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Abstract
Coordination in Dynamic Environments

Colin Stewart

2007

The first chapter, joint with Jakub Steiner, studies a learning process in which subjects
extrapolate their experience from similar past strategic situations to the current decision
problem. When applied to coordination games, this learning process leads to contagion
of behavior from problems with extreme payoffs and unique equilibria to very dissimilar
problems. In the long-run, contagion results in unique behavior even though there are
multiple equilibria when the games are analyzed in isolation. Characterization of the
long-run state is based on a formal parallel to equilibria of static games with subjective
priors. The results of contagion due to learning share the qualitative features of those from
contagion due to incomplete information, but quantitatively they differ.

The second chapter considers the equilibrium selection problem in coordination games
when players interact on an arbitrary social network. I examine the impact of the network
structure on the robustness of the usual risk dominance prediction as mutation rates vary.
For any given network, a sufficiently large bias in mutation probabilities favoring the non-
risk dominant action overturns the risk dominance prediction; bounds are obtained on
the size of this bias depending on the network structure. As the size of the population
grows large, the risk dominant equilibrium is highly robust in some networks. This is true
in particular if the risk dominant action spreads contagiously in the network and there
does not exist a sufficiently cohesive finite group of players. Examples demonstrate that
robustness does not coincide with fast convergence.

The third chapter, joint with Amil Dasgupta and Jakub Steiner, studies how the pres-
ence of multiple participation opportunities coupled with private learning about payoffs

affects the ability of agents to coordinate efficiently in global coordination games. Two



players face the option to invest irreversibly in a project in one of many rounds. The
project succeeds if some underlying state variable 8 is positive and both players invest,
possibly asynchronously. In each round they receive informative private signals about 6,
and asymptotically learn the true value of 6. Players choose in each period whether to
invest or to wait for more precise information about §. We show that with sufficiently
many rounds, both players invest with arbitrarily high probability whenever investment
is socially efficient. This result stands in sharp contrast to the usual static global game
outcome in which players coordinate on the risk-dominant action. We provide a foundation

for these results in terms of higher order beliefs.
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Chapter 1

Learning by Similarity in

Coordination Problems

1.1 Introduction

In standard models of learning, players repeatedly interact in the same game, and use their
experience from the history of play to myopically optimize in each period. In many cases
of interest, decision-makers are faced with many different strategic situations, and the
number of possibilities is so vast that a particular situation is virtually never experienced
twice. The history of play may nonetheless be informative when choosing an action, as
previous situations, though different, may be similar to the current one. A tacit assumption
of standard learning models is that players extrapolate their experience from previous
interactions similar to the current one.

The central message of this paper is that such extrapolation has important effects:
similarity-based learning can lead to contagion of behavior across very different strategic
situations. Two situations that are not directly similar may be connected by a chain of
intermediate situations, along which each is similar to the neighboring ones. One effect
of this contagion is to select a unique long-run action in situations that would allow for

multiple steady states if analyzed in isolation. For this to occur, the extrapolations at each
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i NI
T 10,0 9-1,0
NI|[0,6—1]0,0

Table 1.1: Payoffs in the Example of Section 1.2.

step of the similarity-based learning process need not be large; in fact, the contagion effect
remains even in the limit as extrapolation is based only on increasingly similar situations.

We focus here on the application of similarity-based learning to coordination games.
Consider, as an example, the class of 2 x 2 games I'(#) in Table 1.1 parameterized by
a fundamental, §. Action I, interpreted as investing, is strategically risky, as its payoff
depends on the action of the opponent. The safe action, NI, gives a constant payoff of 0.
For extreme values of €, the game I'(¢) has a unique equilibrium as investing is dominant
for 6 > 1, and the safe action is dominant for § < 0. When € lies in the interval (0,1), the
game has two strict pure strategy equilibria.

The contagion effect can be sketched without fully specifying the learning process,
which we postpone to Section 1.3. Two myopic players interact in many rounds in a game
['(6;), with 0, selected at random in each round. Roughly, we assume that players estimate
payoffs for the game I'(f) on the basis of past experience with fundamentals similar to 0,
and that two games I'(6) and I'(¢) are viewed by players as similar if the difference |0 — §'|
is small.

Since investing is dominant for all sufficiently high fundamentals, there is some @ above
which players eventually learn to invest. Now consider a fundamental just below 8, say
0 — . At 0 — ¢, investing may not be dominant, but players view some games with values
of § above 6 as similar. Since the opponent has learned to invest in these games, strategic
complementarities in payoffs increase the gain from investing. When ¢ is small, this increase
outweighs the potential loss from investing in games below 8, where the opponent may not
invest. Thus players learn to invest in games with fundamentals below, but close to 8,
giving a new threshold 8 above which both players invest.

Repeating the argument with 8 replaced by 5’, investment continues to spread to games

11



with smaller fundamentals, even though these are not directly similar to games in the
dominance region. The process continues until a threshold fundamental € is reached at
which the gain from investment by the opponent above @ is exactly balanced by the loss from
non-investment by the opponent below . Not investing spreads contagiously beginning
from low values of the fundamental by a symmetric process. These processes meet at the
same threshold, giving rise to a unique long-run outcome, provided that similarity drops
off quickly in distance.’

Contagion effects have previously been studied in local interaction and incomplete in-
formation games. In local interaction models, actions may spread contagiously across
members of a population because each has an incentive to coordinate with her neighbors
in a social network (e.g. Morris (2000)). In incomplete information games with strategic
complementarities (global games), actions may spread contagiously across types because
private information gives rise to uncertainty about the actions of other players (Carlsson
and van Damme 1993). Unlike these models, contagion through learning depends neither
on any network structure nor on high orders of reasoning about the beliefs of other players.
The contagion is driven solely by a natural solution to the problem of learning one’s own
payoffs when the strategic situation is continually changing. This problem is familiar from
econometrics, where one often wishes to estimate a function of a continuous variable using
only a finite data set. The similarity-based payoff estimates used by players in our model
have a direct parallel in the use of kernel estimators by econometricians. Moreover, the
use of such estimates for choosing actions is consistent with the case-based decision theory
of Gilboa and Schmeidler (2001), who propose similarity-weighted payoff averaging as a
general theory of decisions under uncertainty.

While the learning model we have described is one of complete information, the same
reasoning applies when, as in the global game model, players imperfectly observe the value

of the fundamental. In order to directly compare the process of contagion through learning

'In other words, players place much more weight on values of the fundamental very close to the present
one when forming their payoff estimates.
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to that from incomplete information, players in the general model of Section 1.3 observe
private signals of the fundamental that may be noisy. The fundamental and signals are
independently drawn in each round. From the history of play, players have experience
with realized payoffs for signals similar to, but different from, their current signal. They
estimate the current payoffs based on the payoffs of similar types in the past.

The main tool for understanding the result of contagion through learning is a formal
parallel to rational play in a modified version of the game. This modified game differs from
the original game only in the priors: players eventually behave as if they incorrectly believe
their own signal to be more noisy than it actually is, while holding correct beliefs about the
precision of the other players’ signals. More precisely, players learn not to play strategies
that would be serially dominated in the modified version of the game (see Theorem 1.1).

This result enables us to solve the modified game by extending the techniques of Carls-
son and van Damme (1993), further developed by Morris and Shin (2003). With complete
information, the original game has a continuum of equilibria, but contagion leads to a
unique learning outcome when similarity is concentrated on nearby fundamentals. With
small noise in observations of the fundamental, the underlying game has a unique equi-
librium as a result of contagion from incomplete information. In this case, there is also a
unique learning outcome when similarity is concentrated, but this outcome depends on the
relative size of the noise compared to the concentration of the similarity. In particular, the
process of contagion through learning does not generally coincide with that of contagion
from incomplete information. However, the qualitative features of these processes agree,
as both converge to play of symmetric threshold strategies, and give rise to comparative
statics of the same sign.

After an illustrative example in the following section, Section 1.3 describes the general
learning model, and characterizes its long-run behavior in terms of the modified game.
Section 1.4 fully identifies the long-run state in the the limit of small noise and narrow
similarity distributions, and examines comparative statics. Section 1.5 reviews the related

literature.
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1.2 Example

This section presents an example to illustrate in more detail the process of contagion
through learning before describing the general model in Section 1.3.

The underlying family of coordination problems consists of the 2-player games in Table
1.1. We denote by u(a’,a™*, 8) the payoff to choosing action a’ when the opponent chooses
action ¢, and the fundamental is 6.

The game is played repeatedly in periods ¢ € N, with the fundamental 6; drawn in-
dependently across periods according to a uniform distribution on an interval [—b,1 + b],
where b > 0. Each realization 6; is perfectly observed by both players, who play a my-
opic best response to their beliefs in each period. Beliefs are based on players’ previous
experience, but since 6 is drawn from a continuous distribution, players (almost surely)
have no past experience with the current game I'(6;), and must extrapolate from their
experience playing different games. In each period, players directly estimate payoffs as a
weighted average of historical returns in which the weights are determined by the similarity
between the current and past fundamentals. Strategic considerations play no role in these
estimates: players treat the past actions of their opponents as given. Thus following any

2

history {6;,a;5,a3},_,, the estimated payoff to player i from choosing action a' given the

fundamental 8, is
Zs<t 9(93 - Gt)u(a’, as—z, 93)

S0 -0) (1)

where g(-) is the similarity function determining the relative weight assigned to past cases.
For this example, suppose that g(-) is the density corresponding to a uniform distribution on
the interval [7<5E, 7451, where ¢ € [~1,1] and 7 € (0,b]. Beliefs may be chosen arbitrarily
if the history contains no fundamental similar to 0;, that is, if )., g(6; — 6;) = 0.

The learning process is stochastic, but suppose that the empirical distribution of real-
ized cases may be approximated by the probability distribution over 6 (this idea is formal-

ized in Section 1.3 below). By focusing on the most extreme strategies remaining for the

opponent at each stage of the learning process—those involving investment at the most or
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the fewest fundamentals—we may bound the payoff estimates independently of the precise
evolution of the opponent’s strategy. Accordingly, consider a fixed strategy ([ : © — {0,1}
of the opponent, where 1 is associated with investing and 0 with the safe action. Upon
observing the fundamental 6, the player forms estimates of the true payoffs to investing
u(1,1(6),0) = 6-+1(6) — 1, and to the safe action u(0,1(¢),8) = 0. Similarity-based learning
leads to payoff estimates

/@ (0 +1(6") — 1) g(¢' — 6)de’ (1.2)

from choosing to invest, and 0 from the safe action. The expression (1.2) is formally
equivalent to the conditional expectation E[®' +{(©’) — 1|6] when ¢ is an imprecise signal
of @', with noise distributed according to density g(:). Thus, in the long-run, the similarity-
based learner behaves as if her observation of € is not the true fundamental, but only a
noisy signal.

Let 6(0) = [, 0'g(6' — 6)d6’ denote the posterior expected value E['|6] of the funda-
mental after observing the signal 6 under this “virtual signal” interpretation of the payoff
estimates. Players (eventually) learn to invest at those values of ¢ for which 6(9) lies above
1, because the estimated payoff is positive even if the opponent has never invested.

Next, consider some 6 for which §(8) = 1 — a, with a > 0 small relative to 7. Suppose
that a sufficiently long time has passed since the completion of the first learning stage as
to make this earlier history negligible. Close to half of the similarity weight at this ¢ will
be assigned to past cases ' with 5(0’ ) > 1. In these cases, the opponent always invests,
causing the estimated benefit to investing in these cases to outweigh the estimated loss for
smaller values of the fundamental where the opponent may not invest. Players therefore
learn to invest at fundamentals § with 6(8) > 1 — @, for some @ > 0.

Following this second learning stage, we may apply the same argument for fundamentals
0 with 6(9) = 1 — @ — « for small @ > 0. Iterating the argument in this way, players
eventually learn to invest for ever lower fundamentals. The process continues until a

threshold 6 is reached at which the gain in the estimated return to investing due to the

15



opponent investing above @ is exactly offset by the loss in this return if the opponent
chooses the safe action below 6.

The same reasoning applies to the safe action beginning from low fundamentals, giving
rise to a threshold @ below which both players choose the safe action. The threshold
0 satisfies the same offsetting-payoff condition as 6. Since the virtual estimate 9~(0) is
increasing in 6, this condition is satisfied for a unique fundamental §*. Thus the two
contagion processes meet at the same threshold 6 = 6 = 6*. At this threshold, players are

indifferent between their two actions given their long-run payoff estimates. Thus we have
60" -1 +/ - (69 (0" — 6")d6 = 0,
2}

where l4+(#') is the threshold strategy with threshold 6*.

The threshold 8* depends on the shape of the similarity function. The threshold type’s
estimate of the likelihood that her opponent invests is equal to the similarity weight the
type assigns to higher fundamentals: in this case, %’—l The long-run threshold therefore

solves 6 (6*) + <=0

In Section 1.3, we introduce the general model of similarity-based learning. In addi-
tion to more general payoff functions, and general similarity functions g*(+), we allow for
incomplete information in the observation of the fundamental. Long-run behavior is influ-
enced by both the true error in players’ signals and the virtual error arising from the use

of extrapolation in similarity-based learning.

1.3 The Learning Model

The model is comprised of an underlying game, which shares much of the structure of
global games, together with a dynamic process by which players form beliefs about their
payoffs as a function of the observed history. We begin by describing the underlying game.

Two players play a common value game I';. In this game, a state € is drawn from a
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connected space ©® C R according to the continuous distribution ®(-) with density ¢(-).
Each player ¢ then receives a possibly noisy signal zt € X' C R of the state 6 given by
7' = 0 + o€’, where € is drawn from a continuous distribution with density f(-). These
draws are independent across players. The parameter o governing the precision of the
signals is assumed to be nonnegative; in particular, we consider not only the incomplete
information case of ¢ > 0, but also the complete information case of ¢ = 0 in which
the state 6 becomes common knowledge before the players choose their actions. Letting

P (0, z!, :vz) denote the probability density associated with the combination (9, z!, xz) when

po.a'a) = o0 (220) 11 (222)).

2 g

o > 0, we have®

Each player has two actions, 0 and 1 (these correspond, respectively, to the actions
NT and I in the Introduction above). Payoffs depend only on the state 8 and the action
profile. To economize on notation, we normalize the payoff from action 0 to be equal to 0
in every state 8, and write u (6, 1) for the expected payoff from choosing action 1 in state 6
when the opponent chooses action 1 with probability {.> More generally, u(6,!) represents
the difference in payoffs from choosing action 1 instead of action 0 given 8 and [.

We place the following restrictions on the payoffs throughout:
Al. u(6,1) is increasing in 6.
A2. u(6,1) is nondecreasing in .

A3. Uniform limit dominance: there exists some § and € > 0 such that u(8,l) > «

whenever 6 > 6 and u(6,1) < —¢ whenever 8 < —8 (for all [ € [0, 1]).

A4. Bounded payoffs: there exists some V' € R such that |u(8,!)] < V uniformly for all
(0,1) € © x [0,1].

*When ¢ = 0, we have ' = 2 = 6, and the density is simply ¢(6).

3The reason for defining payoffs so as to allow a nonlinear dependence on the probability distribution
over the opponent’s action is to facilitate the move to a model with a continuum of players, in which [
represents the share of the population choosing action 1.
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Assumptions A2 and A3 are quite standard in global games (see, e.g., Morris and Shin
(2003)). For simplicity, Assumption Al strengthens the usual nondecreasing payofls as-
sumption. This additional strength is needed only to guarantee that the function /i (z, z)
defined below possesses a unique root; the corresponding uniqueness condition is assumed
directly in the earlier literature.

The learning process is based on the idea that players estimate their possible payoffs
based on play in past situations, with more similar situations being assigned greater weight
in this estimate. More precisely, fixing o > 0, we suppose that the game I'; is played in
each period t = 1,2,..., with the fundamental and signals drawn independently across
periods. Let 6;, 2!, and a! denote, respectively, the payoff-relevant state, player ¢’s signal,
and player ¢’s action in period {.

Regardless of her own action, each player i learns at the end of each period ¢ the
payoff u (Ot,a{ ) that she received, or would have received, from choosing action 1. The
assumption that players learn counterfactual payoffs from actions that they have not chosen
simplifies the analysis by ensuring that initial beliefs do not prevent players from learning.
We offer two interpretations of this assumption. In certain applications, the counterfactual
payoff may be directly observable from public reports in the media. Thus, for example, in
a currency attack, even those who have not participated learn about the outcome of the
attack. Alternatively, one may suppose that in each period, players have a small but fixed
probability of choosing their action at random, independently of the history of play, either
by mistake or for the purpose of experimentation. As this error probability becomes small,
the long-run outcomes approach those of our model.

Each player i is endowed with a similarity function g* : R — R that depends only on
the difference between two types, so that the weight placed by type = on experience as type
z' is given by ¢° (2 — ). The similarity function is assumed to be nonnegative everywhere
and integrable, and we will normalize it to be a probability density function. Following

a history h; = (93,37%,:103,aé,a?)szl,m)t, type z* of player i forms the estimated return to
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action 1 by

S 1t(t%,qﬁ)g" (25 — ') (1.3)
2s=19" (% — 2)

whenever the denominator on the right-hand side is nonzero. Player 4 chooses action 1

r(z'5hy) =

in period t if and only if this estimated return is positive. This formulation captures the
notion that players form estimates of payoffs based on their experience with similar types,
and, as usual in the literature on learning in games, behave myopically based on these
estimates. We place no restrictions on behavior when 3°¢_, ¢ (2% — zf) = 0, and all of
our results hold for any specification of behavior or beliefs at these histories.

This learning process is a form of case-based decision theory, as formulated by Gilboa
and Schmeidler (2001). Alternatively, the model has a cognitive interpretation based on
Billot, Gilboa, Samet and Schmeidler (2005), who describe and axiomatize a belief forma-
tion process according to which a statistician estimates the probability of an outcome on
the basis of its frequency among previous cases, where these cases are weighted by their
similarity to the present one. Our players can be viewed as statisticians satisfying the
axioms of Billot et al. (2005), who, after forming beliefs, maximize their expected payoffs.5
The key axioms in both Gilboa and Schmeidler (2001) and Billot et al. (2005) preclude
learning of the similarity function, which is consistent with our model, in which similarity
is exogenous.

The informational requirements of the learning process are modest. In particular,
players need not have any initial knowledge of their own payoff function, nor must they
observe their opponent’s actions, payoffs, or types. It is even possible for players to follow
this process without knowing that they are involved in strategic interaction, as they are
simply forming estimates of the optimal action based on their own payoff history in similar
situations.

To simplify the analysis, the payoff estimates r (:vi; ht) place equal weight on all past

4That is, when the history of play contains no cases similar to the present one.
5This connection is subject to the caveat that Billot et al. (2005) assume a finite outcome space, whereas
the outcome space is infinite here.
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observations regardless of how much time has elapsed. More generally, one could suppose
that observations are discounted over time according to a nonincreasing sequence §(7) €
(0, 1] by modifying equation (1.3) to include an additional factor of §(¢ — s) in each sum.
In the undiscounted model, the convergence results presented below rely on the property
that changes in payoff estimates in a single period become negligible once players have
accumulated enough experience. Since this property continues to hold as long as the series
322 o 0(7) diverges, we conjecture that all of our results hold in this more general setting.
If, on the other hand, this sum converges, then the situation becomes more complicated, as
the learning process will not converge in general. It is therefore not possible for the long-
run behavior to agree with that of the undiscounted process in every period. However, as
long as memory is “sufficiently long,” we expect this agreement to occur in a large fraction
of periods. For example, if memory is discounted exponentially, so that §(7) = p” for some
p € (0,1), then we expect play to be consistent with our results most of the time when p
is close to 1.

The following technical assumptions are required for the analysis:

A5. Each similarity function g¢(-) is bounded by some M®.

A6. Each similarity function ¢*(-) is uniformly continuous.®

Since ¢*(z) is a probability density function, Assumption A6 implies that similarity tends to
zero in distance; that is, limg 00 g*(2) = limg, oo ¢°(z) = 0. Otherwise, there must exist
some € > 0 such that for each M there is some x > M for which ¢*(z) > ¢. By the uniform
continuity of g*(-), this implies that there exist infinitely many disjoint intervals of fixed
length on which g(-) is everywhere greater than §, contradicting that g(-) is integrable.
Let pi(-) denote the marginal density corresponding to the distribution of the signal
of player i. With incomplete information, we have p%(z) = Jo d(0) f° (””T“e) df, and with

complete information, pi(z) = ¢(z).

6 All of the results hold if instead we suppose that for each i, there exists some z° below which g¢* is
nondecreasing, and above which it is nonincreasing.
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A7. The marginal densities p,(-) are continuous.

Note that in the incomplete information case, Assumption A7 allows for discontinuities
in the densities ¢(-) and f*(-); for example, this assumption holds if the discontinuities of
both of these densities are topologically isolated.

In order to ensure that learning occurs everywhere in finite time, we assume:

AS8. Either the state and type spaces are compact, or each similarity function g*(-) has

full support on the real line.

1.3.1 Long-run Characterization

The learning process described above converges, in a sense that will be made precise below,
to the set of strategies surviving IEDS in a game with subjective priors that we will refer
to as the modified game. Whereas the underlying game describes the actual situation
in which the players interact, the modified game describes a virtual situation in which
rational players would exhibit the same behavior as the learning players of our model (in
the long-run).

In order to motivate the formulation of beliefs in the modified game, consider the
incomplete information case (¢ > 0). Recall that under the specified learning dynamics,
behavior is determined by the sign of the numerator of the estimated return in (1.3).
Against a fixed strategy a/(z') of the opponent, the expected value of this numerator is

proportional to

fxt fXJ f@ (9 ol (z )gz($ — 29p(0, z, 2" )dOdx' dz
fX@ fXJ f@p 0, z, ") g (x — z*)dOdx'dz

=/XJ./@u(97aj(m’))q"(f),:c’yxi)dodx', (1.4)

where
; o Ixip (0,2,27) ¢" (z — z) dz
i PR AN
? (Q,x ]m) f@ fXJ sz 0,z,2') gt (x — x') dedz'd’ (1.5)
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Note that the right-hand side of (1.4) is precisely the expected payoff to player 7 from
playing action 1 given the posterior beliefs ¢*(0, z'|z*), suggesting that the long-run behavior
under the learning dynamics should correspond to rational behavior given these subjective
beliefs.

The modified game is identical to the underlying game, except that the beliefs of type
z? of player 4 are given in the incomplete information case by q (9, xl Im’) In the complete
information case (o = 0), the beliefs of each type z' assign probability one to the event

#? =0, and correspond to the density

i i $(0)g" (9 - xl)
¢ O) = T o= o -9

An equivalent definition of the modified game specifies the subjective priors from which
the posterior beliefs ' may be derived. These priors correspond to an incorrect model of
signal formation on the part of each player. To be precise, consider a model in which, after
6 is drawn according to the correct distribution, player ’s signal is formed in a two-stage
process. The first stage of this process is the same as for the signal in the underlying game;
that is, a noisy signal & = 0 + o€ of 6 is generated by drawing € according to the density
fi(:). What player i observes, however, is a noisy signal z of Z drawn according to the
density ¢*(Z — z). The beliefs q* correspond to this two-stage process when player ¢ holds
the correct beliefs about her opponent’s signal, namely that it arises from only the first
stage of this process. The effect of learning by similarity in the long-run may therefore
be viewed as if players add noise to their own signals, but not to that of their opponents.
This interpretation explains in part why many of the results discussed below are close, but
not identical to those of the standard global games literature. In particular, when there
is complete information in the underlying global game, this form of subjective noise may
lead to a unique equilibrium in the same way that adding small noise does in global games
with rational players.

Given any game with subjective priors, we may define (interim) dominated strategies in
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the same way as for Bayesian games with common priors.” In fact, we will require a slightly
stronger form of dominance in which the payoff difference exceeds some fixed = > 0. To
define this formally, let u¢ (6, a’,a™") denote the payoff to player ¢ from the action profile
(a’,a™") when the fundamental is 6. The action a' € {0,1} is w-dominated for type z*
against a set S™° of strategies for the opponent if there exists some other action a* such
that

Eqi(e’x-—z‘]wi)ui (9,&i,s—i (m“’)) - Eqi(e,x—i|wi)ui (G,ai, s (x_’)) >T

for all s € §~.8 In words, the expected payoff of type z* based on her posterior beliefs
could be increased by more than 7 by playing a different action, regardless of the strategy
of the opponent. We call a strategy m-dominated for player 4 if it specifies a m-dominated
action for some type. As usual, we will say simply that st is dominated if it is m-dominated
with 7 = 0.

The need to consider m-domination instead of ordinary strict domination arises because
of the difference between estimated returns following finite histories and their long-run
expectations. In the proof of Theorem 1.1 below, we show that for any 7 > 0, estimated
payoffs under the learning process almost surely eventually lie within 7 of the corresponding
expected payoffs in the modified game. It follows that actions that are m-dominated in the
modified game will (almost surely eventually) not be played under the learning process.
The following lemma shows that considering m-domination for arbitrary = > 0 suffices to

prove the result for 7 = 0, that is, for strict domination.

Lemma 1.1. Suppose that action a € {0,1} is serially dominated for type T of player 1.

Then there ezists some w > 0 such that action a is serially m-dominated for type .

The idea of the proof, which is relegated to the appendix, is that as m is made to

decrease toward zero, smaller sets of strategies survive iterated elimination of m-dominated

"Since no other notion of domination will be employed here, we henceforth drop the term “interim” and
refer simply to “dominated strategies.”

8The notion of w-domination should not be confused with the unrelated concept of p-dominance that
has appeared in the literature on higher-order beliefs.
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strategies (IExDS). The lemma states that the set obtained in the limit is equal to that
from ordinary IEDS. Suppose this is not the case, and consider any type x for which they
differ. The argument proceeds by induction on the round in which elimination occurs under
ordinary IEDS for this type, call it N. We show that by choosing m sufficiently small, the
set of types on which IExDS differs from IEDS in the first N — 1 rounds can be made to
have arbitrarily small measure, and hence this difference has an arbitrarily small impact
on the possible expected payoffs received by type z.

Given any subset a C {0,1}, let X*(a) C X* denote the set of types of player i for
which « is precisely the set of serially undominated actions in the modified game. The
main result of this section, given in the following theorem, shows that, in the long-run,

players will not play strategies that are serially dominated in the modified game.

Theorem 1.1. The probability that play under the specified dynamics is consistent with
IEDS in the modified game approaches one as time tends to infinity. Moreover, on any
compact set of types not intersecting X ({0,1}), convergence almost surely occurs in finite

time.
Proof. See appendix. O

Using the strong law of large numbers, it is relatively straightforward to show that
for a given type against a fixed strategy, the long-run payoff estimate is equal to the
expected payoff in the modified game. The main difficulty in the proof of the preceding
theorem arises because, in order for the analogue of IEDS to occur under the learning
dynamics, infinite sets of types must “eliminate” actions in finite time. Accordingly, the
proof demonstrates that it is possible to reduce the problem to one involving a finite state

space while introducing only an arbitrarily small error in the payoff estimates.
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1.4 Limit Results and Comparative Statics

1.4.1 Narrow Similarity and Small Noise

By Theorem 1.1, applying IEDS in the modified game allows us to identify strategies that
may survive in the long-run of the learning process. We therefore shift our attention in
this section to the solution of the modified game.

From this point on, we focus on the case in which the densities ¢(-) and f*(-) have full
support on the real line, and assume that the game and the learning process are symmetric
with respect to players; that is, f!(-) = f2(-) and g'(-) = ¢?(:). Since it follows that the
subjective beliefs in the modified game take the same form, we drop the player index from
¢‘(-). Like the underlying game, the modified game does not have a unique equilibrium
in general. However, the techniques developed for global games with rational players (see,
e.g., Morris and Shin (2003)) can be extended to show that uniqueness arises as long as the
noise and the similarity weights are both sufficiently concentrated on a narrow interval. In
order to make this precise, we introduce a similarity parameter 7 € Ry, and replace the
similarity function g(z’ — z) with %g (””,T_g”) Decreasing 7 increases the similarity weight
given to types z' close to z.

The proof of the following proposition closely follows that of the corresponding result
in Morris and Shin (2003). They show that in the limit as o tends to zero, the essentially
unique serially undominated strategy for each player is defined by the threshold 6* solving
fol u(0,1)dl = 0, with action 0 taken by types below 6*, and action 1 by types above §*.
The following result identifies the long-run solution under the learning dynamics in the
limit with both small noise (¢ — 0) and narrow similarity (7 — 0), while holding the ratio

Z fixed.

Proposition 1.1. For any § > 0, there exists ¥ > 0 such that for any v € (0,7), if the

strategy s(z) survives IEDS in the modified game I'™ (5, 77), then s(z) = 0 for z < 6* —§
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and s(z) =1 for z > 0* + 6, where, for o > 0, 0* solves

/ w6, DAH(D) = 0 (1.7)
0

and H(-) is defined by

H() = /Eg(g) (1 ~F (-;-5 +F (1 - 1))) de, (1.8)

and for o =0, 8* solves
G(0)u(0,0) + (1 — G(0)) u(6,1) = 0, (1.9)

where G(-) is the distribution function corresponding to the density g(-).

The expression 1 — F (££ + F~1(1 — 1)) in (1.8) is the equilibrium belief over [ in the
underlying game for a player observing a signal at distance o from the threshold. A player
in the modified game observing the threshold signal z is uncertain over the true value z’,
and thus her belief H(l) is an average of the rational beliefs induced by signals close to the

threshold.

Proof. The proof in the complete information case is similar to, but simpler than that for
the incomplete information case, and is omitted.
Let 0 = 6, 7 = 7, and ¢p (0|z) denote the marginal density associated with the

subjective beliefs ¢ (¢, z'|z) given o and 7. Define

k-6
irg,r (2, k) = / 20(6lz)u (9,1 _F (T )) b, (1.10)
2}
which is the expected payoff to action 1 for type z in the modified game I'™ (o, 7) when
the opponent plays a threshold strategy with threshold k. Step 1 consists of showing that
action 0 is serially dominated for z > 8" and action 1 is serially dominated for z < 8%,

where 8" and 6* are, respectively, the maximal and minimal roots of Mg r(z,z) = 0. The

26



proof of step 1 is essentially the same as the relevant portion of the proof of Proposition
2.1 in Morris and Shin (2003), and we therefore do not repeat it here.”
Step 2 consists of expressing 1., (2, k) in terms of mq (=, k) of the underlying standard

global game, defined by

mo(z, k) = /@p(mx)u (9, 1-F (57:-9» do,

where p (8]z) denotes the objective conditional distribution in the underlying game (given
o). The only difference between this and . (z,k) is that mq(z,k) is computed with
the use of objective conditional probabilities p(0|z), whereas m, (2, k) uses the subjective
beliefs gg(0|x).

We have

where

po () bg(25)
[y Pz (&) 2g(E=2)di

qqz’ (xllm) =

Substituting this expression and interchanging the order of integrals in (1.10), we obtain
Mg (2, k) = /X qe (2'|2)me (2, k)dz',

which completes step 2.
Step 3 consists of computing the limits lim,_, ¢, (2'|z) and lim, o ms(z,k). Note

that, since f;f; —i—g (‘T—'T_—z) dz' = [T, g (z) dz, given any § > 0 and € > 0, there exists some

x

7 > 0 such that ij: %—g <x'T—"‘”> dz' > 1 —§. In particular, for any function % (-) that is

®The basic idea is that if action 1 has been eliminated for all types below k < 8", then . - (z, k) < 0 for
z sufficiently close to k, indicating that there are further types for which action 1 can be eliminated. There
is a slight complication in that /. ,(z, k) may not be increasing in z. As a result, the inductive procedure
of their proof may eliminate fewer strategies than IEDS, which poses no problem for the claim of Step 1
here. In addition, the fact that . -(z, k) is decreasing in k for each z suffices to guarantee the monoticity
of the sequences used in Morris and Shin’s (2003) proof.
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continuous at x, we have

It follows that

. T pz (z+ 78 9(§) _
}%quz (z + 7€lz) = }1_% T pe (@) %g(@fﬁ)dﬁ' =g(&),

and for each z, convergence is uniform on compact subsets of Z since p, and g are contin-

uous.

Morris and Shin (2003, Appendix A) show that

1
o (2, k) = /lzo“(’“ G F(),dY, (1 2, k),

where U, (-;z, k) is a distribution function over the interval [0, 1]. Moreover, as o — 0,
Uo(lyz+0&z) > 1= FE+F1(1-1)) (1.11)

uniformly.
Step 4 consists of taking the limit as v — 0 and combining the limits from the step 3.

Accordingly, we have

ife,s) = Jim [ go(@le)man (o' 2)da

1
= lim qx/(:c’|x)/ u(z — &yF1(1),1)dYs,(l; 7', z)dz’
l

fy—)O X =0
1
= lim [ Frao+irgle) [ ulo = 69F 7 0,005 (1 + 71, 2)dg
= =0

1
= [0 [ utona(tim v 5+ 16,2) ) de

=0

= /liou(ﬂ’,l)d (/;g(é) (;{grg)‘lf&y(l;w%yg,x)) dg),

28



with the interchanging of the limit and the integral justified by uniform convergence on
compact subsets of E x (0,1).

Substituting the limit from (1.11) gives

(@, z) = /lzlou(a:,l)d (/:g(g) (1 —F(§§+F—1(1 —z))> dg).

=

Thus defining
a0)= [o60 (1-FCe+Pra-n)) e

we have

m(z, ) :/l u(z,l)dH ().

=0
Since u (x,[) is increasing in z, it follows that the equation 7n(z,z) = 0 has at most one
root.

It follows from uniform limit dominance that there exist signals £ and 7 such that
action 1 is dominated for z < z and action 0 is dominated for z > Z. Thus we may restrict
attention to signals in some compact set X, on which iz, 74(%,z) converges to m(z,z)
uniformly. Given any neighbourhood N of the unique root z* of (z, z), there exists some
¢ > 0 such that the absolute value of i (z, z) is uniformly bounded away from zero outside
of N. Choosing ¥ > 0 small enough so that whenever v < 7, Mgy 7,(2, ) is within ¢ of

iz, ) everywhere on X, guarantees that Mg 7 (z, ) has no root in X \ N. O

Proposition 1.1 can be generalized from to 2 to N players in a straightforward way. !0
Let the payoff to investment be @(6, k) under a pure strategy profile in which k players

invest. Let

u(0,1)

il

N
; (Z:ll)lk_l(l = )N Fa(0, k) (1.12)

be the expected payoff to investment if each player independently randomizes and invests

with probability {. Suppose that %(#, k) is non-decreasing in k, which implies that u(6,1) is

19The generalized proofs require only an expansion of notation, and are available upon request.
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non-decreasing in [. With this definition of payoffs, Proposition 1.1 applies to the N player
case unchanged, and the limit long-run threshold is characterized by equation (1.7) with
the distribution H(l) satisfying (1.8). Moreover, let us rewrite the pure strategy profile
payoff as @(0,k) = v (0, k), where v: R x [0,1] = R. Then limy_o0 u(0,1) = v(8,1), as all
the weight in the summation in (1.12) becomes concentrated at k = [. In particular, as N

grows large, the long-run threshold converges to the solution of

/ 1 (8, 1)dH (1) = 0,
0

just as in the two player case.

For each ratio p = g, let 0 denote the threshold defined by equation (1.7) when p
is finite, and by (1.9) when p = oo (that is, when & = 0). In addition, let 6, denote
the threshold corresponding to the unique serially undominated strategy of the underlying
game in the small noise limit. In general, the long-run threshold 65 differs from the global

game prediction @%,, and is sensitive to both the noise and similarity distributions. The

gg?
following corollary identifies sufficient conditions under which the quantitative predictions

agree.

Corollary 1.1. Suppose that the noise and similarity distributions are symmetric about 0,
and the payoff function u(0,1) is linear in . Then for & > 0, the long-run threshold 6% is

identical to the equilibrium threshold 0, of the underlying global game.

Proof. By the symmetry of the noise distribution, we have F~!(l) = —F~'(1 — ), which

H(1-1)= ./Eg(ﬁ) (1 —F (gg —FH1 - l))) d€.

Substituting £ = —¢ and using the symmetries g(¢) = g(—¢) and 1 — F(—y) = F(y) gives

na-0= [o@ (F(Zerra-n)) e

implies that
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which is equal to 1 — H({). Hence the distribution H(-) is symmetric about 1/2, which,

together with the linearity of u(6,[) in [, implies that

1 1
/Ou(e,l)dH(l)z/o w(6,1)dl

for every 6. O

The conditions of Corollary 1.1 are strong. Although symmetry of both the error
distribution and the similarity function guarantees symmetric beliefs over [, the thresholds
in the two models may not agree if payoffs depend non-linearly on .

Proposition 1.1 allows for the computation of the long-run outcome as 7 and ¢ approach
zero while holding £ fixed. The following proposition states that as 7 becomes small
relative to &, the equilibrium of the underlying game emerges as the long-run outcome of
the learning model; on the other hand, as & > 0 becomes small relative to 7, the long-run
outcome approaches that obtained under complete information. The latter result contrasts

sharply with the rational model, in which the predictions vary discontinuously at o = 0.

Proposition 1.2. Suppose that the densities f(-) and ¢(-) are bounded, and that each has

only finitely many discontinuities on any compact set. Then

1. For 6 > 0, the threshold 6% of the learning model tends to the equilibrium threshold

Qi

Hgg as ¢ tends to zero; that is, lim, 0 67 = 0,

2. Suppose in addition that, for each 6, u(0,1) is continuous in ! at 0 and 1. Then the

incomplete information threshold 0% tends to the complete information threshold 05,

ag

as

QY

tends to infinity; that is, lim, o 07 = 05,

Proof. See Appendix. O

1.4.2 Comparative Statics

The predictions of the learning model are more ambiguous than those of the global games

model because the long-run threshold depends on the similarity function which is unknown
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to an outside observer. Yet the comparative statics with respect to many parameters of

practical interest are unambiguous and have the same sign as in the global game model.
Consider the learning process characterized by 7, & in the limit v — 0, let the pay-

off function u(6,!;2) depend on an exogenous parameter z, and assume throughout this

subsection that it is continuously differentiable with respect to # and z.

Proposition 1.3. If the sign of %(0,[;2) is the same for all 8 and [, then

N A AN A
sign P = sign 5, ) = sign 5 )

independent of 7, & and g(-).

Proof. By Proposition 1.1, the long-run threshold 0% is the solution to

/1 w0, 1; 2)dH (1) = 0.
0

By the implicit function theorem,

0% Rw0,L2)dHQ

a

0z [lug(0,1;2)dH(l)

The denominator is positive by Assumption A1, that returns are increasing in 6. The sign
of numerator is equal to sign (—g—%). The sign does not depend on the distribution H(-) and
thus is independent of 7, & and ¢(-), and therefore equal to the sign obtained when H(-)

corresponds to the uniform distribution on [0, 1]. O

Proposition 1.3 may be applied to many comparative statics analyses found in appli-
cations. For instance, though the size of the effect depends on details of the model, the

long-run threshold always increases with the outside option value!'!, and decreases with the

A game with payoff w(6,!) in which the value of the outside option was raised from 0 to z can be
renormalized to a game in which the outside option is 0, but %(8,1) = u(6,1) — 2.
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measure of players.}? Heinemann, Nagel and Ockenfels (2004) experimentally study both
of these comparative statics effects, and confirm the qualitative predictions of the global
game model, and thus also those of the present model.

Next we study comparative statics with respect to F(-) and g(-). Unlike in the global
game theory, the long-run threshold in the learning model generally depends on the error
distribution. However, translations of this distribution have no effect on the threshold. To
see this, consider a change in the error distribution from F(:) to F(e) = F(e—p) for p € R.

The distribution H(-) given by (1.8) in Proposition 1.1 becomes

HQ) = / 9(¢) (1 - F (g-s + P71 l))) dg

- /:g(f)(1—F<§€+F‘1(1—Z)+ﬂ—u))d§
— H().

The long-run thresholds under the two error distributions are therefore identical.

Now fix F(-) and consider two similarity functions g (-) and § () such that the distribu-
tion corresponding to g first-order stochastically dominates that corresponding to g. In this
case, we say that g is more optimistic than g, as a player characterized by g unambiguously

assigns more weight to similar higher signals than a player characterized by g.

Proposition 1.4. If g is more optimistic than §, then the long-run threshold of players
learning according to g is weakly lower than that of players learning according to g. The

inequality 1s strict if u(6,1) is strictly increasing in .

Proof. Let H(-) and H(-) be the distributions given by (1.8) in Proposition 1.1 correspond-
ing to g and § respectively. Since 1— F (2£ + F~*(1 — 1)) is decreasing in ¢, the first-order
stochastic domination of § by g implies that H (I) < H () for every | € (0,1); in other

words, H first-order stochastically dominates H. But then since u(6,!) is non-decreasing

12Consider the limit of continuum of players. Increasing the measure of players from 1 to z is equivalent
to keeping the measure constant but changing the payoff function to @(f,!) = u(8,1z).
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in [, we have

/ "0, DdH () > / (0, DA ()
0 0

for each 6, and therefore 6* < 6*. |

1.4.3 The Environmental Multiplier

In this subsection, we analyze the impact of the prior distribution using an example of
the learning process with non-vanishing o and 7. We keep the structure of the example
compatible with the setting of Chapter 3 of Morris and Shin (2003), in which the authors
examine the strategic influence of public information. This allows us to compare the
influence of the prior via the strategic link studied by Morris and Shin (2003) to that via
learning.

The underlying game T, of this example is characterized by the payoff function in

Table 1.1, the distribution of fundamentals & ~ N(y,w?), and the distribution of error

ac’—x)
b

terms o€’ ~ N(0,0%). Players are characterized by their similarity function %g(
which we take to be the density function of N(0,72).

Applying Theorem 1.1, the long-run behavior is consistent with IEDS in the modified
game I';'.. 'We use the procedure utilized in the proof of Proposition 1.1 according to which

the solution of I'™®

o, 7T

reduces to solving My ,(z,2) = 0. The normality of the distributions
and of the similarity function allows us to express M, (2, k) analytically. For this purpose,
we explicitly express the subjective probability distribution of X ~*|z°. In the first step
we compute the subjective probability distribution of ©|z. In estimating 6, each player
processes two normally distributed signals, the public signal y and the private signal z.
Each player subjectively evaluates z as 8+ o€+ 7€ where oe ~ N(0,0°) and 7€ ~ N(0,72).
Thus, ignoring the public signal y, the subjective © |z would be distributed as N (z, 0% +72).

Finally, incorporating the public signal y,

(1.13)

Olz ~ N (y(02 +72) + zw? w?(o? + 1?) ) '

w+o2+72 Twi4o?41?
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Players in the modified game have correct beliefs about the conditional distribution of
X~4#. The subjective belief X ~¢|z thus consists of a sum of the normal random variable

in (1.13) and N(0,0?), which gives

X g~ N y(o? +72) + 3w? w*(0? +7%) + 0*(w? + 0% +72)
Cwito?4+r2 w? 4 02 4 72

Alz) B2

o

Recall that the function /s (2, k) is the subjective expected return in the modified
game, given that the opponent’s threshold is k. Hence, for the payoffs in Table 1.1,

Mer(z, k) = A(z) — F (t%(ﬂ), and the threshold z* is the root of

Figr(z,2) = A(z) — F (%M) = 0. (1.14)

Keeping o and 7 fixed, the left hand side of (1.14) is strictly increasing in z for sufficiently
large w, as can be verified by explicit computation of % (A(m) - F (%m—)» We assume
below that w is sufficiently large, which rules out multiple equilibria.

We are now able to analyze the comparative statics of the threshold z* with respect to
the public signal y. Consider first the comparative statics under the limit 7 — 0. Applying
the implicit function theorem to equation (1.14) gives

or* _02 + f((z — y)D)D(w? + o?)

By ~ @ = j(@ - yD)D@E +?)’ (1.15)

1
V(@o?) (25 )41
(2003, Section 3.1). The coincidence is a consequence of Proposition 1.2, which states that

where D = . This result is equivalent to the result in Morris and Shin

the learning process converges to the equilibrium profile in the global game I', for 7 < 0.

If the rational players were to ignore strategic considerations and only process the
information in the public signal, the effect would be of size % = Z—; But the actual effect
in (1.15) is larger due to the strategic behavior in the global game model. Although (1.15)

also holds in the learning model (in the limit 7 — 0), the interpretation must differ, as the
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players do not directly process public information, nor are they capable of any strategic
reasoning. The need for a different interpretation is even more pronounced if we consider
the limit as 0 — 0 holding 7 > 0 fixed. In this case

dz* 72 + f((z — y) E)E(w? + o?)
dy  w?—f{(z —y)E)E(w? +02)’

(1.16)

where F = 5ﬁ The public signal plays no informational role in the limit as players

observe the fundamental perfectly. However, the outcome of learning varies with y because
y defines the environment in which the learning takes place. Increasing y corresponds to an
improvement in the environment, and thus, ceteris paribus, improves players’ experiences.
Higher experienced returns translate into higher estimated returns; consequently, z* must
decrease in order to keep the threshold player indifferent between the two actions. We
summarize the difference in interpretations by renaming the “public information” multiplier
to be the “environmental” multiplier for the purposes of our model.

The difference in the interpretations of the multipliers in the global game and learning
models stems from the fact that the reasoning of players is entirely deductive in global game
model, whereas it is entirely inductive in the learning model. Both of these assumptions
are extreme. Consider a publicly announced change in the prior from ®(8) to ®(6) at
time ¢. According to the global game theory, players immediately and substantially adjust
their behavior. While the learning model also predicts a large impact on the behavior, it
predicts that there will be no immediate reaction; the adjustment occurs only in the long-
run. Some combination of the two models could lead to less extreme predictions involving

an instantaneous reaction combined with partial inertia.

1.5 Related Literature

Processes of learning from similar games have been examined in several papers, which

typically define similarity by an equivalence relation on a given set of games. LiCalzi
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(1995) provides sufficient conditions for convergence of fictitious play with similarity-based
learning in 2 x 2 games. Germano (2004) considers rules that specify a strategy for each
game in a given set G. Rules are subject to stochastic evolutionary selection, and those that
do not survive IEDS almost surely disappear in the long-run. Stahl and Van Huyck (2002)
demonstrate learning from similar games experimentally. Subjects repeatedly interacted
in stag-hunt games randomly drawn from a particular set, with the set being varied under
two different treatments. The observed long-run hehavior in a particular game contained
in both sets varied across treatments, indicating that subjects were influenced by their
experience playing different games.

Jehiel and Koessler (2007) study steady states of learning processes in incomplete in-
formation games. Let €2 be the set of states of the world. Learning by each player is
governed by a partition A of Q: when learning an opponent’s action in state w € €,
player i aggregates the history of opponent’s strategy in all states in the set A*(w).!3 Je-
hiel and Koessler (2007) apply their equilibrium concept to a global game, assuming the
coarsest similarity partition, according to which each player completely disregards the cir-
cumstances under which her opponent chose an action. The main predictions of our model
arise at the opposite extreme, in which only cases from a small neighborhood of the cur-
rent case are given significant weight. Another important difference, however, lies in Jehiel
and Koessler’s (2007) formulation of similarity as a partition, which prevents actions from
spreading contagiously across types.

Argenziano and Gilboa (2005) consider coordination problems drawn from a finite set.
Players perfectly observe the current problem and form beliefs about their opponents’
strategies by aggregating their experience in similar past games. When games with dom-
inant actions are sufficiently rare, the long-run outcome of learning depends on historical
accidents.

Once most of the work on the present paper was completed, we discovered a paper by

131n a related paper, Jehiel and Samet (2007) suppose that players use partitions of their actions spaces
in order to estimate payoffs directly. While this approach is similar to that of our model, their paper is
focused on very different issues.
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Carlsson (2004) that proposes a learning model closely related to the one studied here.
In his model, players use similarity to estimate their opponent’s strategy in two-player,
complete information global games. Carlsson (2004) offers an informal argument to suggest
that the learning process can be approximated by the best-response dynamics of a modified
game. Theorem 1.1 above formalizes the corresponding result for binary action global
games when similarity is instead used to estimate payoffs directly. Carlsson’s (2004) focus
is on providing evolutionary foundations for the global game equilibrium, which agrees with
the long-run outcome of learning under the conditions of his model. Our analysis suggests
that under more general conditions (in particular, allowing for incomplete information in
the learning process), the main qualitative predictions of the learning and global game
models coincide, although the outcomes may differ quantitatively.

Milgrom and Roberts (1990) study supermodular games, of which global games are a
special case, and show that only serially undominated strategies are played in the long-run
under a large class of adaptive dynamics. These dynamics, however, require that players
adjust to the full strategies of their opponents. In games with large type spaces, where
play of the game (at most) reveals the actions assigned by strategies to the particular types
that are drawn, such dynamics are difficult to justify. The use of similarity in learning can
be seen as generating “close to” adaptive dynamics, as reflected in the modified serially
undominated result of Theorem 1.1 above.!

An alternative approach to learning in binary-action supermodular games is offered by
Beggs (2005), who proposes a class of adaptive learning rules where players are restricted
to using monotone (threshold) strategies. The threshold evolves based on payoffs from
similar types, with similarity weights becoming increasingly concentrated on nearer types
over time. Under stronger restrictions on similarity than those imposed here, the threshold

strategies converge to an equilibrium of the game.

Y11 addition, both Samuelson and Zhang (1992) and Nachbar (1990) specify classes of learning processes
under which players learn not to play serially dominated strategies; however, both papers assume finite sets
of pure strategies.
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1.6 Conclusion

The main difficulty in formulating a learning model for games with large type spaces is that
players must learn optimal behavior in many contingencies despite having relatively limited
experience. To enable learning in such games, we have supposed that players extrapolate
from their experience in past cases in which their type was similar to the current one.
This approach allows for learning even if interactions arise only rarely relative to the size
of the type space. In environments with strategic complementarities, this similarity-based
learning process leads to contagion of actions across types.

Contagion through learning shares the main qualitative features of contagion from
incomplete information. Players learn to play symmetric threshold strategies, and the
comparative statics predictions share the same sign. Quantitatively, however, these two
processes generally lead to different outcomes. This difference is captured by the subjective
priors of the modified game, as compared to the objective priors of the usual incomplete
information model. With objective priors and small noise, players always believe with
probability % that their opponent has received a signal greater than their own. With
subjective priors, this probability generally depends on the priors.

The extrapolations used by players in similarity-based learning typically lead to biases
in payoff estimates away from their true values. As similarity becomes more heavily con-
centrated on nearby states, these biases disappear, but their impact on behavior does not.
Narrowly concentrated similarity is analogous to the bandwidth of a kernel estimator van-
ishing. Long-run estimates are consistent under general conditions as long as the estimated
function is not changing. In a strategic setting, however, payoff estimates depend on the
strategies of the other players, which in turn depend on their own payoff estimates. Since
short-run biases in these estimates are unavoidable, their effects may persist over time even
if the long-run estimates are unbiased. Thus contagion through learning persists even as
the biases in similarity-based estimates vanish.

A well-known formal equivalence exists between Bayesian games and local interaction
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models (see Morris (1997)). Under this equivalence, types correspond to members of a
population, and posterior beliefs about the types of other players correspond to probabilities
of being matched with the corresponding members of the population. This equivalence
readily extends to similarity-based learning. Learning payoffs from certain other types
in a Bayesian game is equivalent to learning payoffs from certain other players in a local
interaction model. In this setting, the modified game result indicates that the outcomes of
learning may be viewed as equilibria of a modified local interaction game. The subjective
priors of the modified game in the Bayesian setting correspond to subjectivity concerning
the structure of the network in the local interaction setting. In these subjective networks,
players generally believe that interactions are asymmetric: it may be that player i’s payoff
depends on the action of player j, but not vice versa.

We have explored the long-run outcomes of similarity-based learning only in a particular
class of games. However, this learning process may be applied more generally to the
broad class of games with large type spaces, in which standard learning models fail. We
conjecture that, under general conditions, players will learn not to play serially dominated
strategies for sufficiently concentrated similarity. Such a result would extend the theorem

of Samuelson and Zhang (1992) for finite games.

1.7 Appendix

Proof of Lemma 1.1. First note that the uniform continuity of g*(+) implies that the beliefs
q (|xl) are uniformly continuous in z* for every (9, zJ ), and hence, for a fixed strategy of
the opponent, expected payoffs also vary continuously in the player’s own type.

Uniform limit dominance implies that, for some 7 > 0, there exist types z and Z such
that action 1 is m-dominated for ¥ < z and action 0 is w-dominated for x > 7. Thus it
suffices to prove the result for types on any compact interval [b, c|.

Step 1: First we show that given any ¢ > 0, there exists some ¢ > 0 such that changing

the opponent’s strategy on a set of Lebesgue measure at most J changes the expected payoff
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of any type by at most ¢.

For any two strategies s,s', let u(s,s’) € Ry U {oo} denote the Lebesgue measure of
the set of types on which s and s’ differ. Let U (s, z) denote the expected payoff received
by type z when playing action 1 against an opponent who plays strategy s. Given any
¢ > 0 and any type z, define

d(z;¢) = inf i (s, s’) .

5,8’
[U(s,2)~U(s",z)|>e

In words, a measure of at least d (z;¢) of the opponent’s types must change their actions in
order to induce a payoff change of at least ¢ for type  when choosing action 1. Dropping
the ¢ from the notation, clearly d (z) > 0 everywhere, so if we show that J (-) is continuous,
then it must attain a strictly positive minimum on the compact interval [b, ¢]. Accordingly,
suppose that there is a discontinuity of size at least 7 > 0 in ¢ (-) at some type o (that is,
there does not exist any -y > 0 such that |§ (z)—4 (zo) | < 1 whenever |z—2¢| < -y). Suppose
that for every v > 0 there exists some z € (z¢ — 7y,z¢ + 7y) such that § (z) > § (zo) + 1
(the argument is similar if instead § (zg) > 6 (z) + 7). Let s and s’ be strategies for the
opponent such that p(s,s’) < d(zo) + # and U (s,2z0) — U (s',20) > €. Note that since
(s, s') is finite, either s # 1 or s’ # 0. Thus there either exists some strategy s” such that
p(s,8") < Zand U (s",29) > U (s, zg) or there exists some strategy such that u (s, s") < 3
and U (s',z¢) > U (s",z¢). Suppose the former (the argument for the other case is similar).
Then we have U (s”,z9) — U (s',29) > ¢, and by the continuity of U (s',-) and U (s",),
there exists some neighborhood N of zg such that U (s, 2) —U (s',z) > ¢ whenever z € N,
contradicting the definition of 7 since u (s”,s') < p (s,s') + pu (s,8") < & (z0) + 7.

Step 2: Given any type z for which action 0 (say) is eliminated in the Nth round, there
exists some 7 (z) > 0 such that the expected payoff for playing action 1 is at least 7 (x)
whenever the opponent plays an action consistent with IV — 1 rounds of elimination. From
Step 1, it suffices to show that given any § > 0, there exists some 7 > 0 small enough such

that N — 1 rounds of elimination of 7-dominated strategies differs from N — 1 rounds of
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elimination of dominated strategies on a set of types of measure at most d.

Consider any positive sequence my,mo,... such that lim, ,oo 7, = 0. Fix a set S of
strategies for the opponent that contains a unique ”worst-case” strategy, that is, contains
a strategy so with the property that sg (z) = 0 whenever s(z) = 0 for some s € S (note
that the set of strategies surviving N rounds of iterated deletion of m-dominated strategies
satisfies this property for any 7 > 0 and any N). Let X (n) denote the set of types that
receive an expected payoff greater than m, when playing action 1 against any strategy in S
(equivalently, against sg), and let X denote the set of types for which action 1 is dominant
against the set S. Then X (n) is a monotone sequence of sets that increases to X in the
limit, for otherwise X \ lim,_,0, X (n) is nonempty, and any type contained in it cannot
receive a positive payoff when playing action 1 against sg, contradicting the definition of
X.

We now proceed by induction on N. The result is trivial for V= 1. For N > 1, assume
the result to be true for N — 1, that is, assume that given any § > 0, there exists some
7 > 0 for which N — 2 rounds of elimination of m-dominated strategies differs from N — 2
rounds of elimination of dominated strategies on a set of types of measure at most . For
each n and w > 0, let S, (w) denote the set of strategies remaining for the opponent after
n rounds of iterated deletion of m-dominated strategies. Note that for each n, S, (7) is
nondecreasing in 7 in the sense that s € S, () implies s € S, (7') whenever 7’ > .

Given § > 0, choose 7’ > 0 small enough so that the set of types for which a given
action is dominated but not 7’ -dominated against Sy .2 (0) has measure at most §. By
Step 1, there exists some ¢’ > 0 such that changing the actions of at most a measure of
' of the opponent’s types changes a player’s expected payoff by at most 7—;1 But then by
the inductive hypothesis, we can choose 7" > 0 such that each element of Sy_» (n”) differs
from one of Sy_2 (0) on a set of types of measure at most §'. Consider m = min {”—2-/, 7r”}.
We need to show that s € Sy_1 (7) implies that s differs from a member of Sy_; (0) on a
set of types of measure at most §. Consider any type . Since Sy_s (1) C Sy_o (n”), the

payoff received by z from playing action 1 against any member of Sy _o (7) is within %’ of
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that from some member of Sy_2 (0). But then if either action is 7’ -dominated for type
against Sy .o (0), it must be %-dominated, and therefore 7-dominated against Sy_g (7),

as needed. O

Proof of Theorem 1.1. We give the proof only for the incomplete information case, as that
for the complete information case is essentially the same, except that instead of partitioning
© x X! x X2, it suffices to partition © alone. We begin with the case of a compact state
space, then show how the argument can be extended to noncompact spaces if the similarity
function has full support.

By the lemma, it suffices to prove the result for IExDS in the modified game for any
m > 0. We proceed by induction on the round of deletion, n, fixing m > 0. For n = 0 there
is nothing to prove. Suppose for induction that there almost surely comes a time after
which each player i only plays strategies in the set S?(n — 1) of those consistent with n — 1
rounds of IExDS.

Suppose that action 1 is m-dominated for type #* against S7(n — 1) in the modified

game (for j # ¢). Then

/ / w (0,1 () ¢ (6,2'|5) da'db < —x
©JXi

for all strategies I (-) € S7(n — 1). That is,

Jo Jxi Jxiu( p(8,2,7') ¢ (z — &) dzdz'do
Jo fx: fxz 9 z,z') gt (z — %) dzdx’'db

< -7 (1.17)

for every I () € §/(n — 1). Defining

= 1nf7r/ / / 9 T, 'r (T - ’I'z) dadx'do,
X7 g

the compactness of the type space implies that 7' > 0. Since u (6,[) is nondecreasing in [

43



for every 6, inequality (1.17) implies that

[ [, [o6immtonrgcthusicns, i

where 1(-) is the strategy in S7(n — 1) that chooses action 1 for every type for which this
action has not been eliminated.

Let © = [b, c] be the payoff-relevant state space, which, along with the type spaces, is
assumed to be compact. Given § > 0, partition each X¢ and © into a finite number of
subintervals of length at most §. We will denote these partitions by P (X*) and P; (©)
respectively. To simplify the notation below, we assume that the partition Ps (Xj ) may
be chosen so that I(:) is P; (X?)-measurable, and for ! € Py (X7), we will write [ (u?) for
Z(wj ) for 27 € p?. Otherwise, if it is not possible to choose the partition in this way, note
that, since expected payoffs are continuous in types, I (0) is an open set in X7, We may
therefore choose the partition in such a way that only an arbitrarily small measure of types
of player j lie in elements of P (X7) on which I(-) is not constant. This small measure of
types almost surely (henceforth a.s.) has an arbitrarily small impact on player i’s payoff
estimates in the long-run, and so will only affect the following argument by introducing an
additional arbitrarily small error term.

For any combination (p, u!, u?) € P5 (©)x Ps (X') x P5 (X?), and any n > 0, the strong
law of large numbers guarantees that there will a.s. come a time after which the fraction
of earlier periods ¢ having (Ot, x},x%) € (p, ut, ;1,2) is within 0 of the probability associated
with the event (p, ut, ,uQ). Since the number of such events is finite, there will almost surely
come a time after which this is true for all (p, u', u?) € P5 (©) x Ps (X') x P5 (X?).

We want to show that since the estimated payoff to type & from action 1 in the modified
game is less than —m, the estimated payoff under the learning dynamics will a.s. eventually
lie below zero; hence this type learns to play action 0. By the induction hypothesis, any
finite history in which the opponent played strategies outside S7(n — 1) will a.s. eventually

have arbitrarily small weight in player ¢’s payoff estimates. Thus it suffices to show that,
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a.s., eventually, .

Zu (HS,Z(xz)) gi (acf9 - 5:') <0

s=1
since the denominator on the right-hand side of (1.3) is (eventually) positive. Accordingly,

we have

t—1

u (05,1 (23)) o' (=, — %)

8

Il

> (Prleutp®) —m)u(sup(p), 1 (w)) infecy o' (@ — &)
u(sup(3{)) <0,
<(t—-1) Pr{p,u’,u®)>0 ,
+ X (Prewte?) £ n)ulsup(p).1(w)) supsey o' (@ — &)
poet s

u(sup(p),l(u’))>0

where 7 is chosen to be sufficiently small so that each term Pr(p,u!,u?) — n in the first
sum on the right-hand side is positive, which is possible since the partition is finite. We
want to show that for sufficiently small n and 4, the expression inside the parentheses is
negative. First, letting p (6) denote the element of Ps (©) containing 8, and similarly for

pt (z) and p?(z), define the step function

¢t (O,m,mj;a?i)

Since the set P5 (©) x P (X') x P5 (X?) is finite, and both u and g* are bounded, there
exists some finite K such that the integral [y [y; [x: & (6,2, 3;&) p (0, z,2') dzde'd6 is
within 7K of the bracketed expression. Thus by choosing 7 sufficiently small (given the
partitions), it suffices to show that [ [y; [y: & (6, z,2';3") p (8, z,2") dzdz'dd < 0.

Since u (+,-) is increasing in its first argument and defined on a compact set, given

any A > 0, there may exist only finitely many discontinuities of u (-,1) of size at least A
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(that is, for which there exists no § > 0 such that u(0,1) — u (6',1) € (=, A) whenever
6—0' € (—4,4)), and similarly for u (-,0). Thus given any £ > 0, the partition P; (©) may be
chosen so that u (8, 1) —u (6",1) € (—¢,¢) and u (#,0) —u (¢',0) € (—¢,¢) whenever 6 and ¢
lie in the same element of P (©). Similarly, since each g¢ () is uniformly continuous, given
any ¢ > 0, we may choose the partition Ps (X*) with § small enough so that ¢* (z — &) —

g' (' — &) € (—¢,€) whenever z,3' € u for some p' € P; (X*). That is, letting

e= sup max{u(6,1)—u(¢,1),u(6,0)—u(¢,0)}
0,6/
p(0)=p(¢")
and €' = sup g (z—2)—g' (' — %),

i (@)=p (')

we may choose the partitions in such a way as to make ¢ and &' arbitrarily small positive

numbers.

Recalling that g*(-) is bounded by M?, and u(-,-) is bounded by V, we have
|§i (G,x,x';fzi) —u (9,7 (x')) g (x — 50’)‘ < eM' 4 €'V +ef,

and therefore

/ / / £ (8,z,2";5") p (6, 2,3") dzdz'do
eJXxi @

< / / / U (6,7 (az')) P (0, x, z:') ' (a: — iz) dzdz'df + e M + €'V + e€/,
eJXJ ?

which, by (1.18), is negative for ¢ and ¢’ sufficiently small.

We have shown that if action 1 is m-dominated against S7(n — 1) for type Z* in the
modified game, then there will almost surely come a time after which #¢ will not play
this action under the learning dynamics. Furthermore, the same payoff approximations
apply to any type z° of player i, with the only difference being a shift in the arguments

of the similarity function. This completes the proof of the inductive step. The symmetric
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argument proves the corresponding result for action 0. This completes the proof of the
first statement when the state space is compact.

For the second statement, note that for any compact set S of types not intersecting
X ({0,1}), there exists some m > 0 and n € N such that after n rounds of elimination
of m-dominated strategies (in the modified game), only the serially undominated action
remains for each type in §. We have shown that under these conditions, there will almost
surely come a time after which types in § play only their serially undominated actions, as
needed.

If the state space is not compact, instead of repeating the proof for the compact case,
we show only how the argument can be modified by the introduction of an arbitrarily small
error term in the payoff estimates.

Given ¢ > 0, we must show that there will a.s. be a period after which the probability
measure of the set of player ¢’s types playing actions consistent with IEDS in the modified
game is at least 1 — ¢. Consider some interval [b, c] such that Pr (z* € [b,c]) > 1 -6, and
choose any z € [b,c]. We want to show that for any € > 0 there exist z,7,6,0 such that

there will almost surely be some period T for which

esam ,$3)¢[Q,0 )( ll?"l?]

whenever ¢ > T'; that is, the contribution to the estimated payoff of those draws <63, zt, 1%)
outside the compact space [6,6] x [z,Z] X [z,%] can be made arbitrarily small by an ap-
propriate choice of z,%, 8, 8. The proof for the compact case may then proceed for types in
the interval [b, c| by partitioning the set [Q,ﬂ x [z, T] X [z, %] and allowing for an additional

arbitrarily small error term in the resulting bounds.'®

15Tt is important that the estimates in proof for the compact state space are applied only to the types
in the interval [b,c], and not in the larger interval [z, 7). Since the additional error term can be made
arbitrarily small independent of the initial interval [b, c], the value of n’ does not depend on the choice of
interval [z, Z] here.
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The sum in the numerator may be naturally divided into parts according to whether
0, lies below, in, or above [Q,?], zJ lies below, in, or above [z, ], and z* lies below, in, or
above [z,T].

Accordingly, consider

1 A

e u{bs,al) g* (2% — x).

Zizll gt (zi — ) s=1;t_1 ( 8 s) ( s )
8s<8

For § small enough, taking al = 0 for all s gives an upper bound on the absolute value of

this expression. Furthermore, letting

g (o) = inf o (s - 2)

max

and g™ (z') = sup ¢' (¢’ — 1),

z€[b,c]
we have
1 o
Z u (Os,af;) g (2} — a:)

t—1 4 1
Zs:]_ gZ (I?S - x) s:l,.,.,t“‘l
0s<8

1 ‘

< ST u (05, 0) g™ (z})

Zs:l gmln (iL’é) S:l;t—l ’ ’
Os<8

for all z € [b, ¢]. By the strong law of large numbers, the expression on the right-hand side

a.s. approaches
L) fog_o_ [y u(8,0) g™ (z*) p (0, 2") da*db
o Jo [xi g™n (2%) p (0, %) daid ’

where p (B,xi) = ¢(0)f° (ﬁ—a_—0> represents the density associated with the combination

(6,2') in any period. Since g* is bounded by M"* and u (6,0) < 0 for § < 8, we have

i fegg“ (6,0) ¢ (0)do
L (_9_) _<_ -M f@ in gmin (xz)p(e,xz) d(L‘de

48



Note that the denominator is positive since g*(+) is continuous and has full support. Since
u (-,a) is integrable with respect to the distribution @ (-) for each a, the numerator can
be made arbitrarily small by choosing # small, and the denominator is unaffected by this
choice.

A similar argument applies for §; > 6, and for zl ¢ [z,T], except with a () :=
arg max, |u (0, a)| instead of a = 0.

Finally, we consider the part of the sum in (1.19) where 2% ¢ [z,7] and 6 € [0,6]. Since
limg 00 g (z) = limg—, oo g (z) = 0, we can use a similar bound, except again with a (6)
instead of a = 0. It follows that for each = € [b, ], the contribution to the estimated payoff

arising from (H,wi) [0 j —00,z) is bounded in absolute value by

Jog Juics ))gm( Y p (9, o) deids
f@ fxz min (1) p (6, zt) dztdf '

Given any ¢ > 0, we can choose z small enough so that gM#* (:c’) <gforall ¢ <z

and therefore the numerator can be made arbitrarily small while the denominator remains

constant. The bound for ( ) [0 _] ) is similar. O

Proof of Proposition 1.2. For the first statement, it suffices to show that mg , (z,z) con-

verges to my (z,z) uniformly on compact subsets of X as 7 — 0. Recall that

My (z,k) = Jod(0) f (558) u (6,1 - F (££)) db
f ¢ (0) f (=2)do
For 7 > 0,
Mgr (2, k :f@f’“’ ¢ () (”"_‘Q) %g(xT ) (6,1 - F (52)) dz'do
e Jo Jxi®(0) f (552) Lg (£52) da'd6

First consider the denominator of the last expression:

| [ewr ( >d9 g(w’;w>dm,:/ipx(x,)%g <mf;x>dw,'
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Fix a compact subset Z C X. Given § > 0 and ¢ > 0, there exists some 7 > 0 such
that | ;cjdd % g (’”IT;”) dz' > 1 — €. Since p, is continuous on X, it is uniformly continuous
on Z; hence given n > 0, there exists some 6 () > 0 not depending on z’ such that

pe (") € (py (2') — 1,0, (2') + 1) whenever " € (2' — 6 (n),z" + J (n)). Therefore, given

e > 0, there exists some 7 > 0 such that

/_
/ Dy (a:/) lg (:E :C) dz'
Xt T T

z+4(e) r_ z+6(¢) I
€ (/ Dy (:v') lg <w w) d:c',/ Py (:c') lg (m m) dz’ + e sup p (x'))
z—8(e) 7 T z—0(¢) T T

and

Together these imply that

/ pa (o) lg (m, — x) dz’' € (1 —¢€) (ps (z) — €) ,ps (x) + € (1 +suppg (7)),
i

T

and therefore [y, p; (z') 1g (x/_’”) dz' is within € (1 + suppy (z)) of py (z) regardless of z,

T

as needed.

The argument for the numerator is the same except that p, (z) is replaced by

U (z; 2) =/®¢(0)f (x’;0>u (0,1—1«’(‘”;9)) do.

All that is needed is to verify that U (z; z) is bounded and continuous in z’. Boundedness

is immediate from the boundedness of « (-) and p; (-).

Let A and B € R be upper bounds on f(-) and ¢(:) respectively. Given £ > 0, there
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exists some compact subset © (¢) C © such that

U(z'z) €

(/@(E)sb(e)f (x';9>u<9,1—F <m;9>> o eav
/@(5)05(0)1” (w’a—9>u (9,1_F (x;())) d9+€AV)

for all z and z’. Let d be the number of discontinuities of f on © (g), which is finite. Since

f is bounded, it is uniformly continuous on © (¢) wherever it is continuous. Accordingly,

g

let & (¢) be such that |f (#) —f (““—_‘9> | < & whenever |x-'a‘—q - 1”%:2| < d(e) and “”IU_G

lies at a distance of at least § (¢) from any discontinuity of f. Then changing z’ by at most

g

§ (&) changes f@(a) 6(0) f (’”'”0> u (0,1~ F (%=2)) df by at most €V +2d6 (¢) ABV, which

can be made arbitrarily small, as needed.

The argument for the second statement is similar, except that % f ($';0> takes on the

role of —}g (Il_r). O

T
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Chapter 2

Robust Conventions and the

Structure of Social Networks

2.1 Introduction

In large population coordination games, social conventions are often thought to provide
common expectations of behavior, thereby allowing coordination on a particular equilib-
rium. A fundamental problem in the literature on conventions has been to understand
which properties lead to the selection of a particular convention in the presence of multiple
equilibria. Unique outcomes generally emerge in the long-run under evolutionary dynam-
ics in which agents play myopic best responses except for a small probability of mutation.
These outcomes are called stochastically stable. The basic question posed in this paper is
the following: how robust is the stochastically stable equilibrium selection to changes in
mutation rates?

Foster and Young (1990) and Kandori, Mailath and Rob (1993) introduced the criterion
of stochastic stability, and showed that when players are randomly matched to play a 2 x 2
coordination game, coordination on the risk dominant action is the unique stochastically
stable outcome. Bergin and Lipman (1996) criticize this approach on the grounds that

the results are sensitive to the formulation of mutation rates that are freely chosen by the
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modeller. They show, in particular, that any equilibrium of the dynamic process without
mutations is selected for some specification of mutation probabilities. When the matching
process selects from neighbors in a social network, the risk dominance prediction holds for
the specific formulations of mutation rates that have appeared in the literature, regardless
of the structure of the network (Peski (2004), Young (1998)). However, the robustness of
this prediction as the mutation rates vary depends heavily on this structure. The main
results of this paper provide sufficient conditions on the structure of the interaction network
to guarantee robustness.

First we consider a fixed population interacting on a given network. The risk dominance
prediction is found to be robust when all players interact with roughly the same number
of other players, and there do not exist small, highly cohesive clusters in the network. If
there exist some players who interact with many others, then it is possible that mutation
by these players alone could influence enough of the population to move away from the risk
dominant action to a different equilibrium. If the number of required mutations is small,
then the risk dominant equilibrium will tend not to be robust. Similarly, if there exists a
small, highly cohesive set of players in the network, then mutation by these players alone
suffices to move away from the equilibrium coordinated on the risk dominant action.

In general, a sufficiently large bias in mutation probabilities always suffices to overturn
the risk dominance prediction in a population of a given size. However, as the size of the
population grows, there exist networks for which this prediction is robust to arbitrarily large
mutation biases. As in the case of a fixed population, the nonexistence of a finite highly-
cohesive cluster in the network is a necessary condition for the risk dominance prediction
to be robust. When the risk dominant action spreads contagiously in the network, this
nonexistence condition is also sufficient. Intuitively, contagion makes it possible to reach
coordination on the risk dominant action from any initial strategy profile with a relatively
small number of mutations. As the size of the population grows, a much larger number
of mutations is required to move away from this coordinated equilibrium. When mutation

probabilities are small, this implies that transitions to the risk dominant equilibrium occur
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much more frequently than transitions away from it, regardless of the specification of
mutation rates.

Ellison (1993) argues that when mutation probabilities are small, the expected time
to convergence to a stochastically stable outcome may be unreasonably long for practical
applications. Furthermore, he demonstrates that the stucture of the interaction network
has a strong influence on the speed of convergence. Intuitively, fast convergence occurs if
“not many” simultaneous mutations are required for best response dynamics to lead play
to the predicted outcome from any initial strategy profile. It may therefore be tempt-
ing to believe that the structural properties generating fast convergence should coincide
with those leading to robustness to varying mutation rates. Section 2.7 presents examples
demonstrating that this intuition is false: neither of these properties is sufficient to guaran-
tee the other. This suggests that in order to evaluate the relevance of stochastically stable
outcomes in a particular game, it is necessary to examine both the speed of convergence

and the robustness to varying mutation rates.

2.2 Literature review

The model studied in this paper is based on that of Kandori et al. (1993) (henceforth KMR),
in which a large population of agents are matched in each of an infinite sequence of periods
to play a 2 x 2 coordination game. Matches are drawn according to a uniform distribution
over the entire population. Each player chooses a best response to the distribution of
actions in the preceding period, except for a small probability of mutation, in which the
action is chosen randomly according to a uniform distribution. Mutation probabilities are
independent across players and periods, and constant across players and strategy profiles.
If there is a strictly risk dominant action, A, in the 2 x 2 game, KMR show that as the
mutation probabilities tend to zero, the probability that the population will be coordinated
on A in a given period tends to one in the long-run. In other words, coordination on A is

the unique stochastically stable state.
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Young (1998) and Peski (2004) consider variants of the KMR model in which each player
is matched according to a uniform distribution over a particular subset of the population,
namely that player’s neighbors in a fixed social network. Under the uniform mutation
rates considered by Peski and the payoff-dependent mutation rates used by Young, the risk
dominance result continues to hold subject to mild regularity conditions. Goyal and Vega-
Redondo (2005) and Hojman and Szeidl (2006) find similar results when players interact
in endogenously formed networks as long as the cost of forming links is small.

A more general model of evolutionary processes is employed by Bergin and Lipman
(1996), who show that any distribution over states that is stable in the process without
mutations can be obtained as the (unique) long-run distribution as mutation probabilities
tend to zero for some specification of mutation rates. Blume (2003) addresses this critique
of stochastic stability results by considering a class of payoff-dependent mutation proba-
bilities, and identifying conditions on these probabilities under which the usual results are
preserved.

Lee, Szeidl and Valentinyi (2003) study the robustness of the risk dominance prediction
to varying mutation rates when players lie on a 2-dimensional torus, and each interacts
with her four nearest neighbors. They show that, for given mutation rates, as the size
of the torus grows large, the risk dominant equilibrium will eventually be stochastically
stable. In contrast, with the general interaction structures considered here, the analogous

result need not hold.

2.3 The model

A population of IV agents forms the nodes of a (social) network I' = (V, L), where V is the

set of nodes, and L is a set of unordered pairs of distinct clements of V. The clements of
L are called the links of the network, and nodes i,5 € V are said to be neighbors in T" if
{i,7} € L. We will say that ¢ interacts with j if i and j are neighbors in I. Note that the

neighbor relation is symmetric, so that ¢ interacts with j whenever j interacts with 4.
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Each agent plays one of two actions, A or B. Payoffs from each interaction are given

by a function u (-,-) corresponding to the matrix

A B
A |a,a | ¢, d
d,e | bb

The 2 x 2 game with these payoffs will be referred to as the underlying game,

The following restrictions are imposed on the payofls:
1. (A, A) and (B, B) are Nash equilibria; that is, a > d and b > c.
2. A is strictly risk dominant; that is, a + ¢ > b+ d.

The first of these conditions ensures that the equilibrium selection problem is nontrivial.
The case that has received the most attention in the literature is when the risk dominant
and payoff dominant equilibria differ; under the best response dynamics considered here,
however, payoff dominance plays no role, so it is not necessary to identify the payoff dom-
inant equilibrium. As will become clear below, the analysis is trivial when risk dominance
is not strict (i.e. when a + ¢ = b+ d), and the choice of A as the strictly risk dominant
action is therefore without loss of generality.

Player i’s payoff U; (s;, s—;) from playing s; when the remaining agents play the profile
s_; is given by adding the payoffs « (s;, s;) over all neighbors j of ¢. Formally, payoffs are
given by

Ui(Si,S_i)Z Z U(SZ‘,S]').

{i,j}eL
In order to distinguish it from the underlying game, the N player game with these payoffs
will be referred to as the population game. Assume for simplicity that each agent’s best re-
sponse correspondence is single-valued. In other words, letting §(¢) = # {j € V|{i,j} € L},
assume that a%é(i) is not an integer for any i.

In the unperturbed best response dynamics, the population game is played over infinitely
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many periods ¢ = 0,1,.... Starting from some strategy profile in period 0, in each period
t > 1, each player updates her action with independent probability 7 € (0, 1), and otherwise
plays the same action as in period t—1. When updating, players myopically choose the best
response to the strategy profile played in the preceding period. The reason for introducing
randomness into the updating process is technical: it guarantees that the stable states of
the unperturbed process are precisely the Nash equilibria of the game. This is formalized
in Lemma 2.1.

Note that action A is a best response for player ¢ in the population game if and only if
the fraction of her neighbors choosing action A is at least

b—c

pza—d—kb—c'

Therefore, for any initial strategy profile, the unperturbed dynamics depend only on the
values of 7 and p.

The perturbed best response dynamics agree with the unperturbed dynamics except that
players may “mutate” by switching to an action that is not a best response. Fix a > 0 and
¢ € (0,1). In each period in which a given player ¢ is called upon to update her strategy,
¢ mutates to B with probability e if A is the best response to the strategy profile of the
previous period, and mutates to A with probability € if B is the best response. In both
cases, player ¢ plays her best response otherwise. Note that ¢ and « depend neither on the
player nor the state. Random draws are independent across players and time.

The parameter o captures the bias in mutations toward action A. When « is small,
players are much more likely to mutate to action B when A is a best response than they are
to mutate to A when B is a best response. If mutations are interpreted as experimentation
by boundedly rational players, such a bias may result, for example, from a tendency to try
to attain the payoff-dominant outcome. As usual in models of this type, only the orders
of magnitude of the mutation probabilities are relevant in determining the stochastically

stable outcomes. If the probability ¢* were to be replaced by ae in the above formulation,
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then o may affect the stationary distribution over outcomes, but not the set of stochastically
stable states.

Both the unperturbed and the perturbed best response dynamics define finite Markov
chains whose states are the strategy profiles of the population game. Recall that two states
o,0' are said to communicate in a Markov chain if, beginning from o, there is a positive
probability that o’ will occur within a finite number of periods, and vice versa. A recurrent
class is a set of states within which each pair of states communicate, and from which no
other state occurs with positive probability in finite time. A Markov chain is irreducible if
the entire state space forms a recurrent class; otherwise, it is reducible. A finite Markov
chain possesses a unique stationary distribution if and only if it is irreducible (see, e.g.,
Young (1998)).

Whereas the unperturbed best response dynamics form a reducible Markov chain, the
Markov chain defined by the perturbed dynamics is irreducible. For each ¢ and «, let

&% (-} denote the stationary distribution of the perturbed process.
Definition 2.1. Given «, the state o is stochastically stable if lim._,o u>*(c) > 0.

The main question to be addressed here concerns the extent to which, depending on
the structure of the interaction network, mutations must be biased in favor of action B
in order to overturn the risk dominance prediction. Accordingly, define the mutation

robustness threshold @ to be

@ := inf {a | 04 is stochastically stable},

where 04 denotes the state in which all players play action A. If a < @, then the stochasti-
cally stable states may contain the equilibrium o5 coordinated on B, or may contain only
coexistent conventions, equilibria in which the population is not coordinated on a single

action.
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2.4 Ellison’s radius and coradius

This section introduces some Markov chain terminology and describes Ellison’s radius-
coradius method (Ellison 2000), which will be used to compute bounds on the threshold
value @. The reader who is familiar with this material may wish to jump ahead to the next

section.

Fix o > 0, and let P.(o,0') denote the transition probability from o to ¢’ in the Markov
chain describing the perturbed dynamics. For any states o,o¢’, define the transition cost
¢(o,0') to be the unique real number satisfying

P.(o,0'
lim Fe0:7)

lim — ey € (0, 00).

Note that since best response updating is random, there may be different ways to transition
from o to ¢’ in a single period depending on which players update and which mutate.
The cost ¢(o,0') is the minimum value of the sum n4 + anp over all such single-period
transitions, where n,4 is the number of mutations required from B to A, and np is the
number required from A to B.

A path from o to o is a finite sequence (0g,01,...,0,) of distinct states such that
o9 = o and g, = ¢'. Let II(o,0’) denote the set of all such paths. Define the cost ¢(7) of

the path & = (0g,01,...,0,) to be
(@) = c(oo,01) + c(o1,02) + -+ - + c(On-1,0%).

Paths that minimize the transition cost between states play a special role in identifying
the stochastically stable states, as these are the transitions that occur most frequently in
the limit as mutation probabilities vanish. Accordingly, for each pair of states o,¢’, define
the minimal cost m(o,0') by

m(o,0') = EEIrlil(i(rncf’) c(7).
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Let {2 be a union of recurrent classes of the unperturbed dynamics. The basin of attraction
B(2) of 2 is the set of states from which some state in  is almost surely reached in finite
time under the unperturbed dynamics. Equivalently, B(Q2) consists of those states from
which there exists a zero-cost path to some state in 2, but there exists no such path to
any recurrent class not in €.

Ellison (2000) defines the radius R() of the basin of attraction of Q by

— : '
R(2): gen,rglgnB(Q)m(o,a ).

Thus the radius R(€2) is the lowest cost associated with any transition that does not almost
surely return to (2 under the unperturbed dynamics. Similarly, the coradius C(Q) of the
basin of attraction of  is defined by

C(Q):= max m(d,0).
o' ¢B(Q),0€Q

Thus, starting from any initial state, the coradius of Q is the greatest cost that could be
necessary in order to reach €. Ellison shows that if R(2) > C(Q) then Q contains the
set of stochastically stable states. Intuitively, when this is the case, transitions to £ occur
more frequently than transitions away from it, so as the mutation probabilities approach
zero, much more time is spent at states in {2 than at any other state.

Since the radius-coradius condition is sufficient but not necessary, it can be used to
identify upper bounds on the threshold @ by taking @ = {o4}. If, for some 8, R({ca}) >
C({oa}) whenever a > (3, then we have @ < . Similarly, by taking Q to be the union
over all recurrent classes except {04}, then we obtain a lower bound on @ by identifying

B such that R(Q) > C(§) whenever o < 3.
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2.5 Fixed populations

Given a fixed network, it is possible to derive bounds on the mutation robustness threshold
@ based on the network structure and the value of the payoff parameter p. Since both
of the methods described in the previous section involve transition costs among recurrent

classes of the unperturbed dynamics, we begin by identifying these classes.

Lemma 2.1. The recurrent classes of the unperturbed best response dynamics are precisely

the singleton sets containing the Nash equilibria of the population game.

Proof. Clearly each Nash equilibrium forms a recurrent class.

For the converse, we must show that, beginning from any state op, a Nash equilibrium
will be reached with positive probability in finite time. It suffices to construct a finite
sequence of states g, 01,..., 0, such that for each k = 1,...,m, o differs from o;_; only
through best response updating by a single player. Without loss of generality, suppose that
action A is a best response for some player who plays action B under ¢oy. Choose any such
player i, and define o; to be equal to oy except that player i plays action A. Repeat this
step until a state o, is reached at which no such player remains. Now repeat this process
beginning from o,, except with actions A and B reversed.

I claim that the final state o,, attained under this process is a Nash equilibrium.
Suppose for contradiction that player ¢ plays an action o%, that is not a best response
under oy,. It is clear by construction that ¢%, = B and player 4’s best response under o,
is A. Since the number of 7’s neighbors playing action A is nonincreasing along the path
Ory--.,0m, A must also be a best response for player ¢ under each o for k = r,...,m.

Therefore, player ¢ must choose action B under o, contradicting the construction of o,.

a

Peski (2004) considers the special case of the present model in which a = 1. He shows
that the state o4 is stochastically stable regardless of the structure of the network, which,

in our terminology, immediately implies the upper bound @ < 1 on the mutation robustness
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Figure 2.1: §~cohesive and %-cohesive sets of nodes in a finite lattice.

threshold. To obtain tighter bounds, some definitions are required concerning structural

properties of networks.

Definition 2.2. The degree §(:) of node i is the number #{j € V| {i,j} € L} of its
netghbors in the network.

Let Omin = mingey 0(7) and dpmax = max;ey 6(¢).

Definition 2.3. Givenr € (0,1}, a subset S of the set of nodes V' of the network I' = (V, L)

is r-cohesive in I' if for every i € S,

4 eS| iy ey >r#{ieV | {ij} €L}

In words, each node in S has a fraction of at least v of its neighbors in S.

Figure 4 exhibits two sets of r-cohesive nodes in a finite lattice. For each set, the given
value of r is the largest for which the set is r-cohesive.

The cohesiveness of scts of nodes in the network is directly related to the best response
dynamics of the interaction game. If 7 lies in a p-cohesive set of nodes S, then A is a best
response for ¢ whenever all other players in S play A. Similarly, if S is (1 — p)-cohesive,

then B is a best response for ¢ whenever all other players in S play B. Identifying each
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strategy profile with the set S of agents playing A, S is a Nash equilibrium if and only if
it is p-cohesive and its complement V' \ S in V' is (1 — p)-cohesive.

Consider the (1 — p)-cohesive sets in I'. These are partially ordered by inclusion and
include the sets § and V. A chain of (1 — p)-cohesive sets of length [ is an increasing
sequence of [ + 1 distinct sets Vo C V4 € -+ C V;. Such a chain is mazimal if Vp = 0,
V; =V, and for each k = 1,...,, there does not exist any (1 — p)-cohesive set U such that

Vi-1 CU C V.

Lemma 2.2. When « = 1, the coradius of the basin of attraction of oa is at most the

length | of the shortest mazimal chain of (1 — p)-cohesive sets.

Proof. Let op denote the state in which all players choose action B, and identify each
state with the set of agents choosing action B. Thus, in particular, 04 = 0 and op = V.
First we show that C(04) = m(op,04). For each state o let B(o) denote the set of
agents for which B is a best response to ¢ in the population game. Given any path

o = (00,...,0k) € [I(0B,04), define the set

Ma(@) :={veV|3je{l,...,k} such that v € 0,1 \ 0; and v € B(o;_1)}.

Thus the set M4(7) consists of all nodes that mutate to action A at some point along the
path (7).

I claim that for any state o, there exists a zero-cost path from o \ M4 (%) to o4; that
is, beginning from o, if all agents in M 4(7) switch to (or remain at) action A, then it is
possible to reach o4 through best responses alone. If not, then let § < k be the largest
index for which there exists a state o’ C (o, \ M4(7)) such that m(o \ Ma(7),0’) = 0.
Then there is some v € o' \ 0,1 for which v € B(¢'). Since ¢/ C o, v € B(o') implies
that v € B(o;), and hence v € M4(7), contradicting that v € ¢’ and ¢’ N Ma(7) = 0.

The claim implies that, for any state o and any path & € II(og,04), the minimal cost

m(o,04) is at most |[M4(F)|. If 7 is a cost-minimizing path from op to o4, then it cannot
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involve any mutations to action B. Thus we have
m(op,04) = |[Ma()| = méxxm(a, oga),

and therefore, C(04) = m(op,04).

Let =V, C Vi C-+- CV, =V be a shortest maximal chain of (1 — p)-cohesive sets.
For i € {1,...,1}, consider the initial state oy = V; in which precisely the agents in V;
choose action B. Suppose some agent vy € V; \ V;_1 mutates to action A, so that the state
becomes o1 = V; \ {vo}. If Vi \ {vo} # Vi—1, then V; \ {vo} cannot be (1 — p)-cohesive by
the maximality of the chain Vy C --+ C V}. Since V;_; is (1 — p)-cohesive, there must exist
some v; € (V;\ {vo}) \ Vi1 such that v; ¢ B(V;\ {vo}). Repeating this argument with

o9 = V; \ {vo,v1} in place of V; \ {vo}, and continuing recursively in this fashion gives rise

to a path @ = (09,01,...,0%) of states such that op = V;_; and ¢(7) = 1. Connecting
these paths in sequence over all 1 € {1,...,l} gives a path in [I(0p,04) having cost [, as
needed. d

Definition 2.4. An r-cohesive set of nodes S is a minimal r-cohesive set if it contains no

nonempty r-cohesive proper subsel,

Theorem 2.1. Let k be the size of the smallest nonempty (1 — p)-cohesive set whose com-
plement in V is p-cohesive (or empty), and let K be the size of the largest minimal (1 — p)-

cohesive set in V. We have the following upper bound:

(5max + 6rnin -2 l,pdminJ) (N - K+ 1)

o<
= (5min -2 \_p(sminJ) k

Proof. Let R and C respectively denote the radius and coradius of 04 when o = 1. For
general o, the coradius of o4 is the same, whereas its radius is equal to aR. The state
o4 is therefore stochastically stable if aR > C, indicating that the ratio % is an upper

bound on the threshold @. The proof proceeds in two steps. The first is to demonstrate

that R > Jmai’f‘;g;iig’[‘;gi —7k. Showing that ' < N — K + 1 then gives the result.
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Suppose that the initial state is o4. If the radius is R, then there exists a set Sy of R
agents and a sequence iy, ..., i,, of agents such that B is a best response for i; if every agent
in So U {é1,...,9,—1} chooses B (that is, if a fraction of at least (1 — p) of 4,’s neighbors lie
in Sy U {41,...,%-1}), and there is a coexistent convention in which at least one agent in
So U {i1,...,%, } chooses B.

Recall that any coexistent convention corresponds to a partition of the nodes into a
p-cohesive set and a (1 — p)-cohesive set. Let Sp denote the set of agents who play B in
the final equilibrium. Note that we may restrict ourselves to the subgraph containing only
those links involving at least one node in Sg. Let dg (Sp) be the sum of the degrees of the
R nodes in this subgraph having the largest degrees. That is, denoting the subgraph by

I'(Sp), and the degree of node j in T' (Sg) by dp(s,) (j), define

R
Or (Sp) = max 5 )
n(58) {jl,---,ja}%:l I'(Sg) (70

In order for the sequential best response condition mentioned above to hold, it must be
the case that for each ¢;, the number of edges connecting 7; to nodes in Sy U {¢1,...,5,_1} is

at least [(1 —p)d (4;)]. After adding node iy, that leaves at most

6r (SB) = [(L =p)d (i1)] + 0 (i1) = [(L = p) d (1)) = 6r (SB) — (8 (i1) — 2 |pd (i1)))

edges to be connected to other 4;’s. Continuing recursively in this fashion, we obtain the

following inequality:
r—1
[(1—p) 6 ()] < 0r(SB) =D (8(i5) — 2[pd (i5)]).

j=1

This implies the weaker condition that
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Since 4 (4;) — 2 [pd (45)] = Omin — 2 |Pdmin| for each i;, this implies that

Rbmax 2 7 (Spmin — 2 '_p(sminJ) .

By definition of k, we must have R + r > k, which, when substituted for r in the last

expression, gives

5min -2 Lpdminj
R> k,
- 5max + 5min -2 I_pfsminJ

as desired.

For the coradius, C, note that the existence of a minimal (1 — p)-cohesive set U of size
K implies that there is a maximal chain of (1—p)-cohesivesetsd =V C Vi C---C V=V
such that V; = U. By Lemma 2.2, the coradius of o4 is at most [, which cannot exceed

N —-K +1. O

In the special case in which there are no coexistent conventions in the population game,
the structural conditions of Theorem 2.1 follow from a simpler property of the network,
namely, the existence of a small p-cohesive set. This observation is formalized in the

following result.

Corollary 2.1. Suppose that there are no coexistent conventions in the population game.

If the network T’ contains a p-cohesive set of size m, then we have the bound

(5max + 5min -2 Lp(sminJ) (m - 1)

a <
- (5min -2 Lpéminj) N

Proof. If we show that in the absence of any coexistent convention, the existence of a p-
cohesive group S of size m implies the existence of a minimal (1 — p)-cohesive group of
size at least N — m + 2, then we are done. To sec this, it suffices to show that there is
no (1 — p)-cohesive group of nodes containing at most one element of S. Note first that
since S is p-cohesive, any set S’ of nodes containing exactly one element of S cannot be

(1 — p)-cohesive since the node in both sets cannot have enough neighbors in S’. Thus we
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Figure 2.2: Nearest neighbor interaction on the circle.

need only consider sets S’ disjoint from S.

Suppose for contradiction that S’ is a (1 — p)-cohesive set disjoint from S. Now apply
the following recursive procedure to the remaining nodes in V'\ (S U 5"): (i) take all nodes
having a fraction of at least (1 — p) of their neighbors in S’ and assign them to S'; (ii)
repeat step (i) until there are no more such nodes, and assign all remaining nodes to the
set S. I claim that the resulting partition of the nodes describes a coexistent convention.
By abuse of notation, let S and S’ denote the resulting sets after all other nodes have been
assigned, so that SU S’ = V. It is clear by construction that S’ is (1 — p)-cohesive, and
that each element of S has a fraction of at most (1 — p) of its neighbors in S’. But then
since S U S’ =V, each element of S must have a fraction of at least p of its neighbors in

S, proving the claim. O

The p-cohesiveness condition of the corollary may be interpreted as the existence of a
small clique. In a regular network that does not support any coexistent convention for the
given value of p, the existence of a single clique that is small relative to the size of the
population is sufficient to guarantee the robustness of the risk dominance prediction. The
regularity assumption precludes the existence of a leader who, by single-handedly changing
her action, could affect the incentives of a large number of players.

For the given structural properties, Theorem 2.1 is tight, as the following example

demonstrates.

Example 2.2 (Nearest-neighbor interaction on the circle). An even number, N, of
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players lie at distinct points on a circle. Each agent interacts with the immediate neighbors
lying to each side (see Figure 2). Formally, let {1,...,N} be the set of agents. The nodes i
and § are neighbors in the network if and only if i —j = £1 (mod N). For any p € (0, %),
it suffices for one agent to choose action A in order for A to be a best response for both
of her neighbors. Therefore, there are no coezxistent conventions in the population game,
as any such convention must involve at least two neighboring agents who play different
actions. In order to apply Corollary 2.1, note that the set {1,2} is p-cohesive, so we may
take m = 2. Further, we have dmax = Omin = 2, and |pdmin| = 0. Corollary 2.1 therefore

gives the bound
a< 2.

- N
As N grows large, the threshold @ tends to zero. The risk-dominance prediction is therefore
strongly robust for this network when the population is large.

To check that this bound is tight, we may compute the precise value of the threshold
@. Since there are only two recurrent classes, o4 and og, Ellison’s radius-coradius method
provides both necessary and sufficient conditions for stochastic stability whenever the in-
equality R(c) > C(o) is strict. Note that, beginning from op, it suffices for a single agent
to mutate to action A in order for there to exist a zero-cost path to o4. Thus we have
C(oa) =r(oB,04) = 1. To compute the radius of o4, note that if two neighboring players
choose action A, then A will be o best response for both no matter what actions the other
players take. Thus any path from o4 to op must involve a mutation to action B by at least
one from every pair of neighboring agents, which implies that R(c4) > %a. Conversely,
there exists a zero-cost path to op from the state o in which precisely the even-numbered
players choose action A. Since o can be reached from o4 by % mutations to action B,
we have R(os) = Ya. Combining these results, o is stochastically stable precisely when

%a > 1, and therefore

_ 2
o = —
N’

demonstrating that the bound of Theorem 2.1 is tight.

70



The preceding upper bounds exploit Ellison’s radius-coradius theorem to identify con-
ditions under which coordination on the risk dominant action is stochastically stable. Ap-
plying the same theorem to the collection of all recurrent classes except for o4 gives rise

to a lower bound.

Theorem 2.3. Suppose that there exists a (1 — p)-cohesive set of size v in I'. Then the

we have the lower bound @ > 7‘~1~_1

Proof. Let € be the set of all Nash equilibria of the population game except for o4. Be-
ginning from any state outside of €2, either there exists a zero-cost path to some state in
Q, or there exists a zero-cost path to g4. Thus for computing the radius and coradius of
Q it suffices to consider paths to and from o 4.

Let S be a (1 — p)-cohesive set of size r, and let o denote the state in which all agents
in S play action B, and all other agents play action A. Let o’ be identical to o except
that one of the agents z in S plays A. Since S is (1 — p)-cohesive, B is the best response
for x to the profile ¢’. Hence we have c¢(o’,0) = 0, and m(o4,0) < a(r — 1). In order to
reach o4 from o, at least one agent in S must mutate to action A. Therefore, ¢ lies in the
basin of attraction of {2, and we have C(Q2) < a(r — 1). Since 04 cannot be reached from
any state in {) without at least one mutation to action A, the radius R(f2) is at least one.
Therefore, the condition R(Q2) > C(2) holds whenever 1 > a(r — 1), in which case every

stochastically stable state lies in €). O

The lower bound of Theorem 2.3 is also tight. In the trivial example of two interacting
agents, the unperturbed dynamics are symmetric with respect to the two actions. The state
op is therefore the unique stochastically stable state whenever o < 1, and the threshold &

is equal to one.
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2.6 Large population games

One difficulty in interpreting the preceding finite network results is that, without a com-
pelling justification for any particular mutation probabilities, the question of how small the
value of the threshold @ must be in order to accept the risk dominance prediction remains
open. In general, this value is bounded below by the reciprocal of the population size.
Thus it is natural to consider conditions under which @ approaches zero as the population
grows large, ensuring that coordination on A is stochastically stable for a wide range of
mutation probabilities.

Consider a network I' = (V, L) on a countably infinite set of nodes V. Assume that
there is a uniform upper bound A € N on the number of neighbors of any node; that is,

assume that for alli € V,

#{ieVI|{ijtel} <A

The approach taken here to understand stochastic stability in large population games will
be to consider a increasing sequences of finite networks that approach the infinite network
in the limit. Such a sequence may be obtained from a labelling of the set of nodes V, that
is, from a bijection ¢ : N — V. Given any labelling ¢, define for each n € N the subnetwork
I',(n) of I whose nodes are given by the set V,(n) :=¢({1,...,n}), and whose links L,(n)

consist of all links in L between any two nodes in V,(n); thus

Ly(n) = {{i,j} € L1 ({i,5}) C {1,...,n}}.

Fixing the payoffs in the underlying 2 x 2 game, define for each n € N the mutation

robustness threshold @, (n) to be the value of @ for the network I'(n).

Definition 2.5. Mutation robustness holds in the infinite network I' = (V,L) if there

exists a labelling v of V' such that limy,, o @, (n) = 0.

If mutation robustness holds, then the range of mutation probabilities giving rise to o 4

as a stochastically stable outcome can be made arbitrarily large by taking a sufficiently
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large population. Note that the set of limit points of the sequence @, (n) depends in general
on the choice of labelling «. For example, it is always possible to choose a labelling such
that, for each n, the network I'(n) contains at least one isolated node that has no neighbors.
In this case, since such an isolated node forms a (1 — p)-cohesive set of size 1, it follows
from Theorem 2.3 that @,(n) = 1 for all n.

Morris (2000) characterizes conditions under which the risk dominant action spreads
contagiously in a similar model, which differs only in that the dynamics are deterministic:
in each period, every player chooses a best response to the strategy profile of the previous
period. Contagion occurs in the infinite network I' if, starting from some initial strategy
profile in which only a finite number of agents play action A, every member of the popula-
tion plays A in the limit as time tends to infinity. Morris shows in particular that contagion
occurs in I if and only if there exists a labelling ¢ of the nodes of I' such that for some
sufficiently large N € N, A is a best response for «(n) whenever each node ¢(1),...,t(n—1)
plays A and n > N.

Although we have not defined analogues of Ellison’s radius and coradius for games
played on infinite networks, the occurrence of contagion corresponds intuitively to the
coradius of o4 being finite. Thus mutation robustness should hold as long as the radius
of 04 is infinite. Morris (2000) shows that it is impossible for action B to spread to an
infinite set of agents from an initial strategy profile in which only a finite set of agents
play B, suggesting that mutation robustness should hold as long as there is no coexistent
convention in which a finite set of agents plays B. This intuition is formalized in the

following theorem.

Theorem 2.4. If there exists a finite (1 — p)-cohesive set of nodes in ' then mutation
robustness does not hold. Conversely, if contagion occurs in I' and there does not exist a

(1 — p)-cohesive set of nodes, then mutation robustness holds.

Proof. For the first part, let S be a (1 — p)-cohesive set of nodes in I' of finite size m. It

suffices to note that given any labelling ¢, there exists some N such that + assigns a label
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of at most N to every node in S. By Theorem 2.3, @,(n) > % foralln > N.

For the converse, first consider, for each n, the coradius of ¢4 in the game played on
the network I',(n). Since contagion occurs, there exists some labelling ¢ for which there
is some absolute bound M¢cpg and some sufficiently large N such that whenever n > N,
this coradius is at most Mcg. To prove this, choose a finite set S of nodes from which,
if all of these choose A, best response dynamics lead to all agents choosing A. Consider
best response dynamics where, in period 0, only members of S choose action A. For each
node v, there is some earliest period k (v) after which A is always a best response for v
as the best response dynamics are iterated. The desired labelling is any for which k o ¢
is nondecreasing (that is, the lowest labels are assigned to the nodes that switch to A
earliest). Let Mcgr = |S|. It is clear by construction that, beginning from g, mutation of
all M¢cg nodes in S is sufficient to lead to o 4.

All that remains is to show that for some labelling ¢ satisfying the requirement of the
preceding paragraph, the radius of o4 in I',(n) tends to infinity as n grows large. Note
that any (1 — p)-cohesive group in I', (n) must contain some member of S by the way in
which the labelling ¢ was chosen. Recall that the degrees of the nodes of I are uniformly
bounded by some number A. For each n, and each d € N, let g% (n) € N be the smallest
number for which all nodes within distance d of any node in ¢ ({1, ...,n}) are in T, (g% (n)).

Suppose that the radius of o4 in I', (n) does not tend to infinity with n. Then there
exists some Mp € N such that for each IV, there exists some n > N for which the radius
of 04 in T, (n) is at most Mp. I claim that there exists a number K, depending only on p
and A, such that beginning from o4, any number m of mutations to B can lead, through
best response dynamics, to at most Km players choosing B. Assuming for now that the
claim is true, let N = g®Mr+1(|S]). For some n > N, there exists a (1 — p)-cohesive
set S1..p in ', (n) of size at most K Mg, for otherwise the radius of 04 would be greater
than Mg for all n > N. As noted above, this set S;_, must contain some element of S.
Since we may assume without loss of generality that this set is connected (otherwise take

some component), it follows that every node in Si., lies within distance K Mg of some
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member of S, and therefore that every neighbor of every node in Si_ lies in I, (n). But
then S;_, is (1 — p)-cohesive in I, contradicting the assumption that I' contains no finite
(1 — p)-cohesive group.

All that remains is to prove the claim of the preceding paragraph. Accordingly, let S1_,,
be any (finite) (1 — p)-cohesive group of size M in an arbitrary network 2, and suppose
that m mutations suffice for the members of S;_, to switch to playing B. Then there
exists a labelling s : {1,..., M} —» S1_, such that for each n > m, a fraction of at least
(1 — p) of x (n)’s neighbors in Q lie in the set {1,....,n —1}. For each | = 1,..., M, let §; be
the degree of  (I). For each ! > m, there must be at least (1 — p) §; links connecting & (I)
to nodes with smaller labels, and hence at most pd; links connecting & (I) to nodes with

higher labels. Thus we have

m M M
Z5z+p Z 8> (1-p) Z Ok
=1

Assuming a uniform upper bound of A on the degrees of the nodes in , this implies that

M
mA > (1 —2p) Z Ok
k=m-+1

Assuming that € contains no solitary nodes, so that §; > 1 for all k, this gives

and therefore,

(1—2p)
m> ———————M.,
T A+ (1-2p)
Taking K = 5\‘%—1—(;12;],2%) therefore gives the desired result. O

In a similar model, Lee et al. (2003) consider the interaction structure formed by a
2-dimensional torus, and find that an analogue of mutation robustness holds for all values

of p, that is, given any model of the mutation probabilities, the risk dominant equilibrium
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is stochastically stable when the population on the torus is sufficiently large. As they
explain, this result is driven by the existence of small p-cohesive sets of nodes that cover
the entire network combined with a stochastic form of contagion. Significantly, however,
the result depends on the fact that, for each p € (0, %), the size of the smallest (1 — p)-
cohesive set of nodes on the torus grows without bound as the size of the network grows
large. On the other hand, the stochastic contagion underlying their robustness result is a
weaker property than the deterministic contagion of Theorem 2.4, suggesting that it may
be possible to generalize this result.

In networks possessing enough symmetry, contagion cannot occur if there exists a finite
(1 — p) cohesive set of nodes. To be precise about the relevant notion of symmetry, we

require the following definition:

Definition 2.6. an automorphism ¢ of T is a bijection ¢ : V — V such that x and y are

neighbors in I" if and only if ¢(z) and P(y) are neighbors in T.

Thus an automorphism of a network is a permutation of its nodes that preserves the link

structure, and each nontrivial automorphism corresponds to a symmetry of the network.

Proposition 2.1. Suppose that for each x € V there exist infinitely many y € V such that
there is some automorphism ¢ of ' satisfying ¢(xz) = y. Then contagion cannot occur if

there exists a finite (1 — p)-cohesive set in T.

Proof. Suppose that contagion occurs in I', and that there exists a finite (1 —p)-cohesive set
of nodes C'. Then there exists a finite set of nodes S whose complement does not contain
a (1 — p)-cohesive set (see Morris (2000)). Let d¢ be the diameter of the set C; that is, d¢
is the greatest distance between any two nodes in C. Since S is finite and the degrees of
the nodes of I' are uniformly bounded, given any d € N, there are only finitely many nodes
y for which there exists a node in S within distance d of y. Therefore there exists some y
lying at a distance strictly greater than d from all nodes of S such that y is the image of
some z € C under some automorphism ¢ of I'. By construction, the set ¢(C') is disjoint

from S, and ¢(C) is (1 — p)-cohesive since C is, contradicting the choice of S. |
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The following corollary is immediate from Theorem 2.4 and Proposition 2.1.

Corollary 2.2. Under the symmetry assumption of Proposition 2.1, the occurrence of

contagion is a sufficient condition for mutation robustness.

2.7 Waiting times

Ellison (1993) argues that the relevance of stochastically stable outcomes depends on the
expected waiting time to convergence, which in turn depends on the interaction structure.
Young (1998) extends an argument due to Ellison (1993) to bound the expected waiting
time in local interaction games when each node in the network lies in a sufficiently close-
knit group. Close-knittedness is a clustering property similar to, but stronger than, the
r-cohesiveness used above. Fast convergence occurs under Young’s conditions because the
required mutations can take place in small steps, each of which is much more likely to
occur than are many simultaneous mutations.

In a more general setting, Ellison (2000) bounds the expected waiting time using only
the coradius of the set of stochastically stable states, showing that a small coradius is
sufficient to ensure fast convergence. Since a small coradius of o4 tends to favor muta-
tion robustness, one might expect fast convergence and mutation robustness to be closely
related. The examples below demonstrate that this intuition is false in general. First,
however, we must give a more precise definition of fast convergence for large networks.

Consider a sequence I' = (I'1, T2, ...) of networks such that |V (T'y/)| > |V(T'nx)| when-
ever N' > N; that is, the size of the population is strictly increasing along the sequence.
Any labelling ¢ of the nodes of an infinite network I" naturally gives rise to such a sequence

T, by taking 'y = I',(N) for all N.

Definition 2.7. Fast convergence occurs in I if there exists some T not depending on N
such that, for each N, from any initial state, the expected time until o4 is reached in Ty

s O (E"T) when o = 1.
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This definition captures the idea that, for convergence to be fast, the expected waiting
time should not grow by orders of magnitude as the network becomes large. Since best
response dynamics typically require more periods to adjust following mutations in a large
network compared to a small one, the conétant implied by the big-O will generally depend
on N. However, the order of magnitude, as measured by the exponent 7', must remain
bounded as the network grows large.

We say that fast convergence occurs in an infinite network I if there exists a labelling ¢
such that fast convergence occurs in the sequence I',. If contagion occurs in I, then there
exists a labelling ¢ and a set of nodes S of size K such that, for large enough N, any state in
which all members of S choose action A lies in the basin of attraction of o4 in the network
I',(N). In particular, fast convergence holds in I' with 7' = K since, from any initial state,
mutation of all members of S to action A is sufficient for the unperturbed dynamics to

lead to 0 4.

Example 2.5 (Nearest-neighbor interaction on the circle). In this case, mutation robust-
ness and fast convergence both hold. For each N, let Ty be the network corresponding to
nearest-neighbor interaction on a circle of size N, as in Frample 2.2. Since o4 can be
reached through the unperturbed dynamics whenever a single agent chooses action A, fast
convergence holds with T = 1. From Ezample 2.2, the threshold @ tends to zero as N grows

large.

The preceding example captures the intuition that mutation robustness and fast conver-
gence coincide if 04 can be reached from any initial state by a small number of mutations.
This coincidence, however, does not extend more generally, as the following examples

demonstrate.

Example 2.6 (Uniform interaction). In this case, fast convergence fails for any p, but
the threshold @ is small when p is small. Let 'y be the complete network on N nodes;
that is, every player interacts with every other player (see Figure 3). Ellison (1993) shows

that fast convergence fails in this network. The mutation robustness threshold, however,
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Figure 2.3: Uniform interaction.

OO
NN

Figure 2.4: Regions of size m for m = 4 (Morris, 2000).

is approzimately constant as the network grows large. Since there are only two equilibria
of the population game, the radius and coradius of o4 may be used to compute the precise
value of &@. Accordingly, we have C(o4) = [p(N —1)] and R(oa) = [(1 — p)(N —1)], and

hence
[p(N = 1)]
[(1-p)(N-1)]

Ql

In particular, the threshold @ is small for large N when the payoff parameter p is small.

Example 2.7 (Regions of size m). In this case, for some values of p, fast convergence
holds but mutation robustness fails. Consider an infinite network I' in which the nodes
correspond to elements of Z x {1,...,m}. Each node (i,5) interacts with all m — 1 other
nodes having coordinates (i,-), as well as to the two nodes (i—1,j) and (i+1,37) (see Figure
4). The sets {{i,1},...,{i,m}} are the regions of the network, within which interaction

1s uniform, and between which links are relatively rare. For each m, contagion occurs
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if and only if p < ;n—i—l If p > Fn'lﬁ7 then any two adjacent regions together form a
(1 — p)-cohesive set, so by Theorem 2.4, mutation robustness holds in T' if and only if
p < ;n% On the other hand, fast convergence holds for all p < %—.1 Intuitively, when
p > —T—n—ﬂr—l, convergence is fast because transitions to o4 can occur in many small steps
through a sequence of coexistent conventions. This rich structure of conventions, however,

also ensures that mutation robustness fails because, no matter how large the network, some

coezistent convention may be reached from o4 by only a fized number of mutations.

2.8 Discussion and conclusion

The structure of social networks has been widely studied in the sociology literature, and a
number of regularities have been empirically observed in a variety of settings (see Newman
(2003) for a survey). We may consider, then, how these properties relate to the structural
conditions described above that are relevant for mutation robustness in order to assess the
relevance of the risk dominance prediction in real-world networks when mutation prob-
abilities are unmodelled. This discussion must, however, necessarily remain vague since

definitions of observed network properties vary, and quantification is difficult in general.

o Small-world networks. A number of real-world networks have been found to have
significant local clustering, but at the same time a small global diameter relative
to certain highly structured networks; that is, the distance between any two nodes
is “small” given the size of the population. Such networks are said to possess the
small-world property. Clustering alone, if sufficiently dense, can correspond to the
existence of small highly cohesive groups of nodes, thereby placing a lower bound on

the threshold parameter @ that depends on the size of the smallest such group. In

large populations, the existence of such a group may preclude mutation robustness.

!The proof of this result relies on a strengthening, also due to Ellison, of the radius-coradius method, in
which the coradius is replaced by the (smaller) modified coradius (Ellison 2000). One can show that, for an
appropriate labelling of I", the modified coradius of o4 in I',(IV) is at most 2m regardless of N. Theorem 2
of Ellison (2000) then implies that fast convergence holds for T' = 2m. The details of the modified coradius
calculation are somewhat involved, and are omitted here.
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Furthermore, Morris (2000) provides sufficient conditions for contagion that include
“low neighbor growth,” which is inconsistent with a small diameter. Thus insofar
as contagion may contribute to mutation robustness, the small diameter property of
small-world networks also appears to be contrary to the structural properties required
for a robust risk dominance prediction, although one must be cautious here since this

is based only on sufficient conditions for mutation robustness.

Community structure. The nodes in networks sometimes form identifiable groups or
communities in such a way that the density of links is much higher within groups
than between them. As in the regions example of the preceding section, if these
communities are sufficiently strong in the sense that a sufficiently large proportion of
links in the network are within groups, then highly cohesive sets of nodes will exist,
some of which will be small relative to the size of the population if many commu-
nities exist in the network. Thus community structure may also prevent mutation

robustness from occurring.

Scale-free networks. The distribution of degrees of nodes in a purely random network,
in which there is a fixed independent probability that a link exists between any two
nodes of the network, is binomial, approaching a Poisson distribution as the popu-
lation grows large (Newman 2003). In real-world networks, the degree distribution
typically features a heavier tail than that for random networks, corresponding to a
greater number of high-degree nodes. Recall that the upper bound on the thresh-
old value @ given in Theorem 2.1 is strongest when all nodes have the same degree,
and becomes weaker as the distribution becomes more dispersed. The presence of
high degree nodes can reduce the radius of coordination on the risk dominant action,

lessening the bias in mutations necessary to overturn the stability of this equilibrium.

Tie strength. The model employed here assumes for simplicity that all links are
given equal weight in each player’s payoffs. In general, however, these weights may

differ, for example because of non-uniform probabilities of matching. The analysis
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extends naturally to this more general setting, with the role of p-cohesiveness replaced
by weighted p-cohesiveness: action A is a best response for player ¢ if the share
of weights associated with those of i’s neighbors who play action A is at least p.
Strong links, corresponding to those which are assigned higher payoff weights, tend
to exhibit greater clustering than weak links (Granovetter 1973). Weighting links
will therefore increase the likelihood that a small highly (weighted) cohesive set will
exist in the network, which again limits the size of the bias necessary to overturn the

risk dominance prediction.

To summarize, for each of the network properties that have been most prominent in
the empirical literature, none contributes to mutation robustness. This suggests the need
to be careful when modelling mutation rates in local interaction environments, as large
biases in mutation probabilities may not be necessary to alter the set of stochastically

stable outcomes.
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Chapter 3

Efficient Dynamic Coordination

with Private Learning

3.1 Introduction

Coordination problems arise in a wide variety of economic situations. A typical example is
of a setting where the successful implementation of some socially beneficial project depends
on whether enough agents participate. Such settings may lead to coordination failure, which
arises when a given group of agents fails to participate in the project despite the fact that
it is in their collective interest to do so.

The traditional theoretical analysis of coordination problems, where payoffs are typ-
ically assumed to be commonly known, has been plagued by the existence of multiple
equilibria. For a given payoff rule, there exists at least one equilibrium with coordina-
tion failure, and one without. Such analysis is unable, therefore, to quantify the extent
and relevance of coordination failure, since it is not possible to assign probabilities across
equilibria.

The recent literature on global games (Carlsson and van Damme 1993, Morris and Shin
2003) has made substantial progress in resolving the problem of multiplicity in the analysis

of coordination problems. This literature has identified an important class of coordination
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games, in which underlying payoffs are observed with small amounts of idiosyncratic noise,
where the multiplicity of equilibria is eliminated. The “refinement” thus achieved allows us
to quantify the extent of coordination failure, and indeed coordination failures do occur in
the unique equilibrium of the canonical global game. Whether coordination failure arises
depends on the payoffs of the underlying complete information game. Roughly speaking,
agents are only able to coordinate on some risky action in the unique equilibrium of a global
game if that action is risk dominant, i.e., it is optimal for each agent to choose that action
in the underlying complete information game even when there is only a “low” probability
that his fellow players will choose that action.! This can only happen if the benefits that
arise from the action conditional upon success are high relative to the cost of undertaking
it. Thus, the global games literature has negative implications for the ability of agents to
coordinate on socially beneficial actions: only projects that involve “little strategic risk”
will be implemented in equilibrium. In all other cases, coordination failure will arise.

In this paper we evaluate how the incidence of coordination failure in global games
is affected by the presence of multiple opportunities to participate between which players
privately learn about the fundamental. The canonical global game requires that all agents
choose their actions simultaneously. To what extent would the incidence of coordination
failure change if we allowed for some asynchronicity in the actions of potential participants
in a coordination problem?

To be specific, consider a setting in which the success of a socially beneficial investment
project depends on the total number of agents who invest over the course of 7' distinct
periods. Two players choose at which period (if any) to invest irreversibly, while observ-
ing noisy private signals (where the standard deviation of the noise is denoted o;) about
the underlying state variable (). At each period ¢, the information structure is that of a

canonical global game. We assume that agents privately learn the fundamental 6 asymp-

'More precisely, equilibria of the underlying complete information game survive in the induced global
game only if they are p-dominant (Morris, Rob and Shin 1995) for “low” p. Exactly how low p must be
depends on the structure of the game. In two player games, p-dominant equilibria for p < % survive. See
Kajii and Morris (1997) for a generalization of this idea.
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totically, i.e., o; — 0 as t — oo. The project succeeds if the fundamental is good and each
player invests in some period. Note that it is not necessary for success that both players
invest in the same period. Thus, this is an asynchronous investment game. The choice
between early vs late investment is driven by a trade-off: early investment generates higher
payoffs if the project succeeds, while late investors have more accurate private information
about payoffs. As in a standard global game, we assume that there exist values of 6 that
make investment dominant (@ > 1) or dominated (0 < 0). To fix ideas, imagine that the
fundamental is such that investing is not risk-dominant. This means that if agents had to
choose their actions simultaneously in some period, say 7', and thus play a static global
game, then, in the limit as noise vanishes, coordinated investment could not be supported
as an equilibrium outcome, and coordination failure arises. To what extent will the possi-
bility of choosing actions asynchronously affect the incidence of coordination failure? We

report the following results:

1. Coordination failure almost never arises in a sufficiently long asynchronous invest-

ment game.

For any 6 > 0 and ¢ > 0 there exists some 7" such that for any 7" > 7', investment
succeeds with probability at least 1 — ¢ in the asynchronous game with T' periods
whenever 6 > 6. Thus, in the limit as T — oo, the project succeeds whenever 8 > 0.
In addition, as noise in observation vanishes (i.e., o, — 0 for all ¢t} there is also
no delay in investment: players successfully coordinate on implementing the project

immediately, thus achieving the social optimum.

2. The forces driving our results can be cleanly characterized in terms of higher order
beliefs in the asynchronous coordination game.
Building on the standard belief operators of Monderer and Samet (1989), we construct
an asynchronous p-belief operator which is suitable for characterizing behaviour in
our asynchronous investment game. Using this operator, we show that by choosing

sufficiently long asynchronous investment games, it is possible to generate adequate
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levels of generalized approximate common knowledge (i.e., generalized common p-
belief for arbitrarily high p) in order to support asynchronous coordination. The

generalization lies in allowing the required beliefs to be attained at different times.

If synchronous participation at the last round 7' was necessary for the success of
the project, then players invest only if they commonly p-believe in the standard
sense of Monderer and Samet (1989), for sufficiently high p, that the fundamental
allows success. It is now well understood (see, for example, Morris and Shin (2003))
that, however small the private errors are, the global games information structure
does not generate common p-belief for p > %, and thus coordination fails whenever
investment is not risk-dominant. In our setting, players do not have to participate
synchronously at 7', but both players must participate eventually by period T'. In such
a situation, only a relaxed version of common beliefs is necessary for coordination.
Fix a probability of success p € (0, 1) sufficient to induce players to invest in period
t. Both players will invest by period T, if they both believe with probability p by
period T that the fundamental is good, they both believe with probability p by
period T that they both believe with probability p by period 7" that the fundamental
is good...etc. We refer to such an event as asynchronous common p-belief of event
# > 0. This variation of standard common belief turns out not to be very demanding

in our setting.

To obtain some intuition for why asynchronous approximate common knowledge is
attained in long games, consider a game with infinitely many rounds in which each
player asymptotically privately learns the fundamental. Then if the fundamental lies
in some open set G, all players will eventually p-believe G almost surely for any
p < 1. This makes event G p-evident in an asynchronous sense, which in turn implies
asynchronous common p-belief of G. The shortcoming of this line of argument is
that it relies on the assumption that the fundamental is asymptotically perfectly

revealed to players. It is thus not clear whether the argument extends to long but

88



finite games in which some information about the fundamental remains uncovered.
Existing results on static global games show that there is an important discontinuity
in the structure of standard common beliefs as information about the fundamental
becomes infinitely precise. We find that such a discontinuity does not arise when
the infinite asynchronous game is approximated by a sequence of finite asynchronous
games. Approximate asynchronous common knowledge is attained even if small

uncertainty about the fundamental remains.

Our results suggest that allowing asynchronicity and private learning in coordination
problems may substantially reduce the extent of coordination failure in global games. In
addition to being of theoretical interest, our results are potentially widely applicable. For
example, consider the problem of foreign direct investment (FDI) into a newly liberaliz-
ing emerging market. Payoffs from FDI depend on whether the emerging economy “takes
off”, which in turn depends on the amount of FDI. Thus, this is a coordination problem.
In addition, it may not matter precisely that all FDI takes place at the same time, but
simply that it occurs during the first several months to several years of the liberalization
programme. It is not uncommon for liberalization to be accompanied by government sub-
sidies to early investors. Yet, it is also likely that late investors will have better information
about the state of the underlying emerging markets. Finally, it seems unlikely that a great
deal of reliable public information is available about the prospects of emerging economies
— relevant information is garnered via individual research, and is thus at least partially
private. Thus, the class of stylized games outlined above represents trade-offs that are
not dissimilar to those outlined in this applied context. The FDI example is not unique.

Indeed, it may be reasonable to argue that several of the applications studied to date using

global games (e.g. currency crises, bank runs, financial contagion ctc.) may well have an
element of asynchronicity to them.
The learning process is exogenous in our model, and thus we are silent about its source.

This process may be viewed as a reduced form of social learning. It is possible to model this
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social learning more explicitly by using the methods developed in Dasgupta (2007), who
endogenizes the late private signals as noisy observations of early investment levels, Since
our aim is to study the consequences of private learning, and not its source, we employ the
exogenous information structure.

The rest of the paper is organized as follows. In section 3.2 we outline the model.
Section 3.3 states our main result, while section 3.4 explains the efficiency result in terms
of asynchronous common p-belief. Section 3.5 concludes. Before proceeding to the main

model, however, we first outline the related literature.

3.1.1 Literature Review

Our analysis originated in the work of Dasgupta (2007). Dasgupta outlines conditions
under which the provision of the option to delay combined with private learning improves
the ability of agents to coordinate efficiently in two-stage global games. We use Dasgupta’s
modeling framework for an analysis of a different but related question. We do not compare
the coordination outcomes in different finite games?, rather, studying long finite games,
we approximate a limit case in which players learn the true value of the fundamental
asymptotically, and we find that players coordinate efficiently in the limit. Another example
of a dynamic global game with private learning can be found in Heidhues and Melissas
(2006).

Our explanation of the efficiency result in terms of higher order beliefs builds on the
work of Monderer and Samet (1989) and Morris and Shin (2007). For the purposes of
explicating the higher order beliefs foundations of our result, we map our dynamic game to a
static global game. We then use the methodology of (Morris and Shin 2007) which enables a

characterization of rationalizable actions in terms of generalized common beliefs for a broad
class of static games. The generalized common belief operators relevant for our game have

a natural interpretation: they differ from the standard common beliefs of Monderer and

*Dasgupta’s main contribution is the finding that an option of delay increases efficiency; investment in
the early stage decreases, but late investments more than compensate the decline in the early stage. We
do not study such trade-off.
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Samet (1989) “only” in that players do not care about the time at which opponents attain
the required beliefs. Our analysis also shows that private learning generates the relevant
generalized common beliefs in our game. Indeed, such common beliefs are very easy to
attain in our setting: they essentially coincide with first order beliefs.

The current analysis bears a general connection to models of information dynamics in
multi-stage global games (e.g., Chamley (2003), Angeletos, Hellwig and Pavan (2007)). In
contrast to our work, papers in this strand of the literature focus on learning from en-
dogenously generated public signals, and focus on the robustness of equilibrium uniqueness
in global games. We restrict attention to pure private information settings with a unique
long-run outcome, and focus on characterizing the (lack of) incidence of coordination fail-
ure.

Beyond the literature on global games, our analysis is related to the work of Cripps,
Ely, Mailath and Samuelson (2006). These authors delineate general conditions under
which agents asymptotically attain approximate common knowledge via private learning.
The analysis of Cripps et al has important implications for long-run outcomes in situations
which can be divided into two distinct phases: agents learn privately in the first phase, and
attempt to coordinate synchronously in the second. We study situations in which those
two phases are merged together: players attempt to coordinate asynchronously while they
privately learn about payoffs. Both papers study whether private learning leads to approx-
imate common knowledge. However, different concepts of approximate common knowledge
are relevant for ensuring successful coordination in synchronous and asynchronous coordi-
nation games, because the payoff-relevant events differ in these two types of games. Cripps
et al study standard common beliefs as defined in (Monderer and Samet 1989), while we
study an asynchronous form of common beliefs. The two concepts turn out to have very
different properties. In our model, private learning fails to deliver common knowledge in
the standard sense as studied by Cripps et al, but succeeds in delivering asynchronous com-

mon beliefs. This explains why coordination failure arises in the synchronous coordination
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game but does not arise in our asynchronous game.’

Gale (1995) provides an elegant analysis that bounds the extent of inefficient delay in
dynamic coordination games with complete information. Based on the observation that
players can induce other players to invest by investing early, Gale establishes an upper
bound on inefficient delay in coordinated investment. For a small number of players his
result implies nearly efficient coordination. However, the bound increases linearly with the
number of players. Though we formulate our model only for two players, this is only for
the sake of exposition, and our results on the elimination of coordination failure generalize
immediately to settings with arbitrarily many players. In addition, the reasoning behind
the results is very different. While Gale uses backward induction, and hence relies on
perfect information, we use elimination of serially dominated strategies under incomplete
information, in a setting in which players do not observe each others’ past choices. Horner
(2004) studies a model similar to that of Gale (1995), and finds that patient players coor-
dinate efficiently when they receive a single noisy signal of payoffs prior to the play of the

game.

3.2 Model

Two players i € {1,2} play a joint investment game I'7, with 7 € N.* The game consists of
T rounds, all of which may take place within a finite, possibly short time window. In each
round ¢ € {1,...,T}, each player chooses one of the two actions a¢ € {0,1}; we interpret
Action 1 as “invest”, and Action 0 as “wait”. Each player may invest in at most one round.
The payoffs depend on the action profiles and the value of a fundamental parameter § € R

describing the characteristics of the project. The fundamental € is drawn before the first

round according to an improper uniform distribution on R, and remains fixed over all

3In an earlier paper, Ely (2003) informally discusses the notion of asynchronous common belief, but only
to contrast it to the standard common belief which is the relevant concept for the types of problems he
considers.

4All of our results generalize easily to any finite number of players. Indeed, if the learning process is
viewed as a reduced form model of social learning, then the assumption of a large number of players becomes
natural.
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rounds.

The players do not observe the true value of the fundamental 6; instead, they receive
private noisy signals of the value of § in every round. Specifically, each player 7 receives
a signal ! = 6 + &€} in round ¢, where the errors €; are drawn from N(0,1) and are
independent across players and rounds. The standard errors 6; are strictly positive for all
t. Player ¢ does not observe the choices of player —¢ before the end of the game.

Players form their beliefs in each period about the true value of the fundamental through
Bayesian updating given their received signals. The resulting beliefs over € conditional on

a sequence (%)!,_, are distributed as N(z%, 02), where

and

We will refer to z¢ as the cumulative signal, and to o; as the cumulative standard error.

We assume that players asymptotically privately learn the true fundamental; that is,
tl—l-f& o = 0. (31)

Note that, since each standard error 6; is strictly positive, each cumulative standard error
oy is also strictly positive. Thus even though players learn the true fundamental in the
limit over all periods, some uncertainty remains in each round.

The success of the project is determined at the end of the game, based on the funda-

mental § and the actions of the players:

e For 6 < 0, the project fails regardless of the players’ actions.
e For 6 > 1, the project succeeds regardless of the players’ actions.

e For 0 < 6 < 1, the project succeeds if and only if both players invest in some round,
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possibly asynchronously.

Each player’s payoff in the game depends on whether and in which round the player

invested, and whether the project succeeded. The payoffs are

e 0 if the player never invests,
e b if the player invests in round ¢ and the project succeeds, and

e —dtc if the player invests in round ¢ and the project fails,

where the parameters b and ¢ are both strictly positive, and § € (0,1).

The payoffs in this game are consistent with a wide variety of applied settings. For
example, they can be easily understood in the context of the FDI example discussed in the
introduction. Future payoffs from FDI are positive only if enough foreign firms participate,
and the state of the domestic economy (6) is not too weak. Net benefits from successful
FDI participation decline for later participants due to declining subsidies from the emerging
market government. Net costs in the event of failure decline for late participants as well,
due to a smaller lock-in period for valuable resources.

We now proceed to analyze this game, and show the crucial role of asynchronicity and

asymptotic learning in eliminating coordination failure.

3.3 Analysis

The payoffs outlined above imply two simple properties of the best response correspon-
dence, which we describe below in Lemmas 3.1 and 3.2. Our main results, in turn, can be

fully stated in terms of these two properties.

Lemma 3.1. There erists some p € (0,1) such that, in any round t, waiting is the unique

best response for any type that belicves the project will succeed with probability less than p.

Proof. The payoff to investing immediately is

8" (pb + (1 = p)(~c)).
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The minimum value to waiting is 0. Thus, p is defined by

& (pb+ (1 —p)(—¢)) =0,

or equivalently,

as needed. [ |

Lemma 3.2. There exists some D € (0,1) such that, in any round t, investing is the unique

best response for any type that believes the project will succeed will probability greater than
P.
Proof. The payoff to investing immediately is
&' (pb+ (1 = p)(=0)) .
The maximum value to waiting is 6°'b. Thus, P is defined by

8" (Pb+ (1 = P)(~c)) = 8"F'b

or equivalently,
b+ ¢
b+c’

a1
Il

as needed. |
We note that 1 > p > p > 0. Finally, we observe that the existence of p < 1 implies that
however great the amount future information, any player will choose to invest immediately
if she is sufficiently optimistic.
We are now in a position to state our main results, which demonstrate the stark dif-
ference between synchronous and asynchronous coordination games. We begin with the

benchmark synchronous case.
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3.3.1 The failure of coordination in the synchronous game

As a benchmark to compare our results to the existing literature on static global games,
consider the following static, synchronous version of the game I'z7. In the synchronous
version, which we label by T4, for 0 < @ < 1, the project succeeds if and only if both
players invest synchronously at round 7. All other features remain unchanged. We show
that for any @ < 1 coordinated investment fails with arbitrarily high probability as long as

T is big enough, whenever p > %

Proposition 3.1. Fiz any p € (%, 1). For any 8 < 1 and € > 0 there exists some T such

that for any T > T, the project fails with probability at least 1 — ¢ in I‘r_‘? whenever 6 < 8.

This result is a consequence of results from the extant literature on static global games
(see Morris and Shin (2003)), and so we only discuss the argument informally. The game
played at round T is a canonical static global game with signals mlT and z2 with precision
op. The unique equilibrium of this game is characterized by a threshold, z7., such that
players invest if and only if their signals satisfy z%. > z*. A player observing the threshold
signal ¥ = z%. assigns probability % < p to the event that her opponent received a signal
above z%. This is a consequence of the Laplacian beliefs property of the global games
information structure discussed in (Morris and Shin 2003). Unless the threshold player
assigns probability almost p to the event 6 > 1, she strictly prefers to wait. Thus, the
distance of the indifference point % from 1 must be on the order of o, and hence, as T
becomes large and or small, 7. approaches 1.

In order for coordination failure to occur in the synchronous game, it is not essential
that agents can invest only at round 7'. In fact, a similar result would hold in an alternative
benchmark game where agents are free to choose in which round to invest, but the project
succeeds only if they both end up investing in the same round.

In sharp contrast to these synchronous settings, we now show that coordination almost

never fails in the asynchronous game for 6 > 0.
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3.3.2 The success of coordination in the asynchronous game

The following proposition establishes that, in the game with many rounds, both players

are likely to invest whenever the fundamental allows for success of the project (6 > 0).

Proposition 3.2. Fiz any 7 € (0,1). Suppose that both players play serially interim
undominated strategies. For any 8 > 0 and € > 0 there exists some T such that for any

T > T, the project succeeds with probability at least 1 — e in I'r whenever § > 6.

Proof.Fix ¢ € (p,1). Denote the event that player i ¢-believes event E at ¢t by B((Ii’t)(E);
that is, B((Ii’t) (E) = {z} | Pr(E|z!) > q}. Denote by lf*’q(Q) the probability that the player

has g-believed that 6 > 0* at least once up to and including round ¢:

ey =pr| |J B0 =6%0
t=1,..t

Let 1974(6) denote lim_s0 1Y "9(6). This limit exists because {¢*7(6) is non-decreasing in ¢.
Lemma 3.3. For all0 < ¢ <1 and all 0* € R: 199(0*) = 1.

The main idea of the proof of Lemma 3.3 is the following: conditional on 8%, the
probability that a player ¢-believes 8 > 6* is 1 —q in each round, but with the complication
that the posterior probabilities p(vt) = Pr(9 > G*Ix(i’t)) are correlated across rounds. We
will show, roughly, that beliefs across sufficiently distant rounds ¢ and ¢’ are approximately
independent. The intuition for this is that if the amount of information that a player
receives between ¢ and t' is large relative to what she knew at ¢, then the information at
¢t has only a negligible impact at ¢. For long games, we can choose a long subsequence
of rounds suchvthat all rounds in the subsequence are sufficiently distant. Hence the
probability of g-believing 8 > 6* in at least one of these rounds approaches one as the

number of rounds grows large.
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Proof of Lemma 3.3. For any sequence 7 = (¢1,%2,...), let

la*,q(e*;,r) = Pr U Béi’t,)(a S 9*) 9*
=ty ta,...
We have 197:9(6%; 7) < 1979(6*), so it suffices to show that, for any £ > 0, there exists some
sequence 7 for which 199(0*;7) > 1 —¢.
Given € > 0, let z < 6* be such that Pr(z; < z|0*) < e(1 —¢€). Let ¢t; = 1 and choose

each subsequent ¢ so that

Pr(zy, < z|0%) <e®(1—¢).

For this sequence t{,to, ..., we have
Pr(z;, < z for some k|0*) < e.

Thus it suffices to show that, as long as z;, > z for all %, there almost surely exists some
period t; in this sequence at which the player g-believes that 8 > 6*. By the Borel-Cantelli
Lemma, it suffices to show that for some § > 0 and some subsequence 7 of this sequence,
the player g-believes that 6 > §* with independent probability J in each period in 7.

A player g-believes in period ¢t that § > 6* as long as 10%9_* > ®71(q), where ®()

denotes the standard normal distribution function. Given that z;, > z, for t > #;, we have

— 2
Ty = 2 Cﬂtk + oy Z =
S= tk+1 s

N Z4
-5 & U —_—.
2 t 2 ) 52

s=tp+1

IV

Hence Q%g* > ®~1(g) whenever

—ﬁ“ﬂ')’*‘at Zs tk+1_2- 9*

ot

> 97 }(g). (3.2)
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; 1 1 i 1 . . .
Since o= o + Zs:t;ﬁrl 2 Inequality (3.2) is equivalent to

gt 1 1
(@- 02+ o0 )= - =
g of i,

The first term on the left-hand side of this inequality tends to zero as t grows large. The

t
<Zs:tk+1 G

t
Zs:tk+1 G2

Y|

> —(;15 —9*) > 37(g).

s=tp+1 s

second term is a product of two factors, the first of which tends to one as t grows large, and
the second of which is a standard normal random variable independent of the realizations
of all signals up to period tx. Therefore, for small enough § > 0, the inequality holds with

probability at least § when ¢ is sufficiently large given 4, ¢, and z. |

Lemma 3.4. Suppose that both players play serially interim undominated strategies. For
any 8 > 0 and q € (P, 1), there exists some T such that for any T > T, player i invests in

round t of game T'r if she believes at t with probability at least q that 6 > .

Proof. Let 8** be the infimum of those 6 for which the statement holds. We must show
that 0** = 0. We proceed by a contagion argument. The statement clearly holds for § > 1.
The proof consists of showing that if the statement holds for all 8 > 6* for some 6* > 0,
then there exists € > 0 such that it holds for all 8 > 8* — ¢. Thus we must have 8** = 0,
for otherwise taking 60* = 6** would give a contradiction.

Assume that the statement is true for all 8 > 6* for some 8* > 0. Then there exists
some T such that in any game I'y with T > T", player —¢ invests at ¢ if she g—believes
that @ > 6*. Thus, whenever Uy_; 1 Bé_i’t,)(e > 0”) is true, player —i will invest at
some ¢ in the game I'r.

Fix some r € (g, 1). Lemma 3.3 implies that there exists 7" such that
199004y >
ol T.
The function lg:,’q(-) is continuous. Therefore, there exists some ¢ € (0,0*) such that

lg:,’q(ﬁ* —g) >
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Since lg”;’q(e) is non-decreasing in 7" and 6, we have
1996
) >r

forall T > T and 6 > 0* —¢.

Now consider a game I'p with T > max(T",T"). Suppose player 7 g-believes at ¢ that
0> 0*—¢. Since T > T, 6 > 0* — e implies that le_*i”qT(G) > 7. Since T > T", by hypothesis,
player —i invests at ¢ if she g—believes that § > 6* at t. Thus, conditional on 6 > 6™ — ¢
the probability that player —¢ invests is no less than r. Therefore, at ¢, player ¢ attaches
probability at least rq to the event that the project succeeds. Since rq > P, this implies
that player 4 invests at ¢. |

The proposition follows from Lemmas 3.3 and 3.4. Fix § > 0 and ¢ > 0. By Lemma
3.4, there exists some T" such that each player invests in the game I'r with T' > T" if she
g-believes that § > 0. By Lemma 3.3, there exists some T" such that for T > T, when the
fundamental is at least 8, the probability that both players g-believe that 8 > ¢ in some
round in I'7 is greater than 1 — e. Taking T = max{7",T"} gives the result. |

Thus, in sharp contrast the synchronous case, coordination failure arises with vanishing
probability in the asynchronous case as the number of rounds grows large. In addition, if,
as in the synchronous case, we let observation noise vanish, we get the even stronger impli-
cation that there is no delay in successful coordination. This is a corollary of Proposition
3.2. To make this idea precise, consider a family of sequences (oo;){2,, where 0 > 0 is a
scaling factor, and (04)$2, is some fixed sequence with strictly positive members converging

to 0. We will denote by I'p(o') game with T rounds and noise parameters (0o;)7_; .

Corollary 3.1. For any 6 > 0 and ¢ > 0 there exists some @ > 0 and T such that for
any o < @, in any equilibrium of T'r(o) with T > T, both players invest in round 1 with
probability at least 1 — ¢ whenever § > 6.

What explains the stark difference in outcomes in the synchronous and asynchronous

coordination games? One instructive way to interpret this difference arises out of character-
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izing the higher order beliefs of players in these games. We turn to such a characterization

in the next section.

3.4 Higher Order Beliefs

It is well-known that the coordination failure arising in static global games can be explained
by the lack of approximate common knowledge. The finding that coordination failure does
not arise in our asynchronous global game indicates that some aspects of higher order
beliefs differ between synchronous and asynchronous global games. The current section is
devoted to examining this difference.

First, we introduce notation for payoff-relevant sets of fundamentals: G = (0, +00) and

U =[1,+00). If 8 € G, the project may succeed. If § € U, the project must succeed.

3.4.1 The synchronous case

We first informally review the well-known result for the static global game. Consider the
simple static game obtained when the dynamic game described in Section 3.2 has only one
round; that is, when 7' = 1. The following discussion is based on Morris and Shin (2003).

Let B},(E) denote the set of i’s types that assign probability at least p to the event F;
for types B;;(E) we say that ¢ p-believes E. Let B,(E) denote the profiles at which both
players p-believe F.

To simplify the exposition, assume (for this subsection only) that investment of both
players is necessary for the project to succeed whenever § > 0, so that there is no upper
dominance region. Then the best response of each player is to invest if and only if she

p-believes both that the fundamental ¢ is in G, and that —i invests. Therefore, investment

is rationalizable only for types that p-bclicve the following list:

o (4,

e that her opponent p-believes G,
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e that her opponent p-believes that she herself p-believes G,

e etc.

Hence both players will invest only on the intersection

N[zl @

k>1

which is denoted by Cp(&) and called common p-belief of G.

However, common p-belief of G is difficult to achieve in static global games. Suppose
p> % In that case, player i p-believes G only if i > (M) = O+UF“1(Q). But for common
p-belief of G, player 1 must also believe that the opponent’s signal exceeds (1), This belief
occurs only if z* > (2 = (1) 4 V20F~}(p). Continuing to higher orders of beliefs, we
get conditions z* > z(¥) where z(®) = z*=1) 4 /26 F~}(p) for all k > 1. Since F~'(p) > 0
for p > %, the sequence z(¥) diverges, and hence there is no state at which G is common
p-belief. Note that this argument holds for arbitrarily small o.

If we take a snapshot of our dynamic game at any round ¢, the information structure
is identical to that of the static global game with o = o;. Hence the common p-belief in
the above static sense is not achieved in any of the rounds of the dynamic game. This
explains the coordination failure described in Proposition 3.1 — the game studied there is
essentially a static game with o = op, and the fact that or decreases in T is irrelevant as

long as o7 > 0.

3.4.2 The asynchronous case

The discussion so far indicates that the difference between the asynchronous and synchro-
nous games does not lie in the ability to generate standard common p-belief. In this respect
private learning does not help. The difference must lie in the relevant concept of common
beliefs which characterize the set of types for which investment is rationalizable. The less

restrictive conditions under which the project succeeds in the asynchronous game lead to
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less demanding belief operators and to a concept of common belief which is satisfied at a

large set of states.

Definitions

In what follows, for convenience, we refer to the beliefs and actions of player ¢ at date ¢ as
the beliefs and actions of agent (i,t). Let © denote the set of possible fundamentals, and
X(t) the set of types of agent (i,t) for i € T = {1,2} and t € {1,...,T}.°

We now define relevant events:

e A O-event Fp is a subset of ®. Such events describe the fundamental, 6.
e An (i, t)-event F!) is a subset of X (). Such events describe the type of agent (i, ).

e An i-event F' = xtSTFW) is a list of (4,t)-events, with each member of the list

describing the type of agent (i,t).

o A compound event F = Fg x (X;czF") is a list containing (4,t)-events for each

i€ {1,2} and t € {1,...,T}, together with one ©-event.

We will abuse notation by identifying each ©-event Fg with the compound event Fg x
(xi,tXt’i), xieIFi with the compound event © x (xieIFi), and so on.

We say that an i-event F' is eventually true (or holds eventually) if Up<r F®Y) is true,
that is, if the true state lies in U< F1).

For each player ¢ we define an operator aT’i(-) that maps each compound event F =

Fo x (x(jnFY) to

o (F) = Fon m U FUt ) . (3.3)

JeT\{i} \1<T

The operator a”*(-) has a useful interpretation. Suppose that the project succeeds only

if the fundamental lies in Fg and all players invest by round 7'. Suppose that each agent

5Tn our simple setup © = X =R for all (i,1).
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(4,t) invests only on the event FGY Then o#(F) is the event that the project succeeds
by round T, conditional on player ¢ investing. Hence aT#(F) is the payoff-relevant event
for player <.

Next we define relevant belief operators:

e The belief operator A,:,F’(i’t)(-) of agent (i,t) maps each compound event F' to the set

of types of (4,t) that assign probability at least p to aT*(F); that is,
AZ’(i’t) (F) = B}(?i,t) (aTH(F)) .

We refer to A,T;’(i’t) (F) by saying that agent (¢,t) asynchronously p-believes F'. Note

that A;‘,F’(i’t) (F) is an (7,t)-event.

e The belief operator Ag’i(-) of player ¢ maps each compound event to a list of (i,1)-
events, with each members describing, for some ¢, the types of (4,t) that asynchro-

nously p-believe F'; that is,

ATH(F) = x<p ADED(F),

e The belief operator Ag(-) maps each compound event to a list of (¢,t)-events, with
each member describing, for some (i,t), the types of (i,t) that asynchronously p-
believe F'; that is,

AT(F) = X;er ALH(F).

e The asynchronous common belief operator D; (-) is defined (on compound events F')

by DT (F) = N, [AT]* (F).

The interpretation of asynchronous common belief DZ (G) of a compound event G
resembles the interpretation of the usual static concept of common belief. The event
DZ; (G) is a list of events, with each member describing for some agent (i,t) the types of

(i,t) that p-believe the following list:
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. G,

that her opponent eventually p-believes G,

that her opponent eventually p-believes that her she herself eventually p-believe G,

e ctc.

The interpretation of asynchronous common belief differs from the interpretation of
standard common belief on page 101 only in the insertion of the qualifier “eventually”. We
now proceed to utilize this concept of asynchronous common belief to delineate the set of

types for which investment is rationalizable in the asynchronous game.

Rationalizability

In the first step, we formulate a sufficient condition for rationalizability of investment in
the asynchronous game in terms of rationalizability in a related simultaneous move game.
This will allow us to use the results on higher order beliefs in simultaneous move games
from Morris and Shin (2007). We refer to this associated game as the characteristic game,

and define it as follows:

Definition 3.1. The characteristic game I'" is a simultaneous move game with 2T
players denoted by (i,t) for i € {1,2} and t € {1,...,T}. The information structure is as
in the asynchronous game: the fundamental 0 is drawn according to an improper uniform
distribution on R, and each player (i,t) observes a signal zY) ~ N(8,0%). Each player
chooses an action from {0,1}, which we interpret as Not-Invest and Invest respectively.
We say that the project succeeds either if > 1, or if 6 > 0 and for each i € {1,2}, at least
one of the players {(i,1),...,(i,T)} invests. The payoff for player (i,t) for not investing
is 0, and for investing is b if the project succeeds, and —é if the project does not succeed.
The parameters b and ¢ satisfy
p(&,5) = Be,b).9

®Note that we require the probability of success that was sufficient for immediate investment in the
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Note that players in the characteristic game are analogues of agents in the asynchronous
game. However, we continue to refer to player (4,t) in the characteristic game as agent
(4,t), and the collection {(i,t)}; as player ¢, as would be appropriate in the asynchronous
game.

The asynchronous and characteristic games have the same number of agents. In the
characteristic game, investment is a best response for agent (i,t) if and only if she p(c, b)-
believes that project succeeds. In the asynchronous game, investment is a best response for
agent (i,t) if she B(c, b)-believes that project succeeds. Hence, rationalizability of invest-
ment in the characteristic game is a sufficient condition for rationalizability of investment
in the dynamic game. We proceed to characterize the rationalizability of investment in the
characteristic game.

One technical complication we face is that our game is of common and not private
values. Players are sure of their own payoff parameters in private value games, and hence
they suffer only from strategic uncertainty; this makes common beliefs directly applicable.”
In common value games, players suffer also from uncertainty over the fundamental, which
requires a slight modification in the relevant belief operators. We introduce these modified
operators below and use them to characterize the set of types for which investment is ra-
tionalizable. The introduction of the modified operators is only a technical step; later on,
we identify sufficient conditions for rationalizability of investment in terms of the unmod-
ified operators defined in Section 3.4.2 above, and thereafter the modified ones will not be
needed.

Define the following operators:
o RIVED(Fy = ALY (Fhgyu D).

o RYYF) = xu<rRy I (F).

asynchronous game to be necessary in the characteristic game. It must then be the case that payoffs in
the characteristic game are less favorable to investing than in the original asynchronous game. It is easy
to check that b = b — éb and ¢ = ¢ + b works. Finally, note that since the characteristic game is static,
p(é, b) = B(c, b) is necessary and sufficient for investment.

"This is the reason why most of the higher order beliefs literature deals with private value games. In
our case the common value setup is dictated by the motive of private learning in our model.
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o RI(F) = xRy (F).

e QI(F) =N, [RI)" (F).

The motivation for the operator Rg’(i’t)(-) is as follows: suppose agents (4,t) invest at
types F(4) and consider the compound event F = © x (x;,F®!). Then AE‘(i’t) (FNG)U
U is the event that (i,¢) asynchronously p-believes that the project succeeds since success
occurs when the fundamental is good and all players eventually invest (F N G), or when

the fundamental is in the upper dominance region (U).

Proposition 3.3. (Morris and Shin 2007) Investment is rationalizable in the charac-

teristic game at type £t if and only if £t is an element of
T,(i,t
70 (Q5 (@)

Proof. See Morris and Shin (2007). n
To obtain some intuition for Proposition 3.3, consider iterated deletion of actions which
are never best responses. After the first round of deletion, investment survives for types

;’(i’t)(G) = R; ’(i’t)(G). After the second round, investment survives for types

AT (RE(G)nG)uU) = REOD (RE(G)) .

P

After the third round, investment survives for types

Ay ([R5 (@) n6) uU) = Ry ([RE]* (@),

and so on.

The following lemma specifies sufficient conditions for the events R;";(F) and Qg(F) to

occur in terms of the events A:‘IF(F) and D{(F) for sufficiently high q.
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Lemma 3.5. Suppose g > P”ZL—l and AqT’(i’t)(F) - AqT’(i’t)(G). Then

(i) ATCH(F) C REGD(F),

and (i) DI(F)CQI(F).
Proof. Since AqT’(i’t)(F) - Ag’(i’t)(G), we have
A;F’(i’t) (F) g A57(i)t) (F) N AZ‘»(ivt)(G).

The right-hand side of this last expression is contained in Ag(;(_zf )(F N G), which is in turn
contained in RZT(;(_i’f) (F). Since ¢ > 252’—1—, we have 2¢ — 1 > p, and hence qu’g’lt)(F) C
Rg’(i’t)(F). This proves part (i).

We now use part (1) to prove part (ii) of the lemma. The event DqT(F) is contained in
APEY(F). By part (i), DT(F) is contained in Ry (F). Since this containment holds
for all (3,¢), the event Dg(F) is contained in R. (F). Furthermore, DI(F) is contained
in AZ’(i’t) (DqT(F)), and hence also in AqT’(i’t) (RIT(F)) Applying part (i) again gives con-
tainment in R;;F (RZ(F)) = [RE]Q(F). Continuing in this fashion, we obtain containment
in [RI]%(F) for any order k. [ ]

We are now ready to state sufficient conditions for rationalizability of investment in

terms of the operators AqT’(i’t)(‘) and D] (-).

Proposition 3.4. Investment is rationalizable in the characteristic game for types of agent
(i,t) in

ALY (DT (@) (3.4)
for q > B

Proof. A sufficient condition for the event Rg’(i’t) (@Y (@)) to occur is for Ag’(i’t) (DT (@))

to occur with ¢ > %1 To see this, note first that AqT’(i’t) (D:{(G)) - AqT’(i’t)(G), so the
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conditions of Lemma 3.5 are satisfied with F' = DZ(G). Hence we have

A7 (D7 (@) € By (D7 (G)) € Ry (@5 (@),

q =P -

where the second containment follows from part (i) of Lemma 3.5 with ¥ = G. By
Proposition 3.3, investment is rationalizable for types of agent (i,t) in R;L,F’(i’t) (Q% (G))

Characterization of asynchronous beliefs

Section 3.4.2 established sufficient conditions for rationalizability of investment in terms of
asynchronous common beliefs. In this section, we show that asynchronous common belief
is easily attained in sufficiently long games.

Following Monderer and Samet (1989), we say that E is an asynchronous p-evident
event (for T rounds) if £ C AZ;(E). The following proposition restates a result due to

Monderer and Samet (1989), but in the asynchronous setting.

Proposition 3.5. A state w lies in DE(F) if and only if there exists an asynchronous

p-evident event E containing w such that B C AE(F).

Proof. See Monderer and Samet (1989), Proposition 3. ]
We use the characterization of asynchronous common beliefs from Proposition 3.5 to

prove the next result.

Proposition 3.6. For all v > q, there exists some T such that for allT > T,
ATE(G) € APED (DT(@)) .

Proof. Let o (F) = N, aT*(F). Recalling the definition of a’(-) from page 103, o’ (F)
may be interpreted as the event that F(:t) is eventually true for each player ¢ and Fg

holds.®

$We apply the operator a” (+) only to compound events for which Fe = ©, and hence Feg holds trivially.
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For 0* = 0, Lemma 3.3 states that for all » < 1 and all 6 € G,

lim Pr (o’ (A%F(G))|9) = 1.

T—00

Denoting Pr (o (AT(G)) ’ 0 = 0) by sr, we have
ATE(G) € ARGY (AT (@)

because any type of agent (i,t) that assigns probability r to G assigns probability at least
r - s7 to the event that G holds and the opponent eventually r-believes G.
Since 7 > g and sp — 1 as T — oo, the product r - sy exceeds ¢ for sufficiently large

T. Hence we have

ATE0G) € A0 (47(6)) (3:5)

and, since this holds for all agents (i,t), AT (G) is an asynchronous g-evident event.
By Proposition 3.5, the event AT (@) must be contained in Dg(G). Combining this
with (3.5) gives

AT6D(G) € ATGD (4T (@) € ATC) (DT(G)),

as needed. n

Proposition 3.6 indicates that the sufficient conditions for rationalizability of investment
given above are not demanding when 7 is large. All that is needed is first-order r-belief of
G with r > E%“l’ which is achieved for signals exceeding F~!(r)o;. Investment is therefore
rationalizable for all positive signals except in a small neighborhood of 0 of size on the

order of ;.

3.5 Conclusion

Static coordination games represent a useful abstraction for studying coordination problems

in the real world. However, the associated requirement of synchronicity in participation
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may be a strong restriction: the outcomes generated in such models may not be good
representations for real-world coordination problems where agents are able to participate
at different points of time and can learn about payoffs while deciding when to participate.
We illustrate the radical difference between synchronous and asynchronous coordination
problems within the framework of global games. In canonical synchronous (one-shot)
global games, the risk-dominant equilibrium of the underlying complete information game
is selected. Thus, coordination failure is endemic in static global games: there exist a wide
class of payoffs for which players fail to efficiently coordinate in the unique equilibrium
of the canonical global game despite the fact that it is in their collective interest to do
s0. At the other extreme, we introduce a class of enriched asynchronous global games
where agents have an infinity of opportunities to participate, while they asymptotically
and privately learn the true payoffs. In such games, we show that equilibrium play ensures
Pareto dominant outcomes. Coordination failure is eliminated.

Irreversibility plays an important role in our analysis, and, more generally, in the analy-
sis of dynamic coordination games. The tendency towards efficiency in our model is related
to the fact that we chose the efficient rather than the inefficient action to be irreversible.
This assumption is natural in the context of many applications, including the leading ex-
ample of foreign direct investment which we used to motivate our stylized model. However,
in other applications, alternative assumptions may be more appropriate. Had we chosen
differently, that is, had we assumed that the project succeeds only if all players choose to
invest in all rounds, the project would always fail except in the upper dominance region.
The coordination outcome in dynamic coordination games is, therefore, sensitive to the
details of the dynamic setup. A deeper understanding of dynamic coordination problems
may pinpoint detailed changes in the design of coordination processes that could help to
avoid coordination failures. OQur results provide a benchmark for such design exercises.

While it is useful as a benchmark exercise to study the extreme cases in which players
learn nothing or everything during the play of the game, or when investment is fully

reversible vs irreversible, from an applied perspective it is of greatest interest to learn
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about intermediate cases, i.e., about finite-rounds asynchronous global games with private
learning during which players learn something but not everything. These intermediate

cases remain interesting problems for future research.
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