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Introduction

The unifying topic of all three chapters of this dissertation is coordination.
Equilibrium selection in coordination games is not yet fully understood, de-
spite the fact that coordination failures have important policy consequences.
Early opinions in economics were that rational players always choose a Pareto
dominant equilibrium (Harsanyi and Selten, 1988), but experimental evi-
dence as given for instance in Cooper, DeJong, Forsythe and Ross (1990),
and newer theories of Carlsson and van Damme (1993), Kandori, Mailath
and Rob (1993) have put that conjecture in question.

Carlsson and van Damme assume in their theory of global games that
players are not perfectly informed on the coordination game they actually
play; rather, they receive only imprecise signals about the payoff matrix. The
resulting incomplete information game has a unique equilibrium even in the
limit of extremely precise signals, and the theory predicts that people choose
their action according to a risk dominance rather than a Pareto dominance
criterion.

In the first two chapters I use global games as Lego blocks from which
I build dynamic games that allow for a study of the interaction of seem-
ingly distinct coordination problems. In the “Coordination Cycles” chapter
I examine the case of investors facing a series of risky projects with positive
externalities, i.e. a repeated coordination game. I assume that an investor,
by choosing to invest today, risks instantaneous losses as well as her abil-
ity to participate in future stages: unsuccessful investment today can lead
to bankruptcy. Fear of bankruptcy may motivate investors not to invest,
especially in the days just before an expected boom. The amount of risk as-
sociated with investing at day ¢ depends on future expected profits V;,; from
tomorrow on. And because equilibrium is selected according to the strategic
risk associated with the actions, V;,; acts like an endogenous sunspot. High
probability of successful coordination tomorrow makes players more cautious
today and hence decreases today’s probability of successful investment. Un-
like other models with self-fulfilling beliefs, this negative feedback between
tomorrow and today leads to cycles which not only may happen, but must
happen, because the presented model has a unique equilibrium.

In “Coordination in a Mobile World” I study the case of investors choos-
ing between many simultaneously running projects, each of which is again
a coordination problem. Each project is to a large extent independent, but
its attractiveness depends on players’ behavior in all other projects. In par-
ticular, the outside option in each project consists of a search for other of
the projects and hence the option’s value is determined by behavior in the
whole set of projects. The global games framework again assures equilibrium



uniqueness, which in turn allows for an analysis of comparative statics. Sur-
prisingly, welfare is non-monotonic in the mobility of players. Lower mobility
costs on the one hand allow players to find projects with better fundamen-
tals, but because the outside option of each coordination problem increases,
the willingness to risk investment decreases, which may override the direct
positive effect. The whole dynamic game can be viewed as a rough model of
globalization in which increasing mobility allows access to ever better projects
but which also hinders local coordination.

In the final chapter I analyze public good games with punishment option.
The model is inspired by Fehr and Géchter’s (2000) experiments on public
good games with a punishment stage in which players can pay to punish free-
riders. As their experiments demonstrate, players are able to sustain long-run
cooperation. I argue that if each of N players of such a game commits to
spending one unit on the punishment of free-riders, the group can enforce
contribution levels of N units, as only one individual deviator needs to be
discouraged from free-riding in order to support the equilibrium with such
high contributions. A small perturbation to the willingness to spend a unit
on punishment transforms the prisoners’ dilemma into a coordination game
in which all contribute high levels and nobody dares to deviate, or in which
everyone free-rides, which breaks up the total punishment into ineffectively
small parts.

I analyze this coordination problem within the framework of Kandori,
Mailath and Rob’s (1993) theory of stochastic evolution. The authors con-
sider an evolutionary process, such as best response dynamics, with several
steady states. Additionally they assume that players occasionally, but rarely,
“mutate” — deviate from the underlying evolutionary process and choose a
random action. Such a model allows them to specify the steady state, where
players stay most of the time in the long run.

I look for punishment rules that assure high contributions from near-
selfish players in the long run evolutionary process. The key characteristic
of such successful rules is that a single mutation suffices to induce a slight
increase in the contribution norm but at least two mutations are needed
for any decrease in the norm. Thus, if mutations are rare, an increase in
the norm becomes arbitrarily more probable than a decrease and only high
contributions prevail in the long run.
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Chapter 1

Coordination Cycles

Abstract

I build a dynamic global game in which players repeatedly face a similar co-
ordination problem. By choosing a risky action (invest) instead of an outside
option (not invest), players risk instantaneous losses as well as payoffs from
future stages in which they cannot participate if they go bankrupt. Thus,
the total strategic risk associated with investment in a particular stage de-
pends on the expected continuation payoff. High expected future payoffs
make investment today riskier and therefore harder to coordinate, which
decreases today’s payoff. Expectation of successful coordination tomorrow
undermines successful coordination today which leads to fluctuations of equi-
librium behavior even if the underlying economic fundamentals happen to be
stationary. The dynamic game inherits the equilibrium uniqueness of static
global games.

Keywords: Coordination, Crises, Cycles and Fluctuations, Equilibrium
Uniqueness, Global Games.
JEL classification: C72, C73 D8, E32.
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1.1 Introduction

Consider investors facing a series of risky projects with positive externalities,
each project being a coordination game with multiple equilibria. Assume
that a player, by choosing to invest today, risks instantaneous losses as well
as her ability to participate in future stages: unsuccessful investment today
can lead to bankruptcy. Fear of bankruptcy may motivate a player not to
invest, especially in the days just before an expected boom.

Formally, the total expected payoff of an investor i in period ¢ is u!+V;, 17,
where u! is the instantaneous payoff, V;;; is the common value of expected
future profit, and r¢ the continuation probability. The amount of strategic
risk associated with an investment at time ¢ depends on V;,; and thus differs
in each period. If players expect successful coordination (boom) in the near
future they will hesitate to risk bankruptcy by investing today. If they expect
coordination on not investing (slump) in the near future, they are more likely
to invest today because bankruptcy is less worrisome. The negative feedback
between tomorrow’s and today’s coordination leads, for some constellations
of parameters, to cycles in the willingness to invest. The cycles are self-
enforcing and arise without an external cause.

We assume instantaneous payoff u! and continuation probability 7! such
that each stage with the total payoff u! + Vi, 7! is a global game. Global
games, introduced by Carlsson and van Damme (1993) and elaborated by
Morris and Shin (2003), link the outcome of a coordination game to the
amount of strategic risk associated with the available actions. The global
games approach enables us to solve the coordination problem of the last
period and, by backward induction, of all periods.

Strategic complementarities resulting in multiple equilibria are common
in many economic situations. Models with multiple equilibria and arbitrary
self-fulfilling beliefs have been suggested to explain sudden shifts of the eco-
nomy from one state to another. Complementarities have been used to model
search (Diamond, 1982); bank runs (Diamond and Dybvig, 1983); currency
attacks (Obstfeld, 1996); or business cycles (Farmer and Guo, 1994). Cooper
(1999) provides a survey of coordination problems in macroeconomics.

The weakness of early coordination models was their weak predictive
power. Without an additional selection principle, all equilibria were possible,
and thus such models severed the natural link between fundamentals and eco-
nomic outcomes. The global games literature filled the gap by showing that
the multiplicity of equilibria in coordination games with complementarities
is a peculiar consequence of the unrealistic assumption that the underlying
economic fundamentals are common knowledge. If observation of fundamen-
tals is noisy, the multiplicity of equilibria is eliminated and the fundamentals



fully determine economic activity.

In global games models, economic outcomes change only if the fundamen-
tals change (possibly by a small amount). Thus although the global games
approach solves the indeterminacy of the self-fulfilling beliefs literature, it
leaves no place for endogenous fluctuations unconnected to the evolution of
the underlying fundamentals, and hence, it misses some of the attractive fea-
tures of models based on multiple equilibria. In particular, models based on
fundamentals have difficulty explaining the spread of crises among countries
with uncorrelated fundamentals and no direct links (see e.g. Masson, 1998).

I present a model that exhibits the advantages of both approaches. Eco-
nomic behavior changes only when the fundamentals pass a threshold; the
changes are thus not arbitrary. However, although the thresholds are uniquely
determined, they differ across periods. These fluctuations of thresholds can
be interpreted as fluctuations of market sentiments; crises occur when these
sentiments are too pessimistic compared to the realized fundamentals.

The existing dynamic global games do not alter the fundamentals-oriented
explanation of fluctuations typical for their static predecessors. Burdzy,
Frankel and Pauzner (2001) study a series of coordination problems in which
fundamentals evolve according to a random walk and players experience fric-
tions in changing their action.! Just as in static global games, the fluctuations
of behavior in the unique equilibrium are driven by changes in the fundamen-
tals. Chamley (1999) and Morris and Shin (1999) consider another dynamic
link: past fundamentals serve as a public signal for the current period. These
models also have unique equilibria in threshold strategies and fluctuations are
again driven by fundamentals. They can exhibit path dependence; contin-
gent on the history of the fundamentals, both investing and not investing can
be the equilibrium action for the same current fundamentals. Nevertheless,
switches between booms and slumps occur only if the fundamentals change
and pass a threshold.

Angeletos, Hellwig and Pavan (2004) admit alternations “between crises
and phases of tranquillity without changes in fundamentals” (p. 1). The
fundamentals are assumed to be constant in the model and alternations are
driven by the arrival of new information about the fundamentals.

Methodologically closest to our paper is a study of recursive global games
by Giannitsarou and Toxvaerd (2003). The similarity lies in the recursive
approach to the game and in the assumption that by their present actions
players change their state, which influences their future payoffs. The ma-
jor difference is that, although substantially more general in most details,

"Matsui (1999) and Oyama (2004) assume complementarities between actions of sub-
sequent generations of an OLG model, which leads to similar results.



Giannitsarou and Toxvaerd allow for positive links between tomorrow’s and
today’s investments only. Thus, their model generates endogenous growth or
decline but not endogenous cycles. Alternations between booms and slumps
have to be caused by a sudden change in the fundamentals. Toxvaerd (2004)
presents another global game with a recursive structure that generates en-
dogenous and monotone evolution of thresholds, but again it does not gen-
erate cyclical behavior.

The switches between booms and slumps in the model I present below
are not only a consequence of the random evolution of fundamentals, but can
be caused by the cyclical evolution of thresholds, or in other words, by the
evolution of market sentiments that are the unique outcome of the model.
The model combines the equilibrium uniqueness of the global games with the
cyclicality of strategic delay models (e.g. Shleifer, 1986; Gale, 1995), where
the delay models study situations in which players are motivated to delay
investment to match the timing of others’ investments.

Section 1.2 introduces cyclical evolution of the threshold in a basic model
without a direct economic interpretation. I then amend the basic model to
fit real economic problems in section 1.3. Section 1.4 concludes.

1.2 The Basic Game

Let us study a repeated coordination game in which risk-neutral players have
one token each which they can invest in one of rounds t € {1,...,T} (later I
briefly discuss infinite horizon). There is a continuum of players with measure
1, indexed by ¢ € [0, 1]. In each period, players who still have the token decide
whether to invest it or wait; ai € {I, NI}. (The constraint that players can
invest only once simplifies the exposition. In section 1.3, successful investors
are allowed to invest again and let the unsuccessful ones go bankrupt with
some probability.)

I assume positive externalities of investment. Return at t increases with
the measure of investments at . The return at ¢ also increases with (random)
fundamentals ;, which are assumed to be i.i.d. with twice continuously dif-
ferentiable c.d.f. ®(.) on the real line; the associated p.d.f. is denoted by ¢(.).
The distribution of the fundamentals is simple. Yesterday’s fundamentals do
not offer any information about today’s fundamentals; the model thus ab-
stracts from social learning. Such an assumption effectively makes the stages
more independent and thus the structure of the stage games more station-
ary: The game has nearly the same structure as repeated games; all the stage
games are virtually identical, differing only in the continuation payoff V;,;.

Following Morris and Shin (2003), the instantaneous payoff for not in-
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vesting is 0 and for investing is
U(I, lt,et) :9t— 1+lt, (11)

where [, is a measure of the set of all players who have invested at t.2 Players
maximize the sum of discounted instantaneous payoffs Zthl Oty

The measure of players is assumed to be constant in each round. For this
reason, players who have already invested, and thus cannot invest in future
rounds, are replaced by entrants in the benchmark model. This makes the
game more stationary, entrants are not an additional source of fluctuations.
Some justifications for the assumption can be found in the applications. In
the applications 1.3.1 (currency attacks) and 1.3.2 (emerging market crises),
players leave the game only when bankrupting and the constant measure
of players can be interpreted as the amount of capital being fixed and only
exchanging hands during the game. Payoff depends on the relative ratio of
searching players in the application 1.3.3 (search), thus the effective measure
of players is constant irrespectively of the history of play.

If players were to observe fundamentals perfectly, the game would exhibit
a multiplicity of equilibria, since strategic complementarity makes investing,
as well as non-investing, self-enforcing. For example, the last round stage
has, except for the extreme values of 67, two pure Nash equilibria: in one
everybody invests, and in the other nobody invests.

The set of fundamentals 6, for which players coordinate on investment in
stage t depends on the expected discounted continuation profit 0V;,,, which
is the outside option of the coordination problem at ¢. The higher the outside
option, the harder the coordination on the risky investment. An equilibrium
selection tool is needed to map this influence one to one. I use the global
games as formulated in Morris and Shin (2003); alternatively the concept of
risk dominance proposed by Harsanyi and Selten (1988) could be used.

From now on I make the usual global games assumption that players
do not observe fundamentals precisely. Each player receives in each stage
t a private signal z; = 6; + o€} about the true fundamentals 6;, where the
idiosyncratic errors ¢! are independent across players and rounds and drawn
from a continuous p.d.f. f(.) with support on the real line, and with finite
expectations [ zf(z)dz. The c.d.f. is denoted by F(.). Parameter o
denotes the size of the noise, and I am interested in which equilibrium will
be selected as ¢ — 0. All distributions and parameters of the game are
common knowledge.

2The simple functional form of (1.1) is not substantial. Any static global game payoff
can be used.
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The information structure of such a multistage game is complicated.?
Nevertheless, as the fundamentals across stages are independent, past out-
comes do not provide any information on today’s fundamentals. In fact, it
will be proved that in equilibrium actions depend only on the current signal.

Let us solve this incomplete information game by backward induction and
show that it has a unique equilibrium in the limit ¢ — 0. The subgame of the
last round T is a static coordination game described in the introduction of
Morris and Shin (2003). For the sake of reference, I reproduce key proposition
2.2 of Morris and Shin (2003) in the appendix and refer to it below as the
“Morris and Shin theorem”. Morris and Shin show that, as ¢ — 0, the
unique strategy surviving the iterated elimination of dominated strategies in
the last round subgame is a threshold strategy:

. I ifx > 0%,
s7() = { NT it <0 (1.2)
with threshold 6. such that si.(.) is the best reply to the belief according
to which the measure Ly of investing players is distributed uniformly on
[0,1]. Morris and Shin (2003, p. 5) “dub such beliefs ... as being Laplacian,
following Laplace’s (1824) suggestion that one should apply a uniform prior to
unknown events from the principle of insufficient reason”. Such beliefs arise
endogenously in global games for a player observing the threshold signal.

Given such “Laplacian” beliefs, threshold 6} can be determined as an
indifference point between investing, which pays fol(ﬁ — 1+ 1)dl, and not
investing, which pays 0. The threshold at T is thus 6} = %

Knowing the equilibrium of the last stage T, it is possible to compute the
expected profit V. In the limit, as ¢ — 0, all players invest if and only if
the fundamentals 0 > 0. In that case I =1 and all receive § — 141 = 6.
If 67 < 0% all players wait and receive 0. Thus:

Vr = E[0|6 > 07] +0 x Prob(8 < 07) = / 0p(0)d0 4+ 0 x ®(07). (1.3)
07
Stage T' — 1 is again a static global game in which the outside option
payoff is 6V rather than 0. The threshold at T'— 1 is again an indifference
point of a player with Laplacian beliefs: fOI(H?‘F_l — 1+ 1)dl = 0Vr and hence
T = % + 0Vp. The backward induction can be applied further. Generally,
(in the limit ¢ — 0):

3The information set I} = {a%,..., 2% 11,...,l;_1} of player i in a round ¢ is the history
of her signals and the history of the aggregate investment l;. Pure strategy s = {s1,...,s7}
is a series of functions that assigns to a path of information sets {I},...,I%} a path of
actions {s1(I}),...,sp(I%)}.

12



N | =

Vi = G(Vip1) = E[0]0 > 67]Prob(8 > 0;) + 0V,.1 Prob(6 < 6;)
_ / B6(8)d8 + 5V D (9(Via)), (1.5)
9

(Vi+1)

with the boundary condition Vi = 0.
Formally, denote the whole game by I',:

Proposition 1.1. For any ¢ > 0 there exists @ such that for all 0 < T if
strategy s survives iterated elimination of dominated strategies in the game
[, then sy = NI for all xy < 9(Vii1) — € and sy = I for all xy > 9(Viyq) + €
forallt € {1,..., T} where the function ¥(.) is defined in equation (1.4) and
Vi are defined by mapping G(.) in equation (1.5) and by a boundary condition
VT+1 =0.

The proof, presented in the appendix, consists of checking all assump-
tions of the original Morris and Shin theorem 1.1 and of applying backward
induction.

1.2.1 Evolution of Thresholds

How does the threshold 6; evolve over time? Does it converge to a steady
state if the length of the game goes to infinity? I show that (for some con-
stellations of parameters) the thresholds necessarily fluctuate and the system
never converges to a steady state.

The threshold 6} is fully determined by the continuation values V;; which
evolve according to the highly nonlinear mapping G(.). An approximate
picture of the mapping G(.) is easy to plot if the noise of the prior distribution
®(.) is small. Let us, without loss of generality, write § = y + 77, where
y is the expectation of 6, and ~; is a random component of §,. C.d.f. ®(.)
is nearly a step function if 7 is small. Thus G(V) is almost piecewise linear
with quick transitions from one linear segment to another at such values of
V that ¥(V) = y (see figure 1.1).

What is the economic intuition behind G(.) being approximately constant
for small V| then quickly declining for medium values of V', and then moder-
ately increasing for large V7 An increase in V;,; has two effects on V;. The
direct effect is positive: if the players coordinate on not investing, they re-
ceive a higher outside option 0V, ;. The strategic effect is an increase in the

13
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0.25}

Figure 1.1: Thick line — mapping G(.) for a nonzero variance of priors 7 > 0.
Thin line — mapping G(.) in a limit 7 — 0. Dotted line — the probability
density ¢(9(Vit1)) at the threshold 6} = 9¥(V;41). Dashed line — diagonal.

threshold 0} = % + 0Viy1. This decreases V; because the players coordinate
on investing at ¢ for a smaller set of realizations of #;. The strategic effect
is small if the threshold 6; is far away from the average value y, because the
probability density ¢(60;) is low and the impact of a small increase in the
threshold on the total probability of coordination is small. If, however, V;,
happens to be such that the threshold 0; ~ y then the probability density is
high and a small increase in the threshold disables the successful coordina-
tion in many states of the world, which substantially reduces expected profit.
This explains the region of sharp decline of G(.) in figure 1.1.

The steady states solve the equation G(V) = V. If G(.) crosses the
diagonal in the transition segment then |G’(V*)| — oo in the limit* as 7 — 0
and the fixed point is unstable. The fixed point is unstable also for 7 >
0 as for 7 sufficiently close to 0, |G'(V*)| > 1. The algebraic condition
for diagonal crossing G(.) in the transition segment is 3 < y < 3/(1 — )
and 7 being sufficiently small. Thus the fixed point is unique and unstable
and the threshold fluctuates for intermediate values of y. Simple numerical
simulations revealed that regular periodic cycles as well as chaotic paths are
possible for different model parameters. Note that the path does not explode;
V; is bounded from below by 0 and from above by ffooo 0dd(0).

If y is very low, the fundamentals are almost always bad, meaning the
diagonal crosses G(.) to the right from the transition segment. Thus the

4The ordered limit lim,_9,,—0 has to be taken because the equilibrium uniqueness
result holds only for ¢ being small compared to 7.

14



Val ue Evol ution of Val ues threshol ds Evol ution of Threshol ds

1.1

N
a) 10 20 30 40 50 ™ b) 10 20 30 40

Figure 1.2: a) Evolution of the expected continuation values V; generated
by the mapping G(.). b) Evolution of the thresholds ; = ¥(V;11). The
symbol M denotes periods in which players coordinated on investment for
one particular realization of random fundamentals {61, ..., 0r}.

slope of G(.) at the unique fixed point V' = 0 is § < 1, and it is stable.
The intuition is that for very bad priors the players almost never coordinate
on the investment in the last period, hence Vi =~ 0 and the earlier periods
are almost identical to the last period. Similarly, if y is so high that the
fundamentals are almost always good, the diagonal crosses G(.) to the left
from the transition segment, where the slope of G(.) is 0, and the unique
fixed point V' & y is again stable. The intuition is that for very good priors
the players nearly always coordinate on investing despite the high outside
option oV.

Figure 1.2 depicts a numerical example of a fluctuating threshold path for
particular parameters.® The coordination on investment is more probable in
periods with low thresholds, but it depends also on the realizations of random
fundamentals.

1.2.2 Time Horizon

A finite time horizon is unrealistic in any of the applications of section 1.3 be-
low. Moreover, the values V; are very sensitive to the specification of T'. Two
approaches can be taken. First, let us consider very long but finite games.
The equilibrium uniqueness result holds for any 7" and if the mapping G(.)
has a unique and unstable fixed point, the fluctuations and nonstationary
behavior are a necessary outcome for a game of any duration 7.
Alternatively, let us consider an infinite game with ¢ unbounded. In such
a game, the equilibrium uniqueness result does not hold, as the boundary

SPrior beliefs distribution N(0.6,0.01?) and & = 0.8.
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condition V1 = 0 is lost. Nevertheless, the mapping V; = G(V;4q) still
holds (in the limit ¢ — 0). Thus, in the case of a unique unstable fixed
point, although the sequence of V; cannot be specified, the evolution will be
nonstationary. Hence the testable prediction of the model is its nonstation-
arity rather than a particular prediction of equilibrium path.

The basic model serves as the simplest illustration of the dynamic global
games [ want to study. In the next section, I amend the instantaneous payoffs
and the continuation structures of the basic model and study models with
economic interpretations.

1.3 Applications

I present three illustrative models: a currency attacks model built on Morris
and Shin (1998), a model of crises co-movement, and a model of search
activity cycles. In all three applications players maximize a sum of discounted
instantaneous payoffs. They face a series of coordination problems described
by instantaneous payoffs and, moreover, their action at ¢ influences their
access to profits in future coordination problems. Players can be in one of two
states {not bankrupt, bankrupt} in applications 1.3.1, 1.3.2, and {partnered,
partnerless} in application 1.3.3. By a choice of action at ¢, players influence
their state in future rounds as they did in the basic game where investing
moved the player from the state with a token to the state without. I will
admit more general situations in which the change of state is determined
strategically; the probability 7(at, l;, 6;) of the change of state will also depend
on the aggregate of others’ actions ;.

I assume a continuum of players and that payoffs depend on the others’
actions only through the aggregate action [;. The absence of large players
implies that the continuation value V;,; is a common value for all players,
which enables us to use a recursive formulation in all three applications.
Thus, each stage payoff is a superposition of the instantaneous payoff and the
continuation payoff. I study situations in which the total payoff ui + §V;, 7}
satisfies the global game assumptions for any V.1, so each stage will have a
unique equilibrium which allows to use backward induction.

All three applications share the information structure of the basic model.®

5To recall, economic fundamentals 0;, t € {1...T} are i.i.d., drawn from twice contin-
uously differentiable c.d.f. ®(.) on a real line. Players receive a private signal 2} = 0; + o€l
where the private errors €! are independent across players and rounds and drawn from con-
tinuous density f(.) with support on the real line with finite expectations ffooo zf(2)dz.
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1.3.1 Currency Attacks

In the first application I inject economic content into the basic model and
relax the assumption that players can invest only once. I extend the Morris
and Shin (1998)7 model of currency crises by adding a continuation structure
— the unsuccessful speculators may go bankrupt and thus lose access to
future profits.

Morris and Shin consider a currency pegged to an exchange rate e* which,
if the government does not protect the peg, will float to a rate ((6;), where
the function ((.) is continuous and increasing in ;. A continuum of specu-
lators with measure 1 decide whether to sell the currency short or not. The
transaction cost of short-selling is c. If the currency is devaluated, the short-
selling pays a net profit e* — ((6;) — ¢. The government defends the peg, but
only if it is not too costly. The cost of defending increases with the measure
of the short sales; the government will defend if the measure of attacking
speculators is smaller than a(6;), which is continuous and increasing in 6;.
The instantaneous payoff for not attacking is 0. The instantaneous payoff for
attacking is summarized by

e — C(Qt) —c if (I(et) < lt,
i) ={ s (16

The authors assume dominance regions.® The informational structure is
the same as in the basic game. The one-shot game can be solved by applying
Morris and Shin theorem 1.1 because u([, l;, 0;) is weakly monotone in 6; and
.

I extend Morris and Shin (1998) by assuming that an unsuccessful spec-
ulation results in bankruptcy with probability b. Alternatively, it could be
assumed that managers responsible for the attack decision get fired if the
attack fails (Chevalier and Ellison, 1999) in which case they miss bonuses
for future profits. In reality, the adverse consequences of losses may be more
subtle than total bankruptcy or dismissal. Unsuccessful speculators may be-
come constrained, which would limit their future short sales and hence future
profits. The simplification of assuming only the possibility of a bankruptcy
but not partial consequences is similar in nature to the simplification of as-
suming only the binary decision of attacking or not and abstracting from the
amount of short sales.

"See also Heinemann (2000).

8The government devaluates for sufficiently bad fundamentals even without any spec-
ulators, and even a coordinated attack of all speculators will not lead to devaluation for
sufficiently good fundamentals.
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T(a/i, lt, Ht) lt > a(@t) lt < a(Qt)
I 0 (1—b)
NI 0 1

Table 1.1: Probability that the player will have an opportunity to attack in
the next period.

The speculative capital of unsuccessful speculators is assumed to end up
in the hands of other speculators after the bankruptcy, so the measure of the
potential speculative capital is 1 in all rounds. Abandoning the peg makes
further attacks impossible, so all players have zero future profits after the
attack regardless of their action. The continuation probabilities r(a’,l;, 6;)
are summarized in table 1.1. Note that if the bankruptcy probability b = 1,
the continuation structure becomes that of the basic game: a player can
attack only once, as she either goes bankrupt or the peg is abandoned.

Proposition 1.2. Proposition 1.1 applies with thresholds 07 = 9(Viy1) solv-
mg equation

[1—a(@)][e” —¢(0)] — a(f)obVi1 = c. (1.7)
The evolution of expected future payoffs is determined by mapping

9(Vit1)
GlVir) = [ (e = G(0) = ) 0(6)d8 + Vi1 = @O(Visr )], (1)

with a boundary condition Vi, = 0.

Proof: In the recursive formulation, each round is a static global game
with the payoff:

vi(as, li, 0r) = ulae, le, Or) + Vipar(ag, by, 0;).
It is straightforward to verify that

et —((0;) —c if a(f) < i,

7Tt(lt?et) = Ut(Ialtaet) - Ut<N[7lt79t) = { —c— 5b‘/;+1 lf a(et) > lt

satisfies? assumptions MS1-5 of the Morris and Shin theorem; MS6 — the fi-
nite expectation of errors was assumed directly (see the appendix for the
assumptions MS1-6). Thus the Morris and Shin theorem 1.1 applies in
all rounds. The threshold function J(V;1) defined in equation (1.7) that

Note that 7(I,0) decreases with 6 whereas, formally, the Morris and Shin theorem
requires 7 increasing in 6. Such a situation can be accommodated by introducing 8 = 1—6.
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Figure 1.3: Evolution of the thresholds below which the speculators attack.
The attack is more probable when the threshold is high. A (successful)

attack has happened in the period denoted by the symbol B, for a particular
realization of the random fundamentals.

describes the thresholds is the unique solution to fol m(1,0)dl = 0 (so the
threshold strategy with the threshold ¥(V;,1) is the best reply to the Lapla-
cian belief).

Equation (1.8) describes that, in the limit of precise signals o — 0, all
players coordinate on not attacking if 6; > 6 = ¥(V;11) and thus all receive
the continuation payoff dV;,; in such a case. All players attack at ¢ if and
only if the fundamentals are below 6}, in which case they receive e* —((0) —c.

Q.E.D.

To illustrate the result, let us study a numerical example with a specifica-
tion of the exchange rate difference ¢* — (() being constant and equal to 1.
Function a(#) describing the willingness of the government to protect the peg
is set to a(d) = 0. Equation (1.7) simplifies into J(V;41) = Héb;‘fm and equa-
tion (1.8) simplifies into G(Viy1) = @(I(Vig1)) (1 —¢) +6Viga[1 — (I (Vi)
I plot the evolution of thresholds for particular parameters' in figure 1.3.
Periods in which the threshold is high are windows of probable attacks be-
cause the speculators believe that others will attack even if the fundamentals
of the economy are high.

10The prior distribution is N (0.67,0.001%), b = 0.5, ¢ = 0.3, d = 0.9.
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1.3.2 Emerging Markets Crises — Co-movement

The models under study allow for a rigorous treatment of cycles of self-
fulfilling beliefs and thus the framework is suitable for a study of beliefs-based
contagion of crises. Two developing countries without any direct links but
with a common set of investors are considered. I assume that investment in
either of the two countries may cause bankruptcy. The consequences of the
bankruptcy are the same, regardless of the country in which the unsuccessful
investment has been realized — future profits in both countries are lost. Thus,
the willingness to risk investment at date ¢ is influenced in both countries
by the common value V; ;. High future profits, regardless of the country
in which they would be realized, undermine coordination in both countries
today, which causes co-movement of the willingness to invest in the otherwise
independent countries.

Let us consider two emerging market countries A and B with economic
fundamentals 64 and fp respectively; each with a continuum of investment
opportunities of measure 1. There is a continuum of investors of measure
1 of which each observes two investment opportunities — one in A and one
in B. Investors can invest in a project they observe in country A or B or
in both at each round t. The instantaneous payoff of an investor is the
sum of returns from her current investments. The investments are, within
each country, strategic complements: returns R.(l.+,0.+), ¢ € {A, B} increase
with the level of investment [.; and the fundamentals 6., within each country.
Return in A does not depend on investment [p; or fundamentals 65, and
vice versa. The fundamentals 64, and 6z, drawn from distribution ¢4(.)
and ¢p(.), respectively, and are independent across countries and times, so
the instantaneous payoffs cannot themselves alone provide any explanation
for correlation in the economic outcomes.

To keep the problem within the simple global games framework I do not
allow the players to choose the amount of investment; they choose in each
country only whether to invest one unit or not. The existence of dominance
regions is assumed!! and the appropriate continuity'? of R(.,.). The payoff
from not investing is 0.

Let us now introduce a continuation structure which will create a correla-
tion between otherwise independent countries. I assume that investment in
country ¢ causes bankruptcy of the investor with probability b.. Precisely, if a
player does not invest in either of the countries, the probability of bankruptcy
is 0; if she invests in one country ¢ the probability is b.; if in both countries

"For both countries ¢ € {A, B} exist §, and 6, and ¢ > 0 such that: 1. Rc(l,6) < —e
for all 1 € [0,1] and 6 < @, and 2. R.(l,0) > e for alll € [0,1] and 6 > 6..

12f01 g(l)R(1,x)dl is continuous with respect to signal z and density g(.).
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the probability is b4 + bg. The detailed mechanisms of the bankruptcy is
not modelled. The bankruptcy is a black box for distress that a company
(or manager) may meet in an emerging market and which may constrain a
company’s (manager’s) future activities. Bankruptcy, although it was caused
by a problem in one country, precludes the player from operating in both A
and B in all future rounds.

The events in A and B that lead to bankruptcy are assumed to be inde-
pendent. As this assumption makes countries more independent, it does not
smuggle contagion into the model, and allows us to treat each country as a
separate coordination problem, thus simplifying the analysis.

In the recursive formulation, the coordination problem of country ¢ &
{A, B} in period t is described by the payoff difference between investing
and not investing:

Wc,t(lc,ta gc,t) = Rc(lc,t7 gc,t) - bcé‘/t+1a (19)

which constitutes two independent global games, one for each country. These
can be solved in each round, so again backward induction can be used.

Proposition 1.3. In the unique equilibrium (in the limit of precise signals

o — 0) investors invest in country ¢ € {A, B} at date t if and only if the

fundamentals 0., are above the threshold 0 ,. Both thresholds 0% ; = U 4(Vi41)

and g, = Ip(Viy1) are functions of a common continuation value Viyi.
The 9.(Viy1) are 6% solving

1
/ Ro(0,1)dl = b6V 1. (1.10)
0

The evolution of V; is defined by the mapping

Vi=G(Via) = Vi + / (Ra(6.1) — badVisr)6a(60)d0 +
9

A(Vig1)

[ Ru0.1) = butVi )01, 1)

B(Vig1)

with a boundary condition Vi, = 0.

Proof:

The incentive to invest in country ¢ m.;(l.s, 0.) is described by equation
(1.9) and satisfies assumptions MS1-5 of Morris and Shin theorem 1.1. The
noise distribution f(.) satisfies MS6. Therefore the coordination problems of
both countries at each stage are global games, and the thresholds 9.(V;y1)
are the solutions of equation fol 7et(l,0)dl = 0 which gives equation (1.10).

21



Evol ution of the Expected Profits V

3.8
3.6
3.4
3.2
tine
threshol ds Evol ution of Threshol ds
0.84

0.82
0.78
0.74

b) 10 20 30 40 50

time

Figure 1.4: a) The evolution of the future expected profits V;,1 is common
for both countries. b) As a consequence, the evolution of the thresholds 67
and 07 is correlated. The probability of crisis is high when the thresholds are
high. The symbol B denotes crises for one particular realization of random
fundamentals.

Equation (1.11) describes that, in the limit of precise signals, all players
invest if and only if 6., > 0}, = ¥.(V;11) in which case they receive R.(1,0.)
and go bankrupt with probability b,.
Q.E.D.

I illustrate the result on an example with simple return functions

1 ifl>1-6,
Rc(l’9>{—% if1<1-4.

The simple form of R.(.,.) enables us to compute the 0.(.) defined in
equation (1.10).
ﬂc(%—i—l) =Y+ bcé‘/;-‘rl-

The evolution is plotted in figure 1.4 for particular parameters.'®> The oscilla-

13y4 = 0.3, yp = 0.5, prior beliefs distribution in country A is N(0.78,0.0022); in
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tion of thresholds around the averages of the domestic fundamentals in both
countries is perfectly correlated. A high threshold above the country’s aver-
age fundamentals means that crisis is probable, as investors will believe that
others invest only if the realized fundamentals are high. The high thresholds
can thus be interpreted as pessimistic market sentiments. I have generated
the random fundamentals and marked the crises during which investors do
not invest by M. The occurrence of crises in both countries is correlated
despite the lack of direct links among the countries.

The effect is similar to changes in the amount of strategic risk caused by a
wealth increase and by the implied decrease of absolute risk aversion studied
in Goldstein and Pauzner (2003). However, our fluctuations of strategic
risk are caused by changes in the lottery rather than by changes in the
risk attitude; our players are risk-neutral. Another difference is that our
model has a reverse causality: profits tomorrow influence strategic risk today,
whereas wealth accumulated yesterday influences risk aversion today in the
Goldstein and Pauzner model. A crisis in A at t is not caused by a crisis
in B at t or earlier in our model. Rather, the correlation of crises is caused
by common expected future profits. Thus, the outcome of our model is a
contagion in the broad sense of defining contagion as excess co-movement,
but not in a narrow sense which requires a causality link from an earlier crisis
to a later one.

1.3.3 Fluctuations of Search Activity

In the previous examples, the continuation structure was interpreted as a
bankruptcy, or, more generally, as a reduced ability to act. In this section I
study a model of one-sided search where the ability to search tomorrow is not
decreased by any outcome of the search today, but if the search was successful
today and a partner is found, a new search tomorrow is unnecessary (players
need only one partner). Successful coordination today results in a reduced
need for coordination tomorrow.

It is easier to find a business partner in a society where potential part-
ners are actively searching for a partnership than in a society where nobody
else searches. This strategic complementarity of search is stressed in the in-
fluential Diamond (1982) model. Chamley (1999) names search as his first
example of a strategic complementarity. Ennis and Keister (2003) study
the consequences of taxation on search activity and particularly the conse-
quences on equilibrium selection. I offer a model in which the aggregate
search activity fluctuates endogenously.

country B N(0.82,0.0012), § = 0.9, by = 0.15, by = 0.1.
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There is a continuum of identical players, each player needing a partner
to produce. Players receive an instantaneous payoff 1 in each round in which
they have a partner. After the payoff is received, the partnership survives
into the next period with probability 0 < p < 1 or dissolves with probability
1 — p. Players without a trading partner receive 0 instantaneous payoff, and
they can search for a partner by incurring (stochastic) cost.'

[ assume that the probability m,(l;) of finding a partner at round ¢ in-
creases with a share [, of searching players among the partnerless players.
For simplicity, let m(l;) = l;. 1 also assume that m; depends only on the
relative share of searching players among the partnerless ones, not on their
absolute number.'® Thus, the measure of partnerless players is effectively
renormalized to 1 in each round.

Proposition 1.4. Proposition 1.1 applies with the threshold function

SA
WD) = 2’*“. (1.12)

The evolution of the expected payoff advantage A; of having a partner is
determined by the mapping

G =1+ | " 0000 + [ — 0 (D) 0B, (L13)

—00

with a boundary condition
AT+1 =0.

Proof:
Lemma 1.1. A; > 0 for all t.

The proof of lemma 1.1 is found in the appendix.
In the recursive formulation, partnered players with a partner make no
decisions and face the expected payoff

Ver =14+pVeii1 + (1 —p)dViy 1. (1.14)

The costs are assumed to be sometimes prohibitively high, which implies the existence
of the right dominance region, and that the costs are sometimes negative, which implies
the left dominance region. This can be justified by government paying a subsidy for the
search, which exceeds the true costs, or by an intrinsic motivation exceeding pecuniary
costs.

5This can be justified in the following way: Partnerless players first simultaneously
decide whether to prepare for future production by incurring cost 6;. They are afterwards
randomly matched to pairs and partnership is formed if both members of a pair are
prepared.
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Partnerless players face a coordination problem characterized by the payoff

lt(s‘/e,lH»l + (1 — lt)dvu,t+l — et 1f azt‘ e I7

waw, b, 0:) = { Vi1 if ¢} = N1I. (1.15)

Partnerless players’ incentive to search is
7Tt<lt; et) = U(L lt, 01&) - U(NL ly, 91&) =0l — by,

where Ayy1 = Vg1 — Vigar. It is straightforward to verify' that m(I;, 6;)
satisfies assumptions MS1-5 of Morris and Shin theorem 1.1 for any A, and
thus the theorem applies in all rounds. The threshold J(Vy1) in equation
(1.12) is the unique solution of fol 7(l,0)dl = 0.

Knowing the threshold, the expected profits of partnerless player V,,; can
be recursively expressed:

I(A¢t1)
Vi = Vera®(0(Bis)) = [ 00(0)d8 + 8Vis[1 = BB (116)

Function G(A¢41) in equation (1.13) can be found by subtracting equation
(1.14) from equation (1.16).

Q.E.D.

I compute the evolution of advantage A, of having a partner for partic-
ular!” parameters. The value A, oscillates. When the advantage A, of
being employed is high, players coordinate on searching even if the search
costs are relatively high. Players coordinate on not searching even for rel-
atively low search costs when A;,; is low. Thus, the ratio of partnerless
players will decrease with high probability when A;,; is high and with low
probability when A;,; is low.

Like Diamond (1982), I have limited ourselves to a one-sided search
model, in which the roles of employers and employees are not distinguished;
rather, any pair of identical players could form a productive pair. The advan-
tage is that the model stayed within the framework of simple global games in
which all players are of the same type. Both our model and Diamond’s model
admit fluctuations in the measure of partnerless players, which Diamond in-
terprets as unemployment fluctuations. However, whereas the fluctuations
are a possible outcome of Diamond’s model, they are a sure outcome in our
model.

Function 7 increases in [ and decreases in 6 whereas Morris and Shin theorem 1.1
requires 7 to be increasing in . Nevertheless, this can be accommodated by introducing
0=1-46.

17The prior beliefs distribution is N(1.3,0.052), p = 0.95, § = 0.9; the ratio of partnerless
players at ¢t = 0 is 0.1.
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Figure 1.5: a) Evolution of the advantage of being partnered A, = V., — V.
b) Evolution of the measure of partnerless players for a particular realization
of the random fundamentals. A decrease is more probable when A, is high.

1.4 Conclusion

Bankruptcy is worse prior to a boom than prior to a slump. Having a job
today is more important if tomorrow’s job prospects look grim, than if to-
morrow looks bright. Fluctuations in the amount of strategic risk generated
by the danger of termination are not only the consequences of cycles. Fluc-
tuations can also cause cycles in an environment with strategic complemen-
tarities, since the probability of coordination on risky action decreases with
the amount of strategic risk.

I have formalized this idea in a dynamic global game model which consists
of a series of simple static global games. The non-trivial dynamic link be-
tween the rounds is that players influence not only their instantaneous payoff
but also their ability to generate profits in the future. Successful coordina-
tion tomorrow increases the strategic risk associated with bankruptcy today
and thus makes today’s investment riskier. Coordination tomorrow thus un-
dermines today’s coordination, creating a negative feedback effect between
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tomorrow and today which leads to cycles. The dynamic model inherits at-
tractive features of static global games: it is dominance solvable and thus the
fluctuations unconnected to economic fundamentals not only may happen,
but are a certain outcome of the model.

Interpretation of the unique equilibrium with a chaotic path is delicate.
Such an equilibrium seems to be contradictory, because the slightest error
in computation of thresholds would multiply greatly after a few iterations.
Thus, it is extremely difficult to coordinate on such a chaotic equilibrium,
and yet no stationary equilibrium exists. 1 do not expect to observe the
behavior that exactly follows the predicted equilibrium path. Rather, the
testable prediction is the non-existence of the stationary behavior. I believe
that this prediction applies also for boundedly rational agents.

In future research, I wish to generalize the results for the case of auto-
correlated distributions of fundamentals and for the case of nonstationary
measure of players.

1.A Appendix

For convenience, I reproduce a condensed version of proposition 2.2 in Morris
and Shin (2003):

Let there be a simultaneous move game with a continuum of players with
measure 1, binary action space a' € {I, NI} and payoff u(a’,l, ) where [ is a
measure of players playing I, and parameter 6 is drawn from a continuously
differentiable strictly positive density ®(.) on the real line. Player i receives
a signal ' = 0 + o€’ where € are independently drawn from a continuous
density f(.) with support on a real line. A (pure) strategy is a function
s: R — {I, NI}, where s(z) is the action chosen if a player observes signal
x. Define 7(l,0) = w(l,l,0) — u(NI,l,6). The following assumptions are
needed for the theorem:

MS1: Action Monotonicity: ([, ) is weakly increasing in [.

MS2: State Monotonicity: 7(l,0) is weakly increasing in 6.

MS3: Strict Laplacian State Monotonicity: There exists a unique
6 € R such that [, 7(l,6%)dl = 0.

MS4: Uniform Limit Dominance: There exist § and  and € > 0
such that 1. w(l,0) < —e for all [ € [0,1] and 0 < @ and 2. 7(l,0) > € for all
1€[0,1] and 6 > 6.

MS5: Continuity: fol g(l)m(l, x)dl is continuous with respect to signal
x and density ¢(.).
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MS6: Finite Expectations of Signals: E[z] = [ zf(z)dz is well
defined.

Denote the game, satisfying MS1-MS6, by G, .

Theorem 1.1. (Morris and Shin): Let 0* be defined as in MS3. For any
0 > 0 there exists @ > 0 such that for all 0 < @, if strategy s survives iterated
elimination of dominated strategies in the game G, then s(x) = NI for all
x < 0= and s(x) =1 for all x > 0* + .

Proof in Morris and Shin (2003).

PROOQOF of proposition 1.1:
Assumption MS1-6 of the Morris and Shin theorem are satisfied in all

stages:
m(l,0) =u(l,1,0) —u(NI,1,0) =0 —1+1— 06V,

is, for any Vii1:

1. increasing in [;

2. increasing in 0;

3. there is a unique solution to fol m(l,0)dl = 6 — % + 0V, = 0 which is

¥(Viq1) of equation (1.4);

4. there exist uniformly dominant regions as m; is linear in # and bounded

in [;

5. m; is continuous in both [ and 6;

6. The distribution of the error term is assumed to have a finite mean.
Therefore each stage can be solved as a global game and the unique

threshold in each stage is 0 = J(V,y1) = % + 0V,11. Once knowing the

continuation value V; 4+ 1 and the threshold 8 = 9(V;1) the expected value

V} in the stage t can be expressed which is done in equation (1.5).

Q.E.D. (proposition 1.1)

PROOF of lemma 1.1:

Let us prove the statement by induction. Suppose Ay = Vo1 — Vi1 >
0. Then 5Vu,t+1 S Vu,t S 6‘/;7,5_’_1. USing ‘/&t =1+ 5p‘/:i,t+1 + 6(1 — p)Vu,t+1 I
get

Ay <1+ 0pAg,
At Z 1— 5(1 —p)At+1.

Let us denote the maximum and minimum of {A,}1_, by M and m. The
equations imply
M <1+ dpM,
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m>1—-0(1-p)M,
which gives
(1 —p)
1—6p’
and the right hand side is positive for all 0 < p <1l and 0 < < 1.
Q.E.D. (lemma 1.1)

m>1-—
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Chapter 2

Coordination in a Mobile
World

Abstract

I study coordination failures in many simultaneously occurring coordination
problems called projects. Players encounter one of these projects, but have
an outside option to search for another of the projects. Drawing on the global
games approach, I show that such a mobile game has a unique equilibrium
which allows us to examine comparative statics. The endogeneity of the
outside option value and of the search activity leads to non-monotonicity of
welfare with respect to search costs; high mobility may hurt players. More-
over, outcomes of the mobile game are remarkably robust to changes in the
exogenous parameters. In contrast to the “static” benchmark global game
without a search option, successful coordination is frequent in the mobile
game even for extremely poor distributions of economic fundamentals, and
coordination failures are common even for extremely good distributions. The
strategic consequences of the search option are robust to various modifica-
tions of the model.
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2.1 Introduction

Coordination problems are common in economics (see e. g. Cooper, 1999),
though typically they are modelled in isolation. For instance: players decide
between a risky investment with returns increasing in the number of investors
and a safe outside option which represents all other investment opportunities.
In contrast, this paper studies coordination failures in many simultaneously
occurring coordination problems and allows mobile players to move among
them. More specifically, I consider projects, or coordination problems, and
a set of players uniformly matched to projects at the beginning of the game.
An outside option of a player who considers investing into project j consists
of a search which allows her to join one of the other projects. Thus the out-
side option value in any coordination problem j is endogenously determined
by players’ behavior in all the other coordination problems. Similarly, the
mass of observers of j considering investment depends on the coordination
outcomes of all other coordination problems, because players rejecting any
other project j' will search and may end up being matched to j.

Intuitively, the outside option value and number of observers influence
the coordination outcome of each of the coordination problems. A valuable
outside option lowers the attraction of a Pareto dominant but risky equilib-
rium and hence undermines successful coordination. On the opposite side a
high number of observers enhances coordination, as it is easier to find other
investors. These two externalities lead to non-trivial comparative statics and
welfare effects. Searching players who have rejected project 7 impose a nega-
tive externality on other observers of j and a positive externality on observers
of all other projects.

Both these causal links are difficult to analyze under the equilibrium
multiplicity of coordination games. I therefore study the model using the
global games approach, which uniquely predicts the coordination outcome
for a given outside option and number of players. Comparative statics of the
global games equilibrium is indeed in line with the causal links.! 1 depart
from the standard global game, which is denoted as static and use as a bench-
mark, to build a mobile game, in which not only one but many projects are
realized, each with economic fundamentals independently drawn from a prior
distribution. Players receive an imprecise signal about the project’s funda-
mentals they are matched to, and may move to another project if dissatisfied
with the current signal.

!Global games were introduced by Carlsson and van Damme (1993) and further devel-
oped by Morris and Shin (2003). Heinemann, Nagel and Ockenfels (2004) test the theory
experimentally, and although reject the global games threshold prediction, confirm the
qualitative features of the predicted comparative statics.
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Introduction of search allows us to analyze the welfare effects of in-
creased mobility (decreased search costs). Counterintuitively, welfare is non-
monotonic in mobility. The direct non-strategic effect is always positive as,
ignoring strategic considerations, reaching a successful project is cheaper.
However, the strategic effect is negative: smaller search costs increase the
outside option value associated with the search, which undermines successful
coordination. Thus some projects that would have succeeded had the search
costs been high, fail if search costs are low. This negative strategic effect may
outweigh the positive direct effect, and welfare may decrease with mobility.

The mobile game also has a natural self-requlatory property. Consider, for
instance, a shift in the distribution of economic fundamentals towards poorer
states of the world. This decreases the outside option value, as searching
results in finding poorer projects. The lower value of the outside option
enhances successful coordination, and this positive strategic effect partially
counteracts the negative direct effect. Another channel through which the
self-regulatory mechanism operates is the increasing mass of players observing
each project: the more projects have poor fundamentals, the more players
search. This makes coordination attempts more likely to succeed and thus
helps to partially counteract the direct effect of the distribution’s shift.

Below I show that this self-regulatory mechanism is powerful. Players
frequently coordinate successfully on many projects even for distributions
of fundamentals that almost preclude coordination in the static game. On
the other hand, if the distribution of fundamentals is such that a project
almost always succeeds in the static game, the value of the outside option
in the mobile game is high and the mass of observers of each project is low
as players need not search much. Thus, some coordination failures are to be
expected in the mobile game. Because of this self-regulatory mechanism, an
intermediate willingness to invest is typical for the mobile game equilibrium.

The above “general equilibrium” effects occur in a number of settings in
which players actively choose the coordination problem they will participate
in; thus our results can complement many of the existing global games appli-
cations. Let us apply the mobility extension to the model of currency attacks
of Morris and Shin (1998). Allowing speculators to choose a currency they
short-sell makes it possible to assess how the speculators’ freedom to choose
the currency influences their coordination on attacks. Another prominent ex-
ample of coordination problems in economics is the game of foreign investors
in emerging markets with increasing returns to scale. The model can be in-
terpreted as a study of many such markets on which mobile investors operate.
Our main result under this interpretation is that welfare is non-monotonic
with respect to capital mobility.

The benchmark conclusion of two independent broad streams of litera-
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ture, global games (Carlsson and van Damme, 1993) and stochastic stability
concept (Kandori, Mailath and Rob, 1993), is that risk dominance rather
than Pareto dominance selects the equilibrium in coordination games. Given
this benchmark result, the influence of mobility on the coordination outcome
has been examined in various papers belonging to the latter stream with the
main conclusion that, if players are allowed to move and/or to choose with
whom they interact, then a Pareto efficient equilibrium may prevail.> Goyal
and Vega-Redondo (2005) vary the cost of link formation and find a similar
welfare effect to the one I find: welfare is non-monotonic with respect to
mobility — the efficient equilibrium prevails only at high cost — while if the
cost of the link formation is low the risk dominant equilibrium prevails.

To our knowledge, mobility has not been studied within the global games
literature. However, the outside option value is often varied exogenously in
many global games applications, which leads to a similar tension between the
positive direct effect and the negative strategic effect. Morris and Shin (2004
and section 2.3.1 in 2003) show that an increase in collateral may decrease
debt value. Collateral is an outside option of creditors, so its increase under-
mines their ability to coordinate on (efficient) rolling over of the debt, which
may outweigh the positive direct effect. Similarly, Goldstein and Pauzner
(2005) study the influence of demand-deposit contracts on bank run proba-
bility. While the direct effect of higher short-term payment offered by banks
is an increase in risk sharing, the strategic effect is negative as it increases
the probability of panic-based bank runs.

Jeong (2003) and Burdett, Imai and Wright (2004) study “break-up” ex-
ternalities which occur when matched players search for new partners while
not taking into account the welfare loss of the abandoned partner. Jeong
stresses the possible welfare improvements of mobility restrictions in envi-
ronments with break-up externalities, which is in line with our main finding.
Burdett et al. focus on the multiplicity of equilibria; if matched players
search intensively, the partnerships become unstable and intensive search is
the best response. While the basic model has a unique equilibrium, I en-
counter this self-fulfilling prophecy feature for the general payoff function in
section 2.5.2. However, though the externality studied in our model is similar
to break-up externalities, it is of a subtler form. While break-up externalities
relate to players who cooperate on production, the searching player in our
model leaves the project before production starts and the mere fact that she
has stopped contemplating involvement in the project induces the negative
externality on the rest of the project’s observers.

Technically, the present paper combines the modelling frameworks of Das-

2E.g. Oechssler (1997); Mailath, Samuelson and Shaked (2000).
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gupta (2005) and Steiner (2005). Dasgupta studies the effects of social lear-
ning on coordination failures by allowing players to delay investment and to
learn from the behavior of early investors. Players delaying investment stay
with the same project in Dasgupta’s model, whereas they search for a new
project in our model. Though the settings of both models are seemingly simi-
lar; the conclusions differ significantly. Social learning, central to Dasgupta’s
model, turns out to be irrelevant in our model (see section 2.4). Moreover,
while the delay option unambiguously enhances welfare in Dasgupta’s model,
it may decrease welfare in ours.

Steiner (2005) considers a repeated coordination game in which play-
ers, by choosing to invest today, risk their instantaneous payoffs as well as
their ability to participate in future projects — unsuccessful investment can
cause bankruptcy. The fear of bankruptcy motivates players not to invest,
especially just before an expected boom. This negative feedback between
tomorrow’s and today’s coordination success leads to endogenous cycles in
the willingness to invest.

Both Steiner (2005) and the model at hand are based on non-trivial effects
of the endogenous outside option but they differ in timing® and interpreta-
tion. Steiner (2005) focuses on cycles endogenously arising in the equilibrium,
whereas this paper emphasizes the self-regulatory properties of the mobile
game and particularly the non-monotonicity of welfare with respect to mo-
bility.

Section 2.2 describes the mobile game formally. I compute the equilibrium
in the limit of precise signals in section 2.3, analyze its comparative statics,
and contrast it to the static game equilibrium. The analysis of the general
case away from the limit is relegated to appendix 2.A.1. In section 2.4 players
are allowed to observe actions of early investors and find that social learning
is irrelevant in the mobile game. I further demonstrate the robustness of the
model in section 2.5 in which I vary the number of search rounds, consider
general payoff functions, and allow players to direct their search toward better
projects. Section 2.6 concludes.

2.2 The Model

Let us start by describing a simple coordination game in section 2.2.1 and
then briefly introducing the benchmark global game, dubbed static game

3In the present model, there exist many projects simultaneously and returns are paid
only after all search and investment takes place. In Steiner (2005), there is only one project
in each round, and its returns are paid at the end of each round.
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here, by adding noise to the observation of fundamentals. Then, having set
the stage, I describe the mobile game in section 2.2.2.

2.2.1 The Static Game

There is a continuum of homogeneous risk-neutral players of measure 1 and
one project; each player possesses one (indivisible) token and decides between
investing or not investing into the project. The payoff of those who have

invested is ; ;
1—c ifl >0,
(9,1 = { —c ifl<o, (2.1)

where [ is the measure of investors and 0 < ¢ < 1 the sunk cost of investment.
The project is said to succeed when [ > 6. The payoff for not investing is
normalized to 0. The payoff function (2.1) is being used for its simplicity
as the workhorse of the global games literature;* general payoff functions
are studied in section 2.5.2. The payoff exhibits strategic complementarity;
investment is more attractive if many players invest, which typically leads
to equilibrium multiplicity. Clearly the game has, for non-extreme values
of #, two pure strategy equilibria in which nobody, respectively everybody,
invests.

Building on Carlsson and van Damme (1993), Morris and Shin (2003)
show that the equilibrium multiplicity disappears if a noise in observation of
the project’s parameters is assumed. I introduce this standard global games
structure in the rest of this paragraph: 6 is referred to as a state of economic
fundamentals; it is a realization of a random variable © distributed according
to N(y,72); the c.d.f. of © is denoted by ®(.). The players observe only an
imprecise signal 2° = 6 + o€’ of the state # which itself is unobserved. The
parameter o describes the size of the noise term. The error terms €' ~ N (0, 1)
are independent across players. The c.d.f. of N(0,1) is denoted by F(.).
The random variable corresponding to realization z' is X*. Pure strategy
is a function s : R — {0,1}, which maps the signal z* to an action where
0 corresponds to not investing and 1 to investing. This benchmark global
game is labelled as a static game and denoted by I's(o).

To avoid confusion, it is worth mentioning that the higher the value of
0 the worse the fundamental, as more investors are needed for the success
of the project. Some, but not all, global games papers use transformation
0 =1 — 0 which I do not use here.

4The payoff function (2.1) has been used in Morris and Shin (1999); Dasgupta (2005);
Angeletos, Hellwig, and Pavan (2004), and in others.
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0

Figure 2.1: Structure of the mobile game — The player of a mobile game is
matched to a project 5 and decides whether to invest or search. In the latter
case, she is randomly matched to another project j' and decides whether to
invest or not. (The diagram is not a formal game tree, as it does not depict
moves of Nature and simultaneous moves of other players.)

2.2.2 The Mobile Game

The outside option payoff is treated exogenously and normalized to 0
in the static game; our next step is to endogenize it, which is achieved by
considering many projects simultaneously and by allowing players to search
for another project. More formally, there is a continuum of projects indexed
by j € [0, 1]; each project has a state of fundamentals #; independently drawn
from the distribution with c.d.f. ®(.). Each project’s state is fixed during the
whole game. The game has two rounds. Players are randomly and uniformly
matched to the projects at the beginning of round 1. The measure of players
observing each project in round 1 after the matching is normalized to 1.> At
round 1, after the players are matched to the projects, each player 7 observes
a private signal 2 = 6;(;) + 01€¢} about the fundamentals of project® j(i) she
is matched to. Each player chooses from:

To Invest into the project she observes in round 1. The player can take no
further action afterwards.

To Search: The player continues to round 2, is randomly matched to an-

5There is a continuum of continua of players and thus the total measure of players is
undefined. Formally, I should refer to a density, rather than to a measure of investors in a
particular project. However, our formal impreciseness does not lead to confusion, because
I never refer to a total measure of players in all projects. Occasionally, I will stress that I
refer to measure per project.

61 will omit argument ¢ and write simply 7, but let us remember the matching process.
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other of the existing projects j/, and observes signal =} = 0; + oq¢€}
about the new project j'. Errors €! and €, ~ N(0,1) are independent
across players and rounds.

Players who have searched decide in round 2 between investing and not
investing into their new projects. The payoff of players who have invested
into project j depends on its fundamentals ¢;, on the cumulative measure [;
of investment into j, and on the timing ¢ € {1,2} of the investment:

u'(t,1;,0;) = 6" R(6;,1;),

see figure 2.1. Players who have not invested in round 1 nor 2 receive payoff
0.

Note that the return depends on the cumulative measure of investments
l; into project j over both rounds. The return on the investment in round 2
is scaled down by the factor 0 < 0 < 1 which should not be understood as
a time discount factor because all payoffs are realized at the same moment,
at the end of round 2. Rather, § models implicit search costs: late investors
(in round 2) may find the largest profitable investment opportunities being
taken by early investors in round 1. Also, the late investors have less time
to realize their investments, thus they will get less involved with the project.
Alternatively, instead of discounting by d, the search cost could be modelled
by a fixed cost ¢ that searching players incur. But, as expensive search cannot
be mandatory, the players who do not want to invest or to search would have
to be allowed a third, outside option. The simplicity of the two-action global
games framework would be lost. Therefore, to enhance tractability, I model
search costs by discounting.”

In the basic setting, players in round 2 observing j do not observe the
measure of investors from round 1. The information sets of player i are
histories of the signals: I{ = {z'}, I = {z!, x%}. Later, in section 2.4, T con-
sider social learning: players (imprecisely) observe the measure of previous
investors, and I find our results to be robust to such a modification, which
is in contrast with the study of social learning in the static game done by
Dasgupta (2005).

Pure strategy of the mobile game is a pair of functions a;(x;) : R — {0, 1},
as(z1,m3) : R? — {0,1} that prescribe actions in round 1 and 2 contingent
on the observed signals. A threshold strategy is a particularly simple pure
strategy characterized by two thresholds z7, 3 such that a player invests at

"Players in our setting can always choose not to invest in both rounds which assures
0, and thus I do not have to consider a particular outside option for players who wish not
to engage in costly search.
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round ¢t € {1,2} if and only if the observed signal z} is below z}. A critical
state 0" is such a state that only projects with 0; < 6* succeed. Obviously,
if players use sufficiently non-monotone strategies, the critical state may not
exist. However, as shown below, players play threshold strategies and that
the critical state exists in equilibrium. The whole game is called a mobile
game and denoted by I'y/(o), where o = (01, 02) describes the size of noise
terms in both rounds. I consider different noise sizes in both rounds primarily
because it will be helpful in the analysis of social learning; otherwise it does
not play any substantial role.

Players are not allowed to return to the project observed in round 1 after
they have observed a project in round 2. Later, in section 2.5.1, I study a
game with an infinite number of search rounds. In that game, returning to a
previously observed project is always suboptimal, and thus it can be allowed
without any consequences on the equilibrium.

Economic Example

I offer an economic example similar to Dasgupta’s (2005) setting. There is a
continuum of risky bonds indexed by j € [0, 1], whose returns increase with
measure of investment; bond j returns )= at time T, where t is the
time of investment, [; is the cumulative investment into j over the whole time
period and r(l) =r < 0if I < and r(l) =7 > 0 if [ > ;.

Investors possessing one dollar observe a random bond at ¢ = 0 and the
measure of investors per bond is 1. After observing a signal about the bond
she is matched to, each investor decides whether to invest one dollar at ¢t =0
to the first bond she observes or whether to search for a new bond. However,
the search lasts time ¢, after which she observes a signal about the new bond
and decides whether to invest at time ¢, or not to invest at all. At time T,
players who have not invested consume 1 while players who have invested at
t € {0,t,} consume "W This coincides with our model if rT = —c,

7T =1— ¢, 22 = § and the utility function is u(.) = In(.).

2.3 Equilibrium

The key observation in the analysis of the mobile game is that each project
can be treated as an independent coordination game with parameters induced
by players’ aggregate behavior in other projects. Let V5 be the expected pay-
off in round 2, and n, be the measure of players per project continuing to
round 2; the values Vs, ny are defined for any strategy profile. The interac-
tions of project j’s observers constitute a coordination game of two types of
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players: measure 1 has the outside option 015, measure n, has the outside
option 0, and payoff for investment of all players is described by (2.1). Ob-
servers of each particular project interact in a global game and thus their
equilibrium behavior is uniquely determined for any assumed values V3, ns:
only projects with 6; < 6* succeed, where the critical state 6* is a function of
Vi, ng. Moreover, values Vs, no are uniquely determined by 6*, which leads
to a system of equations with a unique solution.

Let us first analyze the mobile game informally in the limit & — O.
The simplification of the limit case is that players receiving infinitely precise
private signals 2! neglect their prior beliefs. The formal analysis is deferred
to appendix 2.A.1, where I explicitly account for both prior distribution and
the private signals, and only then take the limit & — 0. I deal only with
symmetric equilibrium in threshold strategies in this section and later prove
that no other equilibria exist (also in appendix 2.A.1).

The following technical preliminary is needed. Denote Pg*ﬁt = Prob(©, <
6*| X}), which is a posterior probability player i assigns to the success of the
project she is matched to in round t; Pg*vt is a random variable that depends
on the signal X} player i receives.

Lemma 2.1. Random variable Pj. ,, conditional on ©; = 6* (which is un-
known to the players), is distributed uniformly on [0, 1] in the limit o — 0.

Proof®: ignoring the prior distribution,

Pj., = Prob(©; < 0*|X]) = Prob(X;—E; < 0*|X]) = Prob(E; > X;—0*) = 1-F (

in round ¢ € {1,2}. Then, for p € [0, 1]:

. Xz — B*
Prob(Py., < p|®; =0") = Prob (1 —F ( L > <pl®; = 9*)

Oy

= Pr0b<9* + o P11 —p) < X[|©; = 9*)

Xi— ¢

Ot

).

- 1-F (<0*+UtFl(1_p)) _Q*> =1—F(F‘1(1—p)> =,

Oy

which is the c.d.f. of the uniform distribution. [J (lemma 2.1)
Having established lemma 2.1, I now guess arbitrary equilibrium values
V5 > 0, ny > 0 and consider the interaction of players who have been matched

8Lemma 2.1 is a variation of Morris and Shin’s (2003) argument of Laplacian beliefs.
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to project j in round 1 or 2. The players observe z¢, form posterior probabil-
ities pj of the project’s success that are realizations of Pj. , and decide about
investing into a lottery with expected payoff®

(1—c)p;+ (o)1 —p}) = p} —c.

A player invests if she prefers such a lottery to 6V5 in round 1 or to 0 in
round 2. Thus she invests if p{ — ¢ > §V4 in round 1 or, if pi — ¢ > 0 in
round 2. Suppose the state of project j (unknown to the players) happens
to be just equal to the critical state, §; = 6*. Then, knowing the uniform
distribution of p! and the trigger probabilities ¢+ V5 and ¢ in round 1 and 2
one can compute the total measure of investors into j. The definition of the
critical state implies that the measure of investment is just equal to 6*:

(1—c—0Vy)+ny(l —c)=0" (Crit.St.)
The expected payoff in round 2 is
Vo= (1—0c)®(0"), (Value)

because in the limit of precise signals all observers of projects with 8 < 6*
successfully invest and receive 1 — ¢, and other players do not invest and
receive 0.

Using the law of large numbers, the measure of players per project not
investing in round 1 and thus continuing into round 2 is

ng =1—®(0"). (Search)
Let us substitute equation ( Value) and (Search) into (Crit.St.) and get
(1—c)2—=(14+0)P(0")] — 0" =0. (Modif.Crit.)

Equation (Modif.Crit.) has a unique solution because its left hand side is
continuous, decreases in 6* and is asymptotically linear in #*. Thus there is
a unique equilibrium of the mobile game in the class of symmetric equilibria.

The shortcut of computing the equilibrium in the limit & — 0 is justi-
fied by computing the symmetric equilibrium out of the limit, for o > 0.
Moreover, I show that there is no other equilibrium than the symmetric one:

Proposition 2.1. 1. There exists @ such that if o1 < @ and o9 < @, then:
the mobile game T'y;(o) has a unique Bayesian Nash equilibrium, it is
symmetric, and all players play threshold strategies.

9Downsized by § in round 2.
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2. 0*(o), Vo(o), and ny(o) describing the unique equilibrium of Ty (o)
converge in the limit o — 0 to solution 6%, Vs, and ny of the system of
equations (Crit.St.), (Value) and (Search).

The proof, found in appendix 2.A.1, has a structure typical for the global
games literature. I first specify equations for a symmetric equilibrium in
threshold strategies and show that these have a unique solution. Then I show,
by an argument based on iterated dominance, that no other equilibrium ex-
ists: for any assumed equilibrium values V5, ny a unique set of fundamentals
with which projects succeed is found. Obviously, a project always succeeds
it ; < 0 and never does if ; > 2 and I iteratively expand intervals of sure
success/failure until they meet at the critical state 6*, which is uniquely de-
termined by the assumed values V5, ny according to a critical state condition.
This is a unique candidate for an equilibrium with the assumed values V5,
no and if this truly is an equilibrium, the critical state 8* has to generate the
assumed values V5, ny according to value and search conditions. Thus any
equilibrium satisfies all conditions that specify the symmetric equilibrium
and hence no other exists.

2.3.1 Comparative Statics

[ examine comparative statics of the equilibrium in the limit & — 0 described
by equation (Modif.Crit.) with respect to the exogenous parameters ¢, y, o:

Corollary 2.1. The critical state 0* decreases in ¢, d and increases in y.

Proof: the left hand side of (Modif.Crit.) decreases in ¢, §, 6* and because
0*) = F (Q%y) it increases in y. The comparative statics of 6* follows
from the implicit function theorem. O (corollary 2.1)

In particular, the set of successful projects shrinks with higher mobility,
which decreases welfare. The welfare effects are examined in the next step:

Corollary 2.2. Comparative statics of welfare with respect to ¢, 0, and y is
as summarized in table 2.1.

Parameter ¢ cl 0 |y
Direct effect % -+

Strategic effect 39‘1 889; - - |+
Total effect % - |-/ -

Table 2.1: Overview of welfare effects.
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The ex ante expected payoff V' at the beginning of the game is

V=(1-cF <9;y> + (1—F(0*T_y>)5(1—c)F (9;y> (2.2)

The total welfare effect with respect to parameters ¢ € {c, d, y} consists of the

direct non-strategic effect %—V and the strategic effect ggv* %_eq* via the change
of the critical state *, so the proof of corollary 2.2 consists of computing the
derivations, which I omit here. Note that ge‘i is unambiguously positive, and
hence the sign of the strategic effect is the same as 2~ specified in corollary

2.1. The total effect of the increase of y is unambigg(é)usly negative, despite
the fact that the direct and strategic effects are of opposite signs, because
derivative % turns out to be smaller than 1 so 6* —y decreases with y; hence
the measure of successful projects decreases with .

Let us summarize both corollaries verbally: increased mobility, measured
by higher §, makes players choosier (see figure 2.2a) because it increases the
value of the outside option 0V, and this negative strategic effect may outper-
form the positive direct effect (see figure 2.2b). Similarly, a decrease in the
average project’s quality, higher!® ¢, makes players less choosy, as it decreases
the outside option value and also increases search activity, which in turn in-
creases the measure of observers of each project. Increase of ¢ causes two
strategic effects. A negative strategic effect, which already exists in the static
game, makes players choosier because the profits from successful investment
decrease, but this effect is partially counteracted by a positive strategic effect
in the mobile game: larger ¢ decreases the endogenous outside option value
and increases search activity, both of which enhance successful coordination.
The negative strategic effect always prevails and % is unambiguously neg-
ative.

The comparative statics is simpler to analyze in a limit 7 — 0 for which
a closed form solution can be obtained.!! The limit solution is reported in
appendix 2.A.2, because the expressions, although in principle simple, are
tiresome.

Corollary 2.3. Welfare unambiguously decreases with increased mobility
(higher &) in the ordered limit T — 0,0 — 0 (such that £ — 0).

Proof can be found in appendix 2.A.2.

10Recall that 6; is a measure necessary for the success of project j. Hence higher 6,
means worse quality of the project.

1T take the ordered limit lim, ¢ »—0. This assures that Z — 0 and thus the equilibrium
uniqueness holds.
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Though mobility is varied exogenously in our model, the finding of the
welfare’s non-monotonicity with respect to ¢ implies that, if welfare V' de-
creases with d, then were the players able to influence their mobility, they
could find themselves in a prisoners’ dilemma-like situation: each would ben-

efit from a unilateral increase of mobility but a mutual increase would harm
all.

2.3.2 Comparison of the Mobile and the Static Game
— the Self-Regulatory Property

The mobile game is constructed in such a way that its outcomes are directly
comparable with the static game outcomes because the measure of players
per project is the same in both games, the fundamentals are drawn from
the same distribution, and players can invest only once in both games. The
solution to the static game is described by the following proposition:

Proposition 2.2. (Morris and Shin) There exists @ such that the game
[Ls(o) is dominance solvable for all o < @. The unique strateqy surviving
iterated elimination of dominated strategies is a threshold strategy

o) :{ 1 ifx<al,

0 ifx>xl,
where the threshold x. converges to 1 — ¢ for o — 0.

Proof is in Morris and Shin (2003).'2
Welfare in the static game is

o, —
‘/stat = (1 - C)F (M) ’

T

and thus, if variance 7 of the fundamentals’ distribution is small, welfare Vi,
declines sharply with y or ¢ in the neighborhood of 6%,,,. In contrast, the
critical state 07, , in the mobile game adjusts to an increase of y or ¢ because
players increase their thresholds — they become less choosy. As a result, V'
decreases with ¢ and y markedly more slowly in the mobile game than in the

static game; this self-regulatory property is depicted in figures 2.3a,b.

12The threshold in the limit ¢ — 0 can be found by informal arguments similar to
those behind the equation (Crit.St.): only players preferring lottery with expected payoff
(1 —¢)p' + (—c)(1 — p*) = p' — ¢ to the safe outside option payoff 0 invest, and because
the conditional probabilities p® of the project’s success are distributed uniformly on [0, 1]
if the state happens to be critical, the mass of players believing that p’ > cis 1 — ¢ which
must coincide with the critical state.
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Figure 2.3: a) Comparison of V'(¢) in the mobile game — thick line, and the
static game — dashed line. (parameters: 6 = 0.9, y = 0.6, 7 = 0.03) b)
Comparison of V(y) in the mobile game — thick line, and the static game
— dashed line. (parameters: ¢ = 0.3, 6 = 0.9, 7 = 0.03)
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Let us further examine the self-regulatory property analytically. Denote
by P the equilibrium measure of successful projects P = ®(0*) = F(eﬁT;y);
the welfare increases in P. Let us compare the dependence of P on y in
the case of the static and the mobile game.'> The derivative a%m can be
computed straightforwardly in the case of the static game:

aP)stat o 1 Q:tat -y
a— - __f - _|>»
Y T T

hence for small 7, Py, declines quickly when y &~ 64,;. In the case of the
mobile game, equation (Modif. Crit.) gives:

Proy = ®((1 = )2 = (1+ 6) Ps] ). (2.3)

The self-regulatory property is caused by the negative influence of P, on
the right hand side of (2.3), which is absent in the static case. The derivative

1S
I
Py L (S

O a4 if (B (-0 +0)

Pd.f 1 ~f ( b y) is both in the numerator and in the denominator, and

8Pm

hence the derivative 2 does not dlverge even for 7 — 0 and 0, ., ~ v.

In fact, the derivative Slmphﬁes to ¢ in the limit 7 — 0 and for

1—c)(1+5)
non-extreme y (see appendix 2.A.2).

2.3.3 Limit of the Inefficient Search

Next, I examine the mobile game with very inefficient search, when § — 0,
and show that it does not approximate the static game. Let us consider the
mobile game with parameter ¢ = 0, which is out of the assumed range of
d € (0,1) and thus proposition 3.1 does not hold. Obviously, players are
indifferent between investing and not investing in round 2, which creates
equilibrium multiplicity. The equilibrium in which nobody invests in round
2 can be associated with the equilibrium of the static game. However, this
equilibrium is not approximated by the equilibrium of the mobile game as
d — 0+. The critical state 65 = lims_o. 60%() solves the limit of equation
(Modif.Crit.):
(1 - )2 — (03)] — 6 = 0,

13The analysis of dependence of P on c is virtually identical, and hence omitted.
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the solution of which differs from 6%,,, = 1 — c¢. This can be seen in figure
2.2a,b: lims o4 0(9) > s and also lims_o1 V(§) > 0 whereas welfare of the
static game would be virtually 0 for that setting of the parameters.'* The
intuition is that search increases the measure of observers of each project
from 1 to 1 + ng, which enhances successful coordination (also) in round 1.
Hence the critical state moves towards worse states and players are matched
to a successful project in round 1 more often. Welfare in the mobile and
the static game thus differs for purely strategic reasons for small § and the
difference does not disappear even if the gains from investment in round 2
are negligible but positive. Therefore, search options should not be ignored
in the analysis of coordination problems even when search is very inefficient.

2.4 Social Learning

I have assumed until now that players matched to a project j in round 2
do not observe the measure of investment into j realized in round 1. This
assumption is abandoned in this section and I find, somewhat surprisingly,
that social learning is irrelevant in the mobile game. The game analyzed
in this section remains as the mobile game described in section 2.2.2 except
that, additionally, players matched to j in round 2 observe a signal z* about
the measure of investment /;; into j in round 1. I assume Dasgupta’s (2005)
error structure which allows for analytical solution of the game:

Zi = Fﬁl(lﬁl) + wfi, (24)

where the error terms £ ~ N(0, 1) are independent across players and also
independent of the error terms ¢! of the signals xi. I argue below that w
depicts the informativeness of signal z' compared to zt; if w = 1 the two
signals have the same informativeness.

A pure strategy is a pair of functions ai(x;) : R — {0,1}, as(zq, 22, 2) :
R?® — {0,1} which prescribe actions in rounds 1 and 2 conditional on the
observed signals. This game is denoted as a learning game 'y (o). A mono-
tone strategy is a pair of functions a(x1), az(xe, z) such that a;(.) is non-
increasing, as(xs, z) is non-increasing in z,, non-decreasing in z, and does
not depend on x1; hence x; is omitted from its arguments. Players are re-
stricted to monotone strategies in this section. I find that the equilibrium
in monotone strategies of the learning game coincides with the unique equi-
librium of the mobile game in the limit & — 0. Although an equilibrium
in non-monotone strategies that differs from the equilibrium of the mobile
game has not been ruled out, I have not found such.

Proposition 2.3.

4 More precisely, it would be very small, V' — 0 in the limit 7 — 0.
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The learning game T'r(o) has a unique Bayesian Nash equilibrium in
monotone strategies. This equilibrium s symmetric and converges to the
equilibrium of the mobile game I'y(o) as o — 0.

Proof: for any equilibrium in monotone strategies the critical value 6*
must exist because the measure of investors /; monotonically decreases in 6;.
The existence of the critical state implies that the equilibrium is symmetric,
because the maximization problem of each player is identical as it depends
only on the common values of V5, #* and on the exogenous parameters, and
the best responses are strict.!®

The measure of early investors is [;; = F (%) because only those

who receive a signal below z} invest. Define z = z} — 02" and because of
the assumed error technology ' = 6; — oyw’. Thus, receiving signal z° is
equivalent to receiving signal Z* about 6; with error drawn from N (0, (0yw)?)
and independent of error of signal z%. Finally, players form sufficient statistics
% for 6; using x% and z":

_, 03Z 4 olwial
Ly = 2 2 )
05 + oiw?
: =i ofoiw?
with an error term (% — 6;) ~ N(0, U§+U%w2).

The equilibrium of the learning game therefore corresponds to the unique

equilibrium of the mobile game with & = (01,,/%). If (01,02) — 0O
then & — 0 as well, so the equilibrium of the learning game converges to the
limit equilibrium of the mobile game. [J (proposition 2.3)

Social learning is irrelevant in the mobile game, whereas in Dasgupta
(2005) social learning matters. This difference is due to the mobility present
in our mobile game but not in Dasgupta’s. Players delaying investment in
Dasgupta’s game remain in the same project as they were in round 1; they
only gain additional information — the signal z*. In contrast, the motivation
to wait (search) in our model is to find a project with better fundamen-
tals. Additional information 2 cannot be the decisive motivation for search,
because if signal x% is far away from 6*, it is a sufficient guideline for the
investment decision. The additional signal z* is useful only if the distance of
xb from 6* is of the order of o9, which has negligible probability for & — 0.
Hence giving players additional information z* does not alter the mobile game
equilibrium, because players are almost sure they will not need this informa-
tion in round 2 in the limit & — 0. In contrast, in Dasgupta’s game, a player

15Precisely, players are indifferent between investing and not investing only when ob-
serving threshold signals, which happens with 0 probability.
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Figure 2.4: Modifications Structure — The benchmark static game is devel-
oped into a network of related models.

in need of additional information in round 1 knows that this information will
be useful in round 2.

2.5 Robustness

I consider several other modifications of the mobile game and show that the
qualitative features of the equilibrium are robust to them. See figure 2.4 for
the relationships among individual modifications. In section 2.5.1, players
search repeatedly. In section 2.5.2 the payoff function is generalized, and
players are able to direct their search towards projects with better funda-
mentals in section 2.5.3.

2.5.1 Infinite Number of Search Rounds

The players of the mobile game have only one possibility of search. Are the
results robust to a change in the number of search rounds? The following
modification is examined: the game remains the same as the mobile game
described in section 2.2.2 except it does not end after round 2. Instead,
players decide in infinity of rounds, indexed by t € N, whether to invest into
a currently observed project or to search and continue to round ¢ + 1. As in
the mobile game, players can invest only once, hence they can search only
until they invest and afterwards cannot take any further action. The return
R(0;,1;) of a project j depends on its fundamentals #; and on the cumulative
investment [; over all rounds. Payoffs of late investors are downsized to
6'"'R(6;,1;), t being the time of investment. The payoff of players who never
invest is normalized to 0. Player ¢ who has continued to round ¢ receives
signal ] = 6; + o€, where j is the project she is matched to in round ¢
and errors € are independent across players and rounds. For the sake of
simplicity, I assume the same value of ¢ in all rounds. This game is denoted
as the infinite game.
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I sketch the solution of the infinite game in the limit ¢ — 0 in a similar
manner as was done for the mobile game in section 2.3. Let V be the ex
ante expected payoff at the beginning of the game and n be a measure of
observers of any project cumulative over all rounds; n is a common value
for all projects because the search is undirected. Consider the interaction of
players matched to a project j in any of the rounds ¢ € N. All observers of j
are in the same situation, except the payoffs of those in round ¢ are linearly
re-scaled by factor 6'~!, which does not alter their strategic position. Thus
they are of the same type and simultaneously'® decide between investing,
which pays R(6;,[;), and the outside option, which pays dV. Therefore,
observers of j interact in a simple global game.

Denote player i’s posterior probability of the project’s success by Pj. =
Prob(©; < 0*|X") as in section 2.3 and let us reiterate that Pj. is distributed
uniformly on [0, 1] conditional on 6; = 6*. Player 7 invests if and only if she
prefers the lottery of investment to the outside option:

Pj.(1 —¢)+ (1 — Pp)(—c) > 6V,
which implies the critical mass condition:
(I1—c—=dV)n=20". (Crit.st.”)
The value condition is
V=>1-¢)®)+V(1—2(0")). (Value’)

The measure of observers per project in round 1 is 1. Ratio 1 — ®(6*)
of the observers are matched to a project with 6 > 6* so they continue into
round 2. Out of these, the ratio 1 — ®(#*) continue into round 3,...The
cumulative measure of observers per project is

e}

n = Z (1— @(9*))%1 = 30 (Search’)

t=1

and because the search is undirected, each project is observed by the same
measure of players.
Substitute (Value’) and (Search’) into (Crit.st.”) and get

1-§
(1=c) [1— 6+ 00 (6)]®(67)

—0*=0. (Modif.Crit.”)

6The decision of players in all rounds can be can treated as simultaneous because
players do not observe the measure of investments from previous rounds.
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Equation (Modif.Crit.’) has a unique solution because its left hand side is
continuous, decreases and is asymptotically linear in #*. Moreover, it de-
creases in ¢,d, 6* and because ®(6*) = F((%T;y), it increases in y. The
implicit function theorem implies that 8* decreases in ¢, 6 and increases in
y, exactly as in the mobile game. The welfare effects are also the same as
in the mobile game and table 2.2, which summarizes the signs of the welfare
effects, remains valid.

The infinite game has no other equilibrium except the symmetric one:
any assumed pair V' and n imply a particular simple global game describing
the interaction of players observing a project j. This global game has a
unique equilibrium, with critical state 6* depending on V and n according
to (Crit.st.”). Thus any V and n imply a unique 6*, and any 6* implies a
unique V and n according to equations ( Value’) and (Search’). Hence any
equilibrium has to satisfy the triplet of equations (Crit.st.”), (Value’) and
(Search’), which has a unique solution.

As mentioned in section 2.2.2; a player of the infinite game never wishes to
return to a project she has observed in an earlier round. If she has considered
the expected payoff of some project inferior to search, then she will not
change her opinion after any number of search rounds, as she does not learn
anything new about the project nor about the underlying distribution of
fundamentals. Thus, the possibility of returning to earlier projects can be
introduced without any consequences on equilibrium behavior.

2.5.2 General Payoff Functions

Until now, I have been analyzing games with a particular return function
(2.1). In this section I take first steps in examining the effects of mobility for
a general return function. I do the analysis in the framework of the infinite
game rather than the mobile game because the former is simpler to analyze,
as all the players are of the same type, whereas in the mobile game the players
of round 1 and 2 differ in their outside options.

The analyzed game is the same as the infinite game described in the
previous section 2.5.1, except with a general return function R(6;,1;). As in
the previous section, I want each project to generate a simple global game
with a unique equilibrium, conditional on V' and n. To assure this, let us
impose Morris and Shin’s (2003) assumptions on R(6;,(;), slightly modified
to fit our setting: let ) denote the positive part of the range of the return
function R(6;,1;).

MS1: Action Monotonicity: R(0;,1;) is weakly increasing in ;.
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MS2'7: State Monotonicity: R(6;,1;) is weakly increasing in 6;.

MS3: Strict Laplacian State Monotonicity: for any V € V, n € [1,+00),
there exists a unique 0* € R such that + [* R(0*,1)dl = oV.

MS4: Uniform Limit Dominance: for any V € V, n € [1,+00), there exist
6 and 0 and € > 0 such that 1. R(6,1) < —e + 6V for all [ € [0,n] and 0 < 0
and 2. R(,1) > e+ 6V for all [ € [0,n] and 6 > 6.

MSS5: Continuity: fol g(l)R(x,1)dl is continuous with respect to signal z and
density g(.).

Proposition 2.4. Suppose MS1-MS5 are satisfied. Then, in the limit o — 0,
all Bayesian Nash equilibria of the infinite game with the return function
R(0;,1;) are symmetric and in threshold strategies. Variables 0, V and n
describing the equilibrium satisfy:

31/ R(O°,1)dl = 6V, (Crit.st.q.)
nJo
+o00

V= / R(0,n)d®(0) + sV @(0), (Value.g.)

- (Search.g.)

n_l—(ID(Q)’ earch.g.

Proof: values V' and n are defined in any equilibrium. For any assumed
pair V', n interaction of observers of any particular project is a simple global
game with the payoff function R(6;,[;), the outside option value 6V, and
the measure of players n. Because of the assumptions MS1 — MS5 and the
normality of the errors’ distribution, this simple global game satisfies propo-
sition 2.2 in Morris and Shin (2003) and thus has a unique equilibrium with
threshold #* satisfying equation (Crit.st.g.). Moreover, threshold 6* deter-
mines expected value and search activity, which gives equations (Value.g.)
and (Search.g.). O (proposition 2.4)

However, proposition 2.4 does not guarantee equilibrium uniqueness. There
is an example of the return function

RO,1)=0—1+1, (2.5)

for which the system of equations (Crit.st.g.), ( Value.g.) and (Search.g.) have
multiple solutions (see figure 2.5). In such a case, each solution represents
a symmetric equilibrium in threshold strategies differing in the endogenous

1"Note that R(6;,1;) as described in (2.1) is weakly decreasing in 6; instead of increasing
and thus MS2 is formally not satisfied. However, this can be accommodated by introducing
f=1-6.
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Figure 2.5: Payoff R(6;,1;) = 6; — 1 + [? generates equilibrium multiplic-
ity. In one equilibrium, the full line, players invest only in projects of very
high quality; hence search activity and measure of investment into successful
projects are high, and returns of successful projects are very high. The in-
centive to search is thus high too. In the other equilibrium, the dashed line,
players invest in projects of medium quality, search activity and measure
of investment into successful projects is low, and hence successful projects
have only medium returns and the motivation to search is low. Welfare in
the first equilibrium decreases with improving distribution of fundamentals.
Parameters: 6 = .9, 7 = .01.
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values of the outside option and in the search activity and hence also in the
threshold.

Though the uniqueness is not guaranteed generally, I pinpoint two simple
classes of return functions, for which the equations (Crit.st.g.), (Value.g.)
and (Search.g.) have a unique solution and hence the equilibrium uniqueness
is guaranteed:

Corollary 2.4. Let the return function, satisfying MS1-MS5, be of the form
R(0,1) = p(0) + q(I) where q(l) is concave and the derivative ¢'(.) exists.
Then the game has a unique Bayesian Nash equilibrium.

Proof is in appendix 2.A.3.
Another class of return functions guaranteeing equilibrium uniqueness is

Cej —c ifa 9]) <lj,
R(0;,1;) = { —(c ) if aEGj) > 1, (26)

where a(6;) decreases and ((6;) increases in #;. This return function gen-
eralizes the coordination problem induced by return function (2.1) and was
studied in Morris and Shin’s (1998) model of currency attacks.

Corollary 2.5. Let the return function be of the form (2.6) and the deriva-
tives da'(.), ¢'(.) exist. Then the game has a unique Bayesian Nash equilib-
TIUm.

Proof can be found in appendix 2.A.3.

The simple form of the particular return function (2.1) has allowed us
to eliminate integrals in (Crit.st.g.) and (Value.g.), which is not possible for
a general return function, and therefore I do not draw general conclusions
about the comparative statics. However, examination of the return function
(2.5) shows that the non-monotonicity of welfare with respect to ¢ is not a
special feature of return function (2.1); it can be observed also in the case
of (2.5).1% Moreover, the return function (2.5) generates non-monotonicity
with respect to y (see figure 2.5). The intuition is that worse distribution of
fundamentals increases search activity and hence the measure of observers
of each project. Thus the measure of investment into successful projects
increases, and this positive strategic effect dominates the negative direct
effect because the return steeply increases in the measure of investors.

18For instance, for parameters y = 10, § = .9, 7 = .01 and for the solution #* = .997,
V =11.0, n = 1.67 welfare V locally decreases with §.
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2.5.3 Directed Search

To this point the search and matching to projects was assumed to be undi-
rected, and hence each project has been observed by the same measure of
players. This, although computationally convenient, is unrealistic. In this
section, agents are let to direct their search toward better projects. As a
consequence, the distribution of projects describing the matching outcome
differs from the distribution of physically existing projects.

Let the fundamentals of physically existing projects be distributed ac-
cording to p.d.f. ¢(.), but let us assume in this section that players are able
to influence the matching process such that they are matched to a project
drawn from ¢(.), with c.d.f. W(.). T assume return function 2.1 and use
the framework of the infinite game; players can search in an infinite num-
ber of search rounds, and each search leads to a project drawn from (.).
I also assume that ¢(.) and (.) satisfy the monotone likelihood property,
% is decreasing. Accordingly, better projects, characterized by lower 6, are
observed by more players than are worse projects. This game is dubbed a

directed search game.

Proposition 2.5. The directed search game has a unique BNE in the limit
o — 0.

Proof: The measure of observers o(6;) depends on project j’s fundamen-
tals ;. Let n be the measure of all searchers per project cumulatively over
all rounds. The number n would also be the measure of observers of each
project in the previous sections, but in this section the observers are dis-
tributed unevenly. Value n induces o0,,(6;) observers of project j:

)
On(ej) - ¢(93)

Number n and the expected ex ante payoff V' are defined for each strategy
profile. Interaction among all observers of project j could be formalized as
a simple global game in the previous sections. To proceed in the same way
here, the measure of observers needs to be renormalized in order to avoid
its dependence on ;. Interaction of o,(f;) observers described by the return
function

(2.7)

[ 1—c ifl>0,
R(ej’”{—c if | <6;

can be equivalently described as the interaction of players with measure 1
and the return function




where R,,(.,.) is defined on R x [0, 1]. In other words, investment is measured
in relative instead of absolute terms, and the return function are modified
accordingly. Function f?n(, .) is non-decreasing in [ and non-increasing in ¢
on its definition range.!® This modified description of the interaction associ-
ated with project j is a global game and satisfies conditions of theorem 2.2
in Morris and Shin (2003). Thus each assumed pair of values n, V' generates
a unique critical state 8* according to

1
/ R, (6*,1)dl = 6V,
0

which can be simplified into

9*
The critical state 8* implies values V' and n: The value condition is
V=(1-c)¥)+ (1—¥(g))V. (Value.DS.)
Measure n of searchers per project cumulatively over all rounds is
- - 1
n = Z (1- \If(é’*))t t= 0Dk (Search.DS)

t=1

Note that the value and search condition depend on the distribution describ-
ing the matching process, not on the distribution describing the physical
occurrence of states.

Substituting ( Value.DS.), (Search.DS ) and (2.7) into (Crit.st.DS.) gives:

1—96 0* . :
S T T L (0 R R Mol Crit-D)

which has a unique solution as the left hand side of (Modif. Crit. DS) is contin-
uous, positive for §* < 0, decreasing for 6* > 0, and negative for sufficiently
large 6. O (proposition 2.5)

Comparative statics can be computed in the same way as in the case
of the mobile or the infinite game: the left hand side of (Modif.Crit.DS)
decreases in ¢, 6 and 6*, hence the solution #* decreases in ¢ and 6. The
comparative statics thus remains the same as in the case of the mobile and
the infinite game. Furthermore, numerical solution of (Modif. Crit. DS) shows
that welfare is non-monotonic in ¢ for some parameters.

¥Note the non-monotonicity of %}6). However, Oiw) increases for # > 0 and though it

can decrease for § < 0, it is then always negative and thus smaller than le [0, 1].
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2.6 Conclusion

I have studied search among many simultaneous projects, each being a co-
ordination problem. Players, dissatisfied with the signal about the project
they currently observe, may search for another of the projects, but search
is costly. This mobile game is an expansion of a simple benchmark global
game, labelled a static game, from which it inherits equilibrium uniqueness
allowing for examination of comparative statics. The mobile game has a
“self-regulatory” property: any effects characteristic for the benchmark static
game are partially counteracted by a strategic effect in the opposite direc-
tion through the endogenous changes of the outside option values and of the
mass of observers of each project. Thus the occurrence of coordination fail-
ures is notably robust to the changes of exogenous parameters such as the
distribution of fundamentals.

The self-regulatory mechanism implies that a project’s coordination fail-
ure is determined not only by the absolute state of economic fundamentals
but also by its relative ranking compared to other projects. This may ex-
plain the occurrence of investment crises despite substantial improvements in
the distribution of countries’ fundamentals over the past decades. In fact, I
have found a payoff function for which an improvement in the distribution of
fundamentals may increase the amount of coordination failures and decrease
welfare. Improvement in the distribution decreases search activity which re-
sults in investment scattered among more projects, and this may outweigh
the direct positive effects.

Similarly, welfare may decrease with mobility. The positive direct ef-
fect of lower search costs is counteracted by a negative strategic effect since
lower search costs increase the outside option value, which hampers success-
ful coordination. Again, the strategic effect may prevail and so the welfare
is non-monotonic with respect to mobility. The result may be a prisoners’
dilemma-like situation. While a fixed, exogenously given mobility was con-
sidered, real investors are able to unilaterally increase their mobility, which
could be modelled as an increase of . Obviously, any investor would benefit
from the unilateral increase, but the collective increase would harm all.

The qualitative features of the comparative statics of the mobile game
seem to be robust to modifications; I have considered the possibility of social
learning, infinite number of search opportunities, directed search, and general
payoff functions satisfying strategic complementarity.

The mobile game is a realistic extension to many static global games
applications. For instance, while Morris and Shin (1998) study a coordination
game of speculators considering an attack on an isolated currency, the mobile
game allows for the incorporation of parallel coordination problems of other
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currencies. The cost of search can be associated with the cost of acquiring the
private signal x; about currency j. It was shown that occurrence of successful
coordination always decreases with lower search costs. Thus, the low cost of
acquiring private signals about other currencies decreases the occurrence of
currency attacks.

The possibility of analyzing the influence of mobility on coordination
failures makes the model a useful framework for a study of globalization’s
consequences. Numerous projects succeed only if many agents coordinate
their efforts. Globalization allows people skeptical about the risky project
they were matched (born) with, to search for another risky opportunity. On
the one hand, higher mobility allows agents to avoid risky projects with bad
fundamentals; on the other hand, it lowers their ability to coordinate on
risky investments. Either effect may prevail under certain circumstances. A
firmer connection of the model to globalization processes is an opportunity
for future research.

2.A Appendix

2.A.1 Proof of Proposition 3.1

1. I first formulate conditions for symmetric equilibrium in threshold strate-
gies characterized by Vs, ns, xj, x5 and 6* and later prove that no other
equilibrium exists.

Critical state 6" satisfies a critical mass condition: if the realized state of
a project j is 6%, the measure of players investing into j, because they have
received a signal below x}, must be precisely 6*:

F <x1 ) + F <x2 ) ng = 0", (crit.st.”)

01 02

The players combine signals z! and prior beliefs to form a posterior be-
lief about the fundamental 6;. Both the prior distribution and the distri-
bution of errors are normal distributions and thus the posterior distribu-
tion in round ¢ € {1,2} is also a normal distribution N(e;(z!,y),u?) where

2 2 2.2
__ ojy+TT __ O;T . . . . .
ez, y) = o and uy = el Knowing the posterior distribution, the

expected payoff for investing into j, conditional on signal % can be expressed:

() () ().

A player observing x] must be indifferent between investing and the outside
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option value 0V5. This gives an indifference 1 condition:

F (w) =4V, (indif.1)

Uy

A player observing x5 must be indifferent between investing and the outside
option which is 0 in round 2. This gives an indifference 2 condition:

F (e_e;(m?y» —c=0. (indif.2)

U2

The equilibrium value V5 can be expressed in terms of 6* as a solution of
a nonstrategic maximization problem. Investing into j gives a lottery with
expected payoff Prob(©; < 0*|z2)—c and players invest only if that is greater
than 0. This gives a value condition:

Vo = E[Maz(Prob(0; < 6*|X3) — ¢,0)], (Value”)

where the expectation is over unconditional distribution of X&.
The unconditional distribution of signal x} is N(y,7? + o}). Players
observing signal xi > z} search, which gives a search condition:

i —vy
nf=1-F| —21_—2_1|. Search”
; ( L U%) (Search”)

I have specified a system of five equations (crit.st.”), (indif.1), (indif.2),
(Value”), and (Search”) for five unknowns 6*, x7, x5, V2 and ne. Next, let us
prove that this system has a unique solution if o is sufficiently small. Express
x} = x1(0*,V3) as a function of 6* and V5 from (indif.1):

2 2
* _ Ol\p« 01 -1 01
x1(0 >V2)—(1+§)9 —7\/72+0%F (C+5V2)—§y, (2.8)

and x3 = x2(0%) as a function of §* from (indif.2):

o2 o9 o2
*Y 1 2 * 2 21—1 72 ) ]
x2(0") =1+ —=)0 — \/T2+ 03F (¢ Y (2.9)

Substitute (2.8) and (2.9) into (crit.st.”):

F

+

2 2
VTP e+ V) + 50— )

T

F

T 72

2 2
VT B py 4 e - y)] ns — 0% =0, (2.10)
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and denote the left hand side of (2.10) as A(V3, ng, 0*). The function A(V3, ng, %)
increases in no and decreases in V5. It also decreases in 6* for sufficiently
small o because the derivative 24 is bounded above by \/%LZQ"? —1<

g =
#WQ—l which is negative for small . The function A(V3, no, %) can

be naturally interpreted as a measure of investment into j when the project’s
fundamentals 6; (unknown to players) happens to be §* and V;, no, 6* are
equilibrium values.

Our next aim is to eliminate unknowns V5 and ns by expressing them
as functions of #* in order to express A as a one-dimensional function of 6*.
The condition ( Value”) has the form Vo = v(6*) but variable ny = n(x7) is
a function of x] according to (Search”), so first I have to express x} as a
function of 6*: =7 = x1(0%) = x1 (6%,v(0*)). Function v(6*) increases in 6*
but monotonicity of x1(#*) is not guaranteed:

dx _ ox1 Ox1 dv
do* 00* OV, do*’

o " o dv
because the term 5 is positive but the term 33 75

negative. However, the

sign of the derivative %,} is determined for sufficiently small o; because the
2
two terms are of different orders of magnitude. The term ‘3’5: =1+ :—5 is of

0 dv

order o7. The derivative g—’{é is of order o;7, and 2o 18 of order % because
v(0*) increases from 0 to 1 — ¢ within the increase of 6* of order 7. So the

; g—"‘é jgi is of order oy and thus it is negligible compared to the first term
X1

5o+ for sufficiently small o;. This implies that y(6*) increases with 6* for
sufficiently small o.

Condition (Search”) specifies that ny = n(x}) is a decreasing function
of x3, so ny = 7(6*) = n(x1(0*)) increases in 6*. Let us now substitute
Vo = v(0*), ny = 7(6*) into (2.10) and get the equation with one unknown:
A0%) = A(v(0%),7(6%),0%) = 0. Given the monotonicity of v(0*) and 77(6%)
it is easy to check that \(0*) decreases in 6*. Moreover it is asymptotically
linear in 6* and continuous, therefore the equation A(#*) = 0 has a unique
solution.

term

I have found a symmetric equilibrium in threshold strategies and have
shown that there is only one of this kind for sufficiently small o. Next,
let us show that, for sufficiently small &, no other equilibrium exists: each
equilibrium generates values V5, ny and a success set S of all values 0; for
which a project j succeeds. Note that V5, ny and S are known by players in
equilibrium.

Let us consider a project j and a random variable P, = Prob(©; € S|X})
that denotes the posterior probability of the project’s success after player ¢
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observes signal X;. Let k(Va, ns, S,60;) be the measure of investors for given
Va, ng, S and for the state of the project (unknown to players) being 6;:

k(Va,ny, S,0;) = P?"ob(Pé1 > c+0V4l0;) + ngProb(Pé2 > clb;).

Note that k(.) increases in S; precisely S D 8" = k(Va,n9, S, 60;) > k(Va,ng, 5, 60;).

Let m(Va,ng,0',0;) = k(Va,ng, (—00,0'),0;) — 6, be the measure of in-
vestors net of ¢; in a special case when the success set is an interval, S =
(—00,0). Note that m(Va,ng,0%,0%) = A(Va,ne,0%) as A(Va, ng, 0*) was
formed from condition (crit.st.”) and hence it coincides with the definition
of m(Va, na, 0*,0%).

Next, assume that V5, ny attain some particular values in equilibrium. I
will show that there is a unique success set S compatible with this assump-
tion: surely S O (—00,0) as the measure of investment /; > 0. Moreover
A(Va,ny,0) > 0, hence m(Vs,n2,0,0) > 0 and because the function m is con-
tinuous, there exists € > 0 such that m(Vs, ny,0,€) > 0. Value m(V3, ng, 0, €)
is a lower bound for the measure of equilibrium investment into a project
with 6; = € because the true success set contains (—oo,0). Thus a project
with 0; = € surely succeeds. Thus a project surely succeeds for all § < ¢
because m(Va, ng, 0, 0) decreases in . Hence S O (—o0,€). This argument
can be iterated in the same manner and expand the interval of sure suc-
cess further into the region of higher 6;, up to the minimal ¢ for which
m(Va,na, @,0") = 0, which is the minimal 6’ solving A(V5,ny,0') = 0.

Symmetric arguments apply from above. The project never succeeds for
6 > 2 because 2 is the upper bound of observers of each project. Again,
the interval of infeasible success can be expanded to (0", 00), where 6" is the
maximal solution of A(Va,n,8”) = 0.

A(V3,ng, 0) decreases in 6 for any Vs, ng so equation A(V3, ng, 6) = 0 has a
unique solution, and therefore 8’ = #”. Hence any pair V5, ny implies a unique
critical state 0y, . that satisfies equation (2.10). On the other hand, the
critical state 6* uniquely determines equilibrium values V5, ny as functions
v(0*) and 7(6*). Therefore equilibrium values V5, ny and 6* must coincide
with values of the unique symmetric equilibrium in threshold strategies and
thus no other equilibrium exists.

2. Equations (2.10), ( Value”) and (Search”) converge to equations ( Crit.St.),
(Value) and (Search) as o — 0, hence their solution 0* (o), Va(o), and ns (o)
converges to the solution of the latter equation system. O (theorem 3.1)

2.A.2 Limit ™ —0

I find a closed form solution for the mobile game in the ordered limit 7 — 0,
o — 0, where 7 and o approach 0 in such a way, that the private signals are
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y<(l—c)1=0)|(1-c)1=0)<y<(1l—-¢)2|(1=c)2<y
0* (1—-¢)(1-9) Yy (1—0¢)2

* 2—2c—
e (0") ! (D) 0

Table 2.2: Closed form solution of the mobile game in the ordered limit
T—0,0—0.

much more precise than the prior distribution, £ — 0.

The equilibrium is described by equation (Modif. Crit.) which I reproduce
here for convenience:

(1—0)2—(14+6)D(")] =0"
I solve (Modif.Crit.) by guessing and verifying:
e T < 0=9(0) 5 0=0"— (1-c)2<y,
o Q*T—*y>>0:>CI>(9*)—>1:>0*H(1—0)[1—5]>y,

« 0y (1= (1402009 =y = 9(07) = .

Table 2.2 summarizes the solution of equation (Modif. Crit.) in the limit 7 —
0.
Next, I substitute ®(0*) into the welfare equation (2.2) and get a closed

form expression for V. Welfare in the extreme regions is 0 respectively 1 — c.
Welfare for the medium value of y is

27 (1+6)+c[-4+0 (—4+y)+y—20yl+2—y) 1+*+dy)

V= 2
(I1—c¢) (149)

It is possible to compute ‘fi—‘g explicitly:

v (1-5) (2-2c—y)’

d  (1-c¢)(1+6)*

which is negative for all § € (0, 1), so an increase in mobility unambiguously
decreases welfare in the limit 7 — 0. O (lemma 2.3)

2.A.3 Proof of Corollaries 2.4 and 2.5

Proof of corollary 2.4: unknown V' can be eliminated by expressing it from
(Value.g.) and substituting it into (Crit.st.g.). For the sake of simplifying
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tedious expressions I omit arguments of functions, but let us keep in mind
that n = #(9*) ete. I get

l/anl— d /m Rd®(0) (2.11)

Denote the left and right hand side of (2.11) by LHS(6*) and RHS(0*) and
show that they satisfy the single-crossing property: A simple manipulation
gives derivatives:

LHS'(0%) = (—/ Rdl+nR) o+, (2.12)
0
+o00 5¢
RHS'(07) = | =R +nhi+ 5 5(1)/ RdD(0) | 5= (2.13)
_ o _

J/

-~

(*)

Use the equality in (2.11) and replace the term (*) in (2.13) by + [* Rdl.
Next, combining (2.12) and (2.13) find the difference of derivatives:

LHS'(6) — RHS'(6%) = p'+

R(n(1—5®)+5)—/ Rdl <1—6<I>+§) —onRy
n

0

1—6d

J/

(%)

Let us now show that LHS'(6*) — RHS'(6*) is positive. Derivative p/
is non-negative by assumption MS2, fraction ﬁ is positive, and the term
(*%) is positive because

) Rm2 " n?
(%) = (1—5@—1—5) (Rn— 5 —/0 Rdl)—k(l—(s)?,

~— S———
(1) (D

where part () is positive as R(#, ) is assumed to be concave with respect to [;
part (I7) is a residuum of the examined expression and it is positive. There-
fore LHS(6*) crosses RHS(0*) always from below, and the single-crossing
property implies uniqueness of the solution. O (corollary 2.4)

Proof of corollary 2.5: equations (Crit.st.g.), (Value.g.) and (Search.g.)
simplify into
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(1 - a(Z*)) C(0) —c =6V (2.14)

+oo
V = / (C(07) — c)dD(0) + P(67)0V (2.15)
0*
1
After eliminating V' and n one gets
) too
l—a(l=d)|(—c= =33 /9* (C—c)dd(6). (2.17)

Denote the left and right hand side of (2.17) by LHS(6*) and RHS(0*) and
show that they satisfy the single-crossing property: The derivatives are

LHS'(0") = —d' (1 — ®)( + apl + (1 — a(1l — ®)){, (2.18)
and LHS'(0*) is positive in an equilibrium, because o’ < 0, ¢’ > 0 and in

equilibrium 0 < ¢(6%), 0 < a(6*) < n(= =5

1- 60 (1-60)?

N

9*

RHS'(6) = ——° (¢ — )+ 20 / o ade)  (219)

=)
Use the equality in (2.17) and replace the term (*) in (2.19) by 1f%[(l -
a(l —®))¢ — ¢]. A simple manipulation leads to
da (1 —®)(o
1-00 7
and hence RHS'(0*) is negative in equilibrium. Therefore the single-crossing
property is satisfied and thus the solution is unique. [J (corollary 2.5)

RHS'(6%) = (2.20)

2.A.4 Summary of the Main Notation

Ezogenous parameters: Endogenous variables:
¢ Sunk cost of investment. Va Expected payoff in round 2.
0 Discount factor. ne Measure of players observing each project in round 2.

o? Variance of private signal at t. z} Threshold signal at round ¢.

72 Variance of prior distribution.  #* Critical state.

y Average state of fundamentals. [; Cumulative investment into project j.
¢; Fundamentals of project j.

2 Private signal of player i.

Games analyzed:

66



Static game: A benchmark simple global game.

Mobile game: Same as the static game but players are allowed to search
once for another project.

Learning game: Same as the mobile game but players in round 2 receive a
signal about the amount of early investment from round 1.

Infinite game: Same as the mobile game but players are allowed to search
infinitely many times.

General payoff: Same as the infinite game but a general payoff function
satisfying strategic complementarity is assumed.

Directed Search game: Same as the infinite game but the search is di-
rected, and hence better projects are observed more often.
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Chapter 3

Strong Enforcement by a Weak
Authority

Abstract

This paper studies the enforcement abilities of authorities with a limited com-

mitment to punishing violators. Commitment of resources sufficient to punish
only one agent is needed to enforce high compliance of an arbitrary number
of agents. Though existence of other, non-compliance equilibria is generally
inevitable, there exist punishment rules suitable for a limited authority to
assure that compliance prevails in the long run under stochastic evolution.

Keywords: Commitment, Enforcement, Punishment, Stochastic Evolution.
JEL classification: C73, D64, H41.
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3.1 Introduction

Centralized authorities, such as governments, or decentralized ones, such as
peers, use threats of punishment to enforce norms. However the authority,
whether centralized or decentralized, achieves compliance only if it is able
to commit to the punishment threat. Punishment is often costly, and hence
an important determinant of the authority’s success at enforcement is the
amount of resources committed for punishment. In this paper I argue that
both kinds of authorities are similar in that they can enforce high compliance
of many agents with only few committed resources. The argument is as
follows: suppose that the authority is limited in that it can commit only
resources that suffice to punish just one agent by an amount higher than the
agent’s cost of compliance. Then, the authority’s punishment threat induces
among the agents a game with an equilibrium, in which all agents comply,
as no agent wishes to deviate individually. For a centralized authority this
implies that it is able to control an arbitrary number of subordinates as long
as it is able to control one. Similarly, it is possible to apply this observation
to decentralized peer enforcement in a public good game with punishment
option. N players, each committing one unit for punishment, can enforce
individual contributions of approximately /N units, and can collect altogether
approximately N? units.

However, even though a small punishment commitment may deter in-
dividual defectors from deviating, the existence of a non-compliance equi-
librium would appear to be unavoidable. The committed resources are in-
sufficient to punish all and therefore, if no agents comply, the punishment
of each is small compared to the cost of compliance. Yet, as shown below,
any limited authority may avoid the non-compliance equilibrium — at least
in the long run — by choosing a proper punishment rule. The supporting
argument is contingent on the authority’s ability to punish colluding viola-
tors at least slightly. I divide authorities into two categories along this line.
Collusion-vulnerable authorities cannot punish if all agents coordinate on the
same level of non-compliance. Anger-based peer enforcement is a prime ex-
ample, because punishing after a perfect collusion would require the punisher
to be angry with peers who have perpetrated the same offense as herself.!
Collusion-resistant authorities are able to punish by at least some amount
even after a perfect collusion. The punishment of each colluding agent may
be arbitrarily small so even an authority with limited committed resources
can be collusion-resistant.

IDecentralized authority based on peer enforcement may more frequently belong to
this category but even a centralized authority such as a government may be constrained,
for instance politically, to punish agents unified in a common non-compliance action.
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Let us first present a punishment rule which eliminates the non-compliance
equilibria yet which is suitable for a limited collusion-resistant authority. The
rule requires the authority to commit to punishing only the worst violator.
In the case of a tie the authority divides the punishment equally among the
worst violators which in turn induces a dominance solvable game among the
agents. The lowest possible compliance level is dominated as it guarantees
punishment, and an increase in compliance just above the second lowest level
saves the violator from punishment. Elimination continues by induction until
only high compliance levels remain in the strategy sets. The logic is similar
to that in Abreu-Matsushima (1992) mechanism, in which a small punish-
ment possibility is leveraged to a strong enforcement of truth-telling through
an ingenious dominance solvable game.?

A collusion-vulnerable authority, in contrast, cannot use the above “punish-
the-worst” rule as it requires slight punishment of all players even after a
perfect collusion. An equilibrium in which no players comply inevitably ex-
ists under a collusion-vulnerable authority as no player can be punished in
such an equilibrium. To assess which equilibrium prevails in the long run, I
build a stochastic, evolutionary model along the lines of Young (1993) and
Kandori, Mailath and Rob (1993). Agents occasionally but rarely deviate
from their best responses and experiment with a random action. As demon-
strated below, only a high level of compliance survives the evolution under a
simple punishment rule.

This application of stochastic evolution is similar to that of Kandori
(2003), who examines a public good game (without punishment option).
Kandori, in line with psychological game theory, assumes intrinsic motiva-
tion to adhere to norms as long as others adhere to it and analyzes the
resulting coordination problem. Occasional mutations — deviations from
best responses — cause shifts of the norm. Downward shifts require fewer
mutations than upward shifts in Kandori’s model. As a result, high con-
tribution levels eventually decay and only low contributions prevail in the
long run, exactly as observed in experiments (see Ledyard, 1995). As shown
below, adding a punishment option to the public good game reverses Kan-
dori’s result despite the fact that the commitment to punishment is limited.
Small upward shifts of norms require fewer mutations than any downward
shifts under a simple punishment rule. Therefore, for a low rate of muta-
tions, shifts, conditional that they happen, are almost always upward and
the stochastic evolution converges to high contribution levels. The evolution

20ne of the differences is that while Abreu-Matsushima mechanism can implement any
equilibrium of the underlying game, the punishment in our model forces players into a
non-equilibrium behavior in the underlying game.
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can be observed in the laboratory also in this case: the contribution level
typically increases during public good experiments with punishment option
(Fehr and Géchter, 2000).

The paper at hand does not examine where the authority’s limited com-
mitment ability comes from. For that reason, I choose a black box approach
for the motivation of punishment. The authority is assumed to be able to
commit to limited punishment. There is experimental evidence supporting
this assumption for the case of peer enforcement (e.g. Fehr and Géchter,
2000, 2002; Yamagishi, 1986). Punishment is modelled in this paper as an
automatic, limited reaction governed by a punishment rule which is a func-
tion of the individual compliance levels. The focus is on specifying rules
assuring high compliance under the constraint of limited punishment.

The analysis starts by examining an optimal punishment rule suitable for
a collusion-resistant authority in section 3.2. A collusion-vulnerable authority
and its associated coordination problem is studied in section 3.3. Section 3.4
concludes.

3.2 Punishment Rule Suitable for a Limited
Collusion-Resistant Authority

This section reproduces the model in Steiner (2005). It formalizes the in-
troductory argument that a collusion-resistant authority can always avoid
non-compliance equilibria. Though the authority of this section could be
centralized or decentralized, the model is formulated in the former setting,
as I discuss its connection to tax enforcement at the end of the section.

Each player i € Z = {1,...,N}, N > 1, simultaneously chooses an
action ¢; from a common strategy set S = {0,A,2A,..., LA}, where A is
sufficiently small, A < 1, and LA > N. The assumption of the dense grid is
needed to enable a sufficiently small increase in compliance. The grid is used
as a technically convenient approximation of the continuous strategy space,
so the assumption is not substantial. The assumption LA > N assures that
players are not physically precluded from high compliance. The action profile
of all players is denoted by c.

The authority has committed to a punishment rule p(.), p : S¥ — RY
that allocates punishment p;(c) > 0 to each player i after the authority
observes the realized strategy profile. The authority committed to the rule
before the players choose actions and the commitment has been commonly
observed by all players. The payoffs of the players are

ui(c) = —¢; — pi(c). (3.1)
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Thus ¢ is interpreted as the cost of compliance net of individual benefits
of the compliance, if these exist. (Z,SN,{u'}Y,) is the punishment game.
Only the one-stage interaction of players is modelled here; the behavior of
the (limited) authority is an assumption.

Enforcement of high compliance would be trivial if the authority could
commit to any punishment rule. However, the authority is limited in the
sense that it is at most able to commit to spending on punishment one unit
per agent:

Al: M <1 for any c.

Despite assumption A1, there exists a punishment rule that induces a
game with a unique equilibrium in which the actions of all players are ap-
proximately N. Denote the highest level below N by m.,, the lowest action
among players by [, and the second lowest by s with the convention that [ = s
if there is more than one player with the lowest action. Let the punishment
rule be

m]in (min(s,mcen) — ci> ife; =1,1<s,and ¢; < Meen,

pi(c) = 1 if ; =1,1=s,and ¢; < Meen, (3.2)
0 otherwise.

The marginal punishment, which is —=— > 1 or 5 > 1, suffices to mo-
tivate the player with the lowest action to increase her action, as long as
the lowest action is below my.,. Yet the total punishment expenditures are
always at most N because the punishment is not too costly even in situations
when many players coordinate on the same lowest level, as then s = [ and
each colluder is punished only slightly. This exact punishment rule is not
necessarily practiced in reality; Proposition 3.1 simply demonstrates that a
rule inducing high compliance exists.

Proposition 3.1. 1. The punishment game with punishment rule (3.2)
has a unique equilibrium with all N players playing meen.

2. Punishment rule (3.2) satisfies assumption Al.

Proof of Proposition 3.1. 1. Actions larger than m,., are dominated by me,
because a player who has chosen at least m., is never punished. Moreover,
the player with the lowest action below m.., always wishes to increase her
action by at least A because the increase of her compliance by A decreases
her punishment by —A > A or by 1 > A. Hence, the lowest level, 0, is
dominated by level A"After elimination of {0, A, ... kA}, level (k+ l)A is
dominated by (k + 2)A because (k + 1)A would be the lowest action among
the non-eliminated strategies, for £ =0, ..., =g — 2. Thus, the game can be
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solved by iterated elimination of dominated strategies. Only my., survives
this process.

2. There is either only one player with the lowest action, in which case
she is the only one being punished. The punishment is largest in this case
if s = Meen and ¢; = 0. Then the punishment is %m&m = N. Or there
may be many players with the lowest action, in which case s = [ and each
punishment is 1. Thus the cost is at most 1 unit per player in both cases. [J

A limited authority fulfilling A1 cannot enforce higher actions than N,
as this is the highest possible punishment it can inflict on a deviator. The
“punish-the-worst” rule is thus the optimal rule.

Alm and McKee (2004) experimentally study several tax enforcement
schemes and document that a rule similar to the “punish-the-worst” rule in-
deed elicits high compliance. The authors assume a coordination problem
analogous to the one in the present model: audit probability increases with
the difference between the average and agent’s reported income. This models
the use of the Discriminant Index Function (DIF) scores by the Internal Rev-
enue Service in the United States. DIF is a statistical score indicating levels
of suspiciousness of tax returns; those with above average DIF are more likely
to be audited. Such an endogenous audit probability rule leads to a coordi-
nation game, in which full evasion by all agents constitutes an equilibrium.
The experiment demonstrates that adding a small probability of a randomly
allocated audit in the case of perfect collusion prevents coordination on full
evasion. The intuition is the same as in the model of this section. Indeed,
the experimental data show a gradual increase in compliance, as players try
to escape the gradually increasing lowest position.

3.3 Punishment Rule Suitable for a Limited
Collusion-Vulnerable Authority

This section examines long run sustainable compliance levels under a collusion-
vulnerable authority. Unlike in the previous section, such an authority cannot
assure high compliance in the short or medium run because zero compliance
always constitutes an equilibrium. To compare the effectiveness of different
punishment rules, I assume that players occasionally, but rarely, experiment
with a randomly chosen action. I look for compliance levels that prevail in
the long run.

For the sake of concreteness, the model is formulated in the setting of
a public good game with punishment option which mimics in gross features
the experiments in Fehr and Géchter (2000, 2002). The next subsection
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describes the evolution in a fixed group of players. A modification describing
the evolution under a random matching protocol is given in subsection 3.3.2.

3.3.1 Partners Treatment

A fixed set of N > 3 risk-neutral players repeatedly plays the public good
game with punishment option in rounds ¢t € N, and each player ¢ chooses a
contribution level ¢! from the common strategy set S = {0, A, 2A, ..., LA},
LA > N. S is of the same structure as in section 3.2 but a denser grid
is required, A < ﬁ After the contributions c of all players are made
and observed by everyone, players automatically assign punishment points
to each other; pé- denotes the punishment i assigns to j.

The punishment pé(ct_l,ct) depends on the contribution levels of the
previous and current rounds in this section; pf : S™ x SV — R,. By al-
lowing mild history dependence, the model diverges from the experimental
design of the partners treatment in Fehr and Géchter (2000), who excluded
it in order to avoid reputation effects. The reputation effects are excluded
here by assuming myopic behavior. I can therefore permit history-dependent
punishment rules which are psychologically plausible and which allow higher
contributions than do memoryless rules. Although longer memories could
be considered, memory of length one turns out to be sufficient to support
contribution levels of approximately N, which is the highest possible level.
History dependence is not substantial for the qualitative results of the model.
The enforceable contribution level increases linearly in the number of players
even under a memoryless rule, but as ~ % instead of ~ N. Only memory-
less punishment rules are considered under the random matching setup in
subsection 3.3.2.

Players play myopic best responses to the previous action profile in each
round .3 That is, each player maximizes payoff under the punishment rules
assuming that her opponents will carry over their contributions ¢!~! from

the last round:

¢; € arg max {_Ci - pr (Ct Y (e, d5) ) } . (3.3)
J#

The public good does not enter the maximization problem; ¢; is interpreted

as the contribution costs net of the marginal increase of the public good.

Also, the cost of the punishment does not enter the maximization problem

although the agents bear the cost. The limited punishment is automatic

3The results would not be changed if players could adjust to their best responses only
with a certain probability.
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and thus is not part of the agents’ decision problem. Alternatively, I could
presuppose a behavioral utility function under which the limited punishment
would be optimal, but the main claim is that a small willingness to punish
leads to high contributions. The exact motivation to punish is outside the
focus of this paper. The optimization problem (3.3) can be understood as
a reduced form of a more complex optimization with the punishment stage
already solved.

The strategy set S and the punishment rules p;'.(., .) define a Markov
process (S%, Q) where the transition matrix Q is determined by (3.3). Note
that it is a memoryless process, despite the fact that the punishment rule is
history dependent, because the optimization problem (3.3) depends only on
the last round contribution profile ¢!~. The pair (SV, Q) is the unperturbed
process.

Assumption A1 reformulated for the decentralized authority setting is:
Al E#ip; <1 for all 7 and any c'~1, c’.

Assumption A1’ is stricter than A1 because it not only requires average
expenses for the punishment to be below 1, but also individual expenses
of each player to be below 1. The next assumption prohibits players from
punishing peers that have contributed the same amount as themselves®*:
A2: If ¢} = ¢ then p} = 0.

Assumption A2 implies that ¢ = 0 is inevitably a steady state of the
unperturbed process, so at worst a punishment rule does not induce any co-
operation and at best there are multiple steady states. However, as demon-
strated below, there exists a punishment rule under which increases of norms
are much less demanding than decreases. Hence high contributions prevail
in the long run.

In order to study the transitions between different steady states I intro-
duce, following the framework of stochastic evolution of Kandori, Mailath
and Rob (1993), occasional deviations from the unperturbed process: each
player plays best response with probability (1 — €) whereas with probabil-
ity € a “mutation” happens — the player chooses a random action from the
uniform distribution on S. A perturbed system is a pair (S, Q(¢)), where
Q(e) are the transition probabilities, with € > 0. The perturbed system
has a unique invariant distribution p¢, which is close to p* = lim._,o u¢ for
small e. Ellison (2000) provides an intuitive “mutation counting” technique
for the computation of p* based on the observation that step-by-step evo-
lution passing through several intermediate states, with each step requiring
few mutations, is quicker than a sudden evolutionary jump requiring the
simultaneity of many mutations.

4Which implies that players never punish themselves.
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I utilize Ellison’s observation and design a punishment rule under which
only one mutation is needed for an increase in contributions by one level, but
a decrease by any number of levels requires more than one mutation. As a
consequence, evolution reaches high contribution levels more quickly than it
escapes it. This intuition is formally expressed in the following proposition.
Let my,, be the highest contribution level below N — 2 and denote by My,
the state in which all players contribute mq,..

Proposition 3.2. There exists a punishment rule satisfying A1’, A2 under
which My, is the unique stochastically stable state, and the expected waiting
time to reach My, is of order O(e™1).

Proof of Proposition 3.2. The proof is based on the following lemma and the
theorem in Ellison (2000).

Lemma 3.1. There exists a punishment rule satisfying A1’, A2 for which:

1. Any common contribution level 0 < € < my,,, ¢ € S constitutes a
steady state of the unperturbed process.

1°. No other limit sets of the unperturbed process than those in 1. exist.

2. Deviation of only one player from a steady state with common contri-
bution level ¢ suffices to induce transition to the steady state with level ¢+ A,
for any € < My, ES.

3. Deuviation of more than one player from a steady state with common
contribution level ¢ is needed to induce transition to a steady state with a
lower level, for any ¢ < mpq,, ¢ € S.

Proof of Lemma 1 is given Appendix 3.A.

Having established Lemma 3.1, Proposition 3.2 is a consequence of El-
lison’s (2000) theorem that specifies the long run stochastically stable limit
set in terms of radius and modified coradius. The radius R(f2) is the num-
ber of mutations needed to escape {2 and hence property 3 in Lemma 3.1
and the fact that M,,, is the highest steady state assures that R(M,y,,) > 1.
The modified coradius CR*(2) is the maximal modified number of mutations
needed to reach €2 from other limit sets of the unperturbed process, where
the modified number reflects that step-by-step evolution is more probable
than sudden changes. In particular, a set €2 that is possible to reach through
a series of one or zero mutation steps from anywhere has CR*(Q2) = 1; see
Ellison (2000) for details. Property 2 in Lemma 3.1 guarantees that only one
mutation is needed for transition from a steady state with level ¢ to level
¢+ A and thus there is a path consisting of at most one mutation steps to
M4, from any other state, and hence CR*(M,,,) = 1. According to theorem
2 in Ellison (2000), R(Myer) > CR*(M,qe-) implies that M,,, is the unique
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stochastically stable state. The same theorem specifies the waiting time as
O (e CR (Mpar)) 0

Ellison provides an intuition for the speed of step-by-step evolution that
translates naturally to the current setting: An increase in the norm by one
contribution level is an € probability event as it can be induced by one muta-
tion. In contrast, a decrease in contribution level is an €? or rarer event as at
least two mutations are needed. Hence, conditional on a transition occurring,
it is almost always an upward shift, for small e.

It is worth noting that the waiting time O(e™!) to reach M, is of the least
possible order. The contribution level enforceable by an authority limited by
A1’ and A2 is bounded by N — 1 because this is the maximal punishment a
single deviator may suffer; thus the modified “punish-the-worst” rule induces
a nearly optimal contribution level.

3.3.2 Strangers Treatment

The model of the partners treatment in the previous subsection describes
evolution among a fixed set of players, evolving in isolation from the rest of
the population. Alternatively, players may interact with different peers every
round, in which case evolution occurs simultaneously in a large population,
from which the groups are drawn anew each round. This subsection sketches
evolution under the strangers treatment.

A population of KN risk-neutral players is randomly matched each round
into K > 2 groups of N > 2 players to play the public good game with
punishment option. The strategy set S = {0,A,2A,..., LA}, LA > N,
is of the same structure as in sections 3.2 and 3.3.1 but the grid is denser,
A< ﬁ In each round, players can punish only the peers within the
group they have been matched to and the punishment rules p(c) are history
independent, p;'. : SN — R,. As in section 3.3.1, punishment rules are
required to satisfy A1’ and A2. The unperturbed process is again the best
response dynamics and under the perturbed process, players choose the best
response with probability 1 — ¢ and with probability e choose a random
action from the uniform distribution on S, as in section 3.3.1. Let myg, be
the highest level below (N — 1) (gﬁji\[ ; it approaches N — 1 for large K and
N. Let My, be the Markov state in which all players contribute mg;,.. The
counterpart of Proposition 3.2 of subsection 3.3.1 is:

Proposition 3.3. There exists a punishment rule satisfying A1’, A2, under
which Mg, is the unique stochastically stable state, and the expected waiting
time to reach My, is of order O(e™1).
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Proof of Proposition 3.3. The punishment rule (3.4 in Appendix 3.A) with-
out exception satisfies all four properties in Lemma 3.1.° Proof of prop-
erty 1 and 1’ remains unchanged. Property 2 is implied by the inequality
A < —L—: suppose there is a single deviator j contributing more than the

KN—1°
norm ¢ prescribes. Then the probability that 7 will be matched with 7 is
KN1\7—11> and hence 7’s expected punishment is ﬁ%, which equals the

right hand side of the inequality. Hence the inequality assures that one de-
viator is sufficient to induce all other players to increase their contributions
by A.

The inequality mg, < (N — 1)(;_\,1_)? implies property 3: suppose that
cp = C < My for all k ¢ {i,j} and ¢; < ¢ Then a conservative estimate of
N1 (K-1)

N
o KN > 1 because

the slope of the expected punishment for player i is

% is the probability that j will not be in ¢’s group, thus ¢ will be the
N-1

only deviator in her group, and hence punished by m—’tr(E —¢).
The properties of Lemma 3.1 imply R(My,.) > 1, CR*(Mg,) = 1 and
Proposition 3.3 is a consequence of Ellison’s (2000) theorem as it was in

Proposition 3.2 of subsection 3.3.1. O]

The models in this section are not literal models of Fehr and Géachter’s
(2000, 2002) experiments. Their grids of contribution levels in the strangers
treatment experiments were not as dense as Proposition 3.3 requires, the in-
formation structure of the partners treatment in the (2000) experiment pre-
cluded history-dependent punishment, and, on the other hand, punishment
was cheaper in the experiments than in the model. Also, while experimental
subjects may have had a variety of motivations for contributing, the model
focuses solely on the contributions enforced by the threats of punishment. A
combination of Kandori’s (2003) model of intrinsic motivation and the mod-
els at hand could provide even higher estimates of sustainable contribution
equilibrium than do the present models alone.

The models suggest that the high contributions are due to the game’s
structure; that is, focusing the limited committed resources of all players on
one potential deviator. Keeping the commitment ability fixed, the contri-
butions increase linearly with the number of players. This insight is experi-
mentally confirmed by Carpenter (2005), who documents positive group size
effects in public good games with punishment option even after controlling
for the marginal group return of contributions.

Of course, the game requires quite a bit of information: the actions of
all players need to be monitored, which is feasible in small groups such as

5mpm« needs to be replaced by mg,. in the punishment rule and in Lemma 3.1.
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work teams. Still, the effect can be noteworthy for a reasonable group size.
Ten agents, each willing to spend only one unit for punishment, are able to
collect at least (10 — 2) - 10 = 80 units for a public good.

3.4 Conclusions

The models demonstrate that the commitment necessary for successful norms
enforcement is small compared to the total cost of compliance of all agents.
Agents in the compliance equilibrium consider deviating off the equilibrium
individually. Hence, to support the compliance equilibrium, the authority
needs only to be capable of substantially punishing one agent.

Nevertheless, other, non-compliance equilibria may exist. The main claim
of the paper is that authorities can avoid these non-compliance equilibria by
a proper punishment rule, even if their commitment capabilities are low.
A punishment rule focusing on punishment of the worst offender creates
competition among the agents and leads to a unique equilibrium with high
compliance levels.

However, authorities using such a rule need to be able to punish perfectly
colluding violators at least by a small amount, and many authorities fail
to do so. Yet even such collusion-vulnerable authorities can avoid the non-
compliance equilibria in the long run. They can introduce a punishment
rule which deters revolts of a small fraction of players and enables a small
fraction of players to initiate at least a tiny increase in compliance. Then,
given a sufficiently small mutation rate, the increases are arbitrarily more
times probable. High compliance prevails in the long run.

The prime application of the collusion-vulnerable authority model is the
public good game with anger-driven punishment of free-riders. Even if the
anger — a deviation from the homo oeconomicus framework — is limited,
it can go a long way towards modifying equilibrium behavior. The public
good game with punishment option is an instance of an institution that
efficiently utilizes this behavioral deviation; a systematic search for other
such institutions is needed.

3.A Proof of Lemma 1

Lemma 3.1. There exists a punishment rule satisfying A1’, A2 for which:
1. Any common contribution level 0 < € < myp,,, ¢ € S constitutes a
steady state of the unperturbed process.
1°. No other limit sets of the unperturbed process than those in 1. exist.
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2. Deviation of only one player from a steady state with common contri-
bution level ¢ suffices to induce transition to the steady state with level ¢+ A,
for any € < My, CES.

3. Deuviation of more than one player from a steady state with common
contribution level ¢ is needed to induce transition to a steady state with a
lower level, for any ¢ < mpq,, ¢ € S.

Proof of Lemma 3.1. let the definitions of [ and s remain as in section 3.2.
Consider a “modified punish-the-worst” rule:

1
par
1

(min(s,mpar) — cj> if ¢; =1, ¢;j < Mpar,l < s, and ¢; > ¢,

3

p; = if c; =1, ¢; < Myper,l = s, and ¢; > ¢,

otherwise,

—_

ez

(3.4)
except for situations when player k starts a rebellion against a norm of a
common contribution level ¢ in the previous round ¢ — 1, persists in that
rebellion in round ¢, and player j joins the rebellion; then the remaining
players concentrate on punishing the new free-rider 7, not the old k. Formally,
the exception states that (3.4) does not apply at ¢ when at ¢ — 1 all players
i # k contributed some common level ¢! = & < my,, and k contributed
dl<e and ¢t =i, i < ¢ and ¢; = ¢, for i ¢ {j, k} in round ¢. Then all
N — 2 players i ¢ {j,k} punish j in round ¢ each by amount

1

P ot
p;- = F— (c— Cj)'

The punishment rule suitable for the strangers treatment does not employ
this exception.

This rule satisfies A1’ because either player punishes only one of her
peers in which case she spends at most ﬁmpw = 1 or she punishes many

players and then she spends at most (N — 1)ﬁ = 1. The rule satisfies A2
because it prescribes punishing only peers who have contributed less than the
punisher. Let us verify that the modified “punish-the-worst” rule satisfies all
four properties in Lemma 3.1:

1. The best response to c!™! =€ and ¢! ; = ¢is8 ¢* = ¢. Hence a state in
which all players contribute ¢ is a steady state of the unperturbed process.

2. Suppose ¢ > €, ¢ =T < myq, for all j # 4. The best response of j # i
is ¢+ A, the best response of i is ¢. Thus, at t + 1, c!t! = ¢, c§-+1 =C+ A,
and at t 4 2 all players contribute ¢+ A which becomes the new steady state
of the unperturbed process.

6

5To avoid confusion, ¢} " = for all i and ¢} = ¢ for all j # i.
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3. Suppose that only one player has deviated from the common contri-
bution level in round ¢; ¢§ = ¢ < my,, for all j # i and ¢; < ¢ Then the
exemption applies in ¢ + 1 and the best response of all players in £ 4+ 1 is to
contribute .

1’. Consider a state ¢ in which more than one contribution level is chosen.
Let us distinguish two cases: in case A, N — 1 players contribute some
common ¢ and the contribution of only one player differs from ¢; case B
includes all other situations. If A arises, players converge to a common
contribution level € or ¢+ A within one or two rounds( see proofs of properties
2 and 3). In case B, the best response of each player i is to contribute {_; +
A > [, where [_; is the lowest contribution among i’s opponents. Therefore
the lowest contribution increases in those rounds when case B arises.”® Thus
in each round either [ increases or A arises, and because the set of the
contribution levels is finite, either [ converges to my,, or A arises and under
both eventualities players converge to a common contribution level. Il

"This does not hold in situations described in the proof of property 2. Therefore the
division of all situations into categories A and B is necessary.

8In the case of the adaptation of the proof for subsection 3.3.2 the best response is
l_; + A or higher.
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