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Classical GMM theory

Classical theory of GMM

Econometrician has a moment condition to be used in estimation:

E[g(X , θ0)] = 0

Sample X1, ...,Xn comes from distribution satisfying moment
condition

Estimation

θ̂ = argmin
θ

(
1

n

∑
i

g(Xi , θ)

)′

W

(
1

n

∑
i

g(Xi , θ)

)

Classical theory gives consistency and gaussianity results, optimal
choice of W and test of over-identifying assumptions
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Classical GMM theory

Examples of GMM model

Example Euler equation E
[
δ
(
Ct+1

Ct

)−γ
Rt+1 − 1

∣∣∣∣ It] = 0

E

[(
δ

(
Ct+1

Ct

)−γ

Rt+1 − 1

)
⊗ Zt

]
= 0

for any Zt observed at time t

Data {Ct ,Rt ,Zt} for t ∈ {1, ...,T}
Unknown parameter θ = (δ, γ)
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Classical GMM theory

Classical theory of extremum estimators

θ̂ = argminθ Q̂n(θ)

MLE:

observed data Xi ∼ f (x |θ),
Q̂n(θ) = − 1

n

∑
i log f (Xi |θ)

GMM :

moment condition Eg(X , θ0) = 0

Q̂n(θ) =
(
1
n

∑
i g(Xi , θ)

)′
W
(
1
n

∑
i g(Xi , θ)

)
Minimum distance:

ϕ̂ is preliminary reduced form estimator
model suggests a link function ϕ = h(θ)

Q̂n(θ) =
(
ϕ̂− h(θ)

)′
W
(
ϕ̂− h(θ)

)
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Classical GMM theory

Classical theory of extremum estimators

Consistency

Q̂n(θ) →p Q(θ) uniformly
Identification: Q(θ) is maximized at the single point θ0 and it is well
separated:

min
θ:|θ−θ0|>ε

Q(θ) > Q(θ0) + δ

Then
θ̂ →p θ0

It allows us to localize our asymptotics and consider only shrinking
neighborhood of θ0
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Classical GMM theory

Classical theory of extremum estimators

Once we have consistent estimator we look in locality

∂

∂θ
Q̂n(θ̂) = 0

We do Taylor expansion at θ0

∂

∂θ
Q̂n(θ0) + H(θ̂ − θ0) = 0, where H =

∂2

∂θ∂θ′
Q̂n(θ

∗)

Important statements:

properly normalized H converges to constant matrix,
properly normalized ∂

∂θ Q̂n(θ0) converges to gaussian

√
n(θ̂ − θ0) = −

√
nH−1 ∂

∂θ
Q̂n(θ0) ⇒ N(0,Σ)
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Classical GMM theory

Classical theory of extremum estimators

Once we have gaussianity, we can choose optimal W ∗ = Σ−1, where
Σ = Var( 1√

n

∑
i g(Xi , θ0))

θ̂ = argmin
θ

(∑
i

g(Xi , θ)

)′
Σ−1

n

(∑
i

g(Xi , θ)

)
= argmin

θ
Qn(θ)

How to implement optimal GMM:

Two-step efficient GMM (Ŵ = Σ̂(θ̂1)
−1)

Constantly-updated estimator(Σ̂(θ)−1)

Test of over-identifying restrictions: J = Qn(θ̂)
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Classical GMM theory

Classical theory of extremum estimators

θ̂ = argmin
θ

(∑
i

g(Xi , θ)

)′
Σ−1

n

(∑
i

g(Xi , θ)

)
= argmin

θ
Qn(θ)

Let K is the number of moment conditions, and d < K is the number
of parameters

Original K moments g(X , θ) can be decomposed into d most
informative g̃(X , θ) (efficient estimation) and K − d over-identified
moments g⊥(X , θ)

g̃(X , θ) = G ′Σ−1g(X , θ) is just identified moment condition most
informative about θ, for G = E ∂

∂θg(X , θ0)

J-test is quadratic form of g⊥(X , θ)
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Classical GMM theory

Classical theory of extremum estimators

Classic theory (essentially) assumes

Objective function is slightly-disturbed quadratic function

It localizes well

All important features can be captured by (relatively)
small-dimensional parameter

location of maximum
variance of objective function
curvature (hessian)

IV regression has this structure without localizing
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Modeling weak identification: first results

Examples of weakly-identified models

Example 1 Non-linear regression:

Yi = βh(Xi , θ) + γZi + ei

If β = 0, then θ is completely unidentified

If β ≈ 0, then asymptotic behavior of θ is non-standard
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Modeling weak identification: first results

Examples of weakly-identified models

Example 2 ARMA(1,1) model:

yt = αyt−1 + et − βet−1

or
(1− αL)yt = (1− βL)et

If MA and AR roots coincide α = β, then

yt = et

Neither α nor β are identified

If α− β ≈ 0 the usual asymptotics breaks
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Modeling weak identification: first results

Examples of weakly-identified models

Example 3 Euler equation E
[
δ
(
Ct+1

Ct

)−γ
Rt+1 − 1

∣∣∣∣ It] = 0

E

[(
δ

(
Ct+1

Ct

)−γ

Rt+1 − 1

)
⊗ Zt

]
= 0

for any Zt observed at time t

There is a log-linearized version of Euler equation:

E [(rt+1 − µ− ψ∆ct+1)⊗ Zt ] = 0

Linear IV version is weakly identified (hard to predict change in
consumption)

Is non-linear version better estimable?
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Modeling weak identification: first results

Examples of weakly-identified models

New Keynsian Phillips Curve (Henry and Pagan 2004; Mavroeidis
2004; Nason and Smith 2008; Mavroeidis et al. 2014);

Intertemporal CAPM (Stock and Wright 2000) ;

Monetary policy rule (Consolo and Favero 2009);

Structural VARs (Chevillon et al. 2016; Stock and Watson 2016);

Dynamic Stochastic General Equilibrium models (Andrews and
Mikusheva 2015; Qu 2014, Canova and Sala 2009, Iskrev 2007);

Differentiated products demand estimation models (Armstrong 2016).
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Modeling weak identification: first results

Modeling weak-identification

Stock and Wright (2000)

Moment condition Eg(X , α0, β0) = 0, here θ = (α, β)

E

(
1

n

n∑
i=1

g(Xi , α, β)

)
= m(α) +

1√
n
m̃(α, β) + O(1/n)

while
√
n

(
1

n

n∑
i=1

g(Xi , α0, β0)

)
⇒ N(0,Σ)

Both m(α) and m̃(α0, β) have well separated zero at (α0, β0)

Parameter α is “strongly identified”, β is “weakly identified”
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Modeling weak identification: first results

Modeling weak-identification (Stock and Wright, 2000)

E

(
1

n

n∑
i=1

g(Xi , α, β)

)
= m(α) +

1√
n
m̃(α, β) + O(1/n)

Information about α is stronger than noise Op

(
1√
n

)
Information about β is on the same scale of magnitude as noise

Common implications:

α can be estimated consistently, β cannot be estimated consistently
distributions of many classic statistics are not standard, distributions
depend on m-functions
can linearize with respect to α, but not with respect to β
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Modeling weak identification: first results

Modeling weak-identification

Nice features

Does not require any special structure of identification

Allows to think about validity/invalidity of some procedures

Problems:

Not clear how and why such embedding arises in practice, and how it
should be recognised

No clear measure of the strength of identification

How to detect in practice?
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Weak identification- robust inferences

Robust testing

Assumptions:

Moment condition Eg(X , θ0) = 0

CLT holds at the true value

√
n

(
1

n

n∑
i=1

g(Xi , θ0)

)
⇒ N(0,Σ)

We do not assume that we can localize θ in any way (cannot rely on
any consistent estimator)

Can we test H0 : θ = θ0?
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Weak identification- robust inferences

AR test (only information at θ0)

√
n

(
1

n

n∑
i=1

g(Xi , θ0)

)
⇒ N(0,Σ)

AR test additionally needs only any consistent variance estimate
Σ̂ →p Σ

AR(θ0) = Qn(θ0) =
1

n

(
n∑

i=1

g(Xi , θ0)

)′

Σ̂−1

(
n∑

i=1

g(Xi , θ0)

)

Under true null H0 : θ = θ0 we have AR(θ0) ⇒ χ2
K

K is the number of moment conditions
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Weak identification- robust inferences

AR test (only information at θ0)

Validity of the AR test does not require any assumption on
identification: it can be use in non-identified models, partially
identified models

AR test is a common tool in set-estimation

Confidence set= {θ0 : AR(θ0) ≤ χ2
K ,1−α}

AR test is Qn(θ0), it uses only information at θ0

20 / 40



Weak identification- robust inferences

AR test (only information at θ0)

Challenges of using AR confidence set:

Needs grid search- can be computationally hard

AR set tends to be wide:

1. It tends to be very wide if many moments are tested (inefficiency)

2. It tends to be wide as it uses only information at θ0 and not the
whole information available

3. It tends to be very wide because it tests the whole θ0 (we discuss it
later- sub-vector inference)
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Weak identification- robust inferences

AR test inefficiency

Moment condition E[g(X , θ0)] = 0 is K -dimensional

Want to test H0 : θ = θ0

Assume the dimension of θ0 is less (d < K )- over-identified case

If identification is strong we would not use AR- it is inefficient
compared with Wald, LM or LR

AR test uses all moments equally without trying to choose which
moments are more informative about θ
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Weak identification- robust inferences

LM test (only local information)

If identification is strong, we would select the most informative
combination of moments (locally H0 : θ = θ0)
g̃(X , θ) = G ′Σ−1g(X , θ) and test only them:

LM(θ0) = n

(
1

n

n∑
i=1

g̃(Xi , θ0)

)′

Σ̃−1

(
1

n

n∑
i=1

g̃(Xi , θ0)

)

Under strong id LM(θ0) ⇒ χ2
d is efficient

It does not have correct size under weak identification

Problem: information about informative direction G = E ∂
∂θg(X , θ0)

is noisy (and correlated with moments)
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Weak identification- robust inferences

LM test (only local information)

Kleibergen (Ecta, 2003) created a robust version of LM test

Estimator of informative direction uses Ĝ = 1
n

∑
i

∂
∂θg(Xi , θ0)

It is correlated with the moment gn(θ0) =
1
n

∑
i g(Xi , θ0)

But (gn, Ĝ ) is jointly gaussian with estimable covariance matrix

Let D be a part of Ĝ orthogonal to gn(θ0), then we can use it to
create a valid test

KLM(θ0) = n(gn(θ0)
′Σ−1D)Σ̃−1(D ′Σ−1gn(θ0))
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Weak identification- robust inferences

LM test (only local information)

KLM(θ0) = n(gn(θ0)
′Σ−1D)Σ̃−1(D ′Σ−1gn(θ0)) ⇒ χ2

d

This is test for H0 : θ = θ0

Under weak id: D is independent of gn(θ0)- we can condition on it.
Correct size

Under strong identification: D →p G = E ∂
∂θg(X , θ0) and the test is

efficient

Test uses additional local information (derivative of the moment
function at θ0)
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Weak identification- robust inferences

How to use global information?

Under strong identification, local information is all we need
(remember the localization argument!)

For linear models we only have level and the first derivative

For weakly identified models there is a ton of other information(!!!)

One statistic that may be promising (and efficient under strong
identification)

LR(θ0) = Qn(θ0)−min
θ

Qn(θ)

Compare: AR(θ0) = Qn(θ0)

Big question is how to construct critical values to be robust?
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Weak identification- robust inferences

How to use global information?

Empirical moment gn(θ) =
1
n

∑
i g(Xi , θ)

estimates the true moment mn(θ) = Egn(θ)
with a mistake of order 1√

n

If mn(θ) strongly separated from zero, we would know that

Only in the area where identification is weak (mn(θ) =
1√
n
m̃(θ)) we

have hard time figuring out whether mn(θ) = 0

Modeling √
ngn(θ) ≈ GP(m̃(·),Σ)

We can estimate covariance function Σ(·, ·) consistently
We want to test H0 : m̃(θ0) = 0

27 / 40



Weak identification- robust inferences

Conditioning (how to use global information)

√
ngn(θ) ≈ GP(m̃(·),Σ)

We want to test H0 : m̃(θ0) = 0

Whole function m̃(·) is a nuisance parameter

It cannot be summarized by derivatives (non-parametric)

Any global statistic (such as LR) depends on m̃(·)
Idea: find a sufficient statistics h(·) for m̃(·)

conditional distribution P{LR(θ0) ≤ x |h(·)} does not depend on m̃(·)
create critical values depending on h(·)
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Weak identification- robust inferences

Conditioning (how to use global information)

√
ngn(θ) ≈ GP(m̃(·),Σ)

We want to test H0 : m̃(θ0) = 0

Under the null ξ =
√
ngn(θ0) is mean zero Gaussian under the null

h(θ) =
√
ngn(θ)− Σ(θ, θ0)Σ(θ0, θ0)

−1ξ

h(·) is part of gn(·) orthogonal to
√
ngn(θ0)√

ngn(θ) = h(θ) + A(θ)ξ
Eh(θ) = m̃(θ) : h is a sufficient statistics for m̃(·)
For any global statistics create critical values depending on h(·)
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Weak identification- robust inferences

Conditioning (how to use global information)

LR(θ0; gn(·)) = Qn(θ0; gn)−min
θ

Qn(θ; gn)

Qn(θ; gn) = ngn(θ)
′Σ(θ, θ)−1gn(θ)

We want to test H0 : m̃(θ0) = 0

Calculate h(θ) =
√
ngn(θ)− A(θ)ξ with A(θ) = Σ(θ, θ0)Σ(θ0, θ0)

−1

Simulate critical values:

Draw ξ∗ ∼ N(0,Σ(θ0, θ0))
Define new empirical moment

√
ng∗

n (θ) = h(θ) + A(θ)ξ∗

LR∗ = LR(θ0; g
∗
n (·))

Find quantiles of LR∗ by repeating simulations

Accept if LR(θ0; gn(·)) is less than 1− α simulated quantile
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Weak identification- robust inferences

Conditioning (how to use global information)

In GMM setting Eg(X , θ0) = 0 for any statistics S under H0 : θ = θ0
we can find conditional critical values

P{S > q1−α(h)|h(·)} = 1− α

Test like this are robust to weak/partial identification

Conditional LR test is efficient under strong identification
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Weak identification- robust inferences

AR test

Challenges of using AR confidence set:

1. It tends to be very wide if many moments are tested - solution: KLM
test

2. It tends to be wide as it uses only information at θ0 and not the
whole information available - solution: conditional inference

3. It tends to be very wide because it tests the whole θ0
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Weak identification- robust inferences

Problem: sub-vector inference

Let θ = (α, β), and α is parameter of interest.

Identification robust tests are for hypothesis about the whole
parameter H0 : θ = θ0

How to test H0 : α = α0?

One solution - projection method:
if there exists at least one β0 such that H0 : θ = (α0, β0) is accepted,
then H0 : α = α0 is accepted

Implementation: create a confidence set for θ (by inverting tests
H0 : θ = θ0) and then project it on α-space

Problem- very conservative
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Weak identification- robust inferences

Problem: sub-vector inference

If one has a consistent and asymptotically gaussian estimator for β,
then one can do better

Re-define g̃n(α) =
1
n

∑
i g(Xi , α, β̂)

Usually under the true null H0 : α = α0 we have

√
ng̃n(α0) ⇒ N(0, Σ̃)

where Σ̃ takes into account that
√
n(β̂ − β0) is asymptotically

gaussian

Then one can use robust statistics (AR, KLM, conditional LR)

This does not work if β is weakly identified
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Weak identification- robust inferences

Best practical suggestion on inferences

If you have a moment condition that depends on many parameters,
you are interested in α (part of the total parameter)

1. Try to re-parameterize model in such a way that θ = (α, β1, β2) and
β2 is strongly identified (well-estimable)- we do not have formal test
(sorry!!!!)

2. New moment condition g̃n(α, β1) =
1
n

∑
i g(Xi , α, β1, β̂2). Calculate

proper Σ̃ accounting for estimated β2

3. Create join confidence set for (α, β1) by inverting a robust test

4. Project on α-space
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Estimation under weak identification

Estimation

Efficient GMM (two-step GMM, three-step GMM, CUGMM) is
asymptotically efficient under strong identification

But it is not the only efficient estimator, so are GEL, Quasi-Bayes and
others

Under strong identification many estimators are asymptotically
equivalent

Under weak identification they all tend to differ

There is no uniformly best estimator under weak identification
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Estimation under weak identification

Estimation

If identification is weak, GMM is discontinuous in ‘data’

Small change in data set may produce large change in estimator

Asymptotically admissible estimator have to be ‘continuous’ in data

GMM is not asymptotically admissible under weak identification
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Estimation under weak identification

Estimation

There is no uniformly best estimator under weak identification

There are trade-offs over different parts of parameter space

Researcher preferences may be captured by priors

If there is a prior π(θ), we argue for Quasi-Bayes estimator

θ̂QB =

∫
θ exp{−1

2Qn(θ)}π(θ)dθ∫
exp{−1

2Qn(θ)}π(θ)dθ

This estimator is much smoother than GMM
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Conclusions and Open questions

Conclusions and Open Questions

Strongly identified GMM is asymptotically similar to linear IV (only
linear part survives)

Weak identification empirically shows as a difficulty to find extremum

Parameter space of weakly identified models is huge and no uniformly
efficient procedures exist

Weak id-robust tests may use global information if conditioning is
used

Robust tests rely on all weakly identified coefficients be tested
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Conclusions and Open questions

(Hard) open questions

Open question: how to (pre-) test for weak identification without
imposing too much structure?

Open question: How to construct an identification robust test for
sub-vector of parameters that has better power properties than
projection procedures?

Open question: How to differentiate between weakly and strongly
identified parameters empirically?
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