The Rise and Decline of Oligarchic Regimes Zeuthen Lectures

Daron Acemoglu

MIT

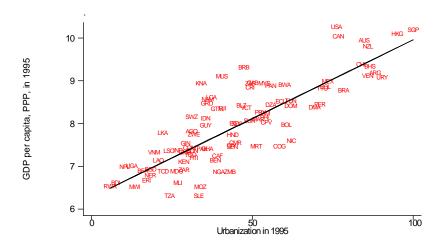
May 23, 2012.

Introduction

- Many scholars have noted a pattern of "rise and decline"; previously advanced civilizations collapse, while others prosper.
- Prominent examples include:
 - The declines of the Roman Empire, the Egyptian empire, the Chinese Empire in the ancient times.
 - The decline of Venice and Genoa and the rise of England and the Dutch Republic (and then the decline of the Dutch Republic).
 - The decline of Inca and Aztec empires and the rise of the civilizations in North America in the New World
- Existing theories:
 - Building up of social rigidities (Olson).
 - Military over-expansion (Kennedy).

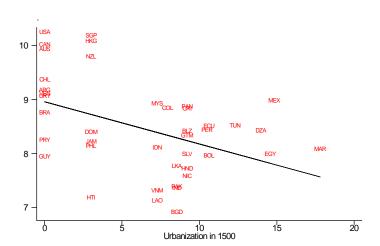
This Lecture

- A different perspective on the rise and decline.
- Main idea: institutions appropriate (or only marginally costly) under certain circumstances become more costly later.
 - Most important example: oligarchic institutions
- Thus a theory of interactions between institutions and economic opportunities.
- Indirectly about:
 - the costs and benefits of the different economic (political) systems?
 - the potential for change and flexibility within given institutional environments.


Plan of Talk

- Examples of "rise and decline" and path dependent change.
 - Caribbean versus Northeast America (within a broader "reversal of fortune" among former European colonies).
 - Venice and Spain versus England and the Dutch Republic.
- A model of oligarchy versus democracy.
 - Key trade-off between protecting the property rights of incumbents versus creating a level playing field for non-incumbents.
 - Dynamic distortion of "oligarchy".
- Implications for recent developments in the United States

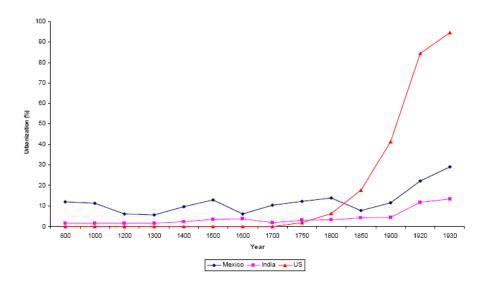
The Reversal of Fortune

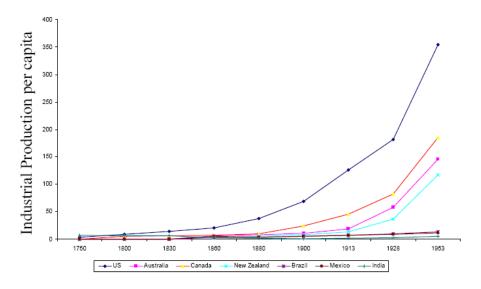

- Use of urbanization and density of population before European colonization as a proxy for income per capita and how advanced pre-colonial civilizations are.
- Robust negative relationship between income today and urbanization in 1500 among the former colonies.
- Robust negative relationship between income today and log population density in 1500.
- Not due to any geographic variable, or identity of colonial power.
- When urbanization and population density both included, population density is the main determinant.

Measuring Prosperity Before National Accounts

The Reversal of Fortune

GDP per capita, PPP, in 1995


The Reversal of Fortune


The Timing and Nature of the Reversal

- When did the reversal take place?
- Not when the Europeans plundered the previously rich societies or killed of their populations.
- In the 19th century, and intimately related to industrialization.

The Timing and Nature of the Reversal

The Timing and Nature of the Reversal

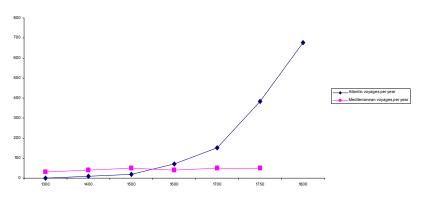
Plantation Versus Industrialization

- Specific example of the nature ande timing of the reversal:
- The Caribbean Plantation societies in the 17th and 18th centuries initially prosperous, but then falling behind Northeastern United States.
- Caribbean plantation societies rich from sugar. Highly oligarchic societies, dominated by the richest plantation owners. Supported by repressive political institutions.
- Relatively efficient for production and processing of sugar for the plantation owners. But no room for change.
- In contrast, the more "democratic" Northeast United States, more flexible to take advantage of new economic opportunities.
- In fact, 19th century growth in the U.S., fueled by industry and entrepreneurs not previously part of the ruling elite.

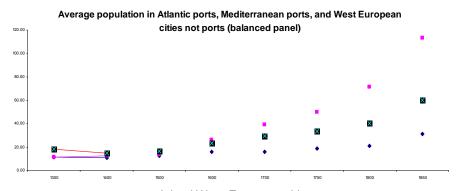
Institutions and Industrialization

- Whether a society has institutions of private property or extractive institutions may matter much more when new technologies require broad-based economic participation.
- Industrialization is such a process, requiring investments from a large number of agents who were not previously part of the ruling elite.
- Therefore, there are natural reasons to expect that institutional differences will matter much more during the age of industry.
- We find that there is a strong interaction between institutions and industrialization: institutions start mattering much more in the age of industry.
- This explains why the reversal took place during the 19th century.

Path Dependence and Industrialization in the Former Colonies


Dependent variable:	industrial production p.c.1750-1950			
	OLS	OLS	OLS	IV
${\sf UK \ industrialization} {\small \times} {\small Institutions}$	0.132	0.145	0.202	(0.168)
	(0.026)	(0.035)	(0.022)	(0.030)
Institutions	8.97	10.51		
	(2.30)	(3.50)		
Year effects	Yes	Yes	Yes	Yes
Country effects	No	No	Yes	Yes
Additional controls	No	Yes	No	No

Rise of Europe


- Western Europe grows faster than Eastern Europe and Asia after 1500 using either urbanization rates as proxy for income or Maddison's estimates for GDP.
- When we break things out into Atlantic vs. non-Atlantic Western Europe, almost all of the faster growth is driven by growth in Atlantic nations (Belgium, Britain, Denmark, France, Ireland, the Netherlands, Portugal and Spain).
- Same pattern when we look at city growth.
- The timing of takeoff of various Atlantic ports consistent with timing of involvement in Atlantic trade by individual countries.
- Asmong Atlantic countries, early growth in Spain and Portugal, but short lived. Major growth in Britain and Dutch Rep.
- Related to institutional change in Britain and Dutch Rep.

Rise of Europe

Voyages per year: Atlantic Trade (to Americas, African coast and Asia via Cape), and Mediterranean (W.Europe, excluding Britain and Netherlands, to Levant)

Rise of Europe (continued)

- → Inland West European cities
- Atlantic ports
- Mediterranean ports

Rise of Europe: Where Did Happen? Interpretation

- Caribbean plantation economies did well initially because they provided the right incentives to the major asset holders in society.
- Similar to Venice in the 15th century or even to Spain after the discovery of the New World.
- But long-run growth requires a process of "creative destruction" with new entrance and new blood coming in.
- Difficult when the regime dominated by incumbents.
- Thus industrialization more likely in Northeast United States.
- Also, institutional change supporting sustained economic growth more likely in places where incumbents weaker; institutional change in England and the Dutch Republic but not in Spain.

Path Dependence in the Rise of Europe

Dependent variable:	urbanization rate, 1300-1850		
Atlantic trader×Volume of Atlantic trade	OLS 0.011 (0.002)	OLS 0.011 (0.002)	OLS 0.001 (0.001)
			0.021 (0.004)
Full set of institutions×year interactions	No	Yes	Yes

Oligarchy, Growth and Stagnation in the Dutch Republic

- The Dutch Republic, one of the main beneficiaries of Atlantic trade, became perhaps the most developed part of the world in 1647-72 under somewhat inclusive, but oligarchic institutions.
- Thereafter, stagnation and decline.
- Jonathan Israel (1995, p. 1016-17) "Dutch society in the eighteenth was a society dominated by the rentier. ... Living off the legacy of the past, the Republic was still an affluent society compared with neighboring countries. But it was a society in which the middle strata were being squeezed and wealth becoming more polarized than had been the case in the Golden Age."
- De-urbanization and increasing rural property.
- Root cause: the same elites in power even though not as economically active and productive, and the urban elite and guilds blocking economic change.

Oligarchy More Generally

- David Stasavage (2012) provides evidence that the Dutch experience is not atypical.
- Autonomous cities in Europe, which were dominated by urban oligarchies, initially grew more rapidly than non-autonomous cities (starting from about 1000), but then stagnated and in fact grew more slowly than non-autonomous cities.

Ingredients of Model

- Construct a simple theoretical model to emphasize and clarify the trade-offs.
- Consider an economy where agents enter entrepreneurship or production work.
 - Heterogeneity in entrepreneurship.
 - Entrepreneurial talent imperfectly correlated over time.
- Two types of policy distortion:
 - Redistributive taxation with incentive costs.
 - Entry barriers protecting incumbents.

Trade-off Between Oligarchy and Democracy

- Entry in democracy, sclerosis in oligarchy.
- Lower investment in democracy.
- Worse allocation of talent in oligarchy.
- Democracy more equal, oligarchy more unequal (lower wages higher profits).
- Oligarchy gets worse over time as the comparative advantage of incumbents gets worse.
- Oligarchy and democracy creating different types of distortions.
- But long-run growth likely to be slower in oligarchy because of dynamic costs of entry barriers—sclerosis..

Understanding Rise and Decline of Nations

- oligarchy less harmful initially, even encouraging investment because less redistribution away from major producers.
- but harmful as comparative advantage of oligarchs disappears.
- oligarchy particularly harmful when new technologies shift investment opportunities from insiders to newcomers.
- oligarchy less flexible than democracy

Regime Dynamics

- When does oligarchy transition to democracy?
- Two possibilities:
 - Smooth transition to democracy because of within-elite conflict (small producers disbanding oligarchy).
 - 2 Conflict over regimes.
 - Incumbents richer, can maintain the system that serve their interests.
 - Path dependence in equilibrium regimes possible.
 - Caribbean vs. United States in the 18th and 19th centuries.

Model

- Infinite horizon economy, with the unique non-storable good, y.
- Preferences

$$U_0^j = E_0 \sum_{t=0}^{\infty} \beta^t c_t^j,$$
 (1)

• Assume each agent dies with a small probability ε , consider the limit of this economy with $\varepsilon \to 0$.

- Choice between entrepreneurship and production work.
- Entrepreneurial talent $a_t^j \in \{A^L, A^H\}$ with $A^L < A^H$.
- Either already own an active firm, or set it up (costly when there are entry barriers).
- Each agent starts period t with entrepreneurial talent $a_t^j \in \{A^H, A^L\}$, and $s_t^j \in \{0, 1\}$ which denotes the individual possesses an active firm.
- Agent with $s_t^j = 1$ member of the elite.
- Each agent takes the following decisions: $c_t^j, e_t^j \in \{0, 1\}.$
- If $e_t^j = 1$, then he also makes investment, employment, and hiding decisions, k_t^j , l_t^j and h_t^j , where h_t^j denotes whether he decides to hide his output in order to avoid taxation.

- Three policy choices: a tax rate τ_t on firms, lump-sum transfer, T_t , and a cost B_t to set up a new firm (pure waste).
- Production function for talent a_t^j :

$$\frac{1}{1-\alpha}(a_t^j)^{\alpha}(k_t^j)^{1-\alpha}(f_t^j)^{\alpha},$$

- To simplify assume that $l_t^j = \lambda$, and that entrepreneur himself can work in his firm as one of the workers.
- Denote: $b_t \equiv B_t/\lambda$.

- Denote the wage rate by $w_t \ge 0$.
- Profit function (without hiding):

$$\pi\left(\tau_{t}, k_{t}^{j}, a_{t}^{j}, w_{t}\right) = \frac{1 - \tau_{t}}{1 - \alpha} (a_{t}^{j})^{\alpha} (k_{t}^{j})^{1 - \alpha} (l_{t}^{j})^{\alpha} - w_{t} l_{t}^{j} - k_{t}^{j}, \tag{2}$$

With hiding:

$$ilde{\pi}\left(au_t,k_t^j,a_t^j,w_t
ight)=rac{1-\delta}{1-lpha}(a_t^j)^lpha(k_t^j)^{1-lpha}(l_t^j)^lpha-w_tl_t^j-k_t^j\lambda.$$

Thus

$$\tau_t \leq \delta$$
,

- Labor market clearing: $\int_0^1 e_t^j \lambda dj = \int_{j \in S_t^E} \lambda dj \leq 1$, where S_t^E is the set of entrepreneurs at time t.
- For agents with $s_t^j = 0$, setting up a new firm may entail an additional cost B_t because of entry barriers.

• Law of motion of individual states:

$$s_{t+1}^j = i_t^j, \tag{3}$$

$$a_{t+1}^{j} = \begin{cases} A^{H} & \text{with probability } \sigma_{H} & \text{if } a_{t}^{j} = A^{H} \\ A^{H} & \text{with probability } \sigma_{L} & \text{if } a_{t}^{j} = A^{L} \\ A^{L} & \text{with probability } 1 - \sigma_{H} & \text{if } a_{t}^{j} = A^{H} \\ A^{L} & \text{with probability } 1 - \sigma_{L} & \text{if } a_{t}^{j} = A^{L} \end{cases}$$
(4)

Stationary distribution fraction of high-productivity agents:

$$M \equiv \frac{\sigma_L}{1 - \sigma_H + \sigma_L}.$$

Assume

$$M\lambda > 1$$
.

- Timing of events:
 - **1** Entrepreneurial talents, $\begin{bmatrix} a_t^j \end{bmatrix}$, are realized.
 - 2 The entry barrier for new entrepreneurs B_t is set.
 - lacktriangle Agents make occupational choices, $\begin{bmatrix} e_t^j \end{bmatrix}$
 - **1** Entrepreneurs make investment decisions k_t^j
 - **5** The labor market clearing wage rate, w_t , is determined.
 - **6** The tax rate on entrepreneurs, τ_t , is set.
 - **1** Entrepreneurs make hiding decisions, $\begin{bmatrix} h_t^j \end{bmatrix}$.
- ullet where $\left[a_t^j
 ight]$ shorthand for the mapping $oldsymbol{a}_t:[0,1] o \left\{A^L,A^H
 ight\}$, etc.

Analysis

- Economic equilibrium: subgame perfect equilibrium given a policy sequence $\{b_t, \tau_t\}_{t=0,1,...}$.
- Equilibrium investments:

$$k_t^j = (1 - \tau_t)^{1/\alpha} a_t^j \lambda. \tag{5}$$

$$\Pi\left(\tau_t, w_t \mid s_t^j, a_t^j\right) = \frac{\alpha}{1-\alpha} (1-\tau_t)^{1/\alpha} a_t^j \lambda - w_t \lambda. \tag{6}$$

Tax revenues:

$$T_t = \tau_t \frac{(1 - \tau_t)}{1 - \alpha} \sum_{j \in S_t^E} a_t^j, \tag{7}$$

- Who will become an entrepreneur?
 - **1** Entry equilibrium where all entrepreneurs have $a_t^j = A^H$.
 - ② Sclerotic equilibrium where agents with $s_t^j=1$ become entrepreneurs irrespective of their productivity.
- An entry equilibrium will emerge only if the net gain to a high-skill non-entrepreneur of incurring the entry cost and setting up a firm (at a given wage) is positive.
- This net gain takes into account the future benefit of becoming an elite protected from competition (as a function of future entry barriers etc.).
- Determined by simple dynamic programming taking equilibrium policies as given.

• Let the value function of a worker of type z as a function of the sequence of future policies and equilibrium wages, $(\mathbf{p}^t, \mathbf{w}^t)$:

$$W^{z}\left(\mathbf{p}^{t},\mathbf{w}^{t}\right)=w_{t}+T_{t}+\beta CW^{z}\left(\mathbf{p}^{t+1},\mathbf{w}^{t+1}\right),$$
 (8)

where the continuation values from time t+1 onwards are:

$$CW^{z}\left(\mathbf{p}^{t+1},\mathbf{w}^{t+1}\right) = \sigma^{z} \max \left\{ W^{H}\left(\mathbf{p}^{t+1},\mathbf{w}^{t+1}\right), V^{H}\left(\mathbf{p}^{t+1},\mathbf{w}^{t+1}\right) - \lambda b_{t+1} \right\}$$
(9)
+ $(1 - \sigma^{z}) \max \left\{ W^{L}\left(\mathbf{p}^{t+1},\mathbf{w}^{t+1}\right), V^{L}\left(\mathbf{p}^{t+1},\mathbf{w}^{t+1}\right) - \lambda b_{t+1} \right\}.$

- These incorporate optimal occupational choice from time t+1 onwards.
- Similarly, for a current entrepreneur

$$V^{z}\left(\mathbf{p}^{t},\mathbf{w}^{t}\right)=w_{t}+T_{t}+\Pi^{z}\left(\tau_{t},w_{t}\right)+\beta\mathcal{C}V^{z}\left(\mathbf{p}^{t+1},\mathbf{w}^{t+1}\right),\quad(10)$$

 Define the net value of entrepreneurship as a function of an individual's skill a and ownership status, s,

$$\mathit{NV}\left(\mathbf{p}^{t},\mathbf{w}^{t}\mid\mathit{A}^{z},\mathit{s}\right)=\mathit{V}^{z}\left(\mathbf{p}^{t},\!\mathbf{w}^{t}\right)-\mathit{W}^{z}\left(\mathbf{p}^{t},\!\mathbf{w}^{t}\right)-\left(1-\mathit{s}\right)\lambda\mathit{b}_{t},$$

where the last term is the entry cost for agents with s = 0.

$$\mathit{NV}\left(\mathbf{p}^{t},\mathbf{w}^{t}\mid \mathit{A}^{\mathit{H}},\mathit{s}_{t}^{j}=1\right)\geq\mathit{NV}\left(\mathbf{p}^{t},\mathbf{w}^{t}\mid \mathit{a}_{t}^{j},\mathit{s}\right)$$

and

$$\mathit{NV}\left(\mathbf{p}^{t},\mathbf{w}^{t}\mid\mathit{a}_{t}^{j},\mathit{s}
ight)\geq\mathit{NV}\left(\mathbf{p}^{t},\mathbf{w}^{t}\mid\mathit{A}^{\mathit{L}},\mathit{s}_{t}^{j}=0
ight).$$

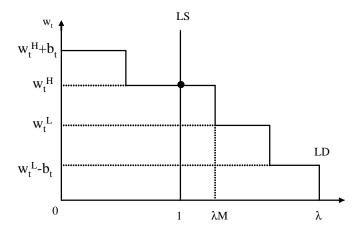
- Therefore, high-skill incumbents remain entrepreneurs and low-productivity workers never become entrepreneurs.
- Whether low-productivity incumbents remain entrepreneurs depends on taxes, wages and entry barriers.

Define entry equilibrium wage such that

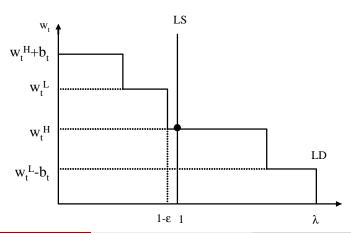
$$NV\left(\mathbf{p}^{t},\left[w_{t}^{H},\mathbf{w}^{t+1}\right]\mid a_{t}^{j}=A^{H},s_{t}^{j}=0\right)=0.$$

So

$$w_t^H \equiv \frac{\alpha}{1-\alpha} (1-\tau_t)^{1/\alpha} A^H - b_t + \frac{\beta \left(CV^H \left(\mathbf{p}^{t+1}, \mathbf{w}^{t+1}\right) - CW^H \left(\mathbf{p}^{t+1}, \mathbf{w}^{t+1}\right)\right)}{\lambda}$$


Similarly, sclerotic wage is

$$\begin{aligned} w_t^L && \equiv \frac{\alpha}{1-\alpha} (1-\tau_t)^{1/\alpha} A^L \\ && + \frac{\beta \left(CV^L \left(\mathbf{p}^{t+1}, \mathbf{w}^{t+1}\right) - CW^L \left(\mathbf{p}^{t+1}, \mathbf{w}^{t+1}\right)\right)}{\lambda} \end{aligned}$$


• An entry equilibrium only when

$$w_t^H \ge w_t^L. \tag{11}$$

Labor Supply on Labor Demand in the Entry Equilibrium

Labor Supply on Labor Demand in the Sclerosis Equilibrium

Analysis (continued)

- Therefore, in equilibrium $w_t^e = w_t^H$.
- Define fraction of high-productivity entrepreneurs:

$$\mu_t = \Pr\left(\mathbf{a}_t^j = A^H \mid \mathbf{e}_t^j = 1\right) = \Pr\left(\mathbf{a}_t^j = A^H \mid j \in S_t^E\right)$$

- Since no entry barriers initially, $\mu_0 = 1$.
- Law of motion of μ_{t} :

$$\mu_t = \left\{ \begin{array}{cc} \sigma_H \mu_{t-1} + \sigma_L (1 - \mu_{t-1}) & \text{if (11) does not hold} \\ 1 & \text{if (11) holds} \end{array} \right. . \tag{12}$$

Political Equilibrium

- Consider two simple extreme political regimes:
 - **1** Democracy: the policies b_t and τ_t are determined by majoritarian voting, with each agent having one vote.
 - ② Oligarchy (elite control): the policies b_t and τ_t are determined by majoritarian voting among the elite at time t.
- Focus on Markov perfect equilibria.

Democracy

- Non-elites in the majority.
- Majoritarian voting: taxes will be chosen to maximize per capita transfers,

$$T_{t}(b_{t}, \tau_{t}) = \begin{cases} \tau_{t} \frac{(1-\hat{\tau}_{t})}{1-\alpha} \frac{1-\alpha}{\alpha} \lambda \sum_{j \in S_{t}^{E}} a_{t}^{j} & \text{if } \tau_{t} \leq \delta \\ 0 & \text{if } \tau_{t} > \delta \end{cases}, \quad (13)$$

where $\hat{\tau}_t$ is the tax rate expected by the entrepreneurs and τ_t is the actual tax rate set by voters.

- Since 0 profits, entry barriers will be chosen to maximize equilibrium wages, thus $b_t = 0$.
- Intuitively, entry barriers reduce labor demand and depress wages.

Democracy (continued)

Proposition

A democratic equilibrium always features $\tau_t = \delta$ and $b_t = 0$, and $e_t^j = 1$ if and only if $a_t^j = A^H$, and $\mu_t = 1$. The equilibrium wage rate is given by

$$w_t^D = \frac{\alpha}{1-\alpha} (1-\delta)^{1/\alpha} A^H,$$

and the aggregate output is

$$Y_t^D = Y^D \equiv \frac{1}{1-\alpha} (1-\delta)^{\frac{1-\alpha}{\alpha}} A^H. \tag{14}$$

Perfect equality.

Oligarchy

- Policies determined by majoritarian voting among the elite.
- To simplify this talk, assume

$$\lambda \ge \frac{1}{2} \frac{A^H}{A^L} + \frac{1}{2},\tag{15}$$

which ensures that low and high-skill elites prefer low taxes.

 Otherwise, low-skill elites side with the workers to tax the high-skilled elites.

Oligarchy (continued)

• Then entry barriers will be set

$$b_{t} \geq b_{t}^{E} \equiv \frac{\alpha A^{H}}{1 - \alpha} + \beta \left(\frac{CV^{H} \left(\mathbf{p}^{t+1}, \mathbf{w}^{t+1}\right) - CW^{H} \left(\mathbf{p}^{t+1}, \mathbf{w}^{t+1}\right)}{\lambda} \right). \tag{16}$$

so as to prevent entry.

• Imposing $w_{t+n}^e = 0$ for all $n \ge 0$,

$$\tilde{V}^{L} = \frac{1}{1-\beta} \left[\frac{\alpha \lambda}{1-\alpha} \frac{\left(1-\beta \sigma^{H}\right) A^{L} + \beta \sigma^{L} A^{H}}{\left(1-\beta \left(\sigma^{H}-\sigma^{L}\right)\right)} \right], \tag{17}$$

and

$$\tilde{V}^{H} = \frac{1}{1-\beta} \left| \frac{\alpha \lambda}{1-\alpha} \frac{\left(1-\beta \left(1-\sigma^{L}\right)\right) A^{H} + \beta \left(1-\sigma^{H}\right) A^{L}}{\left(1-\beta \left(\sigma^{H}-\sigma^{L}\right)\right)} \right| . \quad (18)$$

Oligarchy (continued)

• Using these equilibrium relationships,

$$b_{t} = b^{E} \equiv \frac{1}{1 - \beta} \left[\frac{\alpha \lambda}{1 - \alpha} \frac{\left(1 - \beta \left(1 - \sigma^{L}\right)\right) A^{H} + \beta \left(1 - \sigma^{H}\right) A^{L}}{\left(1 - \beta \left(\sigma^{H} - \sigma^{L}\right)\right)} \right]. \tag{19}$$

Wages are zero and aggregate output is

$$Y_t^E = \mu_t \frac{1}{1 - \alpha} A^H + (1 - \mu_t) \frac{1}{1 - \alpha} A^L$$
 (20)

where

$$\mu_t = \sigma_H \mu_{t-1} + \sigma_L (1 - \mu_{t-1})$$

with

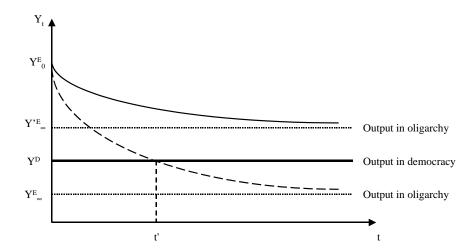
$$\lim_{t \to \infty} Y_t^E = Y_\infty^E \equiv \frac{1}{1 - \alpha} \left(A^L + M(A^H - A^L) \right). \tag{21}$$

Oligarchy (continued)

Proposition

Suppose that condition (15) holds. Then an oligarchic equilibrium features $\tau_t=0$ and $b_t=b^E$ as given by (19), and the equilibrium is sclerotic, with equilibrium wages $w_t^e=0$, and fraction of high-skill entrepreneurs $\mu_t=\sigma^H\mu_{t-1}+\sigma^L(1-\mu_{t-1})$ starting with $\mu_0=1$. Aggregate output is given by (20) and decreases over time starting at $Y_0^E=\frac{1}{1-\alpha}A^H$ with $\lim_{t\to\infty}Y_t^E=Y_\infty^E$ as given by (21).

Comparison of Oligarchy and Democracy


We always have that initially:

$$\frac{1}{1-\alpha}(1-\delta)^{\frac{1-\alpha}{\alpha}}A^H < Y_0^E = \frac{1}{1-\alpha}A^H.$$

- Will oligarchy fall behind democracy?
 - If (1) democratic taxes are low and not very distortionary; (2) selection of entrepreneurs is difficult, and (3) comparative advantage in entrepreneurship is important, then oligarchy ultimately worse than democracy:
 - Condition for this:

$$(1-\delta)^{\frac{1-\alpha}{\alpha}} > \frac{A^L}{A^H} + M\left(1 - \frac{A^L}{A^H}\right). \tag{22}$$

Comparison of Oligarchy and Democracy (continued)

Comparison of Oligarchy and Democracy (continued)

- Workers always worse off in oligarchy than in democracy.
- What about entrepreneurs?
- High-skill entrepreneurs always better off. But

Proposition

lf

$$\alpha \lambda \frac{\left(1 - \beta \sigma^{H}\right) A^{L} / A^{H} + \beta \sigma^{L}}{\left(1 - \beta \left(\sigma^{H} - \sigma^{L}\right)\right)} < \left(\left(\alpha + \left(1 - \delta\right) \delta\right) (1 - \delta)^{(1 - \alpha) / \alpha}\right), \quad (23)$$

then low-skill elites would be better off in democracy.

• Low-skill entrepreneurs still willing to remain in entrepreneurship, however, taking equilibrium prices and future policies as given.

New Technologies and Inflexibility of Oligarchies

- At t' > 0 a new technology arrives.
- Productivity with new technology:

$$rac{1}{1-lpha}(\psi \hat{\mathbf{a}}_t^j)^lpha(k_t^j)^{1-lpha}(l_t^j)^lpha$$
 ,

where $\psi > 1$

• Law of motion of \hat{a}_t^j orthogonal to a_t^j , and given by

$$\hat{a}_{t+1}^{j} = \begin{cases} A^{H} & \text{with probability } \sigma_{H} & \text{if } \hat{a}_{t}^{j} = A^{H} \\ A^{H} & \text{with probability } \sigma_{L} & \text{if } \hat{a}_{t}^{j} = A^{L} \\ A^{L} & \text{with probability } 1 - \sigma_{H} & \text{if } \hat{a}_{t}^{j} = A^{H} \\ A^{L} & \text{with probability } 1 - \sigma_{L} & \text{if } \hat{a}_{t}^{j} = A^{L} \end{cases}$$

$$(24)$$

New Technologies (continued)

ullet In democracy, aggregate output jumps from Y^D to

$$\hat{Y}^D \equiv \frac{1}{1-\alpha} (1-\delta)^{\frac{1-\alpha}{\alpha}} \psi A^H.$$

- In oligarchy, elites will stay in entrepreneurship despite their worse comparative advantage
- For example, if $\psi A^L > A^H$, then aggregate output jumps to and remains at

$$\hat{Y}^E \equiv rac{1}{1-lpha} \left(\psi A^L + M (\psi A^H - \psi A^L)
ight)$$
 ,

• Potential explanation for why oligarchic societies don't adjust well to new opportunities/technologies.

Regime Dynamics

- Two cases to consider:
 - Conflict within the elite—when low-skill elites worse off in oligarchy than in democracy (when condition (23) holds), they disband oligarchy when they become the majority within the elite.
 - Conflict between classes over regimes—the elite prefer oligarchy and the citizens democracy; income distribution matters for regime dynamics; possibility of path dependence.

Regime Dynamics (continued)

 Suppose that, in oligarchy, current elite can legislate a permanent transition to democracy. Then

Proposition

Suppose (15) holds and the society starts oligarchic.

- If (23) does not hold, then for all t the society remains oligarchic.
- If (23) holds, then the society remains oligarchic until date $t=\tilde{t}$ where $\tilde{t}=\min t'\in\mathbb{N}$ such that $\mu_{t'}\leq 1/2$ (whereby $\mu_t=\sigma^H\mu_{t-1}+\sigma^L(1-\mu_{t-1})$ for $t<\tilde{t}$ starting with $\mu_0=1$). At \tilde{t} , the society transitions to democracy.
- The low-skill elites disband the oligarchy when they become the majority.

Conflict over Regimes

- Different set of issues arise when no smooth transition to democracy.
- Under many plausible scenarios, wealth influences political power.
 Consider a reduced-form model of this.
- Suppose that the probability that an oligarchy switches to democracy is $q_t^D = q^D (\Delta \mathcal{W}_{t-1})$, where $\Delta \mathcal{W}_{t-1} = \mathcal{W}_{t-1}^E \mathcal{W}_{t-1}^W$ is the difference between the levels of wealth of the elite and the citizens at time t-1.
- Assume $q^{D}(\cdot)$ decreasing.

Conflict over Regimes

Similarly, when democratic, a society becomes oligarchic with probability

$$q_t^O = q^O\left(\Delta \mathcal{W}_{t-1}
ight)$$

where now $q^{O}\left(\cdot\right)$ is a non-decreasing function, with $q^{O}\left(0\right)=0$, so that with perfect equality, there is no danger of switching back to oligarchy.

• Here $\Delta \mathcal{W}_t$ refers to the income gap between the initial elite (those with with $s_1^j=1$) and the citizens.

Conflict over Regimes (continued)

• Then regime dynamics are:

$$D_{t} = \begin{cases} 0 & \text{with probability } 1 - q^{D} \left(\Delta \mathcal{W}_{t-1} \right) & \text{if } D_{t-1} = 0 \\ 1 & \text{with probability} & q^{D} \left(\Delta \mathcal{W}_{t-1} \right) & \text{if } D_{t-1} = 0 \\ 0 & \text{with probability} & q^{O} \left(\Delta \mathcal{W}_{t-1} \right) & \text{if } D_{t-1} = 1 \\ 1 & \text{with probability } 1 - q^{O} \left(\Delta \mathcal{W}_{t-1} \right) & \text{if } D_{t-1} = 1 \end{cases} , \tag{25}$$

- Suppose that each agent saves out of current income at a constant (exogenous) rate $\nu < 1$.
- Therefore

$$\Delta \mathcal{W}_{t} = \nu \left(\Delta \mathcal{W}_{t-1} + \lambda Y_{t-1}^{E} \right).$$

Conflict over Regimes (continued)

This implies that in oligarchy

$$\Delta \mathcal{W}_t = \lambda \sum_{n=1}^t \nu^n Y_{t-n}^E \tag{26}$$

and

$$\lim_{t \to \infty} \Delta \mathcal{W}_t = \Delta \mathcal{W}_{\infty} \equiv \frac{\lambda Y_{\infty}^E}{1 - \nu},\tag{27}$$

where Y_{∞}^{E} is given by (21).

Conflict over Regimes (continued)

- This implies that starting from low wealth levels, wealth inequality will increase in oligarchy.
- Therefore, transition from oligarchy to democracy may become harder as oligarchy persists.
- In particular, if there exists $\overline{\Delta \mathcal{W}} < \Delta \mathcal{W}_{\infty}$ such that $q^D\left(\overline{\Delta \mathcal{W}}\right) = 0$, then after a certain number of periods, the society will be stuck in oligarchy.
- In contrast, in democracy, all agents earn the same amount, so when $D_{t+k}=1$ for all $k\geq 0$,

$$\Delta \mathcal{W}_{t+1} = \nu \Delta \mathcal{W}_t$$
 and $\lim_{t \to \infty} \Delta \mathcal{W}_t = 0$. (28)

• The implication is that a switch back to oligarchy is most likely soon after a switch from oligarchy to democracy.

Lessons for the United States

- Dangers of oligarchies.
- Nature of oligarchies in the United States different.
- Based on information and expertise.
- But whether this has different implications is unclear.

Value of Political Connections

- Value of political connections in an "emerging market" (e.g., Indonesia, Malaysia): ~20% of firm value.
- Estimated by "shock" disappearance of patron.
- In the United States, connections typically worth little: <1% of firm value (Jeffords) or 0 (Cheney, Paulson).
- Reason: strength of US institutions.
- But such strength cannot be taken for granted, particularly during times of crisis.
- New research: financial firms "connected" to Tim Geithner had cumulative abnormal return around 15% after his nomination as Treasury Secretary in November 2008.
- Negative effect when his "tax issues" threatened to derail his appointment in January 2009.
- Why? Tentative answer: Perceived value of connections increases in a crisis, even in the U.S.

Interpretation

- Perception of the markets during times of crisis.
- No evidence of explicit corruption or even favoritism, but markets seem to think that connections to matter.
- New patterns for the United States.
- Why? Institutions are still strong (but perhaps weaker during crisis).
- But strong institutions essentially reduce political discretion. Much greater discretion during crisis.
 - Consistent with new research by Pablo Querubín and Jim Snyder on politician rents during the US Civil War.
- Increasing importance of expertise: markets might think that we listen to has become more important.