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Abstract

In many economic settings, heterogeneous information is aggregated through channels
such as social networks or markets’ prices. Moreover, information is often controlled and
manipulated as to influence the final outcome. The goal of this paper is to introduce
aggregation mechanisms in an otherwise standard information design environment and
analyze their effect on the information released and on economic outcomes. First, the
analysis provides a benchmark irrelevance result: when the designer can target every
receiver and the aggregator is linear, it is without loss of optimality to consider public
experiments that do not depend on the aggregation mechanism. Differently, if the designer
can target only a subset of receivers, then the most prominent individuals are chosen.
Next, comparative statics results that link the informativeness of the optimal policy to the
underlying aggregation process are discussed. Finally, motivated by robustness concerns,

it is showed that the main findings extend to a class of nonlinear aggregation mechanisms.
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1 Introduction

In various economic settings, heterogeneous information is aggregated through several channels.
For example, agents in a social network that communicate and learn from each other might
aggregate their private information and reach an agreement in the long-run. Differently, agents
in competitive markets use their private information about traded assets when choosing the
quantity to acquire. With this, the competitive equilibrium prices might aggregate all the
sparse information about the goods. At the same time, information is often controlled and
manipulated by other individuals as to influence the final outcome of the aggregation process
described above. It is enough to think about firms advertising their products on social networks
or disclosing information about their financial situation to the market as to influence the price
of their stocks. Finally, in both the scenarios described, some key agents might have a more
prominent role in affecting the aggregation mechanisms. For instance, the opinions of the
so-called “influencers” in social networks is considered relatively more by the constellation of
“simpler” agents. Similarly, consumers with an higher willingness to pay and an higher demand
volume are going to influence more the market price of an asset.

These considerations raise some natural questions: Will be the optimal information policy
affected by the underlying aggregation process? Will the key agents targeted by more tailored
information policies? The goal of this paper is to answer to these questions by introducing
aggregation mechanisms in an otherwise standard information design environment and analyze
their effect on the information released and on economic outcomes. In particular, the analy-
sis is almost entirely focused on a benchmark model where a reduced-form linear aggregation
mechanism captures non-strategic interactions among agents (e.g., naive social learning, com-
petitive markets). The information designer is aware of these mechanisms when choosing the
information to disclose and might take in account the relative importance of the receivers in
the aggregation process. In this setting, I first show that, when completely unrestricted, it is
without loss of optimality for the designer to disclose public information that does not depend
on the aggregation structure. On the other hand, if the designer can persuade only a subset
of agent of his choice, then he will optimally target the most prominent agent according to
the aggregation mechanism and the information disclosed depends on the total influence of the

chosen targets.

The model I consider an information design problem with a unique sender and multiple
receivers. For example, one can interpret the receivers as nodes of a social network such as a
group of consumers linked on Facebook. Alternatively, it is possible to interpret the receivers
as agents in an competitive market placing orders for the quantity of an asset. Regardless of
the particular interpretation, it is assumed that there is a common state of uncertainty that
is of interest for the receivers. In relation to the previous examples, the state of uncertainty

might represent the objective quality of a new good or the objective return of a financial asset.



Moreover, all the receivers, as well as the sender, share the same common prior about this
uncertain state. In light of the examples given, the common-prior hypothesis might seem too
strong and restrictive. However, the aim of this paper is to isolate the effect of the aggregation
mechanism on the information choice of the sender without further sources of heterogeneity
across receivers.!

The receivers obtain some private information about the uncertain state from the sender.
For instance, a group of consumers linked on Facebook might receive information about a new
product in the form of personalized adds on their pages from the advertiser of the product.
However, differently form large part of the previous information-design literature, the receivers
do not interact strategically and their private information is aggregated through an aggregation
mechanism. Here, the goal is to understand the role of these information spillovers across the
agents and how they change the persuasion problem.

In the leading examples, the aggregation mechanisms represent either the social network
communication among agents or the market prices. In the first case, I model the aggregation of
opinions in the network according to the simple DeGroot model. Formally, after receiving their
private initial information, the agents periodically update their opinions (i.e., beliefs) by taking
simple averages of their neighbors’ opinions. If the social network is connected, then the agents
will eventually reach a consensus (i.e., aggregated opinion) that I interpret as the outcome of
the aggregation mechanism.? In the second case, the agents are consumers characterized by
quadratic preferences over quantities of the unique good traded in competitive markets. The
consumers are uncertain about the objective quality of the good and receive private information
from the sender. Therefore, with a fixed supply, the equilibrium price of the good results from
a linear aggregation of the posterior beliefs of the agent.

The sender’s payoff depends on the outcome of the interaction of the agents and he can
influence it by manipulating their private information. For example, the advertiser might be
interested in the consensus opinion about the new product emerging from the communication
process within the social network. Similarly, a firm disclosing information to the agents in a

market is interested in the effect on the resulting market price of the asset.

Unrestricted information design 1 start my analysis by considering the case where the
information designer is completely unrestricted in his choice of the information policy. In this
case, the answer to the previous questions is that restricting on public signals is without loss of
optimality for the sender. Moreover, the optimal public information policy does not depend on
the aggregation mechanism (e.g., the network structure or the willingness to pay). The intuition

of this irrelevance result is that, anticipating the aggregation process, the sender knows that

1See Section 5 for a further discussion on this point.
2Here, the inconsistency between the Bayesian updating for the sender’s signals and the DeGroot updating

for the other receivers’ opinion might be surprising. I postpone the detailed discussion of this point to Section
5.



consensus will be eventually reached and he can replicate any such outcome by just disclosing
the same information to all agents.

Next, I test the robustness of the irrelevance results with respect to both more general
forms of aggregation that allow for less naiveté of the agents (i.e., beyond the DeGroot model),
and uncertainty of the designer about the aggregation mechanism. In both cases, and under
some mild assumptions, the irrelevance result still holds, hence downplaying the effect of the
aggregation process. However, targeting policies and personalized information disclosure are
pervasive and often effective in social networks (e.g., Banerjee et al 2013, 2019). Motivated, by

these concerns, I next analyze a version of the model with additional restriction on the designer.

Restricted information design In the second part of the paper, I consider the case where
the sender can persuade only a subset of agents of his choice. With this, the standard infor-
mation design problem is augmented with an additional targeting choice. On the one hand,
this modeling choice is very similar to standard models of seeding in networks (see for example
Kempe et al 2003 and Akbarpour et al 2018). On the other hand, two important distinctive
elements makes the analysis different. First, rather than a model of diffusion of information,
I consider aggregation mechanism that can capture a broader spectrum of economic settings
than just networks.? Second, the targeting problem is just the first of the two relevant choices
of the sender, hence it needs to be paired with the design of the experiment for the targeted
agents.

In this case, I find that the irrelevance result is partially overcome. Indeed, the Sender can
still restrict without loss of optimality public signals for the subset of targeted agents. However,
both the identity of the targeted agents and the informativeness of the chosen signal depend on
the underlying aggregation structure. In particular, the target set is chosen as to maximize the
total sum of the aggregation weights of the set itself. Interestingly, under the social network
interpretation of my model, this simple result provides a foundation for targeting policies based
on centrality measure on networks (i.e., the most influential agents are optimally targeted with
information).

Next, I exploit the targeting result in order to link properties of the optimal information
structure to the aggregation mechanism considered. First, I find that, as the size of the popula-
tion of receivers grows, extreme information structures such as full-disclosure and no-disclosure
are optimal depending on the curvature of the payoff of the sender around the prior mean.
This result exploits the observation that, in the restricted case, the problem of the sender is
equivalent to a single-receiver Bayesian persuasion problem with a degree of stickiness of the
receiver to the prior mean. Second, I derive a comparative static result linking the informa-

tiveness of the optimal information policy to variations of the underlying aggregation structure

3See the survey by Breza et al (2019) for a detailed classification of models of aggregation and diffusion of

information in networks.



(e.g., additional links in a social network). Again, the equivalent representation of the sender’s
problem allows me to adapt results in the information design literature to obtain the desired
comparative statics. Finally, I extend the main finding of the section for a subclass of nonlinear
aggregation mechanism. Also in this case, the sender optimally targets the set of agents that

maximize a (nonlinear) measure of influence of the agents in the aggregation.

Literature review This paper lies at the intersection of several literatures, the most relevant
ones being information design and targeting in networks.

From the seminal contributions of Kamenica and Gentzkow (2011) and Bergemann and
Morris (2013, 2016), to the most recent contributions such as Kolotilin (2018), Dworczak and
Martini (2019), and Mathevet et al (2020), the works analyzing information disclosure in eco-
nomic settings have been exponentially growing in the recent years.* Following this new tradi-
tion, the current paper analyzes the problem of a sender that designs information for multiple
receivers and is able to commit ex-ante.’ Differently from the mentioned papers, and more in
general from majority of the literature, the model proposed here considers non-strategic inter-
actions among multiple receivers in the form, for example, of communication in networks and
competitive markets. This hypothesis greatly simplifies the analysis as it avoids dealing with
the induced distributions over higher-order beliefs of the agents that do not always admit an
explicit characterization (cf. Mathevet et al 2020). The fruitfulness of this approach has also
been recently showed in Arieli et al (2020) where the authors characterize, in a binary-state en-
vironment, the feasible joint distributions over first-order posterior beliefs that can be induced
by some information structure. In particular, Arieli et al (2020) define the social Bayesian
persuasion problem where, as in this paper, the payoff of the sender depends on the actions of
agents that do not interact strategically, and solve for some simple examples exploiting their
characterization. My work goes a step further in this direction by avoiding the restriction on
binary-state environments and by characterizing the sender’s optimal value for a broad class of
problems. On the hand, this allows me to establish the optimality of public experiments that
can be computed by standard tools analyzed in single-receiver Bayesian persuasion problems
as in, for example, Kolotilin (2018) and Dworczak and Martini (2019). On the other hand,
the value characterization substantially simplifies the targeting problem that I analyze in the
second part of paper. In this sense, the recent contribution by Galperti and Perego (2019) also
analyzes the problem of a sender that faces multiple receivers playing a game on a network and
designs the information only for an exogenously determined subset of them. Differently, in this
paper, I let the sender endogenously select the target set and I provide explicit properties both
for the optimal target set and the optimal information policies.

There is a vast literature that analyzes, both theoretically and empirically, targeting inter-

4See Bergemann and Morris (2019) for a comprehensive survey on information design.
®See Section 5 for a discussion on how to relax the commitment assumption.



ventions in networks.® In particular, it is possible to categorize the theoretical contributions in
two broad categories: models of diffusion of information in networks as in Kempe et al (2013),
Banerjee et al (2013, 2019), and Akbarpour et al (2018), and models of aggregation of informa-
tion in networks as in DeMarzo et al (2003), Golub and Jackson (2010, 2012), Cerreia-Vioglio
et al (2020), and Chandrasekhar et al (2020). In the first case, the sequential diffusion of a
binary piece of information or action (like adoption of a new product) is analyzed. In the sec-
ond case, as in this paper, the agents is a social network aggregate their information through
direct observation of neighbors’ continuous opinions. While the first group of contributions
directly deal with optimality concerns for targeting intervention in networks, the second group
of contributions focus on a description of the opinion dynamics without directly addressing the
intervention problem. In this sense, this paper is a step forward as it directly analyzes the choice
of optimal interventions, in the form of information disclosure, within a model of information
aggregation in social networks. Moreover, coherently with both the theoretical literature (for
example, Ballester et al 2006 and Galeotti et al 2020) and the empirical literature (Banerjee et
al 2013, 2019), the findings of this paper confirm the optimality of targeting interventions in
networks based on centrality measures.

More in general, to the best of my knowledge, this is the first work that analyzes targeted
information policies in social networks and markets under the lenses of the recent information
design literature. On the one hand, this approach allows me to derive novel results that link
the underlying aggregation mechanism to structural properties of both optimal information and
targeting policies. On the other hand, differently from the literature on information disclosure
to financial markets, this approach does not rely on ad hoc parametric restrictions on the
feasible information structures. Finally, differently from the rest of the works mentioned, my
analysis also deals with robustness concerns both from the perspective of the designer within
the model and the analyst outside the model.

Structure of the paper Section 2 presents the model and illustrates it through two ex-
amples. Section 3 analyzes the unrestricted information design case and derives the main
irrelevance results. Section 4 analyzes the case where the sender is restricted to target a subset
of the receivers, and shows that the most prominent receivers are optimally targeted. Finally,
Section 5 summarizes the entire analysis and discusses the more relevant extensions of the main

model by highlighting further links with the literature.

OFor a textbook exposition on these topics see Jackson (2008), while for a recent survey with applications to

development economics, see Breza et al (2019).



2 Model

This section introduces a simple model of targeting and persuasion of a group of agents, called
receivers, that interact non-strategically with each other. The initial information of the agents
is designed by an external agent, called Sender, who wants to influence the final outcome of
their interaction. In particular, the final outcome is generated by an aggregation mechanism (or
aggregators) that maps the receiver’s posterior beliefs given their information to an aggregated
variable. On the one hand, most of the analysis will focus on affine aggregators of agents’
beliefs. On the other hand, this class is flexible enough to capture in a simple and reduced form
several examples of economic non-strategic interactions. Specifically, the two main examples,
presented at the end of this section, describe with stylized models the process of information
aggregation in social networks and in competitive markets through prices. We first start with

some notation and the formalization of the primitives of the model.

Preliminary notation For all subsets 2 of an Euclidean space, let By denote the class of
Borel subsets of €, let A (€2) denote the set of Borel probability measures over €2 and endow
it with the topology of weak convergence, and let C' (£2) denote the set of continuous functions

over Q.7 For all p,v € A([0,1]), u dominates v in the concave order, written p =, v, if

[e@in@= [o@ane

for all concave and continuous functions ¢ : [0,1] — R. In this case, it is possible to obtain v

as a mean-preserving spread of p.

2.1 Targeting, information design and aggregators

Agents and common prior Consider a finite set Ng = {0, 1,...,n} of agents where 0 is the
sender or (information) designer and each i € N = {1,...,n} is a receiver. I will use the male
pronoun he and the female pronoun she to refer respectively to the sender and an arbitrary
receiver. There is a common state of uncertainty w € © = [0, 1], hence the space of first-order
beliefs for every agent is A (2).® Before any information is revealed, all the agents, included
the sender, share the same common prior 7 € A () with corresponding common expectation

7 € [0,1]. This is going to be an important assumption for the derivation of the main results.

C A (Q) weakly converges to u € A (Q) if

"Recall that a sequence of probability measures 7

[ r@dn @)= [ jedne)

for all bounded and continuous functions f : Q — R. For details, see, for example, Aliprantis and Border (2006,

Chapter 15).
81 consider [0, 1] for the sake of expositional simplicity but all the results would remain true for any closed

and bounded interval of the real line.



The discussion concerning how to extend the model for the heterogenous case is postponed
to Section 5. As detailed above, the receivers will receive (potentially private) information
from the sender and update their beliefs according to Bayes rule. In particular, for all i € N,
let p; € A(f) denote an arbitrary posterior belief for i. Given a posterior p; € A (Q), let
z; = B, [w] € [0,1] denote the corresponding conditional expectation or opinion. Similarly, let

z = (2;);cy € X =[0,1]" denote an arbitrary profile of opinions for all the receivers.”’

Experiments The sender can design a public or private experiment whose realizations are
observed by the receivers. Formally, an experiment is a pair (Y, o) of signal space Y = [[..n Vi,
where each personal signal space Y; is an arbitrary measurable space, and o : Q@ — A (Y) is
Markov kernel mapping states to distributions over observables. The interpretation is that each
receiver ¢ observes her realization y; € Y; in her personal signal space and updates her prior
expectation 7 to the opinion

z; (y;) = Er o [wlyi] - (1)
With this, an arbitrary profile of signal realizations y = (y;),.y € Y induces a profile of opinions
z (y) € X as defined in eq. (1).

Let X denote the set of all the conceivable experiments for the sender. In particular, it will
not be always the case that the set ¥ coincides with the set of feasible experiments for the
sender. In the most general case, the sender will have restrictions on the maximum number
of receivers whose experiment is informative about the state w. Formally, for all k£ € {1,...,n}
let X, be the set of experiments such that for each receiver ¢ in a subset I C N of size k
the personal signal space is a singleton Y; = {g;}. It follows that, for each i € I, the unique
possible realization 7; does not convey any information about w and does not alter the agent’s
belief. Note that, for all k£ € {1,...,n}, choosing an experiment (Y, o) € ¥ is equivalent to first
choosing a target set I C N of “active” receivers and then an unrestricted experiment for all the
agents in I.'° In this case, the agents in I observe signal realizations y; = (Yi)ier € I, Y and
update their opinions, while the agents in /¢ stick to their prior opinion 7. The interpretation
here is that the sender has a maximum amount of k seeds to persuade all the receivers in N
and k£ = n corresponds to the standard information design problem. The dual case without
seeds capacity but with a constant marginal cost of seeding for the sender has an analogous
analysis.

The class of public experiments ¥* C X is going to be relevant in the analysis. Formally,
an experiment (Y, o) € ¥ is public if, for all w € Q, the probability measure o (-|w) € A (Y)
is perfectly correlated across all the dimensions of Y. In words, an experiment is public if

it discloses the same information to every agent, hence inducing the same posterior beliefs.

9As clarified below, all the final outcomes solely depend on conditional expectations . However, all the

results would still be true if I had to consider an arbitrary linear function of the posterior beliefs (p;);c n-
10Tn this case, the personal signal spaces of the agents in I¢ = N\I are singletons.



Indeed, if (Y, o) is public, then z (y) belongs to the diagonal of X with probability 1. Finally,
for all k£ € {1,..,n}, let 37 C 3, denote the set of public experiments restricted to sets of

maximum k& receivers.

Affine aggregation mechanism Let z € X denote an arbitrary profile of opinions formed
after that the receivers have privately observed their signal realizations. An aggregation mech-

anism (or opinion aggregator) is a continuous function T : X — [0, 1] that satisfy:
e Monotonicity: For all z,2' € X,

¥>x = T()>T ()

e Normalization: For all z € [0,1] .

On the one hand, monotonicity has a straightforward interpretation. On the other hand,
normalization is formalizing the fact that if the agents share the same opinion, then the aggrega-
tion outcome is equal to that opinion. Each aggregation mechanism 7" represents an unmodeled
interaction among agents whose outcome 7' (z) depends on the opinions that the agent have
formed after observing the signals form the sender.

For most of the analysis, I will consider affine aggregation mechanisms 7', that is, for all
z,x’ € X and X € [0, 1],

TAz+(1=XNa2)=AT(z)+ (1 -=N)T (") Vo, o' € X,V e [0,1].

By a simple application of Riesz Theorem, we have that each linear aggregation mechanism 7T
can be represented by a vector of weights s € A (N), that is,

T(a:)zs-x:Zsiwi Vo e X.
ieN
The interpretation is that each s; € [0, 1] is the relative weight of receiver i in the aggregation
procedure. Even if it is a quite restrictive class, affine aggregation mechanisms naturally arise
from standard stylized economic settings describing information aggregation in social networks
and markets (see Section 2.2). Finally, in Section 3.3, I will show how the main results can
be extended to a more general class of aggregator that also capture robustness concerns of the

sender.



The problem of the sender The payoff function of the sender w : [0,1] x 2 — R depends
only on the aggregation outcome z = T (z) € [0, 1] and, in the general case, on the state w € Q.
For all the analysis, I will assume that u is jointly continuous.'' Next, note that each u can be
interpreted as the payoff function of a sender facing a single receiver whose final opinion is given
by z = T (x). Note that each u (together with aggregator T') induces the opinions-dependent
payoff function v : X x 2 — R defined as

v(z,w)=u(T (r),w) V(r,w) € X x .

This second observation clarifies that I could have considered v as the primitive of a multi-
receiver information design problem and then assumed the corresponding properties directly on
v. Even if this approach is strictly more general, it completely ignores aggregation mechanisms
that are the main ingredients of the applications proposed. Therefore, from a pedagogical point
of view, it seems reasonable to mention explicitly the aggregation channel.

For most of the analysis, I am going to focus on state-independent payoff functions u, that
is, for all z € [0,1] and w,w’ € Q,

u(z,w) =u(z,u).

Under this restriction, the sender is purely interested in persuading the agents to obtain a
certain outcome from their interaction, independently of the state.

For the rest of the analysis, I am going to make the standard commitment assumption that
has characterized the recent literature in information design. In words, the sender is able to
commit, before the state has been realized, to privately reveal to the receivers the outcome of
a certain experiment (Y, o) € 3. Clearly, the restrictiveness of this assumption depends on the
economic context one desires to model. In particular, it depends on whether or not the sender
actually observes the state before generating the stochastic message. In both the application I
present, it is not unambiguous that the commitment assumption is valid. Therefore, in Section
5, I discuss how to extend the results of the analysis to the case where the sender is not able
to commit ex-ante.

Before formally stating the problem of the sender, that will be the main object of analysis,

[ am going to summarize the timeline of the model:

1. Given the capacity k € {1,...,n}, the sender commits to disclose the realizations of an

experiment (Y, o) € 3y;

2. Both the state w and the signal realizations y are drawn according to 7 and o;

Tn some applications this assumption might be too restrictive. For most of the stated results, assuming
that the payoff function u is upper-semi continuous in the aggregation outcome z € [0,1] and measurable in

the state w would be sufficient.



3. The receivers observe their private realizations y and update their opinions to x (y);
4. The opinions of the agents are aggregated to T (z (v));

5. The sender gets his payoff u (T (z (y)) ,w).

With this, given a prior belief 7 € A (), a capacity k£ € {1,...,n}, an affine aggregator
s € A(N), and a payoff function u, the k-restricted problem of the sender is

Vs = s { [ ulseat)w)do ) dn @) |
(Yo)es, UJaxy
In words, the sender chooses a feasible experiment to maximize his expected payoft induced by

the distribution over states and opinions.

2.2 Examples

I next illustrate the setting just described by introducing the two main examples of the paper.

Example 1: DeGroot learning in networks In this first example, the receivers represent
consumers that receive some information about a payoff-relevant uncertain state w and then
start a process of opinion aggregation with each other. I consider the DeGroot model of naive
learning in networks (DeGroot 1974, DeMarzo, Vayanos, Zwiebel 2003, Golub and Jackson
2010). Formally, the receivers are the nodes of an undirected, connected, and aperiodic network
G € {0,1}"".12 The interpretation is that the consumers are part of a social network (either a
virtual one like Facebook or a real one like the inhabitants of a small village) and g;; = g;; = 1
denotes that ¢ and j are linked and can directly influence each other’s opinions. For every
1€ N, let
Ni={j€N:gyj=g=1}

denote the set of neighbors of i and define her degree as the size of her neighborhood d; (G) =
|N;|. After that the agents have observed their personal signal realization, they update their
beliefs to obtain the profile of initial opinions 2° € X. Next, agents start a process of periodic

revision of their own opinions by computing the averages of their neighbors’ opinions. Formally,

1 t—1
Tt Vvt € N.
@ 2"

t__

This process is akin to several interpretations. First, one may think that the agents understand
that the opinions of their neighborhoods contain valuable information on w € €2, but they are

uncertain about both the full social structure and the signal distributions chosen by the sender

12Here, connectedness and aperiodicity of G are essential for reaching consensus and our interpretation.

However, the hypothesis of undirected and unweighted network are purely made for expositional simplicity.
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for all the other receivers.!> With this, rather than updating their opinions in in a Bayesian
fashion, the agents consider a heuristic method that linearly and uniformly aggregates the
opinions observed.!* Under the second viable interpretation, the aggregation process represents
best-response dynamics among agents that are learning how to coordinate on a network. In
this case, every agent ¢ minimizes, in each period ¢t € N, the quadratic loss between her current
opinion and the opinions that her neighbors stated in period ¢ — 1.9

Given the assumptions made on G, it is well-known that the sequence of updates {xt}teN C

X converges to a constant vector x> € X whose unique entry is given by

Dien %idi (G)
ZieN d; (G> .

It follows that T defines an affine aggregation mechanism with s; o« d; (G) for all i € N. In

Te (2°) =

this case, the weight s; defines a measure of the centrality of agent 7 in the social network G,
the so called eigenvector centrality of G.

Next, suppose that the sender has one-period continuous payoff function v : X x Q@ — R
that depends on the entire profile of updates z* in each period. Also, for all (z,w) € [0,1] x Q,
define u (z,w) = v (z,...,2,w). Given a sequence of updates {z'},_, the total payoff of the

sender 1is -
(1-19) Zétv (2", w),
t=0

where § € (0, 1) is a discount factor. Clearly, this setting is more general than the one described
at the beginning of this section. However, it is next showed that when the sender is infinitely

patient (i.e., 0 — 1) then the previous criterion is consistent with the general model presented.

Remark 1 For all priors m € A () and experiments (Y, o) € X,

fim ] [ 1938 (o (1)) | do ) dr @) | = [ (e la ) w)do (y)o) dr (o).
6—1 QxY =0 QxY

Therefore, the general setting of the model is rich enough to describe the information design
problem of a sender who faces a group of agents aggregating information on a network and who
is interested on the long-run outcome of this aggregation. In Section 5, I will discuss how the

infinite patience hypothesis might be relaxed. A

13This assumption is backed by the recent empirical findings in Breza et al (2018).
14The superiority of DeGroot updating over Bayesian updating in describing the dynamics of opinions in
networks, especially in contexts with weak formal economic institutions, is showed by the recent empirical

findings in Chandrasekhar et al (2020).
5These kind of dynamics have been considered, among many others, by Morris (2000) and Golub and Jackson

(2012).
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Example 2: Competitive markets with quadratic payoffs In this example, the receivers
are consumers in a competitive economy. There is a unique tradeable good whose objective
value is represented by the uncertain state w € 2. The payoff of each consumer i € N is

q_ZZ

2

where ¢; € R is the quantity of the good acquired by consumer i, ; € R, is the idiosyncratic

Ui (gi,w,r) = q; (0w — 1) —

value of 7 for the good, and r € R is the competitive price. The interpretation is that, conditional

on acquiring ¢; units of the good, the agent has to suffer a quadratic cost % that may represent

transition costs, stocking costs or other forms of frictions in the market. Moreover, the agent is

risk neutral obtaining a net unitary gain from the good equal to the difference of her subjective

value for the good and the price paid.'® For the sake of expositional simplicity, I normalize the
n

value types of the agents in the economy such that 6 = = 1. Given risk neutrality, for

each posterior belief p; € A (2) with corresponding opinion z;, the problem of consumer i is

q.2
max {qi (O;x; —r) — —Z} )

q7;€R 2

The induced demand function of 7 is
qi (x;,0;,1) = O,y — 7.

Let 5 € R, denote the fixed (perfectly inelastic) unit supply. It follows that the competitive

price r (x) solves

Z%’ (:Ui,&-,r(x)) =nf = T(x) _ M
o Yien b

With this, if the payoft of the sender depends only on the uncertain value w and on the com-

—p

petitive price r (x), then it will depend on x linearly as in our general setting with weights
s; o< #;. In this case, the relative importance of each agent ¢ in the aggregation mechanism
depends on her willingness to pay 6; for the good. The general setting of the model is rich
enough to describe the information design problem of a sender who tries to influence the final
distribution of the market price of a good by disclosing information to the potential consumers.
Finally, note that, in the example considered, the equilibrium price r (z) acts as an information
aggregation mechanism but does not convey additional information to the agents as in rational
expectation equilibrium models.'” I postpone to Section 5, a more detailed discussion on this
topic. A

So far I have presented the primitive objects of the model, defined the information design
problem of the sender, and showed how this framework can be used to model information
disclosure in social networks and competitive markets. In the next sections, I will analyze the

optimal value of the sender as well as some properties of optimal experiments.

16Even if restrictive, the quadratic payoff structure is a benchmark in the market microstructure literature.

For a comprehensive treatment on these topics see Vives (2010).
1"For similar disclosure models with informative prices see Vives (2010) and Goldstein and Yang (2017).
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3 Unrestricted information design

In this section, I am going to focus on the case where the sender has no restriction in targeting
the agents with personalized information. Formally, I assume that £ = n and let the set of
feasible experiments be . The main results of this section will provide general bounds on
the optimal value for the sender that do not depend on the affine aggregation mechanism
considered. This feature is even more relevant under the further assumption that the sender’s
payoff is state-independent. In this case, it is possible to characterize the optimal value of the
sender as the optimal value of a sender facing a single receiver. The implications of this result
are that the optimal value of the sender does not depend on the aggregation mechanism and

can be attained by public experiments.

3.1 A revelation principle

I start by stating an ancillary lemma stating that a standard revelation principle holds in the

current environment and that the problem of the sender can be represented as a linear program.

Lemma 1 Fiz a prior m € A, and an affine aggregator s € A (N). The problem of the sender

18 equivalent to

V,(u,75) = max {/QXXu(s~x,w)d7(w,x)}

YEA(QXX)

subject to

By o (@) + > ki (2:) (27 — w)

iEN

= Bx [ho ()] (2)

for all (hi);cn, € C([0,1])™.

The interpretation is that the sender can equivalently choose the joint distribution of states
and opinions for the agents, under some additional constraints. On the one hand, the marginal
distribution over states has to be consistent with the prior 7, that is, the standard Bayes
plausibility condition has to hold. On the other hand, the distribution over the opinion of each
receiver i needs to be a mean-preserving contraction of the prior 7 (see for example Dworczak
and Martini 2019, and Kolotilin 2018). Both these constraints are considered by the expression
in eq. (2).

Before analyzing the general bounds on the optimal value of the sender, it will be useful
to characterize the restricted value of the sender when he can only disclose public information,
denoted by Vj (u, 7). Toward this characterization, define the indirect posterior-dependent

payoff function @ : A (©2) — R as

w(p) =By [u(By W], w)]  VpeA(Q).
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The payoff function v describes the payoff of the sender whenever the common posterior belief
induced by the public signal is p € A (€2). Note that this also coincides with the indirect utility
of the sender when he faces a single receiver. In this case, it is well known (see Kamenica
and Gentzkow 2011) that the optimal value for the sender is given by the concavification of the
indirect payoff function @ evaluated at the prior 7, denoted by cav (@) (7). Given normalization,
one can observe that this expression characterize the restricted value of the sender in the general

model with n receivers and for any aggregation mechanism 7" (affine or not).

Lemma 2 Fiz a prior m € A, and an opinion aggregator T'. The problem of the sender when

restricted to public signals is

V; = d
= e { e o)

subject to
E, [ho (w) + h(2) (z — w)] = Eqx [ho (w)]
for all (ho,h) € C ([0, 1])>. Moreover, it holds V; (u,7) = cav (1) (7).

3.2 Irrelevance results

Next, I exploit the previous two ancillary lemmas to obtain aggregation-independent bounds on
the optimal value for the sender. First, these bounds will be used to characterize the optimal
value of the sender in the state-independent case. Second, given that the bounds do not
depend on the aggregation mechanism, it follows that they provide a robust interval on the set
of payoffs that can be reached by the sender. Indeed, by combining the last two observations, it
is clear that the bounds will be tight if all the possible payoff functions of the sender (including

state-independent ones) are considered.
Proposition 1 Fiz a prior 1 € A. For all sizes n € N and affine aggregators s € A(N),
cav (@) (1) < Vi (u,m,5) < max {B, [u] : v € A(Q x [0,1]), margor = 7, margy v Zeo 7}

On the one hand, the lower bound identified in Proposition 1 is immediate given Lemma 2.
Indeed, the sender can always commit himself to disclose a public signal. On the other hand,
the upper bound is obtained by considering a relaxed version of the single-receiver persuasion
problem. In particular, the constraints on the joint distribution v € A (2 x [0, 1]) require Bayes
plausibility (i.e. consistency with the common prior 7) and the marginal distribution over the
single receiver’s opinion dominates the prior in the concave order. The proof of Proposition
1 shows that these are necessary conditions that each feasible distribution v € A (2 x [0,1])
over states and aggregated opinion induced by an experiment must satisfy. However, these

conditions are not sufficient in general as they are ignoring the martingale constraint
E, [w|z;] = z;
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that must hold for every ¢« € N. In particular, these martingale constraint will imply further
restrictions on the induced joint distribution of states and aggregated opinion that are ignored

in the upper bound
max {E, [u] : v € A(Q x [0,1]), margqr = 7, margyy )V Zev 7} -

However, if the payoff of the sender is state-independent, then the further constraint on the
joint distributions between the state and the aggregate opinion have no bite. Indeed, in this
case, only the induced marginal distribution on the aggregate opinion is payoff-relevant for the

sender. This is formalized by the next irrelevance result.

Corollary 1 (Irrelevance result) Fiz a priorm € A () and a state-independent payoff func-
tion u : [0,1] — R. For alln € N, and affine opinion aggregator s € A ({1,...,n}),

Vo (u,m,8) = Vi (u, m) = cav (0) ()

Moreover, there exists a public experiment (Y*,0*) € X that solves the sender’s problem for

alln and s.

In words, under the state-independence hypothesis, the two bounds previously identified
collapse to the same value cav (@) (1) characterizing the optimal value for the sender. Moreover,
this value is equivalent to the one obtained by a sender facing a single-receiver and it does not
depend on the aggregation mechanism s. It follows that, without loss of optimality, the sender
can disclose the same information to every agent avoiding to design personalized private signals
for each receiver.

Finally, the optimal value of the sender can be expressed as
cav (@) () = max (B, [u] : p € A(0,1]) 1 Zow 7} (3)

The problem defined in the right-hand side of eq. (3) has been extensively analyzed in the recent
literature on simple persuasion (see for example Gentzkow and Kamenica 2016, Kolotilin 2018,
Dworczak and Martini 2019). Therefore, the irrelevance result permits to solve an apparently
more involved multiple-receivers information design problem with known tools in the literature
This observation will be also exploited in Section 4.3 to derive a comparative statics result in
the restricted case.

Finally, note that the irrelevance result would still hold even if the sender is uncertain about
the affine aggregator s € A (N) characterizing the aggregation mechanism. Indeed, suppose
the sender has a belief £ € A (A (N)) about the aggregation mechanisms. It follows that

o {(/ ) ) do )i (@)} < [ Va7 dE ) = can () 1)
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showing that cav (@) (7) is an upper bound for the value of the sender under uncertainty. Given
that an optimal public experiment (Y*,0*) € X% attains cav (i) (7) also under uncertainty, it
follows again that cav (@) () characterizes the optimal value of the sender under £. In the next
section, I show that a similar results hold even if the sender considers more general aggregation

mechanism and he is uncertain averse.

3.3 The robustness of the irrelevance result

In this section, I am going to check the robustness of the irrelevance result with respect to
more general aggregation mechanisms. In particular, I will relax the assumption of affinity by

considering robust opinion aggregators introduced in Cerreia-Vioglio et al (2020).

Robust opinion aggregators and uncertainty aversion An aggregation mechanism 7 is

called robust if it also satisfies translation invariance, that is,
T(z+(2,.,2)) =T (z) + 2

for all z € X and z € [0,1] such that = + (z,...,2) € X. In other words, robust opinion
aggregators relaxes affinity to translation invariance. The intuition is that now the relative
importance of the agents in the aggregation mechanism is not fixed but it may depend on
the particular profile of opinions x aggregated. Standard examples of robust aggregators are
the median opinion, the minimum opinion, the maximum opinion, or in general all the order
statistics of the profile of opinions.

Under this more general form of aggregators, the problem of the sender becomes

Vawr )= s { [ u(T (@) w)do o) dn ()}

(Y,o)ex

for all priors 7 and robust aggregators T'. In what follows, I will focus on the state-independent
case for the payoff function of the sender as to obtain sharper results that characterize the
optimal value of the sender under robust aggregation. However, more general version of the
bounds considered in proposition 1 can be obtained even if the payoff of the sender depends on
the state.

The irrelevance result does not hold in general for robust aggregators. Indeed, it is enough
to consider T' () = max;en x; and a strictly increasing and state-independent payoff function
w : [0,1] — R for the sender. Suppose by contradiction that a public experiment ¢* inducing
the common-opinion distribution p* € A ([0,1]) solves the sender’s problem. Next, consider
consider designing n iid copies of the candidate public experiment ¢* to be privately disclosed
to each individual. Also, note that the obtained experiments are private and conditionally
independent given the common state. With this, the induced marginal distribution over each

agent’s opinion will be p*. Moreover, conditional on the state, the aggregate opinion z = T' (z)
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will be distributed as the maximum of n independent draws from the same distribution. In
general, the induced marginal distribution for the aggregate opinion z is going to strictly first-
order stochastically dominate p* hence achieving an higher expected payoff for the sender and
contradicting the optimality of o*.

Despite the previous counterexample, Lemma 2 suggests that cav () (7) is still a valid lower

bound for the unrestricted optimal value of the sender under any robust aggregator 7', that is,
Vo (u,m, T) > cav (a) (7).

Moreover, next proposition shows how under some further assumption on both u and T, the

irrelevance result still holds. Recall that a robust aggregator T' is concave (convex) if
TAz+(1=XNa)>(L)ANT () +(1—-NT (2,
for all z,2’ € X and X € [0, 1].

Proposition 2 Fiz a prior 7 € A(QQ) and a state-independent payoff function u : [0,1] — R.
For alln € N,

i) If u is nondecreasing and T is concave, then V, (u,m,T) = cav () (7);
ii) If u is nonincreasing and T is convex, then V, (u,m,T) = cav (a) (7).

Moreover, in both cases there exists a public experiment (Y* 0*) € XF that solves the

Sender’s problem for all n and T satisfying the stated assumptions.

It is useful to compare the previous proposition with the counterexample described above.
In the latter, the sender had a strictly increasing utility and faced a strictly convex robust
aggregator (i.e., the maximum opinion). Therefore, the sender benefits form higher values for
the aggregated opinion and the receivers’ aggregation process features an implicit attraction
for higher opinions as well. It follows that the sender can exploit this concordance by avoiding
the disclosure of public information. Conversely, as suggested by Proposition 2, whenever these
two effects go in opposite directions (e.g., increasing u and concave T'), then the optimal value
of the sender cannot be higher than the one he would reach if restricted to public experiment.
Also, note how this is capturing a robustness feature of public experiments both from the
perspective of the sender and of an external analyst. Indeed, even if the sender suspects that
the true aggregation mechanism characterizing the interaction among receivers in non-affine, it
is still without loss of optimality for him to disclose public information as long as he considers
adversarial mechanisms (depending on the monotonicity of his payoff function).

The idea of robustness of public signals can be even generalized to the entire class of robust
opinion aggregators, under the assumption that the sender is averse to uncertainty over aggre-

gation mechanisms. In particular, suppose that the sender considers a set 7 of potential opinion
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aggregators that may describe the interaction among agents. Moreover, suppose that the sender
is uncertain averse and chooses the experiment that maximizes his worst-case expected payoff
across all the conceivable aggregators in 7. Formally, the problem of the uncertain averse

sender is

Vtm D)= swp it { [ u(@)do ) dn @) |

(Y,o)ex T€T
Next proposition states that, as long as the uncertainty set 7 includes at least one affine
aggregator, it is without loss of optimality for the sender to restrict to public experiments and

his optimal value does not depend on the set 7.

Proposition 3 Fiz a prior m € A (Q), a state-independent payoff function u : [0,1] — R, and

a set T of robust opinion aggregators including at least an affine aggregator. It holds that
Vo (u,m, T) = cav (4) ()

Moreover, there exists a public experiment (Y*,0*) € X that solves the Sender’s problem for

all n and T satisfying the stated assumption.

The intuition behind the previous result is that, thanks to Lemma 2, the sender cannot
obtain an expected payoff lower than cav (@) (7). Moreover, the adversarial nature can always
achieve such value by picking an affine aggregator s in 7. With this, the saddle value of
the problem is characterized by cav () (7) and this can be always attained through public

experiments.

4 Restricted information design

In this section, I consider the general case with k& € {1,...,n}. As anticipated, in this case the
problem of the sender can be decomposed in two steps: first he has to choose a target set [
with maximum size k, and then he commits to an experiment for all the agents in I. Therefore,
it is necessary to add a further step 0 to the timeline illustrated in Section 2.1 where the sender
targets a subset of receivers. Solving this two-step problem by backward induction, it is shown
that the sender optimally target the set of agents maximizing the total sum of weights among
the ones with size k. Then, I rely on this result to derive a comparative statics result that
links the aggregation mechanism to the informativeness of the optimal experiment under some
additional assumption on the payoff function of the sender. Finally, I extend the targeting

result for a subclass of robust aggregators.

4.1 Targeting and persuasion

As for most part of the analysis, I focus on affine aggregators 7' (z) = s - where s € A (N)

and state-independent payoff function for the sender u : [0, 1] — R. The main difference with
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respect to the analysis in Section 3 is that now only a subset I of up to k € {1,...,n} receivers
update their beliefs given the information disclosed by the sender. The remaining agents in ¢

receive no information and their common opinion is equal to the prior mean:
T, =T Vi e I°.

With this, given a restricted profile (z;),., € [0, 1]" of opinions for the agents in I and aggre-

gation weights s, the outcome of the aggregation process is
z = (1 —51)7_?—1-251-:67;
iel
where s; = ) ._;s;. Therefore, conditional on targeting the group of receivers I C N, the

information design problem of the sender is
Vi (u,m,8) = sup / wl (1—sp)m+ Z six; (y;) | do (y|lw) dm (w) (4)
(Y,o)est | Jaxy icl

where Zi C Y is the set of feasible experiments for the agents in .

I am going to solve the sender’s problem in two steps:

1. For each target set I C N, solve for the optimal experiment and compute the optimal

value V; (u,, s);
2. Solve for the optimal target set I* that maximizes V7 (u, 7, s).

For step (1) I show that the irrelevance result still holds when the sender is restricted to a
subset of agents /. Hence, the sender can without loss of optimality design a public experiment
for agents in I where this experiment does not depend on the aggregation structure restricted
on I. Next, for step (2) I show that the optimal value V; (u, 7, s) is nondecreasing in the total
influence of the agents in I. The following proposition formalizes these results. Before stating
it, I will need another piece of definition: given a payoff function w : [0,1] — R, for all I C N
and s € A (N), define the distorted payoff function vy (-;s) : [0,1] — R as

ur(z;8) =u((1 —sp) T+ s12) Vz € 0,1].

Proposition 4 Fix a priorm € A (). For all subsets I C N and affine aggregators s € A (N),

Vi (7, ) = s | /[ (i) (3} = can (i (43)) (7).

BT

and there exists a public experiment (Y*,0*) € XX that solves the sender’s problem conditional
on I. Moreover, for all I,I' C N and s,s' € A(N)

s; > sy = Vi(u,m s) > Vp(u,m,s).
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The first part of Proposition 4 states that the information design problem given an arbitrary
target set [ is equivalent to a single-agent persuasion problem with a degree of stickiness
(1 — s7) € [0, 1] to the prior mean 7. Moreover, the higher the total weight on agents in I and
the higher the optimal value of the sender. In particular, for the second part of the statement,
it is sufficient to show that all the distributions of aggregated opinion that are feasible given
s, remain feasible when the total weight of the target set is higher s; > /..

Next, relying on Proposition 4, I characterize the solution of the targeting problem of the
sender. Toward this characterization, for all k& € {1,...,n}, denote with I (k,s) (one of) the
subset of k agents with the highest total weight according to s € A (N), that is,

I(k,s) € arg max sj.
(k) glgN:mgk I

Corollary 2 For all s € A(N), I (k,s) solves the targeting problem of the sender.
The previous results suggest an algorithmic procedure for solving the Sender’s problem:

1. Order the receivers with respect to their weights (s;),cy:
2. Target the k most prominent agents in the society according to s;

3. Solve a single-agent simple persuasion problems with prior 7 and distorted utility wus(xs) (+; 5)-

Note that in step (2) of the suggested algorithm, the sender only needs to know the identity
of the k most influential agents to solve for the optimal target set. Moreover, in step (3), the
sender only needs to know the total weight of the k£ most influential receivers in order to solve for
the optimal information policy. Therefore, under our social learning interpretation, the result
is robust with respect to partial uncertainty of the sender about the network G. In general,
this simple result provides a foundation for targeting information policies based on centrality
measures in networks: a rational sender would choose to disclose the same information to the
most prominent agents in the social network/market. Next, I leverage on the main targeting

results of this section to derive some structural properties of the optimal information policy.

4.2 Information design in large networks and markets

The characterization of Proposition 4 can be used to easily solve for optimal experiments under
large populations of agents such that the maximum weight among the agents in vanishing at
infinity. Only for this section, I will consider a sequence of populations of receivers {N (n)},
increasing in size n € N. Following the two examples presented in Section 2.2, we interpret
the results of this section as holding for large networks in which every agent is vanishingly

influential and for large markets in which the willingness to pay of the consumers is bounded.
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Formally, let {s (n)}, .y denote the sequence of aggregation mechanisms where, for every n € N,

s(n) € A(N (n)). In particular, suppose that the sequence {s (n)}, . is such that

i (s () =0, 5)

n i<n

The interpretation is that the relative importance of every agent in the aggregation mechanism
is 0 in the limit. Under the social learning interpretation of the model, this condition coincides
with the notion of wisdom introduced in Golub and Jackson (2010). In their framework,
this condition is necessary and sufficient to have that the long-run consensus converges in
probability to the true uncertain state. In my model, the original information of the receivers
in endogenous and, in the restricted version of the problem, it depends on the aggregator
s(n). Yet, as formalized next, the wisdom condition is sufficient to characterize the optimal
information structure chosen by the sender as n — oc.

As before, suppose that, for each n € N, the sender is constrained to target only k receivers.
Given Corollary 2, for each n € N, the sender picks the & most prominent receivers I (k, s (n)).
Combining this observation with a standard result in information design we have the following

result.

Proposition 5 Fiz a prior 7 € A([0,1]) and a continuously differentiable payoff function
w:[0,1] — R. It holds:

i) If u is strictly convex on a neighborhood of 7, then there exists n € N such that for alln > n

full disclosure is optimal;

ii) If u is strictly concave on a neighborhood of T, then there exists n € N such that for all

n > n no disclosure is optimal;

iii) If u is affine on a neighborhood of 7, then there exists n € N such that for all n > n the

sender is indifferent over all the information policies.

Recall that, for each n € N, the distorted utility of the sender at the optimal targeting set
I'=1(k,s(n))isu((1—sr(n))T+sr(n)z). Therefore, as sy (n) converges to 0, the distorted
utility of the Sender has the same curvature of the restriction of u to a neighborhood of 7.
Therefore, by a standard result in information design (see for example Kamenica and Getnzkow
2011 or Dworczak and Martini 2019), either one between full disclosure and no disclosure is
optimal, or the sender is indifferent over all the information structures. The interpretation of
the result is that, eventually, either few “elected” receivers are perfectly informed or nobody

is, depending on the prior belief of the society.
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4.3 Aggregation structure and informativeness

In the previous section, I have showed how to characterize the optimal information structure
for large populations. However, the representation obtained in Proposition 4 is flexible enough
to explore the structure of the optimal experiment even for “small” populations. In particular,
in this section, I link the informativeness of the optimal information policy with the underlying
social structure for a relevant class of sender’s payoffs and prior beliefs.

Fix an absolutely continuous prior 7 € A () (e.g., uniform in [0, 1]), let the payoff function
u be state-independent, nondecreasing, and let z € (0, 1) be such that u is convex on [0, Z] and
affine on [z, 1]. For example, for some continuos, increasing and convex ¢ : [0,1] — R and
zZ € (0,1), let

u(z):{go(z) Zf ZG[(}E] Vz € [0,1]
p(z) if ze(z1]
The interpretation is that the sender can only gain from increasing the aggregated opinion of
the agents up to z € (0,1) (e.g., Z is the threshold above which a consumer buys a good with
certainty).

Under this restriction on the payoff function of the sender, in the single-receiver information
design problem it is without loss of optimality to restrict on wupper censorship information
policies (see for example, Dworczak and Martini 2019 and Kolotilin et al 2019). These class of
experiments are characterized by a unique threshold state w* € €2 such that the sender reveals
the state every time that w is below w* and pool all the states above w* with a unique signal

realization. Dworczak and Martini (2019) in particular show that the optimal threshold satisfies
E; [ww > w*] = Z. (6)

In this case, we can compare the informativeness of the optimal information structures as s
varies just by comparing the optimal censorship thresholds w*: the higher the threshold w* and
the more Blackwell-informative is the corresponding experiment.

Conditional on a target set I, the Sender solves a pure persuasion problem with utility
uw((1 — sy)xy + s7z). This gives a characterization of the optimal threshold w* (s, I) for each

target set I.

Proposition 6 For all I C N and s € A (N), it is without loss of optimality for the sender to

restrict to upper censorship. Moreover, an optimal censorship threshold is

0 if 7>z
w*(s,1) =q min{w €[0,1]: (1 —s;) 7T+ /B wlw >uw'|=2z} if 7<z<(1—s/)7+ss
1 Zf ZZ(l—SI)ﬂ'—i‘S[
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The result follows from the observation that the distorted utility u ((1 — s7) @ + s72) 18

o[ (=007 1]

and affine otherwise. Hence, one can apply the condition in eq. (6) to the distorted utility and

convex below

obtain the threshold policy w* (s, 1) defined in eq. (7). Finally, as an immediate corollary of

Proposition 6, I obtain the desired comparative statics result.

Corollary 3 For all I,I' C N and s,s' € A(N), sy > s} implies that w* (s,I) < w* (s, 1),
that is, there exist two public experiments (Y, o) and (Y’ o') that are optimal respectively for
(s,I) and (s', 1) and such that (Y, o) is Blackwell-dominated by (Y', o').

In words, the sender will react with a less informative policy to an increase in the total
influence of the k most prominent receivers that are targeted. The intuition of the result goes
as follows: if 7 > Z, then s; has no effect on the policy described in (6), if 7 < z2 < (1 — s7) T+sy,
then an increase in s; still leaves Zz in the intermediate region and implies that the threshold
w* (s, I) has to decrease, finally if Z > (1 — s;) T+ s, then an increase in s; can only reduce the
informativeness of the policy as it was starting from full-disclosure. In particular, note that,
in the social learning example, every time that more individuals become neighbors with the k
most connected agents, the total influence of the latter will increase inducing a reduction in

the informativeness of the signal that they are going to observe.

4.4 Targeting and robust aggregation

I close this part of the paper by generalizing the targeting result for a subclass of robust
opinion aggregators. For simplicity, I will assume that the payoff function of the sender u is
state-independent and nondecreasing. The additional properties that I am going to require on

the robust opinion aggregators considered are concavity and constant affinity, that is,
TAz+1=XN)(z,...,2)) =AT () + (1 =Nz  VozeX,V\zel0,1]

In words, the aggregation process of the receivers’ opinions capture an attraction for lower
opinions (i.e., opposite to the preference of the sender) and it is invariant with respect to
constant shifts and rescaling of the opinions. In this case, the aggregator admits the following
representation

T (x) =min (s - x) Ve e X

seS
for some convex and closed S C A (N) (see Ghirardato et al, 2004). In words, the aggregation
mechanism returns the lower outcome consistent with a set of different affine opinion aggregators
S. Clearly, whenever S = {s} is a singleton, the analysis reduces to the one in the previous

sections.
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Given a target set I C N, the problem of the sender reads

Vi (u,m,S) = sup {/ﬂ y u (Isrggl [(1 —sp) T+ Zsixi (yz)]> do (y|w) dm (w)} . (8)

I
(Y,O’)Ezk iel

Note that considering a convex and constant affine aggregator T' is equivalent to consider an
uncertain averse sender. Indeed, the problem stated in eq. (8) captures the idea that the sender
plays a game against a malevolent nature that chooses the worst (from the point of view of the
sender) affine aggregator after that the receivers have observed the realizations of the chosen

experiments. Formally, it is easy to show that the sender’s problem is equivalent to

Vi (u,m,S) = sup inf {/Q Yu <(1 —S1) T+ 252‘131‘ (y2)> do (y|w) dm (w)} .
(9

(Y,o)exi (s(¥))yey €AN) i€l

With this, the particular case considered in this section is flexible enough to capture robustness
concerns of the sender.
Next, define the set function S : 2V — [0,1] as

S(I) = min (Z sj) VI C N.

jEI
In words, S (I) is a “pessimistic” measure of the total importance of the subgroup I (centrality,
under the network interpretation). As formalized in the next proposition, the targeting result
of Section 4.1 extends to the aggregators considered in this section when we replace the linear

measure induced by a single s with the (non-linear) measure S. Define,u; (+;s) : [0,1] — R as
ur(z8) =u(l-SU)a+5)z)  Vze[0,1].
Proposition 7 Fiz a prior m1 € A(Q). For all subsets I C N and set of affine aggregators
S CA(N),
Vi (u,m,S) = max {/ ur (z;9) dp (2)} = cav (uy (+;9)) (m)
[0,1]

HZcoT

and the optimal target set solves

I"(k,S) € arg max S(I).

ICN:|I|<k

In this case, the sender picks the group of k agents that maximize the nonlinear measure of

influence S. A completely symmetric result holds whenever u is nonincreasing and 7' is convex.

5 Conclusion and discussion

In this paper, I have proposed a model that combines information design and aggregation to

study how optimal information targeting is influenced by an aggregation process such as social
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networks or a competitive markets. I have first focused on unrestricted information design and
reduced-form linear opinion aggregation models to consider the simplest setting possible. Under
these assumptions, I have derived an irrelevance result showing that the Sender can restrict
without loss of optimality to public information policies that do not depend on the structure
of the aggregation. The irrelevance result is robust to more general aggregators and to the
uncertainty of the sender about the aggregation mechanism. Next, I have restricted the sender
to target only a subgroup of the receivers with his disclosure policy. In this case, the Sender
optimally targets the £ most prominent agents still disclosing a public experiment to them.
The findings of this paper represent an initial step toward a theory describing information
design and aggregation but several important questions remain unanswered. Next, I discuss

the most relevant extensions of the baseline model.

Finitely patient sender In the social learning interpretation of the model, I have assumed
that the sender is infinitely patient. However, under a separability assumption on the one-
period state-independent payoff function v : X — R, the irrelevance result still holds for all
discount factor ¢ € [0, 1]. Formally, define
v(x) = Z%‘U (z;) Ve e X
ieN
for some a = (a;),cy € A (V) representing the relative weight of i in the payoff of the sender.

It follows that the for every initial opinion z € X, the total payoff of the sender is

0
(1-19) Z 5 (Z ;U (gft) : x))

t=0 iEN
where, for every (i,t) € N x Ny, ggt) € A(N) is the set of weights representing the updating
rule for ¢ at period ¢ induced by the DeGroot process described in Section 2.2. Finally, note
that the induced information design problem is equivalent to a static problem where the sender
is uncertain about the affine aggregation mechanism and places weight ¢ (i,¢) = 6’a; to each
gl@ € A(N). As argued at the end of Section 3.2, in this case the irrelevance result still holds.

The analysis for more general one-period payoff functions v is left for future research.

Bayesian updating and rational expectation equilibrium In the social learning inter-
pretation of the model, I have assumed that the receivers naively update their beliefs from
what they observe from their neighbors following the DeGroot model. Conversely, suppose
that the receivers update their beliefs in a full Bayesian fashion conditional on the (truthful)
stated opinions of their neighbors. In this case, as showed by Muller-Frank (2013) the agents
will eventually agree and state a common opinion obtained as the conditional expectation with

respect to a common (but not necessarily efficient) information structure.!® Similarly to my

18Tn the sense that the common information structure does not need to synthesize the information contained

in all the private signals of the receivers.
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model, if the sender anticipates this aggregation process, he can always disclose to the receivers
a public signal that is equivalent to the common information structure induced by the periodic
communication and (Bayesian) updating. With this, given that all the opinions are common
knowledge, there will not be any updating process and the induced distribution over the con-
sensus will be the same. It follows that, without loss of optimality the sender can restrict to
public signals, confirming the validity of the irrelevance result. Also, note that in this case no
linearity restriction are necessary as the functional form of the aggregator is endogenous and
depends on the experiment designed by the sender.

Similarly, in the market interpretation of the model, one can consider rational expectation
equilibria (REE) rather than competitive equilibria. In this case, the opinion of each receiver
1 would satisfy

Ero [wl|zir(x)] = 24

that is, the conditional expectation is computed also with respect to the endogenous variable
r (). In general, the agents will not share the same opinion, even conditional on r (x). However,
as showed by McKelvey and Page (1986) and Nielsen et al (1990), if the map = — 7 (z)
is stochastically monotone, then the properties of the REE imply that the agents share the
same opinion and that the latter is obtained as the conditional expectation with respect to a
common information structure. With this, as argued above, the sender can replicate any such
information structure by disclosing a public information in the first place, hence the irrelevance
result would still hold.

The commitment assumption In the entire analysis, I have assumed that the sender has
the ability to commit himself to generate a given experiment before observing the state. Relax-
ing this hypothesis implies that an additional incentive compatibility constraint for the sender.
Formally, given a state-independent payoff function wu, the distribution v € A (2 x X)) over

states and opinions chosen by the sender has to satisfy
By [u (T (2)) lw] = By [u (T () [w]  Vw,w' €

in addition to the usual constraints defined in Lemma 1. One can note that the proofs of
Proposition 1 and Corollary 1 may be adapted in a straightforward way as to take the new
constraint into account. In particular, in the state-independent case, the irrelevance result holds
and the optimal value of the sender coincides with the quasi-concave envelope of i evaluated
at the prior m. The quasi-concave envelope has been recently introduced by Lipnowski and
Ravid (2020) in disclosure games and characterizes the optimal value of a sender in single-
receiver cheap talk, exactly as the concave envelope characterizes the optimal value of a sender

in single-receiver Bayesian persuasion.

Heterogenous priors The common prior assumption played a key role in the results of

the analysis, but it seems natural to ask how these findings would change in a setting with
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heterogeneous prior beliefs. Suppose for a moment that the uncertainty state is binary €2 =
{0,1} and the agents have heterogeneous prior beliefs (7;);cy, € (0, 1) .19 Tn this case, as
showed by Alonso and Camara (2016), for every i € N, the posterior beliefs p; € [0,1] and
pi € [0,1] of receivers i and the sender conditional on the private information of i are in a
one-to-one relationship:

i

Di Qél (po) p6 n (1 —pf)) gl

where ¢; = (1f—(7’r0> (1;—’T> With this, the problem of the sender can be restated by pretending
that all the receivers share the same common prior 7y and that their posterior beliefs are

distorted by the maps )y, before aggregation, that is,

S {/Qyu (%; siQe (P (4:)) w) do (y|w) dr (w)}

where, for every i € N, p! (y;) € [0,1] is the posterior belief over Q induced by prior m and
signal realization y;. Given that each (), is nonlinear, it is not possible to apply in general
the results of this paper to the problem just defined. However, this shows as the framework
analyzed is flexible enough to study the heterogenous prior case. In particular, it is reasonable
to conjecture that the sender would now target the agents that, at the same time, have higher
weights s; and more favorable priors 7;. The detailed analysis of this more challenging problem

is left for future research.

Targeting and uninformed agents In a recent contribution, Banerjee et al (2019) proposed
a variation of the DeGroot model where only a (exogenously determined) subset of agents I C N
receive initial private information about the relevant state. Differently from the setting of this
paper, the agents i € I that do not receive any information have a “null” opinion () and do not
participate to the average updating as long as none of their neighbors ;7 € N, has a “proper”
opinion zf. As soon as one of their neighbors becomes “active” stating a proper opinion, they
start updating according to the standard DeGroot model. With this, the authors are able to
combine both information diffusion and aggregation in a single parsimonious model. However,
they do not study targeting problems or endogenous information design. Hence, it seems natural
to ask how the findings of Section 4 would change under this different hypothesis. The answer
turns out to be quite simple if, as in the most part of this paper, we consider a sender that is
only interested in the long-run consensus. In this case, there is no incentive for the sender to
try to persuade more that 1 receiver. Indeed, regardless of the number of receivers targeted, the
sender can without loss of optimality design a public signal and, given the absence of stickiness

to the prior of the remaining agents, the common opinion induced coincides with the long-run

9Note that a binary uncertain state can always be modeled in the setting of this paper by considering

Q = [0, 1] and restricting to prior beliefs supported on {0, 1}.
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outcome. Moreover, this is independent on the number of agents originally targeted. Therefore,
in this case, any targeting policy would be optimal.2’ Conversely, if the sender is finitely patient,
then the problem of the sender would become very similar to a standard seeding problem under
network diffusion augmented with endogenous design of information. The formal analysis of
this interesting case is left for future research but one can easily conjecture that the decay
centrality (see Jackson 2008) of the receivers with respect to the discount factor § of the sender

would be important both in the targeting step and the information design step.

6 Appendix

Before stating the formal proofs of the results in the main text let me add some pieces of
notation. For all priors 7 € A () and experiments (Y,o0) € X, with k£ € {1,....,n}, let
T®oc € A(Q2 xY) denote the induced joint distribution on Q2 x Y.

Proof of Remark 1 Fix 7 € A(Q) and (Y,0) € ¥. Note that, for all 2° € X, the
induced sequence {z'},_; converges to (T¢ (2°), ..., Tg (z°))". Therefore, for all (z°,w) € X x (,
continuity of v implies that the sequence {v (z',w)}, converges to u (T (2°) ,w). With this,
it holds

%iir% [(1 —9) Zétv (xt,w)] = lim

T—00
t=0

%ZT:U (:Et,w)] = lim v (xt,w) =u (TG (ZL‘O) ,w) )

t—o0
t=0

Finally, by the Dominated Convergence Theorem we have
lim / (1=0)S 0 (2 (3) ,w) | do (ylw) dr ()
61 QxY —0

= / lim
axy 9—1

_ / u(Ta (2°) ) do (yl) dr ()

(1=06)) 6 (2" (y) ,w)] do (y|w) dr (w)

as desired. ]

Proof of Lemma 1 Let Ay, (2 x X) denote the set of joint distributions satisfying the
constraints of eq. (2) in the statement of the lemma. Fix a prior # € A, and an affine
aggregator s € A (N). It is well known that, without loss of generality, the sender can restrict
to experiments (Y, o) € 3, such that Y = X and o is such that, for all i € N,

Er o [w|zi] = z; TR o a.e. (10)

20Differently, in the case of costly targeting, the sender strictly prefers to target only one receiver. However,

the sender is indifferent on the identity of the receiver.
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To see this, fix an arbitrary experiment (Y, o) € ¥,, and consider the measurable map f, : Y —
X defined as

fa (y>1 = Eﬂ,o [w‘yz] .
Next, consider Y/ = X and ¢’ : Q@ — A (Y”) defined by

o (Elw)=c({yeY: f,(y) € E}|w) VE € Bx,Vw € Q.

Then Bayesian updating implies that E;, , [w|z;] = x;. Given that (Y,o) and (Y’,0’) induce
the same distribution on the payoff relevant space 2 x X, then the sender obtains the same
expected payoff with both the experiments. Let ¥* denote the space of experiments satisfying
the condition in eq. (10). Next, I show that the set of joint distributions over €2 x X induced
by all 0 € X% is equal to Ay (2 x X). Let v = 7 ® o for some ¢ € ¥¥ and fix an arbitrary
(hi)ien, € C ([0, 1)) Tt follows that

E, | ho (w) + Z hi(z;) (i —w)| = E,[ho ()] + ZEW [hi (7:) (77 — w)]
= Eq[ho (w)] + ZEW [hi () By (75 — w) |4]]
= Eq[ho (w)] + ZEV [hi () O] = Eq [ho (w)]

Conversely, let v € Ay (2 x X) and note that, for all i € N and h; € C ([0, 1]),
By [hi (:) By [2; — w]z]] = 0

that is E, [z; —w|z;] = 0 v a.e. It follows that v is a Bayes correlated equilibrium of an
ancillary game where players feasible actions are the reports of their conditional expectations
and their payoff is given by u; (v;,w) = — (x; — w)z. Therefore, there exists an information
structure o € 3* that induces v (see Bergemann and Morris 2013, 2016). Finally, I show that

the problem in the statement admits solutions. First, note that the map
v [ s mw)dy (@)
QxX

is continuous. Second let {7v,},cy € Am (82 x X) be such that v, — 7. Fix an arbitrary
(hi)ien, € C ([0, 1)) and note that, for all n € N,

E., o (W) + Y hi () (1 — w) | = BEx [ho (w)] .
iEN
It then follows by definition of weak convergence that
By | ho () + > hi (2:) (1 — w) | = By [ (w)]
€N
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proving that A (2 x X) is closed, hence compact. With this, the maximum is attained in

Proof of Lemma 2 The proof of the first part follows the same steps of the proof of

Lemma 1. The second part follows from Corollary 2 in Kamenica and Gentzkow (2011). W

Proof of Corollary 1 Fix 7 € A(Q), n € N, s € A({l,...,n}), and a continuous
u:[0,1] — R. It is well known (see for example Kolotilin, 2018) that

Vi (u,m) = cav (@) () = max{E, [u] : p € A([0,1]), pt Zew 7} -

For all v € Ay (© x X) define v, s and 7, sas in the proof of Proposition 1. Finally, observe
that

Vi(u,m) < V,(u,m,s)= max / u(s-x)dy(w,x)
QxX

YEA ) (22X X)

= max / u(z,w)dv, s (z,x)
Qx1[0,1]

Vy,sYEA M (X X)

DW?SZ’YEA]V[(QXX)
max {E,, [u] : p € A([0,1]), 1 Zew 7} = Vi (u,7)

= max / u(2)diy s (2)
[0,1]

IN

proves the first part of the statement. Finally, given that there exists a public experiment
(Y*,0*) € 2 that attains the optimal value V; (u, ) in the restricted problem, it follows that

the same public experiment solves the unrestricted problem of the sender. [ |

Proof of Proposition 2 Fix 7€ A(Q2), n € N, a continuous u : [0, 1] — R and a robust
opinion aggregator T'. First, let u be nondecreasing and 1" concave. Following the same step of

Lemma 1 it is possible to prove that

Vo (u,m7,T) = ma w(T (x))dy(w,x).
D)= max [ (T @) i)

where the affine aggregator has to be replaced by the more general T. Moreover, as showed
in Ghirardato et al (2004), given that 7" is monotone, translation invariant, and concave there
exist sy € A (N) such that

T(z)<sr-xz VrelX.

Next, fix an arbitrary v € A (€2 x X) and, given that u is nondecreasing, it follows that

/QXXU(T(x))dv(w,x)g/ w(sp-2)dy (w, ).

QxX

Therefore,

Vo (u,m,T) = max /Q Xu(T(:r))d’y(w,as)ﬁ max /Q Xu(sT-x)dv(w,aj):cav(ﬁ) (m)

FEA(QXX) FEA(QXX)
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where the last step follows from Corollary 1. The case for u nonincreasing and 7' convex is

completely symmetric. Finally, there exists a public signal (Y*,0*) € ¥ such that

/QXY* U(T (Bror [w|y] ;... Br o= [w]y])) do™ (y|w) dm (w) = /Qxy* U (Er o [w]y]) do™ (y|w) dm (w)
= cav (u) (7)

where the first equality follows from normalization of T" and the second equality from Lemma
2. [ |

Proof of Proposition 1 Fix 7 € A, n € N, and an affine aggregator s € A (N). First,
given Lemma 2, it follows that

cav (@) (m) = Vi (u,m) <V, (u,m,s).

Indeed, the sender can always commit to design a public experiment in the unrestricted case.
Next, fix an arbitrary v € Ay (2 x X) and define v, € A (Q x [0, 1]) as

Vys (B) =7{(w,2) € A x X : (w,s-2) € E}) VE € Baxx.
First, note that
margg V. s = marggy = 7.
Second, fix an arbitrary continuous and concave function ¢ : [0,1] — R, let 7., , =margjy 1)/+s,
and observe that

b(2)diy (2) = / PRCIAEEEY BRI LI

[0,1]

9 <xi>) ) =S ([ o)

1EN

(B, Lln) dy .0)) = T ( / B @)l 0)

1EN

= sl( dywx> /gb )dm (w
icN QXX

7

V4
S~
X
~ £
/’_\\i’_\\‘*
m
4

QOxX

Given that ¢ was arbitrarily chosen, it follows that marg 1), = s Zev 7. Given that v was
arbitrarily chosen, it follows that for all v € Ay (2 x X),

vys € {v € A(Qx[0,1]) : margoy =7 , Margy ¥ Zev Th.

Finally, given that, for all v € Ay (Q x X),
/ u(s-z,w)dy(w,x) = / u(z,w)dvy (2, ),
OxX Qx[0,1]
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it follows from Lemma 1 that

Vo(u,m,s) = max / u(s-z,w)dy(w,x
rs) = g [ (s dy .0

= max / u(z,w)dvy s (w, 2)
Qx[0,1]

Uy s YEANM (X X))

< max{E, [u]: v € A(Qx [0,1]), marggr = T, margg )V e T}
proving the validity of the upper-bound. |

Proof of Proposition 3 Fix 7 € A(Q2), n € N, a continuous « : [0,1] — R and a set
of robust opinion aggregator 7 containing at least an affine aggregator s € A (N). First note

that for every public experiment (Y*,0*) € X¥ and for each T' € 7, the value

| @@ prdn @) = [ e ) do” (o) dr (@)

QxY*
does not depend on T. Given that the sender can always commit to a public experiment it
must be the case that
cav (@) (m) <V, (u,m, T).

Next, suppose by contradiction that
cav (4) (m) <V, (u,m, 7).

But then it must hold that

VawnT) > (@@= s {[ )i bline)

(Y,O')Ezk

>t sw { [ @) )

TeT (v, o)ex,

> s ot [ @) o dr @)} =V (0. T)

(Y,o)ex, T€T

offering a contradiction. Therefore, it must be that cav (@) (1) = V,, (u, 7, 7). The last part
of the statement follows since normalization implies that there exists a public experiment
(Y*,0*) € ¥ that does not depend on n and 7 and attains cav (@) (7). [ |

Proof of Proposition 4 Fix 7€ A(Q2), I C N, and s € A (N). Note that the distorted

payoff function wu; (+;s) is continuous, hence, by Corollary 1, it holds

Vi (. 7,5) = o | /[ (i) (2 = can (s (35)) (7

HZcvT

and there exists a public experiment (Y*, 0*) € B that attains cav (i (+;s)) (7). For the
second part of the statement, it will be enough to show that for all A, \ € [0,1] with A" <\,

max {/Mu(u —)\')7?+)\’z)du(z)} < max {/Mu(a —)\)7‘T+)\z)du(z)}.

#tcvﬂ Htcvﬂ
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Fix
B o™

y € arg max {/{071] u(T=XN)7+ N2)du (z)}

and define a (X', \) = Ayl € [0,1]. It follows that

/[01] ur (L=XN)Y7+N2)dp' (2) = uw((1=XN)YT = AT+ AT+ Nz)dy' (2)

J
= /Mu((1—/\)7?—/\<7‘r+%/(z—7‘7))>du’(Z)
J

w((1= M7= A((1—aN,N))7+a(N,N)2)dd (2)
= [ (=N F = A iy (2)
where
W (B) =1 ({z€[0,1]: (1 —a (W, \)T+a(N,\)z€ E})  VE € By,

Next, I show that u’a( M) e T Indeed, for all continuos and concave functions ¢ : [0,1] — R
it holds

6@ () = [ 6NN ) ()

> (1-a(XN,N) | ¢(@)dp' (z) +a (N, A) | ¢(2)di (2)

[0,1 [0,1]

> (I-aX,A)é (@) +a(X,A) [Ollcb(Z)d?T(Z)

> (I-a(X,N) [Ol}¢(2)dﬂ(2)+a(%k) [Ol]éb(Z)dﬂ(Z): [01]¢(2)d7f(2)~

Finally, by combining the previous two steps it follows that

max {/M u((1=N)7T+ Nz)du (z)} = /{o,u ur (1 =N)7 4+ XNz)dy' (2)

BZcoT

- /[ )T ) i (2
0,1

< max {/Mu(a —)\)7r+)\z)du(z)}

W evT

proving the claim. [ ]

Proof of Corollary 2 Suppose by contradiction that there exists I* # I (k, s) such that
|I*| <k and Vi« (u, 7, 8) > Vigs) (u, 7, s). However, by construction it holds that s s > sp-,

hence, by Proposition 4 Vj ) (u, 7, s) > Vi« (u, 7, s) obtaining a contradiction. [ |
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Proof of Proposition 5 Fix 7 € A([0,1]), a continuously differentiable u : [0,1] — R
and recall that the capacity £ € N is fixed and does not depend on the population size n.
Suppose that there exists € > 0 such that u is strictly convex when restricted to (7 — &, 7 + ¢).
Next, note that the assumption in eq. (5) implies that for all sequence of subsets {1 (n)}, .y €
{N (n)},en with | (n)] <k, it holds s (n) ) — 0. Therefore, there exists 7 € N such that for

all n > 7n and z € [0, 1]
(1 s (n>,(n)) T+ 5()z € (T —e,7+e).

With this, for all n > n, the distortion payoff function u;,) (~; s(n) I(n)> :[0,1] — R is strictly
convex. By Part (ii) of Corollary 2 in Kolotilin (2018), full disclosure is a solution of the

problem

max /[ ]u[(n) (z; s (n)l(n)> dpu (2)
0,1

HZev™
hence, by Proposition 4, full-disclosure solves the problem of the sender conditional on target
set I (n) for all n > n. Finally, given Corollary 2, for all n € N, I (k, s (n)) solves the targeting
neN g {N (n)}nEN satisfies
|I (n)] <k, implying Part (i) of the statement in the main text. The proofs of Parts (ii) and

problem of the sender and the sequence of subsets {I (k,s(n))}

(iii) of the statement in the main text follows the same steps and exploits Parts (i) and (iii) of
Corollary 2 in Kolotilin (2018). [ |

Before proving the results of Section 4.3, I will need two ancillary lemmas.

Lemma 3 Fiz a continuous payoff function u : [0, 1] — R satisfying the assumptions of Section
4.8. For all I C N and s € A (N),the distorted payoff function uy (-;s) is convezr on [0, Z (sy)]

and affine on [z (sg), 1], where
s (1— s
Z (sy) = max {min {M, 1} ,O} .
Sr
Proof of Lemma 3 Fix I C N and s € A (V). Recall that
ur(z;8) =u((1— ;)T + 872) Vz € [0,1]

and that u is convex in [0, z] and affine in [z, 1]. Next, fix 2,2’ € [0,z (s7)] and A € [0,1]. If
Z (s7) = 0, then trivially z = 2’ = 0 and

ur(Az + (1= A)2'58) = 0= Aug (2;5) + (1 = A uz (2';5).
If Z (s7) > 0 note that

(1—sp)7+s12),((1—s7)7+s12") €0, 2]
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hence

I—s)T+srAz+(1=XN)2)=A((1—=s)T+s2)+ (1 =X ((1—sp)7+s2")€]0,z],

Therefore,

ur(Az+(1=XN2z2s) = u((l—s)7T+sr(Az+(1—-XN)2"))
= u(AN(1—s)T+s72)+ (1 =X ((1—s7)7+s12))
< Mu(l—sp)a+siz+ (1 =Nu((1—s7)T+s12")

showing that u;(-;s) is convex on [0,z (s7)]. Next, fix 2,2’ € [Z(s7),1] and A € [0,1]. If
Z (s7) = 1, the trivially z = 2/ = 1 and

ur Az +(1=XN)2'58) =ur (1;8) = Mz (2;8) + (1 — N ug (2 9).
If Z (s;) < 1 note that
(1—s)T+s72),((1—s7)7+s72") € [2,1]
hence
I—s)T+srAz+(1=XN2)=A((1—=sp)T+s2)+ (1 =X ((1—sp)7+s2) €[z1],
Therefore,

ur(Az+(1=XN2zs) = u((l—s)T+s1(Az+(1—-X)2"))
= uA(1=s)T4+s2)+ (1 =X (1 —s7) T+ s12))
= Xu(l—s)T+sz+ (1 —=Nu((1—s7)7+s12)

showing that u; (+; s) is affine on [Z (s7), 1]. [ |
Lemma 4 Let v : [0,1] — R be continuous and let Z € [0,1] be such that the restriction u s

(resp. wjz11) of u over [0, 2] (resp. [Z,1) is convex (resp. affine). Moreover, let w* € [0,1] be a
solution of

The following facts are true:
(i) If ® > z, then it is optimal to reveal no information;

(i) If 7 < z, then it is optimal to disclose w whenever w < w* and to reveal only that w > w*
whenever w > w*.
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Proof of Lemma 4 Suppose that 7 > z. Define ¢ : [0,1] — R as the affine extension

of iz 1) over [0,1] and p = dz, i.e., the Dirac measure that puts mass 1 over 7. It follows that

Y > U, SUpp = {7_1} C {</3 = u}, il N>cv m, and
p(2)du(z) =¢(7) = p(z)dr (2
/[0’1}() () () /[01]() ()

since ¢ is affine. By Theorem 1 in Dworczak and Martini (2019), u solves the sender’s problem.

Next, suppose that 7 < Z and define

u(z) if z<w*
#l2) = { u(w*) + <—u(2:zﬁ(*w*)) (z — w*) else vz €[0.1].

Note that ¢ is convex and such that ¢ > w. Finally, define p € A (]0,1]) with distribution

function

F: (2) if oz <wt

Fulz) = { Fr(w")+1]z ; Z) (1 — Fr (wY)) else vz 0.1,

where F; is the distribution function of 7. Clearly, it holds

suppp = [0,wTU{z} € {p = u}

and

A PG = Belel Sw B @) 403 (1~ B ()

= /[071] o (z)dm(2).

Finally, p is a mean-preserving spread of 7 as it only moves mass from [w*, 1] to {Z} with

respect to m. By Theorem 1 in Dworczak and Martini (2019), u solves the sender’s problem.H

Proof of Proposition 6 From Lemma 3, the distorted payoff u; (-, s) is convex below
Z (s7) and affine above this threshold. Moreover, Lemma 4 implies that if 7 > Z (s;), then it is
optimal to reveal no information, otherwise the censorship policy characterized by w* (s, ) €
[0, 1] defined as
Er [wlw > w* (s, I)] = Z(sg)

solves the sender’s problem with payoff function u; (-, s). There are four cases:

L If 7 > = that is Z(s;) = 0, then always 7 > Z(s;) and it is optimal to reveal no

information (i.e., w* (s, 1) = 0);

2. If %~ > 7 > Z, that is Z(s;) € (0,1) and @ > Z(sr), then is optimal to reveal no

information (i.e., w* (s,1) = 0);
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3.If7m < 2 < (1—s1)7T+ s/1, that is z(s;) € (0,1] and T < Z(sy), then the optimal
threshold w* (s, I) solves

z—(1—sp)m

E, [ww>w*(s,1)] = — (1—s1) 7+ /By [ww > w* (s,])] = Z;

ST
4. If 2> (1 — s;) ™+ sy1, that is Z (s;) = 1, then the optimal threshold w* (s, I) solves

E: [ww>w"(s,])] =1 <= w"(s,I) =1.

Together the four cases prove the statement. |

Proof of Corollary 3 Fix [,I’ C N and s,s" € A (N) such that s; > s%,. There are four

cases:
1. If # > z, then w* (s,1) = w* (s, ") = 0;

2.

p—

fr<z<(1-s%)7T+sh1, then
(1 =807+ spEr [wlw>w* (1) =2=(1—s1)7 + s1B; [ww > w* (s, ])]
which necessarily implies that w* (s, ) < w* (s, I');
3 (1—sh)m+sp1<z<(1l—s7)7T+srl, thenw*(s,I) <1=w*(s,1');
4. If (1 —s5) T+ sl < z, then w* (s,1) = w* (¢, ') = 1.
Together the four cases prove the statement. |

Proof of Proposition 7 Fix 7 € A(Q), I C N, S C A(N). Given the equivalent
representation of the sender’s problem of eq. (9), with the same steps of Proposition 3, it is
possible to show that it is without loss of optimality for the sender to design public signals and

that his problem is

V(w7 5) = max {/M " (min((l s A4 512)> du (z)}

W cuT scS
_ Ei}i{ﬁ,u“((l S A+ 8D z)du(z)}

~ mox { /[ w8 (2} = can (i (45) (7

Mo

where the second equality follows from eq. 3 in Ghirardato et al. (2004). Finally, the proof of
second part of the statement follows exactly the same steps of the proofs of the second part of

Proposition 4 and Corollary 2. |
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