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Abstract

An adversarial forecaster representation sums an expected utility function
and a measure of surprise that depends on an adversary’s forecast. These rep-
resentations are concave and satisfy a smoothness condition, and any concave
preference relation that satisfies the smoothness condition has an adversarial
forecaster representation. We provide several tractable classes of adversarial
forecaster preferences. Because of concavity, the agent typically prefers to ran-
domize. We characterize the support size of optimally chosen lotteries in these

classes, and how it depends on preference for surprise.
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1 Introduction

Consider an agent who must choose one of their local sports team’s matches to watch.
They would rather watch their team win for sure than lose for sure, so if they have
expected utility preferences, their most preferred match would be one where their
team has probability 1 of winning. But that would be a rather boring match, and the
agent would prefer to watch a match where their team is favored but not guaranteed
to win, so the match has an element of suspense or surprise. Similar considerations
arise in political economy in the theory of expressive voting, in which people get utility
from watching a political contest, and their utility is enhanced by participation. Just
as with sports matches, some may prefer a more exciting contest, so even without
strategic considerations turnout is likely to be higher when the polls show a close race
(see for example Levine, Modica, and Sun (2023)).

The idea that stochastic choices observed in the data may come from a delib-
erate desire to randomize was first advanced by Machina (1985) and is empirically
supported by e.g. Agranov and Ortoleva (2017). As expected utility does not allow
a preference for randomization, we propose the notion of continuous local expected
utility, which is a small and relatively tractable departure from expected utility that
allows preference for randomization. Continuous local expected utility requires that
expected utility is approximately correct for comparing lotteries that are close, and
that small changes in the lottery do not change these approximations much. By for-
mulating this condition in terms of supporting hyperplanes we guarantee that utility
is concave in probabilities, so our representation captures a preference for surprise.

Although continuous local expected utility has the properties we desire, it is not
easy to work with. This leads us to introduce the more tractable adversarial fore-
caster model, where the agent enjoys being “surprised,” and the surprisingness of an
outcome is measured by the minimized error of a fictitious adversary who tries to
forecast the outcome in advance. We show that this model is equivalent to continu-
ous local expected utility, and that a lottery is optimal for an adversarial forecaster
utility if and only if it maximizes the local utility evaluated at that lottery. This
alternative way of describing continuous local expected utility lets us bring our intu-
itions to bear: it is easier to evaluate what would people consider surprising under
particular circumstances than the abstract question of how local utility might be ex-

pected to vary with the lottery they choose. It is also a powerful mathematical tool



that enables us to construct classes of preferences with various properties, such as a
preference for continuous densities or preferences that satisfy stochastic dominance
properties. We develop and apply two large and useful classes of continuous local ex-
pected utility preferences: generalized methods of moments (GMM) preferences and
transport preferences.

In GMM preferences, the forecast error has a finite-dimensional parameterization.
In this case, we show that if the forecast error is a function of k£ parameters and there
are m moment restrictions, there is an optimal lottery with support of no more than
(k+ 1)(m + 1) points. For example, in the sports case, suppose that preferences are
not merely over which team wins or loses, but also over the score, where the latter
can take on a continuum of values. If the forecaster is limited to predicting the mean
score and there are no moment constraints, then one most preferred choice is a binary
lottery between the two most extreme scores.

We then consider another tractable class of adversarial forecaster preferences,
those that arise when the agent trades off the interests of different potential selves.
We show that these preferences can also arise as the solution to optimal transport
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problems, so we call them “transport preferences.” We show that optimal lotteries
for these preferences can be computed by assigning to each outcome the weight of the
types whose bliss points coincide with that outcome, and that, unlike GMM prefer-
ences, transport preferences typically prefer lotteries with “thick” (i.e. uncountable)
support. Moreover, when the selves’ preferences are more diverse, more outcomes are
included in the support of the optimal lottery.!

We conclude our analysis by studying the monotonicity properties of adversarial
forecaster preferences with respect to stochastic orders. These preferences preserve
a stochastic order if and only if, for every lottery, there is a best response of the
adversary that induces a utility over outcomes that respect the stochastic order. We
apply this result to stochastic orders capturing risk aversion (i.e., the mean-preserving
spread order) and higher-order risk aversion. In particular, we show how a preference
for surprise may lead an agent with a risk-averse expected utility component to have

preferences that are overall risk loving.

'In the one-dimensional case, monotone transport preferences correspond to a case of the ordi-
nally independent preferences introduced by Green and Jullien (1988]).



Related Work Our paper is related to three distinct classes of risk preference mod-
els. It is closest to other models of agents with “as-if” adversaries, e.g. Maccheroni
(2002), Cerreia-Vioglio (2009)), Chatterjee and Krishna (2011), Cerreia-Vioglio, Dil-
lenberger, and Ortoleva (2015), and Fudenberg, lijima, and Strzalecki (2015)), as well
as to Ely, Frankel, and Kamenica (2015)), where the adversary is left implicit. The ad-
versarial forecaster representation imposes more differentiability properties than those
models because of its assumption that the forecaster has a unique best response to
any lottery. These differentiability properties and the concavity of the representation
let us characterize optimal lotteries via first-order conditions. When the possible out-
comes are an interval of real numbers, Cerreia-Vioglio, Dillenberger, Ortoleva, and
Riella (2019) introduce a weakening of expected utility that allows optimal choices
to be strictly mixed; adversarial forecaster preferences satisfy their axioms if the lo-
cal utilities are strictly increasing. The adversarial forecaster model is also related
to models of agents with dual selves that are not directly opposed, as in Gul and
Pesendorfer (2001)) and Fudenberg and Levine (2006).

The preferences studied in Quiggin (1982)), Green and Jullien (1988)), and Gali-
chon and Henry (2012)) all have adversarial forecaster representations provided that
a supermodularity condition holds. The preferences induced by temporal risk in
Machina (1984) are similar to adversarial forecaster preferences, but have a convex
representation and so do not generate a preference for randomization.

Our analysis of monotonicity is related to the work on stochastic orders and pref-
erences over lotteries in e.g. Cerreia-Vioglio (2009), Cerreia-Vioglio, Maccheroni, and
Marinacci (2017), and Sarver (2018)). Unlike the previous results, we do not assume
differentiability or finite-dimensional outcomes, and characterize monotonicity with

respect to stochastic orders given a representation rather than constructing one.?

2 The General Model

We study utility functions that are concave and approximately linear, a modest de-
parture from the linearity of expected utility theory. This section defines the relevant
notion of continuous local expected utility and introduces an alternative formula-
tion, adversarial forecaster utility, which decomposes utility into an expected utility

component and a preference for being surprised. Our main result is that these two

2See Section @ for a more detailed discussion of these and other related results.
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formulations are equivalent. This gives us a powerful tool for constructing examples

and classes of examples and analyzing their properties.

2.1 Set Up and Definitions

We analyze preferences over lotteries that are represented by a continuous but not
necessarily linear utility function V', where the lotteries F' € F are Borel probability
measures over a compact metric space X of outcomes, endowed with the weak topol-
ogy on measures. We say that a continuous function w : X — R is a local expected
utility (EU) of V' at F if it is a supporting hyperplane, that is {w(z)dF(z) = V(F)
for every F e F and {w(x)dF(z) = V(F).

Note that if V has a local EU w at F and (w(z)dF(z) = §w(x)dF(z), then
V(F) = V(F), so that V ranks F versus alternative lotteries according to their local
EU. Note also that if V' has a local expected utility at each F' then V must be weakly
concave, so the induced preferences over lotteries are convex: if the decision maker is
indifferent between lotteries F and F', they weakly prefer any mixture of the two. As
we argue below, in our model this preference for randomization can be interpreted as
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a preference for “surprise.” This becomes a strict preference for surprise when V' is
strictly concave, as in some special cases we analyze in Sections [4] and [5] Moreover,
concavity rules out preferences that have a strictly convex utility representation, such
as the convex quadratic utility of Chew, Epstein, and Segal, |1991.

Expected utility preferences have the same local expected utility at each lottery.
We weaken this to require that V' has a local expected utility at every lottery F' and
that the local expected utility varies continuously with the lottery. As we will show,
this yields a tractable representation that can be interpreted as reflecting a taste for

surprise.

Definition 1. V has continuous local expected utility if there is a continuous function
w: X x F — R such that w(z, F') is a local expected utility of V' at every F' € F.

As we show in Online Appendix IV, V' has continuous local expected utility if and
only if it is concave and Gateaux differentiable with continuous Gateaux derivative.
This is a weaker form of differentiability than in Machina, 1982, but it rules out
convex preferences (i.e., quasiconcave utilities) that do not always admit a Gateaux

differentiable representation, such as cautious expected utility in Cerreia-Vioglio, Dil-



lenberger, and Ortoleva, 2015.3
The continuous local utility of V' at F'is a valid Gateaux derivative for V. This
observation allows us to explicitly compute the continuous local utility whenever it

exists. Let d, denote the Dirac measure on x.

Proposition 1. If V has continuous local expected utility it is concave, and the con-

tinuous local expected utility is*

w(x, F)=V(F)+

We now introduce a representation where the agent prefers lotteries whose out-
comes are difficult to predict, in the sense that even the best prediction has a large
expected error. To formalize this, we use the device of a fictitious adversarial fore-
caster who picks a forecast over outcomes to minimize the expected forecast error

given the agent’s chosen lottery.

Definition 2. A forecast is an element y of a compact metric space Y. A con-
tinuous function o : X x Y — R is a forecast error if it is non-negative, y(F) :=
argmin, .y § o(z,y)dF(z) is a singleton for all F' € F, and y(z) := 5(d,) satisfies
o(z,y(x)) =0 for all z € X.

This definition allows for quite general forecast spaces. Perhaps the simplest
case is where X < R and Y is the convex hull of X as in Example [I} so that a
forecast corresponds to an expected value of x. We also consider the cases when the
forecast is on both the mean and variance of x. We also allow fairly general forecast
errors; in Example [1| we use the familiar squared error. We normalize the error to
be non-negative, and assume that for any lottery F' there is a unique forecast §(F)
that minimizes the expectation of o(x,y) with respect to F.> We interpret o as the
loss function of the adversarial forecaster, and as with the typical loss functions in

statistics (e.g., Huber (2011)) we require there is a unique optimal forecast for each

3For example, when their maxmin representation is with respect to a finite of utilities, the
representation in Cerreia-Vioglio, Dillenberger, and Ortoleva, 2015|is not Gateaux differentiable.

4The result says there is a unique way to specify a continuous local expected utility function.
This does not imply that there is a unique local expected utility at each point; generally, there will be
a continuum of local expected utilities at boundary points. With the topology of weak convergence,
all points are on the boundary of A(X) when X is infinite.

One sufficient condition is that Y < R* is convex and o(x,y) is strictly convex in y for every z.



lottery. Moreover, since it is easy to forecast the outcome of a lottery that assigns
probability 1 to a single outcome, we require that the unique minimizing forecast §(z)
given a degenerate distribution that assigns probability 1 to x has forecast error 0,
ie. o(x,9(d,)) = 0. We call o(x,g(F')) the surprise of the decision maker at outcome
x.

The adversarial forecaster tries to produce good forecasts by minimizing the ex-
pected forecast error. That is, the forecaster knows F' and chooses y to minimize
§o(z,y)dF(x). We refer to the minimum value X(F) = minyey §o(z, y)dF(x) as the
suspense of lottery F; it is also the expected surprise of the agent at lottery F.° Let

C'(X) denote the set of continuous real-valued functions over X.

Definition 3. A function V : F — R is an adversarial forecaster utility if

V(F) = Jv(x)dF(m) + minfa(x,y)dF(x) = Jv(m)dF(m) + X(F) (1)

yey
for some v € C(X), forecast space Y, and forecast error function o.

This representation can be interpreted as follows: The agent has a preference over
outcomes described by the baseline utility function v, and a preference for surprise
captured by the forecast error 0. Given a forecast of the adversary, the agent’s
total utility is the sum of their expected baseline utility and the lottery’s suspense.
Equation |1 implies that V' is continuous and concave, and that V' (d,) = v(z). Note
that adversarial forecaster preferences satisfy the independence axiom for comparisons
of lotteries that induce the same suspense, but do not do so in general. Note also that
these preferences do not need to respect first-order stochastic dominance: As in the
next example, the agent might prefer a risky (and hence exciting) option to a sure

thing that stochastically dominates it.

Example 1. In a sports match, the outcome is x = 1 if the preferred team wins
and z = —1 if it loses. Here lotteries can be represented by the probability p € [0, 1]
that the preferred team wins. Assume that v(z) = z and o(z,y) = (z —y)°, so
the forecast error is measured by mean-squared error, where the forecast space is
Y = [—1,1]. The decision maker gets utility v(x) = x plus v times the squared error

of the forecast, and the adversary’s optimal choice is to forecast y = 2p — 1, the

6As in Ely, Frankel, and Kamenica (2015), surprise is a function of realized outcomes and
suspense is a measure of uncertainty for the outcome computed before its realization.



expected value of the lottery chosen. With this, the resulting suspense is 4p(1 — p),
the variance of the chosen lottery, and the agent’s overall utility over lotteries is rep-
resented by V(p) = 2p—1+~4p(1 —p). Simple algebra gives that the optimal lottery
is p(v) := min{1/2 + 1/~4, 1}: higher preference for surprise (i.e., higher 7) implies
lower optimal winning probability for the preferred team. As illustrated in Figure []
if v > 1/2 and the agent can choose any p € [0, 1], the best lottery p(7y) is such that
the preferred team might lose, while if v < 1/2 the best lottery assigns probability

one to the preferred team winning the match. A
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Figure : V(p) =2p—1+4yp(1 —p)

2.2 Equivalence of the Two Representations

We now show that the two representations developed above are in fact equivalent.

Theorem 1. A utility function has continuous local expected utility if and only if it

1s an adversarial forecaster utility for some forecast space and forecast error function.

The formal proofs of all results are in the appendix except where otherwise noted.
It is easy to see that if V' is an adversarial forecaster representation, then w(-, F') =
v+ o(-,g(F)) is a local expected utility of V', and the continuity of o implies that w
is continuous. Conversely, given a representation V with continuous local expected
utility w, we can set v(z) = V(d;), Y = {w(-, F)}per, and o(z,y(F)) = w(z, F) —

v(x). Because w is continuous, Y is compact, o is continuous, and o attains its



minimum value of 0 at degenerate lotteries. Finally, by Proposition , w(-, F) is the

unique affine function tangent to V' at each F, so o satisfies the uniqueness property.”

3 Implications for Choice

This section illustrates the implications of adversarial forecaster utility with three
applications. The first gives a characterization of optimal choices and demonstrates
how it can be used to analyze them. The second relates the model to models of

stochastic choice. The third examines the timing of information revelation.

3.1 Optimal lotteries

Our analysis below makes extensive use of the following result, which extends the
usual first-order condition for maximization to our infinite-dimensional setting. It
can be thought of as a “fixed-point” characterization of optimal lotteries, because it
shows that an optimal lottery maximizes the local expected utility v(z) + o (z, y(F™*))

which depends on the chosen lottery F™.

Proposition 2. If V is an adversarial forecaster utility, then for any convex and

compact set of feasible lotteries F < F,

F* eargmaxV(F) < F*e argmaxjv(:c) + o(z,y(F*))dF (z). (2)
FeF FeF

Maximizing local expected utility is a sufficient condition for maximizing V,

whether or not the local utility is continuous. The proof of necessity relies on

the fact that V has continuous local expected utility.® The proposition says that

if F* is optimum, it is also optimal with respect to the expected utility function

w(z, F*) = v(z) + o(z,y(F*). To see how this works, consider Example |1} Here it is

"When X is finite, so that F is finite-dimensional, the concavity and continuity of V are equiv-
alent to a generalized version of adversarial forecaster utility where the minimum in equation (1} is
replaced by an infimum and the uniqueness property is not necessarily satisfied. Corrao, Fudenberg,
and Levine (2024) shows that this infimum cannot in general be strengthened to a minimum even
when V' also satisfies best outcome independence (cf. Maccheroni (2002)).

8For example, if X =Y = [-1,1] and V(F) = minge_q 1j Sil(Zy — 1)xdF(x), then F* = §¢ is
optimal over F for V. However, w(x,y) = (2y — 1)z is a local expected utility for V" at F* for every
y € [—1,1], yet F* is strictly suboptimal for all of these local utility functions except for the one
corresponding to y = 0.



easy to see that the two degenerate lotteries _; and d; do not satisfy this condition
when v > 1/2. Instead, each optimal lottery p must assign strictly positive proba-
bility to both outcomes and, by Proposition |2 the local expected utility at p is the
same for both outcomes. Some simple algebra shows that the only lottery satisfying
this indifference condition is p(y) = 1/2 + 1/v4.

The next result uses Proposition [2| to relate the properties of w(x, F*) to the

optimal lotteries.

Corollary 1. Suppose that X is a compact and convexr subset of an Euclidean space

and V' has continuous local expected utility w.

1. Ifw(x, F) is strictly quasiconcave in x for every F' € F, then any optimal lottery

F* over F is degenerate.

2. If w(x, F) is strictly quasiconver in x for every F' € F, then any optimal lottery

F* over F is supported on the extreme points ext(X) of X.

This result follows from the fact that F* is optimal if and only if supp(F™*) <
argmax, .y w(z, F*). Therefore, when each w(x, F') is strictly quasiconcave, each
candidate optimal lottery must be supported on the single maximizer of the local
utility at that lottery. Similarly, when w(x, F') is strictly quasiconvex, each candi-
date optimal lottery must be supported on the extreme points of X. We know that
risk averse individuals have a preference for degenerate lotteries, and risk loving in-
dividuals for extremal points. This generalizes to quasi-concavity provided the local
expected utility functions have that property. In the strictly quasi-convex case, the

solution can be degenerate, as in the next example.

Example 2. Here we extend the sport-match preferences of Example [1| by allowing
risk-averse (CARA) baseline preferences. We set X =Y = [-1,1], v(z) = (1 —
exp(—Az))/A with A > 0, and o(z,y) = v(x — y)? with v > A/2. The local utility
at any lottery F is w(x, F) = v(z) + v(x — mg)?, and, because mingcy v"(z) = —\
and X\ < 2, each local utility is strictly convex in z. From Corollary [I, a lottery F*
is optimal only if it is supported on —1 or 1. In Figure [2] we plot the local utilities
w(z, F) for A =y =1 at the degenerate distributions over —1, 1, and at the lottery



-1 0 1
X

Figure : w(z, F) = (1 —exp(—2x)) + (x — mp)?
over {—1,1} with average mp = 0.59.° The unique solution to this maximization is

. ~-1if <
q*(t) = o, (3)
1 if > =T

where @ = min {r(\)/v,1} is the mean of the optimal lottery and where r(\) =

(exp(\) —exp(—A))/4. This corresponds to the binary lottery on {—1, 1} that assigns
1+g*
1
variance is 1 — (r(\)/7)?, which is decreasing in A and increasing in 7: agents with

probability to 1. The variance of this lottery is 1 — (g*)?; when §* < 1, the
lower baseline risk aversion and more taste for surprise are willing to sacrifice more
expected value for higher variance. In Figure 2] r()\)/y = 0.59 and the corresponding
local utility is indifferent between —1 and 1. A

3.2 Stochastic Choice

The adversarial forecaster representation is concave, and often leads to choice func-
tions that are stochastic. Moreover, many stochastic choice representations in the
literature satisfy the regularity property that enlarging the choice set cannot increase

the probability of pre-existing alternatives, but this is not true for adversarial fore-

95_1 cannot be optimal because w(—1,5_1) = (1—exp(A))/A < (1—exp(—\))/A+4y = w(1,0_1).
91 is optimal if and only w(1,01) = (1 — exp(—A))/A = (1 — exp(A))/Ay = w(0,d1), which is
equivalent to r(A)/A = v, where r(\) = (exp(\) — exp(—2\))/4. In Figure |2, we have A =y =1, so
r(A)/A=059 <1=+.
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caster preferences.!?

To relate the adversarial forecaster representation to stochastic choice, suppose
that the agent has a finite set F < F of feasible lotteries, and can implement any
randomization over these lotteries, so they can choose any lottery over outcomes given
by F\ = Y sz FAF) for A € A(F). We assume that the agent reduces compound
lotteries and so only cares about the final lottery F\. The concavity of the adversar-
ial forecaster representation then implies that each compound lottery F) is weakly
preferred to at least one lottery in the support of A\. This preference is strict when V'
is strictly concave.!! The next example shows how a preference for surprise can lead

to violations of regularity.

Example 3. Suppose that X =Y = [—1,1], that the agent’s baseline utility is
v(z) = z, , and that the agent’s preference for surprise is o(z,y) = (x —y)>. As in
Example 7 the continuous local utility of V' is w(z, F) = v(x) + (x — mg)?, where
mp = Sil ZdF(z). Observe that the agent’s ranking of two lotteries with the same
expected value 7 is the same as that of an expected utility agent with utility function
w(z) = v(z) + (z — T)?, which is less risk averse than v. Moreover, the stochastic
choice rule induced by these preferences need not satisfy Regularity. For example,
when the set of feasible lotteries is A({—l, O}), the unique optimal choice is dy, so
there is no suspense. In contrast, when the feasible lotteries are A({—l, 0, 1}), the
optimal lottery is 1/40_1 + 3/40,: the agent tolerates the risk of the bad outcome —1

when it can be accompanied by a larger chance of outcome 1.2

A

Some classes of adversarial forecaster preferences do satisfy regularity. This is
true for example of the weak APU of Fudenberg, [ijima, and Strzalecki (2015)). The
weak APU representation is defined only for finite sets X; it is given by V(F) =
Dwex F(x) (u(z) — c(F(x))) where F'(z) denotes the probability mass function of F
and the cost function ¢ : [0,1] — R u {0} is strictly convex and continuously dif-

ferentiable on (0,1). To have continuous local expected utility we also need to as-

0Formally, a stochastic choice function P : X — A(X), where X < 2% is the collection of feasible
menus, satisfies reqularity if P(z|X) < P(z|X ) forallz e X < X.

11See Proposition |4 for a class of strictly concave adversarial forecaster representations.

12Note that any binary lottery with pd; + (1 — p)d_; is strictly preferred to a point mass at 0
provided that p > (3 — /5)/4. Thus the example satisfies the sufficient condition for the failure of
regularity in Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella, 2019 Theorem 2.
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sume that the derivative ¢’ is bounded and then the local expected utility at F™* is
w(x, F*) = u(z) — (F*(x)).13

3.3 Two-stage lotteries and surprise

We now study the implications of adversarial forecaster preferences for the timing
of information acquisition. We consider an agent choosing among two-stage lotteries
that represent distributions over both states and intermediate information. We show
that the “preference for surprise” in Ely, Frankel, and Kamenica (2015) (EFK) has an
adversarial forecaster representation.!* EFK assumed that the agent does not directly
care about the outcome itself; our approach makes it easy to study the case where the
agent cares about the outcomes as well as surprise, Let 2 = {0, 1} be a binary state
space. The outcomes z = (p,w) are elements of X = A(Q) x 2. The agent chooses an
element of the set F of lotteries that satisfy the martingale constraint X pdF(p) = pr,
where pp is the marginal of F' over €.

The lottery resolves over two time periods: In Period 1, the agent learns their
interim belief p € A(Q2), and in period 2, w € ) realizes. Following EFK, we assume
that the agent has preference for suspense in both periods, and assume that the pref-
erence for first-period suspense is Vi(F) = g(E(F)) for E(F) = S(l) Hllp—pr|PdF (p) =
Sé p?dF (p) — p% and some function g : R — R that is twice continuously differentiable,
strictly increasing, and concave, with g(0) = 0. The resulting utility function V; has
continuous local utility, so it is an adversarial forecaster representation by Theorem
. The suspense in period 2 given interim belief p is >} g 3/|6. — p|[*p(w), and the

expected period-2 suspense is

Va(F) = fg <Z %H&J —pHQp(w)) dF (p) = f 9(p — p*)dF (p).

wef) 0

Finally, generalize EFK so that the agent gets direct utility equal to © € R when the
realized state is w = 1 and direct utility 0 when w = 0; the case v = 0 yields the

preferences in Ely, Frankel, and Kamenica (2015)).1%

13The stronger version of APU requires lim,_,q ¢(g) = —oo which is not consistent with continuous
local expected utility.

14Here we assume there are only two states, but it is true for any finite state space.

15Tn Ely, Frankel, and Kamenica (2015), z is fixed, so all the feasible two-stage lotteries induce
the same prior belief over €2, and flow utility at each period depends on the expected surprise for
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The overall utility of the agent is V3(F) = ppo + (1 — B)VA(F) + BV5(F), where
B € [0, 1] captures the relative importance of suspense across periods. The discussion
above shows Vj3 has continuous local expected utility, so by Theorem (1| it admits an

adversarial forecaster representation. The local utilities of Vj are:

wg(p,w, F) = wio + (1 = B)g'(D(F))(p* — pF) + Bg(p — p?), (4)

where Dy(F) = {p?dF(p) — p}.. As we show in Proposition |13 in Online Appendix
I1.D, when f is near 1 (so the agent mostly cares about second-period surprise) the
optimum is to reveal no information in the first period so the set of interim beliefs
is a singleton, and when S is near 0, so the agent mostly carers about first-period
surprise, the state is fully revealed then. Finally, for intermediate values of 3 the

optimum can have 3 different interim beliefs (see Online Appendix III).

4 The Bounds of Optimal Randomization

This section analyzes the extent of optimal randomization in a class of adversarial
forecaster models called generalized method of moments, which is based on the idea
that the forecaster makes a prediction by targeting certain moments of the lottery. In
a sense, these are the simplest examples of non-linear preferences with continuous local
expected utility, because they are always quadratic. We first study the case where
the adversarial forecaster only cares about a finite number of moments and show that
the extent of optimal randomization is bounded by the number of moments. We then
show that as the number of moments grows to infinity, the extent of randomization
can increase to the point where optimal lotteries randomize over the entire space of

outcomes.

4.1 Generalized Method of Moments Preferences

Suppose X is a closed bounded subset of an Euclidean space, and let S be any finite
set. Given any continuous function o : X x S — R, define h(F, s) = (h(z, s)dF(z) for
all se S and F' € F. For a given h, we define the forecast space Y = [[ s h(F,s) <

R¥, a compact set, and call it the set of generalized moments: these correspond to

the next period given the current belief.
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functions of the outcomes that are indexed by s. We now suppose that the adversary’s

goal is to match the collection of moments of F' given by h(z, s).

Definition 4. The loss function ¢ is based on the generalized method of moments
(GMM)!6 if there is a finite probability space (S, u) and a continuous function A :
X x § — R such that

o(w,y) = ), (h(z,s) = y(s))* u(s). (5)
seS
Proposition {4 below shows that any loss function o based on the generalized
methods of moments is a forecast error, and moreover the associated suspense is
quadratic. If X € R and S = {s1,..., S} is a finite set of non-negative integers, we
can take h(z,s;) = 2% for every s; € S, yielding the standard method of moments.'”
The simplest case is X € R and S = {1}, as in Examples [I] and [3|

4.2 Moment Restrictions and Bounds on Optimal Supports

We turn now to the study of optimization problems with support restrictions and
moment constraints, e.g. that the expected outcome must be constant across lotteries,
as is the case with fair insurance. We focus on the extent of optimal randomization,
that is, the size of the supports of optimal distributions.

To define the support restrictions formally, fix a closed subset X < X and a
finite collection of k continuous functions I' = {g1, ..., gx} < C (X) together with the
feasibility set

fpz{FGA(Y):VgieF,Jgi(x)dF(x)<O}, (6)

which we assume is non-empty. For example, if = is money, then {xdF(z) = 0 is the
constraint that the agent must choose a fair lottery.!® When the constraint set I is
empty, the agent can pick any lottery with support X.

When an expected-utility agent maximizes over JFr, there are optimal lotteries

that are extreme points of the set Fr, and all the extreme points of this set are

16Tn econometrics, the generalized method of moments means minimizing a quadratic loss function
on the data under the constraint that a number of generalized moment restrictions are satisfied.

17See for example Chapter 18 in Greene (2003).

18Equality constraints can be incorporated in (6)) by considering both g;(z) and —g;(z).
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supported on at most k 4+ 1 points of X. We now generalize this idea to the class
of GMM preferences and show that the upper bound on the support of an optimal
lottery depends on the number of moments defining the adversary’s loss function as

well as the number of moment restrictions.

Proposition 3. When the agent has GMM utility with m moments and I' contains
k moment restrictions, there is an optimal lottery that puts positive probability on at
most m+ k + 1 points. Moreover, if X s finite, then all optimal lotteries put positive

probability on at most m + k + 1 points.

The proof of the first statement is relatively simple, so we present it here. First,
given the forecast error in equation , for every F' the optimal forecast is g(F) =
(h(F,s)),.q and define Y = §(Fr). Then the optimization problem becomes

I{{lei&]:);V(F) = ggjigrcf {v(m) + Z (h(z,s) — h(F,s))? M(S)} dF(z)

seS

= max  Imax J {U(x) + Z (h(z,s) —7(s))? ,u(s)} dF(z).

ey F y(F)=9y
geY FeFr:g(F)=y oy

Now fix an optimal solution 7* of the outer maximization problem.!® F* solves the

original problem and is consistent with y* if and only if it solves

— 2
x| {v@:) # 3 0e9) ~7°(5) u<s>} aF (z) @
which is linear in F': The agent behaves as if they were maximizing expected utility
over all lotteries that have the optimal values of the relevant moments. Because the
objective in (7)) is linear in F', there is a solution in the set of extreme points of the set
{F € Fr: h(F,-) = y*}. This set is obtained by adding the m linear restrictions given
by 7* to the set of probabilities over X that satisfy the k exogenous moment restric-

tions, and Winkler (1988) shows that the extreme points of this set are supported on

19An optimizer 7* € Y exists because the function

R@) -, max | {v<x>+2<h<x,s>—y<s>>2u<s>}dF<x>

FeFrg(F)=y s

is upper semicontinuous by Berge Maximum theorem.
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at most k + m + 1 points of X, as claimed.?

Section [4.4] introduces a class of adversarial forecaster representation that general-
izes GMM which a generalization of Proposition 3| holds (see Theorem [3|in Appendix
A).

4.3 Infinitely many moments and unbounded randomization

So far we have analyzed the minimal support of optimal lotteries under the assumption
that the parameter space Y is finite dimensional. When Y is infinite dimensional,
every optimal distribution can have “thick” (i.e. non-finite) support. We will show
this for a class of GMM preferences with infinitely many relevant moments.

We extend GMM utilities by considering a compact probability space (.S, i) en-
dowed with its Borel sigma algebra and a continuous function h : X x § — R. As
before, the forecast space is the compact set Y = {h(F,-) € C(S) : F € F},*! and the

forecast error is

o, y) = f (h(z,s) — y(s)) duls). 8)

We now show that o based on the generalized methods of moments is a forecast error,

and moreover, the associated suspense is quadratic.

Proposition 4. Any loss function o based on the generalized methods of (infinite)

moments is a forecast error, and the suspense is quadratic
Y(F) = JH(x, x)dF(x) — JJH(% T)dF(x)dF(T)

where H(x,2) = §h(x, $)h(Z, s)du(s). If p has full support and F +— h(F,-) is one-

to-one, then > and V' are strictly concave

When X < R, the generalized moments h(z,s) = exp(sx),—so < s < 5o with
so > 0, correspond to the moment generating function and so induce a one-to one
mapping. Proposition 4| implies that the GMM preference V(F') induced by this
class is strictly concave, thereby exhibiting a strict preference for randomization. For

example, Theorem 2 in Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella (2019)

20Winkler’s result is reported in Theorem [7|in Online Appendix I.B.
21The Arzela—Ascoli theorem implies that Y is compact: Y is closed because F is compact, it is
uniformly bounded because F x S is compact, and it is equicontinuous because h is continuous.
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implies that the stochastic choice induced by these preferences is in general non-
degenerate. Moreover, because strict concavity of V' is inconsistent with EU,

Chew, Epstein, and Segal (1991)) show that quadratic utilities satisfy mixture
symmetry, a weakening of both independence and betweenness that is more consistent
with some experimental findings such as Hong and Waller (1986). Proposition 3 in
Dillenberger (2010) shows that preferences represented by quadratic utilities satisfy
negative certainty independence (NCI) only if they are expected utility preferences.??
Therefore, when V' is induced by a GMM forecast error and its continuous local utility
is not constant, the corresponding preference does not satisfy NCI. This is intuitive,
because NCI corresponds to a preference for certain outcomes, which is the opposite
of a preference for surprise.

When a GMM utility has infinitely many moments, we call H its kernel. Next, we
provide sufficient conditions for an infinite GMM utility to induce a unique optimal
lottery that has full support over the outcome space. For simplicity, we consider
the one-dimensional case and do not impose exogenous moment restrictions on the

feasible lotteries.

Proposition 5. Assume that X = [0,1], I' = J, the kernel of the GMM represen-
tation H(z,z) = (h(z, s)h(Z, s)du(s) = G(x — I) is positive definite, and H(0, ) is
non-negative, strictly decreasing (when positive), and strictly convez in . Then there

s a unique optimal lottery, and it has full support over X.

For the hypotheses of the theorem to be satisfied, the GMM adversary must have
a sufficiently large set of forecasts, as in Example [9] in Online Appendix I11.2% The
proof uses Proposition {4] to obtain strict concavity of the function V', which implies
that the unique optimal distribution F' for V over F is characterized by first-order
conditions which, together with the assumptions on H, imply that there cannot be
an open set in X to which F' assigns probability zero.

We close this section with a corollary of Proposition its proof is in Online

Appendix I

Corollary 2. Maintain the assumptions of Proposition[d, and let F' denote the unique

fully supported solution. There exists a sequence of GMM representations V" with

22NCI says that if the agent prefers a lottery to a certain outcome, this ranking is not reversed
by mixing each option with a third lottery.
23In Example |§| below thick support arises a different sort of adversarial forecaster preference.
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|S™ € N, and a sequence of lotteries F™ such that each F™ is optimal for V", is
supported on at most |S™| + 1 points, and F" — F weakly, with supp F™ — supp F' =
X in the Hausdorff topology.

Intuitively, as the number of moments that the adversary matches increases, the
agent randomizes over more and more outcomes, up to the point that every outcome

is in the support of the optimal lottery.

4.4 Parametric Adversarial Forecaster and Randomization

For GMM preferences, the forecast space is the set of generalized moments, [ [,.4 2(F, s).
Because S is finite, Y is a subset of a Euclidean space, so §(F) = (h(F, s))ses can be
interpreted as a finite-dimensional parameter that represents the best forecast for F'.
Parametric adversarial forecaster representations generalize these properties and let

us relax the symmetric loss function of the GMM case.

Definition 5. A forecast error o is parametric if Y < R™ for some finite integer
m, and o is continuously differentiable in y. A function V : F — R is a parametric
adversarial forecaster utility if it has an adversarial forecaster representation with a

parametric forecast error.

This definition is tailored for utility functions with an explicit adversarial fore-
caster representation (v,o). However, the proof of Theorem [1] constructs a forecast
error o starting from a continuous local expected utility w of V. It is then straight-

forward to provide conditions on w that imply V is parametric.?*

Example 4. This example relaxes the GMM representation by allowing the forecaster
to have different preferences regarding positive and negative surprises. Let X = [0, 1],
set Y = X, and fix a strictly convex and twice continuously differentiable function
p:[—1,1] - R, such that p(0) =0, p'(z) < 0if z <0, and p'(z) > 0if z > 0. The

utility function

V(F) - J o(w)dF (@) + min L o(z — y)dF (), ()

0 ye

21t is sufficient that w(z, F) = w(z, P(F)) for some continuous functions P : F — Y and
w: X xY — R with Y is a compact finite-dimensional set and w continuously differentiable in y.
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arise from the parametric adversarial forecaster representation with forecast error
o(z,y) = plx —y). Here j(F) is the unique minimizer in (©. and the suspense
function is X(F) = { p(x — §(F))dF(x) which can be interpreted as an index of the
dispersion of F, without requiring symmetry. As we show in Section [6.2] this can

lead to more “prudent” preferences than those induced p(z) = 22 A

Example 5. Proposition 7 in Fudenberg, Iijima, and Strzalecki (2015) shows that V'

has an APU representation if and only if it has an AVU representation, that is,

V(F) = )} u(z)F(z) + min ’y(«%) + ) ¢(y(f?))] F(x) (10)
zeX VERT ex PeX

where ¢(z) := ¢*(—z) and ¢* is the convex conjugate of the original cost function c.

If ¢ is bounded andmin,cg (7 + ¢(r)) = 0,2 we can restrict the minimization in ([10])

to a compact subset of R* and define o(x,y) = y(z) + Y.y ¢(y(Z)) to obtain an

adversarial forecaster representation.

The AVU representation in Equation [10]is an example of a parametric adversarial
forecaster utility where the parameter space Y has dimension m = |X|. In the
spirit of the nested logit model, we generalize the APU representation by considering
uncertain taste shocks y € R¥ that are the same across certain classes of outcomes
in X, reducing the dimensionality of the parameter space.?® Fix a partition P =
{Ey, ..., En} of X and a compact interval I < R that contains 0 and is large enough
that the solution of min,c; pr — ¢(r) is in the interior of I. Let Y be the subset of I*
of vectors that are measurable with respect to the fixed partition, and let V(F’) be as
in (10) with RX replaced by Y. Then for every partition, the utility function V has

an adversarial forecaster representation. A

Theorem [3|in Appendix A extends the support bounds of Proposition |3| to para-
metric adversarial preferences that are not GMM, as in Example @ For the asym-
metric GMM case of Example [d] we show there is an optimal lottery supported on no
more than 2(k + 1) points given the k& moment restrictions in I. In our generalization

of AVU in Example [5 the number of parameters coincides with the number of cells

25This last assumption is only needed so that the baseline utility v from the adversarial forecaster
representation coincides with u; it is satisfied for example by ¢(r) = r2/2 —r.

26Nested logit divides items into groups, with correlated value shocks within each group. Here
we consider the case where items within the same group have perfectly correlated shocks.
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of the partition describing the uncertainty shock. This can be smaller than the car-
dinality of |X|, so Theorem [3 yields a meaningful bound on the support of optimal
lotteries. Because all solutions must satisfy the upper bound when X is finite, our
result gives a testable prediction on the support of stochastic choices induced by AVU

preferences with perfectly correlated shocks.?”

5 Transport Utilities

This section considers a tractable class of adversarial forecaster utilities that can
generate randomizations with thick support. These preferences arise when the agent
trades off the interests of multiple selves with potentially heterogeneous intrinsic pref-
erences for surprise. We show that the resulting adversarial forecaster representation
has the form of the dual Kantorovich transport problem (hence the name) and ana-
lyze it using results from the optimal transport literature. This lets us give a simple
sufficient condition for optimal lotteries to have thick support, and provide a detailed

analysis of the one-dimensional case.

5.1 Definition of Transport Utility

As in the infinite-dimensional GMM case of Section [4.3] we let the forecast space be
infinite-dimensional, a key to obtaining the strict optimality of lotteries with thick
(i.e., infinite) supports. Formally, we let the outcome space X be a compact and
convex finite-dimensional set, and take a forecast to be a continuous real function y
over X, which we regard as a score function. For example, the score y(x) of outcome
x can represent the forecaster’s estimate of the likelihood of z in the form of the
logarithm of a density of x.

If we defined the surprise of the outcome z as max,y(§) — y(x), that is, the
score difference between the outcome with the highest ex-ante score and that realized
outcome, the adversary could reduce the surprise to 0 by choosing a constant y.
Instead, we consider a decision maker with multiple selves that have heterogeneous
preferences over outcomes. We index the selves by 6 € © = X, and represent the
preferences of these different selves by a continuously differentiable score adjustment

function ¢(0,x), where a higher value ¢(0,x) > ¢(0,2") indicates that type 6 prefers

27Online Appendix II.B provides an extension to the case of infinite X.
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the outcome z to the outcome z’. We then suppose that type 6 evaluates outcomes
using the preference adjusted score y(z) — ¢(6,x), where lower adjusted scores are
preferred. We continue to measure surprise in relative terms, so the surprise for self
6 at outcome z is maxeex (y(§) — ¢(0,€)) — (y(z) — ¢(6,2)).

Notice that for any particular self 6 the forecaster can send the forecast y(z) =
¢(0,x) so that € has a uniform utility-adjusted forecast and is not surprised by any-
thing. Instead, we assume that the selves 6 are uniformly distributed over X, and
that the adversarial forecaster minimizes the average of the individual surprise over
all selves. We also assume that the decision maker maximizes the sum of a baseline

continuous expected utility v(x) and the expectation of the average surprise, that is,

V(F) = Jv(x)dF(x) + inf J&(m,y)dF(w) (11)

yeC(w)
where

oa) = [ (max©) - 0.9 - (a) ~o6.0) Jav(®) (12
is the expected value of the score-adjusted surprises of the multiple selves with respect
to the uniform measure U.2® We say that V(F) is a transport utility if it satisfies
for some v(x) and ¢(6, z) because, as we will show, the term infyec(,) § o(2, y)dF(z)

is isomorphic to the dual of the Kantorovich transport problem.

5.2 Adversarial Forecaster Representation

Transport utilities do not immediately have an adversarial forecaster representation
because the function & is not defined over a compact space Y, but we will show that we
can restrict Y to be a compact subset of continuous functions to obtain a valid surprise
function. To do this, we define Y* to be the K-Lipchitz real-valued functions on X,
and say that y € C'(X) is strongly ¢-concave if y(x) = —maxgpex (y*(0) — (0, x)) for
some y* € Y*.2 We then define the forecast space Y to be the strongly ¢-concave
functions y in C'(X) that satisfy the normalization {exp(y(z))dU(z) = 1, and let o

denote the restriction of & to X x Y .30

28The results extend to any measure that can be represented by a density. When the distribution
of 6 has mass points, the uniqueness property required by adversarial forecaster preferences can fail.

29Ginceq is continuously differentiable on X x X, it is Lipschitz continuous.

30This normalization is needed to bound the space of forecasts. It is consistent with the inter-
pretation of the score as the logarithm of a density function.
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Theorem 2. The function o is a forecast error, L(F) = mingey {o(x,y)dF(x) is
the corresponding suspense function, and the utility function V in equation |11 is an

adversarial forecaster utility.

This result follows from Lemma[9) and Lemma[10]in Appendix B, which show that

Y and o satisfy all the properties of a forecast space and a forecast error function.

5.3 The Primal Representation and Optimal Lotteries

As indicated, transport preferences are linked to the Kantorovich optimal transporta-
tion problem through duality theory, which lets us give a simple sufficient condition

for optimal lotteries to have thick support. First, we establish the basic duality result:

Lemma 1. Suspense is the solution to choosing a probability measure T € A(O x X)

to solve the problem

TeA(U,F)

S(F) = max (ffgb&de \dF (x ngﬁ&xdT@x)) (13)

where A(U,F) is the set of joint distributions T such that §T(0,x)d8 = F(z) and
§T(0,z)de =U(0).

We use this duality result in Theorem [9]in Appendix B to derive the set of optimal
lotteries under general transport utilities. Lemma [I] also helps us find conditions on
¢ that make transport utilities strictly concave and so exhibit a strict preference for
randomization. We say that ¢ satisfies the twist condition if the map 6 — V,¢(0, x)
is injective for all x € X. For example, the twist condition is satisfied in the one-
dimensional case X < R when ¢ is twice differentiable with ¢,9 < 0, a condition that

we exploit in Corollary {4 below.

Corollary 3. If ¢ satisfies the twist condition, the transport utility V (F) in equation
1s strictly concave.

Because finite-dimensional parametric adversarial forecaster utilities are not strictly

concave when X is infinite, this corollary shows there is no intersection between them

31

and the transport utilities that satisfy the twist condition.”* Strict concavity also

31Finite-dimensional parametric adversarial forecaster utilities are not strictly concave when X
is infinite because a finite set of parameters is not sufficient to pin down a unique element of F, and
VIAF+ (1= XANF) =AV(F) + (1 — \)V(F) for all lotteries F, F' such that §(F) = §(F).
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differentiates transport utilities with the twist condition from other models in the lit-
erature with a maxmin representation such as Maccheroni, 2002/ and Cerreia-Vioglio,

Dillenberger, and Ortoleva, 2015, which are not strictly concave in general.

5.4 The One-Dimensional Case

Let X = R and, for every lottery F, let qp(t) = F~'(t) denote its the quantile
function, where F~!(¢t) := inf {z € X : t < F(x)} denotes the generalized inverse of F.
Each ¢p(t) is nondecreasing and left-continuous. Conversely, for every nondecreasing
and left-continuous ¢, the function F,(z) = sup {t € [0,1] : x > ¢(¢)} is a CDF: it is
nondecreasing, right-continuous, and equal 1 at the largest point of X. Moreover,
F,(x) is the unique CDF such that F,(z) € ¢ '(x) for all x € X. As shown in
Appendix B, this lets us find optimal lotteries by maximizing over the corresponding

quantile functions.??

Corollary 4. Suppose that X < R is an interval and that ¢g, < 0. A lottery F' € F
mazximizes V(F) if and only if

ar(0) g {o(0) = a0, + [ oau(), )z (14

zeX
for all t € [0, 1].

Example 6. Consider a sports team example where X = [—1,1] represents the
possible scores of a game, fix v € [0,1], and consider the baseline utility v(x) =
—(1 — v)z?. We compare two cases of adversarial forecaster preferences. Consider
first a GMM utility with Y = [—1,1] and o(z,y) = v(z — y)? as in Example 2 In

this case, the adversarial forecaster utility function is
V(F) = Ep[v(z)] + vVarp(zx) (15)

where Varp(z) is the variance of F. The local expected utility is w(zx, F') = (27 —
1)2? — 2y2qr + Vg%, where qp = S(l) qr(t)dt. When ~v < 1/2, every local utility is
strictly concave in x, so that the unique optimal lottery is a point mass on a single
outcome which by Proposition 2l must be 0. When ~ > 1/2 then every local utility is

strictly convex, so Proposition [§|in the next section implies that the optimal lottery

320nline Appendix II.C characterizes optimal lotteries for general transport preferences.
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is supported on {—1,1}. Moreover, Proposition [2| implies that the expectation qp«
of the optimal lottery satisfies the indifference condition w(—1, F*) = w(1, F*), so
Gr+ = 0, and the optimal lottery gives probability 1/2 to —1 and 1.

Now consider the transport utility induced by the multiple-selves utility function
¢(0,x) = —yfzx. Lemma implies that the corresponding adversarial forecaster
utility function is V(F') = Ep[v(x)] + v maxpea(r,v) Covy (6, x), where A(F,U) is the
set of joint distributions over X x © with marginals ' and U and Covr (0, z) is the
covariance between x and 6 under 7.

Corollary {4| says that the quantile function gpx(t) of the optimal lottery solves

qr+(t) € argmax p(qu(t), z) = argmax {7(2t — 1)z — (1 — 7)2*} (16)
ze[—1,1] ze[—1,1]

for all ¢ € [0,1]. The unique solution of is

g+ (t) = max {—1,min {1, ﬁ(t - 1/2)}} ,

which induces an optimal distribution that depends on + and has thick (i.e. uncount-
able support for all v € (0,1).33 A

5.5 Transport utility and rank dependence

We now connect transport utility to models of rank-dependent utility in both one
and multi-dimensional settings where the decision maker exhibits attraction to risk.
We start with the case of monetary lotteries over X = [0, 1], and recall that rank-

dependent expected utility (Quiggin (1982))) is defined as

1
V() = | wlar®)dnty
0
for some strictly increasing utility function w(g) and a probability distribution p €
A([0,1]) that assigns weights to quantiles (i.e., ranks).>* The idea is that the decision
maker’s attitudes toward risk depend on both a utility function over money and a

distortion over probabilities that can alter the relative importance of quantiles. If

33When 7 is less than 2/3 the optimum has no mass points, as v — 1 the probability assigned to
mass points goes to 1.
34The earlier characterization of Yaari (1987) corresponds to w(z) = z.
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u(t) is differentiable and p/(t) is non-increasing, we have

V(F) = Jl w(gr(t))p'(t)dt = max Jw(x),u'(@)dT(G,x) (17)
0 TeA(U,F)

where the second equality follows by the same steps of Lemma [I] above. Lemma
and Lemma |11 in Appendix B irnply that V(F) is a transport utility with ¢(6, z) =
—w(z)p' (0) and v( So 6)dU (6), so rank-dependent expected utility with g
differentiable and convex is a partlcular case of transport utility. As pointed out by
Chew, Karni, and Safra (1987)), convexity of p(t) captures risk attraction concerning
the probability distortion, and it characterizes overall risk attraction when w(x) is
convex. This fits the interpretation of the model as one of preference for surprise,
because it says the decision maker prefers more dispersed lotteries since they are
harder to forecast accurately. From Proposition [I, the continuous local utility of
V(F) is equal to its Gateaux derivative up to a lottery-dependent constant.

Next we show that the same relation to transport utilities holds for the more
general ordinally independent representation of Green and Jullien (1988]). Ordinal
independence requires that if two distributions have the same lower tail, this tail can
be modified without altering the preference between the distributions. Green and
Julien show that the standard expected utility axioms with ordinal independence in
place of the independence axiom, together with monotonicity, imply preferences have
the representation V(F So (t,qr(t))dt for some continuous real-valued utility
function ¢(t,z) that is nondecreasmg in z. This generalizes the rank-dependent

representation of Quiggin (1982), where o(t, x) = w(x)u' (t).%

Proposition 6. If v is a twice continuously differentiable with oy, > 0, then

1
F) = = T 1
V(F) = | eltar(®)it = max | ol6.2)aT(0.), (18)
is a strictly concave transport utility with ¢(0,z) = —p(0, x) and v(z So (0, 2)dU(6).3

Conversely, if V(F') is a transport utility such that v(z) — ¢(x,0) + Sgb x,0)dU(0) is

nondecreasing in x, then it has an ordinally independent representation.

Finally, we show the connection between transport utilities and rank dependence

35See Green and Jullien (1988) for a discussion of the additional behavior allowed by the more
general ordinal independent representation.
36Note that this does not require that ¢ is monotone.
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beyond the one-dimensional case. In particular, we consider the U-comonotonic inde-
pendent preferences of Galichon and Henry (2012)), an extension of Yaari’s preferences

to multivariate lotteries where X < R¥.

Proposition 7. The U-comonotonic independent preferences of Galichon and Henry
(2012) admit the following representation

TeA(U,F

V(F) = max < f (0o x)dT(Q,x)) (19)

where o denotes the inner product in R¥.

Lemma (1| implies that V(F) in equation [19|is a transport utility with a score-
adjustment function ¢(z,0) = —(0 o z) and v(z) = (§0dU(0) o z). Observe that this
score-adjustment function satisfies the twist condition, so Corollary |3 implies that

these preferences have a strictly concave representation.

6 Monotonicity and behavior

Preferences that preserve stochastic orders capture the idea that individuals pre-
fer lotteries that are better according to the stochastic order. When z € R repre-
sents monetary outcomes, the class of increasing functions generates the first-order
stochastic dominance relation, and a preference that preserves this order is monotone
increasing with respect to the realized wealth. Similarly, a preference that preserves
the stochastic order generated by concave functions will exhibit risk aversion. Here
we give necessary and sufficient conditions for the adversarial forecaster model to pre-
serve a stochastic order, and give applications to absolute and relative risk aversion of
various orders. Online Appendix V shows how our results help characterize aversion

to correlation in risks across time periods.

6.1 Stochastic orders and monotonicity

We start with the definition of the stochastic order induced by a set of continuous

real-valued functions.

Definition 6. Fix a set W < C(X).

26



(i) The stochastic order Xy is defined as:

FxzywF < |w(x)dF(x) > Jw(ﬂt)dﬁ(:v) Yw e W. (20)

(i) A utility V preserves xyy if for all F, ' e F, F 2y F implies V(F) = V(F).
Let (W) denote the smallest closed convex cone containing V. Because the
adversarial forecaster utility has a max-min representation with local utility at F'
given by v + o(-,y(F)) and this coincides with the Gateaux derivative of V' at F', we
can apply Theorem 1 in Cerreia-Vioglio, Maccheroni, and Marinacci (2017) to obtain

the following characterization.3”

Proposition 8. Let V' be an adversarial forecaster representation with baseline utility
function v and surprise function o, and fix a set W < C(X). Then V preserves Zyy
if and only if v+ o(-,y(F)) € V) for all F € F.

This result implies that for adversarial forecaster preferences to be consistent
with FOSD and SOSD order when X is a subset of the reals, it is sufficient that,
for all F' € F, the function v + o(-,y(F)) is respectively increasing and increasing
and concave. This result can also be used to check whether the adversarial forecaster
representation favors mean-preserving spreads; in this case it is enough to check V'
preserves the convex order. For example, in Example 3] when v” > —2, the local
utility is convex in x for all forecasts F. Thus Proposition [§| implies that the agent
weakly prefers any mean-preserving spread F of F to F.

Now we apply Proposition [§ to the transport utilities introduced in Section [3]
Given X < R, let F* < F denote the set of full-support and absolutely continuous

probability measures on X.

Corollary 5. Suppose that X < R is an interval, let V' be a transport preference such
that ¢g, < 0, and fix a set W < C(X). Then V preserves Zyy if and only if, for all
Fe F* wy(z, F) e W), where

wolz, F) = v(z) + f 60, 2)dU (6) — f " (T (2), ),

37"Theorem 1 and Lemma 1 in Cerreia-Vioglio, Maccheroni, and Marinacci, [2017 are stated under
the assumption that X < R. However, an inspection of their proof shows that the same results hold
for any compact metric space X. Therefore, we omit the proof of Proposition @
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xp = minsupp F', and T~1(2) is the generalized inverse of the primal solution T(6) =

qar(U(6)).

Under the maintained assumptions on ¢, the local utility of V' is equal to wq(x, F)
up to a constant k(F) that is independent of z. Given that by definition the set (W)
is closed with respect to constant translations, Proposition [§ then yields Corollary [5

The corollary gives easy-to-check conditions on v and ¢ such that the transport
utility is consistent with a stochastic order. For example, when v is convex and ¢ is
convex in z and submodular in (6, x), we have that w{(z, F') = 0 for all F', implying
that V' preserves the convex order preferring mean-preserving spreads of an arbitrary

lottery to the lottery itself. We discuss this more in detail in the next section.

6.2 Risk aversion and prudence under adversarial forecasters

To see that preference for surprise can alter the agent’s risk preference, consider
a parametric adversarial asymmetric forecaster utility with X = Y = [0,1] as in

Example 4| with loss function p(z), and a baseline utility function v(z):

V(F) = Jl v(x)dF(z) + min fl p(x —y)dF(z).
0 veY Jo

Theorem [3|in Appendix A shows there are optimal lotteries in F that are supported
on at most two points. Moreover, because the local expected utility of the agent is
w(z, F) = v(x)+p(x — g(F)) with second derivative w”(z, F') = v"(z) + p"(z —y(F)),
Proposition [§| implies that V' preserves the MPS order when v is not too concave.
This implies that the optimal distributions have the form p*§; + (1 — p*)dy for some
p* € [0,1], and Proposition [2] can be used to explicitly compute p*.

Suppose in particular that p(z) = Aexp(z) — Az for some A > 0. The local ex-
pected utility is w(z, F) = v(z) + Aexp(z — g(F)) — Mz — y(F)), where g(F) =
log (S(l) exp(z)dF (m)), that is, the (normalized) cumulant generating function evalu-
ated at 1. With this loss function the agent prefers a positive surprise z > g(F') to a
negative surprise z < g(F') of the same absolute value. The second derivative of the
local expected utility at an arbitrary lottery F is w”(z, F)) = v"(z) + Aexp(z — §(F)),
so the agent is more risk averse over outcomes that are concentrated around §(F).

Similarly, preference for surprise can alter the agent’s higher-order risk preference.
The n-th order derivative of each local utility is w™ (x, F) = v (2) + X exp(z —§(F)),
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so for A high enough, w™ > 0. From Proposition , this implies that higher enjoyment
for surprise induces preferences that are monotone with respect to the stochastic
orders induced by smooth functions whose derivatives are positive. For example, as
formalized in Menezes, Geiss, and Tressler (1980), aversion to downside risk, that is
prudence, is equivalent to preserving the order 2w induced by the smooth functions
with positive third derivative W, , which is the case whenever \ is high.?® As an
example, suppose v(z) = 1 — exp(—az)/a for a > 0. If there is no preference for
surprise, the agent has standard CARA EU preferences. As A increases, the sign of
the even derivatives of the local expected utilities switches from negative to positive,
while the signs of the odd derivatives remain positive, so the agent shifts from risk
averse to risk loving, and their prudence increases. Online Appendix VI briefly reviews

higher-order risk aversion and explains how it is affected by a preference for surprise.

6.3 Relative risk aversion and adversarial forecasters

In this section, we assume that X is a compact interval of real numbers and compare
the risk attitudes of an adversarial forecaster utility V' (F') and the baseline expected
utility v(z) = V(d,) that comes from ignoring the suspense term of V. We first recall
the notion of relative risk attitudes introduced in Chew, Karni, and Safra (1987) for

non-EU preferences.

Definition 7. For all v € C'(X) and F, FeF, we say that F'is a simple compensated
spread of F with respect to v if {v(z)dF(z) = {v(z)dF(x) and there exists 7y € X
such that F(z) > F(z) for all # < 5 and F(z) < F(z) for all > 2. A continuous
utility V' is more risk loving than a continuous expected utility v if V(F) > V(F)

whenever F is a simple compensated spread of F with respect to v.

In other words, F is a simple compensated spread of F with respect to v if an
expected-utility agent with utility v is indifferent between these two lotteries and F
increase in the upper tail and decreases in the lower tail with respect to F. We can
use Definition 7| to compare the risk attitudes of an adversarial forecaster utility with
those of an agent with the same baseline utility v but with no preference for surprise.

This isolates the role of the forecast error ¢ in the agent’s attraction for risk.

38 A sufficient condition for all the local expected utilities to have strictly positive n-th derivative
is that A > 9™ exp(1), where 9™ = max,cx [v(™ (z)].
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Corollary 6. Fix an adversarial forecaster utility V' with representation v and o.
Then V' is more risk loving than v if and only if for all F € F there exists a continuous

and convex function ¢p : v(X) — R such that

o(z,§(F)) = ¢r(v(z)). (21)

This result follows from combining Proposition 3 in Cerreia-Vioglio, Maccheroni,
and Marinacci, 2017 and our Proposition The former implies that V' is more
risk loving than v if and only if V' preserves x,y, where W, is the set of functions
¢(v(x)) where ¢(t) is continuous and convex. By Proposition |8 this is equivalent to
v+ o(,§(F)) € W, for all F € F, which is equivalent to 21] A sufficient condition
for equation is that the baseline utility v is strictly increasing and concave and
that the surprise function is increasing and convex in .3 The next example applies
Corollary [6] to GMM preferences.

Example 7. Consider the GMM preferences V (F) = {v(x)dF (x)+ A minyey {(v(z)—
y)?dF(x), with Y = v(X) and A > 0. Here the adversarial forecaster tries to predict
the realized utility of the agent, so o(z, §(F)) = A (v(z) — Sv(f)dF(f))z , which sat-
isfies . Thus for every A > 0 the adversarial forecaster utility V' is relatively more
risk-loving than the baseline expected utility v. A

7 Conclusion

Adversarial forecaster preferences arise naturally in many settings. They allow the
interpretation of random choice as a preference for surprise, and also allow sharp
characterizations of the optimal “amount” (i.e., support size) of randomization and
of various monotonicity properties. Ongoing work considers a more general “ad-
versarial expected utility representation” that inherits many of the optimality and
monotonicity properties of the adversarial forecaster representation, but does not re-
quire continuous local utility. This lets us consider cases where the adversary has
only finitely many actions or where the loss function has kinks, as it does with an

absolute-deviation forecast error. This more general representation can also be ap-

39To see this, observe that v~! is strictly increasing and convex when v is strictly increasing and
concave. If in addition o is increasing and convex in z, we can rewrite o(x,y) = (v~ (v(x)),y), so
is satisfied by the continuous and convex function ¢r(t) = o(v=1(t), §(F)).
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plied to settings where the agent first chooses a distribution of qualities or outcomes

and then chooses an allocation rule or an information-revelation policy.

Appendix A: Sections 2, [3, and

Here we prove the main results in Sections [2]and 4} The proofs of the ancillary results

that are first stated in this section are in Online Appendix [.A.
Lemma 2. If V has continuous local expected utility w(x, F'), then for all F, FeF:
1. V(F) = ming_» §w(x, F)dF(x)

V(L =NF +AF) —V(F)

2. Sw(x, F)dF (z) — §w(z, F)dF (x) = limy S

Proof. (1) This is immediate, as by definition {w(z, F)dF(z) = V(F) < §w(x, F)dF(x)
for all F, F € F.

(2) Fix F and F, and for 0 < A < 1and F = (1—A\)F + AF define A(\) = YEVE),

Since w(x, F) is a local expected utility function at F', {w(z, F)dF(z) = V(F) so

ViF)  Swle FdR@) - VIF) _ Jw(m,F)dF(:p)—fw(x,F)dF(x).

V(F) -
A A

A =

Similalrly, since w(x, F) is a local utility function at F, (w(z, F)dF(z) = V(F), so

A = VE -VIE)  VIE) - Sw)(\x,F)dF(x)

>~

_ - _ fw(:p,ﬁ)d (F—F) (z) — fw(x,F)d (F—F) ()

as A — 0, since w(z, F) is continuous in F. Putting these together yields

J w(z, F)dF(z) — f w(z, F)F(z) < lim A(\) < Jw(x, F)dF(z) — J w(z, F)AF (z)

A0

which yields the statement. [ ]
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Lemma 3. Let V' have continuous local expected utility w(x, F). For all F, FFeF
such that there exists pn > 0 with F + u(F — F) € F,

DV(F. F—F) = tim VE+HAE = F)) = V(F)
’ © AL \

— Jw(a:, F)dF(x)—Jw(:v, F)dF ().

Proof. Choose p1 > 0 as in the statement and observe that

o VIF + MF-F)-V(F) 1 -

V(1= N F + Nw)(F + p(F — F)) — V(F)

L0 A 7Y N

1
- Jw(w, F)dF(z) — fw(w, F)dF ()

where the second equality follows by Lemma [2] ]
We can now prove Proposition [I] and Theorem [I}

Proof of Proposition [I Assume that V" has continuous local expected utility w(z, F).

As argued in the main text, V' is concave. Lemma [3|implies that D(F, (6, — F)) =
w(z, F) — (w(x, F)dF(x) = w(x, F) — V(F), where the second equality follows from
the properties of w(z, F'). This implies that D(F, (§, — F')) is well-defined and con-
tinuous and that w(x, F') = V(F) + D(F, (6, — F)) as desired. u

Proof of Theorem [1 (If). Let v and o correspond to the adversarial forecaster
representation of V. The map w : X x F — R given by w(z, F') = v(x) + o(x, y(F))
is a continuous local utility of V(F) = ming_, {w(z, F)dF(z).

(Only if). Let w(x, F') denote the continuous local expected utility of V', and
define Y = {w(-, F)} per < C(X). Since X, F are compact and w is continuous, ¥
is closed, bounded, and equicontinuous, so it is compact. For all y = w(-, F) and
x € X, define v(x,y) = w(x, F') and observe that it is continuous. For all F' € F and
forallye Y, V(F) = (w(z, F)dF(z) < (v(z,§)dF(z), where both the equality and
the inequality follow because w(-, F') is a local expected utility of V' at F' and the
definition of Y. This implies that V(F) = mingey {v(x, y)dF(z).

It remains to show that §v(z,y)dF(z) has a unique minimum over y € Y. Suppose
that for some F there is a § # ¢(F) such that V(F) = §v(z,5)dF(z). By the
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definition of Y, there exists F' € F such that v(-,§) = w(-, F). For every X € [0, 1],
define F\, = AE' + (1 — A)F. Then, for all \ € [0, 1]

AV(E) + (1= NV(F) < V(F) < | w(z, F)dFy\(x)

= )\Jw(as,ﬁ)dﬁ(x) +(1—=X) Jw(% F)dF(z) =AV(F) + (1 = \)V(F),

where the first inequality follows from concavity of V', the second inequality because
w(z, F ) is a local utility of V| the first equality by the definition of F), and the last
equality because V(F) = §w(z, F)dF(z). Thus

V(F)+ (1 =MV (F) =V(F)) = fw(x, F)dF\(z). (22)

Next, fix p € (0,1). By rearranging terms in (22)),

V(F) - Jw(x, Fdf() + & - #) < f w(, Fy)dF(z) — V(F)> > f w(w, F)dE ().

Conversely, because V is concave V(F) < (w(x, F,)dF(z). Together with the line

above this implies

V(F) = Jw(LFM)dF(JL'). (23)

Fix # € X. Since p > 0, there is exists A € (0, ) such that F, + \(6z — F) € F, so

w(z, F) — V(F) = w(#, F,) - Jw(x, F)dE(x) = lim VF + M0 . F)) = V(F,)

- Juw(e, Fyd (FM A — F)) (x) — V(E,)
< lim A

_ Jw(x, Py (6 — F) (@) = w(@, F) - V(F),

where the first equality follows by , the second equality by Lemma the inequal-
ity by the properties of w, the third equality by , and the last equality by the
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properties of w. This implies that w(&, F,) < w(&, F). Similarly,

V(F + X6z — F)) — V(F)

w(i, F) —V(F) = w(i, F) - Jw(aj, F)dF(z) = bim h\
 Sw(x, F,)d <F +A(0z — F)) (2) = V(F)
< 1}{{8 \

where the first equality follows by the properties of w, the second equality follows by
Lemma 3], the inequality by the properties of w, and the third and the last equality by
(23). This implies that w(#, F) < w(#, F},) , so w(#, F,) = w(&, F). Since this is true
for all ;> 0 and w is continuous it holds in the limit: w(Z, F) = w(z, F) = v(, ).
Given that ¥ was arbitrary, the minimizer is unique, which proves that V is an

adversarial expected utility representation that satisfies uniqueness.

Proof of Proposition [2 (If). For all F* € argmax, .z {v(z) + o(z, §(F*))dF (z)
and F e F,V(F*) = {v(z)+o(x, §(F*)dF*(x) = §v(x)+o(z, §(F*))dF(z) = V(F),
where the first equality and last inequality follow from the definition of continuous
local utility and the fact that v(z) + o(x, §(F)) is a continuous local utility of V', and
the first inequality follows by assumption. This implies that F* € argmax .z V (F').*
(Only if). Fix an optimal lottery F** for V over F and assume that there exists FeF
that is strictly better than F™* for an expected utility agent with utility v+o (-, §(F™*)).
Due to convexity of F, F’* is also optimal when maximizing V over the lotteries in
the segment between F™* and F. This implies that the directional derivative of V'
at F* in direction F' is negative, which, by Lemma |3[ and Theorem , contradicts F

strictly preferred to F* for expected utility function v + o(-, y(F)). n

Proof of Corollary [I By Proposition 2] F* maximizes V (F) over F if and only if
F* € argmaxp .z §v(z)+0(x, §(F*))dF(z), that is, if and only if € argmax;. x v(Z)+
o(z,g(F*)) for all z € supp(F*). Assume that w(z, F') is strictly quasiconcave in z
for all F' € F and assume by contradiction that z, 2’ € supp(F*) with x # 2’. The set

argmax;, x v(Z) + o(Z, g(F*)) must be a singleton and therefore z and z’ cannot be

40Gee Propositio in Online Appendix II.A for an alternative proof that can also be applied to
the more general adversarial expected utility model.
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both optimal, contradicting the optimality of F*. Next assume that w(zx, F) is strictly
quasiconvex in z for all F' € F and assume by contradiction that x € supp(F*) such
that = ¢ ext(X). Because w(zx, F') is strictly quasiconvex, there exists 2’ € textext(X)
such that w(x, F') < w(a’, F), implying that x ¢ argmax;_y v(Z) + o(Z, §(F*)), which
contradicts the optimality of F™. ]

Proof of Proposition [4. The result follows from the following three lemmas.
The first two are standard and are proved in Online Appendix II.A. Recall that here

we allow the set S to be any compact metric space.

Lemma 4. LetY be a compact set of a Euclidean space. The function o(x,y) defined

in equation [ is a forecast error.

Given F, F € F, the direction F — F is relevant at F if for some A > 0 the signed

measure F' + A\(F — F) > 0 is an ordinary measure.

Lemma 5. Let H(z,z) = (h(x, s)h(Z, s)du(s). Then

foxdF ffHHdF VAF (7).

The directional derivatives DV (F,§, — F') for directions (0, — F') at F are
H(z, z) foxdF( —ZlJHzxdF foxdF()dF()

When F' — h(F,-) is one-to-one we have an additional property:

Lemma 6. If F — h(F,-) is one-to-one and p assigns positive probability to open
sets of S then V(F') is strictly concave.

Proof. From Lemma [5| it suffices to prove that the positive semi-definite quadratic
form § § H (x, Z)dM (x)dM () is positive definite on the linear subspace of signed mea-
sures where {dM(z) = 0. Recall that H(z,z) = {h(x, s)h(Z, s)du(s), and suppose
that { h(z,3)dM (x) # 0 for some . Since h is continuous there is an open set S < S
such that § € S and {h(z,s)dM(x) # 0 for all s € S. Since u assigns positive
probability to open sets of S this implies that

J fH(x,i)dM(x)dM(j) _ J th(x,s)dM(x)> J h(j,s)dM(i*)] du(s) > 0.
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Hence for V(F') to be strictly convex it suffices that § h(x, s)dM (x) # 0 for any signed
measure M with {dM (x) = 0. From the Jordan decomposition, M = \(F — F) where
F, F are probability measures and A\ > 0 if M # 0. Hence §h(x,s)dM(z) = 0 for
M # 0 if and only if for all s, h(F,s) = (h(z,s)dF(z) = {h(z,s)dF(z) = hp(s).
Since h — h(F,-) is 1 to 1, this implies F' = F and M = 0. [ |

Now we extend the support bounds of Proposition |3| to parametric adversarial
preferences. Consider a utility V' with parametric forecast error o and an arbitrary
compact and convex set F < F of feasible lotteries. Define Y = j(F). The same steps
as for GMM show that max .z V (F) = maxy.y max 7,y § v(2) +0(z,7)dF(x).*
We can fix an optimal solution 7* of the outer minimization problem and maximize
So(z) + o(x,y*)dF (x) over the lotteries F that satisfy §(F) = y*.

Theorem 3. Let V' be a parametric adversarial forecaster utility. Fix a closed set
XcX,{g,...,q) € C(X), and let F = Fr (Y) Then there is an optimal lottery
for V over F that assigns positive probability to at most (k + 1)(m + 1) points of X.

The proof of Theorem 3| uses the following two results. Let H denote the set of
probability measures over Y. Let ext(F) denote the extreme points of any convex and
compact F € F. Let Ap < A (ext (7-")) be the probability measures over extreme
points that satisfy F' = { Fd\(F).*?

Lemma 7. Fiz H € argmingey MAX oy (7 SSu(x,y (z)dH (y). Then F ¢
argmaxpz V (F) if and only szor all F € ext ( ) V > (u (2, y) dF (z) dH (y),
and, for all F € U/\eA supp A, V(F) = §{u(z,y)d :E)dH( ).

Now fix a closed subset X < X and a finite collection of functions ' = {gi, ..., gx} <
C(X), and consider Fr(X) € F. By Theorem [7|in Online Appendix I.B (cf. The-
orem 2.1 in Winkler (1988)), F € ext (Fr(X)) if and only if F e Fr(X) and
F =3P «ap,, forsome p < k+1, a e A({1,...,p}), and {z1,...,7,} € X such
that the vectors {(g1 (z;), ..., gk (x;),1)}_, are linearly independent. For every fi-
nite subset of extreme points £ < ext (]:F<Y>), define X¢ = Upee supp F < X,
which is finite from Winkler’s theorem (Theorem [7in Online Appendix). Recall that

Y(F) = argmin,.y §u(z, y)dF (z).

“1As in the GMM case, a maximizer exists because the function R(Y) = maxpcz )y V(@) +
o(x,y)dF (x) is upper semicontinuous and Y is compact because the function § is continuous.
42This set is non-empty from Choquet’s theorem.
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Theorem 4. Fix a finite set £ < ext (]-p (7)), and suppose that Y has the structure
of an m-dimensional manifold with boundary, that u is continuously differentiable in
y, and that Y(F) is a singleton for all F'€ F. Then:

1. For an open dense full measure set of w e W < RXe every lottery F' that solves
MAX fe () Millyey ((u(z,y) + w(x))dF(x) has finite support on no more than
(k+1)(m + 1) points of X¢.

2. There exists a lottery F' that solves maXpc g, mingey §u(z,y)dF(z) and has

finite support on no more than (k + 1)(m + 1) points of X¢.

Proof. Let |£| = n and |X¢| = 7 < n(k + 1). Because |supp F| < k + 1 for every
F e ext (Fr(X)), both statements are trivial if (m + 1) > n. For (m + 1) < n, for
every w € RXe, define u,,(z,y) = u(z,y) +w(z) and V,,(F) = min,ey §u, (2, y)dF (z),
and fix H, € argmingey maxpes § (uy (2,y) dF (x) dH (y) . For every w € R¥¢, the
uniqueness property implies that H,, = §(F,) € Y for some F,, € argmax pe.o(e) Vi (F),
and the expectation of each w with respect to each F' € co(€) is well defined since

supp F' < X¢ by construction.

Proof of 1. Fix an arbitrary subset of m+2 extreme points £ = {Fl, o Fm+2} cé
and consider the map Uz : ¥ x R x RXe — R™*2 defined by

Ug(y,v,w)gzu(Fg,y)—v—i—w(F@) VEE{l,,m+2}

where, for every y € Y, u Fg, = (u(z,y) ng x) and w( Fg = (w(x ng( ). For
every (y,v) € Y x R, the derivative of Uz with respect to w € RX¢ is a (m +
2) x r matrix whose ¢-th row coincides with the probability vector F,, and because
the {Fl, - Fm+2} are extreme points of Fp(X), this matrix has full rank, so the
total derivative of Ug has full rank as well. Hence by the parametric transverality
theorem,*3 for an open dense full measure subset of R¥¢_ denoted W(E), the manifold
(y,v) — u(Fy, y) — v +w(Fy) intersects zero transversally. Since dim(Y x R) < m +2,
there is no (y,v) that solve u(Fy,y) — v + w(E,) = 0 for all £ < m + 2. And since £
has finitely many subsets £ of m + 2 extreme points, the intersection W = [z W(€)

is open, dense, and of full measure, since it is the finite intersection of full-measure

43Gee e.g. Guillemin and Pollack (2010).
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sets. Thus, for w € W and for all y € Y and v € R, u(Fy,y) — v + w(F,) = 0 for at
most m + 1 extreme points in &.

Next, fix w € W, F* € argmaXpe ey Vi, and A € Apx. By Lemma , for all
FesuppA € &, u(F,Hy,) — Vy, (F*) + w(F) = 0. By the previous part of the proof
and Lemmal[7} we then have | supp A| < m+1. Therefore, F,, is the linear combination
of at most m + 1 extreme points in £. Each F € € is supported on at most k + 1

points of X¢, so F, is supported on at most (m + 1)(k + 1) points of X¢.

Proof of 2. Because W is dense in RX¢ , there exists a sequence w™ € W such that
w™(x) — 0 for all x € X¢, and a sequence of corresponding optimal lotteries F™ with
support of no more than (m + 1)(k + 1) points of X¢. Choose a convergent subse-
quence of F™ — F| and observe that lotteries with no more than (m+1)(k+1) points
of support cannot converge weakly to a lottery with larger support. Finally, because

Vi is continuous with respect to w, F' solves maxXpeco(e) Vo(F'), concluding the proof. m

Lemma 8. Suppose that for every finite set £ < ext (]—}(7)) there exists a lottery
F¢ that solves maxpecoey V(F) and has finite support on no more than (m+1)(k+1)
points of X. Then there exists a lottery F* that solves maXpe 7. ) V (F) and that has
finite support on no more than (m + 1)(k + 1) points of X.

Proof of Theorem [3l Fix a parametric adversarial forecaster representation (Y, v, &),
and define u = v+ 0. By Definition [f] the adversarial expected utility representation
(Y, ) is such that Y has the structure of an m-dimensional manifold with boundary,
u is continuously differentiable in y, and Y and wu satisfy the uniqueness property. By
Theorem 4] and Lemma [§] there exists a solution F* that is supported on no more
than (k + 1)(m + 1) points of X. u

Proof of Proposition [5} Because H(z,Z) = G(z — %), it follows that H(z,x) =

G(0) is constant, so the directional derivatives from Lemma [5 simplify to

DV(F)(5. — F) = -2 [ J H(z,2)dF(z)) — J H(x,i:)dF(x)dF(i:)] |
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Since V(F) is continuous and concave on a compact set the maximum exists, and is

characterized by the condition that no directional derivative is positive, which is
JHzxdF JH x)dF(z) for all z € X. (24)

This implies the complementary slackness condition: if there exists z € A such that
2z satisfies with strict inequality, then F'(A) = 0.%

Next we show that for any 0 < a < 1 and interval A = [0,a) there is z € A
such that § H(z,2)dF(z)) = § H(z,2)dF (x)dF(Z). By continuity { H(0,z)dF(z)) =
\H(x,2)dF (x)dF (& )andbysymmetrySH (1,2)dF (x)) = ( H(z,2)dF(z)dF(Z). Sup-
pose instead that for all z € A { H(z, z)dF (x SH x, T dF( )dF (%), and take a € X
to be the Supremum of the set {2/ € X : SH o', x)dF(z) > § H(z, 2)dF (z)dF ()}, so
that { H(a,2)dF(z) = § H(x, 2)dF(z)dF(Z). By Complementary Slackness F(A) = 0.
Positive deﬁmteness, ie. {H(x,&)dF(x)dF(Z) > 0, implies that H(a,z) > 0 for an
non-empty interval z € [a, b]. Since H (0, Z) is decreasing and H(a a) = max; H(a, ),
it follows that H(a,z) > H(0,z). Hence { H(z,z)dF (x)dF(Z) = {H(a,z)dF(z) >
§ H(0,z)dF(z)), violating the first order condition at z = 0.

Finally, suppose there is a non-trivial open interval A = (a,b) such that F/(A) = 0.
We may assume w.l.o.g. that { H(a,z)dF(z) = § H(z,z)dF (x)dF(z), { H(b,z)dF(z)) =
\H(x,7)dF(x)dF(Z). Then for z ¢ A by strict convexity either (1/2)(H (a,x) +
H(b,z)) > H((a+b)/2,x) or both the left-hand side and the right-hand side are equal
to zero. The latter cannot hold on a positive measure subset of A, so § H(x, #)dF(z)dF (&) =

(1/2) (§ H(a,z)dF (z) + § H(b,x)dF(z)) >  H((a +b)/2,2)dF(z)), violating the first
order condition at (a + b)/2. u

Appendix B: Sections 5] and [

We start with the lemmas that prove Theorem[2], and then prove Lemmal[I0] Corollary
[, Theorem [9] Corollaries [4] and 5] and Propositions [6] and [7} In the proofs of this
appendix, we make extensive use of standard results on optimal transport. All of

these results are restated in Online Appendix 1.B.

HIf there is z € A with F(A) > O, then there is an open set A € A containing z with
F(A) > 0, and every x € A satisfies with strict inequality. Then §§H(z,2)dF (z)dF(z) =
SA SX (z,Z)dF(Z)dF(z + $ic Sy H(z sE)dF(~)dF(x) > F(A) §SH(z,2)dF(x)dF(z) + (1 —

A)) S H(z,z)dF (z )dF = ({{H(x,2)dF(z)dF(Z), a contradiction.

39



Lemma 9. The function ¢ defined in equation 1s non-negative, continuous, and
such that, for allz € X, there exists y € C(X) with 6(x,y) = 0 and {exp(y(€))dU(€) =
1.

Proof. The continuity of 6(z,y) follows from the uniform continuity of ¢(#, ). Non-

negativity of &(x,y) is obvious. For given x to find y such that o(x,y) = 0 and
Jexp(y(€))dU(€) - 1 choose

1
(6) = —ax (¢<97 I‘) - ¢(97 5)) + ~ ~\
B 05 (§exp(—~ maxyen (6(0.2) - 0(0.6)))aU()

By construction {exp(y(€))dU(§) = 1 and x € arg maxe y(&) — (6, €) so

f ((m?xy(f) - ¢(6,€)> — (y(z) — ¢(9,x))) dU () = 0.

[ ]

Lemma 10. The set'Y is compact and, for every F' € F, we have
Y(F) := mi 0 dF(z) = inf Y dF(x). 25
(F) = min | o(e.g)dP(e) = int [ ow)dF(a) (25)

Moreover, the minimization problem in has a unique solution in'Y .

Proof. The strongly ¢-concave functions are K-Lipschitz so Y is equicontinuous. To-
gether with the constraint §exp(y(£))dU(§) = 1 this implies that Y is totally bounded,
so any sequence y" € Y has a subsequence that converges to some y € C'(X). To show
that Y is closed, let 4™ € Y* be such that y"(x) = — maxgex (y*"(0) — ¢(0,x)).
Since the sequence y" is bounded and the sequence y*" is equicontinuous, the se-
quence y*" is also bounded. And because the sequence y*" is K-Lipschitz, there is
a subsequence y*" — y* that is also K-Lipschitz. Convergence and continuity imply
that y(x) = —maxgex (y*(0) — ¢(0,x)), so y is strongly ¢-concave and Y is closed.

We next show that equation [25 has exactly one solution in Y. We have

it [ (max©) - 006.6) ) = 0(0) = o(6.) U O)aF )}

yeC(X) 3

o { (- maxtot) - 0.0 v o) + [ sz} +| [ oto.0riv@ar )|

yeC(X
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where the final term does not depend on y. Consider the alternative problem

([0 + [s0ar@) 6 - v < ol00) H60.0),

y*eC(X),yeC(X)
(26)

For every feasible pair (y*, y), we have —y*(8) = y(z)—¢(6, x), so —y*(0) = max, y(§)—
¢(0,&). This means that if the alternative problem has a solution y the original prob-
lem has the same solution. The alternative problem is the dual of the Kantorovitch
transport problem and we draw upon results from that literature.

Proposition |§| in Online Appendix I.B (cf. Proposition 1.11 in Santambrogio
(2015)) shows that because X is compact and ¢ is continuous, Problem [26/ has a solu-
tion (y*,y) where y is ¢-concave with respect to y* and y*(0) = — maxeex (y(x) — ¢(0,§)).
This last step implies that y* is K-Lipschitz and therefore that the solution is
strongly ¢-concave. Since the objective function is invariant to adding a constant
to y and subtracting it from y*, at least one such solution satisfies the normalization
§exp(y(€))dU(€) = 1.

Proposition in Online Appendix I.B (cf. Proposition 7.18 in Santambrogio
(2015)) shows that because ¢ is continuously differentiable, X is the closure of a
bounded connected open set, and the uniform measure over 6 has full support on
X, all ¢-concave solutions differ only by additive constants. Since strong ¢-concavity

implies ¢-concavity and Y is normalized, equation [25( has exactly one solutionin Y. m
Proof of Theorem [2l This follows immediately from Lemma [9 and Lemma[I0] m

Proof of Lemma [1l Fix a continuous function ¢(6,x) and F € F.Theorem [5| in
Online Appendix I.B (cf. Theorem 1.39 in Santambrogio (2015])), usually called
the Duality Theorem of Optimal Transport, says that the value of the problem
ming § (0, 2)dT (0, z) subject to §, T(0,2)d0 = F(x) and §, T(0,z)dx = U(0) is

equal to the value of the dual

o ( [s@ar(@) + [mip (00.0) - o) av(e))

yeC(X) zeX

and that both problems have solutions. To connect this to transport preferences,
define (0, 2) = ¢(0, 2) — { ¢(0,7)dU(A)dF (#) and observe that the suspense function
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Y(F) can be rewritten as

S(F) - - max ( J y(@)dF () + [ min (0(60, 2) —y(:c))dU(Q)) |

yeC(X zeX

The duality theorem yields X(F) = (§¢(0,2)dU(0)dF(x) — ming § ¢(0, 2)dT(0,z). m

Proof of Corollary [8l Lemma [l|implies that V(F) = {v(z)dF(z) + (F) where ¥
is defined by equation [13] Because the marginal over © is the uniform distribution
and ¢ satisfies the twist condition, Proposition [l 1{in Online Appendix I.B (cf. Propo-
sition 7.19 in Santambrogio (2015)) implies that 3(F) is strictly concave, so V' (F) is

strictly concave. n

Before proving Corollary [i], we state and prove an ancillary lemma.

Lemma 11. If X € R and the partial derivative ¢,(0, ) is decreasing in 0, then

- [ | #tav(®) ar(e)paz - f olau (1), g (1))t (27)
Proof. By Lemmal[l]

X(F) = TerlAl(zag(F (JJQS (0, 2)dU(0)dF (z ng (0, 2)dT(0, :c))
= Terg(a&cm (J (6, x)dT (0, x))

where ¢(0,z) = $o(0,2)dU(0) — ¢(0,z). Because ¢, is decreasing in 0, and U is
atomless, Theorem [6] in Online Appendix I.B (cf. Theorem 4.3 in Galichon (2018))
implies that

x| Ucﬁ (0, 2)dT (0, = ) f@zﬁ (0,qr(U(0)))dU(0) = r Slqu(t), qr(t))dt

“Mmdzf iF(z f¢qU gr(t))dt

where the second equality follows from the change of variable formula by setting
t = U(6), and the third equality follows from the definition of ¢(6, z). |
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Proof of Corollary [4. From equationthe problem of maximizing V' (F') becomes

max V(F) = rgg;U JJ¢ (0, 2)dU(0)dF (z f d(qu(t), qr(t ))dt}
- 1{v<qF<t>> olavt@)ar(0) + [ 000,00 (0)

FeF 0

This immediately implies that if F' € F is such that gr(t) is a maximizer of problem
for all t € [0, 1], then F' is optimal for V. Conversely, assume that F' is optimal
for V' and, by contradiction, that gr(to) is not a maximizer of problem at to.
Next, let ¢(t) be defined as the pointwise minimum of the argmax correspondence
of problem . By Lemma 17.30 in Aliprantis and Border, 2006 this function is
lower semicontinuous, and by Theorem 4’ in Milgrom and Shannon, [1994 it is non-
decreasing. This implies that ¢(t) is the quantile function of a lottery F e F. This
implies that V(F) > V(F), yielding a contradiction. |

Proof of Proposition [6 Fix <p twice continuously differentiable with ¢;, > 0 and
define ¢(0,z) = —p(0,z) and v(zx) = So (0,x)dU(#). The induced transport utility

V(F) - J o(z)dF(z) + S(F)

_ Jv(x)dF( + max (qus (6, 2)dU (0)dF (x qu (0, 2)dT (6, :1:))
- ([ olo.aaro.0)) - f ot ar (D)t

TeA(U,F)

where the second equality follows from Lemma [T} the third equality from the defini-
tions of v(x) and ¢(6, z), and the third equality by Theorem [6] in Online Appendix
I.B (cf. Theorem 4.3 in Galichon (2018)). This yields the first part of the statement.
The second part of the statement follows from the same steps as above by defining
2(60,) = vl(z) — o(x.0) + § oz, 0)dU (0). .

Proof of Proposition [7} Define ¢(z,0) = —(6 o x) and v(z) = (§0dU(8) o z). The
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transport utility induced by ¢(6, z) and v(x) so defined is:
V(F) = Jv(x)dF(x) + X(F)

_Jv(a:)dF( + (JngQde VA (z ngﬁ@de@x))
- max ( f (00 2)dT (0, x)) ,

where the second equality follows from Lemma [I] and the third equality from the
definitions of v(x) and ¢(0, ). This yield the statement. n

Proof of Proposition [8 In Proposition[I5]in Online Appendix IV, we show that V/
is Gateaux differentiable with derivative given by the local utility w(x, F') as in Propo-
sition [I] Theorem [I] then implies that the local utility is w(z, F) = v(z) + o(z, §(F))
for every F' € F. With this, exactly the same argument of Proposition 1 in Cerreia-

Vioglio, Maccheroni, and Marinacci (2017)) yields the desired result. |

Proof of Corollary [5 First, recall from the proof of Theorem [1] that for every V (F)
with continuous expected utility, the local utility is w(z, F') = v(x) + o(z,y(F)).
Theorems [2 and [1| imply that the suspense function of V' (F) is

S(F) = min | ofe, F)AP(z) = max_ | 6(6.0)d7(6.2). (28)
where gb 0,2) = §o( 9 x dU(Q) ¢(0,x). Theorem 2.2 in Henry-Labordere and Touzi
(2016) gives that the solution T'(6) = qr(U(#)) of the minimization problem in (28]
satisfies Zg(F)(z) = ¢ (T~ (z), ) for all z € supp F. Thus there is a constant k(F)
such that

o, 5(F)) = f $o(T1(2), 2)dz + K(F) = f 6(6.2)dU(6) — j 6o(T\(2), 2)dz + K(F).

T(zr) T(xp)

The continuous local utility of V' is w(z, F') = v(z) + o(z, §(F)) + k(F) := wo(z, F) +
k(F). Thus by [§] for every set W < C(X), V preserves Xy if and only if w(-, F) €
(W) for all F', which is equivalent to wq(-, F) € (W) for all F. u
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Online Appendix I: Ancillary results

This appendix gives proofs of the ancillary results stated in the main appendix and

states some useful results from optimal transportation theory.

Online Appendix I.A: Ancillary results for Appendix A

Lemma|4] Let Y be a compact set of a Euclidean space. The function o(z,y) defined

in equation [§] is a forecast error.

Proof of Lemma [4. We must show that ¢ is non-negative, weakly continuous, that
o(z,z) = 0 and that (o(z, F)dF(z) < (o(z,G)dF(z). Non-negativity is obvi-
ous. Since h(z,s) is continuous in x we have F™ — F implies that hpn(s) con-
verges pointwise to h,(s). Hence (h(z,s) — § h(zZ, s)dF”(:T:))2 converges pointwise to
(h(z,s) — S h(z, s)dF(f))z. Given that h is square-integrable over (S, u), the domi-

nated convergence theorem implies that
2 2
J (h(x, 5) — J Wz, s)dF”(:z)) du(s) — f <h(x, 5) — Jh(:f;, s)dF(gz)> du(s).
For the last property, o(z,z) = § (h(z,s) — h(z,s))” du(s) = 0, and so

f v, G)dF (x ff 2,8) — ha(s))? du(s)dF (z) = f (f (h(z,s) — hG(s))zdF(x)) dp(s).

Since mean square error is minimized by the mean,
h(F,s) = Jh(m, s)dF(z) € arg %nﬁgf (h(z,s) — H)” dF(x)
(S
implying that {o(z, F)dF(x) < {o(z, G)dF(z). n
Lemmal Let H(z, %) = (h(z, s)h(Z, s)du(s). Then

JHxxdF ffoxdF )dF(7)



with directional derivatives for relevant directions (9, — F') at F' given by

DV(F.6, — F) =
H(z, z) foxdF Q[JHzxdF foxdF( JAF (% )]
Proof of Lemma . By definition V(F) = {{ (h h(F,s)) du(s)dF(x), and

simple manipulations show this is equal to

foxdF Jff v, (7, $)dp(s)] dF (2)dF (7).
We extend V to the space of signed meastres by
V(F+M) = [ Ho,2)d (F) + M)~ [ | He2)d(F@) + M) d(F@) + M(@)
and observe that the cross term is
-2 [ ([ e, 01ar @) ana) = =2 [ [ 1o @ aue)ar @)
so that
vEsd) = V(Ey [ | Heon) -2 [ e s u(e)ar @) | v [ [ e pa@)ann o),

This enables us to compute the directional derivatives. The directional derivative in

the direction M = 6, — F is given as

DV(E)6. ~ F) = [ | [ 16 9aute) = 2 [ i@, u(s)ar @) . - ar (o)

_ f B2 (2, s)dp(s) — 2 J h(z, $)h(F, s)dpu(s)dF (&)

- JhQ(m, s)dF(x)du(s) + QJh(a:, s)h(z, s)du(s)dF (z)dF(x). u

We next state and prove a more general version of Lemma [7| that considers an
arbitrary adversarial expected utility representation (Y,u) of V', and an arbitrary
convex and compact set of feasible lotteries 7 = F. Define V* (F) = maxpz V (F).



By Sion’s minmax theorem,

v*(f)zmaxmmfu(x,y)dp() min max JJ (2,y) dF (z) dH ()

FeF yeY Her Feext

F€eazt SSU Z y dF( )dH(y) Then F €
argmaxp.z V (F) if and only if for all F e ext (.7-") V(E) = §§u(z,y)dF (x) dH (y),
and, forallFeU)\eA supp A, V(F) = {§u (z,y) dF (x )df[(y)

Lemma 7. Fix H € argmingey max

Proof of Lemma Fix H as in the statement. Then fix F' € argmax .=V (F),
F € ext (?), and observe that

JJu(m,y)dﬁ(w)dH \Fergjx JJ (z,y)dF (z) dH (y)

— min max ff (2,9) dF (2) dH (5) = V* (F) =V (F),

HeH Feemt

yielding the first part of the desired condition. Next, observe that

VO - max JJ (w,y) dF () dH (y)

Fee:vt

JJ (x,y) dF dH mmfj (x,y) dF )dH (y) = V*(?),
Combining the first two chains of inequalities yields
JJ (z,y)dF (z)dH (y JJ (z,y)dF (z) dH (y) Vﬁeext(?). (29)

Now fix A € Az, F'* € supp A, and assume toward a contradiction that

o qu(x,y) AF* () dH (y)

It follows thatS(Su (z,y) dﬁ(w)) dH (y )d/\( ) = {u(z,y) dF (z) dH (y)
> <A> > (§u(z,y)dF* (z) dH (y), so there exists F* € supp A and ¢ > 0 such

that
JJ (z,y) dF* (z) dH (y JJ (z,y) dF (x)dH (y)



for all ' € suppA n B. (F*), where B, (F*) < F is the ball of radius ¢ (in the
Kantorovich-Rubinstein metric) centered at F™*.

Next, define the probability measure \* = A(B (F*))dp«+(1 — X (B: (F*))) A (+| B: (F*)°)
and the lottery Fy. = { Fd\*(F). Then

ff (2, y) dF> (z) dH (y) = J(Ju(m,y)dﬁ’(x))df[(y)dA*(ﬁ)

= 2B ) [l i @)+ (1= AGED) [ ( [utenaf @) at () ax (F15. )
2@ ) [ ([t <>) i (y) ax (FIB. (7))

+ @ ) [ ([unar @ )H
- [ ([utwnar @) iirwar () = [ [uadr war o)

which contradicts equation (29).
Conversely, fix F' € ext (7—") and observe that the implication follows by

d)\ F|B (F*)° )

v(ﬁ > max JJ (,y) dF (z) dH (y)

Feezt

— min max JJ (z,y) dF (z) dH (y) = V*(ﬁ)>V(F>. -

HeH Feext

Before proving Lemma [§] we state and prove an intermediate result.

Lemma 12. For every F € Fr(X), there exists a sequence F™ — F such that each

F™ is the convex combination of finitely many points in ext(Fr(X)).

Proof. Define F, = ext(Fr(X)) and endow it with the relative topology. This makes
F. metrizable. Next, by the Choquet’s theorem, Fr(X) can be embedded in the set
A(F.) of Borel probability measures over F.. By Theorem 15.10 in Aliprantis and
Border (2006), the subset Ag(F,) of finitely supported probability measures over F.
is dense in A(F.), which implies the statement. |

Lemma 8. Suppose that for every finite set & < ext (Fr(X)) there exists a lottery
F¢ that solves maxpeco(e) V (F') and has finite support on no more than (m+1)(k+1)
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points of X. Then there exists a lottery F* that solves maXpe . ) V (F) and that
has finite support on no more than (m + 1)(k + 1) points of X.

Proof of Lemma 8l Let F solve maxXper. )V (F). By Lemma , there exists
a sequence " — [ such that, for every n € N, " € co(E") for some finite
set E" < ext(Fr(X)). By Theorem , for every n € N, there exists a lottery
F" € co(E™) that is supported on no more that (k + 1)(m + 1) points of X and

such that V(F") = V(F"). Given that Fr(X) is compact, there exists a subsequence
of F™ that converges to some lottery F* € Fr(X). Since each F™ has support on
at most (k + 1)(m + 1) points, the same is true for F*. And since V' is continuous

V(F") — V(F*) and V(F,) — V(F) hence V(F*) = V(F), F* is optimal. u

Corollary 2. Maintain the assumptions of Proposition[5] and let F' denote the unique
fully supported solution. There exists a sequence of method of moments representa-
tions V™ with |S™| = m™ € N, and a sequence of lotteries F™ such that each F™ is
optimal for V™, is supported on at most m™ + 1 points, and F* — F weakly, with

supp F" — supp F' = X in the Hausdorff topology.

Proof of Corollary [2 By Theorem 15.10 in Aliprantis and Border (2006)), there
exists a sequence of finitely supported p™ € A(S) such that u* — p. The GMM
adversarial forecaster representation V" induced by (h, u™) satisfies the assumptions
of Theorem (3 by defining Y™ = [, pp n h(X,s) € R™, where m, = |supp u"|,
so for every n € N, there exists a solution F™ of the problem maxpea(x) V" (F) that
is supported on at most m, + 1 points of X. Because the constraint set A(X) is
compact and V is continuous, all the accumulation points of the sequence F™ are so-
lutions of the problem maxpea(x) V(F), where V' is the GMM adversarial forecaster
representation induced by A and u. Proposition 5] established that this problem has a
unique full-support solution F', so F' is the unique accumulation point of F". Because
X is compact, the sequence supp F" converges to some set X < X in the Haussdorf
sense. By Box 1.13 in Santambrogio (2015), F" — F implies that supp F' < X, and
so supp F" — X because supp F' = X. [



Online Appendix I.B: Theorems cited in the main appendix

Proposition 9 (Proposition 1.11 in Santambrogio, 2015)). Suppose that X and Y are
compact, c(x,y) is a continuous function, and p € A(X) and v € A(Y'). Then there
exists a solution (¢*,¢*) e C(X) x C(Y) to the optimal transport dual problem

max ) f pdu(z) + J¢du(m) (30)

peC(X)yYeC(Y), such that c(z,y)=p(z)+(
where ¢ is c-concave with respect to * and ¢*(y) = mingex (c(z,y) — ¢(x)).

Theorem 5 (Theorem 1.39 in Santambrogio, |2015)). Suppose that X andY are Polish
spaces and that ¢ : X xY — R is uniformly continuous and bounded. Then the problem

in ([30) admits a solution and its value is equal to T'c(jt, v) 1= mingea () § c(z, y)dmr(z,y).

Proposition 10 (Proposition 7.18 in Santambrogio, [2015). Assume that X =Y is
the closure of a bounded connected open set of R™, that ¢ : X x X — R is continu-
ously differentiable, and that at least one of the probability measures p,v € A(X) is
supported on the whole X. Then the solution ¢* € C(X) in Proposition @ 1S unique

up to additive constants.

Proposition 11 (Proposition 7.19 in Santambrogio, [2015). Under the same assump-
tions of Proposition if in addition, v 1s absolutely continuous with respect to the

Lebesgue measure and c satisfies the twist condition, then T'.(u,v) is strictly convex
m .

Theorem 6 (Theorem 4.3 in Galichon, [2018)). Assume that X and Y are compact
intervals in the real line, that c(x,y) is strictly submodular, and fix p € A(X) and
v e A(Y) such that v has no mass points. Then the primal problem T (u,v) admits
a unique solution and this solution is deterministic and equal to T(y) = q.(F,(y)),

where q,, is the quantile function associated with pi and F, is the CDF associated with

V.

Theorem 7 (Theorem 2.1 in Winkler,[1988). Let (X, X') be a measurable space and let
F < F be a simplex of probability measures whose extreme points are Dirac measures.

Fix measurable functions g1, ..., g, over X and real number ¢y, ..., c,. Consider the set
H = {F e F:Vie{l,...,n},g is F-integrable and ng(x)dF(a:) < cl} .
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Then H s convex and each of its extreme points is supported on up to n + 1 points

of X.

Online Appendix II: Optimization

This appendix collects additional optimization results for the adversarial forecaster

and adversarial expected utility representations that are of independent interest.

Online Appendix II.A: Optimal lotteries in the adversarial EU
model

Here we provide two alternative characterizations of optimal lotteries under the ad-

versarial expected utility model.

Proposition 12. Let V' be an adversarial expected utility representation (Y,u) and

let F < F be a convex and compact set. The following are equivalent:

(1) F* € argmaxpz V (F)

(ii) There exists H € H(Y (F*)) such that F* € argmax 7 § §u(z, y)dH (y)dF (z).
(iii) For all F € F, there existsy € Y (F*) such that Su(z,y)dF*(z) = Su(z, y)dF (x).

The equivalence between (i) and (iii) is similar to Proposition 1 in Loseto and Lucia
(2021)), with the important difference that they consider quasiconcave representations

and restrict to a finite set of utilities (which corresponds to a finite Y in our notation).

Proof. As a preliminary step, define W = {u(-,y)},., and observe that it is compact

since v 1s continuous.
The equivalence between (ii) and (iii) is a standard application of the Wald-Pearce

Lemma, so we only prove the equivalence between (i) and (ii).
(ii) implies (i). Let F* € argmax . § §u(z, y)dH (y)dF () for some H € H(Y (F*)).
For all F € F,

V(F*) ff (2, y)dH () dF* ( JJ (2, y)dH () dF(2) > V (),



yielding that F™* € argmax .z V (F).

(i) implies (ii). Fix F* e argmaxy.z V(F). Define R : C(X) — R as R(w) =
max .z | w(x)dF(z) and let co(W) denote the closed convex hull of W, which is also
compact. Because F is compact, R is continuous. Fix w* € argmin,, e ) R(w).
Observe that

min f w(z)dF* () — max min f w(z)dF(z) — min max J w(z)dF (z)

weco(W) FeF weco(W) weco(W) FeF
= maxfw*(a:)dF(a:) > fw*(a:)dF*(x) > min Jw(a:)dF*(a:)
FeF weco(W)

This shows that w* € argmin,.,y) § w(z)dF*(z), so there is H € H(Y (F*)) such
that w*(x) = (u(z,y)dH (y). Next, observe that

r}:l?;(werncoi(ﬁl/ij(x)d]?(a:) = max V(F)=V(F*) = gélvléjw(x)dF*(a:)
< Jw*(m)dF*(x) < r;leaﬁijw*(x)dF(x)

= min maxjw(x)dF(x) = max min fw(x)dF(af),
weco(W) FeF FeF weco(W)

where the last equality follows from the Sion minmax theorem because F is compact
and convex. Thus F* € argmaxpz § w*(2)dF(z) = argmax .z § ( u(z, y)dH (y)dF (z).
]

Online Appendix II.B: Robust solutions

This section shows that the finite-support property of Theorem [3| holds generically for
optimal lotteries for a parametric adversarial forecaster V over F that are “robust”
in the following sense. For every F' € Fr(X), we call a sequence as in Lemma (12| a

finitely approximating sequence of F.

Definition 8. Fix w € C(X) and a lottery F that solves

Fga(xy) r;élﬁpj‘u(m, y) + w(x)dF (z)



We say that F'is a robust solution at w if

F™ € argmax {minfu(x, y) + w(x)dF(x)}
Feco(E™) yey
for some approximating sequence F™ € co(E™) of F, with £ being any finite set of

extreme points generating ™.

In words, an optimal lottery F' is robust if it can be approximated by a sequence
of lotteries that are generated by finitely many extreme points and that are optimal

within the set of lotteries generated by the same extreme points.

Theorem 8. Suppose that Y is an m-dimensional manifold with boundary, that u
s continuously differentiable in y, and that' Y and u satisfy the uniqueness property.
For an open dense set of w e W < C(X), every robust solution at w has finite support
on no more than (k + 1)(m + 1) points of X.

The proof uses the following lemma.

Lemma 13. Fiz a finite set X = X and an open dense subset W of RX. The set
W= {weC(Y) :w‘XeW}

is open and dense in C(X), where wx denotes the restriction of w on X.

Proof. Because W is open, so is W. Fix w € C(X). Given that W € RX, there
exists a sequence w" € W such that w" — W) g Fix n € N large enough that
Bi/n(2) N Byjp(2') = Jforall 2,2 € X% By Urysohn’s Lemma (see Lemma 2.46 in
Aliprantis and Border (2006))), for every & € X, there exists a continuous function vl
such that v?(x) = 0 for all z € X\By,(#) and v (&) = 1. Now define the continuous

function
w™(z) = w(x)(l — max v} (z)) + Z w"(x)vg(x).

2eX —_
zeX

Because w™ € W, X is finite, and X is compact, w™ — w as desired. [

*5Here, By, () is the open ball centered at & and of radius 1/n.

9



Proof of Theorem [8. Without loss of generality, assume that X = Upe Fr(X) SUPP F .46

Define £ = ¢l (ext (Fr(X))) and consider an increasing sequence of finite sets of ex-
treme points £” < ext (Fr(X)) such that £” 1 €. By construction, Xgn 1 X.*7 For
every n € N, let W" the open dense subset of R¥X¢" that satisfies the property of point
2 in Theorem [d] By Lemma [13] the set

W = {w e O(X) : wpx,, € W”}

is an open dense subset of C'(X). By the Baire category theorem (see Theorem 3.46
in Aliprantis and Border (2006)), the set W = [ W' is dense in C(X).
Next, fix w € W and a robust optimal lottery F* for

Fgra(xy) I;él}lflfu(l’, y) + w(x)dF (x)

It follows that F™ is the weak limit of a sequence of solutions F™ of the problem

i dF
pax min J u(z,y) + w(z)dF(z)

Because wx,, € W for every n € N | Theorem {| implies that F™ is supported on at
most (k 4+ 1)(m + 1) points of X¢n, and because F™ — F*, it follows that F is sup-
ported on at most (k + 1)(m + 1) points of X. Given that F* and w were arbitrarily

chosen, the result follows. [

7.1 Online Appendix II.C: Optimal lotteries under general

transport preferences

Lemma (1] can be used to solve the problem of choosing a lottery F' € F when V is a

transport utility. Define the correspondence

W4(h) = argmax {v(x) — ¢(0,z) + J (6, x)dU(é)} :

reX

46Tf not, then we could just consider lotteries over the closed set X =d (U Ferr(X) supp F').
4TThis follows from the fact that X = | FeFr(X) supp F' by assumption. See also footnote
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For every measurable selection ) € W4 and measurable set X, let U%(X) = U(p~(X)).
In what follows, we let A(U, F') denote the set of joint probability measures with

marginals U and F'.

Theorem 9. If V is a transport utility with respect to v and ¢, the set of optimal
lotteries over F is the closure of {Uw eF:ye \Il¢}. Moreover, if Uy = 1) is single-
valued, then the unique optimal lottery is UY and its support is 1 (O).

Proof. By Lemma [I]

max V(F) = TeA(GX%%Tg@T:UJ {v(x) —¢(0,x) + ng(ﬁ, x)dU(Q)} dT (0, z).
This implies that F' € argmaxz_ V (F') if and only if there exists T'e A(© x X) with
marginals given by U and F such that T'(Gy4) = 1, where G, = Gr(¥,) € © x X is
the graph of the correspondence Wy. This is equivalent to 0 > infreaw,r) {1 — T(Gy)}.
Let G denote the complement of Gi. Theorem 1.27 in Villani (2021) gives infreaw,r) T(G5) =
sup { F(A) — UA%): Ac X s closed} , where A% ={0eO:3xe A (0,2)e Gy).
Therefore, F' € argmaxz_» V(F) is equivalent to 0 > sup {F(A) - U(A%): Ac X is closed},
which is equivalent to U(W.(A)) = F(A) for all closed A = X, where Wi(A) =
{6 €O :Vy(0) n A+ I} is the lower-inverse of the correspondence W, evaluated at
A. Also, observe that the class of closed sets A € X is a m-class of the Borel sigma-
algebra of X. Therefore, the inequality U (\I/f;)(A)) > F(A) holds for all measurable
sets A < X.

We have shown that F is optimal if and only if F(A) < U(W.(A)) for all measur-
able A, ie. argmaxp.rV(F) = {F e F: F(A) <U(V,(A)) for all measurable A} .
And because U is atomless, Corollary 3.4 in Castaldo, Maccheroni, and Marinacci
(2004) says that the right-hand side of the last equation is equal to the closure of
{Uoy~te F:9e Uy}, yielding the desired result. ]

Online Appendix II.D: Formal result from Section 3.3

Proposition 13. For every (3 € [0, 1], there exists an optimal distribution F* whose

marginal over interim beliefs is supported on mo more than three points. Moreover,
there exist ﬁ,B € (0,1) with B < B such that

11



1. When B = B, Fi = Op (so the intermediate stage reveals no information) and

pi is optimal if and only if it solves maxyepo 1] {pv + Bg(p — p*)}.

2. When B < B, FX = (1 — pp)do + ;01 (the state is fully revealed) and pj. is
optimal if and only if it solves maxyepo 1] {p0 + (1 — B)g'(p — p*)(p — p*)}.

Before proving Proposition [13| we introduce some additional notation. For every
F e F, define &g 2 [0,1] = R as §.p(p) = (1= B)g' (Da(F)) p* + Bg(p — p*) and
let cav(&p ) denote its concavification. Also, observe that Proposition [2implies that

F* € argmax .z V3(F) if and only if F* € argmax oz { ws(x, F*)dF(z).

Proof of Proposition To show there is an optimal lottery with support on
at most three points, let § € [0, 1], fix an arbitrary optimal distribution F* with
marginals (pj, F%), and denote ¢* = {p>dF%(p). Define

Ak = {Fs € A0.1D s [ s = i [ ars) = ).

Consider the maximization problem:

2
e f 9(p — p7)dFa(p). (31)
If F, is feasible, it yields a weakly higher utility than FX because F has the same
second moment as Fx and the latter is feasible for Problem BI] so any solution F of
Problem [31}is also a solution of the original problem, and A(p%, ¢*) is a moment set
with 2 moment conditions. The objective function of Problem [31]is linear in Fa, so
it follows from Theorem 2.1. in Winkler (1988) that there is solution of Problem [31]
and hence of the original problem, that is supported on no more than three points.

Next, assume that there exists an optimal F* € F whose marginals are given by
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(p}, F%). By the initial claim and equation [4] (p}, F%) solve

max pi+ (1— B)g (Da(F™) f (7 — 1?)dFa(p)

PEA,FAEA([0,1]):{ pdF (5)=p

8 f 9(p — P)dFa (p)

= max pd — (1 — B)g (Do(F*)) p?

peA

b, s (1= 8 (Do) 5+ Bl - 7)aR ) (32)
Fa:{pdF(p)=p

= max {po — (1= B)g' (D2(F*)) p* + cav(&s,r+) (p) }

Given the assumptions on ¢ and that A is compact, there exist B Be (0,1) with
8 < B such that &g g+ is strictly concave over A for all 8 = 8 and &g g+ is strictly
convex over A for all 8 < B. We now prove points 1 and 2.

1. When 3 = f3, {5 p= is strictly concave so that cav(€s p+) = &g p+. By Corollary
2 in Kamenica and Gentzkow (2011)), the inner maximization problem in equation
is uniquely solved by Fa = 0y, so FX = d,x. Because pv — (1 — )¢’ (Do(F*)) p* +
&5+ (p) = pv + Bg(p — p?) the statement follows.

2. When 8 < 8, = is strictly convex. By Corollary 2 in Kamenica and
Gentzkow (2011)), the inner maximization problem in equation [32]is uniquely solved
by Fa = (1 —p)dy + pdy . Here cav(sp+)(p) = (1 — B)g' (D2(F*)) p, so FX =
(1 — p§)do + pidi. Because pv — (1 — B)g' (D2 F*)) p* + cav(ép px)(p) = po + (1 —

B)g ( o(F*))(p — p?), the statement follows. |

Online Appendix III: Additional examples

This section presents two examples. In the first one, there are GMM preferences
that have a strictly concave representation and give rise to an optimal lottery with
full support. The second example illustrates most of the main results in the text by

solving an optimal lottery under the asymmetric adversarial forecaster preferences of

Section [6.2]

Example 8. Given the optimization problem, we need to maximize the function
V(F) = 0.5V4(F) + 0.5V5(F) over all distributions F' in F, where F is the set of

all distributions over [0, 1] with no more than three points in their support. — The
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function V(F) is a weighted sum of two components: 1. V;(F) = ((F))"?, the square
root of the variance of F. 2. V,(F) = Zle \/x; — x?p;, the expectation of vz — 22
with respect to F.  We represent F' as a discrete distribution with probabilities

p1, P2, p3 and corresponding values 1, X9, 23 (each x; € [0,1]). The constraints are:
1.0<p<lforv=1,23.

2. 37 pi=1.
3.0<z; <1fori=1,23.

The optimal solution F' numerically found is {(0.124;1/4), (0.146;1/4)(0.146;1/2)}.
The maximum value of V(F) is approximately 0.354. These values represent the
distribution F* within F that maximizes V(F) = 0.5Vi(F) + 0.5V5(F), under the

given constraints.

Example 9 (Weiner Process Example). We interpret € [0, 1] as time. While it is
natural to think of A(-, s) as a random function of s with distribution induced by F,
there is a dual interpretation in which we think of h(x, ) as a random function of x (a
random field) with distribution induced by p. In this interpretation, the H(z, Z) are
the second (non-central) moments of that random variable between different points
x,Z in the random field. If, for example, X = [0,1], then this random field is a
stochastic process, and H(x,Z) the second moments of the process h between times
x,T. It is well known that continuous time Markov process are equivalent to stochastic
differential equations and that an underlying measure space S and measure p can
be found for each such process. Specifically, consider the process generated by the
stochastic differential equation dh = —h + dW where W is the standard Weiner
process on (5, 1) and the initial condition A (0, s) has a standard normal distribution.
Then the distribution of the difference between h(zx,-)and h(Z,-) depends only on the
time difference # — z, and in particular H(z, %) = {h(z, s)h(Z, s)du(s) = G(z — ).
In this case H(0,Z) = exp —Z, which is non-negative, strictly decreasing and strictly

convex. AN
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Online Appendix IV: Adversarial forecasters, local

utilities, and Gateaux derivatives

In this section, we discuss the relationship between our notion of local utility and the
one in Machina (1982)). This is closely related to the differentiability properties of a
function V' with a continuous local expected utility, which we also discuss.

Fix a continuous functional V' : F — R. Recall that V" has a local expected utility
if, for every F' € F there exists w(-, F') € C(X) such that V(F) = §w(z, F)dF(z)
and V(F) < (w(z, F)dF(z) for all F € F, We say that this local expected utility is

continuous if w is continuous in (z, F).

Proposition 14. Let = admit a representation V' with a local expected utility w and,
for every F' € F, let = denote the expected utility preference induced by w(-, F').
Then F xp F (resp. F >p I') implies that F % F (resp. F > F).

Proof. The first implication follows from V(F) = {w(z, F)dF(z) = (w(z, F)dF(z) >
V(F). To prove the second, let V(F) = V(F) and observe that {w(z, F)dF(z) =
V(F) = V(F) = (w(zx, F)dF (), implying that F x5 F as desired. |

Machina (1982)) introduced the concept of local utilities for a preference over
lotteries with X < R. For ease of comparison, we make assume here that X = [0, 1]
for the rest of this section. Machina (1982) says that V' has a local utility if, for every
F e F, there exists a function m(-, F') € C(X) such that

V(F) = V(F) = Jm(ﬂﬁ,F)d(F— F)(x) + o(||F = FI)),

where || - || is the L;-norm. This is equivalent to assuming V' is Fréchet differentiable
over F, a strong notion of differentiability.*®

Our notion of local expected utility is neither weaker nor stronger than Fréchet
differentiablility. If V' has continuous local expected utility, then it is concave, which
is not implied by Fréchet differentiability. Conversely, Example [10| shows that con-
tinuous local expected utility does not imply Fréchet differentiability.

48The notion of Fréchet differentiability depends on the norm used. Here, following Machina, we
use the Lq-norm.
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Now we discuss the relationship between continuous local expected utility and the
weaker notion of Gateauz differentiability, which has been used to extend Machina’s
notion of local utility to functions that are not necessarily Fréchet differentiable.

In particular, Chew, Karni, and Safra (1987)) develops a theory of local utilities for
rank-dependent preferences and Chew and Nishimura (1992) extends it to a broader
class. Recall that V' is Gateaux differentiable®® at F if there is a w(-, F') € C(X) such
that

V(1= \NF +\F)—V(F)

Jw(x, F)dF(z) — fw(w, F)dF(z) = lim )

If w(-, F') is the Gateaux derivative of V' at I' we can define the directional derivative
operator DV (F)(F —F) = {w(x, F)dF(z) — {w(z, F)dF(z). We can restate Lemma
with the language of Gateaux derivatives just introduced.

Proposition 15 (Lemmain Appendix A). IfV has continuous local expected utility
w(x, F), then V is Gateauz differentiable and w(-, F') is the Gateauz derivative of V
at F', for all F.

Corollary 7. V' has continuous local expected utility if and only if it is concave and

Gateauz differentiable with continuous Gateaux derivative.

We conclude by providing an example of a class of preferences that have continuous

local expected utility but not a local utility in Machina’s sense.

Example 10. Consider a function V' with a Yaari’s dual representation, that is,
V(F) = (zd(g(F))(z) for some continuous, strictly increasing, and onto function
g : [0,1] — [0,1]. In addition, assume that g is strictly convex and continuously
differentiable, for example g(t) = t>. By Lemma 2 in Chew, Karni, and Safra (1987),
V' is not Fréchet differentiable, but since V(F) = Sé 1 — g(F(x))dz, it is strictly
concave in F. Moreover, by Corollary 1 in Chew, Karni, and Safra (1987), V is
Gateaux differentiable with Géateaux derivative w(z, F) = §J ¢'(F(2))dz, which is
continuous in (z, F'). Therefore, by Corollary , V' has continuous local expected

utility and, by Theorem [I} it admits an adversarial forecaster representation. A

49Here we follow Huber (2011) and subsequent authors and modify the definition of the Gateaux
derivative to only consider directions that lie within the set of probability measures.
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Online Appendix V:Repeated choices and correla-

tion aversion

In experimental settings, participants appear to be averse to correlation between
risks across time periods (see for example Andersen et al. (2018)). Here we show that
allowing the adversarial forecaster to make second-period forecasts after observing
the first-period realizations is a special case of the one-period adversarial forecaster
model and that the induced preferences can exhibit correlation aversion.

Consider X = X x X; where X is finite and X is an arbitrary compact subset of
Euclidean space. Assume that the adversary takes action yy € Xy with no additional
information about F', and then takes y; € X; after observing the realization of xzg,
where Y and Y] are compact subsets of Euclidean space. Here the set of strategies of
the adversary is Y = Y} x Y1X°, which is compact. Moreover, assume that, for every
F', the adversary has a unique optimal strategy. The agent knows that the adversary
picks y; € Y; conditional on the realization of xg, and their induced preferences over

lotteries on Xy x X; take into account the adversary’s conditional best response.

Example 11. Let X, = {0,1}, Xy = [0,1], v(zo,z1) = vo(x) + v1(x1), and as-
sume that the adversary tries to minimize mean squared error, so og(xg, Fy) =
(20 — S:Engo(:Eg))Z and o1 (z1, Fi|zo) = (21 — S:ﬁldFl(;fl\a:O))Q, where Fy and F(-|zo)
denote the marginal and the conditional distributions of F'. Mapping this to the one-
period model,o (g, x1, F') = oo(xq, Fo) + o1(x1, Fi|xg), so the local expected utility
is w(xg, 1, F) = v(xg) + v(z1) + o(xo, 21, F'). We model the agent’s preference for
correlation between o and x; through the monotonicity properties of their preference
with respect to the supermodular and submodular order. Intuitively, preferences that
preserve the supermodular order favor lotteries with high positive correlation between
o and xq7 because their local expected utilities are supermodular, and vice versa for
the submodular order. Following Shaked and Shanthikumar (2007), we say that F
dominates G in the submodular (resp. supermodular) order if F' x> G whenever
Sw(z)dF(x) = {w(x)dG(z) for all functions w € C(X) that are differentiable in x;
and such that a—zlw(l, x1)— %w(o, x1) <0 (resp. =). For every F, the corresponding

partial derivatives for the local utility at F are
0 0 - - - -
—w<1,$1,F) — —U)(O,CCl,F) = -2 :L‘ldFl(:I:1|1) — .%'1dF1(.I’1|0) .
&xl axl
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Thus by Proposition|8| the agent’s preference preserves the submodular order for all F’
such that § #1dFy(21]1) > §#1dFy(41]0), and at each such lottery they would be better
off by decreasing the amount of positive correlation between xy and x;. By similar
reasoning, the agent would prefer to decrease the amount of negative correlation
between zo and z; at each F such that §z1dFy(z1]1) < {21dF;(21)|0), because the
agent’s preference preserves the supermodular order over such lotteries. Combining
these facts shows the agent’s utility is only maximized if { z1dFy (21|1) = § £1dFy (441]0),

so the best conditional forecast is independent of x. A

As an example, suppose v(x) = 1 —exp(—ax)/a for a > 0 and that the forecaster’s
loss function is p(z) = exp(Az) — Az for some A > 0. If there is no preference for
surprise, that is A = 0, the agent is mixed risk averse, as most of the risk-averse
subjects in Deck and Schlesinger (2014). However, as \ increases the sign of the even
derivatives of the local expected utilities switches from negative to positive, while the
sign of the odd derivatives remains positive, so the agent shifts from mixed risk averse
to mixed risk loving. Moreover, if a > 1, then higher-order derivatives will be more

affected by an increased taste for surprise, while the opposite is true if a < 1.
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