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Abstract

The theory of repeated games explores how mutual help and cooperation are

sustained through repeated interaction, even when economic agents are completely

self-interested beings. This thesis analyzes two models that involve repeated interac-

tion in an environment where some information is private.

In the �rst chapter, we characterize the equilibrium set of the following game.

Two players interact repeatedly over an in�nite horizon and occasionally, one of the

players has an opportunity to do a favor to the other player. The ability to do a favor

is private information and only one of the players is in a position to do a favor at a

time. The cost of doing a favor is less than the bene�t to the receiver so that, always

doing a favor is the socially optimal outcome. Intuitively, a player who develops the

ability to do a favor in some period might have an incentive to reveal this information

and do a favor if she has reason to expect future favors in return.

We show that the equilibrium set expands monotonically in the likelihood that

someone is in a position to do a favor. It also expands with the discount factor. How-

ever, there are no fully e¢ cient equilibria for any discount factor less than unity. We

�nd su¢ cient conditions under which equilibria on the Pareto frontier of the equilib-

rium set are supported by e¢ cient payo¤s. We also provide a partial characterization

of payo¤s on the frontier in terms of the action pro�les that support them.

In the second chapter, we use numerical methods to compute the equilibrium

value set of the exchanging favors game. We use techniques from Judd, Yeltekin and

Conklin (2003) to �nd inner and outer approximations of the equilibrium value set

which, together, provide bounds on it. Any point contained in the inner approxima-
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tion is certainly an equilibrium payo¤. Any point not in the outer approximation is

certainly not in the value set.

These inner and outer monotone approximations are found by looking for bound-

ary points of the relevant sets and then connecting these to form convex sets. Working

with eight boundary points gives us estimates that are coarse but still capture the

comparative statics of the equilibrium set with respect to the discount factor and

the other parameters. By increasing the number of boundary points from eight to

twelve, we obtain very precise estimates of the equilibrium set. With this tightly

approximated equilibrium set, the properties of its inner approximation provide good

indications of the properties of the equilibrium set itself. We �nd a very speci�c shape

of the equilibrium set and see that payo¤s on the Pareto frontier of the equilibrium

set are supported by current actions of full favors. This is true so long as there is

room for full favors, that is, away from the two ends of the frontier.

The third chapter extends the concept of Quantal Response equilibrium, a statis-

tical version of Nash equilibrium, to repeated games. We prove a limit Folk Theorem

for a two person �nite action repeated game with private information, the very spe-

ci�c additive kind introduced by the Quantal Response model. If the information is

almost complete and the discount factor is high enough, we can construct Quantal

Response Equilibria very close to any feasible individually rational payo¤s. This is

illustrated numerically for the repeated Prisoners�Dilemma game.
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Chapter 1

E¢ cient Exchange of Favors with Private Informa-
tion

1.1 Introduction

The theory of repeated games explains how mutual help and cooperation are

sustained through repeated interaction, even when economic agents are completely

self-interested beings. This paper examines how cooperation is sustained in the pres-

ence of private information and when there is a lack of immediate reciprocity.

Imagine a technology intensive industry where technological breakthroughs are

hard to come by and the market is served almost entirely by two �rms who use

similar but not identical technologies. Suppose one of these �rms makes a signi�cant

cost saving discovery which is more suitable to the other �rm�s technology. While

communicating this discovery to the rival �rm will be the socially e¢ cient thing to do,

will this �rm consider sharing the information? With this setting in mind, we study a

model where two players interact repeatedly over an in�nite horizon and occasionally,

one of the players has an opportunity to do a favor to the other player. The ability

to do a favor is private information and only one of the players is in a position to do

a favor at a time. The cost of doing a favor is less than the bene�t to the receiver so

that, always doing a favor is the socially optimal outcome. Intuitively, a player who
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develops the ability to do a favor in some period might have an incentive to reveal

this information and do a favor if she has reason to expect future favors in return.

One can think of several other situations in economics and in political economy

which can be modelled as people exchanging favors. For example, politicians might

support legislation introduced by other politicians, expecting similar support in the

future, when trying to pass their own legislations. Our model is a repeated game

with privately informed and impatient players and we focus on the set of equilibrium

outcomes for this game. It is instructive to think about the reasons why players

may not be able to implement the socially optimal outcome that requires them to

do favors whenever in a position to do so. The �rst is impatience. If a player values

future payo¤s less than current payo¤s, she will attach a lower value to a promised

favor to be delivered in the future. Moreover, the more favors a player has already

accumulated, the less inclined she will be to collect yet another future favor due to

its lower marginal value. The second factor is the frequency with which the opponent

receives the chance to return a favor. If one player is in a position to do a favor

much more frequently than her opponent, her incentive to do the favor is likely to

be signi�cantly lower than in the case where they are more equally matched. Given

these constraints, we ask what are the most e¢ cient outcomes that can be supported

as equilibria in this game.

A two person model of trading favors was �rst studied by Mobius (2001). He

analyzed one particular equilibrium where players provide favors on the basis of an

intuitive counting mechanism. Players keep track of the di¤erence between favors

done by them and by their opponent, in particular, how many favors are owed by a

player. Since the value of each additional favor owed to her gets progressively lower, a
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player provides a favor only if the favors she is owed is less than a �nite number. The

last favor provided is the �rst one for which the marginal value becomes negative.

Hauser and Hopenhayn (2008) characterize the Pareto frontier of equilibrium out-

comes in the Mobius model. In Mobius�equilibrium, the rate of exchange of favors

is always one. Hauser and Hopenhayn show that there are signi�cant e¢ ciency gains

over this equilibrium by allowing the terms of trade to vary. In particular, on the

Pareto frontier, each additional favor provided commands a higher price in terms of

future favors promised. This induces players to provide more favors than in the case

where the price is always one. Our model di¤ers from that of Hauser and Hopen-

hayn (2008) in two respects. First, it is in discrete time as opposed to their model

which is in continuous time. Second, their paper assumes a symmetric arrival rate

of the opportunity to do a favor for both players. Our model allows for asymmetric

opportunities of doing favors.

To characterize the equilibrium set of this in�nitely repeated game, we follow

Abreu, Pearce and Stacchetti (1990) and use the recursive approach to analyzing

repeated games. This approach builds on the fact that perfect public equilibria

can be viewed as combinations of current strategies and continuation values. More

generally, restricting attention to public strategies, one can de�ne payo¤s that are

supported by certain current actions and continuation payo¤s. These continuation

payo¤s re�ect the expected value of future favors and also act as state variables. At

any point in time, the repeated game is characterized by these state variables. These

determine the current actions and the impact of the observable public outcomes on

future continuation values.
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In the standard model from Abreu, Pearce and Stacchetti (1990), the set of current

actions is discrete and �nite. Our model di¤ers in that the action space is continuous

and we allow for favors ranging from no favor to a full favor (zero to one). Some

results that are standard for the �nite action but continuous signal model also extend

to our model. In particular, we can establish the compactness (Lemma 1.1) and

convexity (Lemma 1.2) of the equilibrium set.

In Section 3, we analyze the Pareto frontier of the set of equilibrium payo¤s.

Under certain intuitive parametric conditions, equilibrium values on the frontier are

supported by e¢ cient continuation payo¤s (Lemma 1.4). In general, if no favors are

observed, players might be punished with continuation values that are ine¢ cient. We

�nd that if with high probability, no one is in a position to do a favor, then ine¢ cient

punishments will not be used. Intuitively, if no favor is done, the likelihood that the

opponent cheated is low and the value from such severe punishments is low.

Hauser and Hopenhayn (2008) �nd in the continuous time model that the frontier

of the equilibrium set is supported by payo¤s also on the frontier or, is self-generating.

They argue that this is because of the negligible information content, in a continuous

time model, of the event that no favor is done. Our result shares the property that

ine¢ cient continuation values are not used when the information content of no favors

is low but is weaker than their result. We can show that for payo¤s on the frontier,

the continuation values must be drawn from the outer boundary of the equilibrium

set, a set that includes the Pareto frontier but is potentially larger.

We also want to understand what strategies support equilibrium payo¤s on the

Pareto frontier and on the entire outer boundary of the equilibrium set. We �nd that

boundary points that are not in the interior of the Pareto frontier are supported by
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one player doing zero favors (Proposition 1.1). Such payo¤ pairs are reached when

one player has done many more favors than their opponent. The interpretation is

that when one player has collected many favors for the future, they wait for some

favors to be returned before doing any more.

We also �nd that some payo¤ pairs in the interior of the Pareto frontier are

supported by players doing full favors. This is the case if there is a region on the

frontier where the slope lies between two ratios: the ratio of the bene�t of a favor to

the cost of a favor and its reciprocal. These are also the slopes of the two arms of the

set of feasible long run payo¤s for this game which is similar to that of the repeated

Prisoner�s Dilemma.

We �nd cooperation among the players supported in equilibrium even when they

receive opportunities to do favors with unequal probabilities. Our model does impose

some restrictions on how much asymmetry is allowed in the ability of the two players

to do favors. Assuming without loss of generality that q, the probability that player

2 will be in a position to do a favor in a period is greater than p, the probability that

player 1 will be in a position to do a favor, we have to assume that p=q is greater

than c=b. The larger the gap between the cost and bene�t of a favor, the larger the

asymmetry allowed.

In Section 4, we do comparative statics for the equilibrium set. As long as the

asymmetry in p and q is within the required bounds, increasing either probability

increases the amount of cooperation that can be supported in equilibrium. Theorem

1.1 shows that holding one player�s probability of being in a position to do a favor

constant, the higher the probability of the other player, the larger the equilibrium set

(weakly).
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Theorem 1.2 shows us that in equilibrium, the potential for cooperation is en-

hanced with more patient players. Speci�cally, the equilibrium set expands monoton-

ically in the discount factor, in terms of weak set inclusion. Again, this is a standard

result for the Abreu, Pearce and Stacchetti (1990) model. However, the proof here is

di¤erent due to the structural di¤erences of the model.

In a similar vein to this paper, Athey and Bagwell (2001) apply techniques from

the theory of imperfect monitoring in repeated games (Abreu, Pearce and Stacchetti

(1990), Fudenberg, Levine, Maskin (1994)) to a repeated game with private informa-

tion. They study optimal collusion between two �rms with privately observed cost

shocks. They �nd a discount factor strictly less than 1 with which �rst-best payo¤s

are achieved as equilibria. In contrast, in the model in this paper, an exact Folk

Theorem is not obtained. For any discount factor less than 1, there exist feasible

individually rational payo¤s that are not in the equilibrium set. This is shown in

Theorem 1.3.

A potential source of this di¤erence in �ndings is the di¤erence in the shapes of the

feasible sets. The Athey and Bagwell (2001) game has a feasible set that has a straight

line Pareto frontier. In our game the set of feasible individually rational payo¤s has a

kinked Pareto boundary, similar to that of a repeated Prisoner�s Dilemma. Azevedo

andMoreira (2007) show that the generic repeated Prisoner�s Dilemma has no e¢ cient

equilibrium for any discount factor. They also generalize this result to an Anti-Folk

Theorem for a larger class of games.

Abdulkadiroglu and Bagwell (2005) analyze a repeated trust game with private

information which has a similar �avor. In each period, either player might receive

some income and this is private information. This player can then choose to exhibit
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trust by investing this income with the other player. The investment either succeeds

or fails and this outcome is privately observed by the trustee. If the investment is

successful, the trustee can choose to "reciprocate" and share the returns with the

investor. They found that players are "willing to exhibit trust and thereby facilitate

cooperative gains only if such behavior is regarded as a favor that must be reciprocated

either immediately or in the future."

1.2 Model

There are two players represented by i = 1; 2. At each time period t = 0; 1; 2; ::::;1,

one of the players might get a chance to do the other a favor. The cost of doing a

favor is c. The bene�t to the recipient of the favor is b. b > c and the socially e¢ cient

outcome is that a favor is always provided. There is a common discount factor � and

players seek to maximize the present discounted values of their utilities. We assume

that the players are risk-neutral.

At any time period t, the state space is 
 = fF1; F2; F�g. In state F1, player 1 is

in a position to do player 2 a favor; in state F2, player 2 is in a position do player

1 a favor and in state F�, neither player is in a position to do a favor. The ability

to do a favor is private information. In other words, player i0s information set is

f(Fi); (Fi6=j; F�)g and a player who is not in a position to do a favor does not know

whether or not her opponent is in a position to do a favor. The state at time t depends

on the realization of the random variable St; St = st 2 
. St is independently and

identically distributed over time and in any period, takes the value F1 with probability

p, F2 with probability q and F� with probability r = 1�p�q: Throughout this paper
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(chapter), we assume that r > 0 so that there is always a positive probability that

neither player is in a position to do a favor.

Without loss of generality, we assume that q > p, so player 2 is in a position to do

a favor with a higher probability in any period. We assume that p=q > c=b. Under

this assumption the set of long run feasible payo¤s of the game looks like the feasible

set of the repeated Prisoner�s Dilemma (Figure 1). By making this assumption, we

are restricting the amount of asymmetry allowed or how much larger q can be than

p. The larger the gap between b and c, the more the asymmetry allowed.

Favors are perfectly divisible and players can provide full or partial favors, xi 2

[0; 1], i = 1; 2. Figure 1 shows U , the set of feasible long run payo¤s of the repeated

game. If players do a favor each time they get a chance, the long-run payo¤s are

(qb�pc; pb� qc): Since p=q > c=b, (qb�pc; pb� qc) > (0; 0). If player 2 always does a

favor while player 1 never does one, the payo¤s are (qb;�qc): If player 1 always does

a favor while player 2 never does one, the payo¤s are (�pc; pb):We restrict attention

to non-negative payo¤s.

In the stage game, a strategy for player i is a decision whether to and how much of

a favor to provide, if she �nds herself in a position to do so. Let X t be a variable that

records, for period t, both the identity of a player who does a favor and how much of

a favor is done. X t = (X t(1); X t(2)) where X t(1) 2 f1; 2g records the identity and

X t(2) 2 (0; 1] records the quantity. Let X t(1); X t(2) = 0 when no favor is done.

In the repeated game, at time t, player i observes her own private history (when

she was in a position to do a favor) and a public history of when and what size of

favors were provided in the past. At time t, let ht = fX0; X1; :::; X t�1g denote a

public history. H t is the set of all possible public histories at time t. We restrict
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υ

(qb­pc,pb­qc)

(q(b2­c2)/b,0)

(0,p(b2­c2)/b)

U

Figure 1: Set of feasible long run payoffs (q > p)

attention to sequential equilibria in which players condition only on public histories

and their current type but not on their private history of types. Such strategies

are called public strategies and such sequential equilibria are called perfect public

equilibria (Fudenberg, Levine and Maskin (1994)). Let �ti : H
t � 
! [0; 1] denote a

public strategy for player i at time t and let �i denote a sequence of such strategies

for t = 0; 1; :::1, such that,

�ti(h
t; st) =

8><>: xti(h
t) 2 [0; 1] if st = Fi

0 if st 6= Fi

9>=>; .
From Abreu, Pearce and Stacchetti (1990), it is known that perfect public equi-

libria can be expressed recursively. More generally, if we restrict attention to public

strategies, any payo¤ pair (�; w) can be factorized into current and continuation
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values, (�c; wc) : X t ! U , that depend only on current public outcomes. For our pur-

poses, it will be convenient to adopt the following notation. If, at time t, X t(1) = 1;

let the continuation values be denoted by (�1(x1); w1(x1)), where x1 = X t(2) > 0;

if X t(1) = 2; let the continuation values be denoted by (�2(x2); w2(x2)), where

x2 = X t(2) > 0; and �nally, if X t(1); X t(2) = 0; let the continuation values be

denoted by (��; w�): Also, de�ne �1(0) = �2(0) = �� and w1(0) = w2(0) = w�.

We de�ne an operator B that maps sets of payo¤ pairs to sets of payo¤ pairs. For

W � R2, B(W ) is the set of payo¤s that can be supported by continuation payo¤s

in W . More precisely, B(W ) = f(�; w) : there exist (x1; x2) 2 [0; 1]2 and

(�1(x1); w1(x1)); (�2(x2); w2(x2)); (��; w�) 2 W

such that

� = p(�(1� �)cx1 + ��1(x1)) + q((1� �)bx2 + ��2(x2)) + r��� (1.1)

w = p((1� �)bx1 + �w1(x1)) + q(�(1� �)cx2 + �w2(x2)) + r�w� (1.2)

�c(1� �)x1 + ��1(x1) � ��� (1.3)

�c(1� �)x2 + �w2(x2) � �w� g. (1.4)

For (�; w) 2 B(W ), we say that (�; w) are implemented by x1,x2 and

(�1(x1); w1(x1)); (�2(x2); w2(x2)); (��; w�) 2 W . Note that (�1(x1); w1(x1));

(�2(x2); w2(x2)) and (��; w�) may not be distinct. If (�; w) is implemented by x1 = 0,

then (�1(0); w1(0)) = (��; w�). Similarly, if (�; w) is implemented by x2 = 0, then

(�2(0); w2(0)) = (��; w�).
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The operator B(:) holds a unique place in the repeated games literature. It has

several well known properties. It maps convex sets to convex sets and is monotonic,

B(W ) � W for any W � R2. Let E(�) be the set of perfect public equilibrium

payo¤s, given �: Following the literature, if W � B(W ), we say that W is a self

generating set. It is well known that for any self generating set W , W � E(�), and

E(�) is the largest bounded self generating set.

1.3 The Equilibrium Set and its Pareto Frontier

The set of equilibrium payo¤s E(�) depends on p and q. Lemma 1.1 shows that

E(�) is compact. To establish compactness of E(�), we cannot directly apply the

standard result from Abreu, Pearce and Stacchetti (1990) (Lemma 1). In the stan-

dard model, the set of actions is �nite. Once compactness is established for equilibria

associated with an action pair, the �nite union over all action pairs yields the com-

pactness of E(�). In our model, the set of actions is continuous. Compactness can

still be established directly as shown below.

Let ClW denote the closure ofW � R2. We show that ClE(�) is a self-generating

set which implies that ClE(�) � E(�) and that E(�) is closed. Since E(�) � U , it is

bounded. A closed and bounded set in R2 is compact.

Lemma 1.1 E(�) is a compact set.

Proof. We will show that B(ClE(�)) is a closed set which implies ClB(ClE(�)) �

B(ClE(�)). For any W � R2, consider a converging sequence (�n; wn) 2 B(W ) sup-

ported by (xn1 ; x
n
2 ) ! (x1; x2); (�

n
1 ; w

n
1 ) ! (�1; w1); (�

n
2 ; w

n
2 ) ! (�2; w2); (�

n
�; w

n
�) !
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(��; w�). Since (�1; w1); (�2; w2); (��; w�) 2 ClW , (�; w), the limit of (�n; wn), is in

B(ClW ). So B(ClW ) is a closed set.

Now we have ClE(�) � ClB(E(�)) � ClB(ClE(�)) � B(ClE(�)) where the third

set inclusion follows from the monotonicity of B(:). This implies that ClE(�) is self

generating and hence ClE(�) � E(�), E(�) is closed and hence compact.

In Lemma 1.2, we see that E(�) is convex. Let CoW denote the convex hull of

W � R2. We show that CoE(�) � E(�) which implies that E(�) is convex.

Lemma 1.2 E(�) is a convex set:

Proof. We will show that for any W � R2, CoW � B(CoW ). Consider some

� 2 [0; 1]. If (�; w) is implemented by x1,x2 2 [0; 1] and (�1; w1); (�2; w2); (��; w�) 2

W ; and (e�; ew) by ex1, ex2 2 [0; 1] and ( e�1;fw1); ( e�2;fw2); (f��;fw�) 2 W; then (�� +

(1 � �)e�; �w + (1 � �) ew) is implemented by �x1 + (1 � �) ex1, �x2 + (1 � �) ex2 2
[0; 1] and (��1 + (1 � �) e�1; �w1 + (1 � �)fw1); (��2 + (1 � �) e�2, �w2 + (1 � �)fw2),
(��� + (1� �)f��; �w� + (1� �)fw�) 2 CoW . To see this, we check:
p(�c(1� �)(�x1 + (1� �) ex1) + �(��1 + (1� �) e�1)) + q(b(1� �)(�x2 + (1� �) ex2)

+�(��2 + (1� �) e�2)) + r�(��� + (1� �)f��) = �� + (1� �)e�
p((1� �)b(�x1 + (1� �) ex1) + �(�w1 + (1� �)fw1)) + q(�c(1� �)(�x2 + (1� �) ex2)

+�(�w2 + (1� �)fw2)) + r�(�w� + (1� �)fw�) = �w + (1� �) ew:

12



n

m

j

F

Figure 2.1: Shape of E(δ) and F,
Possibility 1

l

E(δ)

We also check the incentive constraints (1.3) and (1.4):

�c(1� �)(�x1 + (1� �) ex1 + �(��1 + (1� �) e�1)
= �(�c(1� �)x1 + ��1) + (1� �)(�c(1� �) ex1 + � e�1)

� ���� + (1� �)�f��
�c(1� �)(�x2 + (1� �) ex2 + �(�w2 + (1� �)fw2)

= �(�c(1� �)x2 + �w2) + (1� �)(�c(1� �) ex2 + �fw2)
� ��w� + (1� �)�fw�:

Now we have CoE(�) � B(CoE(�)) and from self-generation, CoE(�) � E(�).

This implies that E(�) is a convex set.

13



We now consider EB, the boundary of the equilibrium set. In Figure 2.1, which

shows a possible shape of the equilibrium set, EB is given by the segment (l; j).

EB is partly de�ned by the following optimization problem. Problem 1: g(�) =

Max
(x1;x2;(�1;w1);(�2;w2);(��;w�))

fw : (�; w) 2 E(�)g. This is stated in an expanded form

below.

Problem 1:

g(�) = Max
fx1;x2;(�1;w1);(�2;w2);(��;w�)g

p((1� �)bx1 + �w1) + q(�(1� �)cx2 + �w2) + r�w�

s.t.

p(�(1� �)cx1 + ��1) + q((1� �)bx2 + ��2) + r��� = �

�c(1� �)x1 + ��1 � ��� (1.5)

�c(1� �)x2 + �w2 � �w� (1.6)

x1; x2 2 [0; 1]; (�1; w1); (�2; w2); (��;w�) 2 E(�).

Also consider Problem 2: h(w) = Max
(x1;x2;(�1;w1);(�2;w2);(��;w�))

f� : (�; w) 2 E(�)g.

Lemma 1.3 The value functions in Problems 1 and 2, g(�) and h(w) are concave

and continuous.

Proof. This follows from Lemma 1.1 and Lemma 1.2.

We can de�ne EB, the boundary of the equilibrium set. To avoid cluttering, we

suppress the dependence on p; q and �.

14



De�nition 1.1 EB = f(�; w) 2 E(�) such that w = g(�)g [ f(�; w) 2 E(�) such

that � = h(w)g.

We now de�ne the Pareto frontier of E(�), the "downward sloping" part of EB.

Call it F . Let m = (�m; wm) and n = (�n; wn) denote the endpoints of F . These are

shown in Figure 2.1, which shows one possible shape of the equilibrium set E(�).

De�nition 1.2 F = f(�; w) 2 E(�) such that w = g(�)g \ f(�; w) 2 E(�) such that

� = h(w)g.

The next Lemma shows that under certain parametric conditions, the Pareto

frontier F is supported by "e¢ cient" payo¤s or payo¤s on EB. This is to be compared

to a result in Hauser and Hopenhayn (2008) who �nd in a similar model that e¢ cient

equilibria are always supported by e¢ cient continuous values.

In general, supporting (�; w) on the frontier might require ine¢ cient continuation

values. For example, the punishment payo¤s (��; w�) might have to be ine¢ cient in

order to give incentives to the players to do favors when they can. For (�; w) 2 F ,

it is easy to check that the continuation values (�1; w1) and (�2; w2) are e¢ cient.

We �nd that for high values of r; punishments payo¤s are also e¢ cient. Recall that

r = 1 � p � q is the probability that neither player was in a position to do a favor.

Intuitively, if r is high, the public signal of no favor is not a good indicator that the

opponent shirked from doing a favor. In this case, a severe ine¢ cient punishment is

just not worthwhile.

These conditions are su¢ cient conditions. It remains to check whether they are

necessary. In a similar continuous time model, Hauser and Hopenhayn (2008) �nd

that the Pareto frontier is self generating and e¢ cient equilibria are always supported

15



by e¢ cient continuous values. The reason is again that in a continuous time model,

(a signal of) no favor has very low informational content.

Lemma 1.4 (�; w) 2 F is implemented by (�1; w1); (�2; w2) 2 EB. If p; q < 1
(1+ b

c
)
,

(�; w) 2 F is implemented by (��,w�) 2 EB.

Proof. Suppose (�1; w1) =2 EB. Then there exists (�1 + "; w1 + ") in the equilibrium

set. Replacing the original continuation values with these makes both players better

o¤. This contradicts the fact that (�; w) 2 F . Similarly, it can be argued that

(�2; w2) 2 EB.

Suppose (��,w�) =2 EB. Suppose x1; x2 > 0. Then we can add " to both �� and w�,

still be within E(�) and make both players better o¤ thus contradicting (�; w) 2 F .

To make sure that the incentive constraints still hold we reduce x1 and x2 as shown

below:

�c(1� �)(x1 �
�"

(1� �)c) + ��1 � �(�� + ")

�c(1� �)(x2 �
�"

(1� �)c) + �w1 � �(w� + ")

The expected payo¤s for player 1 is now:

�0 = p(�c(1� �)(x1 �
�"

(1� �)c) + ��1) + q(b(1� �)(x2 �
�"

(1� �)c) + ��2)

+ r�(�� + ")

�0 � � = �q b
c
�"+ (p+ r)�" > 0() q <

1

(1 + b
c
)
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And for player 2:

w0 = p(b(1� �)(x1 �
�"

(1� �)c) + �w1) + q(�c(1� �)(x2 �
�"

(1� �)c) + �w2)

+ r�(w� + ")

w0 � w = �pb
c
�"+ (q + r)�" > 0() p <

1

(1 + b
c
)

If x1 = 0; then by de�nition, (�1; w1) = (��; w�). Replacing (��; w�) with

(�� + "; w�) 2 E(�) makes one player better o¤ without making the other worse

o¤, contradicting (�; w) 2 F . Similarly for when x2 = 0.

QED

Now we try to further characterize the Pareto frontier of the equilibrium set.

Proposition 1.1 shows what action pro�les support the end points of F . In Figure

2.1, these would be points m and n. Point m must be supported by x2 = 0 and point

n by x1 = 0. Proposition 1.1 also states that all points between l andm are supported

by x2 = 0 and points between n and j are supported by x1 = 0. The interpretation

is that in the region from l to m, player 2 has collected many favors and stops doing

them and the same is true for player 1 in the region from n to j. In between points

m and n we expect players to do non-zero favors. (However, note that we have not

proved that in this region they must do non-zero favors.)

When one player has done many more favors than the other, they are in a good

position and stop doing any more. Only when the opponent returns some of these

favors and the players are back in the region (m;n) does this player start doing favors

again.
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More precisely, we can show that if (�; w) 2 F is supported by x1 > 0 and x2 > 0,

then the slope at (�; w) lies between �b
c
and �c

b
. At points between l and m and

between n and k, the slope is outside these bounds.

In Lemma 1.5, we show that for any � on the frontier supported by x1 > 0

and x2 > 0, the left derivative of g(:), g0(��) and the left derivative of h(:), h0(w�) is

weakly smaller than �c
b
. For points in the interior of F , h0(w�) is the same as the right

derivative of g(:), g0(�+): This formulation is required as g(:)may not be di¤erentiable,

that is, there might be kinks in the frontier. The proof (in the appendix) is based on

the following idea. Suppose the slope at a point supported by x1 > 0 and x2 > 0 on

the frontier was less than �b
c
: Consider reducing x1 by a small amount ": This means

that player one does a smaller favor. Now note that player 2�s loss relative to player

1�s gain will be � b
c
. If the slope is lower than � b

c
, we can lower x1 and support a pair

of payo¤s outside the frontier. This would be a contradiction.

Lemma 1.5 If (�; w) 2 F and g0(��) > �c
b
, then x2 = 0. If (�; w) 2 F and

h0(w�) > �c
b
, then x1 = 0.

Proof. In the Appendix.

Lemma 1.5 allows us to state the following.

Proposition 1.1 The endpoints of F; m = (�m; wm) and n = (�n; wn) must be

supported by x2 = 0 and x1 = 0 respectively. Moreover, (�; w) 2 EB such that

� < �m must be supported by x2 = 0 and (�; w) 2 EB such that w < wm must be

supported by x1 = 0.

Proof. This follows from Lemma 1.5.
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Figure 2.2: Shape of E(δ) and F,
Possibility 2

slope = ­b/c

slope = ­c/b

As mentioned above, we expect payo¤s in between m and n, in the interior of F ,

to be supported by non-zero current actions. That is, neither player has collected

so many favors that they wait for some to be returned before doing any more. We

de�ne below a region F � � F where the slope g0(:) lies between �b
c
and �c

b
. This is a

subset of F and is to be thought of as points lying close to the middle of F . Figure

2.2 shows one other possible shape for F and E(�). We can see how at the ends of

F , the slope might be outside these bounds.

De�nition 1.3 F � = f(�; w) 2 F such that �b
c
� g0(�+) � g0(��) � �c

b
g:

Proposition 1.2 below shows that for payo¤s in F supported by continuation

payo¤s in F �, players must do full favors. Roughly this shows that payo¤s away from

the extremes of F are supported by full favors.
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Proposition 1.2 (1) If (�; w) 2 F is implemented by (�1; w1) 2 F � then x1 = 1: (2)

If (�; w) 2 F is implemented by (�2; w2) 2 F � then x2 = 1:

Proof. (1) Suppose (�; w) 2 F is implemented by (�1; w1) 2 F � and x1 < 1. Then

for a small "; we can make the following adjustments in x1 and �1 without violating

the incentive constraint (1.5): �(1 � �)c(x1 + ") + �(�1 + (1��)c"
�
) � ��� and make

player 2 better o¤ without making player 1 worse o¤.

The players�expected payo¤s are:

(1� �)(�pc(x1 + ") + qbx2) + �(p(�1 +
(1� �)c"

�
) + q�2 + r��) = �

(1� �)(pb(x1 + ")� qcx2) + �(pg(�1 +
(1� �)c"

�
) + qw2 + rw�) =

w + (1� �)pb"� p�(g(�1)� g(�1 +
(1� �)c"

�
))

From the de�nition of F � and Lemma 1.5, at �1 : g0(�+1 ) � �b
c
, pg(�1)�g(�1+

(1��)c"
�

)
(1��)c"

�

�

p b
c
or (1� �)pb"� p�(g(�1)� g(�1+ (1��)c"

�
)) � 0 which means that player 2 is better

o¤.

The proof for (2) is analogous.

QED

To summarize, it is not completely clear what action pro�les support payo¤s in

the interior of F: There might be points in F that do involve partial or even zero

favors. However, if there is a region in F such where the slope lies between �b
c
and

�c
b
then we do expect to see some e¢ cient payo¤s that are supported by full favors.
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1.4 Comparative Statics

In this section, we examine how the equilibrium set E(�) changes with changes

in the parameters p; q and �. We �nd that the amount of cooperation that can be

sustained in equilibrium is enhanced by more patient players and also by increasing

either p or q.

For the next theorem, we denote the equilibrium set be denoted by Ep;q (for given

�), hence making the dependence on p and q explicit. Theorem 1.1 shows that,

holding q constant, the equilibrium set expands (weakly) in p. Similarly, holding p

constant, the equilibrium set expands (weakly) in q. However, we have to make sure

that as q expands, the condition p
q
> c

b
is still satis�ed.

Theorem 1.1 Given �, for 1 > p0 > p; Ep;q � Ep0;q. Given �, for pb
c
> q0 > q;Ep;q �

Ep;q0.

Proof. First, we show that for any convex W � R2, Bp(W ) � Bp0(W ) where B(W )

is the operator de�ned above and q is held constant. Consider (�; w) 2 Bp(W )

supported by x1; x2 2 [0; 1] and (�1; w1), (�2; w2) and (��; w�) 2 W: Let �01 = p
p0�1 +

(1 � p
p0 )�� and let w

0
1 =

p
p0w1 + (1 �

p
p0 )w�. (�; w) can be supported by p

0, (x1
p
p0 ; x2)

and (�01; w1), (�
0
2; w2) and (��; w�) 2 W :

(1� �)(�p0cx1
p

p0
+ qbx2) + �(p

0(
p

p0
�1 + (1�

p

p0
)��) + q�2 + (1� p0 � q)��) = �

(1� �)(p0bx1
p

p0
� qbx2) + �(p0(

p

p0
w1 + (1�

p

p0
)w�) + qw2 + (1� p0 � q)w�) = w
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We also check that the player 1�s incentive constraint is satis�ed (player 2�s is

unchanged):

�(1� �)cx1
p

p0
+
p

p0
��1 + (1�

p

p0
)��� � ���

or � (1� �)cx1
p

p0
+
p

p0
��1 � p

p0
��� from (1.3)

We have shown Ep � Bp(Ep) � Bp0(Ep). Hence Ep is a self-generating set under

p0 and Ep � Ep0. The proof for q0 > q is analogous.

QED

Theorem 1.2 shows that E(�) expands with �.

Theorem 1.2 Given p; q, for 1 > �0 > �; E(�) � E(�0).

Proof. First, we show that for any convex W � R2 that includes the point (0; 0),

B�(W ) � B�0(W ) where B�(W ) is the operator de�nes above with respect to � and

p; q are held constant. Consider (�; w) 2 B�(W ) supported by x1; x2 2 [0; 1] and

(�1; w1), (�2; w2) and (��; w�) 2 W: (�0; w0) (see below) can be supported by �0; (0; 0)

and ( �
�0�1;

�
�0w1), (

�
�0�2;

�
�0w2) and (

�
�0��;

�
�0w�) 2 W . Be de�nition, for (x1; x2) = (0; 0),

(�1; w1) = (��; w�) and it is easy to check that the incentive constraints (1.3) and

(1.4) are satis�ed.

�0 = �0(p
�

�0
�1 + q

�

�0
�2 + r

�

�0
��)

= � � (1� �)(�pcx1 + qbx2)

w0 = �0(p
�

�0
w1 + q

�

�0
w2 + r

�

�0
w�)

= w � (1� �)(pbx1 � qcx2)
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(�00; w00) below can be supported by �0; ( �
�0x1;

�
�0x2) and (

�
�0�1;

�
�0w1), (

�
�0�2;

�
�0w2)

and ( �
�0��;

�
�0w�) 2 W . First we check that the incentive constraints are satis�ed:

�

�0
(�1 � ��) � (1� �)

�
(
�

�0
x1) (from (1.3)) � (1� �0)

�0
(
�

�0
x1)

�

�0
(w2 � w�) � (1� �)

�
(
�

�0
x2) (from (1.4)) � (1� �0)

�0
(
�

�0
x2)

�00 = (1� �0)(�pc �
�0
x1 + qb

�

�0
x2) + �

0(p
�

�0
�1 ++q

�

�0
�2 + r

�

�0
��)

= � + ((1� �0) �
�0
� (1� �))(�pcx1 + qbx2)

= � +
(1� �0)
�0

(�pcx1 + qbx2)

w00 = (1� �0)(pb �
�0
x1 � qc

�

�0
x2) + �

0(p
�

�0
w1 ++q

�

�0
w2 + r

�

�0
w�)

= w + ((1� �0) �
�0
� (1� �))(pbx1 � qcx2)

= w +
(1� �0)
�0

(pbx1 � qcx2)

Now (�; w) = (1��)(�0; w0)+�(�00; w00) where � = (1��)�0
1���0 . Since W is convex, we

have shown that (�; w) 2 B�0(W ). Since (0; 0) 2 E(�) and E(�) is convex, we now

have that E(�) � B�(E(�)) � B�0(E(�)). Hence E(�) is a self-generating set under �0

and E(�) � E(�0).

Having shown the monotonicity of the equilibrium set in the discount factor, the

question arises whether in the limit as � ! 1, a Folk Theorem is obtained. Before

tackling that question, we �rst establish that it is not possible to get an exact Folk

Theorem. There are no equilibria that lie on the frontier of the feasible set U for

any � < 1: This is established in Theorem 1.3 below. For the proof, we use the
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fact that equilibrium payo¤s on the frontier must be supported by current payo¤s

and continuation values also on the frontier. More speci�cally, in supporting an

equilibrium payo¤ pro�le on the line segment [L;M ] (or [M;N ]), continuation values

for public histories with positive probabilities must lie on [L;M ] (or [M;N ]). This

follows from the fact that the ex-ante average payo¤ is a linear combination of current

payo¤s and continuation values.

Lemma 1.6 shows that any equilibrium payo¤ pro�le (�; w) on the line segment

[L;M ] (or on [M;N ]) (see Figure 3) must be part of a self-generating interval.

Lemma 1.6 An equilibrium payo¤ pro�le (�; w) on the line segment [L;M ] (or on

[M;N ]) belongs to a self-generating interval of equilibrium values, [(�a; wa); (�b; wb)].

Proof. Consider an equilibrium payo¤ pro�le (�; w) 2 E(�)\ [L;M ] = B(E(�)) \

[L;M ]. Since any payo¤ pro�le in [L;M ] must be supported by continuation values

also on [L;M ], for any W , B(W )\ [L;M ] � B(W\ [L;M ]). Therefore B(E(�))\

[L;M ] � B(E(�)\ [L;M ]) and E(�)\ [L;M ] is a self-generating set. Let E(�)\

[L;M ] = [(�a; wa); (�b; wb)]:

Theorem 1.3 There does not exist a � < 1 such that any point on the Pareto frontier

of the feasible set is obtained as a point in E(�).

Proof. Consider supporting some equilibrium on [L;M ]. From Lemma 1.6, it must

be part of a self generating interval [(�a; wa); (�b; wb)]. Also, the current payo¤s must

lie on [L;M ]. This implies that x1 = 1.

We show that there is no such self-generating interval. Note that the equation of

[L;M ] is � = �b
c
w+ p(b2�c2)

b
. Suppose there were such an interval [(�a; wa); (�b; wb)] as
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M (qb­pc,pb­qc)

(v_c,w_c)

(v_d,w_d)

L
(­pc,pb)

N (qb,­qc)

Figure 3

shown in the �gure above. That is, suppose (�b; wb) can be implemented with x1; x2

and continuation values that satisfy �a � �2 � �� � �1 � �b. From the incentive

constraints, we have �� � �1� c(1��)
�
x1 and �2 � ��� b(1��)

�
x2 (or w2 � w�+ c(1��)

�
x2).

Let �� = �1� c(1��)
�
x1 and �2 = ��� b(1��)

�
x2. Then � = (1� �)(qbx2� pc)+ �(p�1+

q�2 + r��) = ��1 � c(1� �) < �b for � < 1. This is a contradiction.

Similarly it can be shown that there are no equilibria on [M;N ]:

Theorem 1.3 is similar to the impossibility result of Azevedo and Moreira (2007).

They show that for almost every game with imperfect monitoring, there are feasible

strictly individually rational payo¤s that are not public perfect equilibria. Speci�-

cally, they show this for an imperfect monitoring version of the Prisoner�s Dilemma

game or the partnership game. This is to be contrasted with the Athey and Bagwell

(2001) who found a � strictly less than 1 with which �rst-best payo¤s are achieved as

equilibria.
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We now try to use the framework of Fudenberg, Levine and Maskin (1994) to

check if a Folk theorem (inexact) is obtained in our game. We are able to show

that a Folk theorem holds for a discretized version of the game. In particular, we

allow, instead of a continuum of favors xi 2 [0; 1], partial favors in discrete amounts:

xi 2 f0; "i; 2"i; :::; ki"i; :::mi"ig where "i > 0 and mi"i = 1: In this modi�ed model,

Proposition 1.3 shows that in the limit as � goes to 1, E(�) approaches the feasible

set U . In the terminology of Fudenberg, Levine and Maskin (1994), it can be shown

that all stage game strategy pro�les have pairwise full rank.

The argument here applies to a modi�cation of our original model. It shows that

for arbitrarily small "i, for any W � U , there exists a � < 1 such that for � � �, U

belongs to E(�). We would like to show that this is also true in the limit as "i goes

to 0 (continuous actions). We do not have a formal argument for that yet. One of

the issues that might arise is that as "i goes to 0, � might go to 1 . We have not ruled

this out.

In the modi�ed model, for k = 0; 1; 2; :::;mi; let ai(k) = k"i denote the strategy:

do k"i favor if in a position to do a favor, none if not. To be able to compare directly

with Fudenberg, Levine and Maskin (1994), let y = f0; "1; 2"1; :::; 11; "2; 2"2; :::; 12g be

the set of possible public outcomes where 1i stands for player i doing a full favor. Let

�(y j a1; a2) be the probability of observing y given strategy pro�le (a1; a2). It can

be shown that the rank of matrix �(a1; a2) = �(y j :; aj 6=i) is 1 less than full rank.

Then from Theorem 6.2 in Fudenberg, Levine and Maskin (1994), we get the Folk

Theorem.

Proposition 1.3 In the discretized version of the game, for any "i > 0, for any

W � U , there exists � < 1, such that for all � � �, W � E(�):
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Proof. Let �(y j a1; a2) be the probability of observing y given strategy pro�le

(a1; a2). Given strategy pro�le (a1; a2), �i(a1; a2) is the matrix �(y j :; aj 6=i) and

�(a1; a2) =

264 �1(a1; a2)
�2(a1; a2)

375. For any pro�le of strategies (a1; a2), the matrix �(a1; a2)
has 1 less than full rank. That is, all stage game strategy pro�les have pairwise full

rank and from Theorem 6.2 in Fudenberg, Levine and Maskin (1994), we get the Folk

Theorem.

As an example, consider the strategy pro�le: (a1; a2) = (2"1; 2"2): The matrix

�(a1; a2) is shown below. Row k"i denotes the strategy: Do k"i favor if in a position

to do a favor, none if not; while column k"i denotes a public outcome.

�(a1; a2) =

0 "1 2"1 ::: ::: 1 "2 2"2 ::: ::: 1

0 1� p 0 0 0 0 0 0 q 0 0 0

"1 1� 2p p 0 0 0 0 0 q 0 0 0

2"1 1� 2p 0 p 0 0 0 0 q 0 0 0

::: 1� 2p 0 0 ::: ::: 0 0 q 0 0 0

1 1� 2p 0 0 0 0 p 0 q 0 0 0

0 1� p 0 p 0 0 0 0 0 0 0 0

"2 1� 2p 0 p 0 0 0 q 0 0 0 0

2"2 1� 2p 0 p 0 0 0 0 q 0 0 0

::: 1� 2p 0 p 0 0 0 0 0 ::: ::: 0

1 1� 2p 0 p 0 0 0 0 0 0 0 q

To see that the rank of matrix �(a1; a2) is 1 less than full rank, note that the rows

corresponding to a1 = 2"1 and a2 = 2"2 are identical.
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1.5 Conclusion

This paper studied cooperation in an in�nitely repeated game with private in-

formation. We provide a discrete time version of the Hauser and Hopenhayn (2008)

model. We also generalize their model to the asymmetric case where both players may

not get the opportunity to do favors with the same probability. Moreover, we answer

questions about the equilibrium set not addressed by them. These include showing

the monotonicity of the equilibrium set in the discount factor, the monotonicity of

the equilibrium set in the likelihood that somebody will be in a position to do a favor

and that an exact Folk Theorem does not hold in this model.

A natural extension of the present model is to an n-player game. However, this

would raise a number of interesting issues. In a two person model, the meaning of

exchanging favors is very clear. With more than two players, when in a position to

do a favor, it is not so clear whom a player will provide a favor to. This will require

careful modelling with respect to the values of favors from di¤erent opponents and

the cost of doing favors to di¤erent opponents. If we assume that the bene�t and

cost are identical for all players, we will still have to incorporate in the strategies

some rules on how favors are done. For example, a player might do one favor for

each opponent before doing any second favors. With an appropriate generalization

to the n-player case, it is reasonable to still expect the comparative statics results for

the equilibrium set that we see in the current model. It is harder to say what the

equilibrium strategies for the Pareto frontier will look like.

An n-person extension suggests a possible application to the recent economic

innovation of microcredit or credit to poor rural households who were earlier deemed

un-creditworthy. A lot of excitement has been generated by loan repayment rates
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of close to 95 percent (Morduch (1999)) in institutions like the Grameen Bank of

Bangladesh. Several studies1 have attributed the high repayment rate to the novel

"group-lending" or joint liability feature found in these lending contracts.

As Besley and Coate (1995) explain, joint liability leads to interdependence be-

tween the buyers, especially at the time of repayment of the loan. The resultant

"repayment game" can also be analyzed in the setup of my model. If one group

member has a failed investment and another member has a high enough return from

her investment that she is in a position to repay the former�s loan along with her

own, then the second group member is in a position to do a favor. If borrowers take

repeated loans from the bank, they can trade favors and repay each others�loans.

The model here is general enough to accommodate several economic applications.

For one, it shares the adverse selection feature of a rich literature in risk-sharing.

Atkeson and Lucas (1992) study an exchange economy where, each period, a certain

endowment has to be allocated among a large number of consumers who receive

privately observed taste shocks that a¤ect their marginal utility of consumption.

If reporting a high value of the shock leads to a higher current allocation, then all

consumers have an incentive to report a higher shock. They characterize the incentive

compatible e¢ cient equilibria in this environment. Thomas and Worrall (1990) study

a model where a risk neutral lender o¤ers insurance to a risk-averse borrower who

receives i.i.d. income shocks. The income shocks are private information and not

observable by the lender. The borrower has an incentive to report low income in

each period and they characterize the Pareto frontier of equilibrium outcomes in this

set-up2.

1See Stiglitz (1990), Varian (1990) and Besley and Coate (1995).
2Also see Townsend(1982) and Green (1987) and Hertel (2004).
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This connection suggests a possible application of the model. Think of a two

person model with two possible income levels: high and low. In the presence of risk

aversion, the high income person can stabilize the low income person�s consumption

and the bene�t to the latter would be greater than the cost to the former. In a

repeated game, there is a possibility to exchange favors.

In the model here, as in Hauser and Hopenhayn (2008), opportunities to do favors

are independent across time periods. A possible direction for future research is a

model where the opportunities are correlated rather than independent across time

periods. For example, a player�s ability to do a favor might be negatively correlated

to her ability in the past. This set up would likely aid greater cooperation. Allowing

for asymmetric probabilities as in this paper is a �rst step in that direction. If current

probabilities are to depend on what transpired in the previous period, we must �rst

relax the assumption of symmetric probabilities.

1.6 Appendix - Proof of Lemma 1.5

Proof. Part 1: We show that if x1 > 0, then h0(w�) � �c
b
.

Suppose h0(w�) = lim
"!0

h(w)�h(w�")
"

> �c
b
: Then there exists "� such that for all " �

"� and (h(w); w) and (h(w � "); w � ") on the frontier,

h(w)� h(w � ") > �c
b
" (1.7)

Let "1 = "�

(1��)pb . If x1 � "1 � 0; let bx1 = x1 � "1: If we replace x1 by bx1, the
players�payo¤s will be the following. Player 1:

p(�(1� �)c(x1 � "�

(1��)pb) + ��1) + q((1� �)bx2 + ��2) + r��� = h(w) +
c
b
"�
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Player 2:

p((1� �)b(x1 � "�

(1��)pb) + �g(�1)) + q(�(1� �)cx2 + �g(�2)) + r�w� = w � "
�:

Note that replacing x1 by bx1 does not violate the incentive constraints (1.5) and
(1.6). Therefore, we have a new point on the frontier (h(w) + c

b
"�; w � "�) where,

compared with (h(w � "�); w � "�) player 2 is equally well o¤ and player 1 is better

o¤ since h(w)� h(w � ") > �c
b
" from (1.7): Therefore (h(w + "�); w + "�) is not on

the frontier. This is a contradiction.

If x1� "�

(1��)pb < 0; let bx1 = 0. Note that x1� "�

(1��)pb < 0 implies (1� �)pbx1 < "
�:

Let (1� �)pbx1 = e" < "�: With bx1 = 0; player 1�s payo¤:
p(��1) + q((1� �)bx2 + ��2) + r��� = h(w) + c

b
e"

Player 2�s payo¤:

p�g(�1) + q(�(1� �)cx2 + �g(�2)) + r�w� = g(�)� bp(1� �)x1 = w � e"
Note that replacing x1 by bx1 does not violate the incentive constraints (1.5) and

(1.6). Therefore, we have a new point on the frontier (h(w) + c
b
e"; w � e") where,

compared with (h(w�e"); w�e") player 2 is equally well o¤ and player 1 is better o¤
sinceh(w) + c

b
e" > h(w � e") from (1.7), which is a contradiction.

Part 2: We show that if x2 > 0, then g0(��) � �c
b
or f 0(g(�)+) � �b

c
where

f = g�1:

Suppose f 0(g(�)+) < �b
c
. Then there exists "� such that for all " � "� and (�; g(�))

and (� + "; g(� + ")) on the frontier,

f(g(�) + ")� f(g(�))
"

<
�b
c

or
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f(g(�) + ") < � � b"
c

(1.8)

Let "1 = "�

(1��)qc : If x2 � "1 � 0; let bx2 = x2 � "1: If we replace x2 by bx2, the
players�payo¤s will be the following. Player 1:

p(�(1� �)c(x1 + ��1) + q((1� �)b(x2 � "
(1��)qc) + ��2) + r��� = � �

b"�

c

Player 2:

p((1� �)bx1 + �g(�1)) + q(�(1� �)c(x2 � "
(1��)qc) + �g(�2)) + r�w� = g(�) + "

�:

Note that replacing x2 by bx2 does not violate the incentive constraints (1.5) and
(1.6). Therefore, we have a new point on the frontier (� � b"�

c
; g(�) + "�) where,

compared with (f(g(�) + "�); g(�) + "�) player 2 is equally well o¤ and player 1 is

better o¤ since � � b"�

c
> f(g(�) + "�) from (1.8): Therefore (f(g(�) + "�); g(�) + "�)

cannot be on the frontier. This is a contradiction.

If x2 � "1 < 0; let bx2 = 0: Note that x2 � "1 < 0 implies (1 � �)qcx2 < "�. Let
(1� �)qcx2 = e" < "�: With bx2 = 0; player 1�s payo¤:
p(�(1� �)cx1 + ��1) + q(��2) + r��� = � � q(1� �)bx2 = � � b

c
e":

Players 2�s payo¤:

p((1� �)bx1 + �g(�1)) + q(�g(�2)) + r�w� = g(�) + q(1� �)cx2 = g(�) + e":
Note that replacing x2 by bx2 does not violate the incentive constraints (1.5) and

(1.6). Therefore, we have a new point on the frontier (�� be"
c
; g(�)+e") where, compared

with (f(g(�) +e"); g(�) +e") player 2 is equally well o¤ and player 1 is better o¤ since
� � be"

c
> f(g(�) + e") from (1.8): Therefore (f(g(�) + e"); g(�) + e") cannot be on the

frontier, which is a contradiction.

QED
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Chapter 2

E¢ cient Exchange of Favors with Private Informa-
tion: Computing the Equilibrium Set

2.1 Introduction

We use numerical methods to compute the equilibrium value set of the exchanging

favors repeated game from Chapter 1. We use techniques from Judd, Yeltekin and

Conklin (2003) that focus on �nding inner and outer approximations of the equilib-

rium value set which, together, provide bounds on it. Any point contained in the

inner approximation is certainly an equilibrium payo¤. Any point not in the outer

approximation is certainly not in the value set.

The numerical methods of Judd, Yeltekin and Conklin (2003) use techniques sug-

gested by the recursive analysis of repeated games (the details of the algorithm are

presented in Section 3). In Abreu, Pearce and Stacchetti (APS) (1990), �nding the

equilibrium set involves �nding the largest bounded �xed point of a monotone set

valued operator. The key properties of the APS operator are that it maps convex

sets to convex sets and is monotone. Judd, Yeltekin and Conklin (2003) use two set

valued operators which inherit these properties: inner and outer monotone approxi-

mations of the APS operator. Moreover, the largest bounded �xed point of the inner

monotone approximation yields an inner approximation to the equilibrium set while
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the largest bounded �xed point of the outer monotone approximations yields an outer

approximation.

Roughly, inner and outer monotone approximations of the APS operator are found

by �rst looking for boundary points of the relevant sets and then connecting these.

The computations here are done with two di¤erent degrees of precision.

First, we �nd the required approximate sets using a set of eight boundary points.

Despite being coarse, these estimates are able to get a handle on the comparative

statics of the equilibrium set. We �nd that the (inner and outer approximations of

the) equilibrium set expands as the discount factor gets larger (Section (4.1.1)). In the

model we analyze, players are occasionally in a position to do a favor to an opponent.

In the case of symmetric probabilities of doing favors, the larger the probability,

the larger the equilibrium set suggested by our estimates (Section (4.1.2)). Holding

one player�s probability constant and expanding the other�s also results in a larger

equilibrium set.

Next we make the approximations more precise by using twelve instead of eight

boundary points. By increasing the number of boundary points to connect in each

iteration, we obtain smoother sets that result in smoother inner and outer approxi-

mations. This small adjustment is good enough to greatly improve the precision of

the estimates. We �nd that the inner and outer approximations of the equilibrium

set are very close to each other and almost coincide (Section (4.2)). These superior

estimates suggest a very speci�c shape of the equilibrium payo¤ set. The Pareto

frontier of the set extends from the x-axis to the y-axis.

With this tightly approximated equilibrium set, the properties of its inner approx-

imation provide good indications of the properties of the equilibrium set itself. We
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see that payo¤s on the Pareto frontier of the equilibrium set are supported by current

actions of full favors. This is true so long as there is room for full favors that is, away

from the two ends of the frontier.

Judd, Yeltekin and Conklin (2003) develop techniques for repeated games with

perfect monitoring. Our application of their algorithm to the current game shows

that these can be extended to games with imperfect monitoring. The algorithm also

requires a discrete action space. For this, we alter the basic model slightly. Besides

no favor and a full favor (one), players can do a range of favors in between and these

go up in small discrete amounts.

The rest of the paper is organized as follows. Section 2 reviews the model from

E¢ cient Exchange of Favors with Private Information (2009). Section 3 presents the

details of the algorithm used to obtain the results in Section 4. Section 5 concludes.

2.2 Model

There are two players represented by i = 1; 2. At each time period t = 0; 1; 2; ::::;1,

one of the players might get a chance to do the other a favor. The cost of doing a

favor is c. The bene�t to the recipient of the favor is b. b > c and the socially e¢ cient

outcome is that a favor is always provided. There is a common discount factor � and

players seek to maximize the present discounted values of their utilities. We assume

that the players are risk-neutral.

At any time period t, the state space is 
 = fF1; F2; F�g. In state F1, player 1 is

in a position to do player 2 a favor; in state F2, player 2 is in a position do player

1 a favor and in state F�, neither player is in a position to do a favor. The ability

to do a favor is private information. In other words, player i0s information set is
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f(Fi); (Fi6=j; F�)g and a player who is not in a position to do a favor does not know

whether or not her opponent is in a position to do a favor. The state at time t depends

on the realization of the random variable St; St = st 2 
. St is independently and

identically distributed over time and in any period, takes the value F1 with probability

p, F2 with probability q and F� with probability r = 1�p�q: Throughout this paper,

we assume that r > 0 so that there is always a positive probability that neither player

is in a position to do a favor.

Without loss of generality, we assume that q > p, so player 2 is in a position

to do a favor with a higher probability in any period. We assume that p=q > c=b.

Under this assumption the set of long run feasible payo¤s of the game looks like the

feasible set of the repeated Prisoner�s Dilemma. By making this assumption, we are

restricting the amount of asymmetry allowed or how much larger q can be than p.

The larger the gap between b and c, the more the asymmetry allowed.

Favors are perfectly divisible and players can provide full or partial favors, xi 2

[0; 1], i = 1; 2. Figure 1 shows US, the set of feasible long run payo¤s for the game in

the symmetric case when players 1 and 2 receive the chance to do a favor with equal

probabilities. Let this probability be p. Note that 0 < p < 1
2
and r = 1 � 2p > 0:

The feasible set looks like that of the standard Prisoner�s Dilemma, scaled according

to p: For example, if players do a favor each time they get a chance, the long-run

payo¤s are (p(b � c); p(b � c)): If player 1 always does a favor while player 2 never

does none, the payo¤s are (�pc; pb): This is a discrete time version of the Hauser and

Hopenhayn (2008).

Figure 2 gives the set of feasible payo¤s for the general case and we call it U . If

players do a favor each time they get a chance, the long-run payo¤s are (qb� pc; pb�
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Figure 1: Feasible long run payoffs in the symmetric
case.

qc): If player 2 always does a favor while player 1 never does one, the payo¤s are

(qb;�qc): If player 1 always does a favor while player 2 never does one, the payo¤s

are (�pc; pb): We restrict attention to non-negative payo¤s.

In the stage game, a strategy for player i is a decision whether to and how much of

a favor to provide, if she �nds herself in a position to do so. Let X t be a variable that

records, for period t, both the identity of a player who does a favor and how much of

a favor is done. X t = (X t(1); X t(2)) where X t(1) 2 f1; 2g records the identity and

X t(2) 2 (0; 1] records the quantity. Let X t(1); X t(2) = 0 when no favor is done.

In the repeated game, at time t, player i observes her own private history (when

she was in a position to do a favor) and a public history of when and what size of

favors were provided in the past. At time t, let ht = fX0; X1; :::; X t�1g denote a
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Figure 2: Feasible long run payoffs in the
asymmetric case (q > p).

public history. H t is the set of all possible public histories at time t. We restrict

attention to sequential equilibria in which players condition only on public histories

and their current type but not on their private history of types. Such strategies

are called public strategies and such sequential equilibria are called perfect public

equilibria (Fudenberg, Levine and Maskin (1994)). Let �ti : H
t � 
! [0; 1] denote a

public strategy for player i at time t and let �i denote a sequence of such strategies

for t = 0; 1; :::1, such that,

�ti(h
t; st) =

8><>: xti(h
t) 2 [0; 1] if st = Fi

0 if st 6= Fi

9>=>; .
From Abreu, Pearce and Stacchetti (1990), it is known that perfect public equi-

libria can be expressed recursively. More generally, if we restrict attention to public
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strategies, any payo¤ pair (�; w) can be factorized into current and continuation

values, (�c; wc) : X t ! U , that depend only on current public outcomes. For our pur-

poses, it will be convenient to adopt the following notation. If, at time t, X t(1) = 1;

let the continuation values be denoted by (�1(x1); w1(x1)), where x1 = X t(2) > 0;

if X t(1) = 2; let the continuation values be denoted by (�2(x2); w2(x2)), where

x2 = X t(2) > 0; and �nally, if X t(1); X t(2) = 0; let the continuation values be

denoted by (��; w�): Also, de�ne �1(0) = �2(0) = �� and w1(0) = w2(0) = w�.

We de�ne an operator B that maps sets of payo¤ pairs to sets of payo¤ pairs. For

W � R2, B(W ) is the set of payo¤s that can be supported by continuation payo¤s

in W . More precisely, B(W ) = f(�; w) : there exist (x1; x2) 2 [0; 1]2 and

(�1(x1); w1(x1)); (�2(x2); w2(x2)); (��; w�) 2 W

such that

� = p(�(1� �)cx1 + ��1(x1)) + q((1� �)bx2 + ��2(x2)) + r���

w = p((1� �)bx1 + �w1(x1)) + q(�(1� �)cx2 + �w2(x2)) + r�w�

�c(1� �)x1 + ��1(x1) � ���

�c(1� �)x2 + �w2(x2) � �w� g.

For (�; w) 2 B(W ), we say that (�; w) are implemented by x1,x2 and

(�1(x1); w1(x1)); (�2(x2); w2(x2)); (��; w�) 2 W . Note that (�1(x1); w1(x1));
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(�2(x2); w2(x2)) and (��; w�) may not be distinct. If (�; w) is implemented by x1 = 0,

then (�1(0); w1(0)) = (��; w�). Similarly, if (�; w) is implemented by x2 = 0, then

(�2(0); w2(0)) = (��; w�).

The operator B(:) holds a unique place in the repeated games literature. It has

several well known properties. It maps convex sets to convex sets and is monotonic,

B(W ) � W for any W � R2. Let E(�) be the set of perfect public equilibrium

payo¤s, given �: Following the literature, if W � B(W ), we say that W is a self

generating set. It is well known that for any self generating set W , W � E(�), and

E(�) is the largest bounded self generating set.

2.3 Methodology

We use iterative procedures from Judd, Yeltekin and Conklin (2003) to �nd inner

and outer approximations for the equilibrium value set, E(�).

For a convex set V � R2, inner approximations are convex hulls of points on the

boundary of V . For W � U , we use Algorithm 1 from Judd, Yeltekin and Conklin

(2003) to �nd points on the boundary of the set B(W ). Convex hulls of boundary

points yield inner approximations to B(:). These inner approximations are convex

and monotonic sets and we call them inner monotone approximations to B(W ).

The method to �nd the boundary points (Algorithm 1 in Judd, Yeltekin and

Conklin (2003)) is the following. We �x a set of subgradients, call it H, and locate

boundary points z = (�; w) of B(W ) where the subgradient of B(W ) at z is in H:

The input for Algorithm 1 is a set of vertices Z; such that Co(Z)=W . For each

subgradient hl 2 H, we �nd the action pair and continuation values in W that

maximize a weighted sum of the players�current and future discounted payo¤s, while
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satisfying the incentive compatibility constraints. The weights are given by hl. Each

hl 2 H gives a point zl, the maximized payo¤ pair, on the boundary of B(W ).

The convex hull of all such z0ls gives an inner approximation to B(W ): We then

look for a �xed point in inner approximations as this gives us a self generating set

which is an inner approximation to the value set, E(�) (see Theorem 7 and Proposition

8 in Judd, Yeltekin and Conklin (2003)). We de�ne a function that keeps track of the

distance between consecutive iterations and perform the iterations until the distance

is less than some number ". This is our stopping rule. Precisely, the distance function

sums the distances between pairs of points where each pair corresponds to the same

subgradient, hl.

Inner approximations are contained in the value set but might be signi�cantly

smaller. Outer approximations for any convex set W � R2 are polytopes de�ned by

supporting hyperplanes of W . The boundary points for B(:) generated in Algorithm

1 can also be used to �nd outer approximations to B(:). This involves constructing

hyperplanes (in our case, lines) through these boundary points. If zl is a point

on the boundary of W and hl is the corresponding subgradient, then the required

line is z:hl = zl:hl. The outer approximation is the intersection of the half spaces

de�ned by these hyperplanes. This too maps convex sets to convex sets and preserves

monotonicity.

For the results in the next section, the value of b is 2 and that of c is :5. Par-

tial favors can be done in discrete amounts, xi = f0; :1; :2; :::; :9; 1g. Each simulation

starts by �nding B(U) where U is the set of feasible individually rational payo¤s.

The stopping rule used is " = 10�6. In Section 4.1, we use a set of eight subgradients,

H8 = f(�1;�1); (0;�1); (1;�1); (1; 0); (1; 1); (0; 1); (�1; 1); (�1; 0)g, in that order
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(counter-clockwise). In Section 4.2, we use a larger set of twelve subgradients, H12 =

f(�1;�1); (0;�1); (1;�1); (1; 0); (1; :33); (1; :66); (1; 1); (:66; 1); (:33; 1); (0; 1); (�1; 1);

(�1; 0)g:

2.4 Results

2.4.1 Eight Subgradients

As mentioned above, we look for the largest �xed point of inner monotone approx-

imations of B(:): Figure 4.1 shows a few iterations of the inner monotone approxi-

mation operator on the way to �nding the �xed point. Here, p = q = :35 and � = :9.

For each iteration, we form a convex set by connecting the eight points described

above. We can see in Figure 4.1 that these iterative sets are nested. We also �nd

that the distance between consecutive iterations decreases monotonically with each

subsequent iteration. We use a cuto¤ rule so that when the distance is small enough,

we consider the last iteration to be the �xed point. With the stopping rule " = 10�6,

a �xed point is achieved at the 34th iteration with these parameters. Note that the

outermost set in Figure 4.1 is the feasible set, US (or U , in general).

For the �rst iteration, we pick eight points on the boundary of the feasible set U .

These are the vertices of U (four points) and the midpoints of its four arms. These can

be seen as dots on the boundary of the outermost set in Figure 4.1. Each subsequent

iteration potentially yields eight points. However, the subgradients (1;�1); (1; 0)

always yield the same point. This point is the same point for each iteration and lies

on the x-axis. Also, (0; 1); (�1; 1) always yield the same point. This point is always

the same point on the y-axis. For each iteration we end up with six boundary points.

The subgradient (�1;�1) always yields the point (0; 0):
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Figure 4.1: Inner monotone approximations of
B(.): 5th, 15th, 25th and 34th iterations, delta=.9
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Table 2.1 below shows the boundary points from the last iteration (the �xed

point) for the parameters used above, � = :9 and p = q = :35. It also shows the val-

ues of x1, x2 and the continuation values (�1; w1); (�2; w2) and (��;w�) that support

the each of these boundary points. The �rst row gives the di¤erent values of hl, the

subgradients used. For example, the symmetric boundary point corresponding to sub-

gradient (1; 1), (:3889; :3889) is supported by (x1; x2) = (1; 1) and continuation values

(�1; w1) = (:4448; :2897); (�2; w2) = (:2897; :4448) and (��;w�) = (:3892; :3892).

If we look at the points corresponding to the subgradients (1; 0), (1; 1) and (0; 1),

this suggests that points on the Pareto frontier, except the end points, are supported

by full favors. At the boundary point corresponding to (1; 1), the expected payo¤ is
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hl (�1;�1) (0;�1) (1;�1) (1; 0) (1; 1) (0; 1) (�1; 1) (�1; 0)
� 0 :1530 :6060 :6060 :3889 0 0 0
w 0 0 0 0 :3889 :6060 :6060 :1530
x1 0 0 0 0 1 1 1 :9
x2 0 :9 1 1 1 0 0 0
�1 0 :1 :6064 :6064 4448 :0556 :0556 0:5
w1 0 0 0 0 :2897 :5754 :5754 :1
�2 0 :1 :5754 :5754 :2897 0 0 0
w2 0 :05 :0556 :0556 4448 :6064 :6064 :1
�� 0 :1 :6064 :6064 :3892 0 0 0
w� 0 0 0 0 :3892 :6064 :6064 :1

Table 2.1: Eight point inner approximation of symmetric E(�)

(:3889; :3889). If player 1 is in a position to do a favor, she does one and the resulting

continuation values are (:4448; :2897). If player 2 is in a position to do a favor, she

does one and the resulting continuation values are (:2897; :4448). If neither players

does a favor, the continuation values are (:3892; :3892).

The subgradient (1; 0) yields a boundary point on the x-axis: (:6060; 0). Here,

player 1 does not do a favor. Since players 2�s continuation value here is 0 and cannot

be lowered further, there is no room to compensate player 1 for an additional favor at

this point. However, if player 2 gets a chance to do a favor, she does and the resulting

continuation values are (:5754; :0556). Similarly, at the boundary point corresponding

to subgradient (0; 1), player 2 does a zero favor while player 1 does a full favor.

Note that the above discussion is for the inner approximation of E(�). If we had

a much tighter and better approximation (as in Section 4.2), these assertions could

be made for E(�) itself.
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Table 2.2 shows the values of x1, x2 and the continuation values (�1; w1);

(�2; w2) and (��;w�) that support the boundary points for the last iteration (the �xed

point) in the case where � = :9, p = :35 and q = :5: The �rst row gives the di¤erent

values of hl.

hl (�1;�1) (0;�1) (1;�1) (1; 0) (1; 1) (0; 1) (�1; 1) (�1; 0)
� 0 :19 :9042 :9042 :7532 0 0 0
w 0 0 0 0 :3783 :6412 :6412 :1530
x1 0 0 0 0 1 1 1 :9
x2 0 :9 1 1 1 0 0 0
�1 0 :1 :9046 :9046 :7536 :0556 :0556 0:5
w1 0 0 0 0 :3787 :6220 :6220 :1
�2 0 :1 :8824 :8824 :7536 0 0 0
w2 0 :05 :0556 :0556 :3787 :6414 :6414 :1
�� 0 :1 :9046 :9046 :6980 0 0 0
w� 0 0 0 0 :3231 :6414 :6414 :1

Table 2.2: Eight point inner approximation of asymmetric E(�)

This table suggests that as in the symmetric case, points on the Pareto frontier of

the inner approximation of E(�), except the end points, are supported by full favors.

Consider the boundary point corresponding to the subgradient (1; 0) : (:9042; 0).

Player 2 does a full favor here. resulting in the continuation values (:8824; :0556)

while player 1 does none. This is because there is no room to compensate player 1 for

any more favors. Similarly, at the boundary point corresponding to the subgradient

(0; 1) : (0; :6412), player 1 does a full favor while player 2 does none.

Again, what we are describing here is the inner approximation of the equilibrium

set which is contained in it but probably a strict subset with the coarseness of the

approximation here.
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Inner Monotone Approximations - Comparative Statics with respect to � :

For the symmetric case p = q = :35, Figure 4.2 also shows the inner approximations

of E(�) for di¤erent values of the discount factor, � = :7; :9 and :99. These are

�xed points of the inner monotone approximations operator (see Figure 4.1). We

see monotonicity in � for the inner approximations. This illustrates Theorem 1.2 in

Chapter 1 and suggests strict monotonicity of the equilibrium set in the discount

factor.

Figure 4.2: Inner approximations for symmetric
value set (delta=.7,.9,.99)
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In Figure 4.2, the outermost set is the feasible set, US (see Figure 1): In Figure

4.3 below, we observe the same monotonicity in the asymmetric model where p = :35

and q = :5: Again, the outermost set is the feasible set, U .

Figure 4.3: Inner approximation for asymmetric value set
(delta=.7,.9,.99)
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Since outer approximations use the same points as inner approximations, monotonic-

ity in � is also seen in outer approximations (see Figures 4.4 and 4.5).
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Outer Monotone Approximations Figure 4.4 shows the inner and outer approx-

imations (thick, red lines) for the value set for the case p = q = :35 and � = :7; � = :99.

The outer approximation was found by �nding the tangent hyperplanes through the

boundary points that are perpendicular to the subgradients inH8 and the intersection

of the corresponding half spaces.

Figure 4.4: Outer and Inner approximations of
symmetric E(.), 8 subgradients, delta = .7,.99
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We do see monotonicity in � in the outer approximations just as we did for the

inner approximations. The result would be sharper if any points on the Pareto frontier

of E(� = :99) were ruled out from the Pareto frontier of E(� = :7). This is probably

not the case due to the coarseness of these estimates. We do expect to see this with

the much tighter approximations obtained with twelve subgradients.
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Figure 4.5 shows the inner and outer approximations (thick, red lines) for the

value set for the case p = :35; q = :5 and � = :7, � = :99.

Figure 4.5: Inner and Outer Approximation of asymmetric E(.),
8 subgradients, delta=.7,.99

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
v

w

The Pareto frontier of the equilibrium value set must lie within the bounds pro-

vided by the inner and the outer approximations. Our estimates suggest a very

speci�c shape of the equilibrium set. In particular, the Pareto Frontier extends from

the x-axis to y-axis or in other words, the outer boundary of the set does not bend

backwards.
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Inner Monotone Approximations - Comparative Statics with respect to

p; q : Figure 4.6 shows inner approximations of E(�) for the symmetric case for

three di¤erent values of p(= q). These are p = :25; :35 and :45 respectively. The

discount factor is � = :9 in all three cases. We see monotonicity in p. This con�rms

Theorem 1.1 from Chapter 1.

Figure 4.6: Inner approximations , delta=.9,
p=q=.25, p=q=.35, p=q=.45
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Figure 4.7 shows inner approximations ofE(�) for p = :35; q = :35; p = :35; q = :45

and p = :35; q = :5 respectively. The discount factor is � = :9 in all three cases.

This shows how the equilibrium set becomes larger as we increase q while holding

p constant. Again, this expansion of the inner approximations suggests a stronger

version of Theorem 1.1 (strict rather than weak monotonicity).

Figure 4.7: Inner approximations, delta=.9
p=.35, q=.35,.45,.5
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2.4.2 Twelve Subgradients

In this section, we expand the set H to include twelve subgradients, H12 =

f(�1;�1); (0;�1); (1;�1); (1; 0); (1; :33); (1; :66); (1; 1); (:66; 1); (:33; 1); (0; 1); (�1; 1);

(�1; 0)g: Each iteration now yields twelve points, potentially. (However, for each

iteration we end up with ten boundary points. The subgradients (1;�1); (1; 0) always

yield the same point. Also, (0; 1); (�1; 1) always yield the same point.) We have

expanded the number of subgradients in a way that we are able to get more points

on the Pareto frontier of each iteration.

Figure 4.8: Inner monotone approximations of B(.):
12 subgradients, 5th, 15th, 25th, and 34th iterations,

delta=.9
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Figure 4.8 shows some iterations of the inner monotone approximation operator

for the symmetric case: p = q = :35 and � = :9. With the stopping rule, " = 10�6, a

�xed point is achieved at the 34th iteration.

Figure 4.9 shows, for the parameters p = q = :35 and � = :9, the inner (�xed point

from �gure 4.8 above) and outer approximations of E(�). These provide a very tight

bound for E(�). By increasing the number of subgradients to twelve, the precision

of our exercise has increased greatly. We can also con�rm what we found with eight

subgradients: the Pareto Frontier extends from the x-axis to y-axis.

Figure 4.9: Inner and outer approximations
of symmetric E(.):  12 subgradients,

delta=.9
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Table 2.3 shows how the boundary points of the inner approximation of E(�) are

supported. It also shows the values of x1, x2 and the continuation values (�1; w1);
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(�2; w2) and (��;w�) that support the each of these boundary points. The �rst row

gives the di¤erent values of hl, the subgradients used. The columns for the subgradi-

ents (�1;�1), (0;�1) and (�1; 0) have not been shown. These columns are identical

to those in Table 2.1, the case of eight subgradients.

Since we have such a tight approximation of E(�), the boundary points of the

inner approximation of E(�) can be thought of as boundary points of E(�) itself. For

instance, the boundary point corresponding to the subgradient (1; 1), (:4564; :4568)

is supported by (�1; w1) = (:5053; :3921); (�2; w2) = (:3915; :3915) and

(��; w�) = (:4497; :4501).

hl (1;�1) (1; 0) (1; :33) (1; :66) (1; 1) (:66; 1) (:33; 1) (0; 1) (�1; 1)
� :6494 :6494 :6022 :5056 :4564 :3918 :1613 0 0
w 0 0 :1613 :3915 :4568 :5054 :6022 :6494 :6494
x1 0 0 1 1 1 1 1 1 1
x2 1 1 1 1 1 1 1 0 0
�1 :6495 :6495 :6495 :5541 :5053 :4568 :2235 :0556 :0556
w1 0 0 :2759 :3921 :4566 :5762 :6332 :6332
�2 :6332 :6332 :5762 :4568 :3915 :2766 0 0 0
w2 :0556 :0556 :2235 :4566 :5057 :5539 :6495 :6495 6495
�� :6495 6495 :5995 :4986 :4497 :4012 :1680 0 0
w� 0 :1680 :4010 :4501 :4984 :5995 :6495 6495

Table 2.3: Twelve point inner approximation of E(�)

If we look at the values of (x1; x2) supporting the boundary points, we see that

points on the Pareto frontier, except the end points, are supported by full favors. For

example, at the boundary point corresponding to the subgradient (1; 1), if player 1 is

in a position to do a favor, she does a full favor and the resulting continuation values

are (:5053; :3921). If player 2 is in a position to do a favor, she does a full favor and

54



the resulting continuation values are (:3915; :5057). If neither players does a favor,

the continuation values are (:4497; :4501).

Corresponding to the subgradient (:66; 1), the expected payo¤s on the frontier are

(:3918; :5054). Corresponding to the subgradient (1; :66), the expected payo¤s on the

frontier are (:5059; :3915). At both these points, both players do full favors if in a

position to do one. This is also true for points corresponding to (:33; 1) and (1; :33)

so for all points on the Pareto frontier except the endpoints.

Extending the approximation with twelve subgradients to the asymmetric case is

part of future work.

2.5 Conclusion

This paper estimates numerically the equilibrium value set of a repeated exchang-

ing favors game with private information. We adapt techniques from Judd, Yeltekin

and Conklin (2003) to evaluate equilibria in repeated games of perfect information.

These techniques utilize the usual recursive analysis of repeated games.

We get a lot more precision when we expand the set of subgradients from eight

to twelve. Essentially, by looking for more boundary points with each iteration, we

�nd smoother inner and outer approximations. Future work will involve extending

the twelve point approximation to the asymmetric model. We expect to see much

tighter approximations just as in the symmetric case and better insights into players�

behavior on the Pareto frontier of the equilibrium set.
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Chapter 3

Quantal Response Equilibrium in Repeated Games

3.1 Introduction

Quantal Response Equilibrium (McKelvey and Palfrey, 1995) is a statistical ver-

sion of Nash Equilibrium with probabilistic best response functions in which better

strategies are more likely to be played than worse strategies. This paper extends the

Quantal Response Equilibrium (QRE) concept to repeated games and proves a limit

Folk Theorem.

An attractive property of QRE is that systematic deviations from Nash equilibria

are predicted without introducing systematic errors. In the basic setup, the payo¤

from each action that a player can take is subject to random error which can be

interpreted as error in calculating payo¤s or as privately known payo¤ disturbances.

By imposing a certain structure on the errors (the marginal distribution of the error

associated with any action has an extreme value distribution), we can focus on Logit

Quantal Response Equilibria.

Logit QRE are a class of QRE parameterized with a parameter � that is inversely

related to the level of error. Given other players� probabilistic strategies, players

evaluate their payo¤s from alternative actions. Based on these payo¤s, the logistic
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quantal response function prescribes probabilities for playing di¤erent actions and

QRE is de�ned as a �xed point of the quantal response function.

Logit Quantal Response Equilibria in extensive form games (McKelvey and Pal-

frey, 1998) are de�ned by using the agent model of how an extensive form game is

played. At each information set, the log probability of choosing an action is propor-

tional to its continuation payo¤where � is the proportionality factor. Finding the set

of Agent QRE involves solving a system of equations, one for each player, for each

information set, for each possible action.

It is possible to extend the concept of Agent QRE to in�nite horizon games and to

in�nitely repeated games in particular. We can solve for Agent QRE in such games by

restricting attention to strategies that are measurable with respect to a �nite number

of states. Battaglini and Palfrey (2007) use QRE to study an in�nite horizon policy

game with endogenous status quo outcomes. This dynamic bargaining problem has

proved hard to solve theoretically once non linear utility functions are introduced.

They solve the game numerically by �nding the limit of the Markov Logit QRE as

the error term � goes to in�nity. In this paper, we do not focus on �nding the limit

equilibrium of a game. Rather, we show that for all �nite (two player) repeated games

any individually rational and feasible payo¤pro�le can be supported by a limit QRE.

In general, in the limit as � ! 1, players choose perfect best responses. This

paper shows that for large enough � and a discount factor close to one, repeated game

QRE payo¤s can get arbitrarily close to any feasible individually rational payo¤ of

the static game. This is shown in two steps. At �rst we assume that the minmax

strategies are pure strategies. It is then possible to show that the following strategies

constitute a QRE. If in any period, a player deviates from the prescribed action, this
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triggers a punishment phase in which players play the minmax strategies against one

another with probabilities close to one. The punishment phase is long enough that

for high �, deviation is unlikely in the �rst place, that is, the prescribed action is

played with probability close to one:

Next we allow the minmax strategies to be mixed strategies. The punishment

phase still requires players to play the minmax strategies. The complication is that

mixed strategies are not observable. To make sure that players play the strategies

in the support of the mixed minmax strategies in the right proportions, there is

a punishment linked to each action in the support of the minmax strategy. The

punishment linked to the least desirable action for the player is zero. At the end of

the punishment phase, the cumulative punishment from all the other actions is meted

out. This is done in a way that ensures that players play their minmax strategies in

the correct way.

The rest of the paper is organized as follows. Section 2 de�nes QRE in in�nitely

repeated games by extending the concept of Agent QRE. In Section 3, we prove a

limit Folk Theorem for a repeated Prisoner�s Dilemma Game. This result is illustrated

with computations that �nd equilibria to support di¤erent individually rational and

feasible payo¤s for high values of �. Section 4 proves the Folk Theorem for a general

two person �nite action repeated game and Section 5 concludes.

3.2 Model

3.2.1 The stage game G

The stage game G is a �nite normal form game. For each player i = 1; 2; :::; L, the

set Si represents the �nite set of actions in the game. Let jSij denote the number of
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stage game strategies available to player i. The set of action pro�les is S =
QL
i=1 Si.

S�i is the set of action pro�les of all players except i, S�i =
Q
j 6=i Sj.

The payo¤vector is u = (u1; u2; :::; uL) where the function ui : S ! R gives player

i0s payo¤. Let 4i be the set of probability measures on Si. Also assume that there

is a public randomization device available to players.

3.2.2 The repeated game G1(�)

The stage game is played repeatedly at t = 1; 2; :::1. Let ht = fs�g�=1:::t, s� 2 S

denote the history of play up to period t. If ht�1 = fs�g�=1:::t�1, then we can write

ht = fht�1; stg. Ht denotes the set of all t period histories.

Player i0s strategy pi = fp1i ; p2i ; : : : ; pti; : : : g, pti : H t ! 4i, speci�es a probability

distribution over actions for any possible history ht. A strategy pro�le is given by

p = (p1; :::::; pL). Let phtsi denote the probability of playing si, following a history of

ht in accordance with strategy pro�le p.

The common discount factor is �. Let W ht = fW ht
1 ; : : : ;W

ht
L g be the vector of

expected continuation payo¤s after history ht.

W ht = (1� �)
1X
�=t

���tu(s� j p; ht)

Given strategy pro�le p, let Uhtsi (p) be the payo¤ to player i from playing si, after

history ht. Then

Uhtsi (p) =
X

s�i2S�i

phts�i [(1� �)ui(si; s�i) + �W
fht;(si;s�i)g
i ]
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De�nition 3.1 A Logit(�) Quantal Response Function is given by

phtsi (p; �) =
e
�U

ht
si
(p)

�
sj2Si

e�U
ht
sj
(p)

De�nition 3.2 A Logit(�) Quantal Response Equilibrium is a �xed point of the Logit

Quantal Response function or, a strategy pro�le p that satis�es

phtsi =
e
�U

ht
si
(p)

�
sj2Si

e�U
ht
sj
(p)

for all ht 2 H t, i = 1; :::; L, si 2 Si.

3.3 Repeated Prisoners�Dilemma

3.3.1 Folk Theorem

For the standard Prisoner�s Dilemma (Table 3.1), in�nitely repeated, we con-

struct a Quantal Response equilibrium that supports expected payo¤s very close to

u(s�1; s
�
2) > 0. We assume that a public randomizing device is available and (s

�
1; s

�
2)

can be correlated strategies.

C D
C a,a -b,a+t
D a+t,-b 0,0

Table 3.1: Prisoner�s Dilemma

We partition the set of possible histories into the following two states. If both

players have always played (s�1; s
�
2) then they are in the cooperative state, State C
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which has a continuation value V Ci . If either of them has ever deviated, then they

are in the defection state, State D which has a continuation value V Di .

In State C, the probabilities of the players playing s�1; s
�
2 are p

C
s�1
and pCs�2 respec-

tively. In State D, the probabilities of playing C are pD1 and p
D
2 . We construct a Quan-

tal Response equilibrium for the repeated game such that pCs�1 � 1; pCs�2 � 1; pD1 � 0

and pD2 �0. Let p = (pCs�i ; fp
C
si
gsi 6=s�i ; p

D
i )i=1;2. Note that for i = 1; 2; j 6= i,

V Ci = pCs�i p
C
s�j
[(1� �)ui(s�i ; s�j) + �V Ci ] +

X
sj 6=s�j

pCs�i p
C
sj
[(1� �)ui(s�i ; sj) + �V Di ]

+
X
si 6=s�i

pCsip
C
s�j
[(1� �)ui(si; s�j) + �V Di ] +

X
si 6= s�i ;

sj 6= s�j

pCsip
C
sj
[(1� �)ui(si; sj) + �V Di ]

and

lim
pC
s�
i
;pC
s�
j
!1
V Ci = ui(s

�
1; s

�
2) (3.1)

Also,

V Di = (1� �)[pDi pDj a� pDi (1� pDj )b+ pDj (1� pDi )(a+ t)] + �V Di

lim
pDi ;p

D
j !0

V Di = 0 (3.2)
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In state C, the payo¤ from playing s�i is U
C
s�i
and the payo¤ from si 6= s�i is UCsi :

UCs�i = p
C
s�j
[(1� �)ui(s�i ; s�j) + �V Ci ] +

X
sj 6=s�j

pCsj [(1� �)ui(s
�
i ; sj) + �V

D
i ]

UCsi = p
C
s�j
[(1� �)ui(si; s�j)] +

X
sj 6=s�j

pCsj [(1� �)ui(si; sj) + �V
D
i

In state D, UDCi is the payo¤ from playing C and UDD
i

is the payo¤ from playing

D:

UDCi = pDj (1� �)a+ (1� pDj )(1� �)(�b) + �V Di

UDD
i

= pDj (1� �)(a+ t) + �V Di

These are the Logit Quantal Response functions for i = 1; 2, j 6= i in States D

and C respectively:

pDi (�; p) =
1

1 + exp�(UDD
i

� UDCi )

=
1

1 + exp�(pDj (1� �)t+ (1� pDj )(1� �)b)
(3.3)

pCs�i (�; p) =
1

1 +
P
si 6=s�i

exp�(UCsi � UCs�i )

= [1 +
X
si 6=s�i

exp�(pCs�j (1� �)(ui(si; s
�
j)� ui(s�i ; s�j))

+
X
sj 6=s�j

pCsj(1� �)(ui(si; sj)� ui(s
�
i ; sj)) + p

C
s�j
�(V Di � V Ci ))]�1 (3.4)
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Proposition 3.1 For " > 0 and any feasible individually rational payo¤ pro�le of the

Prisoner�s Dilemma, u(s�1; s
�
2), there exist � < 1 such that for all � > �, there exists

�(�) with the following property. For � � � and � � �(�), there exists a Quantal

Response equilibrium in the repeated game in which V Ci > u(s�1; s
�
2)� ".

Proof. From (3.1), lim
pC
s�
i
;pC
s�
j
!1
V Ci = ui(s

�
1; s

�
2) and we can �nd small enough "

C such

that if pCs�1 = 1� "
C , then

V Ci > u(s�1; s
�
2)� " (3.5)

We show that for Player i, there exist "C and "D which ensure (3.5) and there exists

� < 1 such that if � > � and we assume that pCs�j � 1� "
C in the current period and

pCs�1 ; p
C
s�2
� 1 � "C and pD1 ; pD2 � "D in all future periods, then lim

�!1
pCs�i (�; p) = 1. For

si 2 Si, si 6= s�i :

lim
pC
s�
i
!1;pDi !0

UCsi � U
C
s�i

= lim
pC
s�
i
!1;pDi !0

pCs�j (1� �)[ui(si; s
�
j)� ui(s�i ; s�j)] +X

sj 6=s�j

pCsj(1� �)[ui(si; sj)� ui(s
�
i ; sj)] + p

C
s�j
�(V iD � V iC)

= lim
pC
s�
i
!1;pDi !0

pCs�j (1� �)[ui(si; s
�
j)� ui(s�i ; s�j)]� pCs�j �ui(s

�
i ; s

�
j)

(from (3.1) and (3.2))

< 0 (3.6)

when � >
ui(si; s

�
j)� ui(s�i ; s�j)
ui(si; s�j)

.
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Let � = max
si

ui(si;s
�
j )�ui(s�i ;s�j )
ui(si;s�j )

=
a+t�ui(s�i ;s�j )

a+t
. For (s�i ; s

�
j) = (C;C), � =

t
a+t
. Con-

sider the Logit Quantal Response function in State C for i = 1; 2; j 6= i (see (3.4)):

pCs�i (�; p) =
1

1 +
P
si 6=s�i

exp�[UCsi � UCs�i ]

From (3.6), for � � �, lim�!1 p
C
s�i
(�; p) = 1 and we can �nd a �Cs�i such that for

� � �, � � �Cs�i , p
C
s�i
(�; p) � 1 � "C . For fpCsigsi 6=s�i , we can �nd �

C
si
such that for

� � �Csi, p
C
si
(�; p) � "C . Let �C = max(�Cs�1 ; �

C
s�2
; f�Cs1gs1 6=s�1 ; f�

C
s2
gs2 6=s�2).

Now assume that pDj 2 [0; "D]. Consider the Logit Quantal Response function in

State D for i = 1; 2; j 6= i (see (3.3)):

pDi (�; p) =
1

1 + exp�[pDj (1� �)t+ (1� pDj )(1� �)b]

Since pDj (1� �)t+ (1� pDj )(1� �)b > 0, lim�!1 p
D
i (�; p

D
j ) = 0 and we can �nd a

�Di such that for � � �Di , pDi (�; pDj ) � "D. De�ne �(�) = max(�C ; �D1 ; �D2 ).

Let � � �, � � �. The Quantal Response Function is then a continuous function

mapping a compact and convex set: [1� "C ; 1]2 � [0; "C ]K0� [0; "D]2 into itself where

K0 = jS1j + jS2j if (s�1; s�2) is a correlated action pro�le and K0 = jS1j + jS2j � 2 if

(s�1; s
�
2) is a pure action pro�le.

From the Brouwer �xed point theorem, there exists a Quantal Response Equi-

librium. As required, for � � �; we have a Quantal Response Equilibrium pCs�1(�),

pCs�2(�) � 1� "
C and pD1 (�), p

D
1 (�) � "D. From (3.5), V Ci > u(s�1; s

�
2)� ".

QED
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3.3.2 Computations

We compute exact values for Quantal Response Equilibria (QRE) that support

u(s�1; s
�
2). More precisely, we �nd equilibrium strategies that involve playing (s�1; s

�
2)

with probability close to 1 in the State C and defecting with almost certainty in the

state D.

We look for (pCs�1 , p
C
s�2
, pD1 , p

D
2 ) that are �xed points of the Quantal Response

function; for a range of values of �. We set some initial values for these probabilities:

p0 = (p0Cs�1 , p0
C
s�2
, p0D1 , p0

D
2 ). These imply values for the continuation values V

C
i ; V

D
i

and for the payo¤ functions UCs�i ; U
C
si
; UDCi ; UDCi . Through the Quantal Response

function, UCs�i ; U
C
si
; UDCi and UDCi imply values for (pCs�1 , p

C
s�2
, pD1 , p

D
2 ): call these (bpCs�1 ,bpCs�2 , bpD1 , bpD2 ). We �nd p0 to minimize the di¤erence between p0 and (bpCs�1 , bpCs�2 , bpD1 , bpD2 ).

If the minimized distance is 0, we have a �xed point.

Since the QRE for � = 0 must be (:5; :5; :5; :5), we set p0 = (:5; :5; :5; :5). Then

for each successive value of � from 0 to 100 (or more), we set p0 to the �xed point

for the previous value of �. In the following simulations, a = 1; t = 1; b = 1 and

t=(a+ t) = :5. The speci�c Prisoner�s Dilemma game used is shown in Table 3.2.

C D
C 1,1 -1,2
D 2,-1 0,0

Table 3.2: Prisoner�s Dilemma

We �rst examine the case where � = :9 and (s�1; s
�
2) = (C;C). According to

Proposition 3.1, we should be able to �nd Quantal Response Equilibria to support

the cooperative outcome so long as � > t=(a+ t).
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For (s�1; s
�
2) = (C;C) let p

C
s�1
= pC1 and p

C
s�2
= pC2 . The results are shown in Figures

1 and 2 (to be read together). Figure 1 plots pC1 ; player 1�s probability of playing C

in the cooperative state C, as a function of �. pC2 , player 2�s probability of playing C

in the cooperative state C is identical to pC1 as we would expect given the symmetry

of the game, and is not shown here.

As shown in Figure 1, we �nd two branches for pC1 (= p
C
2 ). The solid, blue series

begins at :5 for � = 0 and converges to 0. For values of � larger than 10, there is a

branch staring close to 1 and quickly reaching 11. This is the dashed, pink colored

series. These probabilities comprise QRE in the repeated Prisoner�s Dilemma game

together with the values of pD1 (= p
D
2 ) shown in Figure 2.

Figure 2 plots pD1 ; player 1�s probability of playing C in the defection state D,

against di¤erent values of �. The solid, blue series begins at :5 for � = 0 and

converges to 0. The dashed, pink series corresponds to the dashed, pink series in

Figure 1 and represents equilibrium probabilities for � � 10. It happens to coincide

with the solid, blue series (for � � 10) and is hard to see on its own in the �gure.

1I �rst ran the program for � = 0 : 100. This gave the solid, blue branch. Then I checked to
see if (1,1,0,0) was a �xed point for � = 100: It was and then I ran the program for � = 100 to 0.
I found that I got �xed points (minimized distance is 0) for values of � � 10. I followed a similar
procedure for other values of � and u(s�1; s

�
2
_):
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Figure 1: pC_1, delta=.9
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Figure 2: pD_1, delta=.9
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As noted above, we should be able to �nd Quantal Response Equilibria to support

the cooperative outcome so long as � > t=(a+ t) = :5 here. We check the case where

this condition is just met, � = :51. Figures 3 and 4, which should be read together,

show equilibria that support the cooperative outcome (C;C) when � = :51. Here too

we use the notation: for (s�1; s
�
2) = (C;C) let p

C
s�1
= pC1 and p

C
s�2
= pC2 .

In Figure 3, there are two branches for pC1 (= p
C
2 ). The solid, blue series begins

at :5 for � = 0 and converges to 0. For values of � � 265, there is a branch of pC1

at 1. This is the dashed, pink colored series. In Figure 4, we see pD1 (= pD2 ). The

solid, blue series begins at :5 and converges to 0. The dashed, pink series begins at

� � 265, is exactly at 0 and is not clearly visible in the �gure.

Figure 3: pC_1, delta=.51
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Figure 4: pD_1, delta=.51
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We compute Quantal Response Equilibria that support u(s�1; s
�
2) = (:3; :8). These

are shown in Figures 5 and 6 below, which should be read together. For values of

� < 43, we see a unique equilibrium. This branch starts at (:5; :5; :5; :5) converges to

(0; 0; 0; 0). For values of � � 43, there is a second equilibrium. As � increases, this

quickly converges to supporting u(s�1; s
�
2) = (:3; :8) with probability one.

In Figures 5 and 6, the dashed lines represent player 1 and the solid lines player

2. The plots sometimes coincide and are di¢ cult to distinguish. In �gure 5, the

solid, blue and dashed, pink series begin at � � 43, represent the two players and

support u(s�1; s
�
2) = (:3; :8) : The solid, red and dashed, dark blue series represent the

other branch. In �gure 6, there are four series converging to 0. Two of these begin

at � = 43. These represent the equilibrium that supports u(s�1; s
�
2) = (:3; :8) and

correspond to the solid, blue and dashed, pink lines in Figure 5.
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Figure 5:  (0.3,0.8) pC_s1*, pC_s2*, delta=.9
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Figure 6: (0.3,0.8) pD_1, pD_2, delta=.9
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We �nd Quantal Response Equilibria that support: u(s�1; s
�
2) = (:2; :8). These

are shown in Figures 7 and 8 below, which should be read together. Again, for low

values of �, we see a unique equilibrium, which starts at (:5; :5; :5; :5) and converges

to (0; 0; 0; 0): For higher values of �, we see a second branch that supports u(s�1; s
�
2) =

(:2; :8).

In Figures 7 and 8, the dashed lines correspond to player 1 and the solid ones to

player 2. The series sometimes coincide and are di¢ cult to distinguish. In �gure 7,

the solid, blue and dashed, pink series begin at � � 163, represent the two players

and support u(s�1; s
�
2) = (:2; :8): The solid, red and dashed, dark blue series represent

the other branch. In �gure 8, there are four series converging to 0. Two of these

begin at � = 163. These represent the equilibrium that supports u(s�1; s
�
2) = (:2; :8)

and correspond to the solid, blue and dashed, pink lines in Figure 7.

Figure 7: (0.2,0.8) pC_s1*, pC_s2*, delta=.99
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Figure 8: (0.2,0.8) pD_1, pD_2, delta=.99
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3.4 A limit Folk Theorem for a two player game.

We will construct Quantal Response equilibria to support expected payo¤s very

close to any feasible and individually rational (�1; �2) = u(a1; a2) where (a1; a2) can

be correlated strategies.

3.4.1 Minimax strategies are pure strategies

Let mj 2 argmin
sj

max
si

ui(si;sj) be a minimax strategy against Player i. Let

�i = max
si
ui(si;mj): �i is the maximum payo¤player i can achieve when her opponent

is playing their minimax strategies against her. Normalize (�1; �2) = 0. Let bi =

max
s
ui(si; sj): First note that, following Fudenberg andMaskin(1986), given (�1; �2) >
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0, we can �nd � and n such that the following conditions hold:

�i > bi(1� �) + �(1� �n)ui(mi;mj) + �
n+1�i (3.7)

(1� �n)ui(mi;mj) + �
n�i > 0 (3.8)

To see this, note that for � close enough to 1; �i > bi(1� �). If (3.7) does not hold

for n = 1, since for large enough �, (1 � �n)ui(mi;mj) + �
n
i �i is decreasing in n, we

can raise n until it does. Also, by picking � large enough, we can ensure that (3.8) is

satis�ed with this n.

Condition (3.7) says that player i prefers �i to getting her best possible payo¤

once, ui(mi;mj) for n periods and �i forever after that. Later, in the proof of Theorem

3.1, we will use a perturbed version of (3.7) as an incentive compatibility condition

(C2) that shows that under certain conditions, players do not gain from deviating

from a strategy where (a1; a2) is played with probability close to 1: (3.8) will be useful

in establishing a condition (C3) that shows that players are willing to punish, with

probability close to 1, a player who deviates from (a1; a2).

States: For (�1; �2) = u(a1; a2) > 0, � > � and the corresponding n(�), we

partition the set of histories into n+ 1 states. The initial state is 0.

In State 0: If Player i(i = 1; 2) plays ai; the system stays in State 0. If either

player plays si 6= ai, the system moves to State Bn. Player i plays si 2 Si with

probability p0si.

In State B$($ = n; n � 1; n � 2; ::::; 2): If Player i plays mi move to B$�1. If

either player deviates then move to Bn. Player i plays si 2 Si with probability p$si .
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In State B1: If Player i plays mi move to State 0. If either player deviates then

move to Bn. Player i plays si 2 Si with probability p1si.

Continuation payo¤s: Given a strategy pro�le p, let W$
i be the continuation

payo¤ for player i in state $, where $ = n; n� 1; n� 2; ::::; 2; 1; 0:

W 0
i = p0aip

0
aj
[(1� �)�i + �W 0

i ] + (1� �)[p0ai
X
sj 6=aj

p0sjui(ai; sj) + p
0
aj

X
si 6=ai

p0siui(si; aj)

+
X
si 6=ai
sj 6=aj

p0sip
0
sj
ui(si; sj)] + (1� p0aip

0
aj
)�W n

i (3.9)

Note that:

lim
p0ai!1,p

0
aj
!1
W 0
i = �i. (3.10)

W$
i = p$mi

p$mj
[(1� �)ui(mi;mj) + �W

$�1
i ] (3.11)

+(1� �)[p$mi

X
sj 6=mj

p$sjui(mi; sj) + p
$
mj

X
si 6=mi

p$siui(si;mj)

+
X
si 6=mi

sj 6=mj

p$sip
$
sj
ui(si; sj)] + (1� p$mi

p$mj
)�W n

i

where $ = n; n� 1; n� 2; ::::; 2; 1; 0: (3.12)
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Note that:

limW$
i = (1� �)ui(mi;mj) + � limW

$�1
i (3.13)

= (1� �2)ui(mi;mj) + �
2 limW$�1

i

.............

.............

= (1� �$)ui(mi;mj) + �
$ limW 0

i

= (1� �$)ui(mi;mj) + �
$�i (from 3.10).

where the limits are over p0ai ; p
0
aj
; p$mi

; p$mj
�! 1.

Now we show that for � > � and " > 0, we can �nd "0 and "$ ($ = n; n� 1; n�

2; ::::; 1) such that for the set of strategies which satisfy p0ai = 1 � "0 > 1 � "0 and

p$mi
= 1� "$ > 1� "$; the following four conditions (C0-C3) are satis�ed.

In the following conditions, the limits are over p0a1 ; p
0
a2
; p$m1

; p$m2
�! 1: Each of

the following inequalities is strictly satis�ed in the limit as p0a1 ; p
0
a2
; p$m1

; p$m2
�! 1:

Therefore each is satis�ed for small enough "0 and "$ and all are simultaneously

satis�ed by the minimum, "0 and the minimum, "$: (Sometimes we do not need to

take all these limits. See speci�c discussion below.)

C0. For " > 0, W 0
i > �i� ". (From 3.10, for any " > 0, we can �nd small enough

"0 such that W 0
i > �i � ".)

C1. For $ = n; n� 1; n� 2; ::::; 2 :
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a. W$
i < W$�1

i : From (3.13) since limW$
i = (1 � �$)ui(mi;mj) + �

$�i <

(1��$�1)ui(mi;mj)+�
$�1�i = limW

$�1
i . In particular, this implies thatW n

i < W
$
i

for $ = n� 1; n� 2; ::::; 1:

b. W 1
i < W

0
i . Since limW

1
i = (1� �)ui(mi;mj) + ��i < �i = limW

0
i from (3.10),

(3.13) and because max
si2Si

ui(si;mj) = �i = 0 by assumption.

C2. For all si 2 Si,

(1��)[p0aj(ui(si; aj)+
X

sj 6=aj

p0sjui(si; sj)]+�p
0
aj
W n
i < (1��)[�i+

X
sj 6=aj

p0sjui(ai; sj)]+�p
0
aj
W 0
i

or

(1� �)[p0aj(ui(si; aj)��i)+
X
sj 6=aj

p0sjui(si; sj)�
X
sj 6=aj

p0sjui(ai; sj)]+ �p
0
aj
(W n

i �W 0
i ) < 0

(3.14)

(3.14) can be thought of as a perturbed version of Condition (3.7). It will be used

in the proof of Theorem 3.1 to show that when p0aj (j 6= i) in the current period and

p0ai, p
0
aj
; p$mi

; p$mj
in the future periods are close enough to 1, lim

�!1
p0ai = 1: Note that

we only need p0aj (j 6= i) in the current period and p0ai, p
0
aj
; p$mi

; p$mj
in the future
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periods to be close enough to 1. (3.14) is true for small "0 and "$ since:

lim(1� �)[p0aj(gi(si; aj)� �i) +
X
sj 6=aj

p0sjui(si; sj)�
X
sj 6=aj

p0sjui(ai; sj)]

+ �p0aj(W
n
i �W 0

i )

= (1� �)[ui(si; aj)� �i] + �(limW n
i � limW 0

i )

= (1� �)ui(si; aj) + �[(1� �n)ui(mj;mi) + �
n�i]� �i (from (3.10)

and (3.13).)

< 0 From (3.7)

C3. For $ = n; n� 1; n� 2; ::::; 1 , for all si,

(1� �)[p$mj
ui(si;mj) +

X
sj 6=mj

p$sjui(si; sj)] + p
$
mj
�W n

i

< (1� �)[p$mj
ui(mi;mj) +

X
sj 6=mj

p$sjui(mi; sj)] + p
$
mj
�W$�1

i

or

(1� �)[p$mj
(ui(si;mj)� ui(si;mj)) +

X
sj 6=mj

p$sjui(mi; sj) (3.15)

�
X
sj 6=mj

p$sjui(mi; sj)] + p
$
mj
�(W n

i �W$�1
i ) < 0

(3.15) will be used later to show that when p$mj
(j 6= i) in the current period and

p0ai, p
0
aj
; p$mi

; p$mj
in the future period are close enough to 1, lim

�!1
p$mi

= 1. Again,

note that we only need pmj
(j 6= i) in the current period and p0ai, p

0
aj
; p$mi

; p$mj
in the

future period to be close enough to 1 for C3 to hold.
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(3.15) is true for small for small "0 and "$ since:

lim(1� �)[p$mj
(ui(si;mj)� ui(mi;mj)) +

X
sj 6=mj

p$sjui(mi; sj)�
X
sj 6=mj

p$sjui(mi; sj)]

+ p$mj
�(W n

i �W$�1
i )

= (1� �)[ui(si;mj)� ui(mi;mj)] + �(limW
n
i � limW$�1

i )

= (1� �)ui(si;mj) + � limW
n
i � [(1� �)ui(mi;mj) + � limW

$�1
i ] (from (3.13).)

� (1� �)ui(si;mj) + � limW
n
i � [(1� �)ui(mi;mj) + � limW

n�1
i ] (From C1.)

= (1� �)ui(si;mj) + (� � 1)[(1� �n)ui(mi;mj) + �
n�i] (from (3.13).)

� (� � 1)[(1� �n)ui(mi;mj) + �
n�i] (since maxui(si;mj) = �i = 0.)

< 0 (since (1� �n)ui(mi;mj) + �
n�i > 0 from (3:8).)

Theorem 3.1 For " > 0 and any feasible individually rational (�1; �2) = u(a1; a2);

there exists � < 1 such that for all � � �, there exists �(�) > 0 with the following

property. For � � � and � � �(�), there exists a Logit Quantal Response equilibrium

of the in�nitely repeated game G1(�) in which jW 0
i � ui(a1; a2)j < ".

Proof. Use (3.7) and (3.8) to �nd �. For � > � , we are looking for a strategy pro�le

with p0s that solve a system of equations: one equation for each action for each state

for each player. In the analysis below, we assume that when deciding on their current

action, players take as given that in all future periods, the strategy pro�le satis�es

p0a1 ; p
0
a2
> 1� "0 and p$m1

; p$m2
> 1� "$. If in addition to this the opponent�s current

period strategy satis�es these conditions, we know that C2 and C3 are satis�ed.
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State 0: Let p0i = (p
0
ai
; fp0sigsi 6=ai). Assume p

0
aj
> 1� "0: Consider the Logit QRE

function:

p0ai(p; �) =
1

1 +
P
si2Si

e�(U
0
si
(p0j )�U0ai (p

0
j ))

where U0ai(p
0
j) is player 1�s payo¤ from si = ai and U0si(p

0
j) from si 6= ai.

U0ai(p
0
j) = p

0
aj
((1� �)�i + �W 0

i ) + (1� �)
X
sj 6=aj

p0sjui(ai; sj) + (1� paj)�W n
i

U0si(p
0
j) = p

0
aj
(1� �)ui(si; aj) + (1� �)

X
sj 6=aj

p0sjui(si; sj) + �W
n
i

U0si(p
0
j)� U0ai(p

0
j) = (1� �)[p0aj(ui(si; aj)� �i)

+
X
sj 6=aj

p0sjui(si; sj)�
X
sj 6=aj

p0sjui(ai; sj)] + �paj(W
n
i �W 0

i )

< 0: (From C2, since p0aj > 1� "
0:)

This implies that lim
�!1

p0ai(p; �) = 1: Since p0ai(p; �) increases continuously in �,

there exists a �0i such that p
0
ai
(p; �) � 1 � "0 for � � �0i : Also for p0si(si 6= ai), there

exists �0si such that p
0
si
(p; �) � "0.

Let �0 = max(�01; f�0s1gs1 6=a1, �
0
2; f�0s2gs2 6=a2).

State B$: Let p$i = (fp$mi
g; fp$sigsi 6=mi

). Assume p$mj
> 1 � "$: Consider the

Logit QRE function:

p$mi
(p; �) =

1

1 +
P
si2Si

e�(U
$
si
(p$j )�U$mi (p

$
j ))

79



where U$mi
(p$j ) is player 1�s payo¤ from si = mi and U$si (p

$
j ) from si 6= mi:

U$mi
(p$j ) = p$mj((1� �)ui(mi;mj) + �W

$�1
i ) + (1� �)

X
sj 6=mj

p$sjui(mi; sj)

+(1� pmj
)�W n

i

U$si (p
$
j ) = p$mj

(1� �)ui(si;mj) + (1� �)
X
sj 6=mj

p$sjui(si; sj) + �W
n
i

U$si (p
$
j )� U$mi

(p$j ) = (1� �)[p$mj
(ui(si;mj)� ui(mi;mj)) +

X
sj 6=mj

p$sjui(si; sj)�X
sj 6=mj

p$sjui(mi; s2)] + p
$
mj
�(W n

i �W$�1
i )

< 0 (From C3 since p$mj
> 1� "$: )

This implies that lim
�!1

p$mi
(p; �) = 1: Since p$mi(p; �) increases continuously in �,

there exists a �$i such that p
$
mi
(p; �) � 1� "$ for � � �$i : Similarly, for p$si(si 6= mi);

there exists a �$si such that p
$
si
(p; �) � "$ for � � �$si :

Let �$ = max(�$1 ; f�$s1gs1 6=m1 ; �
$
2 ; f�$s2gs2 6=m2).

Now, let �(�) = max(�0; �n; �n�1; :::�1): Let K0 = jSij + jSjj � 2 if (a1; a2) is

a pure action pair and K0 = jSij + jSjj if (a1; a2) is a correlated action pair. Let

K = jSij+ jSjj � 2.

For � > � and � � �(�), the Quantal response function is a continuous function

from the closed and convex set [1� "0; 1]2 � [0; "0]K0 � [1� "n; 1]2 � [0; "n]K �:::�

[1� "1; 1]2 � [0; "1]K into itself.
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From the Brouwer Fixed Point Theorem, there exists a Quantal Response Equi-

librium with the required properties p0ai � 1 � "0, p$mi
� 1 � "$. From C0;W 0

i �

ui(a1; a2)� ".

QED

3.4.2 Minimax strategies are (unobservable) mixed strategies

Now let Mi be Player i�s minimax strategy against player j and let jMij = mi.

The strategies in the support of Mi are fai(k)gmi
k=1 where qi(k) > 0 is the probability

with which ai(k) is played in Mi.

To implement (�1; �2) = u(a1:a2), we could try using the same repeated game

strategies as in Section 3.4.1. In the punishment phase(s) (B$ = Bn; ::; B1) both

players would have to play their minimax strategies and any deviations from this

would entail beginning the punishment phase all over again (Bn). But now the

minimax strategies are mixed strategies. There is no way to know if a player is

mixing or randomizing with the correct probabilities as speci�ed by Mi.

Let ui(si;Mj) �
mjP
k=1

qj(k)ui(si; aj(k)), the payo¤ to i from si given that j is play-

ing according to mj. Also, uj(Mi; sj) �
miP
k=1

qi(k)uj(ai(k); sj) and ui(Mi;Mj) =

miP
k=1

mjP
k0=1

qi(k)qj(k
0
)ui(ai(k); aj(k

0
)). Let �i = max

si
ui(si;Mj); the maximum payo¤

player i can achieve when her opponent is playing their minimax strategies against

her. Normalize (�1; �2) = 0:

To deal with unobservable mixed strategies, we modify the strategies from Section

3.4.1. The indexation of fai(k)gmi
k=1 depends on the QRE parameter � and is such
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that for k = 1; :::;mi � 1 :

(1� �)ui(ai(k);Mj)�
1

�
log qi(k) � (1� �)ui(ai(k + 1);Mj)�

1

�
log qi(k + 1) (3.16)

A low k represents a low payo¤ ui(ai(k);Mj) relative to 1
�
qi(k). As will be clear

below, the equilibrium strategies involve an incentive scheme where a player is pun-

ished for playing a strategy that has a high payo¤ compared to how often it has to be

played in Mi; more precisely, a high (1 � �)ui(ai(k);Mj) compared with 1
�
log qi(k).

(Players will of course also be punished for playing outside the support of their min-

imax strategies).

Punishment: While in the punishment phase (B$) if a player plays an action

outside the support of Mi, this can be detected and leads to restarting of the punish-

ment phase. The strategies in the support of Mj each has an associated punishment.

These punishments induce players to play according to their mixed minimax strate-

gies.

We �nd punishments y$i (k), one for each ai(k) and each $ in the following way.

Player i is punished for playing a strategy ai(k) which has a high one-period payo¤

(1 � �)ui(ai(k);Mj) compared to 1
�
log qi(k): Strategy ai(1) which has the lowest

(1 � �)ui(ai(k);Mj) � 1
�
log qi(k) is not punished, or y$i (1) = 0: For k = 2; :::;mi,

the punishments satisfy the equation:

(1� �)ui(ai(k + 1);Mj)�
1

�
log qi(k + 1)� (1� �)ui(ai(k);Mj) (3.17)

+
1

�
log qi(k)

= �$(y$i (k + 1)� y$i (k))
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As shown below, in the limit, all punishments go to zero.

lim
�!1; �!1

y$i (k + 1) = lim
�!1; �!1

y$i (k) (3.18)

+
(1� �)[gi(ai(k + 1);Mj)� gi(ai(k);Mj)]� 1

�
log qi(k+1)

qi(k)

�$

= lim
�!1

y$i (k)�
1

�
log

qi(k + 1)

qi(k)
= y$i (k)

and

lim
�!1; �!1

y$i (k)! 0 for all k (since y$i (1) = 0) (3.19)

Now consider (�1; �2) > 0. As in 3.4.1, we �nd � and n such that the following

conditions hold:

�i > bi(1� �) + �(1� �n)ui(Mi;Mj) + �
n+1�i (3.20)

(1� �n)ui(Mi;Mj) + �
n�i > 0 (3.21)

For � > � let n(�) be the corresponding n satisfying (3.20) and (3.21). From

(3.19), we can �nd b� and b� such that for � > b� and � > b�,
�i � n(�)max

$;k
y$i (ai(k)) > 0 (3.22)

and

(1� �n)ui(Mi;Mj) + �
n(�i � n(�)max

$;k
y$i (ai(k))) > 0 (3.23)

Let � = max(b�,�):We refer to n(�) as simply n in the following.
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States: For si 2 fai(k)gmi
k=1 we will use si 2 Mi. State 0 and its strategies are

identical to Part 1. In State B$($ = n; n � 1; :::; 2): If Player i plays si 2 Mi, the

state in the next period is B$�1: Let s$i = k if strategy ai(k) is played by Player i in

State $: If player i plays si =2Mi the state switches to Bn.

In State B1: If Player i plays si 2Mi, the state in the next period is State C(zi; zj)

where zi = fs$i gn$=1 is the vector of the s$i �s for Player i. If Player i plays si =2 Mi

the state switches to Bn.

In State C(zi; zj): Players play ( ea1; ea2) such that ui( ea1; ea2) = �i � nP
$=1

y$i (s
$
i ). If

player i plays si 6= eai, the state switches to Bn. There are mn
i �mn

j such states as

the vector zi can take mn
i values. The total number of states is 1 + n+ (mimj)

n:

Continuation payo¤s: Consider WC
i , the continuation payo¤ for Player i in

State C.

lim
pC
~
ai

; pC
~
aj

!1
WC
i = �i �

nX
$=1

y$i (s
$
i ) = e�i > 0 (From (3.22))

where e�i = �i � nP
$=1

y$i (s
!
i ). For $ = n; :::1 :

limW$
i = lim(1� �$)ui(Mi;Mj) + �

$(�i �
nX

$=1

y$i (s
$
i )) (3.24)

= (1� �$)ui(Mi;Mj) + �
$ e�i > 0 (from (3.23))

as p$ai(k) ! qi(k) for si 2 Mi, p$aj(k) ! qj(k) for sj 2 Mj , p$si , p
$
sj
! 0 for all

si =2Mi, sj =2Mj and pCeai ; pCeaj ! 1.
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Now we show that for � > � and " > 0, we can �nd "0; "$; "$(k); "C such that

0 < (qi(k) � "$(k)) < 1 and for p0ai > 1 � "0,
���p$ai(k) � qi(k)��� < "$(k), p$si < "$

(si =2Mi) and pCeai > 1� "C the following conditions (C0-C4) hold. For i = 1; 2 :
C0. W 0

i > �i� ". As in Section 3.4.1, from 3.10, for any " > 0, we can �nd small

enough "0 such that W 0
i > �i � ".

C1. W$
i < W$�1

i ($ = 1; ::n):From (3.24) since W$
i ! (1 � �$)ui(Mi;Mj) +

�$ e�i, W$�1
i ! (1� �$�1)ui(Mi;Mj) + �

$�1 e�i and e�i > ui(Mi;Mj).

For the next condition note that, U0si(si 2 Si) is Player i�s payo¤ from si in state

0.

U0ai = (1� �)[p
$
aj
�i +

X
sj 6=aj

p$sjui(ai; sj)] + p
$
ai
�W 0

i + (1� p$ai)�W
n
i

U0si = (1� �)
X
sj

p$sjui(si; sj) + �W
n
i where si 6= ai

C2. U0ai � U
0
si
> 0 for all si 6= ai. This is true because:

lim
p0aj!1

U0ai � U
0
si
= (1� �)[�i � ui(si; aj)] + �(W 0

i �W n
i )

= �i � [�(1� �n)ui(Mi;Mj) + �
n+1 e�i]� (1� �)ui(si; aj)

(from (3.24))

> 0 (from (3.20))
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For the next condition, let p$Mj
=

mjP
k=1

p$aj(k). In State $; for k = 1; 2; :::mi:

limU$ai(k) = (1� �)
X
sj2Sj

p$sjui(ai(k); sj) + p
$
Mj
�W$�1 + (1� p$Mj

)�W n

= (1� �)ui(ai(k);Mj) + �W
$�1

as paj(k) ! qj(k) for sj 2Mj , psj ! 0 for all sj =2Mj.

C3. lim
paj(k)!qj(k), psj!0

Uai(k+1) � Uai(k) = 1
�
log qi(k+1)

qi(k)
for k = 1; 2; :::mi � 1: This is

true because:

limUai(k+1)�Uai(k) = (1��)(ui(ai(k+1);Mj)�ui(ai(k);Mj))+�
$(y$i (k)�y$i (k+1))

as paj(k) ! qj(k) for sj 2Mj and psj ! 0 for sj =2Mj.

=
1

�
log

qi(k + 1)

qi(k)
From (3.17)

For the next condition note that, in State $ :

U$Mi
= (1� �)

X
sj

p$sjui(Mi; sj) + p
$
Mj
�W$�1 + (1� p$Mj

)�W n

For si =2Mi:

U$si = (1� �)
X
sj

p$sjui(si; sj) + �W
n

C4. U$Mi
� U$si > 0 for si =2Mi.

limU$Mi
� U$si = (1� �)[ui(Mi;Mj)� ui(si;Mj)] + �(W

$�1 �W n)
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as p$aj(k) ! qj(k) for sj 2Mj and p$sj ! 0 for all sj =2Mj.

� (1� �)[ui(Mi;Mj)� ui(si;Mj)] + �(W
n�1 �W n) from C3

= (1� �)ui(Mi;Mj) + �(W
n�1 �W n) � (1� �)ui(si;Mj)

= (1� �)((1� �n)ui(Mi;Mj) + �
n e�i)� (1� �)ui(si;Mj)

> 0 from (3.23) and because ui(si;Mj) � 0:

Theorem 3.2 For " > 0 and any feasible individually rational (�1; �2) = u(a1; a2);

there exists � < 1 such that for all � � �, there exists �(�) > 0 with the following

property. For � � � and � � �(�), there exists a Logit Quantal Response equilibrium

of the in�nitely repeated game G1(�) in which jW 0
i � ui(a1; a2)j < ".

Proof. Use (3.20) and (3.21) to �nd �: For � > � = max(�;b�), we are looking for
a strategy pro�le with p0s that solve a system of equations: one equation for each

action for each state for each player. In the analysis below, we assume that when

deciding on their current action, players take as given that in all future periods, the

strategy pro�le satis�es p0ai > 1� "
0 and

���p$ai(k) � qi(k)��� < "$(k) for k = 1; :::;mi. For

si =2 Mi, let p$si < "
! and �nally, pCeai > 1� "C . If in addition to this the opponent�s

current period strategy satis�es these conditions, we know that C2-C4 are satis�ed.

State0: Let p0i = (p
0
ai
; fp0sigsi 6=ai). Assume p

0
aj
> 1� "0. From the Logit quantal

response function:

p0ai(p; �) =
1P

si2Si
e�(U

0
si
�U0ai )
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From C2, U0si � U
0
ai
< 0 for all si 6= ai. This implies that lim

�!1
p0ai(p; �) = 1: We

can �nd �i
0 such that p0ai(p; �) � 1� "

0 for � � �0i : Also for p0si(si 6= ai), there exists

�0si such that p
0
si
(p; �) � "0.

Let �0 = max(�01; f�0s1gs1 6=a1, �
0
2; f�0s2gs2 6=a2).

State B$: Let p$i = (fp$ai(k)g
mi
k=1; fp$sigsi =2Mi

). Assume that Player j is playing a

stage game strategy very close to Mj i.e.
���p$ai(k) � qi(k)��� < "$(k).

From the Logit quantal response function:

p$ai(k+1)
p$ai(k)

(p; �) = e�(Uai(k+1)�Uai(k))

From C3,

lim
p$ai(k+1)
p$ai(k)

=
qi(k + 1)

qi(k)
(3.25)

as paj(k) ! qj(k) for sj 2 Mj and psj ! 0 for sj =2 Mj. Also from the Logit

quantal response function, for si =2Mi:

p$si
p$Mi

= e
�(Usi�UMi

)

From C4, Usi � UMi
< 0. Therefore for p$si(si =2 Mi); there exists a �

$
si
such that

p$si(p; �) � "$ for � � �$si . Combined with (3.25) this implies that we can �nd �
$
k

such that
���p$ai(k) � qi(k)��� < "$(k) for � � �$k .

Let �$ = max(f�$k gmi
k=1; f�

$
s1
gs1 =2M1 ; f�$k gmi

k=1; f�
$
s2
gs2 =2M2).

State C: Since WC
i > 0, the implementation of ( ea1; ea2) is identical to the imple-

mentation of (ai; aj) in State 0 with a large enough �
C .
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Let �(�) = max(b�; �0; �n; �n�1; :::�1; �C): Now, let K0 = jSij+ jSjj � 2 if (a1; a2)

is a pure action pair and K0 = jSij + jSjj if (a1; a2) is a correlated action pair. Let

KC = jSij+ jSjj � 2 if ( ea1; ea2) is a pure action pair and KC = jSij+ jSjj if ( ea1; ea2) is
a correlated action pair.

For � > � and � � �(�), the Quantal response function is a continuous function

from the closed and convex set [1�"0; 1]2 � [0; "0]K0 � [q1(1)�"$(1); q1(1)+"$(1)]�

:::�[q2(m2)�"$(m2); q2(m2)+"
$(m2)]�[0; "$]jSij+jSj j�mi�mj�[1�"C ; 1]2 � [0; "C ]KC

into itself.

From the Brouwer Fixed Point Theorem, there exists a Quantal Response Equilib-

rium with the required properties p0ai � 1� "
0,
���p$ai(k) � qi(k)��� < "$ for k = 1; :::;mi,

p$si < "
$ for si =2 mi and pCeai > 1� "C . From C0;W 0

i � ui(a1; a2)� ".

QED

3.5 Conclusion

Folk Theorems are well established in the repeated games literature when there is

perfect monitoring of opponents�actions or imperfect but public monitoring (Fuden-

berg, Levine and Maskin, 1994). Several papers look into which equilibria of these

games are robust to private monitoring imperfections. For instance, Ely and Valimaki

(2002) �nd equilibria for the repeated Prisoner�s Dilemma that are robust to private

monitoring and are able to support all feasible individually rational payo¤s. Mailath

and Morris (2002) �nd su¢ cient conditions under which imperfect public monitoring

equilibria are robust to private monitoring.

A related literature studies robustness to incomplete information in dynamic and

repeated games (see Chassang and Takahashi, 2009). The Quantal Response model
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introduces one speci�c kind of additive incomplete information. This paper shows

that the perfect monitoring equilibrium strategies used to prove the Folk Theorem in

Fudenberg and Maskin (1986) are robust to this kind of private information. If the

information is almost complete and the discount factor is close enough to 1, there

exist Quantal Response Equilibria su¢ ciently close to the equilibria in the original

construction.
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