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S.1. A SUFFICIENT CONDITION FOR TYPE COMPATIBILITY

THE DEFINITION OF θ′ �s′ θ
′′ IS PHRASED in terms of the weakly and strictly optimal sig-

nals for types θ′ and θ′′ against some receiver strategy π2 ∈Π2, without making explicit
reference to the types’ payoff structures. In this section of the Supplemental Material, we
present a sufficient condition for type compatibility that can be directly verified from the
signaling game payoff matrices.

DEFINITION S.1: For h ∈ [0�1], the maximum and minimum payoff wedges between types
θ′� θ′′ at signal s′ with h scaling are

W h

(
θ′� θ′′; s′) := max

a∈A
(
(1 − h)u1

(
θ′� s′� a

) − hu1

(
θ′′� s′� a

))
and

W h

(
θ′� θ′′; s′) := min

a∈A
(
(1 − h)u1

(
θ′� s′� a

) − hu1

(
θ′′� s′� a

))
�

respectively.

PROPOSITION S.1: If there exists h ∈ [0�1] with

W h

(
θ′� θ′′; s′)>max

s′′ �=s′
W h

(
θ′� θ′′; s′′)�

then θ′ �s′ θ
′′.

To understand the sufficient condition in Proposition S.1, suppose we take h= 1
2 . Then

the condition is equivalent to requiring that

min
a∈A

(
u1

(
θ′� s′� a

) − u1

(
θ′′� s′� a

))
>max

s′′ �=s′

{
max
a∈A

(
u1

(
θ′� s′′� a

) − u1

(
θ′′� s′′� a

))}
� (S.1)

This says that the minimum payoff difference between type θ′ and type θ′′ at signal s′ is
larger than the maximum payoff difference between them at any other signal s′′, where
the minimum and maximum are taken over all possible receiver responses. In signaling
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games with separable sender payoffs u1(θ� s�a)= v(θ� s)+ z(a), Equation (S.1) reduces
to the sufficient condition stated in the main text,

v
(
θ′� s′

) − v(θ′′� s′
)
>max

s′′ �=s′
(
v
(
θ′� s′′

) − v(θ′′� s′′
))
�

Different values of h correspond to different rescalings of sender’s payoffs. For each col-
lection of {αθ�βθ}θ∈Θ with αθ > 0 for each θ, the rescaling

ũ1(θ� s�a) := αθ · u1(θ� s�a)+βθ
does not change any type’s preference on lotteries over (s�a) pairs or experimentation
incentives. Substituting the rescaled payoffs into Equation (S.1), we get

min
a∈A

(
αθ′u1

(
θ′� s′� a

) − αθ′′u1

(
θ′′� s′� a

))
>max

s′′ �=s′
max
a∈A

(
αθ′u1

(
θ′� s′′� a

) − αθ′′u1

(
θ′′� s′′� a

))
�

This is equivalent to requiring W h(θ
′� θ′′; s′) >maxs′′ �=s′ W h(θ

′� θ′′; s′′) for h= αθ′
αθ′ +αθ′′ .

PROOF OF PROPOSITION S.1: Case 1: h= 0.
Then W h(θ

′� θ′′; s′) >maxs′′ �=s′ W h(θ
′� θ′′; s′′) is equivalent to

min
a∈A

u1

(
θ′� s′� a

)
>max

s′′ �=s′
max
a∈A

u1

(
θ′� s′′� a

)
�

This means for any π2 ∈Π2, s′ is always strictly optimal for θ′. This shows θ′ �s′ θ
′′.

Case 2: h= 1.
Then W h(θ

′� θ′′; s′) >maxs′′ �=s′ W h(θ
′� θ′′; s′′) is equivalent to

min
a∈A

−u1

(
θ′′� s′� a

)
>max

s′′ �=s′
max
a∈A

−u1

(
θ′′� s′′� a

)
�

which rearranges to

max
a∈A

u1

(
θ′′� s′� a

)
<min

s′′ �=s′
min
a∈A

u1

(
θ′′� s′′� a

)
�

Then we vacuously have θ′ �s′ θ
′′, since s′ is never weakly optimal for θ′′ against any

π2 ∈Π2.
Case 3: 0<h< 1.
Let any π2 ∈Π2 that makes s′ weakly optimal for θ′′ be given. For any s′′ �= s′, we show

u1

(
θ′� s′�π2

(·|s′))> u1

(
θ′� s′′�π2

(·|s′′))�
From W h(θ

′� θ′′; s′) >maxs′′ �=s′ W h(θ
′� θ′′; s′′), we get

(1 − h)u1

(
θ′� s′�π2

(·|s′)) − hu1

(
θ′′� s′�π2

(·|s′))
> (1 − h)u1

(
θ′� s′′�π2

(·|s′′)) − hu1

(
θ′′� s′′�π2

(·|s′′))�
Using the fact that 0<h< 1, we can rearrange this inequality as

u1

(
θ′� s′�π2

(·|s′)) − u1

(
θ′� s′′�π2

(·|s′′))> h

1 − h · [u1

(
θ′′� s′�π2

(·|s′)) − u1

(
θ′′� s′′�π2

(·|s′′))]�
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When s′ is weakly optimal for θ′′, u1(θ
′′� s′�π2(·|s′))− u1(θ

′′� s′′�π2(·|s′′))≥ 0. This shows
u1(θ

′� s′�π2(·|s′))− u1(θ
′� s′′�π2(·|s′′)) > 0, that is, s′ is strictly better than s′′ for θ′. Since

the choice of s′′ �= s′ was arbitrary, s′ must be strictly optimal for θ′. We therefore conclude
θ′ �s′ θ

′′. Q.E.D.

S.2. THE SET OF STEADY-STATE STRATEGY PROFILES IS NONEMPTY AND COMPACT

Recall that Ψ ∗(g�δ�γ) denotes the set of steady states under regular prior g, patience
0 ≤ δ < 1, and survival chance 0 ≤ γ < 1, while Π∗(g�δ�γ) is the set of steady-state strat-
egy profiles associated with the same parameters, that is, Π∗(g�δ�γ) := σ(Ψ ∗(g�δ�γ)).
We will prove the following:

PROPOSITION 3: Π∗(g�δ�γ) is nonempty and compact in the norm topology.

PROOF: Let regular prior g and parameters 0 ≤ δ�γ < 1 be given.
Step 0: Preliminary definitions and notation.
For two states ψ� ψ̂, let d(ψ� ψ̂) be the L1 distance between them, namely,

d(ψ� ψ̂) :=
(∑
θ∈Θ

∑
yθ∈Yθ

∣∣ψθ(yθ)− ψ̂θ(yθ)
∣∣) +

∑
y2∈Y2

∣∣ψ2(y2)− ψ̂2(y2)
∣∣�

This is well-defined because Yθ and Y2 are countable. Furthermore, d(ψ� ψ̂) ≤
2 ·(|Θ|+1) for any pair of states, since eachψ is a profile of |Θ|+1 measures on countable
spaces, and if ϕ and ϕ̂ are measures on a countable spaceX , then

∑
x∈X |ϕ(x)− ϕ̂(x)| ≤ 2

by the triangle inequality.
In the main text, we defined the one-step-forward maps fθ and f2 for different agent

populations. We can also define a map f from state to state, namely,

f [ψ] := (
fθ

(
ψθ�σ2(ψ2)

)
θ∈Θ� f2

(
ψ2�

(
σθ(ψθ)

)
θ∈Θ

))
�

Write Ψ ⊆ (×θ∈ΘΔ(Yθ))× Δ(Y2) for those states that assign the correct mass to each
generation, that is, ψ ∈Ψ if and only if ψ2(Y2[t])= γt(1 − γ) for each t and ψθ(Yθ[t])=
γt(1 − γ) for each θ� t. It is clear that f (Ψ) ⊆ Ψ , and that Ψ is convex. We now show
f :Ψ →Ψ has a fixed point.

Step 1: We show f (restricted to Ψ) is continuous with respect to the metric d.
It suffices to show that for every ε > 0, there exists ζ > 0 so that whenever d(ψ�ψ′) < ζ,

for every θ ∈Θ we get ∑
yθ∈Yθ

∣∣f [ψ]θ(yθ)− f [ψ̂]θ(yθ)
∣∣< ε

and ∑
y2∈Y2

∣∣f [ψ]2(y2)− f [ψ̂]2(y2)
∣∣< ε�

We will only give details for bounding
∑

yθ∈Yθ |f [ψ]θ(yθ) − f [ψ̂]θ(yθ)|, since bounding∑
y2∈Y2

|f [ψ]2(y2)− f [ψ̂]2(y2)| involves an exactly analogous argument.
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Since γ < 1, we may find a large enough T so that

∞∑
t=T+1

γt < ε/4�

WriteG= ∑T

t=0 |Yθ[t]|<∞ for the number of type θ histories with length T or shorter.
(Note that this is the same number for each type θ.) It suffices to ensure that

∣∣f [ψ]θ(yθ)− f [ψ̂]θ(yθ)
∣∣< ε

2G

for each yθ ∈ ⋃T

t=0Yθ[t]. When this is satisfied,∑
y∈Yθ

∣∣f [ψ]θ(yθ)− f [ψ̂]θ(yθ)
∣∣ =

∑
yθ∈

⋃T
t=0 Yθ[t]

∣∣f [ψ]θ(yθ)− f [ψ̂]θ(yθ)
∣∣

+
∑

yθ∈
⋃∞
t=T+1 Yθ[t]

∣∣f [ψ]θ(yθ)− f [ψ̂]θ(yθ)
∣∣

<
∑

yθ∈
⋃T
t=0 Yθ[t]

ε

2G
+

∑
yθ∈

⋃∞
t=T+1 Yθ[t]

∣∣f [ψ]θ(yθ)− f [ψ̂]θ(yθ)
∣∣

< ε/2 + ε/2
= ε�

where the second to last step follows from the fact that both f [ψ]θ and f [φ̂]θ assign mass

∞∑
t=T+1

γt(1 − γ) <
∞∑

t=T+1

γt < ε/4

to
⋃∞

t=T+1Yθ[t], so their sum of pointwise differences cannot be larger than ε/2 by the
triangle inequality.

But for an arbitrary yθ ∈ ⋃T

t=0Yθ[t] with the form yθ = (ỹθ�σθ(ỹθ)� a),1 from the defini-
tion of f , the inequality |f [ψ]θ(yθ)− f [ψ̂]θ(yθ)|< ε

2G is equivalent to

∣∣ψθ(ỹθ) · γ · σ2(ψ2)
(
a|σθ(ỹθ)

) − ψ̂θ(ỹθ) · γ · σ2(ψ̂2)
(
a|σθ(ỹθ)

)∣∣< ε/2G�
If d(ψ� ψ̂) < ζ, then, in particular, |ψθ(ỹθ)− ψ̂θ(ỹθ)|< ζ. Furthermore, for every signal

s ∈ S,

∣∣σ2(ψ2)(a|s)− σ2(ψ̂2)(a|s)
∣∣ =

∣∣∣∣ ∑
y2:σ2(y2)(s)=a

ψ2(y2)− ψ̂2(y2)

∣∣∣∣
≤

∑
y2:σ2(y2)(s)=a

∣∣ψ2(y2)− ψ̂2(y2)
∣∣

1If yθ is not of this form, then by definition of f , we have f [ψ]θ(yθ)= 0 = f [ψ̂]θ(yθ).
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≤
∑
y2∈Y2

∣∣ψ2(y2)− ψ̂2(y2)
∣∣

≤ d(ψ� ψ̂)�
So, in particular, we see that |σ2(ψ2)(a|σθ(ỹθ))−σ2(ψ̂2)(a|σθ(ỹθ))| can also be bounded

by making d(ψ� ψ̂) sufficiently small. Since
⋃T

t=0Yθ[t] is finite, we may choose a single
small enough ζ > 0 such that |f [ψ]θ(yθ)− f [ψ̂]θ(yθ)|< ε

2G for every y ∈ ⋃T

t=0Yθ[t].
Step 2: We show Ψ is compact under metric d.
We may write Ψ = (×θ∈ΘΨθ)×Ψ2, decomposing it as the product of the histories of the

sender types and the receiver. Here, Ψθ ⊆ Yθ is the set of measures over type θ histories
that assign the correct mass to each generation, and Ψ2 ⊆ Δ(Y2) is the set of measures
over receiver histories that do the same. We may define metric dθ on Ψθ and d2 on Ψ2

using the L1 norm, analogous to the definition of d. Since the metric d on Ψ may be
written as

d(ψ� ψ̂)=
∑
θ∈Θ
dθ(ψθ� ψ̂θ)+ d2(ψ2� ψ̂2)�

it must then induce the product topology on (×θ∈ΘΨθ)×Ψ2.
So, it suffices to prove each of (Ψθ�dθ) and (Ψ2� d2) is compact. We do this only for

(Ψ2� d2) since the other arguments are analogous.
We may extend the metric d2 to the space �1, the collection of absolutely summable real

number sequences,

�1 :=
{
(xk)

∞
k=0 :

∞∑
k=0

|xk|<∞
}
�

We view Ψ2 as a subset of �1, representing members of Ψ2 as infinite sequences of
numbers when convenient.

It is well-known that (�1� d2) is complete. Therefore, to show that (Ψ2� d2) is compact,
we need only show it is closed in (�1� d2) and that it is totally bounded.

Step 2a: (Ψ2� d2) is closed in (�1� d2).
To show closedness, suppose we have a sequence (ψ(j)2 )

∞
j=0 in Ψ2, which can be viewed

as a sequence of real numbers, ((x(j)k )
∞
k=0)

∞
j=0. Suppose limj→∞(x(j))= (x∗) ∈ �1. We show

that in fact x∗ ∈ Ψ2. First, since ‖x(j)‖ = 1 for every j by property of Ψ2 members being
distributions, we must have ‖x∗‖ = 1. Next, let Kt ⊆ N be the indices corresponding to
histories of length t. For every x(j),∑

k∈Kt
x
(j)
k = γt · (1 − γ)

by definition of Ψ2. But since

d2

(
x(j)� x∗) ≥

∑
k∈Kt

∣∣x(j)k − x∗
k

∣∣ ≥
∣∣∣∣∑
k∈Kt

x
(j)
k −

∑
k∈Kt

x∗
k

∣∣∣∣�
then x(j) → x∗ must mean

∑
k∈Kt x

∗
k = γt(1 − γ) also. Therefore, the �1 limit of the se-

quence x∗ satisfies all the requirements of Ψ2 and is interpretable as a valid distribution
on receiver histories. This shows (Ψ2� d2) is closed in (�1� d2).
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Step 2b: (Ψ2� d2) is totally bounded.
Let ε > 0 be given. We show that we can cover Ψ2 with finitely many radius-ε open balls

in (�1� d2). Find a large enough T so that
∑∞

t=T+1 γ
t < ε/2. Put G= ∑T

t=0 |Y2[t]|<∞ for
the total number of receiver histories with length no larger than T . Consider the finite
collection of radius-ε open balls in (�1� d2) centered on grid points of the form(

k1 · ε
2G
�k2 · ε

2G
� � � � �kG · ε

2G
�0�0�0� � � �

)
�

where, for each i, ki varies in {0�1� � � � �K} withK := �2G/ε
. We claim everyψ2 ∈Ψ2 is of
distance no larger than ε to at least one of those grid points. Consider first the sequence
(x̂k) ∈ �1 constructed from ψ2 by setting all coordinates after the Gth one to 0. There is
some grid point which is within ε

2G of (x̂k) in each of the first G dimensions, so that the
grid point’s d2 distance to (x̂k) is no larger than ε/2. At the same time, d2(ψ2� (x̂k)) <
ε/2, since ψ2 assigns mass less than ε/2 to histories of length T + 1 or longer, while the
sequence (x̂k) has a 0 in all of those tail coordinates. By the triangle inequality then, the
grid point we found is within distance ε of ψ2. This shows (Ψ2� d2) is totally bounded.

Step 3: f :Ψ →Ψ has a nonempty and compact set of fixed points.
Corollary 17.56 (page 583) from Aliprantis and Border (2006) asserts that if X is a

nonempty, compact, convex subset of a locally convex Hausdorff space, and f :X →X
is continuous, then the set of fixed points of f is compact and nonempty. But Ψ can be
viewed as a nonempty, compact, convex subset of (�1)|Θ|+1 (under the product topology).
Since every normed space is a locally convex Hausdorff space, (�1)|Θ|+1 is a locally convex
Hausdorff space.

Step 4: σ :Ψ →Π is continuous.
By definition, Π∗(g�δ�γ) := σ(Ψ ∗(g�δ�γ)), where Ψ ∗(g�δ�γ) are the f fixed points

from Step 3, so it suffices to prove that σ is continuous.
Let θ ∈Θ and s ∈ S be given. Then

∣∣σθ(ψθ)(s)− σθ(ψ̂θ)(s)
∣∣ =

∣∣∣∣ ∑
yθ:σθ(yθ)=s

ψθ(yθ)− ψ̂θ(yθ)
∣∣∣∣

≤
∑

yθ :σθ(yθ)=s

∣∣ψθ(yθ)− ψ̂θ(yθ)
∣∣

≤
∑
yθ∈Yθ

∣∣ψθ(yθ)− ψ̂θ(yθ)
∣∣

≤ d(ψ� ψ̂)�
Since this is true for every θ ∈ Θ, s ∈ S, and an analogous inequality holds for each

(θ�a) pair for the receiver, it follows that σ is continuous. Q.E.D.

S.3. PATIENTLY STABLE STRATEGY PROFILES ARE PERFECT BAYESIAN EQUILIBRIA
WITH HETEROGENEOUS OFF-PATH BELIEFS

In this section, we prove the following:

PROPOSITION 5: If strategy profile π∗ is patiently stable, then it is a perfect Bayesian equi-
librium with heterogeneous off-path beliefs.
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In the main text, we have already shown that a patiently stable π∗ satisfies the third
condition in the definition of perfect Bayesian equilibrium with heterogeneous off-path
beliefs. So it remains to show that π∗ is a Nash equilibrium.

We follow closely the proof strategy of Fudenberg and Levine (1993), who derived a
contradiction via excess option values. That is, the value function evaluated at a suffi-
ciently long history should not be much higher than the expected current-period payoff of
the optimal strategy at that history, so that the option value of the agents tends to 0. But if
the learning system converges to a non-Nash outcome, then in most periods, some agents
of some population are playing some action even though they know an alternative action
has a non-negligible chance to yield strictly higher payoff. The values of such histories are
bounded away from their current period payoffs, since a sufficiently patient agent could
experiment to determine whether the alternative action is indeed worthwhile. This means
a positive fraction of histories have an excess option value, a contradiction.

In Fudenberg and Levine (1993), this argument relies on the finite lifetime only insofar
as to ensure “almost all” histories are long enough, by picking a large enough lifetime. We
can achieve the analogous effect in our infinite-horizon model by picking γ close to 1.

The first step is to establish certain lemmas from Fudenberg and Levine (1993) in an
infinite-horizon setting. We use the same numbering of lemmas as in Fudenberg and
Levine (1993), and indicate these by “FL.”

S.3.1. Notations From Fudenberg and Levine (1993)

We will adapt the following notation from Fudenberg and Levine (1993):
• The subscript “i” refers to either a sender type θ or to the receiver. As such:

– yi refers to either a member of Yθ or a member of Y2;
– σi(yi) refers to either σθ(yθ) or σ2(y2) from the main text;
– Vi(yi) refers to either Vθ(yθ) or V2(y2) from the main text.

• ai denotes a generic action at an information set. So we have ai ∈ S when i refers to a
sender type and ai ∈A when i refers to the receiver. We will think of the same signal sent
by two different types as two different actions that lead to the same information set. Also,
the same receiver response following two different signals are viewed as different actions.

• ςi denotes a generic extensive-form strategy.2 When i refers to a sender type, ςi ∈ S.
When i refers to the receiver, ςi ∈AS .

• ri(yi) is an arbitrary rule assigning an extensive-form strategy to each history of i.
• If ψ is a steady state, then ψi refers to the distribution on histories Yi and ψ̄ := σ(ψ)

is the associated aggregate play.
• X is the set of nodes of the game tree whileX(ςi) is the subset reachable when player

i plays ςi.
• Z is the set of terminal nodes of the game tree while Z(ςi) is the subset reachable

when player i plays ςi.
• pi(x|π−i) is the probability that game tree node x is reached when others play mixed

strategy π−i (and i plays according to the path that gives rise to x).
• ui(ςi|yi)= ui(ςi� gi(·|yi)) is the expected current period payoff of playing ςi, according

to the beliefs about opponents’ play after observing history yi.
• #(h|yi) and #(x|yi) count the number of times that information set h and node x

have been reached in history yi.

2Fudenberg and Levine (1993) used si instead of ςi , but we will reserve s for a generic signal.
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• #(ςi|yi) counts the total number of times that player i’s policy rule prescribed strategy
ςi in history yi.

• π̂i−i(·|yi) is the strategy of −i constructed from sample average in yi. That is, if h is j’s
information set and a is one of the possible actions at h, then π̂ij(a|yi) := #(a|yi)/#(h|yi),
where 0/0 := 1.

• p̂i(x|yi)= pi(x|π̂i−i(·|yi)) is the distribution on nodes induced by the “sample average
strategy” constructed from history yi.

• pi(x|yi)= pi(x|gi(·|yi)) is the distribution on nodes induced by the Bayesian poste-
rior after history yi.

• P(ςi� ε� yi) is the posterior probability given history yi that another strategy ς′
i im-

proves on ςi by at least ε in expected payoff against the opponents’ strategy π−i. More
precisely,

P(ςi� ε� yi) := max
ς′i
gi

[
π−i : ui

(
ς′
i�π−i

) ≥ ui(ςi�π−i)+ ε|yi
]
�

• Biε(π
∗
−i) is the set of −i strategies which induce a distribution over terminal vertices

ε-close to the distribution induced by mixed strategy π∗
−i. More precisely,

Biε
(
π∗

−i
) := {

π−i :
∣∣pi(z|π∗

−i
) −pi(z|π−i)

∣∣ ≤ ε ∀z ∈Z}
�

• Qi
ε(π

∗
−i|yi) := gi(Biε(π∗

−i)|yi) is the belief placed strategies in Biε(π
∗
−i) after history yi.

S.3.2. Adapting the Lemmas to an Infinite-Horizon Model

We note first that Fudenberg and Levine’s (1993) Lemmas A.1, A.2, B.1, B.2, and 5.4
do not make use of the finite horizon. FL93 Lemmas A.1 and A.2 are basic statistical facts
used in later proofs. FL93 Lemma B.1 and B.2 show that an observer facing an i.i.d. data-
generating process is unlikely to have a very biased sample when the sample size grows
large. FL93 Lemma 5.4 is a direct consequence of Lemma B.2 and shows that it is unlikely
that some agent (i) has played strategy ςi frequently, (ii) has rarely reached some node x
reachable under ςi, and yet (iii) thinks it is likely that x will be reached the next time ςi is
played.

We restate FL93 Lemma 5.4 below because we will make explicit use of it in proving
the theorem.

FL93 LEMMA 5.4: For all ε > 0 and functions η such that η(n)→ 0 as n→ ∞, there is
an N such that, for all δ�γ�ψi� ri, and ςi,

ψi
{
yi : max

x∈X(ςi)
p̂i(x|yi) ·η(

#(x|yi)
)
> ε�and #(ςi|yi) > N

}
≤ ε�

We next show how to prove several other FL93 lemmas in an infinite-horizon setting.

FL93 LEMMA 5.2: There exists a non-increasing function η(n)→ 0 such that, for all yi
and γ�δ,

max
ς′i
ui

(
ς′
i|yi

) − ui
(
σi(yi)|yi

) ≤ Vi(yi)− ui
(
σi(yi)|yi

)

≤
(

δγ

1 − δγ
)

· max
x∈X(σi(yi))

p̂(x|yi)η
(
#(x|yi)

)
�
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PROOF: Clearly, ui(ς′
i|yi)≤ Vi(yi) for each ς′

i, since one feasible strategy after history yi
is just to play ς′

i forever. We may write by the Bellman equation:

Vi(yi)= (1 − δγ)ui
(
σi(yi)|yi

) + δγ
∑

z∈Z(σi(yi))
pi(z|yi) · Vi(yi� z)�

Straightforward algebraic manipulation gives

Vi(yi)− ui
(
σi(yi)|yi

) = δγ

1 − δγ
( ∑
z∈Z(σi(yi))

pi(z|yi) · (Vi(yi� z)− Vi(yi)
))
�

The proof in Fudenberg and Levine (1993) implies∑
z∈Z(σi(yi))

pi(z|yi) · (Vi(yi� z)− Vi(yi)
) ≤U ·

∑
z∈Z(σi(yi))

pi(z|yi) · ∥∥gi(·|(yi� z)) − gi(·|yi)
∥∥

1

and

pi(z|yi) · ∥∥gi(·|(yi� z)) − gi(·|yi)
∥∥

1
< 2

∫ ∥∥pi(z|π−i)− p̂i(z|yi)
∥∥gi(π−i|yi)dπ−i�

where U is maximal difference between two payoffs in the game and ‖ · ‖1 is the L1 norm.
But by FL93 Lemma B.1, for every z,∫ ∥∥pi(z|π−i)− p̂i(z|yi)

∥∥gi(π−i|yi)dπ−i < max
x∈X(ςi)

p̂i(x|yi)η
(
#(x|yi)

)
�

so now modify η from FL93 Lemma B.1 by dividing it by 2U times the number of terminal
vertices. Q.E.D.

FL93 LEMMA 5.3: For all 0 < ε < 1 and Δ > 0, there is β < 1 such that, for all yi, if
δγ > β, then

Δ · P(
σi(yi)�Δ� yi

) − ε≤ Vi(yi)− ui
(
σi(yi)|yi

)
1 − ε �

PROOF: As in Fudenberg and Levine (1993), let Ū be the largest absolute payoff of the
game (set to 1 if less than 1). Using their “t-period hypothesis testing” policy, according
to their arguments we get utility of at least

−(
1 − (δγ)t)Ū + (δγ)t · [ui(σi(yi)� yi) + (1 − ε/2Ū)Δ · P(

σi(yi)�Δ� yi
) − ε/2] ≤ Vi(yi)�

Doing the same algebraic manipulations as in Fudenberg and Levine (1993) gives

Δ · P(
σi(yi)�Δ� yi

) ≤
(
1 − (δγ)t)Ū + ε/2
(δγ)t(1 − ε/2Ū) + 1

1 − (ε/2Ū)
[
Vi(yi)− ui

(
σi(yi)|yi

)]
�

As δγ→ 1, this bound approaches

Δ · P(
σi(yi)�Δ� yi

) ≤ ε/2
(1 − ε/2Ū) + 1

1 − (ε/2Ū)
[
Vi(yi)− ui

(
σi(yi)|yi

)]
�
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which implies

(1 − ε/2Ū)
1 − ε Δ · P(

σi(yi)�Δ� yi
) ≤ ε/2

1 − ε + Vi(yi)− ui
(
σi(yi)|yi

)
1 − ε �

Since (1−ε/2Ū)
1−ε > 1 and ε/2

1−ε < ε for small ε, this bound implies, for all small enough ε,

Δ · P(
σi(yi)�Δ� yi

) − ε≤ Vi(yi)− ui
(
σi(yi)|yi

)
1 − ε �

So there exists β< 1 such that whenever δγ > β and ε is sufficiently small, the lemma
obtains. But if the lemma obtains for ε′, then it also obtains for any ε > ε′. Therefore, the
lemma holds for any 0< ε< 1. Q.E.D.

FL93 COROLLARY 5.5: For all ε > 0, there exists N such that for all δ�γ,

ψi

{
yi : Vi(yi)− ui

(
σi(yi)|yi

)
>

(
δγ

1 − δγ
)

· ε�and #
(
σi(yi)|yi

)
>N

}
≤ ε�

PROOF: Since FL93 Lemma 5.4 applies to all ςi,

ψi
{
yi : max

x∈X(σi(yi))
p̂i(x|yi) ·η(

#(x|yi)
)
> ε�and #

(
σi(yi)|yi

)
>N

}
≤ ε�

Take the η(n) implied by FL93 Lemma 5.2, which guarantees that

Vi(yi)− ui
(
σi(yi)|yi

) ≤
(

δγ

1 − δγ
)

· max
x∈X(σi(yi))

p̂(x|yi)η
(
#(x|yi)

)
uniformly for all yi� γ�δ. Putting this η(n) in the sharpened FL93 Lemma 5.4 and using
the above inequality, we get that we can find an N so that for all δ�γ,

ψi

{
yi : Vi(yi)− ui

(
σi(yi)|yi

)
>

(
δγ

1 − δγ
)

· ε�and #
(
σi(yi)|yi

)
>N

}
≤ ε� Q.E.D.

FL93 LEMMA 5.6: For all ε > 0, there exists a φ> 0 such that when the aggregate play of
−i is ψ̄−i and i uses policy ri(yi), then for any discount factor γ,

ψi
{
yi :Qi

ε(ψ̄−i|yi)/Qi
ε(ψ̄−i|0)≤φ} ≤ ε�

PROOF: This depends only on FL93 Lemma B.1 and FL93 Lemma 5.4, and does not
make use of the finite-horizon assumption. Q.E.D.

FL93 LEMMA 5.7′: Consider a steady state ψi for survival probability γ. Then3

ψi
{
yi : #(ςi|yi) > N and σi(yi)= ςi

}
> ψ̄i(ςi)− (

1 − (γ)N)
�

3This claim is stronger than the one in Lemma 5.7 of Fudenberg and Levine (1993) since we do not require
that ςi is played with positive probability in a δ-stable state.
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PROOF: Fix N . For any infinite history of i, there exist at most N finite sub-histories y ′
i

where σi(y ′
i)= ςi and #(ςi|y ′

i)≤N . These sub-histories will have the highest probabilities
if they occur in the first N periods of lifetime, so that

ψi
{
yi : #(ςi|yi)≤N and σi(yi)= ςi

}
< 1 − (γ)N�

But then,

ψi
{
yi : #(ςi|yi) > N and σi(yi)= ςi

} = ψi
{
yi : σi(yi)= ςi

}
−ψi

{
yi : #(ςi|yi)≤N and σi(yi)= ςi

}
= ψ̄i(ςi)−ψi

{
yi : #(ςi|yi)≤N and σi(yi)= ςi

}
> ψ̄i(ςi)− (

1 − (γ)N)
� Q.E.D.

S.3.3. Proof of Proposition 5

PROOF: We first establish that for any fixed regular prior g0, there is a function γ(δ)
such that if δj → 1, γj ≥ γ(δj), and ψ̄(j) ∈Π∗(g0� δj� γj) is a sequence of steady-state strat-
egy profiles, then any accumulation point of (ψ̄(j)) is a Nash equilibrium. As in the proof
of Theorem 5.1 in Fudenberg and Levine (1993), it suffices to show that for each Δ > 0,
there exists a function γ(δ�Δ) such that if δj → 1 and γj ≥ γ(δj�Δ), any accumulation
point ψ̄ of the sequence of the steady-state strategies ψ̄(j) has the property that neither
the receiver nor any sender type can gain more than 3Δ by deviating from ψ̄i. (In a signal-
ing game where each sender type has positive probability, a strategy profile is Nash if and
only if neither the receiver nor any sender type has a profitable deviation.)

Fix Δ > 0. We will construct the function δ �→ γ(δ�Δ). Find β(ε�Δ) to satisfy FL93
Lemma 5.3. Fix some function ε : (0�1)→ (0�1) satisfying ε(δ) ↓ 0 as δ ↑ 1, and let ε(δ)
tend to 0 slowly enough as δ→ 1 that δ >

√
β(ε(δ)�Δ) for all δ close enough to 1. Also,

for each δ, find N(δ) to satisfy Corollary 5.5 for ε= (1−δ)2
δ

, so that in any steady state ψ,
we have

ψi

{
yi : Vi(yi)− ui

(
σi(yi)|yi

)
>

(
δγ

1 − δγ
)

· (1 − δ)2

δ
�#

(
σi(yi)|yi

)
>N(δ)

}

≤ (1 − δ)2

δ
�

(S.2)

Now, choose γ(δ�Δ) near enough 1 so that, for each δ, (i) δ · γ(δ�Δ) > β(ε(δ)�Δ);
(ii) 1 − (γ(δ�Δ))N(δ) < 1 − δ.

Suppose we have a sequence (δj�γj) with δj → 1 and γj ≥ γ(δj�Δ) for every j ∈ N,
and ψ̄ is a limit of steady-state strategy profiles ψ̄(j). If some player can gain more than
3Δ by playing ς′

i against ψ̄−i instead of some prescribed strategy ςi where ψ̄i(ςi) > 0, then
following the same reasoning as in Fudenberg and Levine (1993), there exists j0, ε0 so that
whenever j > j0, ε < ε0, player i can gain at least Δ against any profile of i’s opponents
within ε of ψ̄j−i by playing ς′

i instead of ςi. So whenever j > j0� ε < ε0, we have

P(ςi�Δ� yi)≥Qi
ε

(
ψ̄
(j)
−i |yi

)
for every history yi. We may also choose j0 so that whenever j > j0, ψ̄(j)(ςi) > ψ̄(ςi)/2.
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Picking ε= ψ̄i(ςi)/4> 0 in FL93 Lemma 5.6, we get that there exists a φ> 0 so that

ψ
(j)
i

{
yi :Qi

ε

(
ψ̄
(j)
−i |yi

)
/Qi

ε

(
ψ̄
(j)
−i |0

) ≤φ} ≤ ψ̄i(ςi)/4
for all j and yi. Therefore,

ψ
(j)
i

(
yi : P(ςi�Δ� yi) > φQ

)
> 1 − ψ̄i(ςi)/4

for all j > j0, where Q is the minimum density under prior g0. Note that Q> 0 since g0 is
regular.

Using FL93 Lemma 5.7 and the fact that 1−(γj)N(δj) < 1−δj (from (ii) in the definition
of γ(δ�Δ)), combined with the fact ψ̄(j)i (ςi) > ψ̄i(ςi)/2,

ψ
(j)
i

{
yi : #(ςi|yi) > N(δj) and σ(j)i (yi)= ςi

}
> ψ̄i(ςi)/2 − (1 − δj)�

So then

ψ
(j)
i

(
yi : P(ςi�Δ� yi) > φQ�#(ςi|yi) > N(δj)�and σ(j)i (yi)= ςi

)
>

[
ψ̄i(ςi)/2 − (1 − δj)

] − [
ψ̄i(ςi)/4

]
= ψ̄i(ςi)/4 − (1 − δj)

(S.3)

for every j > j0. Now using the fact that δj · γj > β(ε(δj)�Δ) from (i) in the definition of
γ(δ�Δ), after every history yi,

Δ · P(
σi(yi)�Δ� yi

) − ε(δj)≤ Vi(yi)− ui
(
σ
(j)
i (yi)|yi

)
1 − ε(δj)

by FL93 Lemma 5.3. Combining this with Equation (S.3), we have

ψ
(j)
i

(
yi :

[
Vi(yi)− ui

(
σi(yi)|yi

)
>

(
ΔφQ− ε(δj)

) · (1 − ε(δj)
)]
�

#(ςi|yi) > N(δj)�and σ(j)i (yi)= ςi
)
> ψ̄i(ςi)/4 − (1 − δj)�

By choosing large enough j, we may ensure that (ΔφQ− ε(δj)) · (1 − ε(δj)) > 1 − δj and

also that ψ̄i(ςi)/4 − (1 − δj) > (1−δj)2
δj

. But at such large enough j,

ψ
j
i

(
yi :

[
Vi(yi)− ui

(
σi(yi)|yi

)
> 1 − δj

]
�#(ςi|yi) > N(δj)�and σ(j)i (yi)= ςi

)
>
(1 − δj)2

δj
�

This contradicts Equation (S.2), because ( δjγj

1−δjγj ) · (1−δj)2
δj

≤ ( δj

1−δj ) · (1−δj)2
δJ

= 1 − δj .
Having established the existence of the function γ(δ�Δ), we can now prove Proposi-

tion 5. Suppose ψ̄ is patiently stable. Then we can find δj → 1, a sequence (ψ̄(j)) such that
ψ̄(j) is δj-stable for each j and limj→∞ ψ̄(j) = ψ̄. For each j, there corresponds a sequence
γj�k → 1 and a sequence of steady-state strategy profiles ψ̄j�k ∈Π∗(g0� δj� γj�k) such that
limk→∞ ψ̄(j�k) = ψ̄(j). Find the function γ(δ�Δ) implied by the above argument. For each
j, pick k(j) large enough so that γj�k(j) > γ(δj�Δ) and ψ̄j�k(j) is less than 1/j away from
ψ̄j . Then by construction of (δj�γj�k(j)� ψ̄j�k(j)), every accumulation point of the sequence
(ψ̄j�k(j)) is a Nash equilibrium. But ψ̄ is the limit point of this sequence. Q.E.D.
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S.4. δ-STABLE STRATEGY PROFILES ARE TYPE-HETEROGENEOUS
SELF-CONFIRMING EQUILIBRIA

PROPOSITION 4: Suppose strategy profile π∗ is δ-stable under a regular prior. Then, for
every type θ and signal s with π∗

1(s|θ) > 0, s is a best response to some π2 ∈Π2 for type θ,
and furthermore, π2(·|s) = π∗

2(·|s). Also, for any signal s such that π∗
1(s|θ) > 0 for at least

one type θ, π∗
2(·|s) is supported on pure best responses to the Bayesian belief generated by π∗

1
after s.

PROOF: Step 1: We first show that for every s with π∗
1(s|θ) > 0 for at least one type θ,

π∗
2(·|s) is supported on pure best responses to the Bayesian belief generated by π∗

1 after
s, namely, p∗(θ|s) := λ(θ)·π∗

1 (s|θ)∑
θ′ λ(θ′)·π∗

1 (s|θ′) .
Suppose a is not a best response to p∗(·|s) after s. Since π∗

1(s|θ) is nonzero for at least
one type θ, there must exist ε > 0 such that a is also not a best response to any belief
p′(·|s) generated by

p′(θ|s)= λ(θ) ·π ′(s|θ)∑
θ′
λ
(
θ′) ·π ′(s|θ′)

whenever |π∗
θ(s)−π ′

θ(s)|< ε for every s.
Fixing arbitrary Δ > 0, we now show π∗

2(a|s) < Δ. Take a sequence of steady states
ψk ∈ Ψ ∗(g�δ�γk) for γk → 1 such that ψ̄k → π∗. We now make use of FL Lemma B.1,
which (in our notation) states that for every regular prior g, there exists a non-increasing
function η(n)→ 0 as n→ ∞, such that, for every receiver history y2, we get∫

Π1

∥∥∥∥π1(s|θ)− #(θ� s|y2)

#(θ|y2)

∥∥∥∥g2(π1|y2)dπ1 <η
(
#(θ|y2)

)
�

where #(θ|y2) counts the number of times that the receiver has encountered type θ’s in
history y2 and #(θ� s|y2) counts the number of times that type θ’s played signal s in history
y2. Find a large enough N1 ∈N such that η(N1) < ε/3 and a large enough N2 such that

P
[∣∣(Bn�p/n)−p∣∣> ε/3]

<Δ/
(
3 · |Θ|)

for all p ∈ [0�1] and n ≥N2, where Bn�p ∼ Binom(n�p). Find next a large enough N3 so
that, after n≥N3 periods, a receiver will have encountered max(N1�N2) instances of each
type of sender with probability at least 1 −Δ/3.

Find now a large enough K so that, whenever k ≥K, we have |ψ̄(k)1 (s|θ)− π∗(s|θ)| <
ε/3 for each θ. We claim that whenever k ≥ K, each receiver in ψk older than N3 has
less than a 2Δ/3 chance of playing action a after signal s. This is because there is less
than Δ/3 chance that the receiver has not seen at least max(N1�N2) instances of each
type of sender. In the event that he has, there is a further Δ/3 chance that the empirical
frequency of any one type playing s deviates more than ε/3 from its data-generating fre-
quency ψ̄k1(s|θ). Otherwise, Lemma B.1 of Fudenberg and Levine (1993) guarantees that
the receiver’s posterior mean probability of θ playing s is no more than 2ε/3 away from
ψ̄k1(s|θ), which is in turn no more than ε/3 away from π∗

1(s|θ). But we have defined ε such
that, under this belief, a is not a best response. As we take large enough k, the fraction
of individuals aged N3 or younger tends to 0, so in particular, there must be in total fewer
than Δ fraction of receivers playing a after m.
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Step 2: We show that if π∗
1(s|θ) > 0, then s is a best response for type θ to some π2 ∈Π2

where π2(·|s)= π∗
2(·|s). We prove the contrapositive and suppose s is not a best response

to any π2 ∈ Π̃2, where Π̃2 ⊆Π2 is the subset of behavior receiver strategies that agree with
π∗

2 after s,

Π̃2 := {
π2 ∈Π2 : π2(·|s)= π∗

2(·|s)
}
�

Since s does not best respond to Π̃2 for type θ and since Π̃2 is compact, there exists some
2ξ > 0 so that s is not a 2ξ best response to any strategy in Π̃2. Fix such an ξ, and fix a
small enough r > 0 such that s is not a ξ best response to any strategy in Π2 no further

than r away from Π̃2 in L1 distance. Call the set of such strategies ˜̃
Π2.

Find the function η(n)→ 0 corresponding to FL93 Lemma 5.2. Choose any ε > 0 small
enough such that 1

1− 1
2 δ

· ε < ξ. We will show that for k large enough, ψ̄k1(s|θ) < 4ε. This
would show that π∗

1(s|θ) < 4ε for all small enough ε, so π∗
1(s|θ)= 0 as desired.

To proceed, first note that by the choice of ε small enough, at every history yθ where

max
ŝ

(
uθ(ŝ|yθ)− uθ(s|yθ)

)
> ξ�

we would also have

max
ŝ

(
uθ(ŝ|yθ)− uθ

(
σθ(yθ)|yθ

))
>

1

1 − 1
2
δ

· ε≥ δγk

1 − δγk ε

whenever γk ≥ 1
2 . But the choice of η(n)→ 0 ensures that, by FL93 Lemma 5.2,

max
ŝ

(
uθ(ŝ|yθ)− uθ

(
σθ(yθ)|yθ

)) ≤ δγk

1 − δγk max
x∈X(σθ(yθ))

p̂(x|yθ)η
(
#(x|yθ)

)
�

Hence, we conclude that whenever both σθ(yθ)= s and maxŝ(uθ(ŝ|yθ)−uθ(s|yθ)) > ξ, we
have maxx∈X(m) p̂(x|yθ)η(#(x|yθ)) > ε.

But now by FL93 Lemma 5.4, there exists N ∈ N so that

ψkθ

{
yθ : max

x∈X(s)
p̂(x|yθ)η

(
#(x|yθ)

)
> ε and #(s|yθ) >N

}
≤ ε�

This shows that at most fraction ε of the histories satisfy the following requirements that:
(1) θ is playing s;
(2) θ has played s at least N times; and
(3) s is not a ξ myopic best response for θ, that is,

ψkθ

{
yθ : σθ(yθ)= s�#(s|yθ) >N�max

ŝ

(
uθ(ŝ|yθ)− uθ(s|yθ)

)
> ξ

}
≤ ε�

Therefore, histories at which θ is allowed to play s fall into at least one of the following
three categories:

Exception 1: The set described above, with a mass no larger than ε.
Exception 2: Histories where σθ(yθ) = s but #(s|yθ) ≤ N . There can be no more than

N such periods in any sender’s life, so then this exception accounts for mass less than
(1 − γk) ·N . There exists K1 such that (1 − γk) ·N < ε for all k≥K1.
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Exception 3: Histories where s is a myopic ξ best response to π2(·|yθ), the expected
receiver strategy under the sender’s posterior g1(·|yθ). We will show that these histories
have mass no larger than 2ε.

To do so, apply FL93 Lemma B.1, to find function η̂(n)→ 0 such that for every a ∈A,∫
Π2

∥∥∥∥π2(a|s)− #(s�a|yθ)
#(s|yθ)

∥∥∥∥g1(π2|yθ)dπ2 < η̂
(
#(s|yθ)

)
�

So, there exists N1 ∈ N such that whenever #(s|yθ) > N1, π2(·|s; yθ) is no more than r/3
away in L1 distance from π̂2(·|s; yθ), where π̂2 is the receiver strategy formed by the em-
pirical distribution in yθ.

But for each k, the strong law of large numbers implies there exists some N2 ∈ N such
that the π̂2(·|s) based on empirical frequency will not differ too much from the data-
generating ψ̄k2(·|s) given more than N2 observations:

ψkθ
{
yθ : d(π̂2(·|s; yθ)� ψ̄k2(·|s)

)
> r/3�#(s|yθ) >N2

}
< ε�

where d denotes L1 distance. Finally, since limk→∞ ψ̄k2 = π∗
2 , there is K2 such that k≥K2

implies

d
(
π∗

2(·|s)� ψ̄k2(·|s)
)
< r/3�

But then, by the triangle inequality, whenever k≥K2, we have

ψkθ
{
yθ : [d(π∗

2(·|s)�π2(·|s; yθ)
)
< r

]
and

[
#(s|yθ) >max(N1�N2)

]} ≤ ε�
Now whenever d(π∗

2(·|s)�π2(·|s; yθ)) < r, π2 must be no more than r distance away from
˜̃
Π2, the set of receiver strategies that differ by no more than r from π∗

2 at signal s. Recall

that ˜̃
Π2 has the property that s is not even a ξ best response to any of the strategies in it.

So, we have shown whenever k2 ≥K,

ψkθ

{
yθ : #(s|yθ) >max(N1�N2)�max

ŝ

(
uθ(ŝ|yθ)− uθ(s|yθ)

) ≤ ξ
}

≤ ε�

But, we may find K3 such that k≥K3 implies

ψkθ
{
yθ : #(s|yθ)≤ max(N1�N2)

} ≤ ε�
Therefore, provided k ≥ max(K2�K3), exception 3 accounts for no more than 2ε of the
histories.

Now find K4 such that k≥K4 implies γk ≥ 1
2 . We have therefore shown that whenever

k ≥ max(K1�K2�K3�K4), the set of histories yθ where σθ(yθ) = s has ψkθ mass no larger
than 4ε, as desired. Q.E.D.

S.5. PROOF OF LEMMA 4

LEMMA 4: Fix a regular prior g and a strategy profile π∗ where, for some type θ′ and signal
s′, θ′ ∈ J(s′�π∗). There exist a number ε ∈ (0�1) and threshold functions δ̄ : N → (0�1) and
γ̄ : N× (0�1)→ (0�1) such that whenever π ∈Π∗(g�δ�γ) with δ≥ δ̄(N) and γ ≥ γ̄(N�δ)
and π is no more than ε away from π∗ in L1 distance, we have π1(s

′|θ′)≥ (1 − γ) ·N .
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PROOF: Let g�π∗� θ′� s′ satisfying the hypotheses of the lemma be given.
Find

a′ ∈ arg max
a∈A

u1

(
θ′� s′� a

)
�

Since u1(θ
′� s′� a′) > u1(θ

′;π∗)+ 2d for some d > 0, there exists 0< ε < 1/8 such that
whenever (1) the mixture π2(·|s′) assigns at least 1 − ε probability to a′ and (2) π is no
further than 2ε away from π∗ in L1 distance, we have

u1

(
θ′� s′�π2

(·|s′))> u1

(
θ′;π) + d� (S.4)

Let N be given.
Step 1: Constructing δ̄(N) and γ̄(N�δ).
We will first define a series of constants.
Step 1a: Q and φ, a bound on the fraction of “unrepresentative” samples that give

senders misleading impressions of the equilibrium payoff.
As before, we will adopt notation from Fudenberg and Levine (1993).
In FL93 Lemma 5.6, take ε to be the ε from the line immediately above Equation (S.4).

Then, there exists some φ> 0 so that, for any arbitrary steady state ψ,

ψi
{
yi :Qi

ε(ψ̄−i|yi)/Qi
ε(ψ̄−i|0) < φ

} ≤ 1
8
�

Now, if a steady-state strategy profile ψ̄ is no more than ε away from π∗, then the ε-ball
around ψ̄ is inside the 2ε-ball around π∗, that is, Biε(ψ̄−i)⊆ Bi2ε(π∗

−i), so taking i= θ′ and
−i= 2 yields

ψθ′
{
yθ′ :Qθ′

2ε

(
π∗

2 |yθ′
)
/Qθ′

ε (ψ̄2|0) < φ
} ≤ 1

8
�

Since g1 is non-doctrinaire, all ε-balls in Π2 must have some lower bound on their prior
probability, let us say Q. So

ψθ′
{
yθ′ :Qθ′

2ε

(
π∗

2 |yθ′
)
<Qφ

} ≤ 1
8
�

Step 1b: h, the minimum chance of improving payoff by d when θ′ plays s′ at “represen-
tative” histories where s′ has not been played much before.

Let p > 0 be the least possible probability placed on those receiver strategies π2 such
that π2(a

′|s′) > 1 − ε, after a history where θ′ played s′ fewer than 2N times in the past.
Write also Sθ′ for the set of signals that θ′ sends with positive probability in π∗. Then,
for every history yθ′ such that Qθ′

2ε(π
∗
2 |yθ′) ≥ Qφ and #(s′|yθ′) < 2N , we have, for every

sθ′ ∈ Sθ′ ,

P(sθ′� d� yθ′)≥ g1

{
π2 : u1

(
θ′� s′�π2

(·|s′)) ≥ u1

(
θ′� sθ′�π2(·|sθ′)

) + d∣∣yθ′
} ≥Qφ ·p�

In words, this says there is at least Qφp chance that playing s′ instead of the signal sθ′

yields a gain of at least d. To see why this is true, note that if in history yθ′ type θ played
s′ no more than 2N times before, then it must assign at least p chance to the event that
receiver has a mixed strategy that responds to s′ with a′ at least 1 − ε of the time. At the
same time, since yθ′ by construction induces a belief that assigns at least Qφ probability
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to the receiver playing a strategy no more than 2ε away from π∗
2(·|s′) after signal s′, by

Equation (S.4) the probability assigned to receiver strategies against which s′ improves
on sθ′ by at least d is at least Qφ · p. (We can multiply here since the prior over receiver
strategy is independent.) Let h :=Qφ ·p denote this minimum probability.

Step 1c: β, the minimum effective discount factor required to realize the gain of hd
through a statistical test.

In FL93 Lemma 5.3, letΔ= d and let ε be small enough such that (1−ε) ·(hd−ε) > hd
2 .

This gives rise to a β, such that whenever δγ > β,

Vθ′(yθ′)− uθ′
(
σθ′(yθ′)|yθ′

)
>
hd

2

at every history yθ′ where P(σθ′(yθ′)�d� yθ′) > h.
Step 1d: N(δ), the number of times the current strategy needs to be played before

option value becomes negligible.

For each δ, substitute ε= 1
2 hd

δ/(1−δ) in the statement of FL93 Corollary 5.5. This leads to
some number N(δ), such that if θ′ has played what she intends to play in the current

period at least N(δ) times, then there is probability no larger than
1
2 hd

δ/(1−δ) that the option
value of yi exceeds 1

2hd. (This is uniform for all γ since, for every γ ∈ (0�1), δγ

1−δγ <
δ

1−δ ,
so the corollary actually gives a tighter bound than just stated.)

Step 1e: Finally, we define δ̄(N) and γ̄(N�δ).

Choose δ̄(N) large enough so that (i) δ̄(N) >
√
β from Step 1c, and (ii)

1
2 hd

δ̄(N)/(1−δ̄(N)) <
1
8

from Step 1d.
Choose γ̄(N�δ) close enough to 1 so that (i) histories at which a player plays some

strategy that she has played before N(δ) times or fewer have probability less than 1/8,
(ii) γ̄(N�δ) >

√
β from Step 1c.

Step 2: At most histories, θ′ has played m′ at least 2N times in the past.
We consider four subsets of Yθ′ , called E1�E2�E3�E4, which are “exceptional histories.”

We argue that whenever the hypotheses of the proposition hold, ψθ′(Ej) < 1/8 for 1 ≤ j ≤
4 and furthermore, for any history yθ′ /∈E1 ∪E2 ∪E3 ∪E4, we have #(s′|yθ′)≥ 2N .

Exception 1: θ′ does not play a signal associated with π∗. That is, E1 := {yθ′ :
σθ′(yθ′) /∈ Sθ′ }. But since ψ̄1(·|θ) is no more than ε away from π∗

1(·|θ′) and ε < 1/8, we
must get ψθ′(E1) < 1/8.

Exception 2: θ′ plays an equilibrium signal, but it has played that signal fewer thanN(δ)
times before. That is,

E2 := {
yθ′ : σθ′(yθ′) ∈ Sθ′�#

(
σθ′(yθ′)|yθ′

)
<N(δ)

}
�

But since γ ≥ γ̄(N�δ), by construction we get ψθ′(E2) < 1/8.
Exception 3: θ′ has a very misleading sample as to the payoff of the equilibrium signal,

that is,

E3 := {
yθ′ :Qθ′

2ε

(
π∗

2 |yθ′
)
<Qφ

}
�

But by choice of of Q and φ in Step 1a, ψθ′ {E3}< 1
8 .
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Exception 4: Special histories where θ′ has a representative sample, played a signal as-
sociated with π∗ a lot, yet still has excess option value. That is,

E4 :=
{
yθ′ : Vθ′(yθ′)− uθ′

(
σθ′(yθ′)|yθ′

)
>

1
2
hd�and #

(
σθ′(yθ′)|yθ′

)
>N(δ)

}
�

But by Step 1d, ψθ′ {E4}< 1
8 .

Now consider some history outside of these exceptions, yθ′ /∈ E1 ∪ E2 ∪ E3 ∪ E4. The
fact that yθ′ /∈ E2 implies #(σθ′(yθ′)|yθ′) > N(δ). The fact that yθ′ /∈ E4 then implies
Vθ′(yθ′) − uθ′(σθ′(yθ′)|yθ′) ≤ 1

2hd. Suppose it were the case that #(s′|yθ′) < 2N . Then
yθ′ /∈ E1 implies σθ′(yθ′) ∈ Sθ′ while yθ′ /∈ E3 implies Qθ′

2ε(π
∗
2 |yθ′)≥Qφ. So then by Step 1b,

P(σθ′(yθ′)�d� yθ′) > h. But since δ · γ > β, Step 1c implies that

Vθ′(yθ′)− uθ′
(
σθ′(yθ′)|yθ′

)
>
hd

2
�

which is a contradiction. Therefore, it must be that #(s′|yθ′)≥ 2N . That is,

ψθ′
{
yθ′ : #

(
s′|yθ′

) ≥ 2N
} ≥ 1

2
�

Step 3: Bounding the probability of histories where θ′ plays s′.
We know that at most histories type θ′ has played s′ at least 2N times in the past, but

we are after a bound on those histories where θ′ plays s′ in the current period. Toward
that end, we introduce some new notation: for two histories of type θ′, say y1 and y2,
write y1

� y2 if y2 is a strict continuation of y1—that is, y2 is y1 concatenated with one or
more additional periods of experience at the end. We state a lemma below (with proof
independent of this proposition) that says the probability of any history y1 in the learning
model is no less than the sum of probabilities of any collection of its continuations that
“avoids double counting.”

Consider the set of histories Y first
θ′ ⊆ Yθ′ given by

Y first
θ′ := {

yθ′ : #
(
s′|yθ′

) = 2N and #
(
s′|y ′

θ′
)
< 2N for any y ′

θ′ � yθ′
}
�

that is, the set of earliest histories where θ′ has sent signal s′ for 2N times in the past. It is
easy to see that no two members of Y first

θ′ are strict continuations of each other.
If yθ′ ∈ Y first

θ′ , then, for every strict continuation yθ′ � y ′
θ′ , we have #(s′|y ′

θ′)≥ 2N . But the
set of all continuations of yθ′ plus yθ′ itself have mass ψθ′(yθ′)/(1 − γ) under steady state
ψ, so we get

ψθ′
{
yθ′ : #

(
s′|yθ′

) ≥ 2N
} =

∑
yθ′ ∈Yfirst

θ′

ψθ′(yθ′)/(1 − γ)≥ 1
2
�

where the inequality comes from Step 2. But now, for each y∗
θ′ such that σθ′(y∗

θ′)= s′, we
may consider the subset of Y first

θ′ which are strict continuations of y∗
θ′ , which we will denote

by Y first
θ′ [y∗

θ′ ]. Then by Lemma S.4,

∑
y∗
θ′ :σθ′ (y∗θ′ )=s′

ψθ′
(
y∗
θ′
) ≥

∑
y∗
θ′ :σθ′ (y∗θ′ )=s′

( ∑
yθ′ ∈Yfirst

θ′ [y∗
θ′ ]
ψθ′(yθ′)

)
�
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But for each yθ′ ∈ Y first
θ′ , there are exactly 2N histories y∗

θ′ where σθ′(y∗
θ′)= s′ for which yθ′

is a strict continuation, that is, yθ′ belongs to exactly 2N of the Y first
θ′ [y∗

θ′ ] sets.
Thus we can rewrite the RHS as

∑
y∗
θ′ :σθ′ (y∗θ′ )=s′

( ∑
yθ′ ∈Yfirst

θ′ [y∗
θ′ ]
ψθ′(yθ′)

)
= 2N ·

∑
yθ′ ∈Yfirst

θ′

ψθ′(yθ′)≥ 2N · 1
2

· (1 − γ)=N(1 − γ)�

So ∑
y∗
θ′ :σθ′ (y∗θ′ )=s′

ψθ′
(
y∗
θ′
) ≥N(1 − γ)�

as desired. Q.E.D.

LEMMA S.4: In any steady state ψ and for any player i, suppose y∗
i is some finite history

and C is a collection of histories such that (i) y∗
i � yi for all yi ∈ C , and (ii) there are no two

y ′
i � y

′′
i ∈C with y ′

i � y
′′
i . Then ψi(y∗

i )≥ ∑
yi∈C ψi(yi). (Here, the notation y∗

i � yi means history
yi is a strict continuation of history y∗

i .)

PROOF: We first show the statement is true if the maximal length of histories in C is
bounded by length of y∗

i plus t, for every t ∈ N. The base case of t = 1 is evident since the
set of all continuations of y∗

i with one additional period of experience have probability
ψi(y

∗
i ) ·γ ≤ψi(y∗

i ). Now suppose this statement is true whenever t ≤ T . To prove the case
of t = T + 1, write D̂ for the set of all one-period continuations of y∗

i , and observe for
each ŷi ∈ D̂, by the inductive hypothesis,

ψi(ŷi)≥
∑
yi∈Cŷi

ψi(yi)�

where Cŷi ⊆ C is the subset of C which are strict continuations of ŷi. Observe also that
whenever ŷi ∈ C , we get Cŷi = ∅, else we would have two continuations of y∗

i both in C
which are strict continuations of each other. As such, we conclude

ψi
(
y∗
i

) ≥
∑
ŷi∈D̂

ψi(ŷi)≥
(∑
ŷi∈C

ψi(ŷi)

)
+

∑
ŷi /∈C

( ∑
yi∈Cŷi

ψi(yi)

)
=

∑
yi∈C

ψi(yi)�

as desired.
But if the statement holds when C is restricted to histories that continue y∗

i for no more
than t periods for every t ∈ N, then it must also hold for all of C , since the probability
assigned to histories with length greater than T vanishes with T → ∞. Q.E.D.

S.6. PROOF OF COROLLARY 1

COROLLARY 1: With either of the following modifications of the steady-state learning
model from Section 2, every patiently stable strategy profile still satisfies the compatibility cri-
terion.

1. Heterogeneous priors. There is a finite collection of regular sender priors {g1�k}nk=1 and
a finite collection of regular receiver priors {g2�k}nk=1. Upon birth, an agent is endowed with a
random prior, where the distributions over priors are μ1 and μ2 for senders and receivers. An



20 D. FUDENBERG AND K. HE

agent’s prior is independent of her payoff type, and furthermore, no one ever observes another
person’s prior.

2. Social learning. Suppose 1−α fraction of the senders are “normal learners” as described
in Section 2, but the remaining 0 < α < 1 fraction are “social learners.” At the end of each
period, a social learner can observe the extensive-form strategies of her matched receiver and
of c > 0 other matches sampled uniformly at random. Each sender knows whether she is
a normal learner or a social learner upon birth, which is uncorrelated with her payoff type.
Receivers cannot distinguish between the two kinds of senders.

PROOF: It suffices to verify the three conditions of Remark 4 for these two models.
(a) Heterogeneous priors. Write R(μ�δ�γ)

1 and R(μ�δ�γ)
2 to represent the aggregate sender

response (ASR) and aggregate receiver response, respectively, in this model with hetero-
geneous priors.

It is easy to see that

R(μ�δ�γ)
1 [π2] =

n∑
k=1

μ1(g1�k) · R(g1�k�δ�γ)

1 [π2]

for every 0 ≤ δ�γ < 1, where by R
(g1�k�δ�γ)

1 we mean the ASR in the unmodified model
where all senders have prior g1�k. Each R

(g1�k�δ�γ)

1 satisfies Lemma 2, meaning if θ′ �s′ θ
′′,

then R
(g1�k�δ�γ)

1 [π2](s′|θ′)≥ R
(g1�k�δ�γ)

1 [π2](s′|θ′′). So Lemma 2 continues to hold for R(μ�δ�γ)
1 ,

which is a convex combination of these other ASRs.
Analogously, we have R(μ�δ�γ)

2 = ∑n

k=1μ2(g2�k) · R
(g2�k�δ�γ)

2 . Each R
(g2�k�δ�γ)

2 satisfies
Lemma 3, that is to say, for each θ′� θ′′, s′, and ε, there exists Ck and γ

k
such that the

lemma holds. So Lemma 3 must also hold for the convex combination R(μ�δ�γ)
2 , taking

C := maxk Ck and γ := maxk γ
k
.

Finally, in the proof of Lemma 4, we may separately analyze the experimentation rates
of senders born with different priors. Fix a strategy profile π∗ where θ ∈ J(s�π∗) for some
type θ and signal s. The conclusion is that, for each k, there exist εk and functions δ̄k, γ̄k
so that whenever δ≥ δ̄k(N), γ ≥ γ̄k(N�δ), π is a steady state of the heterogeneous priors
model no further away than εk from π∗ in L1 distance, then at least (1 − γ)N fraction of
the type θ senders who were born with g1�k prior will be playing s′ each period. By taking
ε := mink εk, δ̄(·) := maxk δ̄k(·), and γ̄(·� ·) := maxk γ̄k(·� ·), we conclude that (1 − γ)N
fraction of the entire type θ′ population must play s′ each period.

(b) Social learning. Write R∗
1 for the ASR in this modified model and write R•

1 for the
ASR in a model where all senders are social learners. Social learners play myopic best
responses to their current belief each period since they receive the same information re-
gardless of their signal choice. But from the definition of θ′ �s′ θ

′′, whenever s′ is a myopic
weak best response for θ′′, it is also a myopic strict best response for θ′. Fixing the re-
ceivers’ aggregate play at π2, both types of social learners face the same distribution over
their beliefs. This shows R•

1[π2](s′|θ′) ≥ R•
1[π2](s′|θ′′) whenever θ′ �s′ θ

′′, so R•
1 satisfies

Lemma 2, and since R∗
1[π2] = αR•

1[π2] + (1 − α)R1[π2], R∗
1 also satisfies Lemma 2.

Since receivers cannot distinguish between the two kinds of senders, we have not mod-
ified the receivers’ learning problem. So R2 continues to satisfy Lemma 3. Moreover,
the experimentation behavior of the 1 − α fraction of “normal learners” satisfies the
conclusion of Lemma 4. More precisely, there exist ε and functions δ̂, γ̂ so that when-
ever δ ≥ δ̂(N), γ ≥ γ̂(N�δ), π is a steady state of the heterogeneous priors model no



LEARNING AND TYPE COMPATIBILITY 21

further away than ε from π∗ in L1 distance, then at least (1 − γ)N fraction of normal
learner senders will be playing s′ each period. But if we set δ̄(N) := δ̂(N/(1 − α)) and
γ̄(N�δ) := γ̂(N/(1 − α)�δ), then whenever δ ≥ δ̄(N), γ ≥ γ̄(N�δ), and other relevant
conditions are satisfied, the overall steady-state play of the type θ′ population will place
weight at least (1 − γ) · (1 − α) · (N/(1 − α))= (1 − γ) ·N on s′. Q.E.D.
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