THE LIFE-CYCLE OF CONCENTRATED INDUSTRIES

Martin Beraja (MIT)

Francisco Buera (WashU)

► Many disruptive industries have had a life-cycle: Entry → Shakeout → Concentration

Gort and Klepper, 1982; Klepper-Graddy, 1990; Klepper-Simons, 2005

Source: Klepper and Simons (2005)

MOTIVATION

- ► Many disruptive industries have had a life-cycle: Entry → Shakeout → Concentration Gort and Klepper, 1982; Klepper-Graddy, 1990; Klepper-Simons, 2005
- ▶ Recently, digital industries have rapidly concentrated as they matured

MOTIVATION

- ► Many disruptive industries have had a life-cycle: Entry → Shakeout → Concentration Gort and Klepper, 1982; Klepper-Graddy, 1990; Klepper-Simons, 2005
- ▶ Recently, digital industries have rapidly concentrated as they matured

► Also, OS or search engine industries. Windows or Google far ahead in a decade...

Rekindled a **debate** about appropriate **policy interventions** to promote competition

Rekindled a debate about appropriate policy interventions to promote competition

Ex-ante interventions

Act on nascent industries before they become too concentrated

- Subsidies to innovation or financing
- Data portability? Lax privacy regs?

Rekindled a debate about appropriate policy interventions to promote competition

Ex-ante interventions

Act on nascent industries before they become too concentrated

- Subsidies to innovation or financing
- Data portability? Lax privacy regs?

Ex-post interventions

Come into play only after an industry has sufficiently concentrated

- Essential infrastructure or IP access (AT&T, Intel)
- Data-sharing (EU Digital Markets Act)?

- 1. When should governments promote competition in a nascent industry?
- 2. When can they **wait** until the industry has **sufficiently concentrated**?
- 3. What determines the **optimal mix** between **ex-ante** and **ex-post** policy interventions?

- 1. When should governments promote competition in a nascent industry?
- 2. When can they **wait** until the industry has **sufficiently concentrated**?
- 3. What determines the **optimal mix** between **ex-ante** and **ex-post** policy interventions?

Should entry be subsidized or taxed? Dixit-Stiglitz, 1977; Mankiw-Whinston, 1986; Reinganum, 1989; Aghion-Howitt, 1990 Recent focus, measurement and quantification Philippon, 2019; Igami-Uetake, 2020; Mermelstein et al., 2020; Boar-Midrigan, 2019; Edmond et al., 2023

- 1. When should governments promote competition in a nascent industry?
- 2. When can they wait until the industry has sufficiently concentrated?
- 3. What determines the **optimal mix** between **ex-ante** and **ex-post** policy interventions?

Should entry be subsidized or taxed? Dixit-Stiglitz, 1977; Mankiw-Whinston, 1986; Reinganum, 1989; Aghion-Howitt, 1990 Recent focus, measurement and quantification Philippon, 2019; Igami-Uetake, 2020; Mermelstein et al., 2020; Boar-Midrigan, 2019; Edmond et al., 2023

This paper: Model of the life-cyle of an oligopolistic industry

A version of Jovanovic-Macdonald (1994) with a finite # of firms

- 1. When should governments promote competition in a nascent industry?
- 2. When can they wait until the industry has sufficiently concentrated?
- 3. What determines the **optimal mix** between **ex-ante** and **ex-post** policy interventions?

Should entry be subsidized or taxed? Dixit-Stiglitz, 1977; Mankiw-Whinston, 1986; Reinganum, 1989; Aghion-Howitt, 1990 Recent focus, measurement and quantification Philippon, 2019; Igami-Uetake, 2020; Mermelstein et al., 2020; Boar-Midrigan, 2019; Edmond et al., 2023

This paper: Model of the life-cyle of an oligopolistic industry

A version of Jovanovic-Macdonald (1994) with a finite # of firms

1. Equilibrium and (constrained) optimal policy over the life-cycle

- 1. When should governments promote competition in a nascent industry?
- 2. When can they wait until the industry has sufficiently concentrated?
- 3. What determines the **optimal mix** between **ex-ante** and **ex-post** policy interventions?

Should entry be subsidized or taxed? Dixit-Stiglitz, 1977; Mankiw-Whinston, 1986; Reinganum, 1989; Aghion-Howitt, 1990 Recent focus, measurement and quantification Philippon, 2019; Igami-Uetake, 2020; Mermelstein et al., 2020; Boar-Midrigan, 2019; Edmond et al., 2023

This paper: Model of the life-cyle of an oligopolistic industry

A version of Jovanovic-Macdonald (1994) with a finite # of firms

- 1. Equilibrium and (constrained) optimal policy over the life-cycle
- 2. Application: Digital and AI industries in the US (dataset from VentureScanner)

Model

• Arrival of new tech \longrightarrow New industry

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- ▶ Continuous time $t \ge 0$

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- ▶ Continuous time $t \ge 0$

Firms

► Can freely enter and exit at any time

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- ▶ Continuous time $t \ge 0$

Firms

- ► Can freely **enter** and **exit** at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- ▶ Continuous time $t \ge 0$

Firms

- ► Can freely **enter** and **exit** at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ
- Flow profits: $\pi(\underline{N}, \overline{N}; z)$. PDV: $J(\underline{N}, \overline{N}; z)$

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- ▶ Continuous time $t \ge 0$

Firms

- ► Can freely enter and exit at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ
- Flow profits: $\pi(\underline{N}, \overline{N}; z)$. PDV: $J(\underline{N}, \overline{N}; z)$

Assumption 1: Flow profit function is:

- (i) decreasing in \underline{N} and \overline{N} ,
- (ii) increasing in z,
- (iii) converges to fixed cost -f as $z \to 0$ and $\bar{N} \to \infty,$ and
- (iv) such that at least one firm enters $\pi\left(1,0;\underline{z}\right) + \lambda\pi\left(0,1;\overline{z}\right)/r > 0.$

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- Continuous time $t \ge 0$

Firms

- ► Can freely **enter** and **exit** at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ
- Flow profits: π ($\underline{N}, \overline{N}; z$). PDV: J ($\underline{N}, \overline{N}; z$)

Special case:

- Cost function: $\Gamma(q;z) = \frac{1}{z}q + f$
- Inverse demand function:

$$p_{i} = \frac{\sigma - 1}{\sigma} \left[\sum_{j=1}^{\underline{N}_{t} + \overline{N}_{t}} \left(q_{j} \right)^{\frac{\epsilon}{\epsilon} - 1} \right]^{\frac{\epsilon}{\epsilon - 1} \frac{\sigma - 1}{\sigma} - 1} (q_{i})^{-\frac{1}{\epsilon}}$$

- Cournot competition in q

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- ▶ Continuous time $t \ge 0$

Firms

- ► Can freely enter and exit at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ
- Flow profits: π ($\underline{N}, \overline{N}; z$). PDV: J ($\underline{N}, \overline{N}; z$)

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- ▶ Continuous time $t \ge 0$

Firms

- ► Can freely **enter** and **exit** at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ
- Flow profits: π ($\underline{N}, \overline{N}; z$). PDV: J ($\underline{N}, \overline{N}; z$)

Households

$$V\left(\underline{N}_{t}, \overline{N}_{t}\right) = \mathbb{E}_{t}\left[\int_{t}^{\infty} e^{-r(s-t)} U\left(\underline{N}_{s}, \overline{N}_{s}\right) ds\right]$$
Special case:

$$U = Q_{t} + X_{t}, \text{ with quantity } Q_{t} \text{ and outside good } X_{t},$$
and $Q_{t} = \left[\sum_{i=1}^{\underline{N}_{t} + \overline{N}_{t}} (q_{it})^{\frac{\epsilon-1}{\epsilon}}\right]^{\frac{\epsilon}{\epsilon-1}\frac{\sigma-1}{\sigma}}$

Solve backward (recursively) for value functions and exit/entry policies

Focus on equilibria where it is never optimal for large firms to exit.

Solve backward (recursively) for value functions and exit/entry policies Focus on equilibria where it is never optimal for large firms to exit.

► A long-run concentrated industry equilibrium $(0, \bar{N}_{\infty}^{LF})$ is given by \bar{N}_{∞}^{LF} :

1. Large firms don't exit in the long-run $\iff J\left(0, \bar{N}_{\infty}^{\text{LF}}; \bar{z}\right) = \frac{\pi\left(0, \bar{N}_{\infty}^{\text{LF}}; \bar{z}\right)}{r} \ge 0,$

2. Small firms don't enter in the long-run $\iff J\left(1, \bar{N}_{\infty}^{\text{LF}}; \underline{Z}\right) = \frac{\pi\left(1, \bar{N}_{\infty}^{\text{LF}}; \underline{Z}\right) + \lambda \times J\left(0, \bar{N}_{\infty}^{\text{LF}} + 1; \overline{Z}\right)}{r+\lambda} < 0,$

3. Small firms enter before
$$\iff J\left(1, \bar{N}_{\infty}^{\mathrm{LF}} - 1; \underline{z}\right) = \frac{\pi\left(1, \bar{N}_{\infty}^{\mathrm{LF}} - 1; \underline{z}\right) + \lambda \times J\left(0, \bar{N}_{\infty}^{\mathrm{LF}}; \overline{z}\right)}{r + \lambda} \ge 0.$$

Solve backward (recursively) for value functions and exit/entry policies Focus on equilibria where it is never optimal for large firms to exit.

► A long-run concentrated industry equilibrium $(0, \bar{N}_{\infty}^{LF})$ is given by \bar{N}_{∞}^{LF} :

1. Large firms don't exit in the long-run $\iff J\left(0, \bar{N}_{\infty}^{\text{LF}}; \bar{z}\right) = \frac{\pi\left(0, \bar{N}_{\infty}^{\text{LF}}; \bar{z}\right)}{r} \ge 0,$

2. Small firms don't enter in the long-run $\iff J\left(1, \bar{N}_{\infty}^{\text{LF}}; \underline{z}\right) = \frac{\pi\left(1, \bar{N}_{\infty}^{\text{LF}}; \underline{z}\right) + \lambda \times J\left(0, \bar{N}_{\infty}^{\text{LF}} + 1; \overline{z}\right)}{r+\lambda} < 0,$

3. Small firms enter before
$$\iff J\left(1, \bar{N}_{\infty}^{\mathrm{LF}} - 1; \underline{z}\right) = \frac{\pi\left(1, \bar{N}_{\infty}^{\mathrm{LF}} - 1; \underline{z}\right) + \lambda \times J\left(0, \bar{N}_{\infty}^{\mathrm{LF}}; \overline{z}\right)}{r + \lambda} \ge 0.$$

Lemma 1. The equilibrium number of large firms $\bar{N}_{\infty}^{\text{LF}}$ in a concentrated industry state $(0, \bar{N}_{\infty}^{\text{LF}})$ is uniquely determined by (1)-(3).

Intuition: profit functions decreasing in \bar{N} , and hence so is value function $J(1, \bar{N}; \underline{z})$

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{z}\right) \leq 0 < J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right)-1,\bar{N};\underline{z}\right)$$
(1)

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{z}\right) \leq 0 < J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right)-1,\bar{N};\underline{z}\right)$$
(1)

1. If industry has too few firms $\underline{N} < \underline{N}^{LF}(\overline{N})$, then $\underline{N}^{LF}(\overline{N}) - \underline{N}$ firms enter immediately

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{z}\right) \leq 0 < J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right)-1,\bar{N};\underline{z}\right)$$
(1)

- 1. If industry has too few firms $\underline{N} < \underline{N}^{LF}(\overline{N})$, then $\underline{N}^{LF}(\overline{N}) \underline{N}$ firms enter immediately
- 2. If industry has **too many** firms $\underline{N} \ge \underline{N}^{LF}(\overline{N})$, then
 - ► Shakeout: $\underline{N} \underline{N}^{LF}(\overline{N})$ firms exit immediately (obtain zero value)

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{z}\right) \leq 0 < J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right)-1,\bar{N};\underline{z}\right) \tag{1}$$

- 1. If industry has too few firms $\underline{N} < \underline{N}^{LF}(\overline{N})$, then $\underline{N}^{LF}(\overline{N}) \underline{N}$ firms enter immediately
- 2. If industry has **too many** firms $\underline{N} \ge \underline{N}^{LF}(\overline{N})$, then
 - ► Shakeout: $\underline{N} \underline{N}^{LF}(\overline{N})$ firms exit immediately (obtain zero value)
 - Remaining $\underline{N}^{LF}(\overline{N})$ exit at rate $\eta^{LF}(\overline{N})$. Exit rate such that firms are indifferent:

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{z}\right)=0$$
(2)

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{z}\right) \leq 0 < J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right)-1,\bar{N};\underline{z}\right)$$
(1)

- 1. If industry has too few firms $\underline{N} < \underline{N}^{LF}(\overline{N})$, then $\underline{N}^{LF}(\overline{N}) \underline{N}$ firms enter immediately
- 2. If industry has **too many** firms $\underline{N} \ge \underline{N}^{LF}(\overline{N})$, then
 - ► Shakeout: $\underline{N} \underline{N}^{LF}(\overline{N})$ firms exit immediately (obtain zero value)
 - Remaining $\underline{N}^{LF}(\overline{N})$ exit at rate $\eta^{LF}(\overline{N})$. Exit rate such that firms are indifferent:

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{z}\right) = 0 \tag{2}$$

Lemma 2. Equilibrium $\underline{N}^{LF}(\overline{N})$ and $\eta^{LF}(\overline{N})$ are <u>uniquely</u> pinned down by (1)-(2). Intuition: profit functions decreasing in \overline{N} , and hence so is value function $J(\underline{N}, \overline{N}; \underline{z})$

ENTRY, SHAKEOUT, AND CONCENTRATION: A NUMERICAL ILLUSTRATION

► In a competitive industry, the life-cycle is monotonic. Why the non-monotonicity?

- Cost of delaying entry: more large firms present; e.g., π (\underline{N} , 1; \underline{z}) π (\underline{N} , 0; \underline{z}) < 0
- ► Benefit: Large gains right before the shakeout; e.g., $\pi(0,3;\bar{z}) \pi(\underline{N},3;\bar{z}) > 0$ Intuition

EQUILIBRIUM INDUSTRY LIFE-CYCLE: SCALE DIFFERENCES

- Scale economies key driver of US concentration/markups (Autor et al, Philippon et al)
- ► Particularly important in AI/digital industries (Goldfarb-Tucker)

EQUILIBRIUM INDUSTRY LIFE-CYCLE: SCALE DIFFERENCES

- Scale economies key driver of US concentration/markups (Autor et al, Philippon et al)
- ► Particularly important in AI/digital industries (Goldfarb-Tucker)

Theoretical results for two limit cases:

1. $\bar{z}/\underline{z} \to \infty$ with $\underline{z} \to 0$. Large scale diffs. Option value, competition <u>for</u> the market

2. $\bar{z}/\underline{z} = 1$. Small scale diffs. Static model, competition in the market

EQUILIBRIUM INDUSTRY LIFE-CYCLE: SCALE DIFFERENCES

- ► Scale economies key driver of US concentration/markups (Autor et al, Philippon et al)
- ► Particularly important in AI/digital industries (Goldfarb-Tucker)

Theoretical results for two limit cases:

1. $\bar{z}/\underline{z} \to \infty$ with $\underline{z} \to 0$. Large scale diffs. Option value, competition <u>for</u> the market

2. $\bar{z}/\underline{z} = 1$. Small scale diffs. Static model, competition in the market

OPTIMAL POLICY

- Primal approach: choose # of firms that enter/exit. Second best policy. SBV.LF
 - ► First best: production subsidies to large firms to correct markup distortions
 - ► Infeasible/unrealistic. No widespread use. Information? Politics?

OPTIMAL POLICY

- Primal approach: choose # of firms that enter/exit. Second best policy. SB v. LF
 - ► First best: production subsidies to large firms to correct markup distortions
 - ► Infeasible/unrealistic. No widespread use. Information? Politics?
- Implementation: subsidize (or tax) the fixed cost of small firms $s(\bar{N})$
 - ► Mimic observe/proposed policies to promote competition over an industry's life-cycle
 - ► Large firms share infrastructure, IP, or data with small firms (ex-post)
 - Subsidizing innovation and financing of young firms, data privacy regulations (ex-ante)

OPTIMAL POLICY

- Primal approach: choose # of firms that enter/exit. Second best policy. SBV.LF
 - ► First best: production subsidies to large firms to correct markup distortions
 - ► Infeasible/unrealistic. No widespread use. Information? Politics?
- Implementation: subsidize (or tax) the fixed cost of small firms $s(\bar{N})$
 - ► Mimic observe/proposed policies to promote competition over an industry's life-cycle
 - Large firms share infrastructure, IP, or data with small firms (ex-post)
 - Subsidizing innovation and financing of young firms, data privacy regulations (ex-ante)
- ► <u>Goal</u>: characterize the timing of optimal policy over the life-cycle
 - 1. When should governments **promote competition** in **a nascent** industry?
 - 2. When can they **wait** to intervene until the industry has **concentrated**?
 - 3. What determines the optimal mix of early and late interventions over the life-cycle?

1. $\bar{z}/\underline{z} \to \infty$, with $\underline{z} \to 0$. Large scale differences, competition <u>for</u> the market

2. $\bar{z}/\underline{z} = 1$. Small scale differences, competition <u>in</u> the market

1. $\bar{z}/\underline{z} \to \infty$, with $\underline{z} \to 0$. Large scale differences, competition <u>for</u> the market

2. $\bar{z}/\underline{z} = 1$. Small scale differences, competition <u>in</u> the market

1. $\bar{z}/\underline{z} \to \infty$, with $\underline{z} \to 0$. Large scale differences, competition <u>for</u> the market

- The government can implement the second best by intervening <u>only after</u> the industry has concentrated in equilibrium (ex-post).
- <u>No need</u> to intervene in a nascent industry (ex-ante)
- 2. $\bar{z}/\underline{z} = 1$. Small scale differences, competition <u>in</u> the market

1. $\bar{z}/\underline{z} \to \infty$, with $\underline{z} \to 0$. Large scale differences, competition <u>for</u> the market

- The government can implement the second best by intervening <u>only after</u> the industry has concentrated in equilibrium (ex-post).
- <u>No need</u> to intervene in a nascent industry (ex-ante)
- 2. $\bar{z}/\underline{z} = 1$. Small scale differences, competition <u>in</u> the market
 - ► The government finds it optimal to intervene <u>at all times</u>.
 - ► Uniform ex-ante and ex-post interventions are needed.

SCALE AND OPTIMAL POLICY

- Firm entry/exit mostly driven by option value of taking over the market
 Governments can wait to intervene later in the life-cycle
- ► If the government <u>cannot commit</u>, the time-consistent policy must subsidize earlier

1. Collusion and antitrust

$$\pi\left(\underline{N},\bar{N};\bar{z}\right)=\frac{1}{\bar{N}}\pi^{\text{Cartel}}\left(\underline{N},\bar{N};\bar{z}\right)$$

2. Endogenous Rate of Innovation λ at cost $c(\lambda)$

$$J\left(\underline{N}^{\text{LF}}\left(\bar{N}+1\right),\bar{N}+1;\bar{z}\right)-J\left(\underline{N},\bar{N};\underline{z}\right)=C'\left(\lambda\left(\underline{N},\bar{N}\right)\right)$$

3. Innovation spillovers from large firms $\lambda(\bar{N})$

Application: Digital & Al Industries in the US

The question of how to regulate an industry in practice can be understood as:

Are firm choices mostly driven by competition <u>for</u> the market? Or, is competition <u>in</u> the market important too?

► Model insight: Differences in scale as a key moment for diagnosing an industry

Application: Digital & Al Industries in the US

The question of how to regulate an industry in practice can be understood as:

Are firm choices mostly driven by competition <u>for</u> the market? Or, is competition <u>in</u> the market important too?

► Model insight: Differences in scale as a key moment for diagnosing an industry

Analyze Digital and AI industries in the US using dataset from <u>Venture Scanner</u>

- ► 17 categories of technologies/services: "AI," "Financial," "Real Estate," "Security," etc.
- Subcategories: "Deep and Machine Learning," "Consumer Payments," "Short Term Rentals and Vacation Search," "Threat Detection and Compliance," etc.
- Define a product industry as a Subcategory. Total of 155 industries.

Application: Digital & Al Industries in the US

The question of how to regulate an industry in practice can be understood as:

Are firm choices mostly driven by competition <u>for</u> the market? Or, is competition <u>in</u> the market important too?

► Model insight: Differences in scale as a key moment for diagnosing an industry

Analyze Digital and AI industries in the US using dataset from <u>Venture Scanner</u>

- ► 17 categories of technologies/services: "AI," "Financial," "Real Estate," "Security," etc.
- Subcategories: "Deep and Machine Learning," "Consumer Payments," "Short Term Rentals and Vacation Search," "Threat Detection and Compliance," etc.
- Define a product industry as a Subcategory. Total of 155 industries.

As a comparison, look at Automobile industry using <u>The 100 Year Almanac</u>

LIFE-CYCLE ACROSS INDUSTRIES

RELATIVE SCALE ACROSS INDUSTRIES

INTUITION FOR NON-MONOTONIC LIFE-CYCLE

- In a competitive industry (Jovanovic-MacDonald), the life-cycle is always monotonic No firms exit when quantities are low (price is high). A mass of firms exit once they are high (price is low)
- ► In an oligopolistic industry (our model), the life-cycle may be non-monotonic
- Incentives to delay entry, from $\overline{N} = 1 \rightarrow 2$, given <u>N</u>:

 $J(\underline{N}, 2; \underline{z}) - J(\underline{N}, 1; \underline{z}) = \pi \underbrace{(\underline{N}, 2; \underline{z}) - \pi (\underline{N}, 1; \underline{z})}_{\text{benefits of entering closer to the shakeout>0}} \underbrace{(\underline{N}, 2; \underline{z}) - \pi (\underline{N}, 2; \underline{z}) - \pi (\underline{N}, 2; \underline{z})}_{\text{benefits of entering closer to the shakeout>0}} \begin{bmatrix} \pi (\underline{N}, 3; \overline{z}) - \pi (\underline{N}, 2; \overline{z}) \end{bmatrix}_{\text{benefits of entering closer to the shakeout>0}}$

• "Business stealing" gains at shakeout occur closer to the time of entry

Constrained Planner's value of an additional firm (SB) v. Equilibrium value of staying (LF)

- $\begin{array}{ll} \mathsf{SB:} & U\left(\underline{N},\overline{N}\right) U\left(\underline{N}-1,\overline{N}\right) & +\lambda\left(V\left(\underline{N}\left(\overline{N}+1\right),\overline{N}+1\right) V\left(\underline{N},\overline{N}\right)\right) \\ \mathsf{LF:} & \pi\left(\underline{N},\overline{N};\underline{z}\right) & +\lambda J\left(\underline{N}\left(\overline{N}+1\right),\overline{N}+1;\overline{z}\right) + \eta\left(\overline{N}\right)\left(\underline{N}-1\right)J\left(\underline{N}-1,\overline{N};\underline{z}\right) \end{array}$
- 1. Source of inefficiency I: Firms care about profits, not surplus $\Rightarrow \uparrow \#$ firms
- 2. Source of inefficiency II: Firms do not internalize surplus destruction $\Rightarrow \downarrow \#$ firms
- 3. Source of inefficiency III: War of attrition $\Rightarrow \downarrow \#$ firms

