Sargan Lectures: Weakly Identified Econometric Models

Anna Mikusheva

MIT

June, 2024

- 1 Linear IV model with weak instruments
- 2 Many Instruments
- 3 Weak GMM and other structural models

Sargan Lecture 1 Weak Instruments

Anna Mikusheva

MIT

June, 2024

Outline

- 2 [Weak IV phenomenon](#page-16-0)
- 3 [Identification Robust Inference](#page-25-0) **•** [Full parameter inference](#page-25-0)
	- **•** [Sub-vector inference](#page-35-0)

[Estimation](#page-39-0)

Introduction

• Linear regressions with i.i.d. data:

$$
Y_i = \beta' X_i + \gamma' W_i + e_i
$$

can be estimated by OLS when we have exogeneity

- $\mathbb{E} [e_i(X_i';W_i')'] = 0$
- sometimes we assume $\mathbb{E}[e_i|X_i,W_i]=0$
- In observational data exogeneity often does not hold
- Example 1: Angrist and Krueger (1991)

 $wage_i = \beta$ education_i + controls + e_i ,

• Reasons for violations of exogeneity include missing confounding factors, simultaneity, mis-measurement

Introduction

$$
Y_i = \beta' X_i + \gamma' W_i + e_i
$$

- Common strategy in applied economics Instrumental Variables
- Instrument Z_i is a variable the produces exogenous variation in the regressor (conditional on controls)
	- \bullet Z moves X (relevance)
	- $\mathbb{E}[Ze] = 0$ (exogeneity)
- Example 1: Angrist and Krueger (1991)

 $wage_i = \beta$ education_i + controls + e_i,

• Instrument is quarter of birth

Overview

1 [Classic asymptotic results](#page-7-0)

- [Weak IV phenomenon](#page-16-0)
- [Identification Robust Inference](#page-25-0)

[Estimation](#page-39-0)

$$
Y_i = \beta' X_i + \gamma' W_i + e_i, \text{ with } \mathbb{E}[W_i e_i] = 0
$$

• Instruments Z_i (*K*-dimensional) satisfy:

- exogeneity: $\mathbb{E}[Z_i e_i] = 0$
- relevance: $X_i = \pi' Z_i + \delta' W_i + v_i$, ran $k(\pi) = dim(X_i)$
- GMM moment condition

$$
\mathbb{E}\left[(Y_i - \beta'X_i - \gamma'W_i)(Z_i', W_i')'\right] = 0
$$

$$
Y_i = \beta' X_i + \gamma' W_i + e_i, \text{ with } \mathbb{E}[W_i e_i] = 0
$$

- Instruments Z_i (*K*-dimensional)
- \bullet In case of small dimensional W_i asymptotic analysis is equivalent to considering partialled out model

$$
\tilde{Y}_i = \beta' \tilde{X}_i + \tilde{e}_i
$$

with instrument $\tilde Z_i$, where variables with tilde $\tilde{Y} = (I - W(W'W)^{-1}W')Y$ are residuals from regression on W.

• From now we concentrate on model without controls (controls are partialled out):

$$
Y_i = \beta' X_i + e_i,
$$

- Instruments Z_i (*K*-dimensional) satisfy:
	- exogeneity: $\mathbb{E}[Z_i e_i] = 0$
	- relevance: $X_i = \pi' Z_i + v_i$, ran $k(\pi) = dim(X_i)$
- GMM estimator:

$$
\widehat{\beta}(\mathcal{S}) = \arg\min_{\beta} (Y - X\beta)' \mathcal{Z} \mathcal{S} \mathcal{Z}' (Y - X\beta)
$$

where S is some positive-definite weight matrix

• In just identified case weight matrix is unimportant

$$
\widehat{\beta}=(Z'X)^{-1}Z'Y
$$

• The logic of consistency and asymptotic gaussianity:

$$
\sqrt{n}(\widehat{\beta}-\beta_0)=\left(\frac{1}{n}Z'X\right)^{-1}\frac{1}{\sqrt{n}}Z'e
$$

- Law of Large Numbers $\frac{1}{n}Z'X \to^p \mathbb{E}[Z_iX'_i]$ CLT: $\frac{1}{\sqrt{n}}Z'e \Rightarrow N(0, \mathbb{E}[e_i^2 Z_i Z'_i])$
- If $\mathbb{E}[Z_iX_i']$ is a full rank matrix (relevance), then $\widehat{\beta}$ is consistent and asymptotically gaussian

$$
\sqrt{n}(\widehat{\beta}-\beta_0) \Rightarrow N\left(0,\left(\mathbb{E}[X_iZ_i']\right)^{-1}\mathbb{E}[e_i^2Z_iZ_i']\left(\mathbb{E}[Z_iX_i']\right)^{-1}\right)
$$

GMM estimator in an over-identified case:

$$
\widehat{\beta}(\mathcal{S}) = \arg\min_{\beta} (Y - X\beta)'ZSZ' (Y - X\beta)
$$

where S is some positive-definite weight matrix

Under some conditions (relevance is one of them):

$$
\widehat{\beta}(S) = \left(X'ZSZ'X\right)^{-1}X'ZSZ'Y
$$

is consistent and asymptotically gaussian

Optimal choice of weight matrix $S^* = (\mathbb{E}[e_i^2 Z_i Z'_i])^{-1}$

• GMM estimator (let X be d-dimensional, $d < K$):

$$
\widehat{\beta}(\mathcal{S}) = \arg\min_{\beta} (Y - X\beta)'ZSZ' (Y - X\beta)
$$

• First order condition:

$$
\frac{X'Z}{n}SZ'(Y-X\beta)=0
$$

combines instruments to a just identified set $Z_s = Z \cdot S \cdot \frac{(Z'X)}{n}$ n Optimal instrument

$$
Z^* = Z \cdot (\mathbb{E}[e_i^2 Z_i Z_i'])^{-1} \cdot \mathbb{E}[Z_i X_i']
$$

weights signal and noise optimally

- GMM estimator: $\widehat{\beta}(S) = \arg\min_{\beta}(Y X\beta)'ZSZ'(Y X\beta)$
- Infeasible optimal choice of weight matrix $S^* = (\mathbb{E}[e_i^2 Z_i Z'_i])^{-1}$
- We need $\hat{\Sigma}(\beta)$ a consistent estimator of asymptotic variance of $Z'(Y - X\beta)$
- **•** Feasible realizations of efficient IV:
	- 2 step efficient GMM

$$
\widehat{\beta}_{2\text{\footnotesize{GMM}}}=\mathsf{arg\,min}_{\beta}(Y-X\beta)'Z\left[\hat{\Sigma}(\hat{\beta}_0)\right]^{-1}Z'(Y-X\beta)
$$

- Continuously updated GMM $\widehat{\beta}_{\text{\emph{CUE}}}=\mathsf{arg\,min}_{\beta}(Y-X\beta)'Z\left[\hat{\Sigma}(\beta)\right]^{-1}Z'(Y-X\beta)$
- Under homoskedasticity $\Sigma(\beta_0) \propto (Z'Z)$
	- 2 Step GMM= TSLS
	- \bullet CUE=LIML

Summary

Classical asymptotics is based on two ideas:

- 1. A properly selected just-identified IV is consistent and asymptotically gaussian because:
	- Numerator is gaussian (exogeneity important here)
	- Denominator is consistent and full rank (relevance!)
- 2. Signal is strong enough that one can select consistently an optimal instrument

Overview

[Classic asymptotic results](#page-7-0)

2 [Weak IV phenomenon](#page-16-0)

[Identification Robust Inference](#page-25-0)

[Estimation](#page-39-0)

Examples of Weak IV

• Example 1: Angrist and Krueger (1991)

 $wage_i = \beta$ education_i + controls + e_i ,

- Instrument is quarter of birth
- **•** Empirical sample
	- very large sample ($>$ 300K observations)
	- very low first stage R^2 (between .0001 and .0002)
	- quite tight standard errors for IV estimate
- Bound, Jaeger and Baker (1995) randomly simulated quarter of birth and re-run estimation - nothing in their IV estimates suggested that they are invalid (!)

Examples of Weak IV

• Euler equation

$$
\mathbb{E}[(\Delta c_{t+1}-\tau-\psi r_{t+1})Z_t]=0
$$

Can estimate it two different ways:

 $\Delta c_{t+1} = \tau + \psi r_{t+1} + e_t$ using instruments Z_t

 $r_{t+1} = \mu + \gamma \Delta c_{t+1} + v_t$ using instruments Z_t

- We have $\psi = 1/\gamma$
- In data the standard confidence sets for ψ obtained in two ways do not intersect
- Problem: Δc_{t+1} is hard to forecast (leads to weak instruments)

Weak IV with 1 regressor and 1 instrument

$$
Y_i = \beta' X_i + e_i
$$
, with instrument Z_i

Estimator does not depend on weight matrix (in just id case)

$$
\widehat{\beta} = \frac{\sum_{i} Z_{i} Y_{i}}{\sum_{i} Z_{i} X_{i}}; \quad \sqrt{n}(\widehat{\beta} - \beta_{0}) = \frac{\frac{1}{\sqrt{n}} \sum_{i} Z_{i} e_{i}}{\frac{1}{n} \sum_{i} Z_{i} X_{i}}
$$

- Exogeneity means $\mathbb{E}[Z_i e_i] = 0$, CLT holds under quite wide set of assumptions: $\frac{1}{\sqrt{2}}$ $\frac{1}{n} \sum_i Z_i e_i \Rightarrow N(0, \Sigma)$
- 1 $\frac{1}{n} \sum_i Z_i X_i \rightarrow^p \mathbb{E}[Z_i X_i]$, by relevance $\mathbb{E}[Z_i X_i] \neq 0$

Weak IV with 1 regressor and 1 instrument

$$
\sqrt{n}(\widehat{\beta}-\beta_0)=\frac{\frac{1}{\sqrt{n}}\sum_i Z_i e_i}{\frac{1}{n}\sum_i Z_i X_i}
$$

- CLT for denominator $\frac{1}{\sqrt{2}}$ $\frac{1}{n} \sum_i (Z_i X_i - \mathbb{E}[Z_i X_i]) \Rightarrow N(0, \Omega)$
- Denominator $\frac{1}{n} \sum_i Z_i X_i \approx \mathbb{E}[Z_i X_i] + \frac{1}{\sqrt{2n}}$ $\frac{1}{n}N(0, \Omega)$
- If noise $\frac{1}{\sqrt{2}}$ $\frac{1}{n}$ N $(0,\Omega)$ is comparable in size to the signal $\mathbb{E}[Z_iX_i]$, the numerator may be close to zero

Weak identification: explanation

- Here $\theta_0 = \mathbb{E}[Z_i X_i]$ and $\widehat{\theta} = \frac{1}{n}$ $\frac{1}{n}\sum_i Z_i X_i$
- Concentration parameter $\mu^2 = \frac{(\mathbb{E}[Z_i X_i])^2}{\text{Var}(Z, X_i)}$ $\frac{(\mathbb{E}[Z_i \lambda_i])^+}{Var(Z_i X_i)/n}$, signal-to-noise ratio measures the extent of problem

Weak identification: explanation

$$
\mu(\widehat{\beta}-\beta_0)=\sqrt{\frac{\Sigma}{\Omega}}\cdot\frac{\xi_e}{1+\frac{\xi_x}{\mu}}
$$

$$
\bullet \ \xi_e = \tfrac{1}{\sqrt{n\Sigma}} \sum_i Z_i e_i \Rightarrow N(0,1)
$$

- $\xi_{x} = \frac{1}{\sqrt{r}}$ $\frac{1}{n\Omega}\sum_i(Z_iX_i-\mathbb{E}[Z_iX_i])\Rightarrow N(0,1)$
- \bullet ξ_e and ξ_x are correlated (endogeneity of X_i), this creates a bias
- If the instrument is irrelevant $(\mu=0)$, then $\widehat{\beta}-\beta_0=\sqrt{\frac{\Sigma}{\Omega}}$ $\frac{\Sigma}{\Omega} \cdot \frac{\xi_{\epsilon}}{\xi_{x}}$ $\frac{\xi e}{\xi_x}$ is asymptotically centered at $\widehat{\beta}_{OL}$
- Concentration parameter μ^2 serves as effective sample size

Weak identification: explanation

instruments, the adjusted R² of the first-stage regression would just-identified Simulations from Stock et al (2002). Homoskedastic just identified
($K = 1$) case, $\frac{\Sigma}{\Omega} = 1$, correlation of errors is 0.99
^{21/38} $\left(K=1\right)$ case, $\frac{\Sigma }{\Omega }=1$, correlation of errors is 0.99

Weak identification: pre-test

- Concentration parameter $\mu^2 = \frac{(\mathbb{E}[Z_i X_i])^2}{Var(Z_i X_i)}$ $\frac{\left(\frac{\ln(2/\lambda_i)}{\ln(2/\lambda_i)}\right)}{\text{Var}(Z_iX_i)/n}$, signal-to-noise ratio measures the extent of problem
- If μ^2 is small, $\widehat{\beta}$ is biased towards OLS, *t*-statistics tests/confidence sets are not reliable
- **•** First stage regression $X_i = \pi Z_i + v_i$
- First stage F-statistics for testing H_0 : $\pi=0$ is a good proxy for μ^2 in just-identified case with 1 endogenous regressor
- Empirical rule of thumb: $F > 10$ gives reliable inference
- This rule is not satisfactory outside of 1-regressor, 1-instrument settings

Overview

[Classic asymptotic results](#page-7-0)

[Weak IV phenomenon](#page-16-0)

3 [Identification Robust Inference](#page-25-0) [Full parameter inference](#page-25-0) **•** [Sub-vector inference](#page-35-0)

[Estimation](#page-39-0)

AR test

$$
Y_i = \beta' X_i + e_i
$$

- Assumption is exogeneity: $\mathbb{E}[Z_i e_i] = 0$
- Want to test H_0 : $\beta = \beta_0$ in a reliable way
- ldea: if β_0 is true parameter value then $e_i = Y_i \beta'_0 X_i$ is uncorrelated with Z_i
- Under minor assumptions: $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{n}}\sum_i Z_i(Y_i - \beta'_0 X_i) \Rightarrow N(0, \Sigma)$
- \bullet We can construct a consistent estimator of Σ

$$
AR(\beta_0) = \frac{1}{n}(Y - \beta_0 X)'Z\widehat{\Sigma}^{-1}Z'(Y - \beta_0 X) \Rightarrow \chi^2_K
$$

AR test

- Intuition of AR test in a just identified case
- $\theta_1 = \mathbb{E}[Z_iY_i]$ and $\widehat{\theta}_1 = \frac{1}{n}$ $\frac{1}{n} \sum_i Z_i Y_i$ and $\theta_2 = \mathbb{E}[Z_i X_i]$ and $\widehat{\theta}_2 = \frac{1}{n}$ $\frac{1}{n}\sum_i Z_i X_i$
- $\sqrt{n}(\widehat{\theta}_1 \theta_1) \Rightarrow N(0, \Sigma)$ and $\sqrt{n}(\widehat{\theta}_2 \theta_2) \Rightarrow N(0, \Omega)$
- Parameter of interest $\beta = \frac{\theta_1}{\theta_2}$ $\frac{\theta_1}{\theta_2}$ and $\widehat{\beta} = \frac{\theta_1}{\widehat{\theta}_2}$ θ_2
- By delta-method $\sqrt{n}(\widehat{\beta} \beta) \Rightarrow N(0, \Sigma_{\beta})$
- Classic asymptotics test for H_0 : $\beta=\beta_0$ using t-statistics : $\sqrt{\frac{n}{n}}$ $\frac{n}{\Sigma_{\beta}}(\beta-\beta_0) \Rightarrow N(0,1)$
- AR reformulates a hypothesis as H_0 : $\theta_1 = \beta_0 \theta_2$ and tests this hypothesis:

$$
AR(\beta_0) = \frac{\left(\widehat{\theta}_1 - \beta_0 \widehat{\theta}_2\right)^2}{Var(\widehat{\theta}_1 - \beta_0 \widehat{\theta}_2)}
$$

AR test

- **•** One can test H_0 : $\beta = \beta_0$ identification robust way accepting $AR(\beta_0) < \chi^2_{k,1-\alpha}$
- Optimal set in a class of robust test with some invariance property for a just-identified case
- Applicable in several regressors and or several instruments cases
- Confidence set can be produced as a set of β_0 accepted by AR test
- Confidence set can be infinite (good feature)
- Confidence set can be empty (has power against mis-specification)

Robust inference in over-identified case

$$
Y_i = \beta' X_i + e_i
$$

- Over-identified case: instrument Z_i is K -dimensional and $K > d$
- AR test is still robust towards weak identification, but has low power when identification is strong
- When instruments are strong, we can combine them in the efficient way, and do AR test using only efficient instrument
- This is the idea of LM test. Infeasible version (with weight π):

$$
LM^*(\beta_0) = \frac{1}{n}(Y - \beta_0 X)'(Z\pi) (\pi' \widehat{\Sigma} \pi)^{-1} (Z\pi)'(Y - \beta_0 X) \Rightarrow \chi_d^2
$$

LM test

- The optimal combination is $\pi=\left(\mathbb{E}[\pmb{e}_i^2Z_iZ_i']\right)^{-1}\mathbb{E}[Z_iX_i]$
- When signal-to-noise ratio is low, it is hard to estimate the signal $\mathbb{E}[Z_i X_i]$ well, getting variance is a challenge as well
- We give up on variance find an optimal combination for homoskedatsic case only
- Idea: use OLS for combining $\widehat{\pi} = (Z'Z)^{-1}Z'X$
- Problem: $\hat{\pi}$ is very volatile under weak IV and is correlated with $Z'e$.
- Naive LM test does not have correct size under weak IV:

$$
LM_{naive}(\beta_0) = \frac{1}{n}(Y - \beta_0 X)'(Z\hat{\pi}) \left(\hat{\pi}'\hat{\Sigma}\hat{\pi}\right)^{-1} (Z\hat{\pi})'(Y - \beta_0 X)
$$

LM test

- Kleibergen (2002): create a new estimator $\tilde{\pi}$
	- consistent for π if identification is strong
	- asymptotically independent from $Z'e$ if identification is weak

$$
\mathsf{KLM}(\beta_0)=\frac{1}{n}(Y-\beta_0X)'(Z\tilde{\pi})\left(\tilde{\pi}'\widehat{\Sigma}\tilde{\pi}\right)^{-1}(Z\tilde{\pi})'(Y-\beta_0X)
$$

$$
\bullet \ \tilde{\pi} = \widehat{\pi} - \widehat{\text{cov}}(\widehat{\pi}, Z'e) \left(\widehat{\text{Var}}(Z'e)\right)^{-1} Z'e
$$

- KLM test for H_0 : $\beta = \beta_0$
	- has correct size irrespective of identification strength
	- asymptotically efficient if identification is strong

Conditional inference

- Under strong identification there are asymptotically uniformly most powerful tests for H_0 : $\beta = \beta_0$ (Wald, LM, LR)
- Under weak identification, there is no asymptotically uniformly most powerful (Andrews et al 2006)
- KLM may have very low power under weak identification (Moreira et al 2024)
- Can we use any other test statistics for H_0 : $\beta = \beta_0$, like Wald or LR?
- Problem: asymptotic distributions of Wald or LR depend on π
- Solution: Moreira (2003) conditional inference

Conditional inference

- Problem: You want to test H_0 : $\beta = \beta_0$
	- distribution of test statistics S depends on (nuisance) parameter π
	- critical values should depend on π
	- you cannot estimate π with good enough precision
- Solution (Moreira, 2003): there is (asymptotically) sufficient statistics τ for π
	- \bullet distribution of data (or any statistics) conditionally on $\mathcal T$ does not depend on π
	- create critical values depending on T (random critical values!!!) to control conditional size

$$
\mathbb{P}\{\mathcal{S} > c v_{\alpha}(t)|\mathcal{T} = t\} = \alpha
$$

- Original idea: use simulations conditioning on samples with given value of $\mathcal T$
- For some statistics like LR, no simulations are needed- there are analytic way of calculating conditional p-value, (called CLR test)

Summary

- **If** you want to either test H_0 : $\beta = \beta_0$ or construct a confidence set for β
	- you should NOT use a pre-test for weak identification
	- you should use identification robust test (or invert it for a confidence set)
- Arguments against pre-test
	- \bullet first stage F works only for 1 regressor-1 instrument case, or over-identified homoskedastic case
	- even in simplest case it may create selection bias (Angrist and Kolesar, 2022)
- Arguments for identification robust testing
	- Control size irrespective of the identification strength
	- Asymptotically efficient if identification is strong (KLM, CLR, conditional Wald)

Outline

- [Classic asymptotic results](#page-7-0)
- 2 [Weak IV phenomenon](#page-16-0)
- 3 [Identification Robust Inference](#page-25-0) **•** [Full parameter inference](#page-25-0)
	- [Sub-vector inference](#page-35-0)

[Estimation](#page-39-0)

Projection method

$$
Y_i = \beta_1 X_{1,i} + \beta_2 X_{2,i} + e_i
$$

- Instruments Z_i are at least $d_1 + d_2$ -dimensional
- θ_1 is the parameter of interest, β_2 is nuisance
- How to test H_0 : $\beta_1 = \beta_{1,0}$? Confidence set for β_1 only?
- Projection method:
	- Hypothesis $H_0: \beta_1=\beta_{1,0}$ is accepted if $\tilde{H}_0: \beta=(\beta_{1,0},\beta_{2,0})$ is accepted for some $\beta_{2,0}$ (search among all potential $\beta_{2,0}$)
	- Create a joint confidence set for β , project it on β_1 space
	- Test (confidence set) for β should be done in identification robust way

Projection method and power loss

- Assume that test is done by using KLM statistics
- Projection method test for H_0 : $\beta_1 = \beta_{1,0}$ accepts if

$$
\min_{\beta_{2,0}} \mathsf{KLM}(\beta_{1,0}, \beta_{2,0}) = \mathsf{KLM}(\beta_{1,0}, \widehat{\beta}_2) \leq \chi_d^2
$$

where $d = d_1 + d_2$

- If all parameters were strongly identified, and we knew that, we would adjust degrees of freedom and used $\chi^2_{d_1}$
- Indeed.

$$
\min_{\beta_{2,0}} \mathsf{KLM}(\beta_{1,0}, \beta_{2,0}) \leq \mathsf{KLM}(\beta_{1,0}, \beta_{2,0}) \sim \chi^2_d
$$

so, projection test use conservative critical values (is not as powerful as it could have been)

Improvements over projection method

- Want to test $H_0: \beta_1 = \beta_{1,0}$
	- If nuisance parameter is strongly identified then we can adjust critical values for the degrees of freedom
	- If nuisance parameter is weakly identified then distribution of most tests are harder to assess, and they depend on nuisance parameters
	- Projection method controls size (but typically not similar)
- Need to 'pre-test' whether nuisance parameter is strong or weak
- No perfect pre-test exists, but anything that improves power of two-step procedure over projection method is good.
- There are proposals of this type: Chaudhuri and Zivot (2011), Andrews (2018), Guggenberger et al (2012)

Overview

[Classic asymptotic results](#page-7-0)

- [Weak IV phenomenon](#page-16-0)
- [Identification Robust Inference](#page-25-0)

4 [Estimation](#page-39-0)

Estimation

- When identification is weak, there is no consistent estimator exists
- Under weak identification in just identified case, TSLS does not have any moments, is median biased (towards OLS)
- Under weak identification in over-identified case, TSLS is biased towards OLS
- LIML and TSLS behaves differently under weak identification
- Porter and Hirano (2015) if instruments can be arbitrary weak, no asymptotically mean-unbiased, no asymptotically median-unbiased estimator exists
- Andrews and Armstrong (2017) if the sign of first stage is known, one can create an asymptotically unbiased estimator

Overview

[Classic asymptotic results](#page-7-0)

- [Weak IV phenomenon](#page-16-0)
- [Identification Robust Inference](#page-25-0)

[Estimation](#page-39-0)

5 [Summary and Open Questions](#page-41-0)

Summary

- Classical results in IV rely on relevance in two ways: (i) denominator stabilize at a full rank matrix; (ii) consistency of optimal combination of instrument
- Weak identification distort both
- Inferences: AR test solves problem (i) by re-formulating hypothesis
- Inferences: (ii) is 'solved' by KLM, CLR tests
- Estimation is hard, because of not well-defined criteria of quality

Open questions

- (Very hard) Estimation what can be or reported as an estimator? Or should it be reported at all?
- (Hard) Seems that some pre-test for identification strength is needed to improve performance for a sub-vector tests