al-Ubaydli and List, 2015), but instead on a model’s

generalizability across exchangeable domains.5 Our use of exchangeability to construct bounds

extends work on conformal inference (e.g. Vovk et al., 2005; Barber et al., 2021; Angelopoulos

et al., 2022) by replacing the assumption of exchangeable observations with that of exchangeable

domains.6 Section 3.2 relaxes this assumption; our results there connect to the literature on

sensitivity analysis (e.g. Rosenbaum, 2005; Aronow and Lee, 2013; Andrews and Oster, 2019).

2.Framework

Consider a fixed procedure for extrapolating predictions across domains, e.g., estimating a struc-

tural economic model on data from one domain and using the estimated model to make predictions

in another. We adopt the perspective of an external analyst who wants to evaluate the effectiveness

of this procedure, using data from multiple domains. The analyst is not focused on extrapolation

from one specific domain to another (e.g., from an American dataset to a German dataset), but

would rather like to understand whether the procedure generally performs well across a class of

transfer tasks (e.g., extrapolating across countries). To this end, the analyst evaluates transfer error

from an ex-ante perspective without knowing which domains are used to estimate and evaluate the

model. The analyst seeks to construct forecast intervals for the procedure’s error when transferring

from a (random) set of training domains to a new (random) target domain. This speaks to the

5Another set of papers study the generalizability of instrumental variables estimates (e.g. Angrist and Fernández-Val,
2013; Bertanha and Imbens, 2020) and causal effects (e.g. Pearl and Bareinboim, 2014; Park et al., 2023).
6This also differentiates our work from the out-of-distribution prediction literature in computer science (Shen et al.,
2021), which bounds expected transfer error when the test and training distributions are close.
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question of whether one procedure for extrapolation (such as transferring an estimated economic

model) generally performs better than another (such as transferring a trained black box algorithm).

This section proceeds as follows: Section 2.1 formalizes the extrapolation procedure that the

analyst would like to evaluate, and a large class of measures for the procedure’s transfer error.

Section 2.2 describes the analyst’s problem, and in particular the statistical assumption that

permits the analyst to construct forecast intervals for these transfer errors. Section 2.3 defines

these intervals, and Section 3 proves that these are in fact valid forecast intervals.

2.1. Transfer errors. Let X be a set of covariate vectors and Y be a set of outcomes. An

observation is a pair (x,y)∈X×Y, and a sample is a set of observations S={(xi,yi)}mi=1. We

consider samples Sd indexed to domains d=1,2,..., such as in the following examples:

Example 1 (Different Subject Pools). Each sample Sd corresponds to data observed for subjects

from a given subject pool, where the subject pools possibly differ in their demographic charac-

teristics. For example, S1 may contain data from Caltech undergraduates, while S2 contains data

from a representative Prolific subject pool.

Example 2 (Different Choice Frames). Each sample Sd corresponds to data collected under a partic-

ular framing of choice questions. For example, S1 might contain the reported certainty equivalents

for compound lotteries, and S2 the reported certainty equivalents for equivalent simple lotteries.

Example 3 (Different Choice Menus). There is a finite set of goods a1,a2,...,am, and each sample

Sd includes observed choices from a different subset of available goods. For example, S1 might

contain all choices from binary menus and S2 all choices from those menus that include a1.

For now we take these samples as given; Section 2.2 lays out the underlying statistical model for

how these samples are generated, which we will use to prove our results.

A researcher observes samples from some set of training domains d∈T , and uses these samples

ST ≡(Sd)d∈T to make predictions in a new (yet unseen) target domain d∗. We will refer to ST

as the training samples and to Sd∗ as the target sample.

The number of training domains r≡|T | is a parameter of the research procedure, and should

reflect what is done in practice. In economics, it is common to transfer quantitative conclusions

from a single domain to another, e.g., for parameter calibration in structural models (Greenwood

et al., 1997; McKay et al., 2016; Oswald, 2019) and extrapolation of treatment effect estimates
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beyond the experimental population (Mogstad and Torgovitsky, 2018; Tipton and Olsen, 2018;

Cattaneo et al., 2021; Maeba, 2022). In this case r= 1, and the relevant question is whether

extrapolating from one sample leads to good predictions in the new domain. If instead data is

gathered from r>1 different domains and the observations are aggregated and used to estimate a

model (as in the meta-analyses of Meager 2019, 2022), the relevant question may be how well the

estimated model on the aggregated data generalizes to a new domain, and r>1 is appropriate.

We will be interested in a large class of measures for transfer performance.

Definition 1. A transfer error is any quantity eT ,d∗ that can be written as a function of the

training data ST , the target sample Sd∗, and potentially an independent noise variable.

Our leading examples are transfer errors that measure how well a fixed model or algorithm

transfers across domains. That is, suppose the training samples ST are used to select a prediction

rule fST :X→Y, e.g., by estimating a parametric model or by fitting a black box algorithm.7 The

accuracy of the prediction rule is evaluated using a loss function ` :Y×Y→R+, where

e(f,S)=
1

#S

∑
(x,y)∈S

`(f(x),y)

denotes the average loss when using f to predict y given x for observations (x,y) ∈ S. One

specification of a transfer error is then

eT ,d∗=e(fST ,Sd∗) (1)

i.e., the raw error of the model when it is estimated on the training samples and used to predict

outcomes in the target sample.

Example 4 (Transferring Models of Risk Preferences). The covariates X describe different lot-

teries, i.e., each covariate vector x includes a description of (say) two possible prizes and their

corresponding probabilities. The outcome y is the average willingness-to-pay for this lottery. A

firm acquires willingness-to-pay data from consumers in Illinois for a given set of lotteries, and

uses this data to estimate a model of risk preferences, e.g., estimating parameter values for an

Expected Utility model with CRRA preferences. The firm then uses this estimated model to

7That is, let S denote the set of all finite sets of finite samples, and let YX be the set of all prediction rules. Then
a “model” is a mapping ρ :S→∆(YX ) and we write fST =ρ(ST ) for the realized prediction rule.
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predict willingness-to-pay from consumers in California for a different set of lotteries. The measure

in (1) assesses the accuracy of those predictions.

Any normalization of equation (1) with respect to a function of the target sample is also a

transfer error. For example, we might normalize (1) with respect to the in-sample error of the

model when trained on the target sample,

eT,n+1 =
e(fST,Sn+1)

e(fSn+1,Sn+1)
. (2)

This quantity reveals how much less accurate the model is than if it had been directly trained

on the target sample.

Example 5 (The Value of Re-Estimating Diffusion Models). The covariates X describes the network

of relationships across households in a village, and the identity of households which are seeded

with information about a microfinance program. The outcome y is the average takeup rate of the

program across households. A development economist observes the takeup decisions in a single

village in India following an experiment in which certain households are seeded with information

about the program. The economist uses this data to estimate a structural model of information

diffusion, and then predicts the average takeup rate in a new village using the estimated model.

The transfer error in (2) assesses how much less accurate this prediction is compared to if the

economist could re-estimate the structural model on data from this new village.

Although we focus on the transfer errors defined in (1) and (2), Definition 1 is substantially

broader. Appendix P describes several other specifications of transfer errors, including the stability

of parameters and errors in counterfactual predictions.

2.2. The analyst’s problem. We now consider the perspective of an external analyst, who

would like to evaluate the transfer guarantees of the procedure described above. Rather than

assessing the transfer error eT ,d∗ for a specific set of training domains T and target domain d∗,

the analyst considers a random version of this quantity, where the samples used for training and

evaluation of the model are not yet known. In Example 4, this corresponds to an analyst who

is interested in how well the CRRA model transfers across arbitrary locations, as opposed to from

one specific location to another.
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Formally, the analyst has access to metadata consisting of n samples

M={S1,...,Sd,...Sn}.

We assume that n>r; that is, the analyst can collect a larger number of samples than were used

by the researcher. In the analyst’s statistical model, the samples S1,S2,... are generated in the

following way:

Assumption 1 (Statistical Model). There is a fixed (but unknown) meta-distribution µ∈∆(P×N)

over joint distributions P ≡∆(X ×Y) and sample sizes N, where each sample Sd is generated

by first drawing a distribution and sample size (Pd,md)∼µ, and then independently drawing md

observations (x,y) from Pd.
8

In Examples 1-3, this assumption implies that (from the analyst’s perspective) the subject pools,

choice frames, or choice menus differentiating the samples are themselves drawn i.i.d. from a fixed

distribution. Assumption 1 is standard in conformal inference (Vovk et al., 2005), permutation

testing Romano (1990), and randomization inference (Ritzwoller et al., 2024), and can also be

understood as a version of cluster sampling (Liang and Zeger, 1986; Bugni et al., 2023).9 In contrast,

the literature on external validity (see Section 1.1) instead typically assumes that the distributions

governing behavior in different domains are close in some distance metric (Adjaho and Christensen,

2023), share a common support overX orY (Sahoo et al., 2022; Lei et al., 2023), or can be estimated

using background covariates (Tipton and Olsen, 2018). Relative to these assumptions, our approach

has the advantage of allowing for arbitrary and unknown relationships between the realized distribu-

tions governing domains, but it rules out ex-ante predictable patterns in how the joint distribution

varies across samples (such as time trends). In Section 3.2, we extend our main results to the case

where the test samples have a different distribution than the training samples. Appendix R.1 further

extends our results to a model in which even the training samples are non-identically distributed.

The analyst models the researcher’s set T of r training domains as drawn uniformly over all

subsets of {1,...,n} of size r. We use T to mean the random variable whose realization is T , so

that ST =(Sd)d∈T is the researcher’s (random) vector of training samples. The target domain

(on which predictions will be made) is a final sample Sn+1, which, unlike the metadata, is not

8All of our results extend unchanged if samples from the different domains are ex-ante exchangeable.
9If framed in this way, the analyst’s goal is to do predictive inference for new clusters. When µ assigns probability
1 to a single distribution in p∈P or when µ assigns probability 1 to m= 1, this reduces to i.i.d. sampling of
observations from a fixed joint distribution, but our focus is on settings where neither of these is the case.
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Figure 1. This figure depicts the transfer error eT,n+1 as defined according to (1). It measures
the prediction error of a model estimated on the samples ST and evaluated on the sample Sn+1,
where ST consists of r random training samples from the metadata, and Sn+1 is an unobserved
sample from a new domain.

observed by the analyst. The quantity of interest is eT,n+1, i.e., the random transfer error when

the researcher extrapolates predictions from ST to Sn+1. Figure 1 depicts this transfer error for

the model transfer specification of (1).

The analyst’s goal is to develop forecast intervals for the transfer error eT,n+1, i.e., interval-valued

functions of the meta-data M which cover eT,n+1 with the prescribed probability, regardless of

the distribution µ that governs samples across domains.

2.3. Our procedure. The analyst does not observe the target sample Sn+1, but (thanks to

Assumption 1) can employ the observed samples in the metadata as surrogates for the unseen

target sample. As before, let eMT ,d denote the (observed) transfer error from any selection of training

samples T ⊆{1,...,n} to any surrogate target sample d∈{1,...,n}\T from the metadata (where

we now make the dependence of this quantity on M explicit). We use Tr+1,n to denote the set

of n!
(n−r−1)!

unique pairs (T ,d) that can be constructed in this way. Then

FM=
(n−r−1)!

n!

∑
(T ,d)∈Tr+1,n

δeMT ,d (3)
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is the empirical distribution of transfer errors in the pooled sample
{
eMT ,d :(T ,d)∈Tr+1,n

}
as we vary

which samples in the metadata are used for training and testing. (Throughout δ denotes the Dirac

measure). In the case where r=1, so that a single sample is used for training, the observed transfer

errors can be represented as a matrix as depicted in Figure 2, and FM is their empirical distribution.

Figure 2. ed,d′ is the transfer error from sample Sd to Sd′.

Definition 2 (Upper and Lower Quantiles). For any distribution P let Qτ(P)=inf{b :P((−∞,b])≥
τ} and Q

τ
(P)=sup{b :P([b,∞))≥1−τ} denote the upper and lower τth quantiles, respectively.

These quantiles coincide for continuously distributed variables with connected support.

Definition 3 (Quantiles of FM). For any τ ∈(0,1), let eMτ ≡Qτ(FM) and eMτ ≡Q1−τ(FM) be the

τth upper quantile and (1−τ)th lower quantile of the empirical distribution of transfer errors in

the pooled sample.

Our forecast interval for the transfer error on the target sample is [eMτ ,e
M
τ ]; we show in the

subsequent section that this is a valid forecast interval.

3.Theoretical Results

3.1. Main Results. We first prove that [eMτ ,e
M
τ ] is indeed a valid forecast interval. Since in many

applications only a limited number of domains will be observed, we consider only finite-sample

results in this paper.
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Proposition 1. For any τ∈(0,1),

P
(
eT,n+1≤ ēMτ

)
≥τ
(
n−r
n+1

)
, (4)

and

P
(
eT,n+1∈

[
eMτ ,̄e

M
τ

])
≥(2τ−1)

(
n−r
n+1

)
.

Thus
(
−∞,eMτ

]
is a level-

(
τ(n−r)
n+1

)
one-sided forecast interval for eT,n+1, and

[
eMτ ,̄e

M
τ

]
is a level-(

(2τ−1)
(
n−r
n+1

))
forecast interval for eT,n+1.

Parameter τ influences the width of the forecast interval, where larger choices of τ lead to wider

forecast intervals with higher confidence guarantees. Parameter r determines how many samples

in the meta-data are used for training versus testing. As discussed in Section 2.1, r is determined

by the the research procedure under evaluation.10

The number of samples n and the sizes of these samples (md)
n
d=1 enter into our result in different

ways: Increasing the number of observed domains n, holding fixed the distribution over sample sizes

within each domain, does not change the distribution of eT,n+1 but instead allows this distribution

to be estimated more precisely. In contrast, increasing the number of observations per domain

changes the distribution of eT,n+1 and corresponds to the measurement of a different quantity. For

example, in the limit of infinitely many observations per sample, the error eT,n+1 measures how well

the best predictor from the model class in the training domains transfers across domains, while if the

number of observations is small, eT,n+1 measures how well an imperfectly estimated model transfers.

The next result shows that the guarantees in Proposition 1 are tight to O(1/n). We use Ts,t
to denote the set of all vectors of length s that consist of distinct elements from {1,...,t}.

Claim 1. Assume that
(
eMT ,d :(T ,d)∈Tr+1,n+1

)
almost surely has no ties. Then

P
(
eT,n+1≤ ēMτ

)
≤τ
(
n−r
n+1

)
+
r+1

n+1
+

(n−r)!
(n+1)!

.

and

P
(
eT,n+1∈

[
eMτ ,̄e

M
τ

])
≤(2τ−1)

(
n−r
n+1

)
+
r+1

n+1
+

(n−r)!
(n+1)!

.

To gain intuition for the intervals in Proposition 1, fix a realization of the unordered set

{S1,...,Sn,Sn+1}. Because all samples are exchangeable by assumption, the realization of eT,n+1

10We expect that in general, larger choices of r will lead to lower but wider forecast intervals, since the model is
estimated on a larger quantity of data, but there are fewer samples with which to evaluate the performance of the
estimated model.
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(conditional on {Sd}n+1
d=1) is a uniform draw from{

eMT ,d :(T ,d)∈Tr+1,n+1

}
. (5)

If we let e∗τ denote the upper τ-th quantile of this empirical distribution, then by definition

P
(
eT,n+1≤e∗τ |{Sd}n+1

d=1

)
≥τ. (6)

In the case r=1 where precisely one sample is used for training, the set of pooled errors (5) is the

shaded cells in Figure 3 (either yellow or blue), and the inequality in (6) says that the probability

that the value of a randomly drawn cell falls below the τth upper quantile of cells is at least τ .

train

test
1 2 . . . n-1 n n+1

1 - e1,2 ... e1,n−1 e1,n e1,n+1

2 e2,1 -
. . .

...
...

...
...

. . . -
. . .

...
...

n−1
...

. . . - en−1,n
...

n en,1 ... ... en,n−1 - en,n+1

n+1 en+1,1 ... ... ... en+1,n -

Figure 3. Transfer errors when training on one domain (row) and testing on another (column).

The analyst does not observe the target sample Sn+1, and so does not know e∗τ . We instead use

eMτ , the τth upper quantile of the pooled sample of errors when transferring across samples in M,

to construct the forecast intervals. In Figure 3, the probability that eT,n+1≤eMτ is the probability

that the value of a randomly drawn shaded cell (yellow or blue) falls below the τth quantile of

the yellow cells. By a straightforward counting argument,

P
(
eT,n+1≤eMτ |{Si}n+1

i=1

)
≥τ
(

n

r+1

)
/

(
n+1

r+1

)
=τ

(
n−r
n+1

)
.

Applying the law of iterated expectations (with respect to the sample {Si}n+1
i=1 ) yields the one-sided

forecast interval in (4). The proof for the two-sided forecast interval follows a similar logic but

is more involved, see Appendix A.3 for details.
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3.2. Relaxing the i.i.d. Assumption. Our results so far assume that the distributions governing

the different samples Sd are themselves independent and identically distributed. This assumption

is not always appropriate. For example, suppose variation in domains corresponds to variation over

locations, and the samples in the metadata (but not the target sample) are from experiments run at

locations chosen by experimenters. If there is selection bias over where experiments were run—for

example, if the observed sites were chosen based on characteristics correlated with effect sizes (as

Allcott (2015) found in the Opower energy conservation experiments)—then it may be that the

the target sample has fundamentally different properties from anything that is observed in the

metadata. We thus now relax Assumption 1 to allow the distribution governing the training samples

and the distribution governing the target sample to be drawn from different meta-distributions.

(Appendix R.1 further extends Corollary 1 to also allow the training samples to be non-identically

distributed. We focus on this simpler version in the main text for ease of exposition.)

Specifically, suppose that the analyst’s metadata consists of samples S1,...,Sn∼iidµ as in our

main model, but Sn+1 is independently drawn from some other density ν. Let

ω(S)=
ν(S)

µ(S)

denote their likelihood ratio. We initially assume this likelihood ratio is known by the analyst

(although ν and µ need not be), and subsequently consider weakenings of this assumption. As

before, eT,n+1 is the transfer error when training on r samples drawn uniformly at random from

{S1,...,Sn}, and testing on Sn+1.

3.2.1. The analyst knows the likelihood ratio ω. We again construct a forecast interval for

eT,n+1 using the pooled sample of transfer errors across samples in the metadata, that is,{
eMT ,d :(T ,d)∈Tr+1,n

}
. Different from the previous section, we no longer assign uniform weights

to each eMT,d. Intuitively, under our previous i.i.d. assumption, each sample in the metadata was

equally representative of the training and target distributions, but in this relaxed model whether

a sample Sd is more representative of the training or testing distribution depends on its relative

likelihood under ν and µ.

A crucial quantity is the following:

14



Definition 4. For every domain d∈{1,...,n}, define

Wd=
(n−r−1)!

(n−1)!

ω(Sd)∑n
j=1ω(Sj)

. (7)

To interpret this quantity, consider an alternative data-generating process for the metadata

where for some permutation π : {1,...,n}→ {1,...,n}, the samples Sπ(1),...,Sπ(n−1) ∼iid µ while

Sπ(n)∼ν. Fix a realization of the metadata (S1,...,Sn), and suppose the analyst does not observe

the permutation π. Let Π denote the set of all permutations on {1,...,n}, and for any vector of

sample indices (t1,...,tr,d) let

Π(t1,...,tr,d) ={π∈Π:(π(1),...,π(r))=(t1,...,tr) and π(n)=d}

denote the permutations that specify (t1,...,tr) for training and d as the target. Then conditional

on a realization of the metadata (S1,...,Sn), the probability that (Sti)
r
i=1 are the training samples

and Sd is the test sample is11

∑
π∈Π(t1,...,tr,d)

(
ν(Sπ(n))·

∏n−1
j=1µ(Sπ(j))

)
∑

π∈Π

(
ν(Sπ(n))·

∏n−1
j=1µ(Sπ(j))

) =

∑
π∈Π(t1,...,tr,d)

ω(Sπ(n))∑
π∈Πω(Sπ(n))

=
(n−r−1)!·ω(Sd)

(n−1)!·
∑n

j=1ω(Sj)
=Wd.

This quantity depends only on the identity of the target sample d, and not on the identity of the

training samples t1,...,tr. Finally, let

Fω
M=

∑
(T ,d)∈Tr+1,n

Wd·δeMT ,d

be the weighted empirical distribution of transfer errors, where each sample d is weighted according

to Wd. When the two meta-distributions µ and ν are identical as in our main model, then

Wd≡(n−r−1)!/n! for every domain d, so the distribution Fω
M is simply FM as defined in (3).

Definition 5 (Quantiles of Fω
M). For any likelihood ratio ω(·) and quantile τ ∈ (0,1), define

ēM,ω
τ =Qτ (F

ω
M) and eM,ω

τ =Q
1−τ (F

ω
M) to be, respectively, the τth upper quantile and (1−τ)th

lower quantile of the weighted distribution of transfer errors in the pooled sample.

11This is a special case of weighted exchangeability; see Tibshirani et al. (2019). The results in this subsection
continues to hold if the domains are not independent but satisfy the weighted exchangeability condition, which is
more general but harder to interpret.
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Theorem 1. For any τ∈(0,1),

P
(
eT,n+1≤ ēM,ω

τ

)
≥τ ·n−r

n
E

[∑n
j=1ω(Sj)∑n+1
j=1ω(Sj)

]
,

and

P
(
eT,n+1∈

[
eM,ω
τ ,̄eM,ω

τ

])
≥(2τ−1)·n−r

n
E

[∑n
j=1ω(Sj)∑n+1
j=1ω(Sj)

]
.

Furthermore, if
(
eMT ,d :(T ,d)∈Tr+1,n+1

)
almost surely has no ties, then

P
(
eT,n+1≤ ēM,ω

τ

)
≤1−E

[(
(1−τ)

n−r
n
− (n−r)!

n!

maxk≤nω(Sk)∑n
j=1ω(Sj)

)∑n
j=1ω(Sj)∑n+1
j=1ω(Sj)

]
,

and

P
(
eT,n+1∈

[
eM,ω
τ ,̄eM,ω

τ

])
≤1−E

[(
2(1−τ)

n−r
n
− (n−r)!

n!

maxk≤nω(Sk)∑n
j=1ω(Sj)

)∑n
j=1ω(Sj)∑n+1
j=1ω(Sj)

]
.

This result strictly generalizes Proposition 1 and Claim 1, since when w(·) is the identity then

eM,ω
τ =eMτ and eM,ω

τ =eMτ , and the bounds in this theorem reduce to those given in Proposition 1.

3.2.2. The analyst does not know ω but can bound it. We can again extend our results when the

analyst does not know the likelihood ratio function ω precisely, but knows that it admits an upper

and lower bound, as in sensitivity analysis (Rosenbaum, 2005).

Definition 6 (Bounded Likelihood-Ratios). For any Γ≥1, letW(Γ) be the class of density ratios

that satisfy ω(S)∈ [Γ−1,Γ] for all samples S.

Define the following worst case bounds for eM,ω
τ and eM,ω

τ :

eMτ (Γ)= sup
ω∈W(Γ)

ēM,ω
τ , eMτ (Γ)= inf

ω∈W(Γ)
ēM,ω
τ (8)

As shown in Appendix R, these quantities can be computed from data in O(nr+1) time.

Corollary 1. Suppose ω∈W(Γ). Then

P
(
eT,n+1≤eMτ (Γ)

)
≥τ
(
n−r
n+Γ2

)
,

and

P
(
eT,n+1∈ [eMτ (Γ),eMτ (Γ)]

)
≥(2τ−1)

(
n−r
n+Γ2

)
.
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3.2.3. The analyst knows nothing about ω. Finally, we provide two ways for comparing the trans-

ferability of two models i= 1,2 when the analyst cannot bound ω. We do not provide formal

results about these orders, but show that they have bite in our subsequent application (see Section

4). Let eMi,τ(Γ) and eMi,τ(Γ) denote the worst case bounds for model i.

Definition 7 (Worst-Case Dominance). Say that model 1 worst-case-upper-dominates model 2

at the τ-th quantile if

eM1,τ(Γ)≤eM2,τ(Γ) ∀Γ∈ [1,∞).

That is, model 1 worst-case-upper-dominates model 2 at the τ-th quantile if for every Γ, the

worst-case upper bound for model 1 exceeds the worst-case for upper bound for model 2.

We can strengthen this comparison by requiring the upper bound of the forecast interval for

model 1 to be smaller than the upper bound of the forecast interval for model 2 pointwise for

each ω∈W(Γ), rather than simply comparing worst-case upper bounds.

Definition 8 (Everywhere Dominance). Say that model 1 everywhere-upper-dominates model 2

at the τ-th quantile if

eM,ω
1,τ ≤e

M,ω
2,τ ∀Γ>1∀ω∈W(Γ).

Many decision rules will not be comparable under either of these definitions, but we show they

are empirically relevant in our application. The even stronger requirement that eM,ω
1,τ ≤e

M,ω
2,τ , i.e.,

that the upper bound of model 1’s forecast interval is smaller than the lower bound of model 2’s

forecast interval, is likely too stringent to be useful in practice.12

4.Application

To illustrate our methods, we evaluate the transferability of predictions of certainty equivalents

for binary lotteries, where the domains correspond to different subject pools (among other potential

differences). We focus on this application for several reasons: First, since it is one of the oldest

problems in microeconomics, there are many public data sources that we can use to construct

our metadata. Second, the associated economic models have been extensively examined from the

perspective of predictive performance (Harless and Camerer, 1994; Hey and Orme, 1994; Bruhin

et al., 2010; Bernheim and Sprenger, 2020), and recent work evaluates how well these models

12This stronger order has bite only when the transfer error for model 1 across “the most dissimilar” training and
testing domains is lower than the transfer error for model 2 for “the most similar” training and testing domains.
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predict relative to black box algorithms (Peysakhovich and Naecker, 2017; Plonsky et al., 2019;

Fudenberg et al., 2022). Finally, as Einav et al. (2012) points out, given how models of risk

preferences are often used in practice, it is also important to evaluate how well they transfer across

domains. We thus view this application as a natural one with which to illustrate our methods.

Section 4.1 describes our metadata, and Section 4.2 describes the decision rules we consider.

Section 4.3 conducts “within-domain” out-of-sample tests, where the training and test data are

drawn from the same domain. Section 4.4 compares transfer performance across domains by

constructing forecast intervals for three different definitions of transfer error.

4.1. Data. Our metadata consists of samples of certainty equivalents from 44 subject pools, which

we treat as the domains. These data are drawn from 14 papers in experimental economics, with

twelve papers contributing one sample each, one paper contributing two, and a final paper (a

study of risk preferences across countries) contributing 30 samples. Our samples range in size

from 72 observations to 8906 observations, with an average of 2752.7 observations per sample.13

Besides the difference in subject pools, these samples may differ in other details, such as whether

the lotteries were restricted to the gain domain. We convert all prizes to dollars using purchasing

power parity exchange rates (from OECD 2023) in the year of the paper’s publication

Within each sample, observations take the form (z1,z2,p;y), where z1 and z2 denote the possible

prizes of the lottery (and we adopt the convention that |z1|> |z2|), p is the probability of z1, and y is

the reported certainty equivalent by a given subject. Thus our feature space is X =R×R×[0,1], the

outcome space is Y=R, and a prediction rule is any mapping from binary lotteries into predictions

of the reported certainty equivalent. We use squared-error loss `(y,y′)=(y−y′)2 to evaluate the error

of the prediction, but for ease of interpretation we report results in terms of root-mean-squared error,

which puts the errors in the same units as the prizes.14 Since different subjects report different cer-

tainty equivalents for the same lottery, the best achievable error is generally bounded away from zero.

4.2. Models and black boxes. We consider two parametric economic models of certainty

equivalents and two off-the-shelf black box algorithms.

13Online Appendix S.1 describes our data sources in more detail.
14This transformation is possible because none of the results in this paper change if we redefine e(σ,S) =

g
(

1
#S

∑
(x,y)∈S`(σ(x),y)

)
for any function g. Root-mean-squared error corresponds to setting g(x)=

√
x.
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Economic models. First we consider an expected utility agent with a CRRA utility function

parameterized by η≥0 (henceforth EU). For η 6=1, define

vη(z)=

 z1−η−1
1−η if z≥0

−(−z)1−η−1
1−η if z<0

and for η=1, set vη(z)= ln(z) for positive prizes and vη(z)=−ln(−z) for negative prizes. For

each η≥0, define the prediction rule ση to be

ση(z1,z2,p)=v−1
η

(
p·vη(z1)+(1−p)·vη(z2)

)
.

That is, the prediction rule ση maps each lottery into the predicted certainty equivalent for an

EU agent with utility function vη.

Next we consider the set of prediction rules ΣCPT derived from the parametric form of Cumulative

Prospect Theory (CPT) first proposed by Goldstein and Einhorn (1987) and Lattimore et al.

(1992). Fixing values for the model’s parameters (α,β,δ,γ), each lottery (z1,z2,p) is assigned a utility

w(p)v(z1)+(1−w(p))v(z2)

where

v(z)=

 zα if z≥0

−(−z)β if z<0
(9)

is a value function for money, and

w(p)=
δpγ

δpγ+(1−p)γ
(10)

is a probability weighting function.

For each α,β,γ,δ, the prediction rule σ(α,β,γ,δ) is defined as

σ(α,β,γ,δ)(z1,z2,p)=v−1
(
w(p)v(z1)+(1−w(p))v(z2)

)
.

That is, the prediction rule maps each lottery into the predicted certainty equivalent under CPT

with parameters (α,β,γ,δ). Following the literature, we impose the restriction that the parameters

belong to the set Θ={(α,β,γ,δ):α,β,γ∈ [0,1],δ≥0}.
We also evaluate restricted specifications of CPT that have appeared elsewhere in the literature:

CPT with free parameters α and β (setting δ=γ=1) describes an expected utility decision-maker
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whose utility function is as given in (9); CPT with free parameters α, β and γ (setting δ= 1)

is the specification used in Karmarkar (1978); and CPT with free parameters δ and γ (setting

α=β=1) describes a risk-neutral CPT agent whose utility function over money is u(z)=z but

who exhibits nonlinear probability weighting. Additionally, we include CPT with the single free

parameter γ (setting α= β = δ= 1), which Fudenberg et al. (2023) found to be an especially

effective one-parameter specification.

Black Box Algorithms. We consider two popular machine learning algorithms. First, we train

a random forest (RF), which is an ensemble learning method consisting of a collection of decision

trees.15 Second, we train a kernelized ridge regression model (KR), which modifies OLS to weight

observations at nearby covariate vectors more heavily, and additionally places a penalty term on

the size of the coefficients. Specifically, we use the radial basis function kernel κ(x,x̃)=e−γ‖x−x̃‖
2
2

to assess the similarity between covariate vectors x and x̃. Given training data {(xi,yi)}Ni=1, the

estimated weight vector is ~w=(K+λIN)−1~y, where K is the N×N matrix whose (i,j)-th entry

is κ(xi,xj), IN is the N×N identity matrix, and ~y=(y1,...,yN)′ is the vector of observed outcomes

in the training data. The estimated prediction rule is σ(x)=
∑N

i=1wiκ(x,xi).

There are at least two approaches for cross-validating hyper-parameters such as the size of the

trees in the random forest algorithm. First, when there are multiple training domains one can

cross-validate across them; we use this in Appendix S.6. Second, one can cross-validate across

observations within the training domains. Since we are interested in cross-domain performance,

rather than within-domain performance, it is not guaranteed that this will improve performance,

and indeed we find that choosing the hyper-parameters via within-domain cross-validation leads

to worse transfer performance than using default values. Thus in our main analysis with a single

training domain, we set all hyper-parameters to default values.16

Discussion. There is no established definition of what constitutes an economic model versus

a black box algorithm, but one way of distinguishing between the two approaches is whether the

15A decision tree recursively partitions the input space, and learns a constant prediction for each partition element.
The random forest algorithm collects the output of the individual decision trees, and returns their average as the
prediction. Each decision tree is trained with a sample (of equal size to our training data) drawn with replacement
from the actual training data. At each decision node, the tree splits the training samples into two groups using a
True/False question about the value of some feature, where the split is chosen to greedily minimize mean squared
error.
16Specifically, we set λ=1 and γ=1/(#covariates)=1/3 in the kernel regression algorithm. See Pedregosa et al.
(2011) and Chapter 14 of Murphy (2012) for further reference. For the random forest model, we set the maximum
depth to none, so the tree is extended until outcomes are homogeneous within each leaf.
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prediction method is tailored to a general application or a general-purpose method of prediction.

EU and CPT model the risk preferences of economic agents; we would not expect these models

to predict well if we changed our problem to image classification. In contrast, random forest

algorithms and kernel regression have been successfully applied across a wide array of prediction

problems. In this sense, EU and CPT are economic models, while RF and KR are not. Our

approach and results can, however, equally be applied to evaluate prediction methods that are a

hybrid of the two approaches. For example, Plonsky et al. (2019) and Hsieh et al. (2023) consider

black box algorithms whose inputs are based on prior economic theory. We leave investigation

of the transfer performance of such methods to future work.

We note finally that although black box algorithms are traditionally perceived as more flexible

than economic models, whether this is in fact the case is something that has to be determined case-

by-case. In particular, Fudenberg et al. (2023) shows that although CPT uses only four parameters,

it imposes very few restrictions on mappings from binary lotteries to certainty equivalents.

4.3. Within-domain performance. We first evaluate how these models perform when trained

and evaluated on data from the same subject pool. We compute the tenfold cross-validated

out-of-sample error for each decision rule in each of the 44 domains.17 The two black box methods

(random forest and kernel regression) each achieve lower cross-validated error than EU and CPT

in 38 of the 44 domains, although the improvement is not large. To obtain a simple summary

statistic for the comparison between the economic models and black boxes, we normalize each

economic model’s error (in each domain) by the random forest error. Table 1 averages this ratio

across domains and shows that on average, the cross-validated errors of the economic models are

slightly larger than the random forest error. That is, the CPT error is on average 1.06 times the

random forest error, and the EU error is on average 1.21 times the random forest error.18

17We split the sample into ten subsets at random, choose nine of the ten subsets for training, and evaluate the
estimated model’s error on the final subset. The tenfold cross-validated error is the average of the out-of-sample
errors on the ten possible choices of test set.
18The numbers in Table 1 are very similar if we normalized by the kernel regression error instead.
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Model Normalized Error

EU 1.21

CPT variants
γ 1.12
α,β 1.22
δ,γ 1.08
α,β,γ 1.07
α,β,δ,γ 1.06

Table 1. Average ratio of out-of-sample errors relative to random forest.

These results suggest that the different prediction methods we consider are comparable for

within-domain prediction, with the black boxes performing slightly better. But the results do not

distinguish whether the economic models and black boxes achieve similar out-of-sample errors by se-

lecting approximately the same prediction rules, or if the rules they select lead to substantially differ-

ent predictions out-of-domain. We also cannot determine whether the slightly better within-domain

performance of the black box algorithms is achieved by learning generalizable structure that the eco-

nomic models miss, or if the gains of the black boxes are confined to the domains on which they were

trained. We next separate these explanations by evaluating the transfer performance of the models.

4.4. Transfer error. We use the results in Section 3 to construct forecast intervals for the two spec-

ifications of transfer error defined in (1) and(2), which we will subsequently call raw transfer error

and transfer shortfall respectively. We also consider another normalization of the raw transfer error

with respect to a proxy for the best achievable error on the target sample. Let m∈M index a set of

models that each prescribe rules fm for mapping data to prediction rules. Then transfer shortfall

e(fST,Sn+1)

minm∈Me
(
fmSn+1

,Sn+1

) (11)

reveals how much lower the accuracy of the transferred model fST is compared to the best

in-sample accuracy using a model fromM.19 One advantage of this specification relative to (1)

is that the raw error is very sensitive to the predictability of y given x in the target sample, which

may differ across domains but is not directly related to the model’s transferability.

19This quantity (subtracted from 1) is similar to the “completeness” measure introduced in Fudenberg et al. (2022),
without the use of a baseline model to set a maximal reasonable error, and adapted for the transfer setting by
training and testing on samples drawn from different domains.
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In our meta-data there are n=44 domains, and we choose r=1 of these to use as the training

domainm which corresponds to the question, “If the researcher draws one domain at random, and

then tries to generalize to another domain, how well will they do?” Figure 4 displays two-sided

forecast intervals for transfer performance, transfer deterioration, and transfer shortfall (where R

includes all decision rules shown in the figure). These forecast intervals use τ=0.95, so the upper

bound of the forecast interval is the 95th percentile of the pooled transfer errors (across choices of

the training and test domains), and the lower bound of the forecast interval is the 5th percentile

of the pooled transfer errors. (See Table 5 in Appendix S.3 for the exact numbers.) Applying

Proposition 1, these are 86% forecast intervals. Choosing larger τ results in wider forecast intervals

that have higher coverage levels, and we report some of these alternative forecast intervals in

Online Appendix S.4, including a 96% forecast interval.
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Figure 4. 86% (n=44, τ=0.95) forecast intervals for (a) raw transfer error, (b) transfer shortfall
(with R consisting of the decision rules shown in the figure), and (c) transfer deterioration.
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Our main takeaway from Figure 4 is that although the prediction methods we consider are very

similar from the perspective of within-domain prediction, they have very different out-of-domain

implications. Panel (a) of Figure 4 shows that the black box forecast intervals for raw transfer

error have upper bounds that are roughly twice those of the economic models. Panel (b) shows

that the contrast between the economic models and the black boxes is even larger for transfer

shortfall, which removes the common variation across models that emerges from variation in the

predictability of the different target samples. Thus, although the economic models and the black

box models select prediction rules that are close for the purposes of prediction in the training

domain, they sometimes have very different performances in the test domain, and the prediction

rules selected by the economic models generalize substantially better. Panel (c) of Figure 4, which

reports transfer deterioration, shows that it is less important to re-estimate the economic models

on new target domains than to retrain the black-box algorithms.

All of the forecast intervals overlap for each of the three measures. This is not surprising,

as variation in the transfer errors due to the random selection of training and target domains

cannot be eliminated even with data from many domains. We expect the black box intervals

and the economic model intervals to overlap so long as the economic model errors on “upper tail”

training and target domain pairs exceed the black box errors on “lower tail” training and target

domain pairs. Section Q provides confidence intervals for different population quantities, including

quantiles of the transfer error distribution and the expected transfer error, whose width we do

expect to vanish as the number of domains grow large. There, we find similar conclusions with

regards to the relative performance of the black box algorithms and economic models.

The appendix provides several robustness checks and complementary analyses. Online Appendix

S.4 plots the τ-th percentile of pooled transfer errors as τ varies, demonstrating that forecast

intervals constructed using other choices of τ (besides τ=0.95) would look similar to those shown

in the main text. Online Appendix S.5 provides 86% forecast intervals for the ratio of the raw CPT

transfer error to the raw random forest transfer error, and finds that the random forest error is some-

times much higher than the CPT error, but is rarely much lower. Online Appendix S.6 considers

an alternative choice for the number of training domains, setting r=3 instead of r=1. While the

results are similar, the contrast between the economic models and black boxes is not as large, sug-

gesting that the relative performance of the black boxes improves given a larger number of training
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domains. Online Appendix S.2 provides forecast intervals when each of the 14 papers is treated as

a different domain; once again the black box methods transfer worse than the economic models do.

We next use our theoretical results from Section 3.2 to study the consequences of relaxing the

i.i.d. assumption in our comparison of CPT(α,β,δ,γ) and RF. Since the main differences observed

above concerned the upper bounds of our forecast intervals, we limit attention to τ ≥0.5, and

compare the methods in terms of worst-case and everywhere upper-dominance with respect to

all three measures of the transfer performance. These results are summarized in Table 2.

Type raw transfer error transfer shortfall transfer deterioration

Worst-case dominance τ≥0.5 τ≥0.5 τ≥0.5
Everywhere dominance τ≥0.954 τ≥0.866 τ≥0.647

Table 2. Comparison between CPT and RF in terms of worst-case and everywhere upper-
dominance. Each cell gives the range of τ at which CPT dominates RF.

Table 2 shows that CPT worst-case-upper-dominates RF at all quantiles τ ≥0.5 and for all

three transfer error measures. Hence, our finding that the upper tail of transfer errors is larger

for RF than for CPT is robust to relaxing the assumption that the training and test domains are

drawn from the same distribution, provided that we are comfortable comparing the upper bound

for one method to the upper bound for the other. In Appendix S.8, we provide a more detailed

view of worst-case-upper-dominance by plotting ēMτ (Γ) as functions of τ and Γ, respectively.

We can also consider the more demanding everywhere-upper-dominance criterion, which asks

what happens if we relax our i.i.d. sampling assumption in a way which is as favorable to RF

(and as unfavorable to CPT) as possible. We find a substantial degree of robustness even under

this highly demanding criterion: CPT everywhere-upper-dominates RF in raw transfer error for

all τ≥0.954, everywhere-dominates in transfer shortfall for τ≥0.866, and everywhere dominates

in transfer deterioration for τ≥0.647.

4.5. Do black boxes transfer poorly because they are too flexible? One tempting expla-

nation of why the black box algorithms transfer less well is that they may overfit to idiosyncratic

details of the training samples that do not generalize across subject pools. For example, suppose

some subject pools tend to value lotteries depending on the specific digits they contain.20 This

20For example, Fortin et al. (2014) find that in neighborhoods with a higher than average percentage of Chinese
residents, homes with address numbers ending in “4” are sold at a 2.2% discount and those ending in “8” are sold
at a 2.5% premium.
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regularity could not be captured by the economic models, because they do not include parameters

for individual digits, but could be learned by a random forest algorithm. This would lead the

random forest to have better within-domain prediction for those subject pools, but worse transfer

performance if this regularity does not generalize across subject pools.

While the flexibility of black box algorithms is likely an important determinant of their transfer

performance, a second analysis shows that this cannot be a complete explanation of our result.

One of the papers we use is based on samples of certainty equivalents from 30 countries (l’Haridon

and Vieider, 2019). Of the 30 samples from this paper, 29 samples report certainty equivalents

for the same 28 lotteries, and the remaining sample reports certainty equivalents for 24 of those

lotteries. We repeat our analysis using these 30 samples as the metadata, and find that the

forecast intervals for raw transfer error are indistinguishable across the prediction methods (Panel

(a) of Figure 5). There is some separation between the forecast intervals for the remaining two

measures, but in both cases the CPT and random forest forecast intervals are substantially more

similar than in the original data. If overfitting were the main explanation of our previous results,

we would expect the black box algorithms to overfit here as well.

In contrast, we find that the economic models again outperform the black box algorithms when

we consider a different definition of domains for the l’Haridon and Vieider (2019) data. Specifically,

we aggregate all observations for the 24 lotteries that are shared in all 30 samples, and split

these observations into 24 samples, where each sample includes all reported certainty equivalents

(across subject pools) for a given lottery. For this new definition of domains, our transfer measures

evaluate how well a model estimated on data from certain lotteries predict certainty equivalents

for other lotteries. Figure 6 reports 83-level confidence intervals, and we find that the economic

models transfer substantially better than the black box algorithms. In fact, isolating the difference

across domains to be differences across lotteries exaggerates the relative value of economic models

even relative to our original Figure 4 (which uses a definition of domains that combines several

sources of variation). For consistency, Figure 6 reports confidence intervals for r=1 (corresponding

to training on one lottery and predicting on another), but we show in Appendix S.7 that the

qualitative features of this figure hold also for r=3 and r=5.

Taken together, our empirical results suggest that the crucial difference between economic

models and black box algorithms isn’t that one is more flexible and hence more inclined to
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Figure 5. This figure reports 84% (n=30, τ=0.95) forecast intervals when we transfer across
subject pools in the l’Haridon and Vieider (2019) data.

overfit, but rather that economic models perform better in certain kinds of transfer tasks.21 The

next section discusses more formally one potential explanation for the difference in the relative

performance of economic models and black box algorithms in these two transfer tasks.

4.6. Two kinds of transfer problems. Our framework allows the distribution P governing the

training sample and the distribution P ′ governing the test sample to differ. At one extreme, P and

P ′ may share a common marginal distribution on the feature space X , but have very different con-

ditional distributions PY |X and P ′Y |X (known as model shift). In our application, this would mean

that the distribution over lotteries is the same, but the conditional distribution of reported certainty

21In fact, the flexibility gap between the black boxes and economic models is not large: many conditional mean
functions (for binary lotteries) can be well approximated by CPT for some choice of parameters values α,β,δ,γ
(Fudenberg et al., 2023).
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Figure 6. This figure reports 83% (n=24, τ=0.95) forecast intervals when we transfer across
lotteries in the l’Haridon and Vieider (2019) data.

equivalents is different across domains. At another extreme, the conditional distributions PY |X and

P ′Y |X might be the same, but the marginal distributions over the feature space could differ across

domains, e.g., if different kinds of lotteries are used in different domains (known as covariate shift).

Our findings in Figure 5 suggest that black boxes do as well as economic models at transfer

prediction when the marginal distribution over features PX is held constant across samples. In-

tuitively, when the relevant feature vectors are the same in every sample, a black box algorithm

can perform well by simply memorizing a prediction for each of these feature vectors. In contrast,

when the set of lotteries varies across samples, then good transfer prediction necessarily involves

extrapolation, and an algorithm that hasn’t identified the right structure for relating behavior

across lotteries will fail to generalize. Since economic models of risk preferences are intended
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to relate an individual’s preferences across lotteries that permits extrapolation of this form, our

empirical results suggest that they do so effectively.

For a simple, stylized, example of this contrast, consider three domains with degenerate

distributions over observations. In domain 1, the distribution is degenerate at the lottery

(z1,z2,p)=(10,0,1/2) and certainty equivalent y=3. In domain 2, the distribution is degenerate

at the lottery (z1,z2,p)=(10,0,1/2) and certainty equivalent y=4. In domain 3, the distribution is

degenerate at a new lottery (z1,z2,p)=(20,10,1/10) and certainty equivalent y=11. Suppose EU and

a decision tree are both trained on a sample from domain 1. The CRRA parameter η≈0.64 perfectly

fits the observation (10,0,1/2;3), as does the trivial decision tree that predicts y=3 for all lotteries.

The estimated EU model and decision tree are equivalent for predicting observations in domain

2: both predict y=3 and achieve a mean-squared error of 1. But their errors are very different on

domain 3: the EU prediction for the new lottery is approximately 10.8 with a mean-squared error

of approximately 0.05, while the decision tree’s prediction is 3 with a mean-squared error of 64.

4.7. Predicting the relative transfer performance of black boxes and economic models.

The preceding sections suggest that the relative transfer performance of black boxes and economic

models is determined primarily by shifts in which lotteries are sampled, rather than shifts in behavior

conditional on those lotteries. To further test this conjecture, we examine how well we can predict

the ratio of the raw random forest transfer error to the raw CPT transfer error given information

about the training and test lotteries but not about the distribution of certainty equivalents in either

sample. If the relative performance of these methods depended importantly on behavioral shifts in

the two domains—i.e., a change in the distribution of certainty equivalents for the same lotteries—

then we would expect prediction of the relative performance based on lottery information alone to

be poor. We find instead that lottery information has substantial predictive power for this ratio.

For each sample S={(z1,i,z2,i,pi;yi)}mi=1, we consider the following features: the mean, standard

deviation, max, and min value of z1 among the lotteries in S; the mean, standard deviation, max,

and min value of z2 among the lotteries in S; the mean, standard deviation, max, and min value of

p among the lotteries in S; the mean, standard deviation, max, and min value of 1−p among the

lotteries in S; the mean, standard deviation, max, and min of pz1+(1−p)z2 among the lotteries

in S; the size of S; and an indicator variable for whether z1,z2≥0 for all lotteries in S.

We consider three possible feature sets: (a) Training Only, which includes all features derived

from the training sample MT ; (b) Test Only, which includes all features derived from the test
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sample Sd, (c) Both, which includes all features derived from the training sample MT and the

test sample Sd. We evaluate two prediction methods: OLS and a random forest algorithm. Table

3 reports tenfold cross-validated errors for each of these feature sets and prediction methods. As

a benchmark, we also consider the best possible constant prediction.

Train Only Test Only Both

Constant 2.57 2.57 2.57
OLS 1.00 2.61 0.94
RF 0.98 2.52 0.76

Table 3. Cross-Validated MSE

predict 5.47
number of train-test pairs: 129

MSE: 14.28
number of train-test pairs: 1763

MSE: 0.60

FALSE TRUE

predict 1.43

stddev(z1)> 0

Figure 7. Best 1-split decision tree based on training and test features.

The best constant prediction achieves a mean-squared error of 2.57, which can be more than

halved using features of the training set alone. Using features of both the training and test sets, the

random forest algorithm reduces error to 30% of the constant model. Crucially, the random forest

algorithm is permitted to learn nonlinear combinations of the input features, and thus discover

relationships between the training and test lotteries that are relevant to the relative performance

of the black box and the economic model.

The random forest algorithm is too opaque to deliver insight into how it achieves these better

predictions, but we can obtain some understanding by examining the best 1-split decision tree,

shown in Figure 7 below. This decision tree achieves a cross-validated MSE of 1.75, reducing the

error of the constant model by 32%. It partitions the set of (train,test) domain pairs into two groups

depending on whether the standard deviation of z1 (the larger prize) in the training set of lotteries
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exceeds zero. There are three domains in which the prizes (z1,z2) are held constant across all training

lotteries (although the probabilities vary). In the 129 transfer prediction tasks where one of these

three domains is used for training, the decision tree predicts the ratio of the random forest error

to the CPT error to be 5.47. For all other transfer prediction tasks, the decision tree predicts 1.43.

This finding reinforces our intuition that the relative performance of the black boxes and

economic models is driven in part by whether the training sample covers the relevant part of the

feature space. When the training observations concentrate on an unrepresentative part of the

feature space (such as all lotteries that share a common pair of prize outcomes), then the black

boxes transfer much more poorly than economic models.

Our results also clarify a contrast between transfer performance and classical out-of-sample

performance. In out-of-sample testing, the marginal distribution on X is the same for the training

and test samples, so the set of training lotteries is likely to be representative of the set of test

lotteries as long as the training sample is sufficiently large. When test and training samples are

governed by distributions with different marginals on X , the set of training lotteries can be unrep-

resentative of the set of test lotteries regardless of the number of training observations. Training

on observations pooled across many domains alleviates the potential unrepresentativeness of the

training data, but the number of domains needed will depend on properties of the distribution: An

environment where each domain puts weight on exactly one lottery that is itself sampled i.i.d. may

be difficult for black-box algorithms,22 while an environment where the marginal distribution is

degenerate on the same lottery in all domains may be easier. There is no analog in out-of-sample

testing for the role played by variation in the marginal distribution on X across domains. Moving

beyond our specific application, we expect this variation to be an important determinant of the

relative transfer performance of black box algorithms and economic models in general.

5.Conclusion

Our measures of transfer error quantify how well a model’s performance on one domain extrapo-

lates to other domains. We applied these measures to show that the predictions of expected utility

theory and cumulative prospect theory outperform those of black box models on out-of-domain

tests, even though the black boxes generally have lower out-of-sample prediction errors within

a given domain. The relatively worse transfer performance of the black boxes seems to be because

22In this case, the number of domains black boxes need to achieve good transfer performance is likely comparable
to the number of observations they need for good out-of-sample performance, which can be quite large.
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the black box algorithms have not identified structure that is commonly shared across domains,

and thus cannot effectively extrapolate behavior from one set of features to another. Our finding

that the economic models transfer better supports the intuition that economic models can recover

regularities that are general across a variety of domains.
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Appendix A. Proofs

A.1. Notation. Throughout let N ≡{1,...,n}. The set Tr,n consists of all vectors of length r

with distinct values in N . For any (d1,...,dr+1)∈Tr+1,n+1, let f(d1,...,dr+1)=e(d1,...,dr),dr+1 denote

the transfer error from training samples Sd1,...,Sdr to test sample Sdr+1.

A.2. Proofs of Proposition 1 and Claim 1. These are special cases of Theorem 1 with Γ=1.

To avoid repetition, we will only prove Theorem 1.

A.3. Proof of Theorem 1 and Corollary 1. We start by proving a simple lemma.

Lemma A.1. Let H=(1−π)F+πG be a mixture of two distributions F and G. Further let ZH

be a draw from H and ZF a draw from F . Then, for any 0≤τ1<τ2≤1,

(1−π)(τ2−τ1)≤P
(
ZH∈ [Q

τ1
(F),Qτ2(F)]

)
≤(1−π)P

(
ZF ∈ [Q

τ1
(F),Qτ2(F)]

)
+π

Proof. Let ZG be a draw from G, and let W be a binary random variable, independent of ZF and

ZG, with E[W ]=π. Then ZH
d
=(1−W)ZF+WZG and

P
(
ZH∈ [Q

τ1
(F),Qτ2(F)]

)
=(1−π)P

(
ZF ∈ [Q

τ1
(F),Qτ2(F)]

)
+πP

(
ZG∈ [Q

τ1
(F),Qτ2(F)]

)
∈(1−π)P

(
ZF ∈ [Q

τ1
(F),Qτ2(F)]

)
+[0,π].

By definition of upper and lower quantiles, P
(
ZF ∈ [Q

τ1
(F),Qτ2(F)]

)
≥τ2−τ1. The result then

follows. �

Proof of Theorem 1. Throughout the proof we condition on the unordered samples {S1,...,Sn+1}
and denote by {S(1),...,S(n+1)} any typical realization. Let F denote the sigma-field generated

by the unordered set {S(1),...,S(n+1)}. Under the assumed data-generating process,

e(d1,...,dr),n+1 |F
d
=f(πw(d1),...,π

w(dr),π
w(n+1)), ∀(d1,...,dr)∈Tr,n.

where πw is a random permutation on {1,...,n+1} distributed according to

P(πw=π)=
1

n!

w(Sπ(n+1))∑n+1
j=1ω(Sj)

. (A.1)
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On the other hand, T
d
=(πn(1),...,πn(r)) where πn denotes a uniform random permutation on

{1,...,n}, so eT,n+1 |F
d
=f(πw◦πn(1),...,πw◦πn(r),πw(n+1)). By (A.1), we have

eT,n+1 |F
d
=f(πw(1),...,πw(r),πw(n+1)). (A.2)

For any (d1,...,dr,k)∈Tr+1,n+1, let

W ′k=P((πw(1),...,πw(r),πw(n+1))=(d1,...,dr,k))=
(n−r)!
n!

w(Sk)∑n+1
j=1ω(Sj)

.

Thus,

eT,n+1 |F∼
∑

(d1,...,dr,k)∈Tr+1,n+1

W ′k ·δf(d1,...,dr,k). (A.3)

Because P(Z≤Q̄τ(F))≥τ ,

P

eT,n+1≤Q̄τ

 ∑
(d1,...,dr,k)∈Tr+1,n+1

W ′k ·δf(d1,...,dr,k)

 |F
≥τ. (A.4)

Let

Ωn+1 =
∑

(d1,...,dr,k)∈Tr+1,n+1\Tr+1,n

W ′k. (A.5)

By definition, the element n+1 must belong to every tuple (d1,...,dr,k)∈Tr+1,n+1\Tr+1,n. Thus,

W ′n+1 shows up |Tr+1,n+1\Tr+1,n|/(r+1) times in the sum (A.5). By symmetry, each of the other

Wk’s shows up |Tr+1,n+1\Tr+1,n|r/(r+1)n times. Since

|Tr+1,n+1\Tr+1,n|= |Tr+1,n+1|−|Tr+1,n|=
(n+1)!

(n−r)!
− n!

(n−r−1)!
=(r+1)

n!

(n−r)!
,

we obtain that

Ωn+1 =
n!

(n−r)!
W ′n+1+

r(n−1)!

(n−r)!

n∑
k=1

W ′k

=
r

n
+

(n−1)!

(n−r−1)!
W ′n+1 =

r

n
+
n−r
n

w(Sn+1)∑n+1
j=1ω(Sj)

. (A.6)

where the second to last equality uses
∑n+1

k=1W
′
k= (n−r)!

n!
. By (A.6) and (7),

Wk=
W ′k

1−Ωn+1

.
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Thus, the distribution in (A.3) can be written as the following mixture distribution∑
(d1,...,dr,k)∈Tr+1,n+1

W ′k ·δf(d1,...,dr,k) =(1−Ωn+1)F
ω
M+Ωn+1·G

where G=
∑

(d1,...,dr,k)∈Tr+1,n+1\Tr+1,n
(W ′k/Ωn+1)·δf(d1,...,dr,k). By Lemma A.1 with τ1 =0,τ2 =τ, and

F=Fω
M, we have

P
(
eT,n+1≤Q̄τ(F

ω
M) |F

)
≥τ(1−Ωn+1).

Moreover, when f(d1,...,dr,k) are mutually distinct,

P
(
Z≤Q̄τ(F

ω
M)
)
≤1−τ+max

k
Wk,

where Z is the draw from the distribution inside Q̄τ and

max
k
Wk=

(n−r−1)!

(n−1)!

maxk≤nω(Sk)∑n
j=1ω(Sj)

.

Thus, Lemma A.1 implies

P
(
eT,n+1≤Q̄τ(F

ω
M) |F

)
≤

(
τ+

(n−r−1)!

(n−1)!

maxk≤nω(Sk)∑n
j=1ω(Sj)

)
(1−Ωn+1)+Ωn+1

=1−

(
1−τ− (n−r−1)!

(n−1)!

maxk≤nω(Sk)∑n
j=1ω(Sj)

)
(1−Ωn+1).

The result then follows by the iterated law of expectation and (A.6), which implies

1−Ωn+1 =
n−r
n

∑n
j=1ω(Sj)∑n+1
j=1ω(Sj)

.

The two-sided guarantee can be similarly obtained by Lemma A.1 with τ1 =1−τ and τ2 =τ .

To prove Corollary 1, we note that

ω(Sn+1)∑n+1
j=1ω(Sj)

≤ Γ

nΓ−1+Γ
=

1

nΓ−2+1
.

Thus,

1−Ωn+1 =
n−r
n

(
1− ω(Sn+1)∑n+1

j=1ω(Sj)

)
≥ n−r

n

nΓ−2

nΓ−2+1
=
n−r
n+Γ2

.
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Appendix P. Other Transfer Problems

Although we have focused on specifications of transfer error that evaluate how well a model

transfers from one domain to another, our results apply for the substantially broader class of

random variables given in Definition 1. We discuss below other interesting specifications of eT ,d∗

and what they might measure.

P.1. Parameter Transfer. When a model has interpretable parameters, we may be interested

in whether the parameter values estimated on the training data will be a good proxy for the

best-fitting parameters in the target sample.

Example 6 (Effectiveness of a Job Training Program). An economist has estimated the effectiveness

of a job training program using a data set from one location (as in Hotz et al. (2005)). How

similar would the estimate be if the program were implemented at another location?

Example 7 (Loss Aversion). An economist observes on a data set of choice over lotteries that

“losses loom larger than gains,” specifically that the loss aversion parameter in Prospect Theory

has a value larger than 1. If the economist were to elicit choices over a different set of lotteries,

would this qualitative conclusion continue to hold?

Consider any model that can be defined as a set FΘ ={fθ}θ∈Θ of prediction rules fθ :X→Y,

which depend continuously on a parameter θ in a compact parameter space Θ. Given any training

data ST, let θ̂(ST)=arginfθ∈Θ

∑
d∈T

|Sd|∑
d∈T|Sd|

∑
d∈Te(fθ,Sd) be the parameter value that minimizes

a weighted sum of the errors across the samples in the training data, and let fθ̂(ST) denote the corre-

sponding prediction rule.23 To assess parameter variation, first fix a distance metric d(θ,θ′) (e.g., Eu-

clidean distance) to assess how different two parameter vectors θ and θ′ are. Then the transfer error

eT,n+1 =d
(
θ̂(ST),θ̂(Sn+1)

)
23If there are ties, break them arbitrarily
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measures how far the estimated parameters on the training data are from the best-fitting parameters

on the target sample.

We can also assess how well a qualitative prediction that is based on the estimated parameters

will transfer to the target sample (e.g., a prediction that some coefficient is positive). Let A denote

any event that can be described as a function of the parameter θ. Then

eT,n+1 =

 1 if 1
(
θ̂(ST)∈A

)
=1

(
θ̂(Sn+1)∈A

)
0 otherwise

is a transfer error which tells us whether the prediction about A based on the training samples

also holds in the target sample.

P.2. Other Estimation Procedures. In the examples above, a model is trained on r training

samples and used to predict properties of a target sample. Our results apply also for other training

procedures. To avoid introducing extensive notation, we describe these procedures informally.

Example 8 (Transfer Learning). In transfer learning problems in computer science (see e.g., Pan

and Yang (2010)), some observations from the target sample are available in addition to the

training samples ST. The model or algorithm is trained on these observations jointly, with some

specification of how to weight the target sample observations relative to the other training data.

The performance of a model estimated in this way is another transfer error.

Example 9 (Transfer of Specific Parameters). While some economic parameters are viewed as

constant across domains, other parameters may be viewed as domain-specific. For example, spatial

models of trade often have structural parameters (e.g., the elasticity of demand substitution

between goods produced in different countries) whose values are set using estimates from another

paper, and “fundamentals” (e.g., productivity in each country), which are re-estimated on each

sample (see for example Alfaro-Urena et al., 2023). The performance of a model that is estimated

and evaluated in this way is a transfer error.

Example 10 (Using Cross-Validation to Tune Parameters). Our framework can also accommodate

training procedures in which cross-validation is used to tune select model parameters. For example,

black box algorithms often have a complexity parameter (e.g., the penalization parameter in LASSO

or the depth of decision trees in a random forest algorithm). One way of choosing the size of this

parameter is based on out-of-sample fit (Hastie et al., 2009; Chetverikov et al., 2021). In our setting,

2



this means holding out one of the training samples to use for testing, training the algorithm on

the remaining r−1 training samples, and evaluating fit on the remaining test sample. The chosen

complexity parameter is the one that yields the lowest average error across the r possible choices

of the test sample. Fixing this value for the complexity parameter, the algorithm is then fit to the

entire training data. The performance of such an algorithm on the target sample is a transfer error.

Example 11 (Counterfactual Predictions). One way that economic models are used is to form predic-

tions for outcomes under policy changes that have yet to be implemented. For instance, McFadden

(1974) predicted the demand impacts of the then-new BART rapid transit system in the San

Franciso Bay Area, and Pathak and Shi (2013) predicted demand for schools under changes to the

Boston school choice system. One can generalize our framework to cover the case where each sample

Sd is instead a pair of two observations, Sd=(S0
d,S

1
d). The pre-intervention samples (S0

1,...,S
0
n+1)

are drawn i.i.d. from one distribution, while the post-intervention samples (S1
1,...,S

1
n+1) are drawn

i.i.d. from another. In this more general setting, a transfer error is any function of the training

pairs {(S0
d,S

1
d)}d∈T, the target pair (S0

n+1,S
1
n+1), and potentially an independent noise variable.24

Appendix Q. Extensions and further results

Our main results focus on forecasting realized transfer errors, which is useful when we want

to know the range of plausible errors in transferring a given model to a new domain. We now

complement those results with procedures for inference focused on population quantities: Section

Q.2 provides confidence intervals for quantiles of the transfer error distribution, and Section Q.3

provides a confidence interval for the expected transfer error. Since these quantities can be perfectly

recovered given data from an infinite number of domains, we expect the lengths of these intervals to

vanish as the number of observed domains grows large, unlike the forecast intervals from Section 3.

Q.1. Preliminary Lemma. We start by establishing a bound that will be useful in the subse-

quent construction of confidence intervals. Let

U=
(n−k)!

n!

∑
(i1,...,ik)∈Tr+1,n

φ(Zi1,...,Zik)

24Our theoretical results generalize completely for transfer errors defined in this way; the main limitation is the
difficulty of obtaining sufficiently many pre- and post-intervention pairs. We mention this potential application in
the case that such data does eventually become available.
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be an arbitrary U-statistic of degree k with a bounded (and potentially asymmetric) kernel φ that

takes values in [0,1].

Definition Q.1. For every n,k∈Z+ and x,y∈R, define

Bn,k(x;y)≡min

{
b1n,k(x;y),b2n,k(x;y),b3n,k(x;y)

}
where

b1n,k(x;y)≡exp

{
−dn/ke

(
x∧ylog

(
x∧y
y

)
+(1−x∧y)log

(
1−x∧y

1−y

))}
b2n,k(x;y)≡e·P(Binom(dn/ke;y)≤ddn/ke·xe)

b3n,k(x;y)≡min
λ>0

nλ

k

(
x− λ

λ+kG(λ)
y

)
Lemma Q.1. If φ(Z1,...,Zk)∈ [0,1] almost surely, then P(U≤x)≤Bn,k(x;E(U)) for every x∈ [0,1].

Q.2. Quantiles of transfer error. Let F denote the CDF of eT,n+1, which we assume is

continuous. This section builds a confidence interval for the β-th quantile of F , denoted qβ.

For arbitrary q∈R and realized metadata M={S1,...,Sn}, define

ϕ(q,M)=
(n−r−1)!

n!

∑
(d1,...,dr+1)∈Tr+1,n

I(e(d1,...,dr),dr+1)≤q)

where I(·) is the indicator function, recalling that e(d1,...,dr),dr+1 denotes the observed transfer error

from samples (Sd1,...,Sdr) to sample Sdr+1. This is the fraction of observed transfer errors in the

metadata (from r training samples to one test sample) that are less than q. Then Uβ≡ϕ(qβ,M)

is a U-statistic where by definition, E[Uβ]=β. Lemma Q.1 then implies

P(Uβ≤x)≤Bn,r+1(x,β) P(Uβ≥x)=P(1−Uβ≤1−x)≤Bn,r+1(1−x,1−β). (Q.1)

Definition Q.2. For any quantile β ∈ (0,1) and confidence level 1− α ∈ (0,1), let û+
β (α) =

inf{u : Bn,r+1(u;β) ≥ α} and û−β (α) = sup{u : Bn,r+1(1 − u; 1 − β) ≥ α}. Further define

q̂L
β(α)≡min

{
q :ϕ(q,M)≥ û+

β (α)
}

and q̂U
β (α)≡max{q :ϕ(q,M)≤ û−r (α)}.

Since Bn,r+1(u;·) is right-continuous in u, it follows from (Q.1) that P(Uβ <û
+
β (α))≤α and

P(Uβ > û
−
β (α))≤α. Since ϕ(q,M) is monotonically increasing in q, the event {Uβ < û+

β (α)} is

equivalent to {qβ<q̂L
β(α)}, while {Uβ>û−β (α)} is equivalent to {qβ>q̂U

β (α)}. This yields:
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Proposition Q.1. For any quantile β∈(0,1) and confidence level 1−α∈(0,1),

P(qβ≤ q̂Uβ (α))≥1−α and P
(
qβ∈

[
q̂Lβ(α/2),q̂Uβ (α/2)

])
≥1−α.

Figure 8 applies Proposition Q.1 to construct two-sided 81% confidence interval for the median

raw transfer error, median transfer shortfall, and median transfer deterioration. As in Figure 4,

these confidence intervals are substantially wider for the black box algorithms, and have higher

upper bounds.
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Figure 8. 81% confidence intervals for the median of (a) raw transfer error, (b) transfer shortfall,
and (c) transfer deterioration.

Q.3. Expected transfer error. This section constructs confidence intervals for the expected

transfer error, µ≡E(eT,n+1), under the assumption that transfer errors are uniformly bounded
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(in which case it is without loss to set eT,n+1∈ [0,1]). Define the U-statistic

U=
(n−r−1)!

n!

∑
(d1,...,dr+1)∈Tr+1,n

e(d1,...,dr),dr+1.

Because E[U] =µ, Lemma Q.1 implies that P(U ≤x)≤Bn,r+1(x,µ) and P(U ≥x)≤Bn,r+1(1−
x,1−µ) for all x∈R.

Definition Q.3. For any confidence guarantee 1−α∈(0,1), let µ̂+(α)=sup{µ :Bn,r+1(U;µ)≥α}
and µ̂−(α)=inf{µ :Bn,r+1(1−U;1−µ)≥α}.

It follows from (Q.1) that P(U<û+(α))≤α and P(U>û−(α))≤α, which implies:

Proposition Q.2. If eT ,d∈ [0,1] almost surely, then P(µ≤µ̂+(α))≥1−α and

P(µ∈ [µ̂−(α/2),µ̂+(α/2)])≥1−α.

Figure 9 applies this result to construct two-sided 81% confidence intervals for the transfer errors

we considered in Section 4.4. Since transfer shortfall and transfer deterioration are not bounded,

we report instead confidence intervals for the expectation of their inverses
minm∈Me

(
fmSn+1

,Sn+1

)
e(fST ,Sn+1)

and
e(fSn+1

,Sn+1)

e(fST ,Sn+1)
; lower values for these measures correspond to worse transfer performance. We again

find that the confidence intervals for the black box algorithms are qualitatively worse than those

for the economic models.

0.5 0.6 0.7 0.8 0.9
Inverse transfer shortfall

RF

KR

αβγ

αβ

αβδγ

EU

δγ

γ

M
od

el
s

(a)

0.6 0.8 1.0
Inverse transfer deterioration

RF

KR

αβδγ

αβγ

δγ

γ

αβ

EU

M
od

el
s

(b)

Figure 9. 81% forecast intervals for (a) expected inverse transfer shortfall, (b) expected inverse
transfer deterioration.
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Q.4. Proof of Lemma Q.1. Hoeffding (1963) shows that P(U ≤ x) ≤ b1n,k(x,E(U)), and

Bates et al. (2021) shows that P(U ≤ x)≤ b2n,k(x,E(U)). We now show that if x∈ [0,1] then

P(U≤x)≤b3n,k(x,E(U)). To do this, we use a series of intermediate results to extend a result of

Bates et al. (2021) on U-statistics of degree 2 with bounded kernels to U-statistics with bounded

kernels for any order k≥2.

Let Z1,...,Zn be i.i.d. random variables and φ : Rk→ [0,1] be a bounded function. Then a

U-statistic of degree k is defined as

U=
(n−k)!

n!

∑
i1,...,ik

φ(Zi1,...,Zik), (Q.2)

where
∑

i1,...,ik
denotes the sum over all k-tuples in N with mutually distinct elements. The

average of Zi is a special case of (Q.2) with k=1 and φ(z)=z.

Let m=bn/kc and πn :N 7→N be a uniformly random permutation. For each permutation

π, define

Wπ=
1

m

m∑
j=1

φ
(
Zπ((j−1)k+1),...,Zπ(jk)

)
.

Note that the summands in Wπ are independent given π. Then U=Eπn[Wπn], where Eπn denotes

the expectation with respect to πn when conditioning on Z1,...,Zn. By Jensen’s inequality, for

any convex function ψ, E[ψ(U)]=E[ψ(Eπn[Wπn])]≤E[Eπnψ(Wπn)]=Eπn[Eψ(Wπn)]. Since Wπ

has identical distributions for all π,

E[ψ(U)]≤E[ψ(Wid)] (Q.3)

where id is the permutation that maps each element to itself.

Recalling that Hoeffding’s inequality is derived from the moment-generating function ψ(z)=eλz

(Hoeffding, 1963), and the Bentkus inequality is derived from the piecewise linear function

ψ(z) = (z − t)+ (Bentkus, 2004), the following tail inequalities for U-statistics are a direct

consequence of (Q.3).

Proposition Q.3. Let U be a U-statistic of order k with a bounded kernel φ∈ [0,1] in the form

of (Q.2) and m=bn/kc. Then

(1) (Hoeffding inequality for U-statistics, Section 5 of Hoeffding 1963)

P(U≤x)≤exp{−mh1(x∧E[U];E[U])},
7



where

h1(y;µ)=ylog

(
y

µ

)
+(1−y)log

(
1−y
1−µ

)
.

(2) (Bentkus inequality for U-statistics, modified from Bentkus 2004)

P(U≤x)≤eP(Bin(m;E[U])≤dmxe).

Other concentration inequalities can be derived from the leave-one-out property. Write

U(Z1,...,Zn) for U and let Ui=infziU(Z1,...,Zi−1,zi,Zi+1,...,Zn). Note that Ui is independent of

Zi. Since φ(·)≥0, we have 0≤U−Ui≤ (n−k)!
n!

∑k
j=1

∑
i1,...,ik,ij=i

φ(Zi1,...,Zik) so n
k
(U−Ui)≤1 and

n∑
i=1

(U−Ui)2≤ ((n−k)!)2

(n!)2

n∑
i=1

 k∑
j=1

∑
i1,...,ik,ij=i

φ(Zi1,...,Zik)

2

(i)

≤ k(n−k)!

n·n!

k∑
j=1

n∑
i=1

∑
i1,...,ik,ij=i

φ(Zi1,...,Zik)
2

(ii)

≤ k(n−k)!

n·n!

k∑
j=1

n∑
i=1

∑
i1,...,ik,ij=i

φ(Zi1,...,Zik)

=
k2

n
U,

where (i) applies the Cauchy-Schwarz inequality and (ii) uses the fact that φ(·)≤ 1. If we let

W =(n/k)U and Wi=(n/k)Ui, then W−Wi≤1,
∑n

i=1(W−Wi)
2≤kW. This implies that W

as a function of Z1,...,Zn satisfies the assumptions for the claim (34) in Theorem 13 of Maurer

(2006) with constant a=k.25

Proposition Q.4 (Theorem 13, Maurer 2006). Let G(λ)=(eλ−λ−1)/λ. Then for any λ>0,

logE[eλ(E[W ]−W)]≤ kλG(λ)

λ+kG(λ)
E[W ].

This further implies that for any x∈(0,E[U]),

P(U≤x)≤exp

{
min
λ>0

nλ

k

(
x− λ

λ+kG(λ)
E[U]

)}
.

Putting Proposition Q.3 and Proposition Q.4 together yields Lemma Q.1.

25Theorem 13 of Maurer (2006) states a weaker result that logE[eλ(E[W ]−W)]≤ kE[W ]
2 λ2. The stronger version

stated here can be found in the second last display in the proof of Theorem 13 of Maurer (2006).
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Appendix R. Supplementary Material to Section 3.2

R.1. A more general distribution shift model. In this subsection we discuss a more general

distribution shift model that allows S1,...,Sn to have non-identical distributions. Let p denote

the joint density of S1,...,Sn+1 (with respect to a dominating measure). Let πp be a random

permutation on {1,...,n+1} such that, for any realization {s1,...,sn+1} of {S1,...,Sn+1},

P
(
πp(1)=d1,...,π

p(n+1)=dn+1 |{S(1),...,S(n+1)}={s1,...,sn+1}
)

=
p(sd1,...,sdn+1)∑

(d′1,...,d
′
n+1)∈Tn+1,n+1

p(sd′1,...,sd′n+1
)
.

Then,

(sπp(1),...,sπp(n)) |{S(1),...,S(n+1)}={s1,...,sn+1}
d
=(S1,...,Sn+1) |{S(1),...,S(n+1)}={s1,...,sn+1}.

Again let F denote the sigma-field generated by the unordered set {S(1),...,S(n+1)}.

Definition R.1. For any Γ≥1, let P(Γ;r) be the class of distributions on (S1,...,Sn+1) with

(n+1)!

(n−r)!
P(πp(1)=d1,...,π

p(r)=dr,π
p(n+1)=k |F)∈

[
Γ−1,Γ

]
almost surely,

for any (d1,...,dr,k)∈Tn+1.

Above, (n−r)!/(n+1)! is the probability under a uniform permutation and thus the LHS can

be interpreted as the density ratio between πp and a uniform permutation, which measures the

deviation from exchangeability.

By (A.1), when ν∈W(Γ), the joint density p satisfies

(n+1)!

(n−r)!
P(πp(1)=d1,...,π

p(r)=dr,π
p(n+1)=k)

=
(n+1)ω(Sk)∑n+1

j=1ω(Sj)
≤ (n+1)Γ

nΓ−1+Γ
=

(n+1)Γ2

n+Γ2
.

Thus,

p∈P
(

(n+1)Γ2

n+Γ2
;r

)
⊂P

(
Γ2;r

)
.

Next, we derive forecast intervals akin to Corollary 1.

9



Theorem R.1. Suppose the joint distribution of (S1,...,Sn+1) lies in P(Γ;r). Then

P
(
eT,n+1≤ ēM1−(1−τ)/Γ

)
≥τ
(

1− (r+1)Γ

n+1

)
,

and

P
(
eT,n+1∈ [̄eM(1−τ)/Γ,̄e

M
1−(1−τ)/Γ]

)
≥(2τ−1)

(
1− (r+1)Γ

n+1

)
.

Proof. For notational convenience, for any (d1,...,dr,k)∈Tr+1,n+1, let

Ad1,...,dr,k=P(πp(1)=d1,...,π
p(r)=dr,π

p(n+1)=k |F).

Again, we condition on the unordered samples S1,...,Sn+1 and denote by S(1),...,S(n+1) a typical

realization. By similar arguments used to show (A.3), we have

eT,n+1 |F∼
∑

(d1,...,dr,k)∈Tr+1,n+1

Ad1,...,dr,k ·δf(d1,...,dr,k). (R.1)

Thus,

P

eT,n+1≤Q̄τ

 ∑
(d1,...,dr,k)∈Tr+1,n+1

Ad1,...,dr,k ·δf(d1,...,dr,k)

 |F
≥τ.

Let

Ωn+1 =
∑

(d1,...,dr,k)∈Tr+1,n+1\Tr+1,n

Ad1,...,dr,k.

Then we can rewrite the distribution in (R.1) as a mixture distribution∑
(d1,...,dr,k)∈Tr+1,n+1

Ad1,...,dr,k ·δf(d1,...,dr,k) =(1−Ωn+1)·F+Ωn+1·G,

where

F=
∑

(d1,...,dr,k)∈Tr+1,n

Ad1,...,dr,k

1−Ωn+1

·δf(d1,...,dr,k), G=
∑

(d1,...,dr,k)∈Tr+1,n+1\Tr+1,n

Ad1,...,dr,k

Ωn+1

·δf(d1,...,dr,k).

By Lemma A.1 with τ1 =0,τ2 =τ , we have that

P

eT,n+1≤Q̄τ

 ∑
(d1,...,dr,k)∈Tr+1,n

Ad1,...,dr,k ·δf(d1,...,dr,k)

 |F
≥τ(1−Ωn+1).

By definition,

Ad1,...,dr,k∈
(n−r)!
(n+1)!

·
[
Γ−1,Γ

]
.
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The largest possible value for Q̄τ

(∑
(d1,...,dr,k)∈Tr+1,n

Ad1,...,dr,k ·δf(d1,...,dr,k)

)
is achieved whenAd1,...,dr,k=

Γ(n−r)!/(n+1)! for the largest values of f(d1,...,dr,k). Thus,

Q̄τ

 ∑
(d1,...,dr,k)∈Tr+1,n

Ad1,...,dr,k ·δf(d1,...,dr,k)

≤Q̄τ ′

 ∑
(d1,...,dr,k)∈Tr+1,n

δf(d1,...,dr,k)

=eMτ ′ ,

where Γ(1−τ ′)=1−τ . Clearly, τ ′=1−(1−τ)/Γ. Thus,

P
(
eT,n+1≤eMτ ′ |F

)
≥τ(1−Ωn+1).

Moreover,

Ωn+1≤Γ
(n−r)!
(n+1)!

·(|Tr+1,n+1|−|Tr+1,n|)=
(r+1)Γ

n+1
.

Thus, the result for the one-sided interval is proved. The result for the two-sided interval can be

proved similarly by Lemma A.1 with τ1 =1−τ,τ2 =τ and by noting that the smallest possible value

for Q
τ

(∑
(d1,...,dr,k)∈Tr+1,n

Ad1,...,dr,k ·δf(d1,...,dr,k)

)
is achieved when Ad1,...,dr,k=Γ(n−r)!/(n+1)! for

the smallest values of f(d1,...,dr,k), and hence

Q
τ

 ∑
(d1,...,dr,k)∈Tr+1,n

Ad1,...,dr,k ·δf(d1,...,dr,k)

≥Q
1−τ ′

 ∑
(d1,...,dr,k)∈Tr+1,n

δf(d1,...,dr,k)

=eMτ ′ .

�

R.2. Algorithm for evaluating worst-case-upper-dominance. We provide an algorithm

that computes ēτ(Γ) with a single τ in O(rnr+1logn) time and computes ēτ(Γ) for all τ ∈ (0,1)

in O(rnr+1logn+nr+2) time. First, sort the elements in {f(d1,...,dr+1):(d1,...,dr+1)∈Tr+1,n} as

f(1)≤f(2)≤ ...≤f(|Tr+1,n|),

where

f(j) =f(d(j)), d(j) =(d
(j)
1 ,...,d

(j)
r+1)∈Tr+1,n.

Let ψ(j)∈{0,1}n with

ψ
(j)
i =I

(
d

(j)
r+1 =i

)
.

Further define the cumulative sum of ψ(j) as

Ψ(j) =

j∑
`=1

ψ(`).

11



Let w=(ω(S1),...,ω(Sn))
T and 1n=(1,1,...,1)T . By (7), for each j,

f(j)≥ ēM,ω
τ ⇐⇒ (n−r−1)!

(n−1)!

wTΨ(j)

wT1n
≥τ.

Therefore,

ēM,ω
τ =fJω, where Jωτ =min

{
j :
wTΨ(j)

wT1n
≥τ (n−1)!

(n−r−1)!

}
.

By definition, the set of w generated by all ω∈W(Γ) is [Γ−1,Γ]n. Thus,

ēMτ (Γ)=fJτ (Γ), where Jτ(Γ)=min

{
j : min
w∈[Γ−1,Γ]n

wTΨ(j)

wT1n
≥τ (n−1)!

(n−r−1)!

}
. (R.2)

Via some algebra, we can further simplify the expression of ēMτ (Γ).

Theorem R.2. Let Ψ̄
(j)
k be the average of the k-smallest coordinates of Ψ(j) and

Qj(Γ)=
j

n
+min
k∈N

Ψ̄
(j)
k −

j
n

1+ n
k(Γ2−1)

.

Then Qj(Γ) is strictly increasing in both j and Γ. Moreover, ēMτ (Γ)=f(Jτ (Γ)), where

Jτ(Γ)=min

{
j≥τ n!

(n−r−1)!
:Qj(Γ)≥τ (n−1)!

(n−r−1)!

}
.

Proof. First, we prove that

min
w∈[Γ−1,Γ]n

wTΨ(j)

wT1n
= min
w∈{Γ−1,Γ}n

wTΨ(j)

wT1n
. (R.3)

Let gj(w) =wTΨ(j)/wT1n. Then gj is continuous and bounded on the closed set [Γ−1,Γ]n and

thus the minimum can be achieved. Let

w(j)(Γ)= argmin
w:gj(w)=minw∈[Γ−1,Γ]ngj(w)

n∑
i=1

min
{
|wi−Γ|,|wi−Γ−1|

}
.

Suppose there exists i∈N such that w
(j)
i (Γ)∈(Γ−1,Γ). Then

gj(wi,w−i)=
Ψ

(j)
i wi+Ψ

(j)T
−i w−i

wi+1Tn−1w−i
=Ψ

(j)
i +

Ψ
(j)T
−i w−i−Ψ

(j)
i ·1Tn−1w−i

wi+1Tn−1w−i
,

where Ψ
(j)
−i and w−i are the leave-i-th-entry subvectors of Ψ(j) and w. Clearly, gj is a monotone

function of wi for any given w−i. Since w(j)(Γ) is a minimizer and w
(j)
i (Γ)∈ (Γ−1,Γ), we must
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have Ψ
(j)T
−i w−i−Ψ

(j)
i ·1Tn−1w−i=0. Define w̃(j)(Γ) with

w̃
(j)
i (Γ)=Γ, w̃

(j)
−i(Γ)=w

(j)
−i(Γ).

Then

gj(w̃
(j)(Γ))=gj(w

(j)(Γ))= min
w∈[Γ−1,Γ]n

gj(w),

while

n∑
i=1

min
{
|w̃(j)

i (Γ)−Γ|,|w̃(j)
i (Γ)−Γ−1|

}
<

n∑
i=1

min
{
|w(j)

i (Γ)−Γ|,|w(j)
i (Γ)−Γ−1|

}
.

This contradicts the definition of w(j)(Γ), so w(j)(Γ)∈{Γ−1,Γ}n, which completes the proof of (R.3).

For any w∈{Γ−1,Γ}n with |{i :wi=Γ}|=k, the Fréchet-Hoeffding inequality implies that Γ’s

are allocated to the k smallest entries of Ψ(j). Thus,

min
w∈{Γ−1,Γ}n

wTΨ(j)

wT1n
= min
k∈N∪{0}

ΓkΨ̄
(j)
k +Γ−1(1TnΨ

(j)
i −kΨ̄

(j)
k )

Γk+Γ−1(n−k)
.

By definition, 1TnΨ
(j)
i =j. Then for each k, the above expression can be simplified as

ΓkΨ̄
(j)
k +Γ−1(1TnΨ

(j)
i −kΨ̄

(j)
k )

Γk+Γ−1(n−k)
=

ΓkΨ̄
(j)
k +Γ−1(j−kΨ̄

(j)
k )

Γk+Γ−1(n−k)

=
(Γ−Γ−1)kΨ̄

(j)
k +Γ−1j

(Γ−Γ−1)k+Γ−1n
=
j

n
+

(Γ−Γ−1)k
(

Ψ̄
(j)
k −

j
n

)
(Γ−Γ−1)k+Γ−1n

=
j

n
+

Ψ̄
(j)
k −

j
n

1+ n
k(Γ2−1)

.

The above expression is j/n for both k=n and k=0, so we can remove 0 from the minimum,

and thus

min
w∈[Γ−1,Γ]n

wTΨ(j)

wT1n
=Qj(Γ).

By (R.2),

ēMτ (Γ)=min

{
j :Qj(Γ)≥τ (n−1)!

(n−r−1)!

}
.

Finally, we can restrict to j≥τn!/(n−r−1)! because Qj(Γ)≤ j
n

by taking k=n. �

Since Qj(Γ) is increasing in j, Jτ(Γ) can be found via binary search with iteration complexity

O(lognr+1) = O(r logn). Each iteration costs at most O(n) operations to sort the entries of
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Ψ(j) based on the ordered version of Ψ(j−1), since there is only entry updated, and O(n) addi-

tional operations to compute Qj(Γ). Thus, the overall computational overhead after obtaining

(f(1),...,f(|Tr+1,n|)) is just O(rnlogn), which is much smaller than the cost of sorting f-values

O(nr+1lognr+1)=O(rnr+1logn).

In some cases, we want to compute ēMτ (Γ) for all τ ∈ [0,1] at once. The following result links

ēMτ (Γ) to an induced distribution on the f ’s.

Corollary R.1. For any Γ≥1, let µΓ be a weighted measure with

µΓ =

|Tr+1,n|∑
j=1

(n−r−1)!

(n−1)!
(Qj(Γ)−Qj−1(Γ))·δf(j),

where Q0(Γ)=0. Then ēMτ (Γ) is the τ-th quantile of µΓ.

Since the ordering takes O(rnr+1logn) time and computing each Qj(Γ) takes O(n) time, the

total computational cost to compute ēMτ (Γ) for all τ∈ [0,1] is O(rnr+1logn+nr+2).

R.3. Algorithm for evaluating everywhere dominance. Let f(j),1 and f(j),2 be the j-th

largest transfer errors for method 1 and 2, respectively. Similarly, the count vectors for two methods

are denoted by Ψ(j),1 and Ψ(j),2. Then method 1 does NOT everywhere-upper-dominate method

2 at the τ-th quantile if and only if there exists j1,j2∈{1,...,|Tr+1,n|} and W ∈ [0,∞)n such that

f(j1),1>f(j2),2,
(n−r−1)!

(n−1)!

wTΨ(j1−1),1

wT1n
<τ≤ (n−r−1)!

(n−1)!

wTΨ(j2),2

wT1n
. (R.4)

Above Ψ(0),1 =(0,0,...,0)T .

To avoid pairwise comparisons, which incur O(n2(r+1)) computation, we can check (R.4) by

only focusing on j1 =m(j),j2 =j where

m(j)=min{j′ :f(j′),1>f(j),2}.

It is easy to see that (R.4) holds for some pair (j1,j2)∈{1,...,|Tr+1,n|}2 if and only if it holds for

(m(j),j) for some j∈{1,...,|Tr+1,n|}. For any given j, (R.4) reduces to

(n−r−1)!

(n−1)!

wTΨ(m(j)−1),1

wT1n
<τ≤ (n−r−1)!

(n−1)!

wTΨ(j),2

wT1n
, w∈ [0,∞)n.
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This is equivalent to solving the following linear fractional programming problem and then checking

if the objective is below τ :

min
wTa(j)

wT1n
, s.t.,

wTb(j)

wT1n
≥τ, w∈ [0,∞)n,

where

a(j) =Ψ(m(j)),1· (n−r−1)!

n−1)!
, b(j) =Ψ(j),2· (n−r−1)!

(n−1)!
.

We can apply the Charnes-Cooper transformation (Charnes and Cooper, 1962) by introducing

v=w/wT1n to transform it into a linear programming problem:

minvTa(j), s.t.,vTb(j)≥τ,vT1n=1,v∈ [0,∞)n. (R.5)

Solving these O(nr+1) LP problems can be accelerated by the following two observations:

(1) Using the same argument as in the last step of the proof of Theorem R.2, we can restrict

j≥τ n!

(n−r−1)!
.

(2) When a
(j)
i ≥b

(j)
i for every i∈N , then the objective of (R.5) can never be below τ .

Appendix S. Supplementary material for Section 4

S.1. Description of data. We briefly describe the individual samples in our meta-data. There

are 44 domains in total.

Table 4

Source of Data # Obs # Subj # Lottery Country Gains Only

Abdellaoui et al. (2015) 801 89 3 France Y

Fan et al. (2019) 4750 125 19 US Y

Bouchouicha and Vieider (2017) 3162 94 66 UK N

Sutter et al. (2013) 661 661 4 Austria Y

Etchart-Vincent and l’Haridon (2011) 3036 46 20 France N

Fehr-Duda et al. (2010) 8560 153 56 China N

Lefebvre et al. (2010) 72 72 2 France Y

Halevy (2007) 366 122 2 Canada Y

Anderhub et al. (2001) 183 61 1 Israel Y

Murad et al. (2016) 2131 86 25 UK Y

Dean and Ortoleva (2019) 1032 179 3 US Y
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Bernheim and Sprenger (2020) 1071 153 7 US Y

Bruhin et al. (2010) 8906 179 50 Switzerland N

Bruhin et al. (2010) 4669 118 40 Switzerland N

l’Haridon and Vieider (2019) 1708 61 28 Australia N

l’Haridon and Vieider (2019) 2548 95 28 Belgium N

l’Haridon and Vieider (2019) 2350 84 28 Brazil N

l’Haridon and Vieider (2019) 2240 80 28 Cambodia N

l’Haridon and Vieider (2019) 2687 96 28 Chile N

l’Haridon and Vieider (2019) 5711 204 28 China N

l’Haridon and Vieider (2019) 3072 128 24 Colombia N

l’Haridon and Vieider (2019) 2968 106 28 Costa Rica N

l’Haridon and Vieider (2019) 2770 99 28 Czech Republic N

l’Haridon and Vieider (2019) 3906 140 28 Ethiopia N

l’Haridon and Vieider (2019) 2604 93 28 France N

l’Haridon and Vieider (2019) 3639 130 28 Germany N

l’Haridon and Vieider (2019) 2352 84 28 Guatemala N

l’Haridon and Vieider (2019) 2492 89 28 India N

l’Haridon and Vieider (2019) 2352 84 28 Japan N

l’Haridon and Vieider (2019) 2716 97 28 Kyrgyzstan N

l’Haridon and Vieider (2019) 1791 64 28 Malaysia N

l’Haridon and Vieider (2019) 3360 120 28 Nicaragua N

l’Haridon and Vieider (2019) 5638 202 28 Nigeria N

l’Haridon and Vieider (2019) 2660 95 28 Peru N

l’Haridon and Vieider (2019) 2491 89 28 Poland N

l’Haridon and Vieider (2019) 1959 70 28 Russia N

l’Haridon and Vieider (2019) 1819 65 28 Saudi Arabia N

l’Haridon and Vieider (2019) 1988 71 28 South Africa N

l’Haridon and Vieider (2019) 2240 80 28 Spain N

l’Haridon and Vieider (2019) 2212 79 28 Thailand N

l’Haridon and Vieider (2019) 2070 74 28 Tunisia N

l’Haridon and Vieider (2019) 2240 80 28 UK N

l’Haridon and Vieider (2019) 2701 97 28 US N

l’Haridon and Vieider (2019) 2436 87 28 Vietnam N

S.2. Papers as domains. We now consider an alternative definition of domains, with each of the

14 papers representing a different domain. This changes the content of the i.i.d. assumption imposed
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Figure 10. 78% (n=14, τ=0.95) forecast intervals for each of the three measures, treating each
paper as a separate domain.

in Section 3, where we now assume that samples are i.i.d. across papers, but may be dependent

across subject pools within the same paper. We repeat our main analysis and report 78% two-sided

forecast intervals in Figure 10. These intervals are qualitatively similar to those reported in Figure 4.

S.3. Supplementary tables and figures for main analysis. Table 5 reports the forecast

intervals that are depicted in Figure 4.
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Model Raw Transfer Error Transfer Shortfall Transfer Deterioration

CPT variants
γ [2.50,15.83] [1.03,2.54] [1.00,1.47]
α,β [2.56,16.13] [1.04,2.35] [1.00,1.30]
δ,γ [2.48,17.19] [1.02,2.47] [1.00,1.53]
α,β,γ [2.47,15.91] [1.02,2.60] [1.00,1.85]
α,β,δ,γ [2.46,15.99] [1.02,2.62] [1.00,1.82]

EU models
EU [2.56,16.41] [1.04,2.14] [1.00,1.30]

ML algorithms
Random Forest [2.71,31.39] [1.02,6.42] [1.02,6.42]
Kernel Regression [2.75,33.62] [1.02,5.33] [1.01,5.29]

Table 5. 86% (n=44, τ=0.95) forecast intervals

S.4. Alternative forecast intervals. In this section, we report alternative forecast intervals for

our three measures. Table 6 constructs 96% two-sided forecast intervals (setting τ = 1),26 and

Table 7 reports 91% one-sided forecast intervals (setting τ=0.95). All of the forecast intervals

are qualitatively similar to the 86% two-sided forecast intervals reported in the main text.

Model Raw Transfer Error Transfer Shortfall Transfer Deterioration

CPT main variants
γ [0.81,23104.96] [1.01,7.31] [1.00,7.22]
α,β [0.71,19999.41] [1.00,5.28] [1.00,5.27]
δ,γ [0.71,23052.76] [1.00,7.25] [1.00,7.18]
α,β,γ [0.71,28122.26] [1.00,5.65] [1.00,5.60]
α,β,δ,γ [0.71,27959.10] [1.00,6.01] [1.00,5.95]

EU models
EU [0.72,22787.99] [1.00,4.44] [1.00,1.75]

ML algorithms
Random Forest [0.96,42520.49] [1.01,33.17] [1.01,33.17]
Kernel Regression [1.01,42519.23] [1.01,6.835] [1.00,6.79]

Table 6. 96% (n=44, τ=1) two-sided forecast intervals

Finally, Figure 11 plots the τ-th percentile of the pooled transfer errors as τ varies. The figure

shows that the qualitative conclusions we have drawn about the relative performance of black boxes

26The lower bounds of these intervals are the minimum transfer error (among the pooled transfer errors) and the
upper bounds are the maximum transfer error.
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Model Raw Transfer Error Transfer Shortfall Transfer Deterioration

CPT main variants
γ [0,15.83] [1,2.54] [1,1.47]
α,β [0,16.13] [1,2.35] [1,1.30]
δ,γ [0,17.19] [1,2.47] [1,1.53]
α,β,γ [0,15.91] [1,2.60] [1,1.85]
α,β,δ,γ [0,15.99] [1,2.62] [1,1.82]

EU models
EU [0,16.41] [1,2.14] [1,1.30]

ML algorithms
Random Forest [0,31.39] [1,6.42] [1,6.42]
Kernel Regression [0,33.62] [1,5.33] [1,5.29]

Table 7. 91% (n=44, τ=0.95) one-sided forecast intervals

and economic models are not specific to any choice of τ .27 In fact, in Panels (a) and (c), the black

box curves lie everywhere above the CPT and EU curves, so both the lower and upper bounds of

the black boxes’ forecast intervals are higher than those of the economic models for every choice of τ .

S.5. Forecast intervals for the ratio of raw CPT and RF transfer errors. Let eT ,d be

the ratio of the raw random forest transfer error to the raw CPT transfer error (i.e., using the

specification in (1)), henceforth the transfer error ratio.

Panel (a) of Figure 12 reports 86% two-sided forecast intervals for the raw transfer error ratio

for each CPT specification. The lower bound for each CPT model is approximately 0.9, while

the upper bound is as large as 4.5. Panel (b) of the figure is a histogram of raw transfer error

ratios for the 4-parameter CPT model when the training domains T and the target domains d

are drawn uniformly at random from the set of domains in the meta-data. This distribution has a

large cluster of ratios around 1 (i.e., raw CPT transfer errors are similar to the raw random forest

errors) and a long right tail of ratios achieving a max value of 32.8 (i.e., the random forest error

can be up to 32 times as large as the CPT error). The cumulative distribution function of eT ,d,

reported in Panel (c) of Figure 12, shows that the random forest algorithm outperforms CPT in

approximately 35% of (T ,d) pairs, although CPT rarely has a much worse raw transfer error than

the random forest and is sometimes much better.

27To improve readability, we remove extreme numbers by truncating τ∈ [5,95], and show results only for the αβγδ
specification of the CPT model.
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Figure 11. Error percentiles from 5 to 95 (truncated for readability).

S.6. Alternative Choice of r. Here we consider an alternative choice for the number of training

domains, setting r=3 instead of r=1. This corresponds to randomly choosing 3 of the 44 domains

to be the training domains, finding the best prediction rule for this pooled data, and using the

estimated prediction rule to predict the remaining 41 samples. For this analysis we use domain cross-

validation to select tuning parameters for the black box algorithms, as described in Example 10.

Figure 13 is the analog of Figure 4. Again we choose τ = 0.95, thus constructing forecast

intervals whose lower bounds are the 5% percentile of pooled transfer errors, and whose upper

bounds are the 95% percentile of pooled transfer errors. Applying Proposition 1, these are 82%

forecast intervals. The most notable change is that the random forest forecast interval shrinks

considerably, which suggests that the raw transfer error of the random forest algorithm becomes
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Figure 12. Forecast intervals, density, and cdf for the ratio of the raw random forest transfer
error to the raw CPT transfer error.

less variable when it is trained on more domains. Otherwise, all of the qualitative statements in

the main text for r=1 continue to hold. In particular, as with r=1, we find that the forecast

intervals for all three of our measures have higher lower and upper bounds for the black box

algorithms than for the CPT specifications.

S.7. Supplementary Material to Section 4.5. Here we consider an alternative choice of for

the number of training samples, setting r=3 and r=5 instead r=1. Recalling that each sample

includes the observations associated with a unique lottery, this corresponds to randomly choosing

three (or five) of the 24 lotteries for training, finding the best prediction rule for this pooled

data, and using the estimated prediction rule to predict certainty equivalents for the remaining
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Figure 13. 82% (n=44, τ = 0.95) forecast intervals for (a) raw transfer error, (b) transfer
shortfall, and (c) transfer deterioration, with the choice of r=3.

21 (or 19) lotteries. We use domain cross-validation to select tuning parameters for the black box

algorithms, as described in Example 10.

Figure 14 and Figure 15 are the analog of Figure 6, with r=3 and r=5 respectively. We again

choose τ =0.95, thus constructing forecast intervals whose lower bounds are the 5% percentile

of pooled transfer errors, and whose upper bounds are the 95% percentile of pooed transfer errors.

Applying Proposition 1, these are 76% for r=3 and 68% for r=5 forecast intervals. The most

notable change is that the forecast intervals shrink for all of the prediction methods, which suggests

that the raw transfer error becomes less variable when it is trained on more lotteries. Otherwise,

all of the qualitative statements in the main text for r=1 continue to hold, and in particular the

economic models continue to transfer better than the black box algorithms do.
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Figure 14. 76% (n=24, τ=0.95) forecast intervals using common lotteries in l’Haridon and
Vieider (2019), with the choice of r=3.

S.8. More details on worst-case dominance. Figures 16 and 17 compare the worst case

upper bound of the forecast intervals for CPT and RF for our three transfer measures as either

γ or τ varies. In each case the dominance relation is clear.
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Figure 15. 68% (n=24, τ=0.95) forecast intervals using common lotteries in l’Haridon and
Vieider (2019), with the choice of r=5.
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Figure 16. The worst case upper prediction bound êτ(Γ) (as defined in (8)) for (a) raw transfer
error, (b) transfer shortfall, and (c) transfer deterioration of CPT and RF as a function of
Γ∈ [1,∞), discretized at 100/i(i=0,1,...,100), at different quantiles τ∈{0.5,0.6,0.7,0.8,0.9}.
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ê τ
(Γ

)

method CPT RF

Figure 17. The worst case upper prediction bound êτ(Γ) (as defined in (8)) for (a) raw transfer
error, (b) transfer shortfall, and (c) transfer deterioration of CPT and RF as a function of
τ∈ [0.5,1] without discretization for Γ∈{1,2,5,10,∞}.
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