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o (To our knowledge) literature tends to focus on
either:
» Resilience (min seed, max threshold etc.)
» Speed (conditional on spreading, how quickly?)

e But there is a natural tension between these objects
» Specific to threshold contagion
» Exception: Centola and Macy (2007): simple vs complex
contagion, tension in re-wiring simulations, will discuss later

Key intuition: many faraway (weak) links means fewer
local (strong) links (in proportion)
@ This paper: simple(st) model which channels this?



Model

@ Develop continuous network model in 1 dimension (R)

@ Analytically more tractable (c.f. global games)

@ Deterministic dynamics but approximates large random graphs
(Lovasz)

@ Link to Watts-Strogatz, Newman, Newman-Watts etc. models
of random graphs (but also important differences. More on this
later.)

@ Other extensions: many dimensions, less structure on
neighborhoods

@ | am counting on network people to tell me (i) what
generalizations are or aren’t important; (ii) how to test
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Results

o Tradeoff: contagion is faster in networks where it is harder to
initiate contagion
@ 3 simple propositions. Tradeoff...

» ...is stark when graphs ordered by FOSD: for every threshold,
one is harder to initiate contagion & spreads faster;

» ...can be absent for fixed thresholds under ‘single-crossing’
ordering: worst of both worlds—easier to initiate contagion, but
also spreads faster

» ...always occurs for any 2 graphs (but potentially different
contagion thresholds);



Model

@ infinite measure of agents indexed / € R sitting on a line. Each
agent has links of measure 1 (normalization).
@ i's links to the right given by G; : R, — [0,1/2] (‘CDF’)
» G;i(x) is the weight i places on agents at location [/, i + x].
@ Assume:
» G; admits a density gj : Ry — [0, 1] (‘g(x) is the weight placed
on agent x away')
» G; has decreasing differences i.e., g strictly decreasing on
support (*homophily’)
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Model

@ Impose symmetry and translation invariance
» symmetry: i's links on the left and right distributed identically
» translation invariance: /'s distribution of links over [i, i 4 x|
same as that of i’ over [/', " + x]

|
syminetry !

i —» 7
translation invariance
e Work with (single) G directly (sufficient statistic) rather than

with explicit description of neighbourhoods



Model

@ Binary action space: {0,1} ‘uninfected or infected’
g-contagion

Player i takes action 1 if and only if > g proportion of her neighbours
take action 1.

@ We will study the evolution of the set of infected agents.
o Let /; C R be the set of agent infected at t
@ j is infected at time t + 1 if and only if

/m 1[i = x € hlg(x)dx > g

oo

» Kind of unwieldy carrying an infinite-dimensional object around



Key simplification — interval contagion

o Key simplifications: Iy interval + g strictly decreasing

@ Implies {/;} are intervals (immediately from induction)
G(ulo) +x) = G(x) = ¢
1€ X
= ]

L 1 R

those further | those closer
than i from I;! thanito I;
are not I' are infected

[ 1
L

It+1 J R

@ Discussion:

» Ip is not minimal to induce contagion. (but can get LB)
» Homophily (at least in expectation) seems natural.



Defining resilience & speed

@ Let's keep track of measure of infected agents rather than sets.

» Define m; = ;u(l;) < measure of infected agents at t
» Define a; = my — my_1 < change in measure fromt —1to t

Definition (Contagion occuring)

Contagion occurs if lim;_, oo m; = 400

Definition (Resilience)
mo(G, q) :==inf my s.t. contagionoccurs
@ Note: could also fix my and look at max threshold g

Definition ((Limit) Speed)

a_(G,q) :=lim; o0 a




Expression for my
e Tuple (G, my, q) sufficient to pin down contagion dynamics.

Lemma
Contagion occurs from (G, mg, q) if and only if G(mg) > q

@ Sketch: (<= )Take Iy = [x,x + mp]. WLOG b/c translation
invariance. Let a;/2 be additional measure infected at t = 1 on
the left of [y and conjecture that > 0

@ We know that the guy x — a;/2 must be ‘indifferent':

G(31/2 -+ mo) — G(31/2) =qg< G(mo)

If x strictly prefers to take 1,

then by dec. differences someone
to the left must also take 1

&I ]

x—a‘l/ZL I() J R
X X+ myp




Expression for my

Lemma
Contagion occurs from (G, mg, q) if and only if G(mg) > q

@ Sketch: ( =) Consider any i < x and define € := x — i. If the
condition on G doesn’t hold,

g > G(mg) > G(e + mp) — G(€) becauseg is decreasing.

@ But then any i < x is not infected in period 1. So m;;; < m;
and lim;_,oo m; < mg < +00
o Useful expression from the lemma:

mo(G,q) = G }(q) (Min-Seed)

@ Interpretation: Local links matter for resilience
» G(x) is the ‘CDF’ of links: ‘what proportion of my links are less
than x distance away from me?’
» G71(q): ‘what’s the distance of guys around me which needs to
be infected before g proportion of my neighbours are infected?’




Expression for ay
@ Recall: a; = my — my_4
o Define G :=1/2 — G as the anti-CDF
o If infection occurs, a; solve the nonlinear diff. eqn.

G(a;/2) — G(a:/2+m;_1) =g

|
mass of infected neighbours: :
G /2) - G(a;/2+my_q) '
|
! g
|
|
|
|

—

| I 11

infected at start of t newly infected
(mass m;_1) at time t (mass a; / 2)




Expression for ay

G(a:/2) — G(a;/2 +m;_1) =g

e Path {a;}: will, in general, depend on G.
@ Observe that if contagion occurs, a; will be increasing.

» from decreasing differences since m;_1 = 26_1 as is growing
o But will converge to a limit:

A = lim a;
t—o0

=12(G)*(q)| since lim  G(at/2 + me_1) = 0.
mi_1—00
(Lim-Speed)

@ Interpretation: Distant links matter for speed.

——1 . . . . . C e
» G (q) is the distance ‘from the interval stretching to infinity
required to have g proportion of neighbours

» Contrast with Min-Seed: | mo(G, q) = G~1(q)




Tradeoff is stark when FOSD-ordered

Proposition
If G,G' € G are such that G < G', then for all g € (0,1/2),
(i) G is more resilient than G’ i.e., mo(G, q) > mo(G', q),; and
(i) G has a quicker limit speed than G’ i.e., a,,(G,q) > a(G',q).




Tradeoff is stark when FOSD-ordered

@ Moving from G to G’ as if we're ‘shifting mass’ from nearby
links (closer than x) further away (beyond X).

8

1R
=1




Tradeoff is stark when FOSD-ordered

@ Proof immediate from expressions...
@ Resilience: Fix any g € (0,1/2). G < G’ implies G < G'L.
Hence from our expression for mg

mo(G,q) = G (q)
< G Y(q) = mo(G', q).

@ Speed: If contagion do_esn"c_c/>ccur, speed is idenli/cally zero. If it
does, G < G’ implies G > G and so (G)™* > (G )™* and from
our expression for a,,

a(G,q) = 2(G) " (q) > 2(6")"(q) = ax(G', q).



Example: normal distributions

@ Suppose that i's links are ‘normally distributed’ (i is sitting in
the middle so i’s links are ~ N(i, 0?))

o G,(x) =®(x/o) — 3

@ Invert and rearrange...

mo(Gy @) = 7+ ®(q+3) | [0(Gy 0) = 20 - 0(1—)

@ High o: more mass on faraway links.




Other ways to shift mass...

@ Increasing the s.d. of normal is quite special...

@ We've seen that local links matter for resilience; faraway links
matter for speed.

@ These two things can coexist by shifting ‘middle links':

» Closer: more local links, less resilient
» Further: more tail links, quicker speed

Proposition

For G, G' € G, suppose that there exists some x € (0,400) such that

for all X' < x, G(x') < G'(x') and for all X" > x, G(x") > G'(x").

Then

(i) for sufficiently low values of q, G is both more resilient than G’
as well as has slower limit speeds; and

(i) for sufficiently high values of q, G is both less resilient than G’
as well as has quicker limit speeds.

= = = = = o}




Other ways to shift mass...

measure of measure of
1's links i's links
| G
7
| g
|
! r
I G
|
8
I
|
|
|
|
|
| more
I local -
| links more faraway links
| > < >
0 x distance from agenti (0 distance from agent i

@ Here G’ > G before x, and the opposite after X. Implies that G’
has more local links but also fatter tails
@ Note that g controls ‘how local’ and ‘how far away' the links
need to be for them to matter for resilience and speed
» lower g — more remote tails matter, more local neighbourhoods
matter



Other ways to shift mass...

@ Sketch: Choose ¢' = G(X) and note that by the condition of
single crossing at X in the proposition, for any g < ¢/,

mo(G,q) = G (q)
> G Y(q) = mo(G', q).

with the reverse equality for ¢ > ¢'. choose ¢” = G(X) and for
g < q” by the condition in the proposition,

2:(G,q) = 2G '(q)
<26 (q) = ax(G', q)

with the reverse equality for ¢ > ¢”. Part (i) follows for
thresholds ¢ < ¢’ A ¢”; part (ii) follows for thresholds
q Z q/ v q//.



Other ways to shift mass...
e Cauchy: G¢,(x) = Zarctan(x/7)
> mo(Gey, ) = 7 - tan(qn), ane(Ge ) = 27 - tan((3 — )7)

e Cauchy tails decay polynomially (o< 1/x2) hence a,, ~ 1/
Subgaussian: a,, < (log(1/q))/?
@ More generally, always have freedom to control:

» tails: sub-exponential, heavy tailed, polynomial decay etc.
» local ‘peakedness’



Tradeoff obtains for any pair of networks

@ Note: need g < 1/2 for contagion to occur; same logic as Morris
(2000)

Proposition

For G,G' € G, if G # G’ then there exists q,q" € (0,1/2) such that
one is more resilient than the other under q, but has a quicker limit
speed than the other under q'.

@ Any two graphs exhibit the tradeoff for some contagion
thresholds
e E.g., canfind g =0.3, ¢ = 0.1 so that
» mo(G,0.1) > mp(G’,0.1) + G is more resilient than G’
> 350(G,0.3) > a(G’,0.3) < G spreads faster than G’




Tradeoff obtains for any pair of networks

o Sketch pf.: let's assume WLOG that G(x) < G'(x) for some
x € [0,00). This implies that there exists y € (G(x), G'(x))
such that G™*(y) > x > G""!(y). Now set g =y < 1/2 and by
the expressions

mo(G,q) = G '(q) = G '(y)
> G y) = G"(q) = m(G, q).

o Next, recall we defined G = 1/2 — G. There exists
z € (G (x), G(x)) such that 5_1(2) <x< E_l(z) and setting
q =z <1/2, we have

—1 -1

2(G.q) =G (q)=G (2)

> T (2) =T (q) = a(G, q).



Taking stock

@ Tradeoff...

» ...is stark when graphs ordered by FOSD: for every threshold,
one is harder to initiate contagion & spreads faster;

» ...can be absent for fixed thresholds under ‘single-crossing’
ordering: worst of both worlds—easier to initiate contagion, but
also spreads faster

» ...always occurs for any 2 graphs (but potentially different
contagion thresholds);

@ Extension 1: What is the link with random (discrete) graphs?
» Scale & truncate model so that bounded measure. Graphons
approximate contagion dynamics of discrete random graph
sampled from it Lovasz (2012)Erol et al. (2020)
o Extension 2: Higher dimensions vs 1D

» analytically quite ugly, but some results go through. We may
simulate the rest....



(Informal) Link to finite mass population random
discrete graphs

@ So far we worked on R. Allows us to speak of ‘limit speed’, work
with canonical full-support distributions etc.

@ Now: Unit measure of agents i € [0, 1].

» Allows us to link contagion results to discrete random graphs:
sample uniformly from [0, 1] (see Lovasz (2012))

@ Define G as was our space of graphs on R. Define G7 as the
space of graphs over the unit circle [0, 1] with similar conditions
(density exists, homophily etc.)

@ Goal: define a transformation G — G which preserves
contagion dynamics (& tradeoffs) studied in R.



Link to random discrete graphs

Goal: find map 1).: G — G which ‘preserves contagion dynamics’

@ Here's the map we use:

I
| | |
I I | | I
| o
| —> | —> > | |
| shrink | truncate f \, rescale - - - ---1
I I | |
| 1 [ I I
| | o
® ¢

measure 1 ! !

@ Let v be this map, where s controls the shrinkage factor: (in
Lst step Gs(sx) = G(x))

Jim lim a:(15(G), q) = 5 - 2(G, q) | lim mo(¥5(G), q) = s - mo(G, q)




Link to random discrete graphs

@ For small but finite s, exhibit the same tradeoffs.

» Now with avg speed (up to full infected) rather than limit speed.
» Could work directly on [0, 1] but uglier.

Taking stock:

00 measure | — \ Unit measure\ — ‘ Random graphs‘
~—~ ~—

v now

Graphs in GT are graphons: W : [0,1]> — [0, 1].
W (i,j) : weight that i puts on j. In our setting:
W(i.j) = g(li —jl) = W(. ).
Graphons approximate random graphs:
» Sample S from [0, 1] uniformly at random.
» Let'ssay S = {i,j}. Then on the random graph, i and j are
connected with probability W(i, ).
Recent paper in JET by Erol, Parise, and Teytelboym (2020):
contagion on graphons approximate contagion on sampled graph



Higher dimensions
o General idea is to work on the Euclidian ball in R"”. Analog of
translation invariance and symmetry s.t. graph can once again
be summarized by a single CDF
@ But now the dimension, size of the ball, and distance all matter!

"=2(r,d, x) gives the length of
he arc of the dotted baII W|th|n
the solid ball divded b
circumference of the otted ball

ball of radius r

distance x distance d
within ball from ball
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Conclusion

@ Tradeoff: contagion is faster in networks where it is harder to
initiate contagion
@ clear empirical implications

@ special model but clearly generalizes: what is the right way to do
so to make it compelling to network theorists?



Thanks!
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