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Abstract

In three essays, this dissertation studies the production and distribution of in-
formation goods. In the first chapter, we model information as a digital good.
Digital goods are produced along a quality ranking and can be both duplicated and
damaged at zero marginal cost. Consumers’ valuation of quality consists of a common
decreasing returns component and an heterogeneous component that gives sellers a
motive for screening. The monopolist problem is naturally divided into an acquisition
and a distribution stage; two interdependent sources of inefficiency, underprovision
and quality damaging, emerge. Competition is modeled as a two stage game of perfect
information. Welfare comparisons between monopoly and duopoly are ambiguous:
additional underacquisition and double spending favor the former, undoing damaging
inefficiencies by distributing a positive quality for free favors the latter.

The second chapter studies the production of socially relevant information: we
model policymaking as a bandit problem where the arms are treatment incentive
schemes whose payoff value and correlation is disciplined by an economic theory. We
preliminarily associate each multiarmed bandit problem to an uncertainty function so
that the implied information function is traded-off one for one with expected utility at
each belief state to determine the optimal policy. The uncertainty measure quantifies
the estimation content of selection mechanisms. We propose a sampling procedure
that validly implements all BDM mechanisms while minimizing the variance of the
empirical propensity score and preserving information continuity. Fully voluntary
mechanisms are control optimal under linear preferences, but their valid implemen-
tation induces the largest variance of the sample size used for estimation.

In the third chapter (with Franz Ostrizek) we study a monopolist screening prob-
lem with network externalities in consumption and two dimensions of heterogeneity:
consumer differ in their susceptibility and influence (to the network effect). We show

that the allocation is inefficient if and only if susceptibility is unobservable, while
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consumers receive rents for their influence only if susceptibility is unobserved and
influence is verifiable. The optimal allocation under private information satisfies
lexicographic monotonicity; bunching arises around the switching types in the lexico-

graphic order, i.e. highest-influence types adjacent to the next level of susceptibility.
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Chapter 1

Competitive Provision of

Information Goods

1.1 Introduction

We study the distribution of goods that are produced along a quality ranking and
that can be both duplicated and damaged at zero marginal cost. A firm that creates
a version of the good of quality ¢ can, at no additional cost, sell arbitrary amounts
of any quality below ¢q. Consumers demand at most one version of the good, they
agree on the quality ranking but have different tastes for quality. Such heterogeneity
makes producers with market power willing to engage in inefficient quality damaging
for screening purposes as in the literature of multiproduct monopolist as in Mussa
and Rosen (1978), hereafter referred to as MR.

Two markets whose functioning is well approximated by this model are the market
for digital content, (computer software, mobile apps, digital audio and video content),
and some portions of the market for information (weather forecasts, non-strategic fi-
nancial information). The former is a large and growing sector of advanced economies,
while the latter is of interest because it is natural to assume that sellers have access to
a free garbling technology that allows for damaging of information structures. Until
Section 4, where we formalize the application to information markets, we will not
discuss how particular results explain phenomena observed in those markets, and

generically refer to digital goods as products that have the following characteristics:

1. They are non-rival but excludable through a pricing system;*

L An essential non-rivalry arises because of the free replicability. In general, no consumption

externalities are allowed, which is a particularly restrictive assumption in the market for information
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2. Produced and damaged along single-dimensional quality ranking that is given
exogenously and on which all consumers agree. This excludes the possibility of

horizontal differentiation across consumers. However,
3. Consumers have heterogenous tastes for quality.

4. When multiple firms are active, their products are homogenous: Individuals

never want to combine qualities sold by different producers.

5. On the production side, replication and damaging of a version occurs at negli-

gible cost, and damaging must lie on the pre-specified quality ranking.

We will assume consumers’ preferences for quality (point 3 above) are separable
in a common decreasing returns component and an heterogeneous constant returns
component. We adopt this specification for two reasons. First, the interpretation we
give in Section 1.2.1 in which agents use the digital good to perform two tasks (basic
and professional activities) may be a reasonable description of the demand for digital
goods (we indeed motivate it with an example of software consumption). Second, it is
a parsimonious specification that allows for rich empirical implications of the model.
The standard linear preferences used in MR, which will be presented as a subcase,
are unable to generate an optimal contract that displays non-trivial damaging: we
show that if the decreasing returns component were absent, then only one positive
quality would be sold in the market. This is counterfactual, at least in some markets:
to give just one example, Figure 1.1 below shows a set of packages for statistical
software that differ in their computational power. Likewise, digital content is often
offered in SD or HD packages and Section 4 gives examples of non-trivial screening
in information markets.

An additional observation motivating our analysis is that goods of positive quality
are distributed for free in many of the markets with the characteristics described
above. An enormous amount of information is available at no (monetary) cost.
The same is true for online services, ranging from e-mails to document storage and

digital contents. As for computer software, it is interesting to notice that Open

where a recent literature focused on the fact that the value of information is an equilibrium object.
The excludability issue is also critical; a whole literature (Muto (1986), Varian (2000), Polanski
(2007) among others) focuses on the distribution of non-excludable “information goods” that in

their definition include also software and books.



Stata/IC Stata/SE Stata/MP Stata/MP Stata/MP
2-core 4-core >4 cores

For mid-sized datasets. For large datasets. Fast & for the largest datasets. Faster. Even faster.

perpetual [ perpetual [ perpetual [ perpetual [ Select cores [

$1,195/perpetual $1,695/perpetual $1,995 /perpetual $2,295 perpetual
Figure 1.1: Non-trivial damaging in the distribution of Stata

Office was released in 2002, 12 years after Microsoft sold the first Office package,
possibly as a consequence of increased competition. Many mobile apps are also
sold for free, even though premium options are often present and, unlike (some)
computer software, are immune to failures of non-excludability.? The literature offers
some explanations for the free-quality phenomenon, ranging from creating costumer
fidelization to be exploited in parallel markets (bundling and cross-fidelization), to
earning profits from individual attention (through advertising). In this paper we build
a simple model that can both create, under certain assumptions about primitives
and the competition structure, the positive implications discussed above (non-trivial
damaging and distribution of free quality), and that is flexible enough to answer
some questions like: Is such free distribution socially desirable? What is the welfare
impact of some policies in this framework (damaging prohibition, linear taxation,

patent protection)?

1.1.1 Outline of the paper and preview of results

Section 2 formalizes the primitives and characterizes the provision of digital goods
by a monopolist under both perfect and asymmetric information. As in standard
first-degree price discrimination problems, the former setting induces the first-best
allocation which features no quality damaging. The latter problem is more com-
plicated. We show that it can be conveniently rewritten as the maximization over

a sequence of MR problems parametrized by the quality cap constraining the mo-

2 Many online apps profit from matching demand and supply for either transportation (Uber,
Lyft) or for food delivery (Deliveroo, Foodora). They also actively engage in some sort of screening:
ride hailing apps charge a higher price for larger or more comfortable cars, while food delivery
apps may propose early delivery for a surcharge. Those are not examples that fit our description,
since both “premium” services (bigger car and fast delivery) require a higher marginal cost to the
producer: the delivery guy has to run a motorbike rather than a bike and, similarly, the premium

car has a higher depreciation/fuel cost.



nopolist’s allocation function. Each problem in this sequence, not the original one,
can be solved applying standard monopolist screening techniques with a particular
(zero) cost function. We show that the optimal contract conditional on a quality cap
allocates each type the minimum between an increasing type-dependent function and
the quality cap itself. A bunching threshold moves as the quality cap increases, which
raises rents of high valuation types while leaving rents of lower types unchanged.
This property makes it simple to characterize the marginal revenue function and
hence solve the quality-acquisition problem. The two-stage nature of the monopolist
problem generates two sources of inefficiency: an acquisition inefficiency similar
to standard underprovision with market power, and a damaging inefficiency from
asymmetric information. The two are interdependent: distribution obviously depends
on the quality constraint, and incentives to acquire depend on the revenues that
damaging can achieve. In particular the efficiency at the top typical of standard
screening problems is limited to a distributional efficiency: a positive measure of
types never receives a damaged quality but even the highest type receives a quality
below what he gets in the first best. Curvature of the common component implies
that at low quality levels optimal distribution features no damaging, and that in all
contracts all types receive positive quality (and surplus). With linear preferences
(no concave component) a “no haggling” result holds: a cap-invariant set of types is
always served the undamaged quality while others are fully excluded (given ¢ = 0),
so marginal revenues are constant. We conclude Section 2 by analyzing the impact
of a No Screening (NS) policy, namely to prohibit the seller from engaging in quality
damaging for screening purposes. When binding, the policy is proved to always
worsen the underacquisition inefficiency. As for its impact on damaging, two forces
operate: the NS policy mechanically prevents inefficient damaging, though it may
induce the complete exclusion of some low types that received positive surplus in the
unconstrained monopoly contract. We find conditions under which the NS policy is
welfare improving.

Section 3 studies competition in digital goods markets as the equilibrium of a two
stage game of perfect information. The first stage, investment in quality, determines
firms’ market power at the pricing stage. The second stage (pricing) equilibrium is
easily characterized using the tools developed to solve the monopolist problem: the
owner of the larger quality behaves indeed as a (interim-)monopolist on the quality
spectrum he owns exclusively, while Bertrand forces drive the price of the second
highest quality to zero. In the first stage there are multiple equilibria indexed by

n, the number of firms that are active (i.e. choosing to acquire a positive quality
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with positive probability). With n = 1 the active firm is a monopolist for sure
(the only pure strategy equilibrium) and agents receive the monopolist allocation of
Section 2. With any n > 2 there is a symmetric equilibrium in which active firms
randomize investment with full support ranging from zero to the monopolist quality.
In the class of equilibria with active competition, we prove that every type in the
economy is better-off with a lower intensity of competition (smaller n). The relevant
welfare comparison is therefore between monopoly and duopoly. By only looking at
the support of the mixed equilibrium we observe that the highest quality distributed
under competition will be below the monopolist quality (increasing underprovision
inefficiency). Also, active competition implies inefficient double spending: due to
homogeneity, the development cost of an inferior quality is always socially wasteful.
However, by distributing a positive quality for free, competition shrinks screening
inefficiencies associated to each realized best quality. We prove that we cannot
go beyond this qualitative comparison between monopoly and duopoly equilibria:
different shapes of the cost function can shut down almost completely either the
positive or the negative impact of competition. In particular, if the monopolist was
not damaging, then competition unambiguously reduces total welfare. By contrast,
if costs are extremely convex (approaching a fixed cost structure), then a competi-
tive market induces stochastic allocations that converge to the flat allocation where
everybody receives the quality produced (but not distributed) by a monopolist and
hence dominates the monopolistic equilibrium.

Section 4 is independent of the other two and assesses the fitness of the framework
presented before to study information markets, relative to existing approaches that
model information acquisition. We discuss how modeling choices used in the paper
translate into implicit assumptions on the type of information markets that can be
analyzed. The key element is that production of information is decentralized and that
the technology to convert the factor of production (attention) into state-signal struc-
tures must be taken as a primitive. We present a simple but exact microfoundation of
the reduced form model studied in the paper and discuss how correlation in primary
information structures can be used to create product heterogeneity which is necessary
to avoid some implications of the model that are counterfactual in those market (only
one firm makes profits). The dimensionality of feasible signal structures and of payoff
relevant types, even with a “small” state space, poses significant tractability challenges

that are beyond the scope of this paper but suggest directions for future research.



1.1.2 Literature review

In this section we review technical contributions related to the building blocks
of the model: the demand side, the composition of replicability and damaging on
the production technology, and a description of model of competition with screening.

Models of information markets are reviewed separately in the last section.

Quality screening

The demand side of the economy and the solution techniques for the quality-
conditional problem are based on the literature on screening with a multiproduct
monopolist pioneered by Mussa and Rosen (1978), advanced in Maskin and Riley
(1984) and later in Wilson (1993). Assumptions in this paper make sure to avoid
ironing and other technical complications within each MR problem (which are the
focus of the original paper and Rochet and Choné (1998)), and to have a simple

revenue comparison across different problems.

Free Replicability

Motivated by the example of software and digital contents, a recent literature in
computer science Goldberg and Hartline (2003); Goldberg et al. (2006); Hartline and
Roughgarden (2008) studied how to design the revenue maximizing mechanism to
allocate a good that is replicable for free to agents with heterogeneous valuations.
In particular Goldberg et al. (2001) show that posted price mechanism performs
surprisingly close to the optimal (possibly dynamic) incentive compatible auction.

This result partially justifies my focus of screening through (a menu of) prices.?

Damaging goods

The idea of damaging a good for screening purposes was originally introduced
in Deneckere and Preston McAfee (1996).* The approach in this paper is different
both in modeling choice and in the type of questions addressed. From a modeling
perspective, beyond preserving a positive marginal cost from distribution,® Deneckere
and McAfee (1996) take a binary set of qualities as exogenously fixed, thereby ex-
cluding an acquisition margin, and assume that the only way to produce the good

of low quality is by damaging the high quality good. Marginal distribution costs are

3Tt is not a complete justification to my approach as they don’t allow damaging of the replicable
good. An extension of their results to cases in which the seller can damage the good would be
interesting per se.

4Srinagesh and Bradburd (1989) offer a very general analysis for the case where there are two
types of customer. McAfee (2007) provides an exact characterization in terms of marginal revenues
of when damaging is profitable.

5Their motivating examples include processors, printers and other technological products.



therefore larger for the low quality good.® They focus on the monopolist problem and
address the following question: When is it the case that the possibility to damage
benefits all agents in the economy?”

Product versioning through quality damaging has been explored also in the context
of a durable good monopolist. In related papers, Inderst (2008) and Hahn (2006)
consider an environment with two consumer types and a monopolist that sells different
versions of a product over time and faces a Coasian commitment problem in price
and quality.®

Availability of a damaged quality may also result from illegal activities such as
piracy (assuming the copied version is somehow inferior to the original).® Peitz
and Waelbroeck (2006) provides a critical overview of the theoretical literature that
addresses the economic consequences of end-user copying, though focusing mostly on

the non-excludability of low qualities that is induced by the illegal activity.°

Competition with screening

A vast literature on competition with screening spurred from the seminal contri-
bution of Rothschild and Stiglitz (1976) (RS) on insurance markets. RS equilibrium
invokes a natural notion of stability induced by a free entry condition which can

be interpreted as the Nash equilibrium of a contract!!

posting game among many
(ex-ante) symmetric firms. Existence is not guaranteed. The advancement of game
theory allowed a more formal analysis of the strategic interaction among competitors:
Jaynes (1978) shows the RS equilibria always exist if sharing of information about
customers is treated endogenously as part of the game among firms. Hellwig (1988)
shows that this is true if each firm’s communication strategy is conditioned on the

set of contracts that are offered by the other firms.!?

6Clearly, under those assumptions it is a more startling fact that a monopolist is sometimes
willing to engage in screening.

"Section 1.2.5 addresses a natural extension of this question within our framework.

8In their setting the seller may optimally choose to engage in quality deterioration in the first
period (and trade only occurs in this period) by selling the low-quality version below marginal cost
in the first period to avoid later price concessions to high-valuation consumers.

9Takeyama (1994) argues that the loss in profits due to copying may be greater if dynamic effects
are taken into account; however it is also possible that the seller benefits from being copied since
this reduces his commitment problem.

10Hence connecting mostly with the literature on non-excludable “information goods” referred to
in footnote 1.

Tn their case, a contract is a set of insurance rate and price.

12With the use a dynamic games, the analysis of contracting with adverse selection was extended to
the other issues, among others that of renegotiation (e.g. Hart and Tirole (1988)) and recontracting
(Beaudry and Poitevin (1995) model a financial market where the informed party has the bargaining
power even though competing uninformed parties make the offer).



Departures from modeling equilibrium with asymmetric information as the out-
come of an extensive form game produced some elegant characterizations. Dubey
and Geanakoplos (2002) study the RS model by fixing an exogenous set of pools
characterized by their limits on contributions. Households signal their reliability by
choosing which to join. They put discipline on beliefs over pools that are not visited
in equilibrium and prove existence (and uniqueness) of the separating RS equilibrium.
Bisin and Gottardi (1999) and Bisin et al. (2011) extend the the model of general
competitive equilibrium to economies with asymmetric information without having
to explicitly model private information.!?

Possibly due to a lack of tractability of the latter models, the literature even
in recent years has kept analyzing competition under asymmetric information as the
equilibrium of an extensive form game. This is the approach taken also in this paper.'4
Netzer and Scheuer (2010) extend the RS model to two-dimensional heterogeneity in
both risk and patience where the latter is the endogenous result of optimal savings or
labor supply decisions. In their model RS equilibria exist and equilibrium contracts
can earn strictly positive profits because any contract that attracts good consumers
would also attract bad risk types and become unprofitable. A similar result of
profitable contracts in RS equilibria is obtained in the two dimensional screening
model of Smart (2000) where both dimensions are exogenous.

However, in many cases RS equilibria fail to exist due to the many deviations
available to the pool of potential entrants. One solution in this case is to give firms
some market power at the pricing stage. Garrett et al. (2014) have a model in which
market power is given exogenously by assuming that also consumers are imperfectly
informed about the offers in the market (two-sided asymmetric information). They
show that the intensity of competition decreases this source of market power, so in
the limit the Bertrand equilibrium emerges. Having firms commit through an ex-ante
irreversible investment is a second way of creating (this time endogenously) market
power, used since Hotelling (1929). A standard reference for this approach is Kreps
and Scheinkman (1983), who have firms commit to a quantity level before Bertrand
competing on the realized investments. The setup closer to that of this paper is

Champsaur and Rochet (1989) who analyze a MR duopoly where each competitor

13Wilson (1978), Dutta and Vohra (2005) and Vohra (1999) propose an extension of the core as a
positive foundation of equilibria under asymmetric information.

14 Although a strategic foundation may sometimes be an appealing feature of the model, it adds
one degree of arbitrariness: by looking at the simplest model of competition and how Cournot and
Bertrand equilibria differ in their implication we understand how crucial even the specification of
the action space may be. Selection of the game structure is mainly driven by the tractability of
equilibria it delivers; alternative specifications are discussed in Section 1.3.4.

8



costlessly commits to a subset of qualities and then chooses a pricing function (paying
the distribution costs at this stage). In section 1.3.4 we compare the properties of the

equilibria of their models with results in this paper.

1.2 The Monopolist Problem
1.2.1 Primitives and Efficiency Benchmark

Demand

The economy is populated by a unit mass of consumers. Each consumer is
characterized by a utility type 8 € O, where © is a compact subset of R,. F' :
© — [0, 1] strictly increasing and admitting a density is the population distribution
function. Utility types describe an agent’s cardinal rankings over different quality
versions of the digital good. Consumers’ valuation for quality are assumed to take

the functional form
u(q,0) = g(q) +bq (1.1)

where ¢ is a concave function representing the relative curvature of the common com-
ponent of quality ranking with respect to the type dependent one.'® The degenerate
case of g = 0, i.e linear utility, will be an important subcase for two reasons: it is
the utility specification adopted in MR among others and also it delivers an extreme
version of our screening results. When non-degenerate, it is assumed that ¢ satisfies
the Inada conditions

lim ¢’ (z) = oo, lim ¢ () =0 (1.2)

z—0 T—00
Agents also own a large amount of a numeraire good and have quasilinear preferences
in this good. So the demand correspondence associated to a quality pricing function

p: Q — Ris given by

D, (0) = arg max v (¢,0) —p(q)

15As quality does not have a natural metric, we can consider a more general setting in which for
two increasing function g1, g2
u(z,0) = g1 () + g2 ()

then define quality g = go (z) with associated cardinal rankings

u(q,0) =g1 (95" (q)) + g

The cost function over the new quality space can be redefined in a similar fashion. The qualitative
results would not change, what is key is that the type independent component g; o g, 1is concave
or, that g; is “more concave” than go. The empirical content driving the results is that the common
valuation of the quality is the additive separability in types and the fact that the function multiplying
type is “less concave” than the common quality ranking.

9



The utility specification (1.1)-(1.2) is important to deliver some properties of the

t.16 We now justify it by offering an interpretation in the context

optimal contrac
of software consumption, and we identify the analytical properties that drive our
results. For an interpretation, suppose consumers use the digital good to perform
two tasks. All users perform the same basic task and measure returns to quality in
the accomplishment of this task according to a common decreasing returns function;
they also perform an advanced task, but they have heterogeneous constant marginal
return types 6, which measure the intensity of individuals’ tastes for quality in the
accomplishment of such task. To substantiate the assumption, we use the software
(OS) example and broadly define ¢ as computational power. The set of basic tasks
include simple calculations, text editing and other activities that are performed by
everyone in essentially the same way and for which the returns to quality are very
steep at the beginning, but then vanish. The advanced task is a professional activity
in which each consumer specializes and that may be more or less computationally
intensive. At a low level of ¢ there is little (relative) variation in marginal utilities
as everyone cares essentially about the steep improvement in the performance of the
basic task, while at large ¢ the demand for improvement is driven by the use one can
make in the advanced task, which is heterogeneous.

From a technical standpoint, additive separability and concavity of g gives rise to
a constant difference in the marginal utility ¢’ (¢) + € between any two types. Yet,

since ¢’ is decreasing ¢, their ratio

g'(q) +0
g/ (Q) + 9/

is also a decreasing function of ¢q. The type dependent component # within the
marginal valuation ¢’ (¢) + 6 becomes dominant as we climb up the quality ladder.
As the marginal willingness to pay for a quality improvement for a high type relative
to a low type increases in the level of quality, it becomes profitable to screen type 6

from 6" only when the quality level is large enough.

Production and Sale

The digital good can be produced along a continuum of versions or qualities, where

@ = R, is the quality space. A producer creates a version of the good of quality ¢

16Tn section we present less restrictive sufficient condition to preserve the structure of the result
at the cost of lower tractability.
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at cost c(q), assumed to be increasing and convex and measured in the same units
as revenues.!” Then he can supply an arbitrary quantity of version ¢ as well as all

versions dominated by ¢. Formally, they operate the following production set!®

Y = {]I {q/ < Q} , —C (Q)}qu (13)

After producing ¢ the seller has to quote a feasible market, that is a pricing function
on the restricted domain p : [0, ¢] — R.1 The profit maximization problem therefore

reads

max ép@A&ﬁ@N%%@)

¢,p:[0,q] >R

First Best and Perfect Information

We begin by stating and solving the first best problem of choosing a social

allocation to maximize expected social utility net of acquisition costs.

Definition 1.1. The efficient allocation is the functionp®// : © — Q

that solves

mwS@%iéwmwﬁmF@—cG?p@) (1.4

p:0—Q

The following proposition characterizes the efficient allocation

17Again, using the re-definition of the quality spectrum from footnote 15, the cost reads
c1(q) = c(g95"(g)), and the substantive assumption that c o g;' is convex is guaranteed since
it is a composition of convex functions.

18Consumers are in unit measure and demand at most one version, so a supply of 1 is indeed
“arbitrarily large”.

19An equivalent restatement is to let the seller choose only a pricing function p : Q@ — R U {oo}
and define the cost function ¢ on the space of pricing functions as:

(p) = c(sup{q: p(q) < oo})

ol

In this case, the monopolist would solve

max / p(Dy (0)) £ (6) 0 — 2 (p)
©

p:Q—R

11



Proposition 1.1. The efficient allocation map is given by

pelt ) — Q
pIIO) = ¢

where q* is the unique solution to equation

g (q) +Ep[0] = (q) (1.5)

It is natural that the efficient allocation has singleton image ¢*: since each indi-
vidual’s utility is increasing in ¢ and the distribution of each quality below ¢ costs
the same, it will never be socially optimal to allocate a damaged good to any type.
Equation (1.5) is the first order condition of problem (1.4) after noticing that the
efficient allocation is flat; sufficiency is immediate. As is also standard, we notice
that a monopolist that is not subject to information frictions, namely that observes
each type and can charge different prices to different costumers will induce the efficient

allocation rule p*/f and extract all the surplus.

Remark 1.1. (First Degree Price Discrimination) Suppose that the individual type
0 were observable to the seller. Then the monopolist would replicate the efficient

allocation characterized in Proposition 1.1, and make profits S (p®//).

1.2.2 Private information
In the remainder of the paper, we assume consumers have private information
about their utility type. The monopolist must rely on incentive compatible market

design to allocate different qualities to different types.2°

20 Tt is assumed that the principal has no “screening device” as defined in Jaynes (2006), namely
he cannot obtain additional information about valuation types so that each individual must be
treated as a random draw from F (assumed known). Bergemann et al. (2015) analyze the limits
of (third-degree) price discrimination induced by additional information on buyers’ types and show
that that information can be tailored to achieve any combination of surplus such that total surplus
is below the efficient level, and producer and consumer surplus are above uniform monopoly pricing

and zero, respectively.
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We set up the problem as a multi-agent mechanism design problem and appeal
to the revelation principle to write the monopolist problem as choosing a pair of

allocation and transfer rules?!
(p,p) :© = QxR

to maximize profits under incentive compatibility and rationality constraints. Com-
pared to standard screening problems, the key novelty is that the cost of an allocation

rule p no longer takes the additively separable form

for some primitive cost ¢. By contrast, it solely depends on one statistic of the

allocation rule, namely the maximum quality, so it can be written as:??

() = (sw o)) (1.6)

With these observations at hand, we write the monopolist problem in the following

way

MaX) 0 QxR Jop (0) dF (0) — c(supg p (6))
s.t.
(1.7)
IC u(8,p(0)) —p(0) = u(0,p(0))—p(¥) V0,0
IR u(®,p(0)) —p(0) =0V0

It is worth emphasizing that under the non additively separable cost function (1.6),
we cannot solve (1.7) by piecewise maximization of an appropriately defined type
dependent profit. However, the simple form of non-separability characterizing (1.6)

suggests that problem (1.7) can be divided in two stages. First, revenues conditional

21The steps for rewriting the monopolist problem presented in the previous section as the design
of a direct mechanism are standard and therefore omitted. It should not create confusion that from
now on the pricing function p has domain the type space © rather than the quality space Q.

22In a companion project (joint with Franz Ostrizek) we explore screening under the more general
cost structure

that allows the cost of producing the quality sold to type 6 to depend on the whole allocation rule.
This is useful to describe less extreme versions of economies of scale, learning, or nontrivial cost of
quality replication and versioning.
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on each quality cap are calculated, and then those revenues are compared with the
cost of buying a quality cap. The following Lemma formalizes this intuition and

introduces the revenue and cap-conditional allocation functions.

Lemma 1.1. Define the quality constrained revenue function V : QQ — R given by

\% (q> —— IMaXpp.0—QxR f@ b (0) dF (6)
IC, IR (1.8)
p(0)<q, VOEO

and let p, 1 © — Q be the optimal quality allocation of problem (1.8). The solution
to problem (1.7) is characterized by a quality cap ¢™ given by:

¢" = arg max V' (¢) - ¢ (q) (1.9)

and by an allocation
PO = Q=pp(0)

Once we are given the V function from (1.8), it is clear we can solve (1.9)
as a simple maximization in single variable (if we show V is concave, ¢™ will be
characterized by a first order condition alone). The challenge is then to find function

V' and the cap-conditional allocation rule

p:QxXO0—=Q

where p(q,0) is the quality assigned to type # when the quality cap is ¢.?* This

is the objective of the following section.

1.2.3 Solution of the Screening Problem

Characterizing the constraint-conditional optimal contract (and therefore the rev-
enues) is in principle a complicated problem, since for each ¢ € @) we need to solve for
a function p,;. The main result of this section, Proposition 1.1, shows that whenever

primitives satisfy regularity conditions, the set of constraint-conditional allocation

ZThe policy function p, : © — @ associated to the quality constrained problem (1.8) is the section
at ¢ of the above defined p; in this sense my notation is consistent and I will use p(q,-) and pq ()
interchangeably.
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rules take a simple form in which we just compare a function of the type with the
constraint. Before moving to the general case with a continuous type space, we
consider a simpler economy populated by only two types since it provides the intuition

for the more general case and clarifies the nature of the regularity assumptions.

Two Types Example

Suppose the economy is populated by a fraction 7 of high marginal valuation types
denoted by H and 1 — 7 low marginal valuation types L. The following proposition

characterizes the optimal contract V' (¢), p, (+) for this economy.

Proposition 1.2. Let y* € ) be the solution to

9 () +0r
OE (110

The optimal allocation takes the simple form

q ifq<y’
p(L,q) = . p(Hq) =
y*  else
firm’s profits are given by
u (g, L) ifq <y

u(y*, L)+ (u(H,q) —u(H,y*)) else

So that
(g, L) ifq<y*

Vile) =
mu' (H,q) else

d (q)

characterizes per Lemma 1.1 the optimal quality cap.

Proposition 1.2 suggest how one may construct all cap-dependent contracts: using
only the demand primitives of the model, i.e. the curvature of g and the distribution
of types, we determine the point y*.?* Then, one obtains the optimal allocation

p (0, q) by choosing the minimum between a type dependent threshold (in this case,

24 As limgoh(q) = 1, limgo h (q) = g—g, then existence of threshold y* requires that g—f{ is not

larger than m. Uniqueness follows from monotonicity of ratio of marginal utilities
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y* for low types, oo for high types) and the quality cap itself. By solving a single
equation, (1.10), we can characterize the allocations for each quality cap and then
infer transfer from the binding incentive constraints to construct the revenue and
marginal revenue function. Finally, expression (1.10) suggests why a strictly concave
g function is needed for a nontrivial allocation rule to realize. The following Remark

formalizes this.

Remark 1.2. (Linear Utility). Under the linear utility specification equation (1.10)
would read

oL
=
which is not a function of ¢ and cannot determine a threshold y*. In this case the
monopolist would either always (i.e. at every quality cap) sell to both types, if 0, >
Opm, or always serve only high types. Notice expression (1.10) would also be trivial
if we assumed any form multiplicatively separable utilities u (g,0) = uy (q) - us (9).
The fact that linear utility has no “service margin” as a function of quality will be

preserved in the more general setting.

From now on we will work on a continuous type space.

Definition 1.2. We say primitives are regular if the utility function takes the form

(1.1) and the type distribution F" has a monotonically increasing hazard rate

) =

Now consider the virtual valuation function
vo (0, q) = u(q,0) — h(0) ug (g, 0)
and define the correspondence of maximizers of the virtual valuation
B:0 = QU{oo}
B (0) — argmaxvv (6, q)
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where the abuse argmaxwvv (0, q) = oo is adopted whenever vv (6, q) is strictly in-
creasing in q € Q).
The following Lemma, which follows from standard application of supermodular

comparative statics, will be used in the proof of the main Proposition of this section.

Lemma 1.2. If primitives are reqular, then [ is single valued, monotonically increas-
ing and it is equal to oo on a set of positive measure [5, g], where 0 is the unique

solution to
0—h(@)=0

The general expression of B is given by

Since ¢’ is decreasing by assumption and so is § — h (), then § is an increasing
continuous function that asymptotes to oo in the interior of ©. Also, by the Inada
condition and h(d) — 8 > 0 we obtain $(0) > 0, which will deliver important
implications for the shape of the cap-contingent optimal contract. The graph below

plots an example of [.
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p(6)

g

o 1/2 1

Figure 1.2: g function for concave preferences.

The threshold 6 takes value % in the plot since in the remainder of this section
we will assume 0 ~ U [0, 1]. As Section formalizes, qualitative results are unchanged
though explicit formulas for revenues, surplus and inefficiencies would need to carry an
additional transformation of the inverse hazard rate.?> Under the uniform distribution
assumption, h (0) —60 =1—-26, 5(0) = (g’)f1 (1) > 0, and 0= 5. We now proceed to

state the proposition characterizing the monopolist allocation.

Theorem 1.1. Suppose primitives are reqular and types are uniformly distributed.
Then,

i) The quality-contingent optimal contract takes the simple form

p(q,0) = min{q, 5 ()} (1.11)

25We do not have a clear interpretation for the distribution of types, as their empirical content is
not independent of the valuation function (1.1).
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1) The revenue function V is concave with continuously differentiable derivative
given by
9'(q) 9'(q) >1

V'(q) = (HQ_@)Z . (1.12)

2

iii) The monopolist quantity ¢™ is always strictly below g*.

The allocation rule (1.11) proves that the intuition in the two type example
extends to regular continuous type spaces: the cap-contingent allocation of each
type is simply determined by comparing a type dependent function (found at an
ex-ante, constraint-free stage from Lemma 1.2), with the quality cap itself. It is only
convenient to screen type @ if the quality cap exceeds [ (), and when this happens
the allocation p (g, ) becomes unresponsive to further cap increments.

The shape of the optimal contract(s) helps interpreting also expression (1.12), i.e.,

the marginal revenue function. To understand this result, and for future reference,

1
>
each quality level the lowest type that is bunched at the top. Under the uniform

it is convenient to define b : Q) — [O } as the inverse # function that returns for

distribution we get

blg) = A~ (q) = max{o, 1‘79@} (1.13)

At an intermediate step of the derivation of the marginal revenue we get

V'(q) = (1=0(q)[g (q) +b(q)]

This expression has an intuitive interpretation: the term ¢’ (q) 4+ b (¢) is the marginal
utility of the “marginally bunched” type b(q), while (1 —b(g)) is the mass of types
above him.?% By marginally increasing the quality cap, the monopolist does not alter
the revenues made from optimal allocation of all lower qualities (given to the same
types at the same price). He allocates the marginal quality to type b(q) and to all

those above, who increase their marginal transfer by

ug (q,0(q)) = ¢’ (q) +0(q)

Point 4ii) states that the top quality distributed by a monopolist is below the
efficient level implied by (1.5). Although not obvious in this setting, the result

26Notice that when b (¢) = 0, then V' (q) = ¢’ (¢) delivering the first branch in (1.12). Substitution
of the nontrivial expression for b delivers the second branch.
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suggests a natural parallelism with the classic underprovision of a good in the presence
of market power. The “efficiency at the top” result, which is typical of quality
screening problems, does not hold in this framework. Despite the highest type never
receiving a damaged quality,?” the quality cap produced under monopoly is below the
level ¢* that type, and everyone else, receives in the first best.

Comparing 4) and 4i7) in Theorem 1.1 with Proposition 1.1 we notice that a
monopolist induces two sources of inefficiency: one from damaging, because generi-
cally, p(q,0) < q for a set o positive measure, and one from suboptimal acquisition.
Although associated to different stages of the monopolist problem, these inefficiencies
are to some degree interdependent as (1) the screening allocation is clearly constrained
by the quality acquired and (2) the quality acquired depends on the screening possibil-
ities. Expression (1.12) incorporates the optimal distribution of each maximal quality,
which generally entails damaging. A graphic representation of the inefficiencies is
given in the bottom panel of Figure 1.3, where green represents underacquisition and

orange damaging. Their analytical expression will be derived in the next section.

1.2.4 Properties of the Monopolist Contract

We now list some properties of the optimal contract which follow immediately
from Theorem (1.1). We begin with a description of the resulting quality allocations,

separating the case of strictly concave and trivial g.

Corollary 1.1. (Linear utility) Suppose g = 0. Then, optimal allocations are given
by:

0 §<
p(q,0) =

N[= N

qg 0>

and the monopolist has constant marginal revenue V' (q) = ;.

27So that distributional efficiency at the top realizes in our setting.
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Marginal revenue (top) and the two inefficiencies (bottom) from

Figure 1.3:
monopolistic provision of digital goods.
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The result follows by applying allocation rule (1.11) to the maximizer of the virtual

valuation, which in case of linear preferences is:?®
0 0<3
50) - 1

When preferences are linear, screening is only performed by excluding (selling quality
0 to) an invariant set of types, so that only one positive quality will be offered. All the
non-trivial screening observed in price discrimination with linear preferences is driven
by the shape of the marginal cost curve (and from ironing a non-monotone hazard
rate). Since the distribution problem lacks such cost curvature, a smooth screening
contract must result from the specification of preferences. Allocations with concave

g have the following properties

Corollary 1.2. Suppose g is strictly concave. Then
i) All types receive a positive quality in the optimal contract.

it) At low quality caps the optimal contract features full bunching:*

p(g,0)=q Y0,q<(¢) (1)

iii) A positive measure of agents [l

5 1} receives the highest quality good irrespectively

of the quality cap.>°
1
plq,0)=q Vb€ {571}

Point 7) is implied by the Inada condition of g around 0: by giving a marginal

quality to low valuation types who receive nothing the seller gets unbounded marginal

28 As in Remark 1.2, the shape of the optimal contract would be the same for any multiplicatively

separable utility specification
u(q,0) = ui (q) - u2 ()

v (g,0) = u1 (q) - [Ug (0) — u () (1_“9)”

and /() is again either 0 or oco.

which gives:

29With non-uniform distribution, the requirement is ¢ < (¢')~" (h () — 0)

30Similarly, we would get the unconditional bunching region to be [5, ?} .
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revenues, which she can distribute as information rents to make sure IC constraints
for higher types are satisfied. If the quality acquired is low enough, since there is little
variation in relative marginal utilities it will not be optimal to screen any type, giving
point 7). An implication of ii) is that sufficiently steep marginal cost shuts down
one source of inefficiency, damaging, leaving only underacquisition active. This will
allow us to isolate the impact of a policy on the underacquisition inefficiency alone
by assuming monopolist was producing in this region. By point éii), there is a set
of types that are bunched at the top irrespectively of the quality cap. It should be
noticed that those types are exactly the same that were sold a positive undamaged
quality under linear preferences. Indeed, a concave g does not change the fact that
above a certain threshold the virtual valuation is monotonically increasing, but it
gives a nontrivial maximizer for other types. Also, we can now explain why (1.12)
gives limit marginal revenues

lim V" (q) = =

q—00 4

As the quality grows higher, marginal increments are distributed as if preferences
were linear since at high qualities agents use incremental units only in the performance
of the advanced task.?!

Figure 1.4 shows a graphical derivation of the optimal contract: the marginal
revenue is crossed with the marginal cost function to determine ¢ (left graphs with
axes flipped for convenience), this level is reported on the vertical axis in the graph
of 8 and the optimal allocation p* () then results from “slicing” 3 at ¢*. The three
panels describe full bunching, active screening and linear preferences.

We now compute total surplus under monopoly and give an analytic expression
to the two sources of inefficiency described above.®? If ¢ is below (¢/)~' (1), then
computations are simple. Producer revenues are V (¢) = ¢(g), consumer surplus
is Wiq) = %q and per Corollary 1.2 7), there are no damaging inefficiencies (only
underacquisition is active). The following proposition characterizes surpluses when

instead ¢™ > (¢/)"" (1).

Proposition 1.3. (Decomposition of inefficiencies above (¢') " (1))

31This also means that to have a finite solution to the monopolist problem the marginal cost must
have limit that exceeds i.
32 We are currently missing an expression for consumers’ rent.
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Figure 1.4: Graphical representation of optimal contract with high (top) and low
(medium) marginal cost for concave g, and for linear preferences (bottom).
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Total consumer surplus is given by
1 _ a" 14+4 (g 2
Wig") =3 |(¢) 1(1)+/ (—2 @) 44 (1.14)
CORRIEY
We can therefore decompose monopolist inefficiencies as

M

/<:'>1<1> d@dg+ /Z B +g' (@) =< (Q)} dg (1.15)

q

where

1(g) = 51+ 2 -3¢ (0) ¢ (0) (1.16)

are the marginal inefficiencies from damaging.

Analytic manipulation, shows that aggregate marginal information rent is given

by
w5 (FHL) - v

Hence, total surplus under monopoly grows, above (¢')~" (1) with slope given by

() s () 5 e

marginal profits marginal rents

Which, combined with full bunching below (¢') " (1) gives the following expression

for marginal monopolist surplus

J(@+3—-c(@ glqg>1

m = , 2 1.17
. P(HL) — o) g@<1 o

2 2

If we didn’t have the inefficient damaging, total surplus would grow with slope

1

5+9 (@)= () (1.18)

Subtracting the two we get the expression for the marginal inefficiencies from dam-
aging
(1+(2-34"() 9 ()

ol

d(q) =
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by integrating d (q) from (¢/)" (1) to ¢™ we get the first term in (1.15) (the area of
the orange region in Figure 1.3). While we cannot give an intuitive interpretation as
to why (1.16) represents marginal inefficiencies from damaging, because the analytical
result depends on the uniformity assumption, we notice that d (¢) = 0 when ¢’ (¢) =1
(below that level there were no damaging inefficiencies), and that d is a positive hump
shaped function in ¢’ (¢) when smaller than 1. Underacquisition inefficiencies, the
green area constitute instead the second summand in (1.15) and add to social surplus

losses (1.18) in the underacquisition region [qM , q*].

Relaxing Demand Primitives

We have made restrictive assumptions about the specification of returns from
quality and of the distribution of types. Returns belong to the family (1.1) and the
type distribution is assumed uniform. The latter assumption is innocuous: the quali-
tative results of allocation rule (1.11), monopolist underprovision and decomposition
of inefficiencies into damaging and underprovision always hold though the analytic
expression of marginal revenues (1.12), consumer surplus and damaging inefficiencies
(1.16) are modified to allow for a different inverse hazard rate. Under a general
distribution characterized by hazard rate h, the full bunching threshold (¢/)~" (1)

would be
7=1(g)" (0—h(0)

where ¢ > 0 is guaranteed by the monotone hazard rate assumption and the Inada
condition lim, .0 ¢’ (z) = oco. Similarly, the inverse  function used to calculate the
marginal type bunched at the top which gives marginal revenues and welfare is defined

implicitly by the equation:

9 (q) = (h(b(q)) —b(q) =h(b(q))

In general, the b function would be given by
b(-) = max {0,%‘1 og ()}

which reduces to (1.13) in the uniform case ash~' (z) = (1-2)/2.The cutoff type

assigned the undamaged quality when preferences are linear will be 5, the zero of

26



h(0) =6 — h(6),* and marginal revenues would be 6 [1 —F <§)], which are £ and
}l respectively in the uniform case.

The additive separability assumption is more substantial; its empirical content
is discussed in the introduction, together with a plausible microfoundation. The
Inada conditions are essential to get the full bunching region at low qualities, while
identifying preferences with function g allows to characterize revenues and welfare
only as a function of its curvature. For the bunching at the top property of the cap-
contingent contract (Proposition 1.1, 7)) it would be sufficient that [ is an increasing
function. This would be guaranteed by concavity in ¢ and supermodularity of the
virtual valuation which is in turns ensured by the standard conditions on mixed

derivatives

Ugg < 0, Uge > 0, Ugoo <0

and a monotone hazard rate.

1.2.5 Impact of a No-Screening policy

Corollaries 1.2 i7) and 1.1 present two cases in which only one positive quality is
distributed under monopoly: either preferences are linear, a constant mass of agents is
served the undamaged quality and others are excluded, or g is concave but the optimal
quality cap is low enough (steep marginal cost) to induce full bunching. The aim of
this section is to evaluate the positive and normative implications of a regulation that
prohibits the monopolist from selling damaged goods. This exercise is useful for two
reasons. First, it is the natural extension to this framework of the Deneckere and
McAfee (1996) normative question “when is the possibility of screening beneficial for
all types in the economy?”. Our different specification of the cost function and the
fact that available qualities are not pre-determined add different channels through
which the NS policy can impact allocations and welfare. Second, this is a first pass
at evaluating the impact of a policy on the two inefficiency sources isolated in the
previous section, and will provide a useful benchmark of comparison for the welfare

implications of competition.

The NS Problem

The superscript NS will denote objects associated to a No Screening monopolist.

He chooses a quality ¢"° and the threshold consumer (qN S) who is indifferent

33That always coincides with the threshold type that is always bunched at the top even with
concave concave g.
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between purchasing the good and not, then sell ¢V to types [19 (qN S ) , 1} at price

g (qNS) L9 <qNS) qNS

The exclusion policy ¥ : @ — © is found by solving the quality-conditional pricing
problem:3*
I (q) = max [u (¢, 0)] (1 - 0)

At the acquisition stage, the NS monopolist solves

max I (q) — ¢ (q)

The following proposition characterizes the solution in regular environments. We
focus on strictly concave g as we already argued that the NS policy is not binding

when preferences are linear.

Proposition 1.4. i) The exclusion policy ¥ is given by
¢—9(q)
Y (q) = —0
= {1720

It holds 9 (q) < b(q), strictly when b(q) > 0. Moreover, 91 (0) > 3 (0).

i1) Marginal revenues for the NS monopolist are given by

9 (q) 7<g(q)

(o s@t29@) g 5 g (g)

ii1) It holds gV < g™ (strictly whenever ¢™ > (¢)"" (1)).

The ¢ and b functions are plotted on the left panel of Figure 1.5. The fact that
has a larger intercept, stated above as ¥~! (0) > (0), is key as it implies that the NS
monopolist starts excluding some types at a quality level at which the unconstrained
monopolist is already actively engaging in inefficient damaging. The quality space is
then partitioned in three regions, highlighted in the right panel of Figure 1.5, where
marginal revenues for the constrained monopolist are compared with those of the

unconstrained monopolist. In Region A, where ¢ < (¢/)" (1), both monopolists do

34We keep the assumption @ ~ U [0,1]. The qualitative properties do not change under generic
monotone hazard rate distribution.
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full bunching, the constraint is immaterial, and marginal revenue functions coincide.
In Region B, where ¢ < (g’)_1 (1) but ¢ < g (¢), the NS monopolist sells to all types
(marginal revenue is ¢’ (¢)) while the unconstrained one does positive damaging. In
Region C' also the NS monopolist performs his “constrained” screening by excluding
a positive mass of low types.

Point #i¢) immediately implies that the NS policy induces a deterioration in the
acquisition inefficiency, which becomes strict as soon as the NS constraint becomes
binding. As for the screening inefficiencies, we have two competing forces: as ¢ (q) <
b(q), conditional on acquiring the same quality, the NS monopolist would serve it
to a larger portion of types. However, types that are excluded in the NS contract
receive nothing, while in the unconstrained monopolist contract they have positive
consumption (and value). This delivers the immediate welfare implication that the
NS policy makes some low types in Region C, i.e. those that are excluded, worse off.
It is also clear that the monopolist is always worse off since she is solving a constrained

version of problem (1.7). We can write foregone profits from the NS policy as

M

V) @) - 00 @l
q
both summands are positive and they separate losses for not performing screening
and from acquiring a quality that is below the unconstrained optimum. By focusing
on cases where the unconstrained monopolist produces in Region B we can derive

some less trivial welfare implications of the NS policy.

Proposition 1.5. (Welfare impact in Region B) If the monopolist produces in
Region B, then
i) A set of (low) types is better-off under the NS policy.

i1) The net gains from enacting the NS policy can be expressed as

NS M

/q d(Q)dq—/q m (q) dg (1.19)
(¢) () aNs
where m (q) is the marginal monopolist surplus (1.17) and d(q) are the marginal
damaging inefficiencies (1.16).

iii) If " (qM) is large enough (approaches the fized cost limit), the NS policy
increases total welfare (net gains approach f((;l,\;_l(l) d(q)dq).

29



- I
p(6)
sl9=q
g"(l)
0 1/2 i
0
A dV (unconstrained)

d N (constrained)

Full bunching, \

constraint immaterial
Unconstrained is non-trivial
constrained serves all

Unconstrained is non-trivial
constrained excludes some types

>

@' 2@ q

Figure 1.5: Constrained and unconstrained monopolist: full bunching thresholds (top)
and marginal revenues (bottom).
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The intuition for ) is as follows: because in Region B there is no exclusion,
every type receives welfare W5 (0) = 0¢"7; in the unconstrained case low types,
those below b (qM), received W (0) = fo"ﬁ(e') do’. As ¢™% > 3(0), it follows the
marginal surplus is larger in the NS environment for a set of positive measure,
implying the statement. As for the overall impact of the NS policy, it reduces
“by brute force” the damaging inefficiencies but it creates two perverse effects: it
makes the monopolist worsen underacquisition, and it may force some types to be
completely excluded. Focusing on Region B ensures the “complete exclusion” margin
in non-existent, so point i¢) only trades off the positive impact from undoing damaging
in the [(g’ )71 (1), ¢N 5] region, and the negative underacquisition impact. Assuming
costs are extremely convex around ¢™ ensures marginal cost cover the V' — IT'
gap quickly implying ¢V — ¢. So in the limit every type receives the quality
a monopolist produces (but does not distribute), which increases total welfare by
completely undoing damaging inefficiencies without perverse effects. The geometric
intuition for the result is given in top panel of Figure 1.6, comparing acquisition and
distribution in Region B for different cost functions.

In Region C, portrayed in the bottom panel of Figure 1.6, the convex cost limit
would give an ambiguous welfare impact as we would need to take into account the
loss of consumer surplus in the region [O, 0 (qM )} a full welfare comparison needs to
take into account of consumer surplus that is lost by inducing complete exclusion in
that Region.

1.3 Competition

This section develops a model of competition in digital goods markets. Following
the discussion in the introduction, we specify an extensive form game and study its
equilibria.?® The discussion on stability in Section 1.3.4 offers a comparison with the
equilibrium notion in Rothschild and Stiglitz (1976), which is a standard benchmark in
the literature of competition with screening. Before that, we present the competition
game, solve for its equilibria by backwards induction (pricing and investment stages),

and analyze their welfare properties.

35How the setup of the game relates to existing models of competition with screening won’t be
discussed throughout the exposition, relevant references are given in the dedicated paragraph of
the literature review. Section 1.3.4 compares some properties of equilibria we obtain with those of
models that are closer to ours.
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Figure 1.6: (Top panel) Unconstrained and NS allocations in Region B, cost moder-
ately convex. (Medium) Region B, extremely convex cost. (Bottom) Unconstrained
and NS allocations in Region C.
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1.3.1 Primitives and the Extensive Form Game

The production primitives of the model are augmented by adding countably
infinite replica of the producer studied in Section 1.2. The set of firms is denoted
N with typical element . On the demand side, we assume that firms produce a
homogeneous (range of) products: the identity of the firm producing a certain quality
is immaterial to consumers that will therefore construct their demand by looking at
the lower envelope of the pricing functions. Firms play a two stage game of perfect
information in which investments in quality (first stage, or acquisition stage) are based
upon the belief that the ensuing price decision will constitute a Nash equilibrium in
the second (or pricing) stage at which firms quote a feasible pricing function at treat

production costs as already been sunk.

Timing and Action Space

At the first stage each firm chooses a mixed strategy over the qualities she acquires,

so her action space is

Al,i =A (Q) ’Vi

Firms pay the cost associated to the realized ¢ in exchange to the right to sell (at
the second stage) all qualities below ¢. At the end of stage one, the vector of realized
qualities®® g € Q" becomes common knowledge across competitors. Conditioning on
this information, firms then quote a market over the qualities available to them to

maximize revenues. The action set
Az (q) = RO

is the set of pricing functions on the feasible domain [0, g;], g; being the i** entry of
vector .37 Payoffs from this stage are the revenues each firm makes as a consequence
of everyone’s pricing decision. A formal expression of the payoff function is given in
Section .

Firms’ strategies in the extensive form game consist then of a distribution over

entry qualities and, conditional on each realized quality vector, a feasible pricing

36The bold notation reflects the fact that, from an ex-ante perspective, q is a random vector with
distribution parametrized by equilibrium actions.

37In principle we can allow for randomization even at the pricing stage so that Aia(q) =
A (]R[O’qi]); randomization will never be optimal in the second stage, so we restrict the action set to
pure actions.
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function. It is assumed that there is no discounting between periods®® so total payoffs
simply add costs incurred in the first stage and revenues earned in the second stage;

when those are stochastic, firms behave as expected profit maximizers.

1.3.2 Equilibrium

This section studies subgame perfect equilibria of the finite horizon game described

above by backwards induction.

The Pricing Stage

The first step consists in specifying revenues as a function of players’ actions,
i.e. pricing functions. Intuitively, firms make revenues from the set of qualities they
offer at the lowest price, individual demands being determined by the market pricing
function. The following steps make this intuition formal.

We take as given the set of individual pricing functions {p;},., pi : @ = RU

{00}.39 The market pricing function returns the lower envelope
m ({pi}ien) 1 @ = RU {oo}

m ({pi}iex) (2) = minp; (q)

which allows to derive the individual demand correspondence
Dy ey (0) = argmaxu (g, 0) = m ({pi}ic/) (9)
To express revenues, we firstly associate each type to the firm he buys from
t(0):©—=N

¢ (0) — min {arg miin {pl- (D{pi}iel (9)) }}

Firm j earns revenues that depend on how much consumers demand, which is

a function of the whole market, on the quality spectrum it ends up supplying by

38 As costs are incurred in the first period and profits are possibly earned in the second period.
Re-normalizing costs to take discounting into account does not modify the analysis in any substantive
way.

39 As before, we identify firm i not offering quality ¢ by writing p; (¢) = oco.
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charging the lowest price:

{0:.(0)=5}
Now suppose q is the vector of realized qualities, and that it is common knowledge
across players. As it is standard, the notation g'¥ denotes the " order statistic of

vector q. The following proposition characterizes the equilibrium of the pricing game.

Proposition 1.6. If preferences are reqular, for each q the second stage game has an

essentially unique Nash equilibrium in pure strategies. The induced allocations are

q®  ifp(0) <q?
p(q,0) =< B(0) ifq? <pB(0) <qV (1.21)
gV ifp(0) > q"

Revenues are given by:

o) = max {V (@) - maxV (a,) .0} (122

#1

The intuition for the result is fairly simple: since at the pricing stage costs are
sunk and the production realization is common knowledge, Bertrand competition will
drive to zero the revenues from versions [0, q(2)} that can be provided by more than
one firm. Therefore, all firms make zero revenues, except for the owner of the highest
quality, from now on referred to as “interim monopolist”. She enjoys market power on
the quality spectrum [q(z), q(l)}, and behaves as a monopolist under the additional
constraint that all agents must receive at least ¢ for free. Given regularity, the
solution to this problem is again simple: the [ function is now “sliced” both from
below and from above: all types below b (q(z)) receive g(? for free, the others get the
same allocation as under monopolist with quality g*) - but pay less. Figure 1.7 plots
the allocation induced by competition with ¢ = z, ¢®® = y. The equilibrium is
only essentially unique because it is not pinned down who between the producer of

the first and the second quality (or both of them) ends up distributing g®.4!

40, is measurable under the assumption that firms quote an increasing function.

41This fact may have an empirical content, since we may observe multiple providers of the free
quality, though it clearly has no implications on welfare.
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Figure 1.7: Equilibrium allocations in an z,y market.

By (1.22), each firm can compute its revenues as a function of its quality ¢
and the best quality across competitors x, which a payoff sufficient summary of the

competitive environment

R:Q* =R
R(q,z) = max{V (¢) — V (z),0} (1.23)

Towards the calculation of the first stage equilibrium it will be key that the
marginal revenues of the interim monopolist only depend on her, and that they own

quality and coincide with that of the unconstrained monopolist, namely

0 0 x>q
Z R(g2) = (1.24)
0 Vi) =<q

In order to avoid carrying order statistics notation, in the remainder of the paper
we will denote with & be the best and y the second quality in the vector of realized
entries; z,y will denote particular market realizations and p (x,y,0) is the quality
assigned to type 6 whenever the realized first and second qualities are x, y respectively.
The following example begins computation of the equilibrium in the case of linear

preferences.
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Example 1.1. With linear preferences, the allocation and transfers associated to

each pair x,y are given by

(y,0)
(a:,%(x—y)) RS [

>
m
=

]

1]

N[

(p:p) (z,y,0) = (1.25)

N[ —=

Low types, who were previously excluded, receive the second quality y for free, while

high types receive the best quality z and pay price % (x —y). The revenues of the

interim monopolist are % (r —y), and marginal revenues are constant at %.

The First Stage Game

The pricing game delivers a revenue function (1.23) which is added to the acquisi-
tion cost, thus determining the payoff function in the quality investment game. The

expected profit associated to quality ¢ is

I(q) = /Q R(q.)dH (2) — c(q) (1.26)

where H is the CDF of the best quality produced in equilibrium by competitors. The
following proposition characterizes equilibria of this game. A firm is called active if it
plays an action different from dg, that is if it chooses a positive quality with positive

probability.

Proposition 1.7. The first stage game has a unique equilibrium for any number
n > 1 number of active firms. With n = 1, the active firm plays o, ; this is also
the only equilibrium in pure strategies. For each n > 2, active firms play a mized
symmetric equilibrium

i) with support [O,qM}

i1) and continuously differentiable (on the interior of the support) CDF H,, given
by

H, (q) = {Cl @]M (1.27)

and make zero (expected) profits.
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The intuition for the monopolist being the only investment equilibrium in pure
strategies is the following. Two firms cannot commit to a positive quality as the owner
of the lower quality would profitably deviate by abstaining. All firms abstaining
cannot be an equilibrium as well, since everyone would best respond by playing
monopolist. So one firm playing monopoly is the only candidate equilibrium in pure
strategies. It is indeed an equilibrium: potential entrants by (1.23) do not want to
choose a quality below ¢*; by deviating above ¢™ a firm will be interim monopolist

and make profits

II(q) = V() =V (¢") —clq)
= V(&)= (@) dd — e (d")

Both summands are negative as as ¢ (q) > V' (q) above ¢™. This contrasts with the
possibilities of an ex-post deviator in the spirit of Rothschild and Stiglitz (1976), who
upon entry can make revenues approximately close to those of an “idle” monopolist.

For equilibria with active competition, i.e. n > 2, standard arguments from
war of attrition games prove that each firm must play an atomless distribution over
qualities, and that they must make zero profits. Using (1.24), the flat profit condition

I (q¢) = 0, necessary for indifference, yields

¢ (q)

T =37y

(1.28)

Equation (1.28) pins down the distribution of the maximal quality across competitors.
Notice that H (¢) = 1 right at ¢ = ¢, so the support of the maximum across
competitors, hence that of each firm, is [0, v } Such a support restriction is implied
by the fact that each firm’s best response to a realized entry vector belongs to the
doubleton set {O,qM }: per (1.22) opponents’ revenues are ex-post equivalent to a
fixed cost, and only affect the decision of whether to enter, but not the quality upon
entry.

Symmetry then implies the formula for H,; notice the number of active firms
is not pinned down. The CDF (1.27) is differentiable since V" is continuous per
Proposition 1.1 4i). To check that this is indeed an equilibrium, notice active firms
are indifferent by construction on [O,QM }, meaning that potential entrants would

make expected losses by playing in that range (compete against n rather than n — 1
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players). Deviations above ¢ are again excluded as profits would be

q
I(q) =T (¢") + / Vid) =) dd
q

The first summand is zero in expectation by the flat profit condition (negative for a
potential entrant), while the second term is negative by the definition of ¢™. Again,
the intuition is that irreversible investment gives incumbents the commitment to fight
and drive expected profits to zero on the common support, so the interim monopolist
with quality above ¢™ adds negative marginal profits to zero.

Combined with Proposition 1.6, the support restriction delivers the following

Corollary 1.3. Irrespective of the number of active firms, with probability 1 a
competitive market distributes
i) a best quality strictly below ¢™, and

i1) a strictly positive quality for free

Point i) gives a simple empirical implication of the model: a positive quality
is distributed for free if and only if there is active competition. If that is the case,
we also know from ) that high valuation types receive a quality that is below their
second-best allocation. Example 1.1 is expounded upon by computing first stage

equilibria for linear preferences under a class of convex cost functions.

Example. (1.1 continued). Consider the class of convex cost functions ¢ (q) = ¢°,

a > 1. Constant marginal revenues V' (¢q) = ;11 imply monopolist quality is

¢" (a) = (i) a

Using Proposition 1.7 i), each one of n active firms plays in equilibrium the mixed

strategy characterized by CDF

Hyo () =1 {q S [0, (i) all] } - (dag)™
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1.3.3 Welfare

We now study ex-ante (expected) welfare across different equilibria. One ac-
tive firm is the monopolist benchmark to which are associated the underacquisition
and damaging inefficiencies isolated in expression (1.15). The positive implications
highlighted in Corollary 1.3 give a first idea of the impact that active competition
has on welfare (relative to the monopolist equilibrium). Point i) implies that the
underacquisition inefficiency will be worsened. Conditional on each realized best
quality x two additional forces operate. One is a multiple spending inefficiency: all
costs associated to qualities that realize below x are social waste as a planner could
achieve the same allocation at no additional cost. This operates in the same direction
as the underprovision inefficiency, favoring monopolist. Point #i) of Corollary 1.3
however implies that competition shrinks the image of the allocation function, thus
reducing damaging inefficiencies (1.16).

Qualitatively, therefore, comparison between monopolist and active competition
equilibria is inconclusive: underacquisition and multiple spending favor the former,
undoing distributional inefficiencies favor the latter. Also, notice that the forces into
play are similar to those of a NS policy: perturbation of the monopolist environment
induces a worsening of the underacquisition inefficiency, though it may have positive
distributional effects. A third channel however distinguishes the welfare impact of the
NS policy from that of active competition: in the former case we have the “complete
exclusion” margin, while in the latter the double spending inefficiency. Also, all
competition outcomes are stochastic as firms play mixed equilibria in the first stage.

The next proposition shows that the relative strength of the potential welfare
impacts is not unambiguously signed. We show by means of example that depending
on the shape of the cost function one can favor either monopoly or competition with
two active firms, which uniformly (i.e. type-wise) dominates equilibria with more
intense competition. We initially define the surplus for type # conditional on realized

market statistics z,y

0
W (0,2,5) = g (s) + | max{y,min {z. 5 (9)}) 40 (1.20)
0
and expected welfare of type € in the n-equilibrium

Wn ((9) = En [W (97 €T, y)]
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where expectation [E, integrates market statistics under the distribution induced by
the equilibrium (1.27) with n active firms. Since all producers make zero expected

profits, total surplus under competition is just

Wi = Eq [Er [W(0)]]

Theorem 1.2.
i) Equilibria with active competition are Pareto-ranked, decreasing inn. Moreover,

improvement is uniform in types, that is
W, (60) = W, (6)

for all 6 and 2 <n < m.

i) If ™ < (¢))"" (1) (monopolist does full bunching), then competition reduces
welfare. Otherwise, we can specify a cost function under which double spending and
underprovision inefficiencies vanish and the complete undoing of damaging inefficien-

cies make duopoly dominate.

We notice that type-dependent welfare (1.29) is an increasing function in both
x and y. This is a natural consequence of the fact that larger x gives extra surplus
to high types leaving unaffected (allocation and rent of) low types, while larger y
increases the allocation of low types and reduces payment for high. For i) it is
therefore sufficient to show that the joint distribution of (x,vy) is ordered according
to first order stochastic dominance (FOSD) in n. We prove that the distribution of y
conditional on & = x is independent of n for each x, with (conditional) distribution
given by

H (y)

Hem (y) = mﬂ {y € 0,2} (1.30)

and that the distribution of @ is ranked in n according to FOSD, from which sufficiency
follows. By point i) we can therefore compare 2 active firms*?* with the monopoly
equilibrium.

Point i) proves that the qualitative forces highlighted in Corollary 1.3 can have
any relative strength and, depending on the shape of the cost function can favor either

monopoly or duopoly. The message is delivered by considering two extreme cases:

42We call two active firms duopoly though the term may be misleading, as inactive firms are also
key players in equilibrium.
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steep cost around zero and the fixed cost limit. We begin with the first case As there

is no damaging, monopolist surplus is

1
Wi =g (¢") + §qM —c(¢")

Also, by Proposition 1.6, as y < x < ¢™ for any market realization everyone will be

allocated x at price g () — g (y). Per (1.29), type dependent surplus is

W(z,y,0) =g(x)+0x—(g(x) —g(y) =g(y) +0x

and total surplus is
1
e

By using the expression for the conditional distribution (1.30) and then integrating
by parts, we show that welfare under competition W,, = E,, [W (z, y)| can be written

as

. / (.

~\~
W

g (a") = (™) + %qM] - /Oq g (x) - — (c ()2 w) +% H, (z)dz (1.31)

First term is monopolist welfare, second term is the integral of a positive function,
so the statement is proved.
We prove that in general, i.e. allowing for ¢™ > (¢/)~" (1), the difference between

duopoly and monopolist welfare can be written as

M

Yy q
Wo-Wy =5 | [ d@di-  cly) |-BE| [ m@d | 032
(9)~1 (1) ~~ x
b ~- ~ double spend —
undo screening underacquisition

where [E, is distribution of market statistics under duopoly equilibrium, m is
marginal monopolist surplus function (1.17), d is marginal damaging inefficiencies

(1.16), and the following convention is used: for any real valued function f,

/bf(a:) dz = 0 (1.33)
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Figure 1.8: Screening undoing (purple) and underprovision (light-blue) welfare impact

whenever a > b. As we highlighted in the expression, each summand in (1.32)
isolates the impact on one inefficiency. Figure 1.8 below plots for market realizations
x,y the resulting welfare impact from undoing screening (purple), and worsened
underacquisition (light-blue).

The only positive summand in (1.32) comes from realizations of ¢ above (¢/) " (1):
unless it shrinks the allocation function compared to an x—monopolist, y¥ has no
impact on total welfare as it only transfers surplus from the seller to (all) consumers
in the form of lower price. The case ¢™ < (¢’)”' (1) ensures this happens with
probability one.*> To get a positive impact of competition the following conditions
are required. Both @ and y should put significant mass on high realizations: the
former must be close to ¢™ to reduce the integration domain of the underprovision
inefficiency, while the latter should be well above (¢') " (1) to have significant undoing
of damaging inefficiencies; finally, the cost of the second quality must be small to
reduce the double spending inefficiency. Notice that high realizations of y have an
ambiguous effect on welfare, as they increase both the integration domain for screening
inefficiencies and costs.

Expression (1.32) is easily modified to evaluate welfare impact of higher intensity

competition: we would need to take expectations under the a different (FOSD domi-

43Indeed the implication that monopolist dominates duopoly whenever the former does not actively
damage could be immediately derived from (1.32). We used the more direct welfare calculations
that the subcase allowed to perform.
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nated) distribution of market statistics and to account for all multiple spending as all
realizations below the best quality will increase the amount of wasteful acquisition.

We are left to show that in case monopoly has active damaging inefficiencies,
then competition can dominate. To this end, suppose 1 > (¢')~" (1) and consider the
limit of convex cost functions c¢(q) = ¢® as a grows to infinity.** Irrespectively of
the revenue function monopolist quality will converge to the point at which the cost
function explodes, while its cost will converge to zero

¢ =lim ™ (a)=1, &= lim (qM (oz))a =0

[e.o]
a—0o0 a—0o0

also, substituting marginal cost into (1.27) we get that equilibrium strategy converges

in probability to ¢!, that is

0 g<q¥
H; (q) . o
qd = 4

and E, [c(y)] < c¢(¢)) — 0. Plugging those results in (1.32) we observe that the

limit welfare impact of competition is given by

/(q% d<q>dq—c£§—/qq%[m@—c'(q)]dq

g

M
doo

- [, dwa (1.34)
(9)~ (1)

only the impact on screening undoing is active in the limit, and is also “complete”:
all types receive in the limit the quality that a monopolist would have produced (but
not distributed).

We provided an expression for the welfare gains under duopoly and proved it
cannot be unambiguously signed. Competition induces positive distributional effects
that contrast increased underacquisition and double spending. The cost function can
be tailored to shut down either channel. This is the main message of this Section.

We now complete the analysis of equilibria with linear preferences and generic
costs started in Example 1.1 by studying their welfare properties and show how

results derived in this section apply to a tractable example. Notice that with linear

441t is assumed ¢’ (1) < 1 so the asymptotic monopolist engages in inefficient damaging; otherwise

«
we can target any asymptotic monopoly level g by letting ¢, (¢) = (%) .
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preferences there is no region in which the screening inefficiency is non-existent, as

types [0, 3] are always (completely) excluded.

Example. (Example 1.1 continued) Using allocation rule (1.25), we can write market

type-dependent welfare as

Oy 0 <
W0, z,y) =

NI NI

0r —L(z—y) 6>
So we can derive a closed form expression for market-contingent welfare®®

W(m,y)z/j&yd@—i—[l {x@—(m—y)%} dﬁzé[x—l—?)y] (1.35)

2

With quadratic cost ¢ (q) = %qg, the monopolist produces ¢ = 411, while each firm

in equilibrium with n active firms plays distribution

H, (q) =1 {q € {O, ﬂ } (4g)™1

From which we can calculate expectations of first and second order statistics

Ealel = |

Iaﬁy]zbéi4ny[1—w4Mn*]dy::16;{_8 (1.37)

N

n
8n —4

[1 - (4:5)%} do = (1.36)

Figure 1.9 plots equilibrium support and mean allocations (sufficient for welfare
under linearity) for different competition intensities.
Plugging (1.36) and (1.37) into (1.35) we get that welfare in an equilibrium with

n active firms is

1 o _n
Wo =E, [W(2,y)] = gBax +3y] = 75—

45Notice y has disproportionate impact as it increases welfare of low types and reduces payments
of others.
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M Monopolist allocation

Mean allocation with 2 firms

Mean allocation with many firms

1/2 0

Figure 1.9: Expected Bertrand allocations with different intensity, quadratic cost.

which is a decreasing function in n (Proposition 1.7 ¢)). Under monopolist, both
consumer and producer surpluses are 3%, giving total surplus %. Notice
5 1

1 5
— > S =Wye>Wy>-->lim W, = —>—=05M

9
W, = L2
716 64 3 n=s00 128 ~ 32

With moderately convex costs monopolist outperforms duopoly and competition
of any intensity makes consumers better off than under monopoly.

Now consider generic convex cost ¢ (q) = ¢%, and focus on the limit case a — oo.
We can check that

¢ (a) = (i)“il—u, ¢ (" (a)) = (i)ail_)o

which imply the following limit for monopolist surplus

3

1 1 1
WM:[/ <@qM_%qM>d9+/ %quHI—c(qM)—>1/ 6d9—0=§
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Equilibrium play under duopoly is

Hso(q) =1 {q € [O, (%) 0_1] } - (dag)™ !

which converges in probability to 1, so that

1 1 1
Wgya = g]EQ@ [$+3y] — g [1 +3] = 5

% for each n, any intensity of
competition allocates (approximately) quality 1 to all types, delivering surplus %,

which exceeds monopoly surplus by %. Notice this conforms with equation (1.34),

Repeating the same steps we can show W,, —

as ¢ is exactly the (limit) damaging inefficiency induced by excluding (at all quality

levels) types [0, %]
M

/qud(q)dq:/ol (/jd&)dq:é

1.3.4 Equilibrium properties and stability

This section has two purposes: i) to compare equilibrium outcomes with those
obtained in models that have the most similar competition structure, and i) to
discuss equilibrium stability as robustness to deviations from idle firms that may

unexpectedly occur as the game unfolds.

Similar models of competition

Making producers commit through an ex-ante irreversible investment is a modeling
device used since Hotelling (1929): it makes equilibrium existence less problematic
(and in our case also guarantees tractability) by granting incumbents some market
power at the pricing stage. Separation of the production and pricing stages prevents
indeed potential entrants from exploiting profitable deviations that may emerge when
the competition environment or its outcome realize.

Two classical papers study similar competition games. Kreps and Scheinkman
(1983) have firms commit to a quantity level before Bertrand competing (without
screening) on the realized investments. The two stage equilibrium yields Cournot
competition outcomes. The obvious difference with the setting of this paper is that
the social value of aggregate production is obtained by summing quantities but taking
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the maximum over qualities of an homogenous good. As production along multiple
lines is always wasteful, the result that competition may be beneficial is to some
degree surprising. Champsaur and Rochet (1989) have the most similar setup as
they analyze a MR duopoly where each competitor costlessly commits to a subset of
qualities and then chooses a pricing function (paying the distribution costs at this
stage). In committing to a quality range firms face a trade-off: they want a broad
quality range to discriminate among consumers, but they also want to differentiate
their products from those of the competitor as price competition lowers profit margins
on neighboring qualities. They show that at a Nash equilibrium where each firm
makes positive profits, the quality sets to which firms commit are always disjoint.
Our investment game makes, in the language of Champsaur and Rochet (1989), firms
commit to a quality range of the type [0, ¢|, so it is technologically impossible that
two firms acquire disjoint sets. Indeed in all equilibria only one firm realizes positive
revenues (Proposition 1.6), and first stage equilibria with active competition are only

mixed (Proposition 1.7 4i)).

Stability

We thus far fixed an extensive form game and studied its properties: for sake
of tractability we implicitly imposed strong timing and information rigidities, that
must be justified by looking at, say, the length and transparency of R&D processes
and patenting in the relevant markets, entry regulations etc. Contrary to Champsaur
and Rochet (1989) our quality commitment stage is not cheap talk but requires a
real and costly investment, though it still excludes plausible production deviations.
The perfect information assumption is self-explanatory and so is the realism of its
empirical counterparts.“® We may be interested in investigating equilibria that are
induced by different specifications of the competition environment. Unfortunately, no
alternative specification delivered tractable results and we can only make an informal
discussion of the stability of the equilibria we found. We loosely define stability as
robustness to unanticipated deviations from inactive firms: the game is augmented
by allowing firms that were idle to take some actions as the game unfolds. Since the
game is two stage, two natural notions of stability emerge, depending on the stage at

which outsiders are allowed to act.

46Otherwise timing is vacuous a competitors equivalently randomize over pricing functions, which
would be a perfectly valid but intractable (for us) equilibrium concept.
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o Interim stability: after the first stage is over a potential entrant observes the
realized vector of entry qualities g and chooses whether (and eventually at which

quality) to enter and play the second stage against q.

o Ex-post stability: after the whole game is played a potential entrant observes
the realized market pricing function and chooses whether (and eventually with

which pricing function) to enter and compete with the realized contract.

Definition 1.3. The degree of interim (ex-post) stability of an equilibrium is the
probability that the realized entry vector (market pricing function) does not induce

interim (ex-post) entry.

Following the discussion above, it should be noticed that neither the ex-post nor the
interim stability notion are associated to the equilibrium of an extended game in which
active firms recognize the threat from outsiders: if he anticipates that at a later stage
a potential entrant could wipe out his revenues, the interim monopolist would not
(in general) choose allocation rule (1.21).*” Similarly, the expected profit formula for
the investment game would be different from (1.26) if active firms anticipated interim
(and ex-post) deviations. However, if firms were playing a pure strategy equilibrium in
the first stage, then the ex-post stability refinement would collapse to the Rothschild
and Stiglitz (1976) equilibrium. Rothschild and Stiglitz (1976) invoke a notion of
free-entry to justify the assumption that all firms observe the offered contracts?® and
must have no incentive to deviate, which is exactly what ex-post equilibrium in pure
strategies requires.*?

In this setting a Rothschild and Stiglitz (1976) contract would be a pricing function

p;. The cost of offering contract p; is

¢ (pi) = c(sup{q: pi (q) < oc})

which, contrary to the original setting, does not depend on competitors’ actions and
consumers’ demand. We associate to each set of pricing functions {p;},. the firm

specific revenue function R; ({p;};cy) given by (1.20) so we can define

47In particular, he would not alter his pricing decision if and only if this decision induces the
potential deviator to abstain.

48Tn their case, a pair of coverage rate and deductible.

49Pure strategies make indeed the sequential nature of the game immaterial: as each player knows
the realization of the quality vector and the strategy of opponents conditional on each quality vector,
he knows the realization of the pricing functions and best responds to them.
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Definition 1.4. An ex-post (Rothschild and Stiglitz (1976)) pure strategy equilib-

rium is a profile of contracts {p;},.y such that

R; (pf.p%;) —c}) > Ri (pip®;) —¢(p),  Vi,p;

The following proposition establishes non-existence of ex-post equilibria and charac-

terizes the degree of stability of monopolist and competitive equilibria.

Proposition 1.8. i) There is no ez-post equilibrium in pure strategies.

i1) The degree of interim stability is always larger than the degree of ex-post
stability. The monopolist equilibrium is interim fully stable (degree 1) but ex-post
fully unstable (degree 0).

iii) All competitive equilibria feature intermediate degrees of interim and ex-post

stability, and both of them are decreasing in n.

The intuition for ) is the following: the monopolist pricing function (and all others
abstain) is, by the same arguments used in Proposition 1.7, the unique candidate.
However this time potential entrants can earn revenues that are e close to V' (qM ) by
just granting a small and equal discount to all types. The idle monopolist has no way
to fight back, which breaks the candidate equilibrium.

We then notice that interim or ex-post best response implies producing a quality
that lies in the doubleton set {0, v } As

OZR(QM,qM) <c(qM) <R(qM,O) ZV(C]M)

and R (qM ,x) is monotonically decreasing there will be a threshold m* € (O,qM )
such that R (m*, v ) =c (qM ) We notice that at interim stage entry occurs if and
only if the best active quality is below m*, while at an ex-post stage entry occurs if
and only if the quality offered for free is below m*. So the degree of interim stability
is the CDF (under equilibrium play) of the best quality evaluated at m*, and the
degree of ex-post stability is the CDF of the second quality evaluated at m*. From
this fact and the FOSD order of equilibrium statistics proved in Proposition 1.2 1),

all results listed in ) and éi7) follow.
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1.4 The Market for Information

This section discusses information markets as a potential application of the model.
We highlight the implicit assumptions on the demand side and the production tech-
nology of information sources that make the framework of this paper more suited than
other approaches (which are briefly reviewed) to analyze some phenomena in those
markets. The main novelty is that production of information is decentralized and that
the technology to convert the factor of production (attention) into state-signal struc-
tures must be taken as a primitive. We present a simple but exact microfoundation of
the model in which firms observe increments of a common Brownian motion and sell
the realization to agents solving a standard location problem. A natural extension in
which correlation of the primary information sources induces product heterogeneity
is presented since the basic model has the counterfactual implication that only one
firm will be active (provide a non-trivial screening contract and make profit) even in
the competitive setting. We motivate future extension of the model presented in this

paper by discussing limitations imposed by the current simple structure.

1.4.1 A market for hard information

Many economically relevant situations can be modeled as a decision problem (or a
game) preceded by an information acquisition phase in which agents speculate about
some characteristics of the environment they will be acting in. To this aim it is
necessary to specify what type of information agents can access and at what cost.
The model presented in this paper can be applied to information markets with the

following characteristics

o Decision makers (consumers) have no way to create their own information
structure and must rely exclusively on the opinions sold by a set of profit
maximizing sellers. This contrasts with models of unrestricted information
acquisition with statistical pricing of information structures (e.g. Shannon

entropy) which is the approach taken in (most) rational inattention models.?®

50The rational inattention literature originates from the idea of Sims (1998, 2003) that decision
makers are finite capacity information channels, unable to process all the information available. The
information acquisition problem is equivalently rewritten by making agents pay an attention cost
that is linear in the reduction of Shannon entropy, where the (per-bit) price emerges as the Lagrange
multiplier on the attention constraint of the original problem. In this world, information is floating
around agents that grasp it costly bit by costly bit; the fact that the “information bill” depends on
some statistical property of the joint state-action distribution pays off in terms of a great tractability
which accounts for some of the success of this approach.
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o Firms are endowed with a technology to produce primary information structures
and a (free) technology to Blackwell garble those structures. Both production

and damaging occurs along a single dimension, exogenously given.

o Firms make revenues from selling information structures.’* Price competition
may become a second order concern (relative to attention and revenues from
advertising) when information means entertainment and ideology drives agents’
choice among opinion outlets. Newspapers, cable tv and similia are therefore
not examples of information markets whose functioning is likely captured by

this paper’s model.5?2

« Communication of the signal (of any quality) is a costless operation that occurs
without frictions: sellers have no disutility in repeating statements like “This
asset is going to default with a likelihood p € A” to whomever wants to pay for
that, and investors have no difficulty in understanding what such statements
mean,® to do the proper (bayesian) updating and to infer the value of such

information from the decision problem they face.

« Reputation issues are also neglected: the seller cannot misreport the precision
of the (menu of) signal he sells, and buyers believe the products they buy are

indeed draws from the promised signal structure.?*

Real world examples that approximately fit the description are websites that sell
weather forecasts and assessments of the likelihood of default of a fixed income
security (credit rating). Although (possibly) of limited interest, weather forecast is an

insightful example since both the signal structure (probability of rain, temperatures

51The vast literature on bayesian persuasion (initiated by Kamenica and Gentzkow (2011)) and,
more in general, of information design (see Bergemann and Morris (2017)) study the problem of a
principal who knows the state (has already “produced” the best information structure) and optimally
transmits it to a set of agents. In both cases that objective is not the maximization of revenues from
selling information securities: principal’s utility depends on agents’ actions which he influences by
tailoring the information transmission.

52Galperti and Trevino (2017) endogenizes the supply of information as the outcome of competition
among potential information sources that choose where to locate on the accuracy /clarity space in a
Myatt and Wallace (2011) setting. In a different setting Perego and Yuksel (2018) studies competitive
provision and endogenous acquisition of political information with horizontal differentiation of
potential consumers. In both those papers firms compete for the attention of their consumers,
which is justified as many information companies make most revenues from advertising.

53 Again, this contrasts with a rational inattention setting.

54Since posting a menu of prices is essentially cheap talk and the model is static, this is also a
strong assumption. Reputational issues in information transmission are studied by Wang (2009) and
Ottaviani and Sgrensen (2006) among others.
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bounds...), and the cost of acquisition (strengths of instruments, stations installed)
have a clear interpretation. The website Accuweather offers basic, premium and
professional subscriptions respectively for free, at $7.95 and at $19.95 monthly rate.
Better packages add to basic service a longer horizon (up to 90 days), finer (hourly)
weather forecast, experts opinions and radar images that clearly satisfy the feature
of free damaging. The market for financial information is much larger and relevant,
though some of its complexities require extensions of the model that we will address
later. For the moment we let information production be the effort to evaluate the
likelihood that a certain fixed-income security defaults. Credit rating has a clear
signal structure (intervals of likelihoods of the default event) and to some extent can
be modeled as the costly conjecturing exercise of some experts in the consultancy
sector. Damaging is performed by coarsening the rating partition or hiding some
parts of the report.

The key primitives that characterize such markets are i) the expression for the
value of information and ii) the set of information structures that can be acquired

and obtained through damaging. We proceed and give an example of both.

Information value

In an information market a type 6 € © generically corresponds to a bayesian
decision problem (action set, priors, utility) defined over a common uncertainty space
(over which producers construct signal structures). This paper took this object as a
primitive which means we can describe the shape of the optimal contract for classes
of decision problems/type heterogeneity that induce a value of information having
shape (1.1). It is however clear that to study specific phenomena we cannot take
the value of available signal structures as exogenous but derive it from the relevant
decision problem. Two recent papers that focus on information distribution derive
the information value function from either heterogeneity in the decision problems or
strategic externalities: Bergemann et al. (2018a) obtain a (piecewise) linear value of
information when agents’ types are their prior beliefs over a finite dimensional state
space. They show (among many other results) that it will never be optimal for the
seller to damage information by reducing precision (i.e. a quality dimension along
which preferences are linear). This conforms with the “no-haggling” result stated in
this paper as Corollary 1.1. In general they show that information is degraded and

sold in non-trivial screening packages by revealing only a portion of the available data
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to the buyer: along this deterioration margin consumers’ valuation are not linear.?®

Kastl et al. (2018) study the problem of a monopolist seller that may want to supply
imprecise information to competitive firms that are uncertain about the marginal cost
type of their contractors;®® in their setup the state space is binary but information
structures are allowed to be asymmetric and characterized by a two dimensional vector
(@, B).

We can obtain an information value with concave component as in (1.1) from a
decision problem that is standard in the literature: agents choose a location a to

minimize the realized euclidean distance from an unknown state
2
u(a,w) =—(a—w)

so the value of an information structure S :  — A (.9) is just the expected (i.e. after

observing a draw from &) reduction in the variance
g (8> = —Es [Vpost] + VpTior
If agents have normal prior belief w ~ A (,u, T, 1) and information structures take

the form N (w,q!) for ¢ € R,57 then such value is given by

1 1 q

@ g+7m T (gt ( )

which is a concave function in g. Moreover, notice that

1
(C] + 7—10)2

is decreasing (in absolute value) in 7,, so larger precision implies “more concave”
returns from quality in the sense of footnote 15. To get the specification (1.1)
we should therefore assume that agents solve two independent “location problems”
and have heterogeneous valuations from guessing right the problem with larger prior

variance. In general, we can keep the common location game as inducing the concave

55 As a concrete example of damaging through partial revelation occurring in information markets,
Bergemann et al. (2018b) point at the “Undisclosed Debt monitoring” packages sold by Equifax in
which the data broker offers individual rating reports to financial firms considering application for
loans in three different versions differing in the number of “red flags” that the lender receives if the
borrowers’ history includes some negative events.

56They focus on the trade-off of a monopolist that may want to sell imprecise signal in order to
limit distortions due to internal agency problems.

5TInduced by speculation effort (1.39) (next section).
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component, and take the linear part as some Taylor approximation for an additional

type-dependent returns from precision.

Information production
Primary information structures are the state-signal correlations that can be pro-
duced by the firms. Suppose €2 = R and the choice of primary information corresponds

to observing a Brownian motion
dX; = wdt + dW} (1.39)

for some period of (costly) time. After staring at the Brownian Motion for ¢; units

of time, firm j “produced” a signal (sufficient for w)

1 1
s = —X,. NN(@),—)
J \/@ qj q]

about the state, which can be (damaged and) distributed to interested parties. Clearly,
as every firm ¢ € N observes the same Brownian motion but just for different time,
whoever stares at it the longer can push out of the market (owns a product that
is superior to) everyone else. Every firm j can “quote” a market for any precision
that is below ¢; since inferior qualities can be obtained by reporting the Brownian
motion at a period before ¢; or by adding independent normal noise.”® Notice we
have made the implicit assumption that damaged structures must fall in the normal
family. However there is no reason for which sellers should have this restriction: they
can report whether it lies in a certain region, whether it is closer to point A or B,
or commit to any garbling. The restriction to single dimensional quality is therefore
substantial especially when it comes to damaging, and becomes untenable when we

have a generic state space without parametric restrictions on primary structures.®

581f agents do not care about correlation (e.g. they play independent decision problems) then how
the signal is damaged is immaterial. If they were playing a game then also the correlation of the
signal would induce a value. In particular, in presence of strategic substitutability agent derive value
from being uncorrelated and we would obtain the result that a monopolist may acquire a quality
higher than the highest quality distributed, just to be able to damage it in an agent-independent
way.

59Tt is somehow natural to have single dimensional production sets: we can say that a weather
forecaster can buy a stronger telescope that allows for fixed maps into signal structures, or that
financial experts can only determine the intensity of their search and the resulting Markov kernels
are model primitives. It is clearly a much stronger assumption to say that such conjecturing effort
can be damaged only along the production dimension.
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Correlation as product heterogeneity

Proposition 1.6 gives the implication that only one firm sells positive qualities and
makes profits. This seems to be counterfactual at least in the market for financial
consultancy where many people make money out of saying something. Product
homogeneity in this framework arises from having all firms observe the same Brownian
Motion (1.39): the empirical counterpart of this assumption is that all experts look at
the same set of evidence (share a common reasoning process), or that meteorological
instruments make perfectly correlated errors.

Such extreme assumption can be relaxed by letting the Wiener process driving

observation of firm j be

AW/ = pdW, + /1 — p*dZ] (1.40)

where dth is a firm-specific process® and p € [0, 1] parametrizes the correlation of the
conjecturing effort of the different firms. Suppose for expositional clarity that there
are two firms 4,7 and that at the investment stage they produced ¢; > ¢;. Despite
being of inferior quality (correlation with the state) now X, contains information

about w even after conditioning on X,,. Indeed, it holds
Cov (qu,Xqi) = pmin{¢;,q;} = py;

Consumers only care about the final precision of the signal they observe (see (1.38)),

that is u (¢;, ¢j, 0) admits the aggregator representation

u (¢, q5,0) = u (¥ (i, q5),0)

where ¥ : Q? — @, derived by the normal updating formulas is the piecewise convex

function given by
g (¢; (1 = 2p) + ¢;)
4 — ¢;p?

U (g, q;) =

Notice that if p = 0 (signals are uncorrelated), then V¥ (¢) = ¢; + ¢; and we have
a model of additive social value of production as in Kreps and Scheinkman (1983),
though the distribution problem is subject to the screening frictions. If p = 1 then we
are back to homogenous products and maximum aggregator ¥ (¢) = ¢; which has been

the subject of study of this paper. Continuity of ¥ implies full deterioration domain,

6OMeaning dW;, dZ}, dZ; are uncorrelated Wiener processes.
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namely that that for each {g;},.y and ¢’ < ¥ ({g;},oy) we can find {¢/};,cy < {@:}

so that ¢ =¥ ({qg}iGN).
We define the cost of aggregate quality as the value function

€N

¢(q) = min ZC(%‘); st U ({gi}ien) >4 (1.41)

{qz‘ }ieN ieN

With the full deterioration property we can adapt the techniques used for the ho-
mogenous product and characterize first and second best. Second best is equivalent
to a monopolist that owns all production sources and distributes damaged qualities
only subject to information frictions: he allocates packages {gi (0)};cy gco Subject to
IR and IC where each type 6 can only choose among profiles {g; (¢')},.y (cannot pick
¢; (¢") and ¢; (0") for i # j). Proposition (1.1) applies verbatim to characterize the
second best distribution of aggregate qualities which are produced at cost (1.41). We
cannot however decentralize the second best as a pricing stage equilibrium among
competitive firms. The technical complications to solve for a competitive equilibrium
with screening and heterogeneous products are illustrated in the Handbook chapter
of Stole (2007), and we could not extend the tractability of competitive equilibria for

homogenous digital goods to this more general case.

1.4.2 Limitations and future research

Section 1.4 had three objectives: i) discuss features of information markets that
make them fit to be studied under the framework of this paper rather than under
alternative approaches, ii) use standard building blocks to provide a microfoundation
for an information market that fits exactly the reduced form description given in
the paper, and 7ii) suggest correlation in primary structures as a natural way to
introduce product heterogeneity in a market that fails one stark empirical implication
of the homogenous product model. Section explored a tractable way to allow for
heterogeneous in preferences that admit a quality aggregator. The unsolved technical
challenge is the specification of a competition environment that delivers tractable

equilibria. We conclude the section exploring other extensions of the model
o Contrary to a growing literature on information acquisition in markets, we do

not allow for strategic interaction at the decision stage as this would make an

exogenous (i.e. independent of equilibrium play) specification of the value for
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information untenable.®! The extension would make a second quality dimension
(broadly speaking, correlation with information given to co-players) emerge
endogenously. Broadly speaking, this direction points at an heterogeneous
agent version of Myatt and Wallace (2011) (or derived setups) with information

acquisition as in (1.40) and price competition.

The quality restrictions become substantive when the state space is large: as
investors have interests that are differentiated either geographically or for the
type of assets they trade, restricting sellers’ marketable products to be single
dimensional is unreasonable. We could think of a model with horizontally
differentiated agents that care, say, only about some dimension of a large state
space. A conjecturing effort produces signal structures about the whole state
space but firms may choose to sell what they know about different portions
of the state space as different products. We could use this specification to ask
under what conditions firms favor production and marketing of signal structures
characterized by a large breadth (learn about the approximate location of many

states) or depth (focus on one state and identify it more precisely) component.

The issue of non-excludability is particularly relevant for information markets:
beyond prohibiting re-selling of opinions, private information may be “leaked”
through aggregate variables (this channel is explored in Admati and Pfleiderer
(1986)). Many financial information packages include agent specific information
(as the rating of potential borrowers in the Equifax example of Bergemann et al.
(2018b)), and live prices (Bloomberg vs Reuters), which somehow reduce the

concern of failure of non-excludability.

1.5 Conclusions

In this paper we developed a model of production and distribution of digital

goods. The monopolist problem reduces to quality screening where the cost of an

61Several contributions (among which Hellwig and Veldkamp (2009), Myatt and Wallace (2011),
and Colombo et al. (2014)) show that in the presence of strategic externalities also the information
acquisition game has strategic complementarities (i.e. there is an information acquisition exter-
nality). The game structure makes the value of information an endogenous object, but the cost
is still exogenous even in cases where the supply side is a rich set of information sources who are
characterized by an accuracy-clarity pair (as in Myatt and Wallace (2011)).
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allocation is not additively separable but depends solely on one statistic of such
allocation (the maximum). Under regularity assumptions on the demand side the
optimal allocation is characterized by a bunching at the top threshold that increases
with the quality cap, which is then easy to solve for. Market power and asymmetric
information induce interdependent inefficiencies in acquisition and distribution of
the digital good. Preventing damaging always worsens the acquisition inefficiency
and induces exclusion of types that would be served under the unconstrained con-
tract. The mechanical undoing of damaging inefficiencies counters those perverse
effects yielding an ambiguous welfare impact of the policy whose sign depends on
the cost primitive. We then studied competition in digital goods markets as an
extensive form game in which investment in quality is a sunk cost at the pricing
stage. Monopoly is the only equilibrium in pure strategies, but there are also equilibria
with different levels of competition. Competition induces wasteful double spending
and worsens underacquisition since the highest quality distributed by a competitive
market is below monopolist level. However, Bertrand forces induce a contraction of
the screening domain that reduces distributional inefficiencies. Across equilibria with
active competition the duopoly is Pareto dominant and welfare is decreasing in the
intensity of competition. The welfare comparison between monopoly and duopoly is
ambiguous and we can tailor the cost function to completely shut down the channels
that favor either of them. The monopolist equilibrium is always subject to ex-post
deviations while the duopoly features the highest degree of ex-post stability across all
equilibria. We concluded by discussing how to apply and extend the model to study

some phenomena in the market for information from a novel perspective.
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Proof Appendix

1.5.1 Proof of Proposition 1.1 and Remark 1.1

As uy > 0 for any type 0, deterioration is inefficient: the planner produces a quality
that equates the average marginal valuation to the marginal cost and distributes such
quality to each type. (1.5) is the first order condition of problem (1.4) after noticing
the efficient allocation is flat, whose sufficiency is immediate.

A seller with perfect information can charge a type-dependent price pg. Then the
profit maximization problem coincides with the social surplus problem, he produces
q*, distributes it to all types and he extracts all the surplus.

1.5.2 Proof of Lemma 1.1

Consider the monopolist problem

MaX) p:0 QxR Jop(0)dF (0) —2(p)

(1.42)
s.t. IC,IR

and define
w(z)={p,p:0 —=Q xR: IC, IR hold and ¢ (p) < z}

be the set incentive compatible and individually rational allocation and pricing func-
tion whose cost does not exceed x. Using this constraint sets, problem (1.42) can be

rewritten as

max 0)dF (0) — x
x,{pﬂp,(p,p)éw(w)}/@p( ) ©)

= max max 0)dF (0)| —=x 1.43
zeR Lp:ap,<p,p>ew<x>}/@p (6) dF'( )} (1.43)

now given the specification of the cost function (1.6)

pEw(x) onlyif c(maxgp(f)) <z
< maxyp () <ct(x)
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SO

w(z) = {p,p:@ — @ xR: IC, IR hold and maxp(§) < ¢! (fv)}

and therefore

max /@ p(0)dF (0) = V (¢ (x))

{p:3p,(p,p)Ew(x)}

where V' is the value of quality defined in (1.8) as the constraint set of that problem
coincides with w (¢™! (z)). Redefining the domain of choice to be @ = ¢! (R) (which

we can do as ¢ strictly increasing), problem (1.43) becomes

r;leag‘/(Q) —c(q)

as we wanted to show.

1.5.3 Proof Proposition 1.2

Fix an arbitrary ¢. The monopolist chooses allocations and transfers {g;, T; },. (1,1}

to solve

V()= max (1—m)Ty+ 7Ty
{QuTQ}ie{;LL}

subject to

4G <q

Combining the incentive constraint for high and low types we get monotonicity of
the optimal allocation. Optimality implies the rationality constraint of the low type
and the incentive to deviate from high to low types must be binding. With those
observations the revenue maximization problem can written as a control problem

where we choose allocation to high type and low type, x,y respectively.

Vig) = max u(L,y)+n(u(H, x)—u(Hy))

0<y<z<q

Maximization with respect to x immediately gives the corner solution

r =(q
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Necessary condition for interior y is
u (L,y*) —mu' (H,y*) =0
9 (@) +0L _

=7
9'(q) +0u
Notice that by assumption u%, (¢) = ¢” (¢) = v/} so

(1.44)

uw (L, ) _ g (z)+ 05
o (Hyz) ¢ (x)+ 0y

is monotonically decreasing, and equation (1.44) has (at most) one solution. and also
guarantees that the SOC

u' (Ly*) —mu" (Hyy*) =1 —m)g" (y") <0

is satisfied at the critical point, giving the unique solution to the program.

Now, if y* < ¢, then also the monotonicity constraint is satisfied and we have a
global solution. If the threshold y* is below the maximal quality we need to compare
the fully pooling and exclusion equilibrium. By the single crossing property, for all
x < y* it holds v/ (L, z) > mu’ (H, x), therefore

w(q, L) :/Oqu’(L,x)dx>/Oq7ru’(H,x)dx:7ru(q,H)

and it is more profitable to serve ¢ to all consumers at price u (¢, L). This proves L
receives y* if y* < ¢ and g otherwise. Given allocation we can infer transfers from the
binding constraints and obtain the expression for the revenue (and marginal revenue)
function.

1.5.4 Proof of Lemma 1.2

We check that the virtual valuation is indeed a supermodular function in g, 6.

g (0.0) = 5o |9(9)+ 60— q
= & g (@) +0 —
— 1=K () >0
~—~——
<0
Now notice that - (0>
AT
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is maximized at ¢ = oo whenever the multiplier on the linear part is greater than
zero, since this is a monotonically increasing function of g. On the contrary, when
0 < 5, then 6 — 1}{0()9) < 0 and the objective is concave as the difference between a
concave function g and a linear part. So maximizer 3 (6) is characterized by the first

order condition
_1-F()

f(9)

As ¢’ is a strictly increasing function and can invert it to get the other branch of

g (8(6)) — 0

the maximizer function

as we wanted to show.

1.5.5 Proof of Proposition 1.1

Fix a generic quality cap q. We want to show i), that is p (¢,0) = min {5 (9) , ¢}.
The quality constraint p (#) < ¢ defining problem (1.8) is inserted in the objective

function by subtracting to type dependent revenues the cost

0 ¢<gq
oo () =
oo else

So the cap conditional problem equivalently reads

4 (q) — max, »:0—-QxR f@p (Q> — Co (p (Q» dF (8>
s.t. IC, IR

Notice ¢y (¢') is not differentiable, but can be approximated by the continuously

-

We can now define the sequence of auxiliary problems

differentiable convex function

Va(q) —— max, e oxr [oP(0) —cn(p(0)) dF (0)
s.t. IC , IR

as lim, o0 ¢, (¢') = ¢ (¢'), the objective in V,, converges to the objective in V and as
policies and values of the auxiliary problems are bounded, the sequence of solutions

(pn, pn) converges to the solution to the original problem. The auxiliary problem for
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a generic n is a monopolist screening problem with additively separable cost function,
which we solve using standard arguments.

Firstly, the pairwise comparison of incentive constraints implies that the allocation
pr is monotonically increasing. Then, using the envelope theorem assuming sufficiency

of the first order approach we obtain

d

g 1 (Pn (8),6) = pu (8)] = o (p (6') . 6) = pn ()

from which we get the payoff equivalence function

w(pu (6) .60) — po (6) = / oo (0) 0/

from which we infer prices

0
P (60) = u(pn (6),6) — / o (6) 06

and substitute in the objective to get the relaxed problem

Wt — a0 = calon@) - [ o @)00] 000

pn(9) increasing
integrating by parts we obtain

1— F(6)

o [ {umn(em)—cn<pn<0>>—pn<9> 70

pn(9) INcCrEasing

]f(e)de

pointwise maximization of the integrand gives that a candidate p, (f) must satisfy

1 n

R g (o O =0

g/ (pn (9)) + Pn (9) -
that p, (@) so defined satisfies monotonicity follows from supermodularity of the profit

RN e A OB EAS
s el b

as subtraction of a (convex) function of x does not change the sign of the cross

function

derivative computed in Lemma 1.2 (neither sufficiency of the first order condition).
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Recall that g (6) solves

J (BO)+B0) = 115 =0

and as
0 z<gq
lim —(l‘)nil =491 r=q

o T >q

we conclude that the pointwise limit of p, (0) is

B(O) ifB(0) <q
q B(0) >q

and so p(g,0) = min {3 (), ¢}, which is our desideratum.

pn (0) —

i1) Now assume that types are uniformly distributed.%? Using that, we write

Vg = / w(p(0,9).0) — (1—0) p(0.q) 0 (1.45)

1

it is convenient to define b : () — [O, 5

} the inverse 8 function, namely

bla) = 67 (q) = max{o, 1‘—9@} (1.46)

so that

p(q,0) =

q else

which can be substituted in 1.45 to obtain

b(q) 1
v<q>=/0 U(ﬁ(ﬁ)ﬁ)—(1—9)B<9)d9+/b()U(q,9)—(1—9)qd9

62Gee discussion in Section
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now we can differentiate it

Vilg) = b'(q) [u(q,0(q)) — (1 = b(q)) q]
- V(g [ulg,0(q) — (1 =b(q)) 4]
+ fb uy (q,0) — (1 —0)do

= fb(q (q) + (20 —1)do
(1=0(@) (g (a) = 1)+ (1 = b(a))
(1=b(q)) 19" (@) =1+ (1 +b(q))]
= (1—=0b(q)) [y (q) +b(q)]

substituting expression (1.46) for b we get:
If 1 < g'(q) then b(q) =0 and V'(q) = ¢’ (q)

Otherwise,

vig = (H4 @Y

which is the expression in the Proposition. We are left now left to show that V' is
C!. Continuous differentiability in the two branches is immediate, we need to show

they are smoothly pasted.

1+¢ (@)
g (9)=1 g'(9)=1
proves continuity, while
a <1+g'<q>>2 _ 91+ 9" @)
dq 2 2 2
g'(9)=1 ” z;’(Q):l
1+1
— 279 2‘1
— g// <q)
= w9 (@)

proves continuous differentiability.
iii) Per Proposition 1.1 the efficient quality ¢* is determined by the first order

condition

Monopolist quality ¢ instead solves

V'(q) = (q)

70



so it is sufficient to show

V'(g) < g (q) + % (1.47)

always. Clearly, ¢’ (¢) + 3 > ¢’ (¢) so in the full bunching region this is true. It is also

1 1+2\2
<1l = - >
r < :c—|—2 ( 5 >

easy to check that

proving V' (¢) is strictly below efficient marginal surplus even when ¢’ (¢™) < 1. As
(1.47) always holds, ¢™ < ¢* and we have inefficient acquisition.
1.5.6 Proof of Proposition 1.3

We firstly need to compute consumers’ surplus. As ug is p (6, q), type 6 welfare

when the cap is ¢ reads

0 0
W(0,q) =u(0) + / ug (p(6',q),60") 0" = / min {3 (¢') , ¢} d¢' (1.48)
0 0
Integrating over © = [0, 1] to get total consumer surplus, we have

Wi(g) = Jy W (8,q)d6
= 3 J min {3 (¢") , ¢} d6'de
= Jo min {8 (6),q} (1 —6)d6
= fol min {(g’)_1 (260 —1),q} (1 —6)do
= ()T @0—1)(1—0)db+ [y, q(1—0)do

First line is definition, second substitutes (1.7), third is integration by parts, fourth
expresses [ (f) and finally breaks the integral in the parts above and below q.
When differentiating, as for the marginal revenues V', the terms in b" will drop so

we are left with

Wia) = fygsa(—0)do
1
= Jo (1= 6) d@l
= 1-0b — 132
( ) b(g) (1.49)

= (1-b(@)—3(1-0())
= 3(1-b(@)°
_ %(14-92(‘1)) :%V’(q)
Integrating marginal surplus below (3), and above (1.49) (¢)"" (1) we obtain
(1.14).
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To obtain the inefficiencies decomposition, notice first best surplus is given by

ST = 0 +g(q) —clq)

= Jy G+9(@—<(@)dg

Summing marginal revenues (1.12) and consumer surplus (1.49) we get monopolist
surplus below (¢')~" (1) grows as first best (has no damaging), while above it grows

with slope

<H+w)2 . (Q)+% (1%9/((]»2 = % <H+w)2 —<

Monopolist welfare can therefore be written as
N~ M , 2
Wi = S0 (g (@)~ ¢ @) da+ [l 3 (H42) ~ ¢ (@)dg (150)

Notice in the region [(g’ ) (1), ¢ } we have marginal damaging inefficiencies

i(g) = §+g'<q>—c’<q>—[§ (F4) —c'<q>]
ey g ’

By splitting integrals in the three regions [O, (¢) " (1)}, [(g’)f1 (1) ,qM} and [qM, q*}

we can write losses relative to first best as

n—1 n—1
GFB _ Wy = fo(g) (1) (% +g/ (Q) o ((])) dg — fo(g) (1) (% +g/ (C])2_ o ((])) dg
M M /
+ f(z,f)—lu) (3+9(9)—c(a))dg - f((;’)_l(l) 5 <1+92 W) —(q)dg
+ qu (% + g/ <Q) —c (Q)) dg—0
pu— O
M
+ f((;/)—l(l) d (Q) dq
-+ (3 +9 () = (9)dg

which is expression (1.15).

1.5.7 Proof of Proposition 1.4
i) The quality conditional profit reads

I (q) = max g (q) + 0q] (1 — )
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First order condition is

0q—0g(q) —0°¢ > 0
[—[9(q)+0q)+q] 6> 0
9 (q) = max{qf(),(]}

When i(‘]) = 0, then everyone is sold good ¢ and IIV° (q) = g (q). If instead

q—9(q)
2q

= g , 1] receive quality ¢ and pay the valuation of the

>0 then only types [
margmal consumer.
We need to show that the screening monopolist stops full bunching before the NS

monopolist. The threshold for the screening monopolist 3 (0) solves

1-9'(q)
2
The threshold for the NS monopolist ¥~ (0) solves

=0 = ¢ (¢g)=1

q—9(q)

% g(q) =q

As g is continuous and convex, 8 (0) < 971 (0) is an immediate implication of the
Largange Theorem.

i17) The marginal revenue function %HN 9 (q) is equal to ¢’ (¢) when ¢ — g (q) <0
and we have full bunching (serve everyone at price g (¢)). If ¥ (¢) € (0,1), we can use

the envelope theorem to obtain

I (q) = maxolg(q) +0a) (1 - )

4TINS (q) = [<> <q>]< ﬁ())
_ [ )+ q— g() )
— (q+g (Q)+2qg

proving the statement.

i7i) As in the proof of Proposition 18 #ii), it will be sufficient to show

d

d—qHNS (9) <V'(q)

strictly when ¢’ (¢) < 1. We distinguish three cases.
If ¢ is such that ¢’ (¢) > 1, then the constraint is immaterial and marginal revenues

coincide.
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If ¢ is such that ¢’ (¢) < 1 but g (q¢) > ¢, then the monopolist screens so its optimal

choice is given by

vio= (L) s 0= 5o

If also ¢ (¢) < g, then the derivative of the profit function is given by

dquNS () = (q+9(q))(qzzgq)+2qg’(q))
< (¢+9)(9(9)—9(9)+299'(9))
4q?
= g (q)
< <1+g2’(q) ) 2
= V' (q)

where the first inequality uses g (¢) < ¢ (twice). This proves in general that ¢V < ¢,

strictly whenever ¢’ (¢) < 1 (no full bunching in the monopolist case).

1.5.8 Proof of Proposition 1.5
i) Type 6 welfare under the NS monopolist is

(e_lg(qNS))qNS 0 > lg(qNS)

0 else

WNS (9) —

a linear function (in @) which is zero at the exclusion threshold and has slope ¢"*. If

¢ is in region B, then ¢ (¢™%) = 0 and
¢ > ¢"® > B(0)
As f is continuous in types there exists some 6 > 0 for which
qNS>B(0):p(9,qM) Vo e [0,5]
Now pick 0 € (0,5) and notice

W) = [/B(@)de
fOHqNSd‘g/
eqNS

WNS (9)

A
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and 0 is better-off under the NS policy.

i1) Since in Region B no one is excluded by the NS monopolist, total surplus is

WNS — 9 (V) = ¢ (gV5) + LgVS
NS
_ foq g/ (qNS) — (qNS) %dq
Subtracting this from monopolist surplus 72 and breaking down the integral in regions

(¢) " (1) < ¢V5 < ¢M we get

NS M , 2
WS — M~ R (g (@) = ¢ (@) da = [0 3 (F59) — ¢ o) dg
2
* 0~ fzvm(Hg )"~ ¢ (q)dg
N2
N Sy d(a)da = [ 3 (H49)" — ¢ () dg

first term are welfare gains from undoing damaging, second are losses from underac-
quisition (compared to monopolist).

iii) We keep fixed ¢™. As ¢’ (¢™) — oo, then ¢ (¢) — ¢ (¢) — oo for each
qg>q¢M. As V' (qM) —1Ir (qM) is positive but finite this means ¢ — ¢™ and by 1)

above
q]\/f

WS —wM d(q)dq
(CORREY

when convex costs shut down underacquisition, NS policy in Region B has the only
(welfare increasing) effect of undoing screening inefficiencies.
1.5.9 Proof of Proposition 1.6

We avoid order statistics notation and let x,y generic be the realized maximum
and second order statistics of the entry vector q.

We firstly establish that in any market equilibrium, all qualities ¢ < y make zero
revenues. Suppose otherwise, that is some firm j makes positive revenues selling a set
of qualities bounded above by y. By definition of y at least an active competitor can
modify his pricing function to copy the revenue-earner in that quality region, not alter
the market pricing function (hence his revenues on other qualities) and share those
positive revenues. Without invoking arbitrary tie-breaks, and for future reference,
we should notice the competitor can, by quoting a pricing function p; (q) — € for e
arbitrarily close to 0 appropriate all revenues in the shared region without altering
his revenues from other qualities: only marginal types would deviate as ¢ — 0. As

no firm makes revenues on ¢ < y, it follows m (¢q) = 0 for all ¢ < y, and in particular

m(y) = 0.
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We now solve the problem of the interim monopolist. Beyond forcing p; (y) = 0
(or, equivalently, the quality allocation to be bounded below by y), competition has
no impact on the interim monopolist as feasibility forces competitors —i to quote a
price p_; (q) = oo for all ¢ > y.

Using the same steps as for the unconstrained monopolist, we write the problem of
the interim monopolist as choosing a type dependent quality allocation rule p which is
increasing (pairwise comparison of IC) and has image [y, z]. The interim monopolist

revenues are therefore

1— F(8)

20 f(6)do

Rie) = omax [ up0),0) -0

p(0)ely,z], increasing

Pointwise maximization of the objective delivers the candidate allocation

p(z,y,0) = arg max g (q) +q (0 — h(0))

q€[z,y]

From the concavity of the objective first order condition characterizes the interior
optimum, hence p(z,y,0) = B(0) if B(0) € [y,z]. The objective is instead strictly
decreasing (on the relevant domain) in ¢ if 5 (0) < y, strictly increasing if 8 (6) > z.

It therefore follows

y y < B(0)
p(x,y,0) =9 8(0) B(0) €[y, ]
T x> [(0)

which is a weakly increasing function (in ), hence the solution of the interim monop-
olist problem. This proves the allocation rule (1.21).
We now need to compute the revenue function. Per the discussion above all firms

but the interim monopolist make zero revenues. The interim monopolist earns

0

R (x,y) ZR(y,yH/ a—qR(q,y) dq (1.51)
y

We have R (y,y) = 0 and, given allocation function (1.21), marginal revenues

for the interim monopolist coincide with those of the unconstrained monopolist: the

marginal quality is assigned to types [b(q), 1] at marginal price ¢’ (¢) + b(q). So

0 0 y>q
a_R(Q7y>: ,
q V() y<gq
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And we can rewrite (1.51) as

Ri(z,y) = [;V'(¢)dg =V (x) =V (y)

Since x,y was generic this proves expression (1.22) (after the appropriate notation
changes are made).
1.5.10 Proof of Proposition 1.6

We divide the proof in several steps.

Step 1: Monopolist is the only equilibrium in pure strategies.

Consider a generic infinite profile of pure strategies q.%> Suppose there is i, j with
0 < g; < q;. Then by (1.22), firm i makes zero revenues but pays positive cost,
she is better off staying inactive. So no two firms can choose positive qualities in
the pure strategies equilibrium. 0 cannot be an equilibrium either as everyone’s best
response is to produce ¢™. q is therefore a candidate equilibrium in pure strategies
only if q; = ¢ for one and only one i, ¢ ; = 0. We need to show this is indeed
an equilibrium. The entrant clearly has no incentive to deviate. Other firms do not

enter with a quality below ¢ as
¢<¢" = R(q,¢")=0<c(q)
If ¢ > ¢™, the deviator becomes interim monopolist and makes profits

Mg = R(g,q™) —c(q)
= Vi(g) =V (¢") —c(a)
— qu (V/ (q/) —c (q’))dq’—c(qM)
Both summands are negative as as ¢ (q) > V' (q) above ¢™. Now we look for equilibria
where there are at least 2 active firms. By Step 1, those equilibria must be in mixed

strategies.

Step 2: Active firms play an atomless distribution with support including

The support of equilibrium play must contain 0: if the support was bounded below
by a strictly positive quality ¢, then playing the costly ¢ would deliver zero revenues
with probability 1, and abstaining is better. Similarly, in equilibrium no firm can
choose a quality g with positive probability. If that were the case, all opponents best

respond by placing zero probability on an open set including ¢ to get a discrete jump

%3Where q is shorthand notation for each firm ¢ plays dg .
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in the probability of winning and (almost) the same profits. But then the firm itself
wants to shift the mass away from ¢, depending on the sign of V' (q) — ¢ (q).
Step 3: The distribution of the maximum of opponent’s qualities must
_ (g
be 1 (q) = 75
We know from (1.22) that the maximum across competitors’ realizations x is suf-

ficient to determine firms’ revenues. Let H (x) be the distribution of such maximum,
which from the previous step we know is continuous on [0,q] for some g > 0. By

playing ¢ makes expected profits
g = [ Rlg.0)dH (@) - (o)
Q

The flat profit condition I (¢) = 0, necessary for indifference reads

0

a—q/qu,x)dH(x)—c’(q):o

Using Leibnitz rule on an invariant support

0 0
/QR(q,x) dH (z) = / a_qR (¢,z)dH (x)

dq 2

Now use again

0 0 x>q
q V(g z<q

to write
8 q / o / 7 . !
/Qa—qR(q,I)dH(fL’)=/O Vi(g)dH (z) =V (Q)/O dH (z) =V'(q) H (q)

Which, substituted in the flat profit condition gives the desideratum

_ (9
V' (q)

H (q)

It holds H (0) = 0 since, by Proposition 1.1 i), for low ¢ marginal revenues V' (q)
is equal to ¢'(q) approaching oo by the Inada condition. H is increasing as c is
assumed convex and V' is concave. The right extremum of the support is determined
by

H(=1= d(g=V'(9) = q=4q"
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Hence the maximum among n — 1 competitors is an absolutely continuous random
variable with support [0, ¢*].

Step 4: An equilibrium candidate with n active firms is (1.27)

The CDF H pins down the distribution of the maximal quality among n — 1
competitors that makes the n'* firm indifferent among any quality ¢ € [0, v ] . So for

each n we have one (and only one) candidate equilibrium which has everyone plays

_1
H,, (q) = [H (q)] ™
Also absolutely continuous with support [O, i ] This proves expression (1.27).
Notice CDF H,, admits a positive density

1

o (0) = — [H (@) 1 (@)

It is continuous since h (q) = %H (q) is continuous in ¢ in light of continuity of V"
established in Proposition 1.1 i1).

Step 5: Sufficiency

We are left to prove that this is indeed an equilibrium. All active firms are indif-
ferent across all qualities in [O, v } by the flat profit condition, they are indifferent
with abstaining as 0 is in the support of the equilibrium. We are left to prove that
firms do not want to produce more than ¢. In that case they would be the interim

monopolist for sure, making profits

H(q) _ H(qM) +/'q v/ (q,) _ (q/) dql

oM
The first summand is zero in expectation by the flat profit condition, while the second
term is negative by definition of ¢*. That inactive firms do not want to produce any
positive quantity is immediate: each of the n firms, competing against n—1 opponents
makes zero profits in expectation and competing competing against n firms increases
(in the sense of FOSD) the distribution of the best competitors’ quality. Inactive firms
are strictly better off abstaining completing the proof that this is an equilibrium.
1.5.11 Proof of Theorem 1.2

i) We preliminary derive type dependent consumer for each realized competitive

environment x,y adding to the utility of the lowest type the integral of allocations
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(equal to uy) characterized in Proposition 1.6

Wb,z,y) = u(0,z,y) +f09u@ (p(0,2,y),0)d¢
= g(y)+ Jy max {y, min {z, 3 (¢")}} o’

which is expression (1.29) in the main text (and for z = ¢, y = 0 give surplus under
monopoly). It is immediate to notice that type dependent welfare is increasing in

(z,9)
VO, (x,y) >o («',y") implies W (0, (z,y)) > W (0, (z,9))

where >, is the standard incomplete order in R?. Given monotonicity of value
conditional on the realized qualities, to establish the result is sufficient to show that
the random vector of marketed qualities @,y has distribution ordered according to
first order stochastic dominance (FOSD) in the equilibria with active competition.
Using individual firms’ equilibrium play (1.27) we derive the distribution of the

maximal quality @ in equilibria with n active firms

H,[z] = Primax{q,q,..-q} <z
= [T, [ai < 7]
= H (z)]7

Since

s(n) =wvn1

is a (strictly) increasing function of n for every v € [0, 1], it follows
n>m = H,[z] > H,, [z] Vx

the best quality in equilibria with lower competition first order stochastically domi-
nates the best quality in equilibria with more intense competition. Now we use the

following fact%

Fact. Let X1,... X, be independent observations from a continuous CDF F. Then,
the conditional distribution of the second order statistic given maX;ep, X; = x is the
same as the unconditional distribution of the maximum in a sample of sizen—1 from

a new distribution, namely the original F' truncated at the right at x.

64See theorem 6.7 in http://www.stat.purdue.edu/~dasgupta/orderstats.pdf.
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It follows from the fact that the distribution of each other firm’s quality conditional

on = x in an equilibrium with n active firms is

Hyn(q) = [%} o [{q € [0,z]}

so y |z, the maximum across n — 1 of them is distributed

et
Hop () = [[ggy;} ] Hy € [0.0]) = 3721y < 0.a])

In particular, is independent of n. As the distribution of  is FOSD ranked across
equilibria and the distribution of y given « is invariant across equilibria, it follows
the joint of @,y is FOSD across equilibria, which we argued above is sufficient for the
statement.

ii) Suppose y < z < ¢M < (g’)f1 (1). As both market statistics realize in the
full bunching region, the competitive allocation (1.21) will assign every type the

undamaged quality x at price g (z) — g (y). Per (1.29), type dependent surplus is
W (z,y,0) = g (y) + bz

and total surplus is

T,y /@W(xy, (y)+1:v
So )
W = B, W (2,)] = Ex [Eye [o0)] + 3] (152
Since (@) ¢ ()
g () (y .
He (y) =7 D7 Y € [0, z]

is the conditional CDF of y given & = x it follows

Eye [9(y)] = fo )
=t (H W) ‘ —fo '(y) H (y) dy)
= = [( () g(x)— [y d'( y] (1.53)

= g (x) ;1@

- g(2) - c(x) L&)




The function

has s (0) = 0 and

s'(z) = ¢ (z)—c (2) i/éz)) —c(z) (z)c' () =g (z)c" (x)

!(z)?
_ —(a) LT

> 0

s0 s is positive and monotonically increasing in [0,¢"], and s (¢) = g (¢™) —
c (")
Now, we substitute (1.53) into (1.52) to get

@)

W, = E, [g () — c(x) ggm) - %w]
= I @) e () 5 + jo| dH T ()

Integrating by parts the last expression we obtain

M

g (q") —c(g™) + %qM] - /Oq [g’ (z) % <c ()L (x)) + 1} H (2) de

the first term is monopolist profit, while we can notice

/@)= g (05 =) >0

as proved above, so we are subtracting the integral of a positive function, reducing

monopolist welfare and proving the statement.
We now prove the general welfare decomposition (1.32). Fix a realization of

market statistics x,y. We can write

“d
W (z,y) = / oWV (@:9) (a)dg
o 44
where dqu (x,y) (q) is the marginal contribution to welfare . It holds

(STB)'(q) —c' (@) a<y

m(q) q € [y, 7]
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since for qualities below y welfare from competition grows as first best (since all
all goods are distributed to everyone) net of the additional marginal costs (incurred
twice). In the quality region [y, z] surplus grows as monopolist since those qualities

are assigned to the same types and cost incurred only once. It then follows

z M

W (o) = War = | diqvv(x,w(q)dq—/oq (War)' (q) dg =

As monopolist surplus grows as first best below (¢’ )_1 and as the second branch

of m(q) in [(g’)_1 ,qM] we rewrite the difference (assuming y > (g’)_l)

n—1

e+ [T [ -6 @] e [ (67 @ - ) @]

=d(q)

Y

TV
=0

M

+/ymm(q)—m(q)dq—/: m (q) dg

J

M

:/(y d(q)dq—c(y)—/: m () dg

g7t
Taking expectations under the duopoly equilibrium distribution of market statis-

tics x, y,
W2 = IE“2 [W (wa y)]

we obtain the fundamental welfare decomposition

Wy =Wy = E, V(y d(q)dq—C(y)} —E,

g) ()

where we mean

whenever i < (¢/)~" (1).
We are now left to show that under convex cost ¢ (q) = ¢“ as a grows to infinity
equilibria with active competition dominate monopoly. As ¢y («) solves V' (q) =

aq®~!, irrespectively of the revenue function monopolist quality will converge to the
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point at which the (marginal) cost function explodes, that is

gar = lim ¢ () =1
a—ro0

while its cost will converge to zero

= lim (¢™ ()" =0

o0
a— o0

also, since

0 z<1
lim () >¢1 z=1
a—r00

oo x>1

it follows that

(q) < oM M
Hy ()= Vo 154 (@) )0 a<ax
1 g>q¢" (o) 1 g>q¥

which means that each firm’s equilibrium strategy converges in probability to ¢.
Also, notice that as y < ¢™ (a) then

Eq [C(y)] SC(Q%) — 0

Plugging those results in (1.32) we observe that the limit welfare impact of competi-
tion is given by

M M

[% dmmmw%—L%wu@—d@wq

N7

=[% 4(g) dg (1.54)

proving the statement.

1.5.12 Proof of Proposition 1.8

i) By the same reasoning as in the proof of Proposition 1.7, one firm offering the
monopolist pricing function p™ (-) is the only candidate equilibrium: no two firms

can quote a non-trivial pricing function but someone must. However in this case,
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an inactive firm can offer pricing function p* (-) — ¢ (so that allocations would be
unchanged), pay ¢ (qM ) and make revenues that are e—close to V' (qM ), a profitable
deviation. There is no RS equilibrium.

For the second statement in i7) we notice that full interim stability of the monop-
olist follows from Proposition 1.7 7) (it is a Nash equilibrium of the first stage game),
while its ex-post instability is proved above.

To prove the remaining part of i) and 47i) we preliminarily notice that
0= R(qM,qM) < c(qM) < R(qM,O) = V(qM)

and R (qM , {E) is monotonically decreasing, so there will be a threshold m* at which
R (m*,¢™) = ¢ (¢™). By Proposition 1.7 a potential entrant against best quality
can make revenues

R(z) = m?xR (¢,2) —c(q)

As R(z,q) =V (q¢) — V (x), x induces a sunk cost, upon entry ¢ is played and

R(x) =max {V (¢") =V (z) —c(¢")}

From which it follows

R(z)>0 < z<m"

By a similar argument, an ex-post deviation occurs if and only if the second quality is
above m*. A deviator that enters with ¢™ can indeed offer allocation p (y, v, ) and
make revenues that are arbitrarily close to V' (qM ) —V (y): to do that he must grant
a small discount to all types in [b(y),b(z)] so to push the interim monopolist out of
the market. Whenever y realizes strictly below m* therefore an ex-post entrant the
profitable deviation of offering the interim-contract [y, gV ], with prices e-reduced to
all types for which 3 (0) is below the level owned by the realized interim monopolist.

It therefore follows that the degree of interim stability of the n—equilibrium is
H,, (m*) and the degree of ex-post stability is H,, (m*), where H,,, H,, are the
CDF of market statistics calculated under equilibrium play with n active firms. Point
i1) now follows from & > y by definition, while the n—ranking in iii) follows from

the FOSD ranking of market statistics proved in Proposition 1.2 7).
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Chapter 2

Price Incentivation Into Social

Programs: Estimation and Control

2.1 Introduction

2.1.1 Motivation

It has become commonly accepted that policy interventions should be data-driven,
and that decisions about enactment of a certain social program should be based on
empirical evidence. However, it is complicated to argue what dataset and what type
of statistical analysis is relevant to provide the empirical evidence to inform a certain
decision, especially if the latter is a relatively new intervention. Clearly, the best way
to know the effectiveness of a certain policy is to enact the policy itself. However, once
the policy is enacted, in a one-shot problem we are left with no informed decisions
to make: the dataset is in some sense useless. If the problem is not one shot, and
on the contrary we expect to face the same problem in subsequent periods, then the
dataset so collected provides valuable information about the environment the decision
maker is going to operate in the future. Moreover, if the planner can choose among
a set of “similar” policies, say she can vary the level on coverage and the intensity of
the monetary incentive, then the return of a given policy can, through an economic
theory, provide information about the likely returns of the unchosen alternatives.
Motivated by this observation, we now present a stylized example of problems that
will be studied in this chapter. It is kept simple enough to be numerically solvable (a
task we accomplish in Section 3) at the cost of shutting down most of the interesting

channels that will be explored in details in Sections 4 and subsequent.
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Example 2.1. Consider the problem of the social planner of an island where in
each period a finite number N of citizens spend their whole life. At time 0 new
disease appears on the island, which would make at each future period each current
inhabitant ill with probability w € © = [0, 1], unknown but constant through time.
There is a vaccine for the disease, that the planner can purchase at unit cost ¢* and
that would make the recipient immune to the disease. The planner must in each
period commit to a price ¢ at which citizens can purchase the vaccine; she has to
provide vaccine to whomever agrees to pay the fixed price, which results in total
social (net) cost C (¢) = D (q) (¢* —¢q). The demand schedule is known, and it is
known that determinants of demand are uncorrelated with the likelihood of being
ill after no treatment. The planner observes s, € ({0,1} x {0,1})" containing the
treatment choice and health outcome pairs for every citizen in the population, and
uses health statuses for individuals that chose not to vaccinate (that get ill with
probability w) to update his belief p € A (Q2). Social utility depends on both the
distribution of health statuses across the population and the monetary (net) profit

from selling the vaccine.

2.1.2 Policymaking as a MultiArmed Bandit problem
A MultiArmed Bandit (MAB) problem is an infinitely repeated decision problem

where the decision maker chooses at each period to pull one among several arms that
yield stochastic returns. The outcome from each period enters current utility and is
used to estimate the return of the arm that is pulled and, in case returns of arms are
believed to be correlated, of the whole set of arms.

In his exposition of the econometric approach to causal inference, Heckman (2008)
proposes a three step procedure which resemble a model of policymaking as a MAB
where arms are treatment incentive schemes whose payoff value and correlation is
disciplined by an economic theory represented by a reduced form model that is
estimated as the decision process unfolds.

The aim of this chapter is to provide a formal model of policymaking as the
decision problem of an incentive designer that solves the following MAB: the state
space contains models of individual decision making and a distribution over individual
types that determine stimulus response and post-treatment outcomes,! while the
action set is composed of a stimulus dimension and a dimension which determines

the data available at the end of each period for estimation. Stationarity is imposed in

S0 it is not defined before the set of stimuli (policies) that can be implemented is given.
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the form of having neither the unknown social state nor the set of incentives available
to vary across periods. Data collected in each period provide a signal of the social
state that is imperfect for two reasons: firstly the current population (collection of
citizens alive) is only a finite sequence of independent random draws from the invariant
super-population,? secondly the social state contains information about all possible
policies, and it may be possible that the one currently chosen is not able to identify
some dimension of the social state.®> Notice that, although the general structure is
essentially that of a bandit problem, both the state space and the action space are
unusually rich for a MAB setup. One of the contributions of this chapter is to offer
this representation. We offer sufficient condition on individual preferences that are
sufficient to implement a rich class of monetary incentivation schemes, the Becker-
DeGroot-Marschack (Becker et al. (1964)) meachinism with treatment lotteries as
prices. This set of mechanisms includes as extreme points fully coercive (RCT) and
fully voluntary (posted price) mechanism, but allow for intermediate incentivation
through stochastic assignment.

Framing this type of problem as an infinitely repeated statistical game of the
type studied in part 2 has advantages and disadvantages. A clear advantage is that,
by giving the planner a decision problem it implicitly defines the parameters that
are relevant for policymaking. This is not a trivial point, and has risen prominent
critiques on the literature of treatment effect estimation. In Heckman (2008) words,
“what is often missing in the literature of treatment effect estimation is a clear
discussion of the policy question being addressed by the particular treatment effect
being identified and why it is interesting”. A similar message is given by Deaton
(2010) “I shall argue that the analysis of projects needs to be refocused towards the
investigation of potentially generalizable mechanisms that explain why and in what
contexts projects can be expected to work”. Moreover, the provides the planner with
some instruments to generate datasets that identify and estimate those parameters.
Also, contrary to static information acquisition problems, it makes indirect costs of
experimentation appear, associated to the static suboptimality of most informative
mechanisms.? An equally clear disadvantage is that stationarity gives too much

rigidity and precludes modifications in the DGP and in incentivation tools that may

2The name, as well as most terminology, is taken from Imbens and Rubin.

30nce we look at policymaking as exploration in a bandit problem with correlated arms, policies
have an experimental dimension as they produce a dataset that can be used to estimate the social
state and therefore the return of alternative policies.

4Without a framework that disciplines dynamic decision making and estimation possibilities the
study of this trade-off would be impossible, although it seems that indirect cost from distorting the
assignment mechanism may be relevant in particular applications.
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instead occur in reality.” Having the problem repeated may also suggest that the
estimation problem is not really about causal inference but is simple prediction:
even without a model of individual decision making the planner can estimate the
distribution of social outcomes conditional on a stimulus to estimate the “return” of
that stimulus. Without an economic theory the planner would be playing a bandit
problem with uncorrelated arms: after choosing a stimulus he still gets to estimate
its returns, but this does not inform him about any counterfactual policy. Prior
conjecturing exercise gives likelihoods to different models of individual behavior that
disciplines the correlation across returns on stimuli. Inference on the parameters of
those model is used to inform about returns of (potentially) all the arms.

The class of problems that we aim to study is categorized by Heckman and Vytlacil
(2007) as P3: Forecasting the impacts of interventions never historically experienced
to various environments, including their impacts in terms of well-being. A new prob-
lem appears (the illness appears on the island in the example above) or new incentive
schemes becomes possible (subsidy to attend school, forcing unemployed to participate
into labor training programs...); planner has to act in a “novel” environment the he
think is going to remain reasonably stable for a reasonably long period of time. In each
of those periods he can provide citizens a (monetary) incentive that affect individual
selection into programs as well as the (distribution over) datasets that are used in the
sequential estimation of the social state.

2.1.3 Literature Review

We now proceed reviewing the literature on multiarmed bandit problems and their
applications in economics, as well as earlier contributions that at firstly using selection
choices as a source of information and secondly designing selection mechanism so they

provide better information.
Bandit Problems in Economics

Multiarmed bandit problems have found various applications in the economics
literature, starting from the pioneering work of Wald (1947, 1973) on the sequential
design on optimal statistical test. Wald’s theory was then extended applied to the
framweork of a “statistical game” by Blackwell and Girshick (1979); Blackwell (1951).
Easley and Kiefer (1988) present the recursive characterization of the multiarmed

6

bandit problem that allows for infinite and correlated arms;® our general exposition in

5As I discussed in the introduction, I want to interpret infinite repetition in a stationary
environment as a modeling device by the planner who is confident the social environment will
remain stable over a long enough period.

5They claim their setup differs from that of the bandit problem as they have continuous action
space. It seems that, although important, such generalization would not per se represent a crucial
departure from the standard bandit problem. I find the real novelty of their approach to be the
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Section 2 heavily builds on their contribution. Aghion et al. (1991) give an alternative
derivation of their result under slightly more general assumptions and then analyze
the asymptotic properties of those learning problems, with particular attention on
conditions under which “adequate learning” occurs that allows the decision maker
to choose asymptotically the correct action (best response to the true state). Both
papers focus on charactering the joint properties of actions that are played infinitely
often and the limit belief. They prove” that actions played infinitely often must be
a static best response to the limit belief, and all states in the support of the limit
distribution induce (jointly with each limit action) the same distribution over signals
as the one generated by the true state. Those joint properties of limit actions and
limit belief characterize the concept of self-confirming equilibrium (SCE) in (static)

8 Study of the asymptotic behavior of such problem

strategic interaction settings.
is important as it permits to address conditions under which adequate learning
occurs and to give a foundation to the SCE concept, but there is no reason to
disregard the transition dynamics as uninteresting. The approach we take in this
chapter is somehow opposite to that of the SCE literature: rather than founding a
static equilibrium concept as the rest point of an unmodeled learning process, we
study the decision problem at early stages of experimentation and use the infinite
repetition of the game as an approximate modeling device that the agent adopts to
describe what are his possibilities to learn and employ the acquired information.”
Bandit problems have been applied to economic problems since Rothschild (1974),
who studied the behavior of rational and optimizing sellers in a market where they
are initially ignorant of the demand curves D (p,0), 6 € O they face; it is the
first well-known explicit formulation of an economic problem in terms the bandit
problem. Bergemann and Valiméki (1996) study the other side of the market, where
consumers address from different sellers that produce goods for which they have
tastes that are ex-ante unknown but can be experimented. Moscarini (2005) studies
a labor market in which employer learns progressively the quality of the match and
may decide to terminate the relationship. Bolton and Harris (1999) study strategic

interaction into exploration, addressing the issue of information externalities when

conceptual distinction between the estimation and control properties of an action, which is even
cleaner in Aghion et al. (1991) who abandon the necessity of observable utility.

"Lemma 3 and 4 in Easley and Kiefer (1988), Theorem 2.2 and 2.4 in Aghion et al. (1991).

8For an analysis of how the SCE concept has originated and his relevance for the analysis of
adaptive processes in a repeated iteration context see the survey by Battigalli et al. (1992).

9Such approximation is valid in case the agent is confident that the problem will not change
substantially in the near future and has a high enough discount factor to make asymptotic outcomes
(hence in regions where it is more difficult to justify the stationarity assumption) utility-negligible.
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experimentation results from one agent can be used to by other agents. We pointed
at different branches of the economics literature where the MAB was applied to show
how pervasive the exploration-exploitation trade-off is; for a reader that is interested
in a more in-depth review, Bergemann and Valimaki (2006) offer an excellent survey

of bandit problems in economics and finance.
The Econometric approach to Causal Inference

It is somehow surprising, since the prototypical bandit model of Thompson (1933)
was introduced to study clinical trials, that advancements in research on social pro-
gram evaluations (from the pathbreaking contribution of Heckman (1977)) have not
until recently stimulated extensions of the exploration-exploitation problem to this
field. That is the aim of this Chapter.

A social program offers the population (citizens alive at a certain period) a set
of mutually exclusive statuses: being vaccinated against a disease, obtaining (higher)
education, participating into labor training programs are only some examples. Partic-
ipation is not necessarily mandatory, but is the result of an individual selection choice.
Modeling the individual selection problem as a source of information about structural
parameters rather than a source of concern for failures of statistical assumptions upon
which the properties of estimators are based (as is the case for the statistical approach,
see Holland (1986)), is the distinguishing feature of the econometric approach to
treatment effect estimation, pioneered by Heckman (1977). Its exposition is detailed
in the Handbook of Econometrics chapter by Heckman and Vytlacil (2007). To use
a language that conforms with the literature on estimation of treatment effects we
will be as adherent as possible to the terminology used in Imbens and Rubin (2015)
in terms of statistical assumptions (SUTVA, unconfoundedness, etc.), and objects of
interest (superpopulation, propensity score).

Before choosing an incentive the planner must form a conjecture about a fairly
complicated object as a model for selection and post-treatment choice. In his expo-
sition of the econometric approach to causal inference, Heckman (2008) proposes a
three step procedure that to “construct” such conjecture. The first stage has the
researcher specify a scientific/economic theory describing a mapping from unknown
social parameters to stimuli-contingent social outcome distributions, that is he must
define the (incentive design) decision problem. It is clear that different incentive
schemes require knowledge of different individual characteristics.!'® The second and

third stages in the procedure make use of a dataset that is assumed exogenously

10Suppose planner can run an information campaign about efficacy of a program: relevant
parameters would be individual prior beliefs and how he reacts to information (attention, trust
on information etc). Conversely if he considers selling the treatment, then relevant parameters will
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available to make inference about parameters that are defined relevant by the first
stage. The second stage addresses concerns of identification, that is whether the
researcher can recover the parameters from the population from which the dataset
is drawn. The third step evaluates how the planner can use the available finite
sample to obtain the most efficient estimators of the parameters, giving confidence
interval on such estimates that allow to test hypothesis and make informed decisions.
Identification and estimation issues are addressed by conjecturing the process that
generated the data available (DGP). Beyond the distribution of individual character-
istics, this DGP includes the institutional settings that incentivized choice in previous
periods. The econometrician following the procedure described above defines relevant
parameters by formulating a future policy problem, and infers parameters that are
relevant for this problem by using an exogenously available dataset to estimate a
DGP that contains a description of the policies enacted in the past.!!

The aim of this chapter is to study the problem of an incentive designer that

solves a multiarmed bandit problem where

» The state space contains models of individual decision making and a distribu-
tion over individual types that determine stimulus response and post-treatment

outcomes,'? and

o The action set is composed of a stimulus dimension and a dimension which

determines the data available at the end of each period for estimation.

Stationarity is imposed in the form of having neither the unknown social state nor the
set of incentives available to vary across periods. Notice that under this formulation
we change the nature of phases 2 and 3 of the econometric procedure, from a purely
conjectural exercise to an information acquisition choice: when acting inside a period
decision problem (stage 1) the policymaker takes into account of his future selves
that will solve the same decision problem using information contained in a dataset
collected (also) in the current period and that parameters identified in this sample

(and the quality of their estimators) depend on the incentive mechanism itself.

be the all the determinants of the value of treatment that is compared to the price when making
the decision, joint with income constraints, and others.

HEven if those policies may be different from those that he is considering to implement.

1280 it is not defined before the set of stimuli (policies) that can be implemented is given.
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Experimental design and the CPS contribution

The economteric apprach to causal inference recognizes the selection assignment
mechanism as a key source of information. Chassang et al. (2012) (CPS from now
on) discuss how an experimenter can use treatment assignment mechanisms to elicit
individual characteristics that are relevant for policymaking. Their innovative idea is
to use messages sent in a direct treatment assignment mechanisms in order to estimate
the distribution of selection-relevant types.'®> One of the selection mechanism they
propose'® makes use of the Becker-DeGroot-Marschack (Becker et al. (1964))
mechanism to elicit under weak assumptions the individual reservation price for treat-
ment. After running a “rich enough” BDM mechanism on a population of infinitely
many (continuum) individuals, planner learns the distribution of the selection variable
and, provided a positive fraction of each type is treated, the type-conditional potential
outcome. What is crucial is that this estimation informs about the return of all
other BDM policies, which of course include much different incentive schemes than
that runned at the experimenting stage. We take their intuition that the selection
mechanism is (also) a source of information and use BDM assignment mechanisms in

an environment that is different since

1. Experimentation occurs in “real time” rather than at an ex-ante information
acquisition stage. When experimentation (in particular this type of social
experimentation) and decision times differ, one should be clear on how the
ex-ante stage is different from the decision stage: why should not we care about
realizations at this stage in our welfare calculations'® and why, on the contrary,
should we care about the ex-ante stage, that is how data collected in this stage
inform us about future policymaking (inter-temporal external validity)? This
requires both a description of the decision problem to be faced and assumptions
on how the population in the experimentation phase is related to that of the

decision problem.

13As the treatment status is binary in order to create an environment that can discriminate
along a reasonably rich set of characteristic they need to consider stochastic treatment assignment
mechanisms.

1They also consider more complicated mechanism that elicit other individual characteristics
(belief over the return of the treatment technology, etc), but in this paper I will focus only on
reservation price conditional (BDM) incentivation.

5 There are two possibilities for this to happen. Either the planner does not discount the future
so that only asymptotic results are welfare relevant and all periods are information acquisition
periods, or the effective population over which experimentation is carried is so small not to impact
the aggregate social welfare. Under the latter case concerns of external validity would emerge (see
subsection ), beyond making the infinite experimentation unit assumption even more critical.
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2. Without specifying a “technology” to use information we cannot compare the
information accuracy of a selection mechanism with the direct cost (pay the
researcher, participation fees, data elaboration...) of running such mechanism.
If experimentation occurred in real time, beyond direct costs we would also
have to care about indirect cost, that is suboptimality in terms of expected

16 Absence a specified

current reward of the most informative mechanisms.
decision problem does not undermine validity of the CPS approach, as they
rank mechanisms according to the Blackwell order.!” However, the Blackwell
order is an incomplete order and we miss quantitative statements about the

value of estimating a certain parameter.

3. Focusing on identification issues by assuming a continuum of individuals misses
important issues related to estimation, especially in case we are estimating
nonparamertically a density of reservation prices and, conditional on each such
price, a pair of potential outcomes. In the vaccination example we solve in
Section 3 as a motivating example, we show that focusing on identification
problem only (that is, letting N — oo) makes the exploration-exploitation
trade-off disappear.

2.1.4 Plan of the Chapter and Contributions

The Chapter proceeds as follows. Section 2 gives the formal setup of the multi-
armed bandit problem and characterizes his solution in the recursive form as in Fasley
and Kiefer (1988) and Aghion et al. (1991). As an original contribution, we show how
to associate each MAB to an uncertainty function (in the sense of DeGroot (1962)) so
that the implied information function is traded-off one for one with expected utility
at each belief state to determine the optimal policy. In principle this uncertainty
measure would identify the set of relevant parameters and quantify the estimation
content of selection mechanisms. However, since the state space in the model of
policymaking we build is usually very rich and the measure is an endogenous object,
this characterization may be of limited partical use. In Section 3 we numerically

solve the vaccination example presented in the introduction to show one instance the

16To clarify this point, suppose that high reservation price was associated to low efficacy of
treatment: as incentive compatibility requires likelihood of being treated to increase in reservation
price (Proposition 2.3), a perfectly informative mechanism would induce adverse selection.

"Hence, by the Blackwell (1951) theorem we know that information superior mechanism will be
welfare improving irrespectively of the particular problem the planner will face.
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uncertainty function is tractable and how it informs about the estimation-exploitation
trade-off in a simple incentive selection problem; the example also provides a useful
benchmark with which one can compare the more general assumption maintained
later. Most novel contribution are contained in Section 4 and subsequent, where we
study price incentivation into social programs as MAB problem.

Section 2.4.2 details the derivation of the class of reduced form model over which
beliefs evolve along the experimentation path. The action space is instead constituted
of all possible stimuli government can provide to alter the individual pre-selection
problem and by monitoring decisions that will determine the dataset available at
the end of the period. Section 2.4.3 presents a class of stimuli (BDM mechanisms)
that induce different response along a (single dimensional) reservation price type. A
selection intensity maps reduced form models into the proportion of individuals that
choose treatment (propensity score) and the outcome of treatment (success rate). A
regime is defined as a class of selection intensities that are ranked according to an
intensity index (higher intensity selections have each type participate to treatment
with higher probability), and rich enough to have for each nondegenerate model a
map from propensity score to elements of the class which induce them. Selections
inside the same regime share similar incentive structure: RCT (fully coercive) and
posted price mechanisms (fully voluntary) are examples. Section 2.5 discusses how
to validly implement a stimulus as a reservation price conditional selection intensity
inside the finite population. A sampling procedure is a map that takes a pair of
population and assignment intensity and returns a joint probability distribution over
sampling outcomes. It is e valid if for each pair selection mechanism and social
model the expected sample size is € close to the superpopulation propensity score.
Bernuolli trial is the simplest example of a valid sampling procedure, but it induces the
largest variance of the realized propensity score. We propose a sampling procedure
that exploits correlation in individual assignment to minimize the variance of the
propensity score (which is desirable, Kasy (2013)) subjet to the constraint that the
sampling intensity is validly implemented. Also, implicit implementation of the BDM
mechanism preserves information continuity of the selection intensity, contrary to
models in which only the identification domain is of interest (Chassang et al. (2012)).
Section 2.6 finally studies the outcome model, namely the post-selection determinant
of individual “health” outcomes. We show how each regime is characterized by a
novel object, the distortion function which measures the excess success rate of a
particular selection intensity compared to the coercive regime (RCT) that achieves

the same propensity score. We show that the unconfoundedness assumption, which
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in this specification is a joint statement about the reduced form model and the
selection mechanism, is characterized by a unitary distortion function. We also prove
that, under linear social preferences, fully voluntary (posted price) mechanisms are
control optimal, that is the static policy function always intersect the conditionally
deterministic regime. As valid implementation of posted price mechanisms induces
the largest variance of the realized propensity score among regimes in the BDM
class, their control optimality presents a novel estimation-eploitation trade-off. To

summarize, Sections 4, 5 and 6 have three main contributions:

1. We provide a modeling contribution: by offering a formal model of policymaking
as a MAB we give a unifying interpretation of the econometric approach to
causal inference and experimental design. As a byproduct of this modeling
exercise, we introduce the novel concepts of regimes as a collection of stimuli
that share the same incentivation scheme (ranging from fully coercive to fully
voluntary incentivations), and of regime distortion functions that naturally map

into perturbations of the unconfoundedness assumption.

2. We provide (weak) sufficient conditions for implementation of BDM mecha-
nisms. Using evidence obtained in simpler settings, we end up quesitoning the
validity of the BDM in this context in light of the completixy of the treatment
lottery. Disregarding those concerns, we propose a sampling procedure that
(e—)validly implements all BDM mechanisms, while ) preserving information
continuity (contrary to the CPS framework) and i) minimizing the variance of

the propensity score among valid procedures.

3. We highlight a novel channel through which the control optimality conflicts
with optimal information acquisition: posted price price mechanisms are control
optimal (under linear social preferences), but also induce the largest variance
(among BDM mechanisms) of the empirical propensity score under the proposed

sampling procedure.

2.2 Multiarmed Bandit Problems and DeGroot Un-

certainty Functions

In this section we setup the multiarmed bandit problem and introduce some
notation that will be used throughout the Chapter. We characterize each action by its
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material consequences (Anscombe and Aumann act) and by its estimation properties
(Blackwell experiment). We setup the sequential and present the equivalence of
the sequential decision problem with a Markovian stochastic dynamic programming
problem where the state is the decision maker’s belief. Such recursive representation
was firstly demonstrated by Hinderer (1970), then formalized in Easley and Kiefer
(1988); Aghion et al. (1991) under slightly weaker assumptions.'® We argue that the
so derived value function has almost no use for describing the characteristics of a
belief as it does not separate optimality and informational content of the same, thus
yielding a problematic interpretation of the optimal policy. We define the dynamic
Bayes risk as an admissible uncertainty function in the sense of DeGroot (1962) and
show that the implied information function is traded-off one for one with expected
utility at each belief state to determine the optimal policy.'”

2.2.1 Primitives

Control

From a control perspective, an action is an Anscombe and Aumann act, that is
a map from states {2 to lotteries over material outcomes y € Y, Y being another
compact subset of a metric space. The map of action and states into lotteries £ : A x
Q — A(Y) is continuous in both arguments.?® Once an action is taken, nature (who
knows the state w) draws an outcome y according to L., € A(Y). The Bernoulli
utility index u : Y — R representing the agent’s ranking over such material outcomes
is taken as a primitive of the model. An action induces a map from states to (lottery)
utilities, given by the section

Ug : D — R

o () = / #(y) dLaw (9)

18 Application of recursive techniques to bandit problems made the solution easy to characterize
each period policy in terms of the Gittins index (Gittins and Jones (1974); Gittins (1979)). As
the research in stochastic control discovered more and more advanced algorithms to solve bandit
problems, see e.g. Bubeck and Cesa-Bianchi (2012); Auer et al. (2002), extensions of the original
Robbins formulation were discussed mainly involving infinite and correlated arms.

19 At a particular belief state, both expected utility and information are functionals over the action
space. The former depends on its property as an AA act, the latter on its property as a Blackwell

experiment.

20As Y is compact, A(Y) is metrizable As usual, the space of lotteries is endowed with the
weak*-topology.
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Continuity of the lottery mapping and of the integral function implies that w is
(Borel) measurable and continuous in w, a. Utility is further assumed to be uniformly
bounded. For any probability measure p € A (Q2), I use without fear of confusion the

function u : A (2) x A — R to denote the expected utility

u(a,p):/ // y)dLow (y) dp (w)

From an estimation perspective, an action is a Blackwell experiment, that is a

Estimation

collection of state-dependent measures over a common signal realization space S.
Ma = (Ma,w)weﬂ’ With /,La7w e A (S>

Once action a is chosen nature draws a realization s according to measure p,,, and
communicates it to the decision maker. This distribution being parametrized by w
provides the necessary signal-state correlation which permits learning to occur. It is
assumed that ji,, is jointly continuous in action and states, where continuity is taken
in the topology of weak convergence, that is for each function i : S — R continuous,

(ap,w,) — (a,w) implies

/h( ) dfta e (8 —>/ $) dpta (8)

2.2.2 Sequential and Recursive Solutions

The state space describing all the uncertainty that has to resolve at period 0 is
given by ¥ = Q x Z*°, where (Z, Z,v) is a probability space and a realization z; € Z
in an information shock. At each period, independently of w (and across periods) an
information shock is drawn from v. It then determines the realization of the signal
for all possible state and action pairs through a function s : A x  x Z such that
sy = s (az,w, z).2t Continuity of the signal maps is equivalent to having s continuous.
In case pq,. all admitted a distribution function on R D S, one can take Z = [0, 1], A

the Lebesgue measure and

s(a,w,z) =inf{s € S: 2 < F,,(s)}

21This representation of objective uncertainty is taken from Aghion et al. (1991). It is convenient
as it gives a common probability space that resolves the uncertainty in signal realization conditional
on each state and action pair.
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Y’ is naturally endowed with the product o —algebra, and the product measure py&v>°,
where pq is the prior. Notice information shocks are by construction uncorrelated with
w, all correlation between s; and w being driven by the function s.

The sequential problem has the agent choose a plan a = (ag,a,...,a;,...) €
L (2, A>®) where L (X, A®) denotes the set of random variables with state space X
and sample space infinite action paths. A progressive measurability constraint comes
in the form of requiring, for each t € N, a; € o (Z'!), where inclusion sign means
measurability with respect to the RHS o—algebra and, as usual z! = (IS)ZZO and
o (2°) = {0, X} so that ag is chosen not to depend on the state. Future actions can
instead be made contingent on the information shocks that realized before period
t. As s, is a function of z, we can equivalently write a plan as a set of functions®?
(az : ST1 — A),>o, which is a more intuitive specification as it has plans depend on
observables. Ha\;ing a be a random variable that is correlated with w (seen itself as a

random variable) is convenient as it allows to write immediately the utility flow from

a plan a.2® Let indeed

U (@,p) =Epree Y Blu(d,w) (2.1)
t=0

We arenow ready to define the decision problem under study.

Definition 2.1. A Multiarmed Bandit Problem (MAB) T is a tuple ' =
{Q, A, B,po}. The agent chooses a plan to solve

U (a,
s hax (@, po)
Let v* (p) be the value of this problem, namely

v*(p) = sup Ul(a,p) (2.2)
acL(3,A>)

22T focus on action plans in pure strategies. Allowing for mixed strategies implies letting a; being
stochastic even conditioning on the signal realization. This will only add notational complexity, as
we know that in a decision problem randomization is never optimal.

23The measure E,y,~ used to define (2.1) takes expectation of the correlated random variables
a,w.
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Recursive representation

The Markov kernel, mapping prior into distirbutions over poserior induced by a
given experiment, is a fundamental object in achieving the recursive representation
of the MAB problem. We obtain it as follows. Let 7 : A (2) x A x .S — A () be the

Bayes posterior mapping, namely,

~ Jo Maw (ds) dp (w)
 JoHaw (ds) dp (w)

for any O in the Borel-sigma algebra on A (€2).24 The Markov kernel p, has, for
each O € B(A(A(Q)))

i ©= [ ( /{ e (@s)) dp ) (2.4)

7 (p,a,s) (O) (2.3)

We can now state

Proposition 2.1. (Easley and Kiefer (1988), Aghion et al. (1991)) The value func-

tion v* defined in 2.2 coincides with v, the solution to the functional equation

v(p) = sup [u(p.a) + BE,, v ()] (2.5)

where (1, s defined in (2.4). Further, v is continuous and convex.

The policy correspondence ¢ : A () — A is given by

®(p)={acA: ulpa)+pE, .vp)=0v()} (2.6)

specifies how the agent plays as a function of the currently held belief, which is a

sufficient statistic for all information acquired along the experimentation path.

Belief as a state

Thinking about the solution of the sequential problem in its recursive representa-

tion (2.5) gives substantial simplification on how we interpret the attitude of the agent

24The space of measures over a compact metric space is metrizable, hence the object is well definite.
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towards uncertainty.?> However, having beliefs as the endogenous states presents
some challenges. Beliefs are not capital or any state variable inside classic economic
problems. They are not fixed, in the sense that there is nothing preventing the agent
from changing his belief at the beginning of each period.?® Why does not a player
give himself the “best prior”, hence choose p* € arg max, v (p), as the latter object is
defined in the prior free decision problem I'? The obvious answer is that the value
v (p) is not the value of “having belief p”, but it is the value -the expected flow utility
following an optimal path- of p being the most accurate description of reality available
at the particular time: if one decides to be certain to be a multi-millionaire, he will
still end up bankrupt. For this reason it is legitimate to call the state “information”,
rather than “belief”, even though it creates confusion with the information function
studied below.

The value of a belief does not distinguish between the “decisional quality” of
states in its support (the utility they would deliver should them be true), and the
“informational quality” of the belief himself (how much “uncertainty” it contains).
To help visualizing this point, one can rewrite the recursive problem (2.5) by making

the rational updating constraint explicit as

max,c4 u(p,a)+ Bv(p')
s.t. p/ ~ Hap

Action parametrizes distribution of posterior, but it is always the belief the element
of the domain in the continuation value: it is therefore not wrong to say that an agent
tries to make herself believe that she is multi-millionaire while respecting the rational
updating constraint.

The sequential representation derived above is an useful tool for solving nu-
merically the problem. However the resulting value function has almost no use
for describing the characteristics of a belief as it does not separate optimality and
informational content of the same, thus yielding a problematic interpretation of the

optimal policy. In the next subsection we use insights in DeGroot (1962) to derive the

25The complex structure of objective uncertainty coming in the form of a distribution over infinite
sequences of signals as generated by a plan which in turns determines distribution over action paths
and hence utility is simplified by just looking at a much simpler object, namely the Markov kernel
Ip.q induced by each action over posteriors in the immediately next period.

26This is particularly critical when the agent has to determine his prior, especially when such prior
results from a structured conjecturing effort. The recursive representation has indeed the prior lose
the special standing it had in the sequential representation, where we computed state-dependent
measures of action paths conditional on each state, and then aggregate based on the prior.

101



relevant uncertainty function, describe why it conforms with the heuristic properties
discussed in the introduction and how optimal policy trades off current optimality
and information acquisition.
2.2.3 Uncertainty Functions

We follow the approach in DeGroot (1962) in defining information through un-
certainty functions. The premise is heuristic: given a state space €2 there is a natural
sense in which a belief p € A (Q) describes a certain amount of uncertainty on the
true value w. What an uncertainty function attempts to make is to give a numerical
quantification this “natural sense”. The concepts of information and uncertainty are
closely linked: whatever reduces uncertainty is information. The following definition

makes this intuition formal.

Definition 2.2. An uncertainty function is a non-negative map L : A (Q2) — R.
Given an uncertainty function L, the information function I : A (Q) x A — R is
defined as
Iy (a) = L(p) = Epa (L (1))
= L) — fag L) Aty ()

Where p,, € A(A(§)) is the Markov kernel (2.4) of experiment a evaluated at
prior p. The information of an experiment a € A evaluated at prior p is the difference
between the uncertainty of the prior distribution p and the expected uncertainty after
having observed the realization of a.

A minimal requirement for an uncertainty function to be admissible is that each
experiment contains non-negative information. Clearly this does not imply that for
all possible realizations of the experiment the uncertainty will decline (think of a
case in which the Markov kernel is full support, namely each posterior is achieved
with positive probability). The property refers more to a qualitative feature that
an information function must have: “It is commonly felt, and often stated that an

experiment can, at worst, contain no information about the problem at hand.”

Proposition 2.2. (DeGroot (1962)) An uncertainty function is admissible if and

only if it is (weakly) concave.*”

2"The convex combination between two measures is defined as usual

(ap+ (1= a) ') (4) = aga (A) + (1 - a) 1 (A)
for A e X.
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2.2.4 Solution through uncertainty functions

We now define a finction

Definition 2.3. Fix a prior-free sequential decision problem I'. For each p € A (Q),
define

L' (p) = BB, [v (3.)] — v ()]

where v is defined in (2.2) and § is the Dirac measure. L' (-) is the dynamic Bayes

risk associated to problem I'.

The normalizing factor § is taken only for future expositional convenience. The
interpretation is that the uncertainty of the decision problem at a particular w is
the loss in utility that occurs when the true state is w and, rather than knowing it,
the agent holds a belief p and hence acts (dynamically) optimally under such belief.
The dynamic Bayes risk then aggregates all the losses received in each possible state
under the distribution p. It can be interpreted as the expected flow utility loss which
results from acting in an uncertain environment rather than in an uncertainty free
environment if the state w was really drawn from p. It also has a welfare interpretation
as it is the amount (in utils) that an agent with information state p would be willing
to pay?® to operate in the same decision problem purified of subjective uncertainty.

The following proposition establishes that the dynamic Bayes risk is an admissible
uncertainty function, provides its recursive representation that will be used in the
applications of the next part to compute this object in simple cases that are numer-
ically tractable, and establishes the key result on linear utility-information tradeoff.
In the statement and proof (Appendix) it is implicit that we fix a prior-free sequential

problem I'.

Theorem 2.1. i) L is an admissible uncertainty function and coincides with the

unique solution of the functional equation

L(p) = min B, [u* () — u (a,w)] + BFq [L (1) (27)

ii) Let ® be the policy correspondence defined in (2.6), I* : A (Q) x A — R, the

information function associated to the dynamic Bayes risk and IpL its section at p. It

28To justify the 3, the cost is paid at a period before the statistical game starts.
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holds
a€®(p) <= acarg max [up (a) + I} ()] (2.8)

The characterization of the policy function (2.8) both concludes and constitutes
the main result of this Section. Its conceptual contribution can be summarized
as follows. The expected reduction in flow utility of an optimal experimentation
plan compared to a counterfactual uncertainty-free world is a legitimate uncertainty
function in the sense of DeGroot. It discriminates beliefs along dimensions that
are reasonable foundations of the concept of uncertainty, such as utilitarian differ-
ences across belief-induced state realizations and the practical facility to obtain more
accurate description of reality. A manipulation of the recursive representation of
the repeated decision problem gives the decisional implications of the uncertainty
function, as agents trade-off one for one current utility with uncertainty reduction.

The next section shows how one can apply

2.3 Vaccination Example

In this Section we offer a numerical solution to Example 2.1. We have a twofold
motivation: firstly we want to show how one can derive the uncertainty function (2.7)
over a non-tivial (binary) state space and how to use it to compute the policy in
the implied MAB problem. Secondly the model presented hereafter will be used as
a motivating example for the next part. As for the first point, the state space will
be continuous 2 = [0, 1] though, to keep the model computationally tractable we
will need to force information updating inside a conjugate model (the beta-binomial
model), so that along any experimentation path the belief state will be identified
with a pair of parameters. As will be clear from the discussion in later sections, the
simplicity that makes such example computationally tractable comes at the cost of
having most of the interesting channels of incentivation into social program problems
being shut down. In subsequent sections we will indeed use this example as an instance
in which the more complicated objects we introduce take a simple form.

2.3.1 Social utility and control optimality

The environment is described in Example 2.1. Period utility is assumed separable

in distribution over health statuses and monetary revenues. Along the first dimension,

the planner gets utility 1 for each healthy citizen and 0 for each ill citizen. He has to
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pay the cost of the plan which equals the fraction vaccinated times the per-unit net
loss ¢* — q. Parameter x describes the relative importance of monetary vs. health
outcomes, Y — 0 means the planner only cares about health of the population. Let
y be the random variable describing the number of vaccinated agents, i the number

of ill across non vaccinated. The state-action static utility is given by

w(w,q) = F¥Epine-19.3) [Esinwy-y) (¥ + (N =y —1))] = Epine—an) [xy (¢ = 0)]
= ¥ [NV = Epine—a.n) [Egintw.n—y) ()] = Egine—a.n) Xy (¢" — )]
= L[N = Epinge—nan [w (N —y)] = xNe™ " (¢* — q)]
= l-w(l—e)—xe " (¢" —q)

which gives state contingent policies
~ L, 1w
q(w):max{O,q +———} (2.9)
7X

It is assumed that q*—l—%—i > () so that we always have an interior solution. Notice
% = —%, optimal price strictly declines with w: as the illness is more aggressive,
the benefit of vaccinating is higher. As x — 0, healthiness becomes more important
(relative to monetary expenses) and so lower prices are charged. Substituting the

optimal policy we get

g -1

u (W) =1—w+ yex~

As the planner is risk neutral the static incentivation problem features certainty

equivalence, that is for each u € A ()

. ., 1 E,|lw
qp)=q+--— o]
v X

gives the static best response function: whenever holding belief p, a myopic
planner would quote price g (p).
2.3.2 Estimation

By risk neutrality the finite sample size is irrelevant for static optimality. It
becomes relevant when we look at the estimation problem as finite larger gs will
induce fewer people to vaccinate hence provide a larger size of the sample used to
estimate w.

Planner learns nothing from vaccinated citizens: they are healthy irrespectively

of the state w. Each non vaccinated citizen, however, becomes ill with probability w
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(independently one another). The planner makes therefore inference from the obser-
vation of a Bin (w, N —y) random variable and updates his prior on the unknown
parameter w. Notice that the effective sample size N —y is itself the realization of a
Bin ((1 — e ), N) random variable (parametrized by planners’ action).

For each ¢ the signal received is a pair of realized sample sizes and realized sick
people. S = [N] x [N] is the space of signals that can be received and

silg = #NoVacc ~ Bin((1—e), N)

52‘31,0) = #ill ~ Bin (w, s1)

It is clear that signal s = (s1,s2) is a garbling over s’ = (s}, s) if s > s1: we
obtain the same state-signal distribution by making the last s| — s; health outcomes
observations uninformative. Then there is a clear sense in which higher ¢ is more
informative, as it ranks more Blackwell informative signals according to first order
stochastic dominance.?

For tractability we need to assume that prior py € A ([0, 1]) belongs to the beta
family: as the the binomial likelihood is conjugate with the beta distribution this
means all posteriors (that is, information at each period) will be described by beta
distributions.

As it is well known, after observing s, successes out of s; trials, a prior B («, f3)

updates in

B (sy+ a,s1 — s2+ )

It will be convenient to reparametrize the beta distribution defining v = a + 3
and g = %: under this parametrization the scale parameter p represents the mean of
the distribution while v is as a measure of the accuracy of estimation.?® The posterior

in the reparametrized version of the beta is

+
B(u,HSl)

v+ s

which reflects the fact that effective sample size always grows with time (we collect
more and more observations), in a manner that does not depend on the particular
timing of experimentation.

We now give the expressions for the Markov kernel M, : R? — A (R?).

BIf p > p/, F, (x) < Fy (z) where F}, is the CDF of a binomial random variable with parameter
p and any N.
30Tn the limit as ¥ — oo, the measure approaches a Dirac on p.
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V' (u,v,q) ~v+ Bin ((1—¢e7),N) (2.10)

that is the increase in the effective sample size v is stochastic but does not depend

31

on the unknown w (hence does not provide information about it).”* The posterior

mean instead is going to have a distribution that depends on w. In particular, given

a realized sample size s1, one has for so = 0,1,..., 51,
_ ! __ prtsa
Brao () = ro (4 = 2222)

= [} Bings, (s2) dB,, (W)

— C(v) 1 v— s1—y+v—pv—1 [ 51
= e Jo @ (L — W) ( S9 > -

— I'(v) S1 1 sotpr—1 o s1—sa+v—ur—1 211
— T(w)T(v—pv) < S5 ) fO w2 (1 w) dw ( )

o I'(v) 51 T(uv+s2)0(s1+v—s2—uv)
o) |\ Tots1)

s
= B(V—/LV,/M/)B(IMV—FSQ,Sl—|—l/—82—/ﬂ/)( 1)
52

Where I' denotes the gamma function and ‘ is the binomial coefficient.

Expressions (2.10)-(2.11) give the expressions for the Markov kernel. Notice that
the Markov kernel is continuous in actions and states: all measures have well definite
and continuous densities for all positive ¢, we only need to check the limit as ¢ — 0,
but as ¢ = 0, g (i, v) = (d,,,) in the topology of weak convergence.

Given this observation it is then immediate to check that the problem satisfies all
the assumptions required in part 2: state space is compact, current utility utility is
bounded and continuous and Markov kernel is continuous.>?

The planner then chooses a progressively measurable stochastic process for prices

to solve

GEL(Z,R>)

max  Epere ) S'u(w,q)
t=0

31We can immediately see an extension would have v unknown as well so that also the observation
of s1 is informative about the underling reduced form model. In the language of part 4, the model
is degenerate along the statistic sufficient for treatment, only outcome types are unknown.

32Tt remains to show that it is without loss of generality to restrict the set of prices to a compact
interval.
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where ) is the measure over information shocks that determine the price-state con-

ditional signal realization according to (2.10)-(2.11).
Numerical solution of the uncertainty function

By Theorem (2.1) we can write the dynamic Bayes risk for this problem as the

solution to the following functional equation

L (4,) = min By [0” () = u ()] + BBas, o [L (')

where, for QQ = R, period loss is??

B [u” (W) —u(g,w)] =

=E,.. [xei‘q*‘% —e Mw 4 xe M (q" — q)] =
Nt — T — *
=xe K, [6* ] +e X (¢ —q) —

and Eyy, (4,,) denotes expectations with respect to the measure described by (2.10)-(2.11)

derived above, namely

N n
4 pHy +y
Enty o [L (1, V)] = Y Bing-c—ayn (1) D Puan (4) L ( el n)
n=0 y=0

with
n
pu,u,n(y) :B(V—/U/aMV)B(W/+?J7n+V—?/_UV) ( y )

We solve numerically the model using the following values for the known parame-
ters: v = 0.2 x = 0.3, the discount factor 5 can take the three values 0.1, 0.5 and 0.95
reflecting different importance of the future periods. We also consider two different
action sets among which prices can be chosen: either prices belong to a discrete set
(@ = {0,L, H} corresponding to free vaccine, low and high price), or @ = R, any

positive price can be quoted.

33EW, [e%“} has an analytic expression being the moment generating function of a beta u,v

evaluated at % It is of no particular interest.
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Figures 2.1 and 2.2 plot the uncertainty and policy functions for different values of
[ in case the incentive set contains 3 prices or a continuum, respectively. Uncertainty
is on the LHS of each panel.?!

Policies are plotted on the RHS. On the horizontal axis is the value of the mean
parameter i, while on the vertical is the precision parameter v on a log scale. Different
colors represent different optimal price associated to a (u,v) pair, with darker colors
(towards blue) represent lower prices. As v — oo we have B (u,v) — 4, in the
topology of weak convergence, therefore the upper stripe (log () > 4) in each figure
represent®® the static policy when w = pu is known, (for continuous action space,
the policy is given by (2.9)). We see that as agent becomes less certain of p, that
is decreasing v for fixed pu, optimal price increases. This violates the certainty
equivalence property of the decision problem and reflects the wedge introduced by
information acquisition, since quoting higher price increase the (expected) size of
sample that provides information about w. At lower v (that is, where agent is not very
confident about p), he will induce oversampling by setting higher prices. Distortions
are more pronounced when the discount factor is higher (notice for 5 = 0.1 the policy
in the 3—action case almost obeys certainty equivalence) as the benefit of information
is discounted more.

Uncertainty does not decrease as we enlarge the action space. This is because an
expansion of the action set does not simply increase the possibilities to learn but also
complicates the correlation between states and static policy: with 3 actions we only
need to know a 3—atoms partition of the state space, while a continuous action set
makes the optimal action a function of the true state. Therefore increased possibilities
to learn come together with a more complicated domain of relevant uncertainty,
making the two environment not unambiguously comparable.

Uncertainty is instead uniformly decreasing with N: current policy and utility
are unaffected by risk neutrality, but higher N make the realized sample larger.°
This is equivalent to a larger u in the previous example, it makes every action more
informative hence the whole environment less uncertain. It should be noticed that,
as N — 00, ¥ — w (1 — e77%) in probability by the law of large numbers. As the RHS

is an invertible function of w for each ¢ > 0 this means that for every positive price

34Concavity of the surfaces does not follow immediately from concavity of the uncertainty, as the
latter holds in the space of probability distributions and convex combinations of beta are not betas
with convex combinations of parameters.

35Up to finite grid approximation.

36We can simply through away all observations related to citizens labeled from N to N’ > N,
have the same decision problem but Blackwell inferior experiment.
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quoted an infinite sample makes the observe success rate reveal w. Therefore I, (¢) =
1,~0U (p), all actions are equally informative hence the representation in Proposition
2.1-i4i) implies a trivial dynamics for the optimal solution: at the initial period we
set ¢ = ¢* (w,) > 0 static optimum,*” and from the second period onward the state
is revealed and we act according to (2.9) under complete information. Triviality
of the exploration-exploitation trade-off under identification rather than estimation

concerns is further discussed in subsection 2.4.5.

3TIf ¢* (Wp) = 0 no solution existed as the “optimal” price is to set ¢ = € > 0 as small as possible.

110



0.07

0.06

0.09
0.08
0.07
0.06

X 0.05

é 0.04

= 0.03
0.02
0.01

0.l

Loss function, 3 actions, 8 = 0.1

H 0 o log(v)

Loss function, 3 actions, 3 = 0.5

# oo log(v)

Loss function, 3 actions, 3 = 0.95

log(v)

log(v)

Policy function, 3 actions, 3 = 0.5

7
6
5L
4
3k
2k
0 L L L L L L L L L |
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
o
Policy function high p, 3 actions, § = 0.95

Figure 2.1: Loss and policy functions for 3 actions (different /)

111



Lu,v)

Loss function, continuous actions, 3 = 0.1

Policy function high s, continuous actions, § = 0.1

5
a5
0.07
4
0.06
0.05 [] 35
0.04 ======c
= = |3
0.03 2
W
2
0.02 i —25
0.01 0 2
0 11
1 —15
6
1
\ \ ! \ \ ! \ \ \ I 0%
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5
n
Loss function, continuous actions, § = 0.5 s
45
0.07
4
0.06
0.05 135
0.04
43
B
0.03 3
<
425
0.02
0.01 12
0
1 415
6
41
I | | | | | | | | | 05
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5
n
Loss function, continuous actions, 8 = 0.95 Policy function high g, continuous actions, 8 = 0.95 s
45
0.07
0.06 14
0.05 =
N
0.04 NN
AN —
0.03 A 13 %
X N %
N =
0.02 N
425
0.01
0 12
1
6
415
I I I | 1
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 06 0.55 0.5

Figure 2.2: Loss and policy functions (for high ) for

112

continuum of actions



2.4 The general model: State and Action Space

The remainder of this Chapter is devoted to setting up problems of incentivation
into a social program as a particular class of the MAB problems introduced in Section
2; the vaccination example solved in Section 3 will be a particular tractable case in
which most of the channels that make the problem interesting are shut down for
the sake of tractability. To use a language that conforms with the literature on
estimation of treatment effects we will be as adherent as possible to the terminol-
ogy used in Imbens and Rubin (2015) in terms of statistical assumptions (SUTVA,
unconfoundedness, etc.), and objects of interest (superpopulation, propensity score).
This Section carefully reviews the modelling assumptions that are kept implicit from
now on, then specifices the bandit problem by deriving the state and action spaces
that are relevant for the application.

We have a “circularity” problem when presenting state and action space: loosely
speaking, the state is the distribution of individuals’ responses to each possible
stimulus in the action set (in terms of treatment choice and messages sent), therefore
the state space is only definite with respect to an action set, which in turns incentivizes
along dimensions that are encoded by the individual state. We solve this circularity
by starting to define the (social) state space holding a generic action space fixed
(Section 2.4.2), then fill that gap (Section 2.4.3). We offer weak sufficient conditions
for superpopulation implementation of the class of BDM mechanisms; individual
response to all such mechanisms are summarized by a single-dimensional empirical
object (the reservation price). This is extremely convenient, however we also discuss
potential failures driven by the complexity of the object being auctioneed (a treatment
lottery). In Section 2.4.4 we introduce the concept of selection regimes, class of
selection mechanisms that are ranked according to an intensity index (higher intensity
selections have each type participate to treatment with higher probability), and rich
enough find for each nondegenerate model and propensity score level an elements
in the class that associates them. Section 2.4.5 discusses the informational content
of BDM selection mechanisms, making the point that the selection properties of a
sampling intensity are not necessarily related to its estimation power, and in particular
that guaranteeing truthful revelation does not necessarily imply that planner gets to
known the reservation price.

2.4.1 Modeling Assumptions
We now proceed to list and discuss the 5 critical assumptions that are maintained

throughout this paper, from the most to the least restrictive.
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1. Stable environment: the action set in invariant through time and the population
alive each period is an N —dimensional random draw from an immutable super-

population.

2. Outcome conditional on no treatment is known and, if stochastic (that is not
constant across the no-treated population), does not depend on individual
characteristics that determine treatment selection or outcome conditional on

treatment.

3. All strategic interaction channels are shut down, both in the treatment selection

and outcome phases.

4. There are no observable covariates, hence measurability of the stimulus implies

that everyone is subject to the same stimulus.

5. Treatment and outcome spaces are binary.

The first assumption is the most fundamental one that makes policymaking a partic-
ular type of bandit exploration. This assumption is particularly critical for environ-
ments in which individual decisions depend on beliefs as citizens are not allowed to
learn. Further failures of stationarity would occur if planner was able to influence the
distribution of characteristic through its action: think for instance of a disease-killing
intervention or of promoting school to have a better educated population in the future
which is also likely to be more sensible to the importance of educating their own
children.

The second assumption gives the treatment status a qualitative feature that is
absent in most of the standard models of treatment effect estimation where treatment
and control have no intrinsic meaning and are simply two different statuses. Here,
selecting into treatment provides information about the potential outcome type that
is not revealed otherwise. Notice that under this definition in the vaccination example
treatment corresponded to not being vaccinated, as uncertainty was related to that
phase.

The third is the composition of two assumptions that are popular in the literature
of estimation of treatment effect. No strategic interaction in the outcome phase is a
(weak version of) the Stable Unit Treatment Value Assumption (SUTVA)3® stating

38 Actually, this is a weaker version compared to what given, for instance in Imbens and Rubin
(2015). Here it is allowed that different agents use treatment with different intensities through their
effort. This point is related to unconfoundedness assumption discussed in Section 2.6. Think of
SUTVA in this weaker form as an assumption to exclude all sorts of treatment externalities.
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that an individual’s outcome depends exclusively on its treatment status: there are
no “treatment externalities”. No strategic interaction in the assignment phase is
implied by an individualistic assignment assumption and will rule out competitive
assignment mechanisms in which the treatment status depends on the identity of
other citizens that are alive. A recent literature (Kremer et al. (2014); Mansour et al.
(2015, 2016) Mansour et al. (2016)) focuses on agents’ interaction inside a bandit
problem through an arbitrary Bayesian game which allows to study a a three-way
tradeoff between exploration, exploitation, and incentive provision to agents who
are myopically interested in exploitation. The objective of the planner is to induce
incentive compatible exploration, that is to make agents explore different arms’ under
the constraint that individuals will act for their own interest. The crucial assumption
that makes those contributions unusable in my setting is outcome of pulling an arm
is independent on the identity of the individual who pulls the arm: in the class of
problems under study, however, it is crucial that the characteristic that determine
selection also determine the outcome on the arm pulled (social program selected).
The fourth assumption is critical but is taken only to simplify the exposition.
We can see this construction as a “building block” of more general model where the
incentivation scheme needs to prescribe a citizen-specific stimulus assignment subject
to measurability with respect to the observable partition. Observable covariates
are of two types. Demographic observables on which stimulus assignment can be
made contingent create a segmentation (in the sense of Bergemann et al. (2015))
in the market for treatment lotteries; covariates also partition the population into
social groups (classes, villages) that provide natural experimentation units. Issues
of external validity will require the planner to conjecture about the correlation of
responses across atoms of the partition generated by the observable characteristics.
The fifth assumption is just for convenience, not to carry over a whole conditional

distribution over outcomes.

2.4.2 The state space: speculation and reduced form model

There is a super-population of individuals, represented by the continuum [0, 1],
endowed with the Borel o—algebra and the Lebesgue measure. Suppose for the
moment the planner is given a set of actions A, a compact subset of a metric space.

A collects all possible stimuli that the she can conceive of enforcing to incentivize

39Though returns are in general allowed to be correlated.
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individual decision to treat and the disclosure of private information. The individual

type space is

T=(0,1] x M)*xY (2.12)

Each individual i € [0,1] is associated to a type t;, immutably through time. In
what follows, I will refer to elements of the super-population as individuals and to
elements of the population as citizens. An individual becomes a citizen (carrying
with him its type) in periods where the sampling procedure makes him alive. If an
individual is called to act in different periods he will give the same response to stimuli.

Per (2.12), a type t = (7, y:) € T specifies

e A treatment map 7 : A — [0,1] x M, where the first coordinate gives as a
function of stimulus a the probability with which type ¢ selects into treatment,
while the second coordinate gives the messages that are sent during either
the treatment assignment phase or the post-treatment phase and enter the

information set of the planner.

o A potential outcome y € Y describing how type ¢ reacts to treatment, namely
the health status that would result should she be treated. By assumption, non-
treated get a deterministic health status so that the super-population type needs
only to record the treatment-conditional one.* We take Y = {0,1}, bad and
good health status (Assumption 5 above).

Notice that specification (2.12), altough pretty general, already embeds some of the
standard assumptions taken in the literature of treatment effect estimation. The
stimulus-conditional selection intensity (first coordinate of 7) does not depend on
other citizens’ identity and actions. This is an individualistic assignment assump-
tion, and it will exclude competitive assignment mechanisms such as auctions. The
potential outcome type y is assumed independent on i) how the individual ended up
treated, namely, the stimulus she had responded to and i) the treatment status of
other citizens. The first assumption is an instance of policy invariance: an individual
will not alter his post treatment behavior depending on whether he was, say, forced

into treatment or had to freely choose it. Point i7) is instead a version of SUTVA.

40Thus, contrary to the treatment literature I will have the potential outcome to be a random
variable, not a random vector.
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What is not restricted by the specification (2.12) is the joint behavior of treatment
type 7 and outcome type 1;, which would induce in general a failure of the uncon-
foundedness assumption (see Section 2.6), and have the planner try to stimulate the
“right citizens” into treatment.

As A and M are compact subsets of a metric space then so is 7' and we can define

a o—algebra over it, call it 7. The following object is then well definite

Definition 2.4. The social state w”° € A(T) is the push-forward probability
measure induced on 7 by the type mapping, that is

w(A) = {i:t;e A}) VAeT

The social state characterizes the super-population response in terms of selection
intensity, health outcome and signals sent as a function of each possible stimulus.
Given as it is, this object has little structure: it is defined by how it works, that is
by how it maps feasible actions into super-population outcomes. This is of course
convenient when it comes to choose an action conditional on knowing the model, but
makes probabilistic conjecturing about the likely shape of such models a fairly difficult
task. A theory on the joint behavior of determinants of decision and post-treatment
behavior in the form of (structural or reduced form) model is needed to discipline the

social state.

Definition 2.5. A speculation structure (X, f) is a set of individual characteristics
X and a function f : X — T such that t = f(z), characteristics determine the

type. A structural model is a probability measure over speculation characteristics
w3 € A (X).

Clearly one can take X = T and have f be the identity and have a sort of “super-
population model”4! However the purpose of constructing a speculation structure is
to reduce the dimensionality of the state space by giving a shape the individual pre
and post treatment decisional environment.

We give now an example of a speculation structure; it is taken on purpose quite

rich in terms of the number of characteristics considered, though it wouldn’t be hard

“INotice Definition 2.4 does not use the term “model” which is reserved to outcomes of a
conjecturing exercise over the space of social state.
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to make it even more complicated. Most examples we will introduce later are slight

modifications of this one.

Example 2.2. If individuals don’t get treated, they get ill for sure (bad outcome). If
individuals get the treatment, then they choose an effort inside an individual action
space E by solving a subjective maximization problem. Good outcome results if and
only if the chosen effort e* exceeds an individual outcome type threshold €. Agents
believe that their likelihood to have successful treatment is ® (e,v) : E x I' — [0, 1],
with @, &y strictly positive. They have a belief p € A (I") and choose e to solve

eck

max/F D (v,e) - urdp () — c(e) (2.13)

u describes risk rankings (u is normalized to 0 for all citizens, so that ® (v, e)-u; is
the expected utility conditional on -y being true). To have a fully parametric model one
can assume @ (z,y) = (zy)", c(z) = 2%, p = p(N\). Individuals are moreover borrowing
constrained and have a money endowment of m. When considering whether to buy
treatment at given price m, they compare the indirect utility of problem (2.13) with
g (m —m), g being strictly increasing, say ¢ (z) = 25. If feasible stimuli are, as in
3.2, a set of prices at which agents can choose whether to buy treatment or not,
the characteristic vector would be = = [e, k,uy, (, A\, §]. It describes outcome types,
attitudes towards risk, disutility from effort, belief types, and utility from money
respectively. It is immediate to see that this is indeed a speculation structure. Given

x, one has for each possible action (price ¢) the following maps, assuming M = (),

7. (q) =1 {maX{/;P(%e) cupdp (7) — 0(6)} > (m— Q)g}

ecE

ve =1 [argr?eaéi{/f(%e) ~udp (7) —C(e)} ZE}

A structural model is in this example a point w7 € A (R%). A specification
gives mathematical structure to assumptions about individual’s subjective decisional
environment and the “true” environment that determines health outcomes. For
instance, one can assume that although agents think they can alter their likelihood of
success, everything is determined by other factors that the individual cannot control.*?

This is made by having e taking only two values a,b with a < min £ < max /' < b.

42What we implicitly did when setting up the vaccination example.
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Alternatively, assumptions on private information by agents are made by specifying

A3 Assumptions like “rich

the correlation between outcome type € and beliefs A
people are more lazy” is just m and ¢ being positively correlated, and so many other
qualitative statements about individual behavior are translated into the statistical

properties of the structural model.

Essentially, the speculation structure corresponds to an economic theory of individual
decision which disciplines citizen’s behavior and allows to simplify (reduce dimension)
the domain of uncertainty of the planner. Speculation structures include character-
istics that may be neither identified in the data nor (taken individually) relevant for

the outcome model.**

Definition 2.6. Given a speculation structure X, a statistic ¢ is a function ¢ : X —
C. A statistic is sufficient for treatment if the outcomes of the treatment phase
depend through z only through its value ¢ (z), that is ¢ (z) = ¢(2/) = 7 = Tw,
the latter being a functional equality. It is minimally sufficient for treatment
if it is a function of all statistics sufficient for treatment. Sufficiency (and minimal
sufficiency) for messages and outcome are defined in the same way. Sufficiency without
qualification means sufficiency for all phases.

For Example 2.2, immediate inspection of the treatment function gives

ecE

o) = [max{ [ @610 wap () - @) ]

is sufficient for treatment; it will not be minimally sufficient since

) = ¢ fer (o) = min {a € R o { [ @000) it @) (0} = (= o))

q eckE

43 Example 2.9 elaborates on this and has agents observe a noisy signal of their outcome type &

thus evaluating likelihood of success on based on the updated belief.

44The celebrated Marschak’s Maxim (Marschak (1953)) states “All that may be required for policy
analysis are combinations of subsets of the structural parameters, corresponding to the parameters
required to forecast particular policy modifications, which are often much easier to identify.”
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will determine the response of an individual with characteristic x to any possible

price stimulus as 7, (¢) = lg<o (). Also,

Cy (ZL’) = Yz

is minimally sufficient for outcome. This is general: by the policy invariance
assumption we do not need to take into account of the possible effects that feasi-
ble actions have on treatment-conditional outcome, therefore the minimal sufficient
characteristic for outcome just coincides with the outcome function in a speculation
structure. The function 37 : X x A — Y gives the final health status as a random

variable for an agent with characteristic x subject to stimulus a.

—~ Yz w.p. Ty (CL)
Yz (a) =
ynt w.p. 1 —1,(a)

in case 7, (a) € {0, 1} this is deterministic.
Now we can finally define the state space of the social choice problem.

Definition 2.7. A reduced form model w is a joint distribution over minimally
sufficient statistics. In particular, " € A(U x Y x S) = A (Q#F) where u : X —
U, s: X — S are minimally sufficient for treatment and signals, respectively. Reduced
form types are realizations of the random vector u,y,s, defined on the common
probability space (X, X,wST). ForAcUS®R)Y =8B (QRF),

W (A) =™ ({2 [u(2),y (2),s (x)] € A})
It will be convenient to write
Wi (du, 1,ds) = 0¥ (s, u) wS’U (ds|u) wy (du) (2.14)

Where % (s,u) = Prr (y = 1’5, u=s,u).

It is important to stress that a reduced form model does not only provide the

information sufficient for static optimality (an outcome model w® € A (U x Y)).

In a dynamic setting, the planner also needs a model to describe how signals that are
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(possibly) observed are jointly distributed with outcome relevant variables, as this
correlation will be used in the estimation phase. By assumption the set of messages
contains Y, and for some mechanisms (explicit BDMs), it will also include U; however
we to keep those separated, at least conceptually.

The vaccination example of the previous section postulated directly a reduced
form model. The sample space of minimal sufficient statistics was C' = R, x {0,1}
with

7 (9) = {lg<e }s ye =

and

W ([0,2],{0}) = F, (2) - w (2.15)

where F), is the CDF of an exponential v and w was the unknown illness aggression
parameter that characterizes uniquely the reduced form model. Notice that the first
element in C' must give selection probability as a function of possible stimuli (in this
case, prices quoted). In this case the second coordinate is simply the outcome type.

The state space for planner problem is the set of reduced form model; T will
denote its elements with w (without RF superscript).?® At period 0, before the first
action is taken, the planner needs to form a conjecture p € A (QRF ) Models in
the support of the conjecture may differ substantially: in the case of vaccination we
just had uncertainty about a “average illness” but the structure is flexible enough
to accommodate for this sort of parametric vs. model uncertainty; the requirement
is only that the support of the prior conjecture (hence the set of perceived possible
social states) is a compact subset of A (Q7F).46 Given such prior and the stationary
nature of the problem, all posteriors will be derived from the Bayes rule based on the

observations received, without further conjecturing effort being required.*”

45The “true” object of uncertainty (the social state) does not put any discipline on response
to different stimuli apart from that directly imposed by the planner’s belief. The speculation
structure and associated structural model are just used as conjecturing mediators, as they give
a mathematical description of the subjective environment in which agents operate before and after
choosing participation to a social program.

46We need to guarantee that A (QRF ) is compact. In the relevant application of price incentivized
mechanism with effort possibly observed, both U and S will be intervals in the real line.

47"The approach is not immune to criticisms related to prior dependence of Bayesian estimation
methods, especially if the prior conjecture is degenerate along certain dimensions of the reduced
form model (as in the vaccination example). The planner however needs a conjecture on the relevant
state to make a first period decision, it is not clear why he should disregard this conjecture in the
estimation phase. Empirical Bayes methods (Robbins (1985)) may provide useful tools to overcome
this criticism. Fessler and Kasy (2016) propose an estimation approach based on the empirical Bayes
paradigm and apply it to models of labor demand.
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So far we took the set of actions A as given. Relevant uncertainty is defined by
the possible use the planner can make of it (selection policies) and by what is possibly

observed (monitoring content of an action). The next subsection fills this gap.

2.4.3 The action space: non competitive price incentives

Per (2.12), an action has two dimensions: it prescribes a stimulus, which deter-
mines individual response into treatment, and describes the type of data that are
received during the treatment assignment phase and the post treatment phase.

Each agent perceives treatment as a subjective environment in which he is (pos-
sibly) allowed to take decision which, jointly with some personal characteristics will
determine participation-conditional health outcome. We focus on coercive stimuli,
namely stimuli that operate by restricting the individual action set:*® the planner
holds a set of “treatment tickets” and allocates those through non-competitive pricing
mechanisms.

Subjective evaluation of the treatment environment is going to determine a reser-
vation price, the maximal amount of money the want (or are able) to pay in order to
change their status from “not treated for sure” to “treated for sure”. Segmentation
along the reservation price characteristic is easy to obtain under weak assumptions®
on individual behavior through Becker-DeGroot-Marshak (BDM) mechanisms which
were originally used to elicit the certainty equivalent of a monetary lottery and then
proposed as a treatment assignment mechanism in CPS. The practical easiness to
condition treatment on this unobserved characteristic comes at the cost of losing
a clear theoretical connection between such characteristic and other determinants of
success, especially if quasilinearity assumption is abandoned and one cannot interpret

the reservation price as the “value from treatment”.
Treatment lotteries

We will use subjective lotteries to describe the individual perception of the treat-

ment environment. This introduces notation that I will keep also when describing the

48 Fxtensions on non-coercive incentivation are discussed in subsection 2.7.1.

49Extensions on non-coercive incentivation are discussed in subsection 2.7.1.In the vaccination
example this was the vaccine shot. So far it is not specified whether planner is subject to a sort of
budget constraint in the form of a maximum number of treatments available, but Proposition 2.5
addresses this issue.

59The discussion after actually points that assumptions needed to justify BDM implementation
may actually be not that weak.
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assignment mechanism. We use the following notation to characterize a lottery £

L= <[(011,0217 . 70n1) 7p1] ; [(012,0227 e 70n2) 7P2] ) [(01m702m7 e 70nm) 7Pm]>

L is a set (inside the inner product sign) of prospects (each prospect is in square
brackets) where o;; is the i’ coordinate of the outcome vector (in round brackets)
that would result if the j* state realizes, which happens with subjective probability

pj; in case p is a density we will denote

L= <{[(0j) ,dpj]}jESupp(p)>

the lottery which draws j according to p and assigns outcome (vector) o;. Outcomes
may themselves be lotteries (or set of lotteries), thus generating a compound lottery
as standard in the literature.

Treatment is (potentially) a complicated object: after being treated agents may
have to take some actions whose return is uncertain. What is important to realize
(especially for when we will discuss potential failures of this seemingly robust class
of mechanisms) is that the object auctioned-off is a set of effort-dependent subjective

lotteries. Be as it may, the planner is a seller of this object.

Definition 2.8. A treatment lottery is a lottery L for which ofj € {T,NT},
05 ; € R™ for each prospect j. This means that if j is drawn,®! the holder of lottery L
is assigned treatment status of ; and has to pay a monetary sum 05 ;- The treatment

intensity of a treatment lottery L is defined as

T(L) = / dp¥
{j:01,;=T}

Actions as selection intensities: the BDM class
Three assumptions on individual preferences are imposed.
Assumption MM Fix an outcome profile o and a positive number m. Then

([o;1]) = v ({{[o;1]),([(0,—m);1])}) where ~; is the choice correspondence of in-

51Suppose for a moment that a fair device runs the treatment lottery, that is the lottery has j
drawn with probability ij announced by the planner and believed by all agents (this is going to be
the validity constraint of the sampling procedure imposed in the next section).
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dividual i and (o, —m) be the outcome vector modified adding a new entry of m
monetary expense.’?

All agents prefer the treatment status, but will not pay an infinite amount of
money to get treated.

Assumption PT For all 7 it holds ([T;1]) = ~; (([T’;1]), ([NT;1])). There exists
u € R such that ([(NT,0);1]) =~ {{([(T, —w);1]),{[((NT,0);1])}) for all 7.

Assumption AAM Suppose there are o', 0" such that <[0/; 1]> € (< [0/; 1]> , <[o//; 1] >)
Consider a lottery £ for which there is a prospect j with ofj =0, and let £ be the
modified lottery with o = 0% for i # j and of; = o”. Then £ € » (L, L£). If
<[0/; 1]) = (<[0/; 1]), <[0N; 1])) and p; > 0,% then £ = ~; (£, L').

MM is a standard money monotonically assumption, agents prefer more money
than less. PT states that all agents prefer the treatment status over the no treatment
status.’® AAM is a standard Anscombe and Aumann monotonicity saying that
when we change some prospects of a lottery by putting better outcome we get
an improvement in preferences. This assumption becomes critical once we allow
outcomes to be other lotteries and, a fortiori, when as in treatment lotteries outcomes
are pairs of monetary outflows and set of subjective lotteries. The discussion after the
implementation result clarifies why this assumption is critical and how its failure will
lead to loss in possible stimuli. AAM is however not necessary to have the following

object well definite

Definition 2.9. For each individual i the reservation price v’ € [0,u] = U is given
by
u' = sup {u: ([(T,—u); 1)) € v ({[(T, —u); 1)), ((NT,0); 1]))} (2.16)

u>0

Definition 2.9 should be interpreted strictly: the reservation price is the maximum

amount of money that individual ¢ is willing (or able) to pay in order to change its

environment from “non treated for sure” to “treated for sure”.?®

520r subtracting it to existing monetary entries in the outcome vector.

53Tn case we have a lottery with a density, the condition should be replaced with if there is a set
J of positive measure containing strictly better outcomes, then we have strict domination.

54(Clearly it would be without loss of generality to say that there exists u such that ([(T,u);1]) =
v ({([(Tyw); 1)), {[(NT,0);1])}). uw =0 is just convenient.

55 A theory gives statistical content to this empirical object by specifying the determinants of this
reservation price and how they correlate with other determinants of success of the treatment. This,
absent a utilitarian -value of treatment- interpretation of the reservation price may be particularly

tricky (all examples in this paper use an utilitarian motivation).
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The coercive stimuli we study are identified with set of treatment lotteries the

planner quotes and from which each citizen can choose its most preferred.

Definition 2.10. A Randomized Control Trial mechanism with intensity « (RCT-x)

has the government offer the singleton set of treatment lotteries

AR () = {([T3 2], [NT; 1 - a])}

Agents responding to an RCT will have no option but to take the unique lottery
inside the RCT: they can only choose to be treated with probability . At the opposite
end we have an assignment mechanism that was already informally introduced in the

vaccination example.

Definition 2.11. A Conditionally Deterministic (CD) mechanism with reser-
vation u (CD-u) has the government offer the doubleton set of degenerate treatment

lotteries

Acp (u) = {([(T, —u); 1) s ([(NT,0); 1)) }

The term conditionally deterministic contrast with the following class, in which
even conditional on their reservation price agents end up in a stochastic treatment
assignment. This class is known as the class of Becker-DeGroot-Marschack mecha-

nisms."%

Definition 2.12. Let g : U — [0,1] be a weakly increasing function. A Becker-
DeGroot-Marschack mechanism with selection intensity g (BDM—g) is the set

56 BDM mechanisms were initially introduced to elicit the certainty equivalent of a monetary
lottery. The agent held a lottery and he was asked to quote a price at which to “sell” it. Then a
price was drawn from a distribution with full support over some interval that contained the prize
state, and if the price drawn exceeded the one quoted by the agent, the lottery was sold and the
agent earned the price quoted, on the contrary the agent kept the lottery without receiving any

further monetary income. Use of BDM as a treatment assignment mechanism is proposed in CPS.
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of treatment lotteries Af DM — {555 M

defined as

where for each u the lottery ,Cff Mg

uelU

L8 — ([(T,0): 9 (0)], {[(T, =) 5dg ()]} egoy - (NT,0)31 = g (w)])

Prospects are constructed by pairing treatment with a monetary outflow of " for
any © < u, and pairing no treatment with no monetary expense for all v/ > u. A
price ¢’ is then drawn according to g (seen as a CDF) and the associated treatment
assignment and transfer is imposed.

The BDM mechanism is a non-competitive auction structure, as agents do not bid
one another, but they place a bid against a fair randomization machine. Dominance of
truthful revelation, that is to choose lottery £PPM in ADPM follows (see the proof of
Proposition 2.3), from an argument that is similar to a second price auction in which
we replace the source of strategic uncertainty with uncertainty on the fair draw from
the lottery. However, the discussion after Proposition 2.3 discusses a branch of the
literature on BDM mechanisms that highlights why one still needs to be careful in
using the domination argument that imply BDM implementation in this environment.

It is immediate to notice that the RCT and CD assignment mechanisms, defined
respectively in Definition 2.10 and 2.11 are just special cases of BDM mechanism: an
RCT with intensity = has g (u) = 2 for all u € U, while a CD with reservation price
q is a BDM with ¢ (u) = 1,>,. Both RCT and CD mechanisms belong to the class of

linear BDMs, that are those characterized by a selection intensity

Gig (1) = [iu+ gl

where [2]7 = max {min {z,a},5}.>" For i = 0 we have the RCT with intensity
q, while setting ¢; (u) = —%, as ¢ — oo the pair (i, ¢; (u)) approximates the CD with
intensity u. In what follows we will denote the linear BDM (0o, u) to be such limit.
In this sense RCT and CD correspond to limit points (i = 0 and i = oo) of linear
BDMs, formalizing the idea that BDM move smoothly between purely coercive and

purely voluntary assignment mechanisms.

5TBasically the outer function [[ac]]i only guarantees that g (u) is always a probability (bounded in
[0,1]); one can actually use any transformation function ® : R — [0, 1], increasing and apply it to
i+ q.
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BDM implementation in superpopulation and potential failures

Given a stimulus in the form of a treatment lottery set, planner is interested in

individual response in the form of the lottery chosen by each individual.

Definition 2.13. Fix a lottery domain A and a characteristic u : X — U that is
minimally sufficient for treatment. The policy correspondence L* (A) : U =2 A is
given by®®

LeLl”(A)(u) < L€, (A

A selection intensity g : U — [0, 1] is implementable (fully implementable) in
an individual market scheme if there exists a set of lotteries A, such that, for
each u € U, there exists a lottery (for every lottery) L € L* (A,) (u) such that

Where 7 (L) is the treatment intensity as in Definition 2.8. Notice that in principle
the two sets U, U are different; the former is the set of reservation prices, while the
latter is the sample space of a statistic that is minimally sufficient for treatment. The

following proposition gives a version of the BDM result applied to this framework.

Proposition 2.3. Under assumptions MM, PT, AAM, a selection intensity g is
(fully) implementable if and only if g is (strictly) increasing, g € I (U,[0,1]). In

particular AfDM implements g.

From now on we will identify a stimulus with a weakly increasing selection in-
tensity (and U with U) and keep implicit the treatment lottery construction. The
following Remark is a version of Proposition 7 in CPS, which formalizes that U = U

for price-incentivized assignment mechanisms.

Remark 2.1. Under assumptions M M, PT, AAM, if the set of stimuli coincides with
BDM mechanisms, then the reservation price u of Definition 2.9 is minimally sufficient

for treatment.

58By 7, it is meant the choice correspondence of any individual with minimal sufficient statistic
equal to u. The object is well definite by (minimal) sufficiency for treatment; under another
characteristic s, s would simply not be definite.
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It is worth exploring potential failures of BDM implementation, as the objective
is to characterize robustly individuals’ response to a wide class of different selection
policies by means of a low dimensional minimal sufficient characteristic. The approach
seems promising as assumptions MM, PT, AAM are rather weak. However AAM
becomes critical once we allow outcomes to be lotteries themselves, or even set of
subjective lotteries as it implies a sort of indifference in the reduction of composite
lotteries. The experimental literature (Grether and Plott (1979), Lichtenstein and
Slovic (1971)) testing the functioning of the BDM mechanism documented the so
called “preference reversal” phenomenon of having a monetary lottery X being pre-
ferred to a monetary lottery Y while price required to sell X was lower than the
price required to sell Y. Karni and Safra (1987) show that, interpreting the BDM as
a two stage monetary lottery, the preference reversal phenomenon can be explained
by a failure of the independence axiom in the lottery reduction. For our purpose it
is not important that the BDM does not elicit the true certainty equivalent of the
treatment lottery, indeed the reservation price can be taken as an “empirical object”
that determines response to the different treatment lotteries.’® What will instead
make Proposition 2.3 and Remark 2.1 fail is the fact that if such reduction does not
hold, “results are not independent of the range of the announced prices”: responses
change as we change the interval from which the respondent has to choose. This would
imply that the same individual, faced with BDM lotteries with different intensities
could behave as if he had different reservation prices as defined in 2.9, so that each
agent would be characterized by an higher dimensional type characterizing behavior
conditional on all the possible policies inside the BDM intensities.® The fact that
empirical work suggested a failure of BDM implementation even in the simple case
where the lottery faced by agents was objective and monetary is somehow discouraging

on the robustness of assumptions that lead to Proposition 2.3.

2.4.4 Super-population Propensity score (SP-PS) and Selec-

tion Regimes

The following object is popular in the literature of estimation of treatment effect

59Tf that was the case, the only further complication would come in the speculation model when
conjecturing about the determinants of this characteristic.

69Tt would however by definition remain sufficient for all selection intensities in the conditionally
deterministic regime.
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Definition 2.14. Given w € Q and g € I (U, [0, 1]) the super-population propen-
sity score (SP-PS) is given by

r(gw) = Ey [g ()] = / g (u) dwy ()

Let {Uy ()}

ze[0.1] be the upper contour sets of the function g, that is

Uy (@) = fu e U: g(u) > 2}

notice that g > ¢ implies U, () C Uy (z) for all 2. Also, let g~* : [0,1] = U be such
that
U, @) = [ (@), 7 217

with the convention that ¢! (z) = uw if z > g ().
I compute the SP-PS for familiar selection intensities

Example 2.3. SP-PS of RCTs is independent on the reduced form model, indeed

7 (90,05 w) = /U zdwy (u) = =

CD mechanism instead have

i) = [ ety (@) = ()

The following lemma will be useful in the next section.

Lemma 2.1. For all action and social state pairs {g,w} € A x Q, it holds

T(g9,w) = /0 wy (U, (x)) dz (2.18)

where on the RHS we have a Riemann integral.
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I then introduce classes of selection intensities (regimes) that are ranked accord-
ing to an intensity index (higher intensity selections have each type participate to
treatment with higher probability), and rich enough to have for each nondegenerate

model a map from SP-PS to elements of the class which induce them. Formally,

Definition 2.15. A regime is a family of selection intensities G C I (U, [0, 1]) such
that
i) G = (9q)yeq, Where the index set Qg is a compact subset of R such that

q>q = 94> gy

where g > ¢’ means g (u) > ¢’ (u) for all u and there exists a set of positive (Lebesgue)
measure where inequality is strict.
i1) For all models w such that wy has full support U, the mapping ?§L :[0,1] = G
given implicitly by
7 (Tge (1) ,w) = (2.19)

is well definite.
That is, for each model and SP-PS we can find a selection intensity inside the
regime (hence, an index ¢ € Qg) that obtains the desired SP-PS (joint with the

model). We are already familiar with some regimes

Example 2.4. The set of RCTs constitute a regime under Qg = [0, 1] and T ¢, (x) =
x, independent of w. CD intensities also constitute a regime under index set Qg = U
(endowed with the reverse euclidean order to satisfy i)) and the function 7o, is
defined implicitly by
Wy ([?Ebw (z).,u]) ==
The class of linear BDMs with fixed slope and nondegenerate transformation ®

also constitute a regime with ?wl) defined implicitly by

/ @ (iu+7,, () dwy (u) ==
U

Regimes are important as there is a sense in which selection inside a regime
has a similar shape (from total coercion for an RCTs to total discretion in a CD),
what changes is only the intensity represented by the index, an higher intensity
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making everyone more likely to choose treatment. Regimes as classes of assignment
mechanisms will be used in the following discussion and in the discussion of the

outcome models.

2.4.5 The Informational Content of an Assignment Mecha-
nism

The key insight in CPS is that assignment mechanisms are source of information.

As the final dataset contains stacked vector of individual messages, observing treat-

ment relevant covariates will not just provide information on the marginal wy but on

the whole correlation with potential outcomes and messages.

Definition 2.16. The identification domain of g, denoted U, C B(U) is the

coarsest o—algebra under which ¢ is measurable.

It is immediate to notice that U, = o ({Ug (m)}x€[0,1]>’ and that U, = B(U) if

and only if ¢ is strictly increasing in its domain.

Example 2.5. We have U(g, = {0, U}, RCTs are not informative. For CD it holds®
Uwoy = 0 ({0,U, [0,u] , [u,@]}). In general a linear nondegenerate BDM has

oo ({[ L] 2 ([F B5410) - (R )

The identification domain is an important object as it gives the information which

is obtained in a selection mechanism that requires agents to report a message and
assigns the treatment probabilities based on such messages, as the following Lemma

formalizes.

Lemma 2.2. If the selection intensity is implemented through a mechanism and the
set of messages sent by individuals enters the information set of the planner jointly

with outcome messages s,y, then after running the assignment mechanism with a

S1For A, B, ... a sequence of sets, let o (4, B,...) the c—algebra generated by that sequence.
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continuum of agents the distribution of random vector E«"" [u, y,s‘Ug} is estimated

with precision.5?

The argument is as follows: by the revelation principle it is without loss of general-
ity to focus on direct mechanisms, where agents report their reservation price and are
assigned the lottery £,,. With a continuum of agents the empirical distribution of
reported types will estimate the reduced form with infinite precision. If U, = B (U)
then we observe the distribution of [u,E“RF [y,s|uH which contains the outcome
model.

For any assignment function g € I(U,[0,1]) and € > 0 there exists a strictly
increasing function g such that ||g — g||., < €. So we can estimate the whole outcome
model® in one period by remaining arbitrarily close in norm to a “desired” selection
intensity and therefore, by continuity of current payoff, suffering an arbitrarily small
utility loss. The Markov kernels are not continuous in the selection intensity under
the observational assumptions that messages sent in the assignment mechanisms are
observed ex-post. Take as an example an interior RCT-z and a linear BDM with
slope € and intensity x: by Example 2.5 we have Uy, = B(U) for € > 0 and
small, while Uy, = {0,U}. Informational discontinuities of this kind make the
exploration-exploitation trade off disappear and reduce the dynamic problem to a
sequence of static ones, with the exception of the first period in which optimal static
policy has to be perturbed to obtain outcome model revelation.®* In a simpler form,
this insight was present even in the vaccination example: since all positive prices
identify the model, as N = oo period decisions were statically optimal whenever
q* () > 0; if ¢* (1) = 0 no solution existed as the “optimal” price is to set ¢ = € > 0 as
small as possible.® Finiteness of the population solve the estimation discontinuities
as those in the vaccination example but not the identification discontinuities: the
BDM-e is “discontinuously more informative” than an RCT, as the former produces
a dataset of the type {ul}f\il and the latter (). We don’t like information discontinuity

in selection mechanisms, as they make the information acquisition problem trivial.

62This is not completely accurate as we would need to guarantee that g > 0 otherwise on the
atom of the partition associated to g = 0 no one wold be treated and we could not observe potential
outcomes and messages.

63We cannot estimate the whole reduced form model as some correlation between s and y is
missing. However recall that for static optimality only the outcome model is necessary.

64The solution to the dynamic problem would prescribe to play in the first period a small
perturbation of the static optimal mechanism, and from the second period onward the objectively
optimal mechanism under the revealed state.

65Tn general, information discontinuities create similar existence failures.
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In next paragraph discuss possible remedies. The sampling procedure we discuss in
Section 2.5 can implement both implicit and explicit BDMs; Proposition 2.5-7) will
prove that under observation of the empirical propensity score, implicit mechanism
preserve continuity of the Markov kernels in the selection intensities. For those rea-
sons, implicit implementation is discussed first and will be the focus of the remainder

of this chapter.

Implicit BDMs

The fact that an increasing function is implementable by a (direct) mechanism
does not imply that such mechanism is actually used or that messages sent inside
this mechanisms are saved by the sampling procedure and transmitted to the planner

who can process it as information about the reservation prices.

Definition 2.17. A treatment choice set C,, is a pair of treatment lotteries

Cu = {{(T, —u) ;1) , ([(NT’,0); 1]) }

An implicit BDM mechanism with intensity ¢ is a single lottery with

outcomes treatment choice sets, given by

ILy = ([Co; g (0)],[Cui dg ()] ,erro » [Ci 1 = g (W)])

Example 2.6. In implicit form, a CD mechanisms is (after removing zero probability
prospects)
ILep, = ([Cus1])

while an RCT is

ILgct, = ([Co; SC] ) [Cﬁ+e; 1 - 56’]>

Without any signal being sent the implicit mechanism assigns each citizen a choice

set drawn from ZL,. The citizen then chooses between the treatment lotteries in

the drawn choice set and the planner gets to observe only the realized fraction of
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| IMPLICIT BDM-g

|

EXPLICIT BDM-g

|

Do not send any message

Choose L, € AfD M by revealing the type

Choice set C, is drawn from g

Mechanism draws a prospect from L,

Citizen chooses ((T', —u);1) or (NT,0);1)

Citizen gets the outcomes from the prospect

Treatment status is revealed

Treatment status is revealed (but irrelevant)

Table 2.1: Implicit vs Explicit mechanisms (in super-population)

agents that end up treated. Difference between implicit and explicit mechanisms are
presented in Table 2.1. Under mild assumptions® it holds ZL, ~* L, ,, indeed the
latter is the lottery that obtains substituting the lottery that gets chosen by type u at
each choice set offered in the implicit mechanism.%” Implicit and explicit mechanism
induce therefore the same stochastic map from population to sample (see Section 2.5,
the sampling procedure takes only sampling intensity and not the implicit-explicit
type of mechanism). The difference is however important once we consider that the
reported type through which explicit mechanism assign the lottery can be used as
messages to make inference: if the assignment mechanism is implicit only the mean
7 (g,w) is identified which, contrary to the explicit homolog, does not characterize

wy 68

Alternative failures of information discontinuity

Quasilinear mechanisms with imperfect signal Agents choose a lottery that
place them into treatment with probability ¢g () and pay (upfront) transfer ¢ (u) =
fou uw'dgu’. The market records the sale for a g (u) lottery with an error € so that the
planner receives a message m = g (u) + € for € ~ (0,v) with v known positive but
small. By reducing the slope of the BDM the planner is effectively increasing the
importance of the noise (e is distributed independently of the g function). Suppose
that the distribution of reservation prices is N (i, 1), € also normal and focus on

linear BDMs with g (u) = ¢ 4+ au. With infinite samples the slope of the mechanism

66Basically we require there to be an indifference on flexibility, but this is immaterial as there is
no real time passing from choice of a lottery and realization of its outcome.

67As ([(T, —u);1]) € v (Cur) <= v <wu, then IL} (u) = Ly q.

68 An implicit mechanism gives a a garbled signal of the associated explicit one, indeed the
true treatment status conditional on the reservation price is just obtained through a further

randomization.
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is irrelevant (provided it is positive) and accurate estimation of the nonparametric

distribution is always possible.%? As

N
: 1 2
Lik (s, p) o¢ ————ex si—(qg+a
(s, 1) @ 5o P ;:1 (si = (¢ + ap))

the statistical (Fisher) information™ contained in a single sample point is

2

1) = B | 3inLik (5, 0] -

2a
(a* +v)

Therefore for any fixed v > 0 as a — 0 each observation becomes uninformative as
the noise is overwhelming, approaching continuously the uninformative limit a = 0.
This construction gives the most clean mathematical representation of information
continuity, however the assumptions behind it are somehow ad-hoc: first of all the
revelation principle is abandoned by having the message be a noisy observation of
the selection probability ¢ (u) rather than of w; if agents were to report u and then
assigned g (u), changing the slope of the latter would have no effects on information

quality. Secondly, there is no clear economic interpretation for the recording error e.

Partitional BDMs Prices may be restricted to lie in a discrete grid, i.e. g has
to be a step function.™

From a estimation perspective, it is interesting the case in which we can choose a
partition a; = 0 < ay < -+ < ay = u that categorizes our observations (that is for
each citizen we can tell ex post what atom of the partition he belongs to). In case
we have wy belong to a parametric family, such partition will give a set of moment

conditions
{Fy[air, ail i,

that we can exploit for estimation.™

Partitional BDMs may be relevant for the present application as under the sam-

pling procedure used to implement the intensity function in a finite population, agents

69As € has known distribution, if we had an infinite sample, then we would be able to recover the
distribution of u as difference of random variables with known distribution.

"OWhich is relevant as by the Cramer-Rao inequality its inverse bounds from below the variance
of an unbiased estimation of u

"I'There is a natural sense in which prices are discrete, and moreover we can imagine some costs
of increasing the number of treatment lotteries quoted on the market.

"2A natural way to proceed it to exploit the known formulas for the asymptotic variance of the
GMM estimator to make an approximate (this approximation is actually non-trivial as we need to
make all posterior beliefs “closed” to those that would obtain under likelihood updating) optimal
choice of the partition.
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end up to be treated with probabilities ¢ (%) k € [N]: basically we partition the g
1

function vertically with steps of size

Parametric models If we had parametric uncertainty, namely our reduced form
model took the form dwy (u) = dwy (0, u) for € © finite dimensional (for example,
take the vaccination case in which ~, the parameter of the demand function with
known functional form), then the identification requirement is much less demanding.
Consider indeed a CD mechanism with reservation price u which under the nonpara-
metric version had no identification power; if Fy (u) # Fp (u) V0,0 € O, then 6 is
identified. We would however have discontinuity moving away from intensities in the
RCT regime.

We do not expand further on those arguments, but we do stress again that the
selection properties of a sampling intensity are not necessarily related to its estimation
part, and in particular that guaranteeing truthful revelation does not necessarily imply
that planner gets to known the reservation price. We can now study how the selection
intensity is implemented in the finite population and offer an implementing procedure

that is flexible enough to have both implicit and explicit mechanisms.

2.5 Population Implementation of the selection scheme

So far, we only discussed the superpopulation properties of selection mechanisms.
At each period of time, a random draw of N individuals from the superpopulation
distribution consititutes the population, the set of citizen responding to the current
period stimulus and determining outcome (next section) and information collected.

A population P € P is an ordered collection of N individuals, each characterized
by a vector of reduced form characteristics (u,y, s). An individual inside a population
will be called citizen. The population realizes as a sequence of N independent random
draws from the super-population, so that a reduced form model induces a distribution
over possible realized populations as sequences of types that is w® € A ((QRF )N>
is the product measure w ® --- ® w. Inside a population, citizens are identified with
a label i € [N], (u,y,s);, denoting the reduced form type associated to citizen i in
population P. After being drawn individuals must be divided in treatment and no

treatment groups.

Definition 2.18. An N—sampling procedure is a map Xy : [ (U,[0,1]) x P —

A ({0, 1}N>; it takes a pair of population and assignment intensity and returns a
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joint probability distribution over sampling outcomes, 1 denoting treatment, 0 no
treatment.
The procedure is e—valid if for all w € U g € I (U,[0,1]), ¢ € [N] and P € P

with u;, = u, it satisfies™
[marg: X (9, P)] — g (u)| < e (2.20)

O0—validity will be referred to as validity.

The (e—) validity condition is a minimal consistency assumption that requires the
sampling procedure to respect what the selection intensity prescribes. It is immediate
to notice that a valid sampling procedure is permutation invariant. The simplest valid

procedure is the so called Bernoulli trial.

Example 2.7. (Bernoulli trial) Independently across citizens, the sampling pro-

cedure draws treatment status from a Ber (g (u)) random variable. Formally, for any
P, g and any cylinder A =[] A4;, A; € P ({0,1}) it holds

N

XN (g, P) (A) = Hg (uip>11eA¢ (1 —q (uip))l(’“i

=1

For this example not to mislead, notice that in general it is not required that Xy
is a product measure: selection result can be correlated across agents, provided it is
done in a type-independent manner. After the procedure is implemented, a sample
realizes. The name is suggestive of the fact that inference about the outcome type is

possible only using the set of individual that get treated.

Definition 2.19. The sample ¢ is the subset of the population which ends up
receiving treatment status 1. The empirical propensity score ¢ = % | is the
ratio of the (stochastic) cardinality of the sample and the cardinality of the population
(fixed at N).

"3Notice that marg; [Sy (g, P)] is a measure over {0, 1}, therefore with an abuse of notation I let
marg; [Sn (g, P)] = (marg; [Sn (g, P)]) (1), the probability it assigns to being treated.
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Conditional on the population P the sample is a random variable with realization a
random subset of P and whose distribution depends on the selection intensity g and on
the sampling procedure ¥ . For each v € {0, 1}N let v P be the subset of P taking only
citizens associated to indices which have value 1 in v, that is vP = {(u, v, s)iP }{i:vl:l}.
Conditional on P, ¢ can only take the form ¢ = vP, and

Psy (s|P,g) = n (g, P) (v) for ¢ =vP

Uncertainty on the realized sample integrates the population conditional likelihood
derived above over likelihood of populations implied by the reduced form model. It
is therefore a random variable with realization random subsets of N —dimensional

random draws from the reduced form model.

Py, (s|w,g) = /PIP’ZN (s|P,g) dw™ (P) (2.21)

Notice that Py, w4 (S) = Psywg (¢) for every ¢’ permutation of ¢ (this is due
to permutation invariance of ¥y and product measure for population). Given the
sample, the properties of the empirical propensity score are obtained by applying the
cardinality operator on the random variable.

Now let’s reconsider the Bernoulli trial defined in Example 2.7. That procedure
has clearly the flavor of a direct mechanism: each citizen in the population is re-
quired to send a message u € U, and the sampling procedure independently assigns
treatment status (and eventual monetary transfers) using a fair randomization device
to implement the chosen selection intensity function (that is, draw treatment and
payments pairs according to £,,). Despite being valid, this procedure has a major
drawback, as it induces too much uncertainty on the empirical propensity score, hence
on the realized size of the treatment group. To visualize this, take the example of an
RCT x where z = % for some integer number M < N. Suppose we use a Bernoulli
trial; it is immediate to see that the resulting sample size is distributed according to

Bin (x, N). This result holds more in general
Remark 2.2. Under a Bernoulli trial, < (g,w) ~ Bin (7 (g,w), N).

However, the planner can easily conceive of an alternative valid procedure to
implement an RCT which results in zero variance (of <): pick a random subset of

cardinality M of citizens and allocate them to treatment.” Notice the procedure

" Completely randomized experiment, in the language of Imbens and Rubin (2015).
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remains valid: each citizen gets indeed treated with probability x as the likelihood
he is drawn in the random subset of M elements is exactly % What we break is
independence across each one’s actual treatment, which is not a requirement in our
definition of validity. Kasy (2013) makes the point that, to minimize the variance of
the treatment effect estimator, experimenters should not randomize over the sample
size conditional on the covariates: in this framework this means that, rather than
drawing the sample size from a distribution with a given mean by running Bernoulli
trials one should choose a sample size then randomize on the citizen inside the fixed
size (in an independent way so to maintain validity). Implementation of this principle
is immediate for RCT regimes. However it is less obvious how one can reduce
sample variability of the empirical propensity score in a generic stochastic assignment
mechanism as the BDM, while preserving validity.

We propose the following sampling procedure, a graphical description of which is
offered in Figure . From now on, ¥ will denote this sampling procedure, expectations
and probabilities being defined for this example.

Sampling procedure

o At the same time he is drawn in the population, the citizen is also assigned a
label k, that defines the point % on the domain [0, 1] he is assigned to. Each
label k € [N] is assigned to one and only one citizen: the mechanism guarantees

that the empirical distribution of labels is uniform.”™

o Citizen is offered treatment at price g~* (%), where ¢! : [0,1] — U is defined in

(2.17). In the figure, g~! is the black function separating red and green regions.

o He compares this offered price with his reservation price (represented on the
vertical line): if it is below, treatment is accepted and the price g—* (%) paid
(red horizontal dotted line); else, he selects no treatment. Treatment status for
each citizen is a function of both its reservation price and the random label he
is assigned to

1 if g(u) >

z[

2 (u k) = (2.22)

0 else

o Iftreated, citizen ends up with health status he carried from the super-population,
and sends the signals (a set that he also carried from the super-population) that

planner action induce.

" A simple way to do it is to assign each citizen their order in the drawing phase.
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Figure 2.3: Population implementation of an implicit BDM

The sampling procedure implements the implicit BDM (see Table 2.1) in a corre-
lated way across citizens. The Bernoulli trial associated to independent implementa-
tion of the BDM would have each citizen assigned randomly a label, disregarding
the constraint on the empirical distribution. The explicit BDM would have the
citizen report immediately his reservation price, then be assigned a label and have
the mechanism make message-consistent choice between paying for treatment and
staying untreated. Similarly, it can be implemented in a correlated or independent
way across citizens. The following Proposition establishes some immediate properties

of the proposed sampling procedure.

Proposition 2.4. i) If g(u) € {0,1}, Py, {7, (v, k) =g (u)} = 1; the sampling
procedure has no impact on conditionally deterministic selection intensities
i1) The sampling procedure is %—valid.
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Using this sampling procedure induced a (bounded) reduction in validity as compared
to the Bernoulli trial. Basically we see that the likelihoods have discrete jumps of
size % (and so do prices in the partitional BDM that results). Why should we
accept %—validity if we have a simple 0—valid assignment mechanism as the Bernoulli
trial? The following proposition clarifies the nice properties of this implementation

mechanism in terms of the distribution it induces over the empirical propensity score

S (g,w).

Proposition 2.5. It holds

i) The distribution of < (g,w) is continuous in g,w

i) |ExyS (9,w) — 7 (g,w)| < % for all N,w,g. Hence< (g,w) 2 7 (g,w) .

iti) If Im(g) C [a,b] C [0,1], then Py, ({S(g,w) € [la] . [b]y]}) = 1 for any
w € ), where MN = MaX;ec(0}u[N] : % <zx.

iv) For an RCT gos, < (90.2,w) ~ 0z), for all w.

v) Under a conditionally deterministic regime it holds S (Goous w) ~ Bin (T (goou, W)

Point ) is the fundamental information continuity if only outcome was observable.
Point ii) is an important implication of the sampling procedure and it is going to
be relevant in case there are “budget constraints”, namely the amount of treatment
units that can be provided each period is limited to a number M < N. In this case
by having ¢ (u) < % one can guarantee that in no case the sample size (number
of treatments provided) exceeds M. Intuitively, the procedure tries to remain as
concentrated as possible around the targeted empirical propensity score (the SP-
PS), but it has to satisfy individual validity constraint. Clearly, there is nothing to
do under a conditionally deterministic regime to reduce sampling variability while
keeping validity as each citizen will request a degenerate lottery.

The two figures below display how the sampling procedure determines the distri-
bution of the empirical propensity score.

In Figure 2.4 we firstly have the planner choose an increasing selection intensity
(top panel). This function is then inverted (second panel, with y scale on the right).
The true reduced form model then, through its marginal wy induces a decreasing
self-map on [0, 1] giving the values {wy ([¢7! () ,])},ep0.1)» tepresented on the second
panel with left y scale for three different models. The bottom panel takes the true

model to determine the parameters of the parameters of the Poisson-Binomial EPS
k
as [{w Uy (5)) bee |
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Figure 2.5 instead plots in the top panel the distribution of empirical propensity
scores for different selection intensities and models calculated so to induce the same
SP-PS. Notice that, by Remark 2.2, a Bernoulli trial would have all those EPS be a
Binomial (SP — PSS, N). The top panel illustrates points ¢) —iii) —iv) of Proposition
2.5: the RCT induces a degenerate distribution for the EPS, while the CD conforms
with the Binomial. Looking at the BDMs with different slope we see that as it gets
steeper (approaching the RCT), the distribution becomes more concentrated around
the SP-PS, while it is more dispersed when the empirical selection intensity is closer
to a CD. This is exactly the crucial information continuity property ). The bottom
panel displays EPS distribution for a given selection intensity, but letting the models
(and hence the SP-PS, I took truncated exponential distributions with different ~y

parameters) vary.
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Figure 2.4: Top panel: selection intensity. Second panel: inverse selection intensity
(right scale), wy (U, (z)) for different models (left scale). Bottom panel: parameters
of the Poisson-Binomial.
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4 EMPIRICAL SELECTION INTENSITY DISTRIBUTION OF EMPIRICAL PROPENSITY SCORE
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Figure 2.5: Distribution of EPS. Top panel: Different pairs of models and selection
intensities having the same SP-PS. Bottom panel: Same selection intensities and
different models.
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2.6 Outcome model

The treatment assignment mechanism splits the population in the treatment group
(sample) and a no treatment group. Citizens in the latter get a non-stochastic
outcome, assumed to be 0. Citizens in the sample end up in an health status
corresponding to their potential outcome. The speculation structure specifies de-
terminants of this reduced form type (potential outcome, see Example 2.2) which
drives the correlation between the incentivizable characteristic and the (ex-post)
observables. This Section presents the outcome model, which defines the control
properties of a selection mechanism and finally allows us to setup the problem of
monetary incentivation into treatment as a MAB problem of the type presented in
Section 2. Before doing that, we discuss how standard objects in the literature of
estimation of treatment effect (average treatment effect, unconfoundedness ...) are
defined in the setting presented in this Chapter. We define a novel object, the regime
distortion function which tilts the RCT (identity) map from the propensity score into
the average outcome conditional on treatment and use it to characterize unconfounded
regime and model pairs. As for the control properties of selection mechanisms, we
establish in Section 2.6.3 that CD mechanisms are control optimal under linear social
preferences. In Proposition 2.5 we established that valid implementation of CD
mechanisms induces the largest variance of the EPS among BDM mechanisms (an
undesirable property per Kasy (2013)). Those two results provide therefore a novel
experimentation-exploitation tradeoff channel which is peculiar to the application

studied in this chapter.
2.6.1 Swuccess Rate and Regime Distortion

Definition 2.20. Take a reduced form model w as given.”® The average outcome

conditional on treatment (ATO) is given by

o, = Ey [y]

Given a reduced form characteristic s, the conditional average treatment

outcome (CATO) is a function o, : S — [0, 1] given by

o, (s) =E, [y|s = s

We call s the trivial characteristic if S is a singleton.

6ATO, CATO are functions from Q7 to [0,1].
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Standard in the literature is the name average treatment effect, we keep it different
to stress the assumption that no treatment is a non-stochastic region. However the
definitions coincide as Y (0,4) = 0 for all .77 Tt is convenient to use the decomposition
(2.14) to write

o= [ ot ues (@slan) = [ ou(s)ws (a9

When evaluation the success rate of a given selection intensity however, one cannot
simply look at ATO-CATO, because of selection effects.

Definition 2.21. Given w € Q and g € I (U, [0, 1]) the super-population success
rate (SP-SR) is given by

amw:mmwﬂzé%wmemm (2.23)

The superpopulation success rate the fundamental object for our analysis as it
drives control optimality. It is only a function of the outcome model w® € A (Y x U)
but, as we will discuss shortly, equivalent characterizations in terms of unconfounded
characteristics may simplify the conjecturing exercise taking into account the fact
that U is a potentially large interval and we would need to estimate CATOs at all
its points (see Proposition 2.8). Each reduced form model w induces a map from
stimuli to SP-PR that are exactly the correlated stochastic returns of policies in the
multiarmed bandit interpretation of policymaking.

Selection effects are described by the distortion function, which measures the
excess success rate of a particular selection intensity compared to the coercive regime
achieving the same SP-PS. Inside a regime the distortion is a function of the intensi-

ties.

Definition 2.22. For a pair of model and selection intensities, the distortion ¢ :
Qx I(U,[0,1]) — R is given by

o(wg)  Jyow(w)g(u)dwy (u)
PO = o) T o fy g (@) den (@)

"70r, in case each no treated gets outcome 1 with probability o7, then ATE = o,, — on.
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where 7 is the super-population propensity score. Given a regime G, the regime

distortion function ¢g : Q — RI>! associates to each model a function™

¢g (w) 1 [0,1] — R

Jo Tg N ) o, (u) dwy (u)

O,T

¢g (w) (z) = ¢ (w, 7g,, (7)) =

where 75| (2) € G, defined in (2.19) is the selection intensity belonging to regime
G that under model w would induce a SP-PS equal to z.™
Now let Gror be the regime of RCTs defined in Example 2.4 and notice that

¢gRCT (w) (33) fU TQRCT, ((J'U);yaw (u> dWU (U) = fU 29w (()—U)l'dwU <u> =1

the regime distortion function is degenerate at 1. Also, notice that for any regime
it must hold

lim ¢g (w) (x) =1

rx—1
Now fix a regime G and a model w and let for ¢ € Qg, 0g. (¢) = 0 (w,g,). By
definition it holds

0G.w (q) = OwTgw (Q) PG w (Tg,w (Q))

we can differentiate this function with respect to the intensity of the mechanism.

Dropping subscripts we obtain

o' (q) =07 (q) [¢ (7 (@) + 7 (q) ¢' (7 (q))] (2.24)

which gives the response in average outcome as we increase the intensity of the
regime. Equation (2.24) gives an expression for the marginal change in the success

rate due to increasing the intensity of selection®® while remaining inside the same

"The regime distortion function answer the following question: what is the extra success rate
under model w if a fraction = enters treatment as a response to a stimulus belonging to the regime
compared to success rate under the same model w if instead the fraction x was randomly taken from
the super-population and assigned treatment.

Notice indeed T (w, Tgi (x)) = x by definition.

80Recall that ¢ > ¢ = g, > g so everyone is more likely to be treated under an higher
intensity selection.
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regime. Same regimes are associated to similar estimation properties, therefore we
can see incentive provision as the choice of a regime (for estimation purposes) and
an associated intensity. The following example calculates a non-trivial distortion

function.

Example 2.8. All agents know and it is true that if the get treated they survive
with probability is e,3! where e is the effort chosen e € [0,1]. k € [0,1] is an effort
disutility drawn from an unknown distribution characterizing the reduced form model.

Conditional on being treated, agent of type k solves

1
) 2
celo.] {e 2k€]

Which gives policy e* (k) = k and value V (k) = k that is also the reservation
price. The ATO is

Jw:/ole*(k;)dw(k):/olkdw(k‘)

Planner uses the conditionally deterministic regime: intensities g , are enforced
by quoting price ¢ € Qg = [0, 1] (recall for CDs the inverse order on the index set is
used). Only types k > ¢ will select into treatment. Now we calculate the distortion
of the CD regimes under the uniform model, that is assuming k ~ U [0, 1] so that

1

0, = 3. To induce a fraction z to get into treatment the planner must charge a

price® 7, () that solves
Prlk > ?glw ()] =1- ?gji} () =2

that is, ?5}0 () =1 — x. Now, the fraction of healthy citizens in the incentivized

mechanism if x get treated is

o (w5l (2) = S5 pe (k) dwge
= [L kdk
— 1002 = b

From the decomposition og, (¥) = ¢g. (x) o, it follows

81 As usual, to have outcome a deterministic function of type we add a “reservation effort”
characteristic € ~ U [0, 1], independent of k.

82Formally, ?;u (x) is a function from U to [0, 1] with ?gi (z) (u) = 1,<g for some threshold .
I identify the function with the threshold.
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$guw(r)=2—2

which is decreasing and always above 1: whatever the treated proportion is,
realizing it through an incentivized regime proves more efficient than through co-
ercion. This is intuitive, as we select firstly those agents that are willing also to put

more effort. Consider the decomposition (2.24) and notice in this example o = %,
T(@)=1—zand ¢ (z)=2—2x

1 1
Ul(q): 5(_1) 2_(1—ZC)+ 1 ‘1—=x :_5
> @ $(7(q)) ¢'(r(@)  7(q)

g
Again recall we have an inverse order, so this means that increasing intensity
marginally (decreasing price marginally) increases the success rate of %dq. Notice
that

The population outcome model

The empirical counterpart of the ATO is the number of citizens in the sample that

have potential outcome equal to 1.

Definition 2.23. Given a sample ¢, the empirical success rate (ESR) is y. =
{iesiy=1}

The following proposition characterizes the joint behavior of EPS and ESR

Proposition 2.6. It holds |Ex, [7(g,w)] — o (g,w)| < % for all N,w,g. Moreover,

under the sampling procedure proposed in Section 2.5,

VR (S ) T<9’w>> (V;w Oovf-;z))
Ty olgw) )\ - Vo

Jor finite V|

7w’

VY, and Covld = o4, [1 — 7 (g,w)].
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S . . .

So ) are given in the proof. Notice that EPS and
Ygw

ERS are positively correlated because good outcome can result only from treatment:

Finite-N properties of <

larger sample mechanically predicts higher ERS. It would be different if we had §

ESR
EPS”

random variable would be more difficult to study, and beyond the scope of this

the average treatment on the treated, that is The joint properties of those
paper.®® In the proof it is given the finite sample joint distribution of those objects,
which therefore gives the signal likelihoods in case no further (pre and post sample)
characteristics were observed. In particular, notice that if the assignment mechanism
is implicit (reservation price type does not enter planner’s dataset), then results form
the outcome phase provide additional information on the marginal wy that is not

contained in observation of the EPS.

2.6.2 Unconfoundedness

Unconfoundedness is a fundamental assumption in the literature of estimation of
treatment effect. Suppose a sample {Y, W, X'} is available, with ¥ an outcome, W
the treatment status and X a set of (observable) covariates. Unconfoundedness is a

statistical assumption on the available dataset
WLY|X

That is, outcome is uninformative of selection choice given all the observable
covariates. In the setting of this chapter, unconfoundedness is a joint property of
the reduced form model and the selection mechanism (state and action in the MAB

problem). We now give the super-population counterpart of this assumption®!

Definition 2.24. A model and selection intensity pair w,g are jointly uncon-

founded under s, written {g,w} € v, if it holds®

g(u) L¥|s

83 An intuitive property is that the two should not correlate in g,w are unconfounded under the
trivial characteristic.

84Notice that, the actual treatment realization is a random variable 7 parametrized by g (u) only
so that ?J_“’ENy‘s <~ g (u) J_“y‘s.

85This is the standard (conditional) statistical independence of two random variables defined on
the same probability space.
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A set of models T C Q and intensities G C I (U, [0, 1]) are unconfounded under s
if
Vge G,we T, {g,w} € vs

A set of models T C Q (a set of intensities G) is globally unconfounded under s
if it is unconfounded with I (U, [0,1]) (with ©) under s.

Unconfoundedness is a joint property of a reduced form model, a selection intensity
and a characteristic. By definition, 2, I (U, [0, 1]) are globally unconfounded under u.

The following Proposition characterizes properties of unconfounded pairs.

Proposition 2.7. i) Ifw, g € v, then
Crr = / 7(5) 0 (5) ws (ds) (2.95)
S

where g (s) = [, g (u) wUls (du|s).

i) A model w is globally unconfounded under s if and only if ul“y|s, that is

o, (u,s): U xS —[0,1] is o (s) —measurable.
iii) A selection intensity g is globally unconfounded under s if and only if for

QFF are constant on s~! =

each s € S, either y or g(u) as functions from X to
{r e X:s(x)=s}.
i) If {G,w} € vs and s is the trivial characteristic, then ¢ = 1 where ¢ is the

regime distortion function in Definition 2.22.

Point ¢) implies that under unconfoundedness we can write an alternative outcome
model (2.25) in the characteristic that is unconfounded. For static optimality we
would need to know the CATO a,, (s),%¢ the marginal distribution of the characteristic
wg, and the induced selection map g (s). In the original success rate expression
(2.23) we only had the CATO—u and the marginal wy, as the induced selection
intensity corresponded with the stimulus by minimal sufficiency of u. In the modified
outcome model instead we must take into account that characteristic s is not directly
incentivizable and that stimulus response for different values of the characteristic are

determined by the correlation with the incentivizable statistic. Unconfoundedness

86Notice that the original outcome model needed the CATOs of the statistic sufficient for treatment
o, U —[0,1].
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under observable covariates will make the estimates CATOs useful to inform about the
success rate of alternative policies that discriminate incentivation across the covariate.
If the covariate is observable only ex-post (effort in Example 2.9 below), information
on the success rate of alternative policies is mediated by the induced selection function.
What is relevant for the information acquisition decision of the planner is that if the
belief is reasonably concentrated on set of models that satisfy unconfoundedness over
a simple message,®” it may be worth taking costly monitoring actions that induce
disclosure of that message learn about the success rate of alternative policies.
Notice that if y is always nondegenerate conditional on s then condition i) for

a selection intensity to be globally unconfounded is equivalent to require®®

u! (Uy) € ox (s)

where
u ' (U) =0 ({3? tu(z) € A}AEUg)

and Uy is the identification domain defined in 2.16. It then follows immediately that if
U, = {0,U}, then g is globally unconfounded under any characteristic s. This would
hold as an if and only if statement if s is the trivial characteristic.3? Using this and

Example 2.5 we get

Corollary 2.1. The RCT regime is globally unconfounded under any characteristic.
If y is non-degenerate, then only the RCT regime is globally unconfounded under the

trivial characteristic.

Finally we can use point iv) to rewrite the (2.24) for pairs unconfounded under

the trivial characteristic as

o'(q) = o' (@) [o(7(q) +7(q) ¢ (7 ()]
o' (q) [1 +7(q) - 0]
= ot (q)

Intensity impacts on the success rate only through its impact on the SP-PS,

sample composition being irrelevant. As factorization (2.15) implies condition i),

87In a static setup, unconfoundedness has no directly testable implications. However it becomes
testable in this environment as we allow to observe dataset generate by the same reduced form model
under different incentive schemes.

88As u=! (U,) C ox (s) implies that ¢ (u) is a function of s.

89Hence oy (s) = {0, X}
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the vaccination example has models in the support T of planner’s belief be globally

unconfounded.?® Hence,

and
lim o, (¢) = 0, (0) + / teye Ydg = p,
Ry

q—o0

which is consistent with p,, being the ATO.

In case G is the regime of RCTs, it further holds 7' () = 1 and we get 0, 4,, = 0.

I conclude this subsection with an example (continuation of Example (2.2)) that
clarifies that inside a decision model of treatment selection the unconfoundedness
assumption under the trivial characteristics is essentially imposing impossibility of
agent to affect outcome through post-treatment actions and that he does not have

pre-selection private information.

Example 2.9. After being treated, citizens can choose effort e € {0, 1}. They receive
good outcome if and only if they get treated and the effort exerted exceeds the
random reservation effort € which is distributed with CDF F. Thus y = y (€, e*) =
ls<er. Choice characteristics are ¢ = [rg, 71, u1, k]. The speculation structure has
characteristic set X = R®, with = = [€, ¢|. Agents are expected utility maximizer and

the treatment-conditional problem reads

U — - kle:
eg%ﬁi} (c,e) = (ro +rie)u 1

(Hidden action) Define the random variables [u,e*] : X — R? with u =
V (x) the value of treatment (that is minimally sufficient for treatment under price
incentivized assignment mechanisms) and e* = e* (x) the associated policy.

Consider the set of structural models T C §2 characterized by
weT = w=wg Xwc (2.26)

and

supp (wg) = {a,b}, witha<0<1<b (2.27)

99Notice however that the regime fails condition i7i) and therefore would not be unconfounded
under alternative models that correlate reservation price with outcome type.
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that is, the outcome type is independent of decision types and is such that outcome
does not depend on the hidden action.®! It is immediate to check that Y is totally
unconfounded under the trivial characteristic.

Now consider an alternative set of models Y’, where only (2.26) holds. We have

i) Y' is not totally unconfounded under the trivial characteristic; indeed the
reservation value u will be correlated with the effort spent e* conditional on treatment,
and this drives the correlation even if the outcome type is distributed independently
of all determinants of choice. However,

i1) Y’ is totally unconfounded under s = e*: after conditioning for the effort spent,
outcome is uninformative about the response to monetary stimuli in the treatment
selection phase. Indeed, for each w € T', p* (u, s) = F% (s) for s € {0,1}.

(Hidden information) The independence property (2.26) would fail in case
individuals have private information about their reservation effort. Suppose agents
observe a signal s = €+ ve, where € is a standard normal random variable and v € R
is a measure of information accuracy. If we add the assumption that beliefs r = [rg, 7]
are derived from common prior, we are essentially imposing a correlation structure
between € and r. Let p¥ € A (E) be the common prior and {p‘g eA (E) }SES be the
set of posteriors obtained after observing signal s € S, P; being the respective CDFs.
Now, suppr = {[P¥ (0), P¥ (1)]},cg and the conditional density f (- [e) : E — R}""""
is given by

PP 0 2] = o (22 (2.28)
Under no information (v = 0o) we are in a special case of (2.26);?2 under perfect
information (v = 0) we have conditional belief is the vector [lz<g, 1e<1] € {0,1}°. If
this is the case, agents know their health status conditional on each effort choice, and
it follows that whenever they are willing to pay positive price they will have successful
outcome, hence o (g,w) = 7 (g,w). Under intermediate information structures, (2.28)
determines the correlation between beliefs and outcome types. Those beliefs impact
both the reservation value and the treatment-conditional effort, and would therefore

make unconfoundedness under e* fail.

91y (e,e*) = 1g—p. This formulation can be seen as a structural justification of the vaccination

example.
928pecial case, as the CPA implies that the support of the belief characteristics is a singleton.
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2.6.3 The sequential treatment assignment problem
We now have all the elements to setup the problem of repeated price incentivation
into social programs as a MAB problem described in Section 2. This is the aim of

the remainder of this Section.
Control

At each period a set of outcome results as a function of planner’s incentive scheme
and the population drawn from the reduced form state and allocated to treatment

and no treatment by a valid sampling procedure. This set of outcomes includes

o Number of treatments given, and the associated cost ¢* - NS, where NS is the

sample size.

o The enforcement revenue, resulting from different types paying for their treat-
ment. It depends on the reservation price of citizens and the label associated
to them.

« An empirical distribution over material outcomes A" (Y'), Y € {NT,0,1}. It
is given by a three dimensional vector with integer entries that sum to N. In
case yyr = 0 we identify it with a single point, number of agents in good health

status.

Planner ranks those outcomes according to a separable utility function v : R? — R
given by
v(ILy) = v (y) + Xl

where v describes rankings over health outcomes, and II are net profits for selling
the treatment. To this utility is should be subtracted the direct experimentation cost
from further monitoring actions that are taken. As in this subsection I am interested
in static optimality, I disregard this last component as it will never be statically
optimal to pay positive monitoring costs. Each realized sample gives information
relevant for health outcome, but not for revenues (as it does not say the realized offer
price in the BDM mechanism). However, separability and linearity in revenues allow

to write

w(g:0) = [0 @) Py (O +x [ fty0) = dor (0) (220

U
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where the measure Py, (4., was defined in (2.21), and

ty) = [ wdgw)

the integral on the RHS being a Stieltjies integral with respect to the increasing
function g. Static optimality (disregarding information acquisition) is defined in the

standard way

Definition 2.25. The static policy correspondence G : Q" = [ (U, [0,1]) is
given by
G (w) = argmaxu (g,w)

The following result characterizes optimality of the regime of conditionally deter-
ministic selection intensities (see Example 2.4) under linear preferences in health

outcomes.

Proposition 2.8. If v is a linear function v (y) = ky, then G(w) N CD # 0 for
all w, where CD 1is the regime of conditionally deterministic assignment mechanisms.
In particular the optimal price is either in {0,u}, or is a U satisfying the condition

(suppose wy admits density f*)

[kow (u) = x (u" —w)] f* (@) = x (1 = F* (u)) (2.30)

The result is a consequence of the problem with linear utility being a linear program
with convex constraint set, so optima are extremum points of the constraint set. CD
mechanisms (step functions) are extreme points in the space of increasing functions
from U to the unit interval. Expression (2.30) makes clear that, in principle we
need to know the whole outcome model, as the static policy depends on the density
and outcome conditional on treatment for all possible reservation prices. Notice
one can obtain the optimality condition for the vaccination example from (2.30),
letting o, (u) = w and substituting the exponential density. In case x = 0, then we
would have uw = 0: if planner cares only about the outcome then of course he will

post reservation price null, having everyone enter the treatment. The case y — oo
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has instead the usual profit maximization condition f (u) = (lgfu(f)) condition for a

monopolist who knows the market demand.

If v is linear, then so is u and certainty equivalence holds by having for each belief
pe A (QFF), G (n) = G (w,) where

W, = / wdp (w)
QRF

static optimality implies choosing the CD mechanism that maximizes utility of
the average reduced form model.

Proposition 2.8 has pretty strong hypothesis. Firstly, linearity of v is a restrictive
assumption (especially in cases the outcome space is more than two-dimensional).
A popular utility function that fails linearity is the so-called voting criterion: the
decision maker cares about re-election which occurs if and only if a percentage = of the
population is satisfied (receives good outcome). In that case v (y) = 1y>,. Consider
the case in which v (7) depends on both E (7) and V (). Under the proposed sampling
scheme, RCT is implemented by making sure of the fraction that gets treated, while
CD need to keep sampling stochasticity to preserve validity. Suppose the reduced
form model has p(u) = o, and consider an RCT-z and the associated CD with
reservation u, : 1 — F(u,) = x (same fraction x is treated expectation). Then
Urer—o ~ Bin (o,2N), while and in the second case Jop_,,, ~ Bin (o [1 — F (uy)], N)

so that
1

V (rer—s) = N (1-0)x

1 1 ]
N—Nax ox

The latter being greater, and planner needs to take into account the increased

V (epu,) =01 = F (u)][1 = 0 [1 = F (ug)]

sampling uncertainty induced by the CD mechanism. If x is small enough increased
risk may overcome the revenue losses associate to a coercive mechanism.

Another concern with the hypothesis in Proposition 2.8 is that we disregard budget
constraints in the form of a maximal quantity of treatment units available per period.
CD mechanism give positive probability to any sample size, which would force the
planner to default on its promise to provide treatment to anyone willing to accept
the outcome of the BDM lottery. If budget constraint have to hold with probability
one, then by point #ii) of Proposition 2.5 the planner has to use a selection intensity

bounded above by %, where M is the maximal units of treatment available.
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Dataset

Beyond material outcomes, at the end of each period planner receives a set of
signals (observations) from each citizen. The aggregate dataset is a function of the

selected action and the realized population and sample.
Dt (-Pt7 Sty at) - {dz; (Pt> 7d3; (95)} (231)

Set of signals contain messages sent by all citizens during the treatment phase and
those sent during the outcome phase by those who end up in the sample ¢;. Notice
the sample contains signals that would be sent under all possible actions, and the
particular monitoring effort determines those that are actually observed. In particular

examples, daTt

(P;) would contain the reservation price if assignment is conducted
through an explicit mechanism and nothing if it is implicit.”® d¥ () contains by
assumption the resulting health outcome and it may contain the additional covari-
ates that are chosen to be observed; a; essentially determines the portion of signal
characteristics of citizens in the sample that are (chosen to be) observed. Treatment
status is implicitly observed as the sequence of health outcomes on the sample reveals
the sample size. Now, let S, the space of datasets that can realize after a is chosen. It
includes U" if a prescribes an explicit assignment mechanism, and apart from that it
includes the space of random length samples of the messages that action a discloses.
As an example, if only health outcomes are observed and the mechanism is implicit,
then S, = [TN, {0,1}". If ¢’ also monitors effort, then S, = [[Y, ({0,1} x E)", if
a” has the assignment mechanism explicit then S,» = UN x [TN, ({0,1} x E)". and
SO on.
Now fix a and pick s € S,. Let
St (s)={Ps:D(Ps,a) = s}

a

to write the likelihood function

L (s|w,a) = /s—l( )wN (dP) Py, (ds|P, ga) (2.32)

Those likelihoods then induced the state-action measures over the signal space
S = (JS,. Thole likelihoods then determine the Bayes posterior and the Markov

kernel maps that determine the property of a planner’s action as a social experiment.

93By Remark, 2.1 which is a restatement of Proposition 7 in CPS, the assignment mechanism can
elicit at most (i.e., if explicit) the determinants of selection choice, namely the reservation price.
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The dynamic problem

We now have all the ingredients to set up the sequential incentive design problem.
The action set A C I(U,[0,1]) x {0,1}° contains pairs of selection intensities and
monitoring decisions (each 1 in the vector corresponds to monitoring a certain dimen-
sion). Planner chooses a stochastic process of selection intensities and monitoring
pairs adapted to the filtration generated by information shocks that determine at
each period the realized signal draw (2.32) from the distribution parametrized by

ag,w. The problem is

G B 3 ) = (o)

where ¢, is the selection intensity prescribed by action a, u(g,,w) is given in
expression (2.29), ¢ (a) are the monitoring costs associated to a that do not depend
on the state, p € A () is the prior over reduced form models that results from a
conjecturing exercise mediated by a speculation structure, and v the measure over
information shocks.

Using the recursive representation derived in Section 2 we can characterize, for
I the DeGroot information function relative to the dynamic Bayes risk, the optimal

assignment-monitoring action taken at belief state

() earg  max  u(ge )+ L (a) - c(a) (2.33)
acI(U,[0,1])x{0,1}

Both direct costs ¢ (a) and indirect costs from deviating from the static optimal
incentive g* € G (1) are traded off for increased information I, (a). Information comes
by discretely changing the monitoring decisions to expand the post-treatment dataset,

but also from changing the regime and intensity of the assignment mechanism.

2.7 Extensions And Conclusions

2.7.1 Non-coercive stimuli: Persuasion and awareness cam-
paigns
We have focused our attention on monetary incentivation: each agent had to
choose a treatment lottery from a set exogenously given to them. There are alternative
ways in which a planner can alter individual selection choice.
Non-coercive stimuli have the planner take some actions that alter the individ-
ual evaluation of the treatment environment, thus influencing their selection choice

without limiting their choice set. Two examples that may be relevant are persuasion
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and awareness campaigns. The former has the planner send a public message based
on which agents update their beliefs about the subjective treatment environment
(see subsection ). Agents will respond differently based on their prior evaluation,
preferences over outcomes and parameters that describe how much they trust plan-
ner’s suggestion. A structural model will need to specify their super-population
distribution. Given stationarity the problem is essentially a sequence of static multiple
receiver Bayesian persuasion games with possibly heterogenous prior beliefs?* and
heterogeneous subjective updating rules. An awareness campaign provides instead
agents with some technology to learn their outcome type; examples are free blood
pressure tests that inform agents of their likelihood to suffer of hearth problems,
orientation tests may reveal individual skills in the pursue of higher education. Agents
are not persuaded through cheap talk, but provided with a technology that may help
them discovering their outcome relevant type. Banerjee et al. (2007) and Weiss and
Tschirhart (1994) have economic applications of information campaigns.®®

Two concerns arise on whether persuasive incentive scheme can reasonably re-
spect the assumptions made in Section 2.4. Firstly, stationarity is critical whenever
individual beliefs are involved as they are not allowed to evolve over time. Here it
is even more critical once we recognize that stationarity shuts down any reputation
channel that is possibly relevant in a repeated persuasion game: the assumption is
that an individual response to announcement would not change depending on the
path of (verifiable) previous announcements. Awareness campaigns are more immune
to this type of criticism. A second concern is that when agents take post-selection
outcome relevant actions, campaigns that alter their perception of the environment
they operate in may induce a different effort choice. As long as those choice alter the
final outcome this class of stimuli will fail policy invariance that assumed individual
outcome to be independent of the stimulus conditional on treatment choice. Reduced
form model would need also outcome to depend on stimulus provided, or to study
environments in which individual actions do not affect the likelihood of success (see

the first part of Example 2.9).
Observable covariates

It is also reasonable to assume that some characteristics of the population are

observed before choosing a stimulus. Observable characteristics partition the pop-

94The classic reference for Bayesian persuasion problems is Kamenica and Gentzkow (2011).
Relevant extensions are, among others, Wang (2013) for multiple receivers and Alonso and Camara
(2014) for heterogenous beliefs.

95 Awareness campaigns are not prevention campaigns of the type studied in Kremer and Snyder
Kremer and Snyder (2015): the latter are indeed conceptually closer to a stimulus inside this
framework.
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ulation into atoms of undistinguishable individuals. The reduced form model must
be enlarged to describe the correlation between atoms: each atom will have its own
reservation price - potential outcome - ex post observables joint distribution, and those
distributions will be correlated across atoms. The latter correlation is a determinant
of the external validity of experiments conducted on different atoms. The reduced
form model answers now all external validity concerns (see later) by specifying model
correlation across social groups. Clearly this comes at the cost of complicating the
initial period conjecturing exercise.

Observable characteristics are essentially of two types, conceptually different:

e Demographics. Gender, race, family background.

e Social groups. The population may be naturally divided into groups. Student

classes, workplaces, villages.

If for some (regulatory) reason incentivization cannot depend on observables, then
we can proceed as in the previous sections but modify the dataset expression (2.31)
enlarging d,, (P;) to include this covariate at no cost and irrespectively of a;. With
impossibility to condition incentivation, the distinction between ex-ante and ex-post
observation is immaterial.”® It may be relevant for estimation, however, as reduced
form models may imply a correlation between such observables and characteristics
that are outcome relevant.

More interesting is the case in which incentivization can be made contingent
on observables. If this is the case, the incentivation scheme needs to prescribe
a citizen-specific stimulus assignment subject to measurability with respect to the
observable partition.”” Ex-ante observables create a natural segmentation (see Berge-
mann et al. (2015)) in the market for treatment lotteries that can be exploited
by the planner. This segmentation is important as it allows the planner to focus
incentivization on classes that are more responsive or have higher reservation price.
Different social groups are natural candidates to be experimentation units: we can
provide an incentive scheme to evaluate its impact on a wider scale, or give different

schemes to different villages (say, one RCT the other CD) and having the differential

96Still those characteristics would be different from a message sent during the outcome phase as
they would enter the planner’s information set irrespectively of the selection choice, this is why
da, (P;) and not d,, (s) is modified.

97Clearly, with no observable the measurability condition reduces to everyone being subject to the
same stimulus.
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response in the two villages inform about the determinants of selection-outcome cross
correlation. Experiments on social groups need to address the issue of external
validity.”® Banerjee et al. (2016) address external validity issues in a decision theoretic

approach.

2.7.2 Conclusions

This paper studied dynamic decision problems with information acquisition in
stationary environments. Section 2 derives for each sequential decision problem an
associated measure of uncertainty in the sense of DeGroot (1962) that is decision rele-
vant as that the determination of the optimal policy trades-off the implied information
function one for one with expected utility at each belief state.

The econometric approach to estimation of treatment effect (Heckman (2008),
Heckman and Vytlacil (2007)) is conceptually close to a (static) information acqui-
sition problem. Stage 1 of the procedure specifies the decision problem D which
incorporates the payoff relevant parameters, while the space of experiments S cor-
responds to the estimation procedures defined by functional form restrictions and
statistical assumption on unobservables that the econometrician uses to make causal
inference from an exogenously given dataset. Essentially, Blackwell signals are eco-
nomic theories that discipline the estimation procedure and signal realizations are
the estimates of parameter resulting from this procedure.” Chassang et al. (2012)
point to the fact that institutional settings determine the set of experiments that
can validly identify policy relevant parameters creates a potential to use incentive
schemes as instruments for identification. If the incentive problem is repeated for
several periods, each populated by random draws from an invariant distribution of
individuals, policymaking becomes exploration in a bandit problem with correlated
arms, where the returns are the superpopulation success rates (Definition 2.21) and
the source of correlation is the reduced form model. Infinite repetition of the incentiva-
tion problem should be interpreted as a modeling simplification accepted by a planner
that faces a “new” policy problem (P3 in Heckman and Vytlacil (2007), disease in the
vaccination example) and recognizes that the accuracy with which he can estimate

policy relevant parameters depend on the shape of the incentive scheme and the other

98 P2 in Heckman and Vytlacil (2007): forecasting the impacts of interventions implemented in
one environment in other environments.

99Tn this case there is not really a “cost” associated to each experiment if one does not take into
account the complexity of the research effort required to the econometrician. The “best” signal is
chosen, which adds a subjective component on the signal structure.
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covariates that are ex-post observed, possibly as a result of a monitoring effort. The
results from Section 2 provide the planner with an endogenous metric through which
he can evaluate the informativeness of a selection intensity-monitoring effort pair in

the same units of the direct and indirect costs associated to them.
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Appendix

2.8 Proofs of Chapter 2

Proof of Proposition 2.3
For an increasing function g, the set APPM is well definite. I prove that it
implements g. A lottery L € AfDM takes the form

where z € {T, NT} and y, € {0,—u}. By Definition 2.9 and money monotonicity
MM, type u prefers ([T, —u];1) to ([NT,0];1) if and only if v’ < u. Then we
can apply iteratively assumptions AAM (in its proper extension for distributions) to

conclude
L* (Mg, U) (u) = {Lyw : g (u') = g (u)}

from which it follows £, ,, € L* (A,, U) (u) the latter set being a singleton for us for
which ¢’ (u) # 0.1 By construction 7 (Ly,) = ¢ (0) + [, dg (v') = g (u), completing
the proof of the if direction.

The only if part is proved by contrapositive assuming quasilinear preferences:
individual of reservation price u ranks treatment probabilities and transfers according

to V (u,p,t) = pu — t.1°* The IC constraint now takes the familiar form

u € argmax g (u')u — ¢ (u)
u' el

for all u. Assuming u; > uy and g (u;) < g (uz) make the incentive compatibility

constrains of uy, uy yield the contradiction ¢ (uy) < t(ug) <t (uq).

1008y different from, it is included the case in which the object is not definite.
1017t ig clear that all assumptions are satisfied under this specification.
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Proof of Proposition 2.1

Firstly I need to show that the Riemann integral on the RHS is well definite. Fix
g € 1(U,[0,1]) and w € Q. Uy (z) is the pre-image through the function g (u) of the
set [z, 1] € B([0,1]). Measurability of that function guarantees that for all € [0, 1],
U, (z) € B(U), so that w (U, (x)) is well defined self-map on [0,1]. As g is weakly

increasing, (U, (z)) is a weakly decreasing (in the inclusion order) sequence of

z€[0,1]
sets, then wy (U, (7)) is a bounded monotonic (decreasing) function on a compact

set, hence it is Riemann integrable and the RHS of (2.18) is well definite.

Then we can write

rlo) = [gon @)= [ (g e dr= [ oo 0, @) s

The first and last equality just apply definitions given in the paper, while the

second is the defining property of a Lebesgue integral.
Proof of Proposition 2.4

Take g a generic assignment function. For all u € U

Poy [y (k) =1] = By [1[g(u>z ]]
_ 1 [{helN: E < glw) (234)
= Lg (U)JN

where in the second line || is the cardinality function and in the third line

z|=

J
= =< 2.35
ol = my W <@ (235)

Now i) follows from |z|, = z for z € {0,1}.'2 As for i), individualistic
assignment is obvious as, conditional on individual reservation type wu, the sampling
procedure depends only on type independent label assignment. The validity condition
follows by plugging the expression (2.34) into (2.20) and noting ‘ MN — x‘ < & for
all x.
Proof of Proposition 2.5

i) The procedure has each label being assigned randomly and independently to

a citizen, while different labels have different type-conditional treatment assignment.

102Tp particular, for any z € {%}jE{O}U[N]'
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So to each label a reservation price type is assigned which is an independent draw of

u. By independence across labels it holds

Euy S0 = & DB (0, h)
¥ e B {1 [g<u>zfv]]
= ¥ LB [1[1129-1(1’3)]}

— S, ()

where g~! and U, (z) used in the second and last inequality were defined in Defini-

(2.36)

tion 2.14. As each realization , the expectation completely describes the distribution

S(g,w) ~uy ZBer (wU ( ( ;))) (2.37)

Which is a Poisson-Binomial random variable with parameters [{wU (U, (£))} kel N]] .

and we have

Point 7) then follows from

() = (29) = [{w (o () }kem] K [{“’ (o () }kem]

and the Poisson-Binomial density being continuous in its parameters.

ii) Recall that, by Lemma 2.1 7 (¢9,w) = [ wy (U, () dz and that wy (U, (z)) is a
monotone decreasing function of x. Now we observe that (2.36) is just the Riemann
approximation of the (Lebesgue) integral defining 7 (g, w), evaluating the function at
the endpoints of the equipartitions. Since the function is monotonically decreasing

we have Ey, [T (g, w)] < 7(g,w), and

r@w%wkﬂﬂmmhs%cw(@(%))—Md%u»)g%

which proves the first part of i7). The second part follows by the strong law of
large numbers applied to a sequence of independent (but non identically distributed)
random variables with uniformly bounded variance.

Under the assumptions of 4i7) it holds

k U Vk<Nlaly
% () -
0 Vk>N|[b]y
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So that, the first N |a], parameters of the Poisson-Binomial are wy (U) = 1

irrespectively of w, and similarly the last N — N |b|,, are 0 irrespectively of w. Hence,

g.w) ~ & (S Ber (1) 4+ Xy, Ber (0)+ X0, L Ber (wu (U (£))))
~ -+ 4 (S Ber (o (U, (5)))

From which iii) follows.

iv) is a special case of iii) when a = b = x.

Finally, notice that under a conditionally deterministic regime the post-draw type
is irrelevant, that is for all k£ € [N]

Usow (%) = Usoru (1) = [u,T]

independent of k. Then (2.37) implies that S (g, w) is the sum of independent Bernoulli
random variables with parameter wy ([u, u]) and v) follows from 7 (geo u, w) = Wi ([u, 1))

by Example 2.3.
Proof of Proposition 2.7

i) It holds

Ogw = [ 0w (w) g (u) wy (du)
= [, <f50w s,u)wS|U dSW))Q(U)WU(d“)
=, (fs 0w (8) Woly (ds\u)) g (u) wy (du)
= fU><S Oy (S) g (U) Wuxs (dua dS)
= Lo ) (I )y (au]) ) s a9

Which is our desideratum. Unconfoundedness assumption was used in the third
equality to have p“ (s,u) = o, (s) (see point i) below). Other equalities just apply
definitions and Fubini’s theorem.

i1) The if direction is immediate. Conversely, suppose u /J_“y‘s. To show failure of

total unconfoundedness consider a strictly increasing selection intensity ¢, and notice

w(ueAyeB|o(s) Zw(ue Alo(s)) -w(y € Blo(s)) =
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w(g(u) €g(A),y € Blo(s)) #w (g(u) € g(A)]o(s)) w (y € Blo (s))

the first line holds by contrapositive hypothesis for some A € B (U), B € B ({0,1}),
then it is used g : U — [0, 1] being invertible (as g is strictly increasing) to equate
both sides of the first inequality and obtain the second inequality. As g (A) € B ([0, 1])
it follows g (u) A“yls.

iii) The if direction is trivial as any random variable is independent of a degenerate
random variable. Conversely, suppose there is s € S and {xi}le € s~ ! such that
g1 # g2 and y3 # y4.1% Notice that z; and x; may coincide with z3 and x4 (but

clearly x; # x5). Consider a model w € Q such that supp (w) Ns~! = {z;};_, and

w(z;) #w(xj) Vi#j € [4]. As -

1yi:yj Wi

w (vilgs:8) = 5=

ic(4) Lgi=g,Wi

It is a simple exercise to check that g (u) /J_‘“y|s =s.
iv) As s is the trivial characteristic, o, (s) = o, and w, s (du|s) = wy (du). Now

we use i) to write

_ Js 70 (@) () 0w () ws (ds) _ fyy 7g, () (u) owwy (du)

oL 0L

Cbg,w (SE)

where in the last equality we used

by definition.
Proof of Lemma 2.6

Following the same steps as in the proof of Proposition 2.5 we have

Esy [7(w,9)] = ¥ et Eo 7y (u, k) - ]
i VIt
FE B (1)) B Gl 207 (B)
5 e (U (8) B (vl > 7' (£))

103Where g;,y; are shorthand to write g (u (2;)) ,y (x;) respectively.
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So that

7 (w,g) ~ PoissBin

o (0 (5) = (oo (5))

Now define the function o, : [0,1] — [0, 1] by

0gw (2) = {lwu (U (2))] - Eo (yJu 2 g7" (2)) }

So that
E [ygw} = % chvzl Ug»w (%)

Using the same argument as in Lemma 2.1 we can the write

1
Tgw :/ 040 (z)dx
0

and the result follows from from the same approximating arguments as in Propo-
sition 2.5 ii).

By independence across labels,

vort) =3 (0 (§)) = (. (5))

o= (§) o (4)

So that

Var (60) = VI, = / wir (U, (2)) [1 — wy (U, ()] da

Var (7,.) = Vi = [ 00 ()1 = oy ()] ds
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that are both finite. Finally, using label independence once again we can write

Cov (fg,w@g,w) = % Zivd Covy, (’y\(%) ‘T (%))
LR G () B () E ¢ (4)
= % iV:l]Ew (/y\ % )

where the third line uses iy (%) =1 = 7, (%) = 1 as only those who are treated
can get good outcome. Now it is immediate to pass to the limit, use the result proved

above and Proposition 2.5 i) to conclude

Cov (fngyg,w) — Og,w [1 =T (97 w)]

And the asymptotic result follows from application of the Lyapunov CLT.!%

Proof of Proposition 2.8

If v is linear, expression (2.29) simplifies to

FEsy (9 (U (S)) + X Jyy [tg (w) — ¢"T dwr (u)

= ko (gw) + Xyl (0) — 0] dey (@) (2:38)

The proposition is proved for U with finite support. Extension is immediate due
to density of simple functions. With finite support of cardinality m, the outcome
model is a pair f,p € R™, the former giving the mass at each point in the support,
the latter the reservation price conditional likelihood of good health outcome. The
discrete-support version of equation (2.38) is

Z [kpi — xq*] figi — XZ fzz gjuj

=1 =1 1<t
——
tg(ui)

so that the discrete version of the maximization problem can be written as

m
maxg s
AT < YiGi
=1
where

vi = |(kpi — xq") fi + xwi Z fi

j>i

104 Actually, this is not immediate as the stochastic process changes as we change n.
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and M is the simplex over R™, namely
M={zeR":z2>0andz-1<1}

This is a linear program under convex constraint set, which has solution extremum
points. Extrema are vectors with entries 0,1 and (at most) a one. Those are exactly
the discrete counterpart of CD mechanism, that assign unit mass to a single point.

Now we know that the optimal solution to the problem

e ke f@a@an—x [ (o= ([uagw)) e

takes the simpler form

max [ Tho ()~ x (g )] )

u

First order condition reads
ko (@) = x(a" =) @ +x [ ()’ =0

which can be rearranged to obtain (2.30). This characterizes necessary conditions
for an interior optimum. Global optimum compares the value of the function at those

critical points with the boundary {0,u}, from which the result follows.
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Chapter 3

Screening for Susceptibility and

Influence

(With Franz Ostrizek)
3.1 Introduction

Complementarities are a key feature of many markets. Consumers choose software
and services like Dropbox and Facebook taking into account how many of their
acquaintances will use them as well and base their purchase decisions on the advice
of social media influencers in product categories ranging from makeup to consumer
electronics. Investors rely on other firms for inputs and services and in turn pro-

1 Not all agents are equally

vide them to other firms, creating complementarities.
dependent on inputs and content created by others or susceptible to peer pressure
and fashion. Similarly, not all agents are equally influential among their peers or
provide essential services to other firms. This heterogeneity creates incentives for the
firm selling a network good or a planner taxing an industry to discriminate based on
susceptibility and influence: Sell at high prices to consumers that are susceptible in
order to exploit their high willingness to pay due to complementarities and sell large
amounts cheaply to influential consumers in order to increase the willingness to pay
of the population.

Reliable information on these characteristics can be hard to come by. Out-
side of core social networking services like Facebook and Twitter, the susceptibility

and influence of individuals is rarely observable. Even in those applications, these

measures such as follower counts can be easily manipulated by buying followers or

1See Bryant (1983); Cooper and John (1988); Benhabib and Farmer (1994); Ball and Romer
(1990) and the following literature for the macro impact of investment and price setting complemen-
tarities.
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creating spurious links (following others only to get discounts). Hence, markets with
consumption externalities naturally create a screening problem with two dimensions
of heterogeneity as firms attempt to price based on susceptibility and influence of
their consumers.

In this paper, we build on a model in which complementarities are characterized
by a weighted average of agents’ consumption (from now on referred to as aggregate
consumption), where the weights are proportional to influence. We study how the
observability of susceptibility and influence affects the monopoly allocation. Clearly,
if both characteristics are observed by the monopolist, she can implement the efficient
contract and extract all rents. We show that this result holds as long as susceptibility
is observed.

We then turn to the screening problem where both characteristics are unobserved.
We exploit the special structure of the resulting two-dimensional screening problem
with externalities to arrive at a tractable solution. As in a standard screening
problem, incentive compatibility requires that the allocation is increasing in the
level of susceptibility to the network effect. For a given level of susceptibility, the
monopolist “tilts” the allocation to provide higher consumption to more influential
consumers in order to provide a larger network externality. The two dimensions
are treated differently, because the level of influence of a consumer doesn’t directly
enter his utility function. We show that the allocation increases in the lexicographic
order, where susceptibility is the dominant dimension. We can hence transform the
problem into a one-dimensional problem along this order. We solve it using standard
techniques, that need to be generalized to take into account that the network effect
creates interdependence among individuals’ virtual values.

The virtual value will typically be non-monotonic in the lexicographic order for
two reasons, both arising around the switching types (types with the highest level
of influence, that are consequently adjacent to a type with higher susceptibility in
the lexicographic order): First, only the consumption of these types directly causes
information rents and hence only their virtual value is downward distorted. Second,
the subsequent type in the lexicographic order has much lower influence. As influence
positively enters the virtual value, this downward jump in influence can create non-
monotonicity. So, given the additional concerns for non-monotonicity, the optimal
contract will typically entail ironing of the allocation, and every bunching region will
include at least one switching type.

One feature of the optimal contract with unobservable susceptibility and influence

is that individuals’ influence is not rewarded. Influential consumers receive the same
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susceptibility observable | susceptibility not observable
influence observable Section 3.3.1 Section 3.4
influence not observable Section 3.3.2 Section 3.5

Table 3.1: The four different observability assumptions.

level of utility as their less influential peers but consume more at lower unit price.
This parallels the result for observable susceptibility. The drivers of the results are,
however, different: In the latter case full surplus extraction left everyone without any
rent, while in the former case incentive compatibility prevents any rent to emerge
along a dimension (influence) that does not directly affect individuals’ utility.

We also study the problem with observable influence (but unobserved susceptibil-
ity). In this case, a condition on primitives ensures that the optimal contract exhibits
influence rents.? This shows that the economic gain of an influencer from his position
crucially depends on its verifiability.

Natural restrictions on the possible misreports by consumers map into the observ-
ability assumptions we analyze exhaustively: When consumers can only over-report
their types, the solution will be efficient, as if susceptibility were observable. When
consumers can only under-report their types we find a condition under which the
solution is the same as if only influence were observable.

This chapter proceeds as follows. We conclude this introductory section by dis-
cussing the relevant literature. Section 3.2 presents the model, which is conveniently
characterized by only two equations: a function mapping individual consumptions
into the aggregate consumption (first equation), which in turns affects the returns to
individuals’ consumption (second equation). We detail the application to non-linear
pricing of a network good, and also discuss other economic problems that naturally fit
into our framework once influence and susceptibility are appropriately redefined. The
remaining sections focus on characterizing the revenue maximizing contracts under
all four assumptions on observability of susceptibility and influence, as outlined in
Table 3.1. Depending on the application, the principals’ objective may depend on
the consumption aggregator beyond revenues. Solving for the optimal (marginal)
revenue associated to each aggregate consumption level (the focus of this paper) is

however instrumental in finding the optimal contract with the augmented objective

2In particular, the condition puts an upper bound on the affiliation between influence and
susceptibility.
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function.® Section 6 discusses how restrictions on the possible misreports (over- and
under-reporting) map into observability assumptions. Those results are important
because — again depending on the particular application — restrictions on misreport
emerge naturally as “technological constraints” ~Mapping those restrictions into
observability assumptions which deliver a simple solution significantly simplifies the
analysis of outcomes we expect would arise in those markets. Section 7 concludes.
Most of the proofs can be found in the Proof Appendix.

3.1.1 Literature

Our model relates to the classic literature on contracting with network effects
(Segal, 1999). Jadbabaie and Kakhbod (2016) compare bilateral and multilateral
contracting in this setting when there are finitely many consumers and consequently,
there is aggregate uncertainty about the realized distribution of types. This literature
focuses on the externality of contracting in a setting with finitely many agents, in
particular on the effect on the outside option of the agents. while we focus on a
continuum of consumers with public contracting in a setting where the outside option
of the agents is independent of the contract accepted by others. Sundararajan (2004);
Csorba (2008) study screening with externalities in consumption when consumers
have private information about their valuation of the good. We study screening on
susceptibility and influence to the externality.

Our main application relates to the classic literature on externalities in consump-
tion following the seminal Farrell and Saloner (1985) and Katz and Shapiro (1985). A
recent literature focuses on the use of network information by a monopolist, both in
the case of an explicit finite network (e.g. Bloch and Quérou, 2013; Candogan et al.,
2012) and when consumers only know their level of susceptibility and influence (Fain-
messer and Galeotti, 2016a,b). We adopt the demand and interaction specification
developed in the latter, but focus on the screening problem.

There is a growing literature on monopolist screening for these characteristics.
Zhang and Chen (2017) consider an explicit stochastic network formation model,
where the out-degree of agents is fixed and consider screening along the in-degree.
They consider two specifications, susceptibility is either a consumers in- or out-degree.
Depending on this choice, their model can generate both quantity discounts and
premia. Gramstad (2016) consider screening in a undirected network when network

effects only depend on the number of neighbors that adopted the good, not their

3 Actually, a characterization of marginal revenues is sufficient for most of the comparative statics
we may be interested in the extensions tied to the particular applications where the additional benefit
is non-zero.
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intensity of consumption. We analyze both dimensions of private information —
susceptibility and influence — at the same time and study their interaction in screening.
The paper closest to ours is Shi and Xing (2018). They study screening with the
same demand specification, but assume a continuum type space. As a result, the
optimal allocation is constant in influence and the solution is one-dimensional. They
focus on the implications for the value of network information, while we focus on the

dependence of the allocation and rents on influence.

3.2 Model and Relevant Applications

This section presents the basic equations of the model and discusses the relevant
applications. We construct a parsimonious model of two dimensional screening with
externalities where the primitives are i) the map from individual consumptions into
the aggregate (network) effect, which enters directly i), individual utilities and i)
the principal’s objective function. Heterogeneity along the influence dimension will
affect only 7), the impact of individual consumption in the creation of the externality,
while susceptibility will be a parameter of the utility function i), thus affecting the
individual’s sensitivity to the network effect. Although the main motivation of our
paper - as highlighted in the introductory section - is the study of optimal non-linear
pricing of a network good, we present three other economic problems that naturally fit
the parsimonious description offered by primitives ) and i) and to which our results
can therefore be applied: non-linear taxation of externality producing activities, a
price setting game among firms selling substitute goods, and subsidization of different
sectors whose demands are shifted by a common aggregate measure of quality (big
push development).

3.2.1 Setup and Primitives

There is a unit mass of agents consuming a divisible good . The use of the
good is subject to network (or aggregate) effects: the attractiveness of the good is
dependent on the aggregate level of consumption z. Each consumer is characterized
by her level of susceptibility (to network effects) k € K = {k,k+1..., K} and her
level of influence (on the aggregate level of consumption) I € £ = {l,l+1,...,L}.*
The joint distribution of susceptibility and influence, denoted by f € A (K x L),
is a primitive of the model. Depending on the application we have in mind we
may allow for negative influence, but assume that E[l] > 0 to ensure that there are
complementarities in consumption on average. Every consumer has a non-negative

level of susceptibility, & > 0.

4For simplicity, we assume that K and £ are intervals of integers. Our results extend to the more
general case.
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For a given level of aggregate consumption z, consumer i of type (k,l) chooses
among the consumption menu the quantity-price pair (z;, p;) that maximizes

1
ui(2s, pi, T) = (1 +vkT) 2; — QI? — Di (3.1)

The aggregate level of consumption  is a weighted average of individual consumption

k.l E[l]

> We impose a participa-

where we denote the consumption of type (k,l) by x,.
tion constraint with an outside option normalized to zero. The good is produced
by a monopolist at zero marginal cost. He offers a menu of contracts (z,p) =
{(pk7l,a:k7l)}k7l€,cx£ subject to sorting and participation constraints associated to a
particular observability assumption. Individual consumption decisions (which are
made taking T as given) determine the aggregate externality Z. Note that every
set of contracts induces a game among the consumers at the consumption stage, as
aggregate consumption is endogenous. Still, by the following lemma, restricting the

menu to one contract per type is without loss of generality.

Lemma 3.1. For any observability assumption, there exists a solution to the princi-

pal’s problem if
KL+ E[k]

E[l]

Furthermore, in the revenue maximal Bayesian equilibrium under the revenue mawi-

g

mal set of contracts, no consumer type randomizes between contracts. The same result

holds for welfare maximization.

The intuition behind this result is simple. Suppose a type randomizes between
contracts. As the utility function is concave in consumption, she prefers a contract
that gives the expected level of consumption and transfer to the principal with
certainty. Replacing the contracts she randomizes over with such a contract leaves the
expected level of aggregate consumption  unchanged. Furthermore, we can increase
the transfer to the principal, as to keep utility of the agent the same after the change
in the menu of contracts. Hence, she has no changed incentives to deviate to other

contracts. Furthermore, the range of allocations that are chosen by consumers of

5Equivalently, this is an implicit definition of the level of influence of an agent.
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susceptibility observable | susceptibility not observable
influence observable %) Uer (K x 1)
influence not observable Usex (B x L) (K x £)?

Table 3.2: The four different observability assumptions as sets of feasible deviations.

susceptibility k& shrinks compared to the initial set of contracts. This implies that
imitating types of susceptibility k£ has only gotten less attractive. The sufficiency of
sorting constraints at the borders of the range of x chosen by consumers of a given
susceptibility is established in the text in the simpler setting without mixing in 3.4.

We will consider several monopolist problems, each correspoding to a different
assumption on which consumer charactersistics are observable. Throughout these
problems, the objective, the aggregate network effect and the participation constraints
will remain the same. Depending on the misreports that are feasible, the problem
will have different sorting constraints. Denote the set of feasible deviations by A C
(K x L£)?, where (k,1), (K',l') € A means that type k,l can immitate type £’,!' and

consequently a feasible allocation must satisfy the sorting constraint

_ 1 _ 1
(1 + ”)/:L‘k) Tgi1 — 51’%71 — Pkl > (1 + ’)/xk) Ty — 5%%/711 — Dkl

With a slight abuse of notation we identify the sorting constraint with the asso-
ciated (pair of) types. The problem correspoding to a set of feasible deviations A

is

H(A) = max Z JraDk. (3.3)

{Pk,l,mk,l}k,lelcxz:

o
ki T
1
Vk, U (1+Tk)zk — §$Z,z — Pkt =0 (Pr)
1 1
V(k, D), (K1) e Ar (1 +7Tk)zp — Ql’i,z — k1 = (L+Tk) oy — 5372/,1/ — Dy
(ICk =k )

To save on notation, we suppress the non-negativity constraints x;; > 0. table 3.2

specifies the set of feasible deviations associated to each observability assumption
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Throughout the paper, we will let ( denote the Lagrange multiplier associated to
the ANE constraint, i.e. marginal revenues associated to an exogenous increase in
aggregate consumption.

We allow for a principal’s objective function of the form

max R (T) + ke (T) (3.4)

T { Pk, g exx e

where R (T) is the maximal revenue ) | fi;px, from a screening contract {py, ‘Tkvl}k,leleE
that induces network effect is 7, while ¢ caputures additional social gains or losses
associated to aggregate production. Clearly, ¢ would be zero in the application to
the sale of the network good, but the generalization to a non-trivial function c allows
a more appropriate embedding of the other applications we discuss in the remainder
of this section. We assume that c is increasing and concave with the normalization
”(0) = 1. In this paper we focus on the shape of the optimal contract (x,p) (under
different observability assumptions) and on finding the optimal level of z for k = 0.
Having tackled this problem, the characterization of the solution to the single variable
maximization problem (3.4) is a straightforward extension that is covered by the
proofs in the Appendix. The structure of the optimal contracts and rents remains
unchanged, only the optimal level of ¥ is affected.

We now proceed discussing in more detail the application to the sale of network

good, as well as alternative economic problems that map into our framework.

3.2.2 Sale of a Network Good

Our main motivation, which we discuss also in the introduction is the sale of a
network good.

There are two interpretations of the reduced form (3.1)-(3.2): local network effects
with residual network uncertainty and global network effects. Only the former is
derived from an explicit network formation model, which we will discuss in the next
paragraph. In the latter, agents directly care about the weighted population average
of z, e.g. because of a desire to conform or aggregate network effects of consumption,
investment or business activity. Agents differ both in their desire to conform or
dependence on aggregate network effects and their intensity of creating network effects
for others (visibility, social status or provision of essential services).

Though influence doesn’t enter the utility function directly in our specification,

the analysis generalizes to this case. If individuals savor influence in a way that is

182



separable from their individual consumption, this is equivalent to a renormalization
of the outside option. Gains from influence that come from being invested and central
in the diffusion of a popular product enter the utility function just like susceptibility
and are captured by a suitable redefinition of the type space. The case where
influential consumers have a higher marginal utility from individual consumption
that is independent of the aggregate complicates the analysis and is discussed in the

CONGHPIREE a network formation model formulated and applied in Galeotti and Goyal

(2009); Fainmesser and Galeotti (2016a,b). Consumers are connected by a directed
network. When there is a link from ¢ to 5 we say that consumer ¢ is influenced by agent
j. Consumption externalities flow across this network, i.e. a consumer’s marginal
utility of the good increases as others who influence her increase their consumption.
Formally, let I; be the set of consumers who influence 7; the ex-post utility of consumer
1 is given by

U <($J')je[0,1] ,pi> = x; + YT Z T;— %x? — i (3.5)

Jjel
where 7 is the intensity of network effects.

In this interpretation, the influence parameter [ coincides with the agent’s in-
degree, while the susceptibility parameter k is his out-degree. When making their
consumption choices, consumers don’t know the network structure, but only their in-
and out-degree. They take expectations over their realized utility conditional on this

information alone.® So, the utility can be expressed as

1
ui(zi, pi, T) = T + YhiTa; — 555'? —pi (3.6)

where

l
E[z;|j € L] Zﬁiﬁm—l’ (3.7)

independent of 7. When forming expectations, individuals take account of the fact
that they are more likely to link to influential individuals which consequently need to
be over-counted relative to their frequency in determining the expected consumption
of a neighbor.” Clearly, equations (3.6) and (3.7) coincide with (3.1)-(3.2).

SFormally, we model the network formation as follows: There is a unit interval of consumers,
ordered by in-degree . Denote the in-degree of consumers at i € [0,1] by (), an increasing step
function with finite range. After consumption decisions are made, a consumer with out-degree k
draws k consumers independently from the unit interval with density % and links to them. Every
consumer is drawn and linked to by [ other consumers.

"For discussion of further effects of this “friends paradox”, see Jackson (2017).
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3.2.3 Big-push development (Made-in model)

Consider the problem of a ministry of commerce that wants to foster economic
development in an area. There are spillovers between firms. These spillover come
from the external effects in the provision of investment goods and human capital
(economic activity at other firms provides a thick market for such goods and skilled
workers which lowers the cost of production). Different firms are heterogeneous in how
their activity impacts the aggregate shifter (the influence parameter [, e.g. machine
tools firms provide higher investment externalities than textile industry) and on how
dependent they are on the externality (the susceptibility parameter k). The regulator
then wants to incentivize production from influential sectors to increase total revenues,
and we allow for additional effects through the ¢ function.

Equivalently, consider a model of demand spill-overs. Firms produce for export.
The aggregate shifter represents the degree to which the region has an image for
producing high quality or fashionable products (made-in effect). Different firms are
heterogeneous in how their activity impacts this aggregate shifter (luxory sectors
like fashion and design are more effective at establishing a country’s reputation) and
on how dependent they are this perception (products that are clearly recognizable
like clothing are more susceptible than commodities). The regulator then wants to

incentivize high-quality production from influential sectors to increase total revenues.

3.2.4 Nonlinear taxation of externality producing goods

Firms produce goods using a polluting process. Firms differ both in how their level
of production affects total pollution (for instance, they run a more or less polluting
plant), and in how much aggregate pollution affects their profit (for instance, they
are differently exposed to the consequence of climate change, both in terms of their
marginal cost of production and demand). A regulator controlling the aggregate
level of externality while rasing tax revenues needs to take into account these two
dimensions of heterogeneity.

Our framework offers a natural environment to study this problem. The influence
[ of a firm measures the amount of pollution per unit produced, while £ measures the
impact of aggregate pollution on profits per unit produced. In this case of negative
externalities, we set v < 0 and x < 0. Our results stated in the text for v > 0

generalize naturally.®* The planner chooses a tax schedule to maximize a weighted

8With v < 0, the order of lexicographic monotonicity is inverted. Output is decreasing in influence
and susceptibility.
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sum of revenues (taking into account the effect of pollution on profitability) and the

costs of pollution to society ¢(z).

3.2.5 Price setting among gross substitutes firms

Firms selling gross substitutes simultaneously choose their price subject to the

linear demand schedule

1
D (p,p) = (1 + pk — 519)

where the aggregate price level is p = >, | %pm. Firm’s influence [ parametrizes

the weight of its price in the aggregate price level, while £ measures its degree of
substitutability relative to the price aggregator. A firm choosing p to maximize
D (p,p)-p clearly induces the utility specification (3.1), but we lack a microfoundation

for the aggregate price index.

3.3 Efficient Allocation

We begin establishng our efficiency benchmark which, as is standard, coincides
with the allocation that realizes under perfect information. So the efficient allocation

is characterized by the solution of II (&), which next subsection characterizes.

3.3.1 The First Best

The following Proposition characterizes full-information allocations, unit prices,

aggregate statistics and revenues.

Proposition 3.1. The optimal menu of contracts {(pr, Tri)}y jeioxe Under full in-

formation is such that

[
T =1+yTk + mf (3.8)
pry 1 _ [
Put o (1 k= 3.9
Thi o 2 < T ER C) (39)
where
2 2 2
iy E(k] VE[K] + 22
_ E[l] [1 TED ] . k o [ TER ]
TS EM _ _omEEERE ¢ 2 furhria = 1 ] PR
S B 1y Sy b EM  wpp[i— 0]
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The principal extracts all surplus as revenue

1 1 1
= = 4 73R[k] + =12 F2E[k?) — ~¢?
R =5 +77Ek] + 57" P ER] - 5Cx

(3.10)

The efficient consumption is the optimal consumption for given externality z,

1 + ~vzk, with the adjustment term ——( taking into account the spillover through

!
E[l]
aggregate consumption z. This adjustment is proportional to the marginal value of

Z, ¢ which is proved to be positive, and to the ratio between the weight of type (k,1)

Lf (1K)
Efll] -

As the monopolist extracts all surplus, agents receive the same level of utility

in social welfare fy; and its weight in determining z,

(zero) in the optimal contract. In particular, influence is not rewarded. Highly
influential agents over-consume (which they dislike due to the quadratic term), though

they are compensated with a quantity discount in the form of lower unit price.

3.3.2 Observable Susceptibility

We now turn to the case where to monopolist observes how susceptible a consumer
is, but a consumer’s influence is unobservable. The revenue maximization problem
needs to satisfy the sorting constraints | J, . (k x £),? namely for the pairs of types
that share the same k.

First, note that [ does not directly enter the utility function. Consequently, the
relevant set of incentive constraint is equivalent to requiring that all consumers with
a given k have the same utility in their assigned contract; should this condition fail,
every consumer with a given k& would mimick the type k,l’ whose contract delivers

the highest level of utility. Formally,

Lemma 3.2. A menu of contracts satisfies the | o (k X L) sorting constraints if

and only if the utility of type (k,1) is independent of the level of influence I.

9Recall we identified the set of revelant sorting constraint with the indeces pairs that are involved.
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Proof. Fix an arbirtary k and suppose the set of contracts {xs, pri},c, delivers the

same utility ux; = (1 4+Tk) x5, — lx%l — piy for all I € L. Clearly, there is no

2
incentive to misrepresent your type.

That this is necessary is immediate from ICy;_,; yand ICy g

2 2 2

Vv Vv Vo
Ukl Up 1! Ukl

1 1 1
(1 + ’}/fk') Lkl — —in,l — Pk Z (1 + ’)/fki) T — —.Z’Z’l/ — Pk Z (1 + ’YI/C) Lkl — —l’z’l — Pkl

- - .

]

The intuition is that influence doesn’t interact with the contract terms, so it can
not introduce distortions in the form of information rents: Even though the problem
has a full dimension of incomplete information, it collapses for given k. The first
best contract satisifes the [—independece condition since all types receive zero utility,
so by lemma 3.2 above it satisfies the incentive constraints that are relevant for the

observable suscepitbility case. Its optimality is then immediate.

Proposition 3.2. The problem with known susceptibility k is equivalent to the prob-
lem under full information. The optimal menu of contracts is as described in Propo-

sition 3.1.

By 3.2 observable susceptibility induces the same allocation as the full information
first best benchmark, that features no information rents. This happens because the
principal observes the only dimension in which she can actively screen. Eliciting

influence does not create any rents by itself.

3.4 Private Information

We now turn to the more interesting full screening problem, i.e. the case in in
which both influence and susceptibility are not observed by the principal. She then
solves the 2-dimensional screening problem with consumption externality | | ((IC X E)Q) .
The aim of this section is to simplify and solve this problem, which also constitutes
the main technical contribution of this paper. The following proposition characterizes

properties of the optimal allocation
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Proposition 3.3. A menu of contracts {(xw, Prg) by jeiox o i optimal in [ ((K x E)z)
only if

1. The utility of type (k,1) is independent of the level of influence [. That is, for
each k, 1,1,

_ 1 _ 1
(1 +~Tk) 2y — 595%,1 —prg = (1 +9Tk) oy — §$i,zf — Dy (H)

(a) It satisfies k-monotonicity, that is for every k, k', [, 1,
(@rs — zwp) (k= K) =0 (M)

(b) The participation constraint is binding for only the lowest susceptibility
types. That is,

1
(1 +Tk) zp; — 55521 — Py = 0. (P)

We allocations satisfying H, P, and M admissible.

Since the problem contains all incentive compatibility constraints along the influence
dimension ({J,cc (k x £) C (K x £)?), Lemma lemma 3.2 implies that utility has to
be constant along the [ dimension, which is point 1. Point 2 is a standard monotonicity
result derived by comparing incentive constraints: types with high marginal utility
need to get a high level of consumption. Finally, by the sorting constraints, it is
sufficient to consider the participation constraint of type k as all other participation

constraints are implied.

We further reduce the cardinality of the sorting constraints by noticing that some
of them are redundant. Given [—invariance of utility, a slice k x L of the type space can
be treated as a single type for the purpose of outward deviations. In addition, we can
rank the attractivenes of contracts in each k x L slice by the level of the allocation:
Higher susceptibility types will prefer the highest allocation contract, while lower
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susceptibility types will prefer the lowest allocation contract. Consequently, for types
in k x L, the relevant downward deviation is towards the contract giving the highest
consumption in the k — 1 x L slice, whereas the relevant upward deviation is towards
the contract giving the lowest consumption in the £ 4+ 1 x L slice.
Definition 3.1. Fix a menu of contracts {(zx, pr;) }riexxc and, for each k, pick

I, € argminz, 7, I* € arg max r, 7

i ’ I ’

We call the set of constraints

{((k> l)’ (k - 1’ lk_l)) }k>k,l€£ U {<(k> l)a (k + 17 lk+1))}k<K,le£ - (K X £)2

a set of extremal sorting (ES) constraints.

To clarify the definition, Figure 3.1 below depicts the set of ES constraints for an

arbitrary proposed consumption allocation.

ES(2)

Sucseptibility parameter k

Influence parameter |

Figure 3.1: Extremal Sorting constraints for a proposed consumption allocation

If it is not profitable to deviate to the contract with the largest (smallest) level
of consumption in the slice, it isn’t profitable to deviation into the slice at all. This

leads to the following
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Proposition 3.4. An admissible allocation satisfying a set of ES constraints satisfies

all sorting constraints.

Proof. Downward: consider the sorting constraint from type k,[ to type &, I’, where

k > k. Then

Upp = Uk, = Up_1pp—1 + YTLp_q o1

> Ug—11y_y T YTLp_q k1

where the first inequality is the local extremal downward sorting constraint and the
equalities follow because the utility under compliance with the menu is independent

of . Repeating the above argument, we arrive at

k—1

Ug > Uprgr! + YT E Z;pi
i=k'
k—1

= Upy + 7T E Ty
i=k'
k-1

> Upy + T E T
i=k

_ 1
= (1 —+ ’}/l’k) Ty — 5.1‘%/71/ — Rk’,l’

where the last inequality follows from k-monotonicity (Lemma 3.3) together with the
definition of I’ as the level of influence maximizing z;:. Note that the last term is
just the utility of type k,l pretending to be type k’,!’, which is not profitable, as we
wanted to show.

An analogous argument works for upwards deviations.

The next step is to identify the extremal types within a slice k& x £. We show that
Ty is not only k-monotonic, but increasing with respect to the lexicographic order

=1, on IC x £ where K is the dominant dimension

(k1) = (K,I') <= k>K ot k=K 1>1
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Influence parameter |

Figure 3.2: Lexicographic monotonicity

Theorem 3.1 (Lexicographic Monotonicity). In the solution to GP, xy is weakly

increasing in the =1 order on K x L.

The argument goes as follows: for each k, the unconstrained allocation is mono-
tonic in [. Since 3.4 implies that only the largest xj; for a slice k x L is relevant for
deviation, adding the sorting constraints does not alter this property. Combining this
fact with k- monotonicity implies that the optimal allocation has to be lexicographic
monotonic — either increasing in the second component or decreasing in the second
component. The direction of the order depends on the sign of the multiplier ( in the
optimal allocation. We can show that the marginal value of aggregate consumption
¢ has to be positive, which selects the >, lexicographic order on K x £.1°

A positive marginal value of aggregate consumption for the monopolist is a natural
though not immediate result. In contrast to the symmetric information benchmark,
under asymmetric information aggregate consumption z impacts revenues in two
opposing ways: On the one hand, increasing  increases total surplus; on the other
hand, it increases the information rents paid to consumers. We show that the first
force dominates. Hence consumption is increasing in [: this increases aggregate

consumption z, counteracting some of the downward distortion due to screening.

ONote that by contrast to k—monotonicity, lexicographic monotonicity doesn’t follow from the
constraints alone, but is based on optimality considerations.
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3.4.1 The Relaxed Problem

Using the results derived in the previous section, we can rewrite the principal’s
problem as a monotonicity constrained optimization in terms of virtual values. This

problem is one-dimensional along the lexicographic order.

Proposition 3.5. The problem [] ((K x L')Q) is equivalent to

1 1—F
max Z Jr [(1 +Tk) Tpg — §$i,z - Xi=L { kalH

{zr1} ke Tkl
(UP)
Lf(l, k
s.t. T = ; gfil] >£Uk,z (©)
Ve, le Kx{l+1,....,L}: xp; > mp11>1 (3.11)
Vke{k+1,...,K}: xp > xp11 (3.12)
2,10 (3.13)

The remaining nonstandard feature is the externality through the endogenous
aggregate quantities (z, (). We will solve the problem for fixed (Z, () and then solve
for the aggregate quantities.

To solve the problem for given (z, (), we rewrite the objective function of (UP) as

_ 1 - F, z 1,
1 k— v —— _ _Z
E iy +97 ( Xi=L { I }) + CE[Z] Thi = 5Tk

[\

=g(k.1)
and apply ironing. In this problem, ironing is typically necessary and cannot be
avoided by assuming a natural condition as e.g. a monotone hazard rate. By the
nature of our problem, there are two sources of monotonicity violations in the virtual
value. First, sorting constraints only affect types with [ = L directly. The resulting
downward distortion will typically be propagated by the monotonicity constraints.

This happens whenever
1 1—-F

< T ,
El -7 fus

¢
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i.e. whenever the downward distortion due to sorting constraints is larger than the
difference in efficient consumption due to lower influence. Unless the highest influence
type is very likely (fi large), this condition will be met. The second source of
violations of monotonic virtual values is the jump between type k, L and k + 1,[:
One the one hand, the latter has a higher valuation because he is more susceptible
to influence, on the other hand, he is less influential, which depresses consumption.

There will be a non-monotonicity if

_ 1 — Fj L—1
YT (l‘l' fkjL ) <CE—[Z]

Combining both inequalities, we see that we require ironing unless for all k

L—1 B 1—-F, B 1
(W<7x(1+ For )<7x+§m

which involves bounds on endogenous quantities.

Now, we turn to the ironing procedure. The problem is one-dimensional in the lex-
icographic order and hence we can apply standard techniques. We will refer to this or-
der by a subscript “lex” to avoid confusion. Let (k*,1*) (¢) := ming, {(k, DI i<y in fov > q}
denote the type at the g—quantile for any ¢ € [0, 1]. The cumulative virtual value is

given by

G(q) = > fowrg® )+ La= > fur | gk 1) (q)).

(klvl/)<lew(k*’l*)(Q) k/vllglew(k*vl*)(q)

It follows from Myerson (1981); Toikka (2011) that ironing the original problem is
equivalent to convexifying G. Let H := Conv(G) := max{h < G|h is convex}. If
H(q) < G(q), the monotonicity constraints are active at the corresponding type and

there is bunching.

Lemma 3.3. H induces a partition of types, B. The partition cells are ordered by
the lexicographic order and the optimal allocation for a given (z,() is constant within

cells and strictly increasing across cells.

We can hence write x;, for the quantity in partition cell b and arrive at the

allocation as a linear function of the aggregate control and multiplier (z,(). For
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BUNCHING

Cumulative virtual value
Cumulative virtual value

L)

0,00

F(O.
Quantile of types (lex. order)

F(0,00 . FO.L)
Quantile of types (lex. order)

Figure 3.3: Typical ironing region
xy,y with (k,1) € b € B, we get

Z{k:(kj)eb} (1— Fp)
Z(k,l)eb fk,l

Ty =ry =max {1 +7 | Ek|b] —

where the max ensures that x;, > 0.

Remark 3.1. As our type space is finite, the convexification is easy to compute. A
simple algorithm proceeds downwards in the lexicographic order and “greedily” irons
out violations of convexity as it encounters them. It finishes in at most [IC x L] + 1

steps.

Define a self-map I' : R — R? by

=

-1

l
F(E,C) - Z%@,l(i@ﬁ kalkxz,l(‘fJC) - (1_Fk> IZ,L(‘%J C)
k,l

k

[
(B

This mapping updates the level of aggregate consumption and its multiplier based

the optimal allocation at an initial guess.

Lemma 3.4. I' is continous and has a precompact range if 1 > ”yﬁ (K + E[k]).1!

This is one way to get an upper bound. We conjecture, that it is not tight and that 1 > 7%

is sufficient.
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Hence, there exists a fixed point.

Theorem 3.2. If1 > vﬁ (K + E[k]), then there exists a solution to
I(z", ¢7) = (@7, ¢). (3.14)

Furthermore, the optimal menu of contracts solving [T (K x /J)Q) is {(m;l(f*, ), P (T, )}
where (z*,*) solves (3.14).

k€K

3.5 Observable Influence

In this section, we analyse the problem when an agent’s influence is observable,

but his level of susceptibility to the network effect is private information.

3.5.1 Observable Influence, Unobservable Susceptibility

The problem of the monopolist is

{pk,l»ﬂﬁk,l}k,le)cxﬁ

11 <U (K x l)) = max Z iy (LP)

leL
) LF(L.k)
.t = 1
S T Z Ef[l] Lkl (3 5)
k,l
/ = 1 2 — 1 2
VI kK © (1 4+~Tk) xy, — 5%ks ~ Pk > (14 v7k) vy — STy Prd
(IC-Ki o)
1
Vk,l : (1 + ’Yfk’) Tkl — —[E%l — Pk, Z 0 (P—Lk’l)

2

Note that the sorting constraints now apply for fixed [, so the problem is one-
dimensional. Hence, following the usual arguments, the incentive constraints imply
monotonicity and we can rewrite the problem as the maximization of virtual value
subject to this monotonicity constraint. This transformation applies for every fixed
[, but the optimization problem doesn’t factor, as the components for different [ are
coupled through aggregate consumption z. Let F}. = Zf:k fiy denote the conditional
cdf.
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Proposition 3.6. The maximization problem LP is equivalent to

FL — F! 1
max Z iy { (1 + T (k: — %)) Thi — §$%l} (LPs)
k.l

(IR PR
Ufra

s.t. T =

T (3.16)

vk > k/,l LTy 2 T 1 Z 0 (317)

We will assume that virtual values are increasing and hence the monotonicity

constraints will be slack.

! 1

Assumption 3.1. The virtual value k — % is increasing in k.

Analogous to the full information case, the first-order conditions of this problem
have two components. The first part is the familiar screening formula, the second
adjusts consumption upward for influential individuals in order to provide a stronger

network effect.

Fl. — F! [
T = max 1+ k—u)—i- — ,0 3.18
optimal screemg for fixed T provide public good Z
Fl. — F!
CZWkal{k—M}Ikz (3.19)
o Tri
T = Z Jrlxy (3.20)
k,l

Agents receive information rents for their level of susceptibility k. The extent of
these rents depends on the level of consumption optimally given to types with the
same [ and lower k. Therefore, the rent of type k,[ is dependent on his (observable)
level of influence. We say that there are rents from influence if, for fixed k, the

information rent is increasing in [.
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Ll
Proposition 3.7. Influential individuals gain an rent if ElﬁvE — Fkale is increasing

i L, where

K ! ! l !
_ ¢ ! . Fp—Feyy  Frp—F
== =N S (Fh-F)(k+1)|1- + >0
T % ( K k)( ) Sra1y fri

Influence affects information rents through two channels. First, more influential
individuals consume more and high levels of consumption cause high rents. Second,
influence has an effect on the downward distortion of consumption by the monopolist.
If susceptibility and influence are affiliated, high influence makes it more likely that the
agent also has high susceptibility and the monopolist distorts consumption downwards
more. The outcome depends on the balance of these two forces. If £ and [ are
independent, only the first is active and influential agents get higher information
rents. In general, the condition puts an upper bound on the degree of theiraffilliation.
—(But note that this is only a rough intuition, as affiliation also enters =.)—

Comparing the results in this section to the previous one, we see that influence
affects an agents utility only if it is observable and only indirectly, through its impact
on susceptibility rents. In the case of positive consumption externalities, influencers
don’t get rewarded through nonlinear pricing (though casual observation suggests that
there are rewards through other channels). In the case of polution, higly polluting

industries are not punished indirectly through a revenue maximizing tax.

3.6 Restrictions on Misreports

It is sometimes natural to assume that agents cannot underreport (or overreport)
their susceptibility to or influence on externalities. Take for example consumption ex-
ternalities mediated through a social network. If the network provider takes effective
measures against the purchase of fake subscribers, influencers cannot overreport their
number of followers. They could, however, underreport their influence by splitting
their activities across different networks and channels. Conversely, if susceptibility
corresponds to the time spent on the social network, users cannot underreport it,
but they could easily generate fake traffic and thereby overreport their activity. In
the case of pollution, it may be possible to provide verifiable evidence on its impact
on one’s production process. If such evidence is required, firms cannot overreport
their susceptibility, but they could still underreport it by not disclosing the evidence.
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Polluters could easily prove their activity, but it is much more involved to prove the
absence of polluting activities.

In this section, we show that such restrictions on misreports map into the cases
analyzed above. Agents always desire to underreport their susceptibility. Hence, if
agents can only overreport, this is equivalent to observable susceptibility and the
monopolist can implement the first-best. If the condition of Assumption 3.1 and
Proposition 3.7 are met, agents always want to overreport their influence. Hence,
if doing so is impossible, it is equivalent to observable influence and the optimal

contracts are as in the previous section.

3.6.1 No Downward Misreports of Susceptibility

Suppose agents cannot underreport their susceptibility to the externality. We
don’t restrict their ability to exagerate their susceptibility or misreports of their
influence. This is a reasonable assumption in social networks if susceptibility is tightly
linked to usage of the network which is identifyable by the network provider and
cannot be hidden.

Consider the first-best allocation. The participation constraint is binding for every
type. Suppose an agent with type k, [ deviates to &', I’ with &’ > k. The utility under

this deviation is
U = U + YT (k/ — k) Tty = YT (k/ - k) Ty < 0= Ukl

Hence, this deviation is not profitable. As the utility is flat along the [ dimension,
there is also no incentive to misrepresent only influence. Hence, the first-best alloca-

tion is incentive compatible and we have the following

Proposition 3.8. Suppose agents with susceptibility k can only report k> k. Then,

the first-best allocation is implementable.

3.6.2 No Upward Deviations of Influence

Suppose instead that agents can freely underreport their level of susceptibility,
but cannot overreport their influence. This is a reasonable assumption in many
social media platforms, whereit is comparatively easy for agents to appear less well

connected than they truly are. Users can split their activities on the platform by
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using multiple accounts or using private browsing for some of their interactions. By
contrast, it can be difficult to appear more connected than you truly are. While
followers on many platforms can be bought, these tend to be “bot accounts” which
can often be detected by the site’s algorithms.

In this case, agents would desire to underreport their susceptibility, so these
deviations have to be taken care off by sorting constraints. Consider the allocation
solving LPs, where we assume that influence is observable but susceptibility is not.
If the condition of Assumption 3.1 and Proposition 3.7 are met, agents always desire
to overreport their level of influence. Since this is impossible, the same allocation is
implelemtable, even though influence is not fully observed.

l 1

" FL—-FL . . . -~ FL-FL . . .
Proposition 3.9. If k — ——~ s increasing in k and ]E—l[l]fy: — —f5* s increasing

in [, the solution to the monopolist’s problem with underreports and the problem with

known influence and unobserved susceptibilit are the same.

The intuition behind this result is simple. Under the given conditions, consumers
always want to underreport their susceptibility and overreport their influence. They
hence report the highest feasible level of influence, which is their true level, but need

to be encouraged to report their true level of susceptibility through information rents.

3.7 Conclusion

We analyze a screening problem with externalities. Agents have private infor-
mation about their susceptibility to and influence on the externality. A monopolist
principal provides a menu of actions to maximize revenue. Several problems fall into
this framework, for example a monopolist firm using nonlinear pricing when there are
consumption externalities or a government maximizing tax revenues when there are
externalities between firms, positive through external economies of scale or negative
through pollution. Even though the problem is two-dimensional at the surface and
contracts are linked "globally" trhough the externality, we show that it is nevertheless
tractable. The principal screens along the susceptibility dimension while tilting the
allocation along the influence dimension to correct for the externality. Eliciting influ-
ence is for free: Aslong as susceptibility is observable, the principal can implement the
first-best. If both characteritics are unobservable, we show that the problem can be

transformed into a one-dimensional problem along the lexicographic order, increasing
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in susceptibility as the dominant dimension and either increasing or decreasing in
influence, depending on wether positive or negative externalities dominate. There
are rents for susceptibility, but no rents for influence. If influence is observable,
the problem is equivalent to a family of one-dimensional screening problems coupled
through the externality. Influence affects utility only if it is observed and even then
only indirectly, through its effect on information rents. Highly influential consumers
obtain higher rents if the externality is positive and susceptibility and influence are
not too affiliated. Restricting the agents to over- or underreports maps into the

observability assumptions we analyze exhaustively.
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Appendix

Proof of Lemma 3.1: Suppose towards a contradiction that there is mixing in the
optimum. Consider a type k,[ playing a non-degenerate mixed strategy oj; with

finite support. Let ), = E,, o and R}, = E,, R 4 3E,, ,2>. Remove all contracts

Ok,l
that were only in the support of o;; and not played by any other type and add the
contract (zj,;, R},;) to the menu. We propose that it is an equilibrium for all other
types to follow the same strategy as in the original equilibrium and for type k,[ to
choose the new contract with certainty. Note that with this play, Z is unchanged from
the old candidate equilibrium.

The described strategy combination is feasible as all contracts played by consumers
(K, ") # (k,l) are still in the menu. Following this recommendation is indeed optimal
for type k,l as the new contract is constructed to keep her utility the same and
there are no additional deviation strategies. The same holds for all other types with
susceptibility k.

For all other types, note that we only have to make sure there are no new
deviations into the contract (v}, I ;) as ¥ stays identical. The extremal principle
(Proposition 3.4) generalizes to the case with mixed strategies: Suppose there is
a contract (z, R) in the support of any type with susceptibility k. A type with
susceptibility k' > k acts optimally in choosing (x, R) only if there is no other contract
(y, S) chosen by types with susceptibility & with higher consumption y > x. Similarly,
a contract is only invaded from below (k' < k) if it is the contract with the lowest
consumption chosen by types with susceptibility k. Since there was no incentive to
deviate to the contracts on the edge of the support of oy, there can be no incentive

to deviate to a contract strictly between them giving the same utility to type k, .
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To see this concretely, fix a type k.’ with k' > k and strategy o}, and let

Yy = max, supportoy;. Then

as we needed to show. The proof for £’ < k is analogous.

Hence we constructed a new equilibrium, with one type fewer non-degenerately
mixing and strictly higher expected revenue for the monopolist. Consequently, for
any equilibrium with mixing, there is a strictly better menu of contracts and equi-
librium from the point of view of the principal, establishing the claim about revenue
maximization. The claim generalizes to mixed strategies with infinite support by
an approximation argument. The claim about welfare maximization follows since
consumer utility remained unchanged by the above modification to the set of contracts
but revenue strictly increased.

For existence, note that revenue is bounded by total surplus, which is given by a
quadratic form. Hence, it is sufficient to show that this quadratic form is negative
definite.

1
R < Z fk,l |:(1 + ’yki’) Tkl — §$z7l:|

I 1
= Z S {(1 + 7k (Z fk/,l/@ivk/,l')) Thi— 5%1}

The symmetric representation of the associated quadratic form is

ki kl+k'l
f;?ﬂ@ fk,szf,z’V—El

B |

Note that the maximal eigenvalue of this sum is the maximal eigenvalue of the first
matrix minus % This matrix is positive and hence, by the Collatz-Wielandt formula,
the maximal eigenvalue is bounded by the maximal row sum of the matrix. It is easy

to see that the row sum corresponding to type k., is

L, v
Efk,lﬁ (kl + E[kl])
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Hence, the maximum eigenvalue is smaller than % if

T (kl + E[kl]) <

1
max o fk I <3

El

which is satisfied if ¢; (KL + E[kl]) <

Proof of Proposition 3.1: The first order conditions are immedate. Plugging the

expression of xy; (3.3) into the FOCs of z and (, we arrive at

(=2 furh (1 +yzk+ %C) =E[k] + 7’E[k*]z + (v %
k,l

_ AN E[kl] | E[?]
— %l:fkl (1 + vzk + " C) =1+7Z R[] + CE[Z]Q

Solving this 2x2 linear system gives the expressions.

Proof of Lemma 3.2: Recall that the relevant set of constraints for this problem
are given by J,cx (b x £). Consider the first-best allocation. The participation
constraints are satisfied and the wuy; is independent of [. Hence, by Lemma (3.2), the
sorting constraints of this problem are satisfied. Clearly, this is the maximal profit
the principal can achieve and hence the first-best allocation is the optimal menu of
contracts.

O

Proof of Proposition 3.3: The first point follows immediately from Lemma 3.2. To

see the second part, consider the constraints ICy ;xpr and I1Cy p_p -

1 1
(1 + f)/fk) 'TkJ — ixil — pk-’l Z (1 —+ ’Yfl{}) xk’,l’ — ixi/’l/ — pli/

1 1
(1 + ”75]1") T — éxz,’l/ — DPrr Z (1 + ’)/Tkil) Tkt — axi,l ~ Pkl
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Sum and simplify to arrive at

k(xpy —xpy) > K (25 — xp )

as desired.

For part 3

1 1
(1 +7Tk) mpy — =i, — prg = (1 +9Tk) 20 — =24 ) — Pra

2 2
1
> (14 7k) xpy — 5932; — Diy
>0

Proof of Proposition 3.4 (Upward Deviations): Consider k,l and k',I' with k' > k.

As above

Ugl = Upgh = Ugt1lpy — VT4 1,1y

= Upg17k+1 — /le?k-‘rllk.;_l

Repeating the above argument, we arrive at

k/

Urkl Z uk/lk’ - /Y:i‘ E l‘ili
i=k+1

k,/
= Upy — YT E T,
i=k+1
k—1

> Upy — VT E Ty
=k’

1
= (1 + ’yfk’) Tgr 1 — él’i/JI — Rk’,l’

where again the last inequality follows from k-monotonicity and the definition of [;.
O

Proof of Theorem 3.1: [Rewrite this in utility space immediately, then simplify out
the second lemma] We first formulate a reduced problem. In the reduced problem,
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we keep only local (in k) downward and upward sorting constraints emanating from

types with susceptibility L and the participation constraint of type (k,[).

max Z fk:,lpk:,l (RP)
{pkylvxkyl}k,leﬁxc
s.t. T = Zﬁc,lxk,l (321)
k.l
_ 1, _ 1,
Ve, le{l,...,L =1} (1+7Tk) g — 5Tkt = Pl = (1 +Tk) Thpe1 — 5Tkt~ Ry i1
(Heg: o)
1 1
Vk, Lo (1+Tk)zk — §xi,L =iy > (1 +9Tk) 211 — §xi_1,z — Pr-1
(Ick,Lﬁkfl,lz )\k,l)
1 1
Vk,l . (1 + ’yfk) Tk,L — 5562711 — Pkl 2 (1 + "}/fk’) Th+1,0l — éxiHJ — Rk+1,l
(ICk,L—kt1,05 M)
1
VU2 (14+Tk) gy — §Iil — Ry >0 (P:55)

[]

Lemma. A menu of contracts solves the reduced problem if and only if it solves the

general problem.

Proof of Lemma. By the arguments given above, the set of horizontal equality con-
straints (Hg,;) together with the participation constraint and a full set of extremal
constraints is necessary and sufficient. As we impose a set of constraints that is
guaranteed to contain an extremal set, this result follows. Note that the level of
influence at the source of the sorting constraints is immaterial as utility is constant
in L.

Manipulating the Lagrangian of this problem allows us to determine the structure
of binding IC constraints and bunching. We use the following Lagrange multipliers
and notation conventions:

]

153 participation constraint of type 0,0
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oy equality constraint for utility between type k,l and k,[ + 1.

Hence pg,—1 = pg,r, = 0.

Akl sorting constraint from type k, L to type k—1, 1. Hence \g; =
A1 = 0.

Ak > Ak

M.l sorting constraint form type k, L to type k+1,[. Hencen_,; =
Nk, = 0.

Tk > 1Mk

oy non-negativity constraint on xy;

Proof. For indices of multiple sums, we write:

and similarly for indices of variables

J
frag = > g
T

All that being said, we can write the Lagrangian of the problem.

~ 1
Lrp = Zpk,sz,z +¢ <Z JriTrg — if‘) + 5 (l’k,l — 5332,; — Rk,l) +
ol ol

_ 1
+ Z J1 {(1 +Tk) (Ty — Thut1) — B (Sﬂzz - xi7l+1) — Prg+ Rk,lJrl}
k.l

+ Z )\k,l l(l + ’Yfk’) (Jik,L — xkfl,l) —

k‘{(i

(zi,L - xifu) — Drg + pkl,l:|

N | —

1
+ Zﬁkz,z {(1 +7Tk) (Th,1 — Tht1) — 5 (%hr = TF10) = Pra + Rk+1,z}

k,l
+ E 01Tk,
l
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Differentiating with respect to py; yields

St = Xk,1=0,08 = X< Ll i F X110k -1+ X ko< K Akt 1,0 X ks kTk—1,1— Xi=L [Xk>kMe + X<k k) = 0
(3.22)

where y denotes the indicator function. Summing (3.22) over [, all u drop out and
we get
Je = Xa=08 + Xk<KAkt1 + XoseMh1 — [Xesk Ak + Xe<xfi] =0

Summing this over k, the A\, n drop out and we arrive at
B=1
Returning to the sum above and setting £ = 0, we get

f0—1+/\1—770:()
A—mno=1-fo

and the recursion

Net1 — Mk = Mo — Me—1 — [

which we solve for

Akt =M =1 = fig

In the following, we will need to consider which constraints can be binding for some
type. By the structure of the problem, the downward constraint A4, is only binding
it 25, is maximal among the Ty and similarly for n,_;; with minimality. Hence the
constraint can only bind at multiple x; if they are the same. Furthermore, if at one
xy, both constraints are binding, it is both minimal and maximal and hence all the
xy, for this given k are the same. Similarly, the non-negativity constraints associated
with o; can only be binding at multiple z;; if they are the same and equal to zero.

We now turn to the derivative wrt xy;

OLRp
&Em

= ka,l + Xkj=k i B [1 + YTk — Tpa] + Xeekot + Xi<nptng (1 + 7Tk — )

— Xt i—1 (1 + 9Tk — 21y) — Xusipte -1 (1 + 9Tk — Tr1) — (Xeek Akt + XeseMe—1,) (1 + 7Tk —
YT (Xke K Net1,0 — XkskMe—1,0) T Xi=L [XeskMk T Xo<r k) (1 + 7Tk — 23) =0
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Plugging the multipliers from %‘CRP into the above we get

0=Cfrs+ feg (1 +7Tk — xig] + Xe=k01 — YT (X< K Nkt1,0 — XbkskTh—1,1)

and hence

_ l _
Ty = 1+ Tk + CIETZ] + Xk=kO1 — VT (X< K Net1,0 — Xk he—1,1)

= Th + Xk=k01 — VT (Xh< K Net+1,0 — Xk>kMh—1,1)

where zy; is the efficient level of consumption for type k, [ given z, C.
Suppose that ¢ > 0 and there are a k,[,{’ with [ < I’ and zx; > z. We know
that nx_1; = Ag41r = 0 since the respective x are not extremal. Furthermore, if

k = k, we have g, = 0. Hence we get

Ty = Tkl — VTXk<K k41,
< Tpy
<z
< Zpy + Xk=k01 + YT Xk>EMk—1,1

=Trr < Tpy

a contradiction. The proof for ¢ < 0 is analogous. It remains to show that ¢ > 0.

O
Lemma. ¢ > 0.

Proof of Lemma: Let us first formulate the utility space problem with increasing

max Z Jra [(1 +Tk) Xy — 0.51‘27[ — uk} (UP)
{uk}kelcv{xkvl}k,ze/cxc
s.t. T = Z ﬁJI‘kJ (323)
k1

Vk € {E—i— 1,... ,K} DoUp = Ug—1 + YTTk-1,L (IC,Hk 1: >\k)
Vk,lEKX{l—Fl,...,L}Z xk712xkyl_1l>L ( l)
VkE{E—Fl,,K} xk,szk,l,L ( O’kJ)
T, 1>0 (: 0',,;)
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and with reverse order

RIS s R 2 fua [ 9k 20 = 0.5, = o)
st =Y fruTr (3.24)
k.l
Vkelk+1,...,K}: up=up_1+yTxk_1, (ICk—k—1: \&)
Vi, le Kx{l,...,L —1}: xp; > xppqd > 1 (o)
VeEed{k+1,....,K}: xpp > k1, (: ok.L)
T, 1>0 (: o,1)
up >0 (P:B)

To see that a feasible allocation in either UP or UP’ is feasible in GP, all we need
to show is that it is feasible in RP. Equality of utility for fixed k& across [ is enforced
directly, as wu; is independent of [. From lexicographic monotonicity, the constraint
(k,l) » (k—1,L) or (k,L) — (k—1,1) is an extremal downward constraint for all .
To show upward sorting, note that for the deviation payoff from (k — 1, L) to (k,[)
(analogously for the case ¢ < 0 from (k — 1,1) to (k, L)) we have

1 1
(L+y@(k = D)ags — saiy, — Rig = (1+ 7Tk ars — sai,, — Ry — 77k,

2 2
1
< (1 +vZk)rgar — §$i_1,L — Dk—1,1 — VTTky
1
=1 +~rz(k—1))zp-1,L — §$i71,L — Pk—1,1 — VXX + YTT-1,L

=Up—1 — VT (Thy — Th—1.1) < Ug—1.L

and the upward sorting constraint is satisfied as well. Hence we have a full set of
extremal sorting constraints and by 3.4 the allocation satisfies all sorting constraints.
All participation constraints are implied by the participation constraint of the lowest
type, as are all non-negativity constraints by the non-negativity of xj;and lexico-
graphic monotonicity.

To show that the solution to GP is the solution either to UP or UP’, note that in
the solution to the GP, either { > 0 or ( < 0. In the former case, the solution satisfies
lexicographic monotonicity by Proposition 3.1 and is feasible and optimal in UP. In
the latter case, it satisfies lexicographic monotonicity in IC x (—£) and is feasible and

optimal in UP".
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The downward sorting constraints are binding since A\, > 0 for all £, so at least
one of the (k,l) for given k is constrained, which has to be (k, L) by lexicographic
monotonicity and extremal sorting.

The proof for the claims for ¢ < 0 are identical, exchanging [ and L where
applicable.

Computations for the utility-space problem

The Lagrangian for the problem is given by

1 ~
Lyp = Z Jri [(1 +Tk) Tx — §$Z,z - Uk] +¢ (Z Jraes — x) + Buo+

k.l

) A fur — wmy — VTR,

kK
+ Z Okt [T — T

K jL
ki ol

+ ) oy [rhg — Teo1L) + opy [2kd]

K
kit

Taking first order conditions:

= fra[(1+~zk) — SBkJHka,rFUk,z—Xl;éLUk,lH—Xk:<K,l:L (YZAkt1 + Opr10) =0

oL
WUP = —fk + Xe>EMe — X< KAkt1 + Xi=0B =0
k

Summing over all 85‘”’
Uk

8uk

ZaLUP=1—5:0
k

we get B = 1. Furthermore

M1 =1 — fi
Met1 = Ak — [
A1 =1—F;

212



Finally, consider

aﬁUP

= fervkar, — ¢ - Z/\ka 1L =0

C=> fuavkor - Z)\Wﬂ?k 1L

K-1

=7 Z frakxy, — Z (1 — Fy)zpr
k
K
=7 Z kfiE[rglk] — (1 — Fy) 2]
k

Let z := E[xy,|k] and note that

K

S
k‘
=
S
-

Il

0

1

Fk (k‘ + 1) Lht1

&
5
|
(]

\:vMN \:rMN B
B
L

Fk (k+1)l'k+1+Fk 1]{7{L‘k— FK (K—i—l)l’K_H
R,_/ \/

G|
5~
=
ol
|
|
-1

K
t D)z — > Ful(k+ 1)z — k)

!
B

(1 — Fk) [(lf + 1) Lh4+1 — k)[)ﬁk]

=[] =
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Note that zx; is an arbitrary extension of the sequence and will cancel out of the

expression. Plugging back, we get

o~
|
2

I
M= =M =M

(1—Fp)[(k+1)xpyr — kg — (1 — Fy) 2

(1 = F) [krpgr — ko] + (1 = F) [Tp41 — 2p,L)

(1 —Fk)k[l'k_H —iL‘k] > 0

V2
2

with strict inequality, when there isn’t complete pooling. An analogous argument
works for (UP’). Hence ¢ > 0 and the original problem satisfies the lexicographic
order on I x L.

Which concludes the proof of the Theorem.

Proof of Proposition 3.5: This follows immediately from the utility-space problem
above, noticing that the participation constraint has to bind and summing the utility
term by parts.

m

Returning to x, let us define a block b of indices as a set of indices that satisfies the

following three conditions

1. if (k1) € b&(K',l') € b, then (K”,1") € b for all (kK",1") satisfying (k,l) <
(K", 1") < (K',l") (i.e. bis an order interval in the lexicographic order underlying

the problem),
2. if (k,1) € b, then either o4; > 0, (k,[) = minb, and

3. b is maximal with respect to these properties.

In other words, we call a set of indices a block, if it is an interval of indices between

which the monotonicity constraint binds. Note that a single index {(k,l)} is a
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block according to this condition iff both the downward (ox,;) and upward (o 41)
monotonicity constraints are slack, or it is the minimal index (k,[) (in case the
non-negativity constraint is binding). It is easy to see that the set of blocks forms a
partition of IC x £ and that z}; is measurable with respect to this partition. We can
order the blocks by extending the lexicographic order to them.

Denote x; the level of consumption on the block b, similarly f, = Z(k,l)eb frg I
(k,l) € b and 0; > 0, we get x, = 0. Otherwise, let us sum the FOC wrt = over a

block to arrive at

oL ~
> =2 = f[(1+ATEEIY]) — 2] + Cfo + Omind — Omaxber — Y, VTAkp1 =0
{k:(k,L)eb}

As by definition of a block, o, = 0, except in the case of the lowest block, which
we treated separately. Similarly, for every block opaxpr1 = 0, hence
ElD]  Zpnen L E

Structure of Monotonicity Blocks

Note that because the only "sources of non-monotonicity" are adjacent to k, L,

every bunching region needs to contain such a type.

Proof of Lemma 3.4: Conditional on a block structure, the xy; are continous. But
note that the convexification procedure in our case can be rewritten as a continous
operations on the finite-dimensional space of virtual values that is continous in virtual
values. Hence, I' is continous.

Note that

K-1

C=7 Z JrikTy, — Z (1= Fp) xey p + ke (Z)

k

<7 Z frikrr +r <7 Z frikrxn + Kk =Elkleg + K

< ~E[K] (1 + KT+ gﬁ) + K
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To bound aggregate consumption

We arrive at

¢ VE[K] + K VEkvK  AE[k g5
L-gX g ) _ [ =m
VE[RIYEK 1 —E[k g ¢ ) " \EK+r

The matrix is positive definite if 1 — ﬁyK - 7E[l€]ﬁ >0, ie 1> vﬁ (K + E[k]).
Then, we get upper bounds by inverting the matrix.
[

Proof of Theorem (3.2): Consider I' as defined on co(cl(range(I"))). This set is convex
and compact, as the range is precompact and the convex hull of compact sets is
compact in finite-dimensional vector spaces. The existence of a fixed point follows
from Brouwer’s theorem. We established that the optimal contract takes the desired
form for any given z,(. Equation (3.14) encodes consistency conditions. The first
component is the definition of z and therefore required by feasibility. The second
component is the definition of (, the proof of optimality conditional on Z, ( is pred-
icated on this equation being satisfied. Hence, both are necessary conditions for an

optimum.

]

Proof of Proposition 3.6: We can rewrite the problem in utility space, noting that

u = (1 4+~Tk) x5 — %xil — pry or equivalently py = (1 4+ ~Tk) xg, — %le — Uy

Then, P is equivalent to uy,; = 0 where equality follows from by the usual argument.

IC is equivalent to ug; > wp; + 7% (k — k') 247;. Again, by the usual arguments,

local downward IC and monotonicity are sufficient and IC are binding, hence wuy; =
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YT Zf:_klo x;;. Plugging this into the objective and applying summation by parts to
the double sum, we arrive at the Proposition.
O

.- FlL —F!
Proof of Proposition 3.7: Let Fy = Zf:@ fiz- Then ¢ = ’VZM Jr {k - ’“}xkl

and the claim about ( follows since

K K K
Z kfrzn = Z Z Efrzn = Z Z (FL — Fi_) kaw = Z Z Fikay — Z i kay
ol Tk Ik I & k

?

K
—Z ZF Tkl — (k)+1) xk—&-ll
k

el
|
-

F]i (k? + 1) T+1,1 + Féf1kx@,l — FII( (K + 1) X

0

\wa |

R
>

Fi (K+1 $K+1l—ZFk (b + 1) wpy10 — kg

l k

K
Z Fékl’kl
k
K

Z Z ]{Z + 1) Lk4+1,0 — ]CJ?]CJ]
l

k

Note that xx1, is an arbitrary extension of the sequence and will cancel out of the

expression. Plugging back, we get

K
CI’}/ ZZ(FII(—Fé) [(k+1)$k+1,l—kxk7l]—(F;(—F]i)l‘kl
Lk

K
=7 Z Z (Fi — F}) [kansrg — kol + (Fie — FL) [#re10 — Tad)
Ik

=7 ZZ(FII{ Fl) <k+ )[karl,l_xk,l] >0

Note that the system is fully linear, so we can solve it (a little bit)
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fk—i—ll

=~ Fl — F} Fi. — F}
_ ! l . k+1 K k
C”y{% Ek (Fi — F) (k+ 1)~z {k+1 — —k+ i }}

Jrt1y

B Ve E[I?]
= T ]~ ) {Em T ER C}

Where we noticed that

;l (Fi — Fy) Zlf (1 - —) Zlsz( —~ T’i) Zlf, [k[1] — k) = E[kl]—kE[]

k=k

K 1l Il
’YQx{ZZ(F}{ F}) (k+1)[ P F’“+1+FKf F’“]}
T % Kl

The level of consumption is increasing in [ if

z FL_ R

is increasing in [.
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