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Propagation of Shocks over Economic Networks Introduction

Introduction

Networks provide a natural framework for the study of how economic
shocks are transmitted from one unit to another—from one industry,
firm, bank, region, innovator,..., to another.

This is similar in spirit to the study of information/idea/virus
contagion, but economic theory—and data—can play even a more
important role in disciplining these interactions.

Some important applications would be:

Sources of aggregate fluctuations—from micro shocks.
A framework for empirical work for on the interplay between shocks of
different industries.
A “theory” of systemic risk.
New approaches to inter-industry and spatial correlation of economic
activity.
The innovation network and the propagation of ideas.
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Propagation of Shocks over Economic Networks Plan

Plan

Shocks and interactions in production networks.

Reduced-form empirical approaches.

Aggregate volatility: theory and some simple structural approaches.

Do microeconomic shocks wash out in the aggregate? Some
theoretical insights and suggestive evidence.

What features of networks matter for instability/stability of economic
systems?

The innovation network and the propagation of ideas.

Conclusion.
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Production Networks

Let us consider a simple model of input-output linkages.

Based on Long and Plosser (JPE, 1993) and Acemoglu, Carvalho,
Ozdaglar and Tahbaz-Salehi (Econometrica, 2012).

The output of each sector is used by a subset of all sectors as input
(intermediate goods) for production.

A static economy (without capital) consisting of n
sectors—generalization to dynamics, including capital accumulation
straightforward and omitted for simplicity.
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Production Structure

Cobb-Douglas technologies:

xi = uα
i `

α
i

n

∏
j=1

x
(1−α)wij

ij ,

with resource constraint: n

∑
i=1

xji + ci = xi ,

`i : labor employed by sector i ;
α ∈ (0, 1): share of labor;
xij : the amount of good j used in the production of good i ;
ci : final consumption of good i .
ui : idiosyncratic (independent across sectors) shock to sector i—for
simplicity introduced as a productivity shock. Let εi ≡ log(ui ) with
distribution function Fi and variance σ2

i < ∞.

wij : share of good j in input use of sector i ;

wij = 0 if sector i does not use good j as input for production.

No aggregate shocks—for simplicity.
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Input-Output Structure

Input-output structure represented by a weighted, directed
network/graph.

wij

i

j

Suppose that each sector equally relies on the inputs of others:

n

∑
j=1

wij = 1 for each i .
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Input-Output Structure (continued)

Degree of sector j : (value) share of j ’s output in the total
production of economy

dj =
n

∑
i=1

wij .

Formally, this is “out-degree,” but since “in-degree” is equal to one for
all sectors, we refer to this as “degree”.

Let W be the matrix of wij ’s.

the row sums of W are equal to one;
the column sums of W are given by the dj ’s.

wij ’s also correspond to the entries of input-output tables. Here
Cobb-Douglas is important. Entries of input-output tables are defined
as value of spending on input/value of output.

With Cobb-Douglas, these values are independent of quantities (price
and output effects exactly cancel out), and are given by the exponents
wij of the production function.
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Household Maximization

All sectors are competitive.

Identical results with constant elasticity monopolistic competition.

Representative household with preferences:

u(c1, c2, . . . , cn) = A
n

∏
i=1

(ci )
1/n,

where A is a normalizing constant.
Endowed with one unit of labor supplied inelastically, so market
clearing implies

n

∑
i=1

`i = 1.

Consumer maximization:

maximize u(c1, c2, . . . , cn)

subject to
n

∑
i=1

pici = h,

where h is the market wage, which is also equal to total value added
(there is no capital and labor supply is normalized to one).
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Competitive Equilibrium

The representative household maximizes utility.

All firms maximize profits.

Labor and goods markets clear.
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Characterization of Equilibrium

The structure of equilibrium is straightforward to characterize.
Log GDP or real value added is given as a convex combination of
sectoral shocks:

y ≡ log(GDP) = v′ε,

where ε ≡ [ε1 . . . εn]′ is the vector of sectoral shocks, and v the
influence vector or the vector of Bonacich centrality indices
defined as

v ≡ α

n

[
I− (1− α)W′]−1 e,

where recall that e is the vector of 1’s.
The term

[
I− (1− α)W′]−1 is also the Leontief inverse.

As noted by Hulten (Review of Economic Studies, 1978) and Gabaix
(Econometrica, 2011), v is also the “sales vector” of the economy,
with its elements given by

vi =
pixi

∑n
j=1 pjxj

.
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Why the Leontief Inverse?

That the Leontief inverse emerges as the relevant measure—and its
relationship to Bonacich centrality—is not surprising, though of
course the Cobb-Douglas technologies and preferences do matter for
the exact functional form.

Clearly if an industry i is hit by a negative shock, εi , this will not only
reduce xi , but may also affect downstream and upstream industries.

First consider upstream industries. It turns out that the impact on
upstream industries is zero because price and output effects cancel out
due to Cobb-Douglas—as the quantity of good i falls (because of the
negative shock) the price of good i increases, leaving pixi unchanged.

This implies no upstream impact in response to productivity shocks.
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Why the Leontief Inverse? (continued)

Next consider downstream industries.

Now the increase in pi implies that they will cut their demand for xi ,
reducing their output.

The first-order effects (on log outputs) can be captured by
α(1− α)W′

iεi—where Wi is the ith column of the W matrix, and α
comes from the fact that the impact of εi on sector i is αεi .

But this is not the end of the adjustment. There will be second-order
effects, as downstream industries from i contract and then their
downstream industries are also negatively affected. This will be
captured by (1− α)2

(
W′

i

)2
εi .
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Why the Leontief Inverse? (continued)

Continuing in this fashion with higher-order effects, we have that the
total impact from the shock to sector i is

α
∞

∑
k=1

(1− α)k
(

Wk
)′
i
εi = α

([
I− (1− α)W′]−1)′

i
εi = α

(
n

∑
j=1

lji

)
εi ,

where lij ’s are the elements of the Leontief inverse matrix.
Taking shocks to all sectors into account and the fact that, from the
consumer side, sectoral outputs can be logarithmically aggregated
with each sector having weight 1/n, we obtain the total impact on
log GDP as

α

n

n

∑
i=1

∞

∑
k=1

(1− α)k
(
W′)k

i
εi = α

n

∑
i=1

n

∑
j=1

ljiεi

=
α

n

([
I− (1− α)W′]−1 e

)′
ε

= v′ε.
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Reduced-Form Empirical Approaches

Next, let us look at the effect of all sectoral shocks on sector i , and
also look at effects on upstream suppliers in the case of
demand/import shocks.
With the same reasoning (and ignoring constants), the first-order
effect can be written as

∑
j 6=i

wijεi = ((W′)i)
′ε−i

where W′
i is the ith row of the matrix W and ε−i is the column

vector of ε’s with the ith element set to zero.
Proceeding similarly, the full effects can be obtained as(

[I− (1− α)W]−1 e
)′
i
ε−i = ∑

j 6=i

lijεi

where recall that lij ’s are the entries of the Leontief inverse matrix.
The simplest empirical approach would be to use a measure of the
“exogenous” component of ε and study the impact of εi and ε−i on
the output of sector i .

Daron Acemoglu (MIT) Networks July 22, 2014. 14 / 59



Propagation of Shocks over Economic Networks Reduced-Form Empirical Approaches

Reduced-Form Empirical Approaches (continued)

A candidate for such potentially exogenous industry have a level
shock is the exogenous component of the increase in (US) imports
from China, is exploited by Autor, Dorn, and Hanson (AER, 2013).

This approach is pursued in the context of the study of the impact
Chinese trade on aggregate US employment by Acemoglu, Autor,
Dorn, Hanson, and Price (mimeo, 2014).

Exogenous component is obtained, following Autor, Dorn, and
Hanson, by using the increase in non-US OECD countries imports
from China in that industry.

Imports from China are measured as imports divided by value of
production in the US economy at the four-digit manufacturing
industry level.

The impact of ε−i is measured both by first-order effects and the full
effects using the Leontief inverse.
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Reduced-Form Results
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Reduced-Form Results (continued)

Consistent with the basic theory exposited here, there are large
downstream effects, especially once these are filtered through Leontief
inverse.

The upstream results seem to be much less stable (consistent with
the emphasis on downstream effects here).
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Aggregate Volatility

Let us go back to the general framework presented above and
consider aggregate volatility—meaning the volatility of log
GDP—measured as.

σagg ≡
√

var y .

Recall that
y ≡ log(GDP) = v′ε,

Hence:

σagg =

√
n

∑
i=1

σ2
i v2

i .

From this expression, the “conventional wisdom”—e.g., as articulated
by Lucas (Theories of Business Cycles, 1984)—can be understood:

suppose vi ≈ 1
n and n is large (so that the economy is “well

diversified”), then σagg this trivial—no aggregate fluctuations without
aggregate shocks.
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Some Theoretical Results

We first start with some simple theoretical observations questioning
the above “diversification argument” and then link the structure of
the input-output network to aggregate volatility.

We next turn to a structural empirical strategy to shed more light on
the relationship between aggregate volatility and sectoral shocks.

Finally, we provide sharper results by studying “large” (highly
diversified) economies—i.e., those with n large.
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Macroeconomic Irrelevance of Micro Shocks

We say that the network is regular if di = d for each i .

That is, each sector has a similar degree of importance as a supplier to
other sectors.

Examples of regular networks:

rings: the most “sparse” input-output matrix, where each sector draws
all of its inputs from a single other sector.
complete graphs: where each sector equally draws inputs from all
other sectors.
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Irrelevance of Micro Shocks (continued)

Suppose also that
σi = σ for each i .

Then we have that for all regular networks:

σagg =
σ√
n

(see also Dupor, Journal of Monetary Economics,1999).

Intuition: with the (log) linearity implied by the Cobb-Douglas
technologies, shocks average out exactly provided that all sectors
have the same degree.

This result is particularly interesting because rings are often
conjectured to be unstable or prone to “domino effects” (or other
types of contagion).
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Asymmetric Networks Are Fragile

However, this irrelevance is not generally correct.

In particular, Lucas’s argument is incorrect when vi ’s are far from
1/n, which happens when the network is highly asymmetric—in terms
of degrees.

The extreme example is the star network:

Daron Acemoglu (MIT) Networks July 22, 2014. 22 / 59



Propagation of Shocks over Economic Networks Aggregate Volatility

Asymmetric Networks Are Fragile (continued)

In fact, it can be shown that the highest level of aggregate volatility is
generated by the star network and is equal to

σagg =
σ√

1−
(
n−1
n

)
α (1− α)

,

which is much greater than σ/
√

n when n is large.

In fact, this is not just high volatility, but systemic volatility (≈
“system-wide” volatility: shocks to the central sector spread to the
rest, creating system-wide co-movement—we return to systemic
volatility below.

Intuition: the shock to the central sector of the star does not “wash
out”.

More general result: unequal degrees—or asymmetric
networks—create additional volatility.
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What Does the US Input-Output Network Look Like?

Intersectoral network corresponding to the US input-output matrix in 1997.

For every input transaction above 5% of the total input purchases of the

destination sector, a link between two vertices is drawn.
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Towards a Structural Approach

The observation about the systemic nature of volatility here also
provides a useful direction about empirical work based on more
fine-grained predictions of the framework here.

If aggregate productivity is driven by inter-sectoral linkages, then
there should be a specific pattern of co-movement across sectors (as
a function of the input-output network).

For example, if the input-output network is given by the star network,
all sectors should co-move with the star sector, but not with each
other conditional on the star sector.

If the input-output network is given by the ring network, then sector i
should co-move with sector i − 1 etc.
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Towards a Structural Approach (continued)

This is related to the approach taken by Foerster, Sarte and Watson
(JPE, 2011) (see also Shea, Journal of Money, Credit and Banking,
2002), but they use additional structure on the model coming from a
specific real business cycle model instead of the full covariance
structure just coming from the input-output interactions.

Recall that the impact of input-output linkages on sector i is

n

∑
j=1

lijεi

(now including the effect of sector i on itself through input-output
linkages).

Now suppose that
εi = η + ε i ,

where η is an aggregate shock and ε i is a sector-specific shock
orthogonal to all other shocks.
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Towards a Structural Approach (continued)

This implies that the variance of log output of sector i can be written
as

σ2
η + α2

n

∑
k=1

l2ijσ
2
k ,

where σ2
η is the variance of the aggregate shock and σ2

i is the
variance of the ith sectoral shock.

Since the vector v can be computed from the input-output table, this
structure implies a close link between sectoral variances.

More importantly, the correlation between sector i and k is

σ2
η + α2

n

∑
k=1

lik ljkσ2
k ,

so the entire variance-covariance structure of sectoral outputs can be
used to recover the underlying shocks.
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Asymptotic Results

To obtain sharper theoretical results, consider a sequence of
economies with n→ ∞.

So we will be looking at “law of large numbers”-type results.

Suppose that σi ∈ (σ, σ).
Then the greatest degree of “stability” or “robustness” (least
systemic risk) corresponds to

σagg ∼ 1/
√

n

(as in standard law of large numbers for independent variables).

Define the coefficient of variation of degrees (of an economy with
n sectors) as

CVn ≡
1

davg

[
1

n− 1

n

∑
i=1

(di − davg)

]1/2

,

where davg = 1
n ∑i di is the average degree.
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First-Order Results

Just considering the first-order downstream impacts,

σagg = Ω
(

1√
n
+

CVn√
n

)
where the Ω means σagg → 0 as n→ 0 no faster than 1+CVn√

n
.

For regular networks, CVn = 0, so σagg → 0 at the rate 1√
n

.

Ford the star network, CVn 6→ 0 as n→ 0, so σagg 6→ 0 and the law
of large numbers fails.

CVn = 0 CVn = 0 CVn ∼
√

n
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First-Order Results (continued)

We can also make these results easier to apply.

We say that the degree distribution for a sequence of economies has
power law tail if, there exists β > 1 such that for each n and for
large k,

Pn (k) ∝ k−β,

where Pn (k) is the counter-cumulative distribution of degrees and β
is the shape parameter.

It can be shown that if a sequence of economies has power law tail
with shape parameter β ∈ (1, 2), then

σagg = Ω
(

n
− β−1

β −ε
)

where ε > 0 is arbitrary.

A smaller β corresponds to a “thicker” tail and thus higher coefficient
of variation, and greater fragility.
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Higher-Order Results

In the same way that first-order downstream effects do not capture
the full implications of negative shocks to a sector, the degree
distribution does not capture the full extent of asymmetry/inequality
of “connections”.

Two economies with the same degree distribution can have very
different structures of connections and very different nature of
volatility:

2 3 d1 2 3 d

1
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Higher-Order Results (continued)

We define the second-order interconnectivity coefficient as

τ2(Wn) ≡
n

∑
i=1

∑
j 6=i

∑
k 6=i ,j

wjiwkidjdk .

This will be higher when high degree sectors share “upstream
parents”:

dH dL dH dL

low τ2

dH dH dL dL

high τ2
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Higher-Order Results (continued)

It can be shown that

σagg = Ω

(
1√
n
+

CVn√
n
+

√
τ2(Wn)

n

)
.

2 3 d1

τ2 = 0

2 3 d

1

τ2 ∼ n2
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Higher-Order Results (continued)

Define second-order degree as

qi ≡
n

∑
j=1

djwji .

For a sequence of economies with a power law tail for the
second-order degree with shape parameter ζ ∈ (1, 2), we have

σagg = Ω
(

n−
ζ−1

ζ −ε
)

,

for any ε > 0.

If both first and second-order degrees have power laws, then

σagg = Ω
(

n−
ζ−1

ζ −ε + n
− β−1

β

)
,

i.e., dominant term: min {β, ζ}.
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When Network Structure Does Not Matter

We say that a sequence of economies is balanced if maxi di < c for
some c .

This is clearly much weaker than regularity.

It can be shown that, for any sequence of balanced economies,

σagg ∼
1√
n

.

Once again rings and complete networks are equally stable
(emphasizing that sparseness of the input-output matrix has little to
do with aggregate volatility).
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Another Look at the US Input-Output Network

Empirical counter-cumulative distribution of first-order and
second-order degrees

Linear tail in the log-log scale −→ power law tail
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Higher-Order Results (continued)

Average (across years) estimates: β̂ = 1.38 , ζ̂ = 1.18.

ζ̂ < β̂: second-order effects dominate first-order effects.

Average (annual) standard deviation of total factor productivity
across 459 four-digit (SIC) manufacturing industries between 1958
and 2005 is 0.058.

Since manufacturing is about 20% of the economy, for the entire
economy this corresponds to 5× 459 = 2295 sectors at a comparable
level of disaggregation.

Had the structure been balanced: σagg = 0.058/
√

2295 ' 0.001.

But from the lower bound from the second-order degree distribution:

σagg ∼ σ/
√

n ≈ 0.018.

Daron Acemoglu (MIT) Networks July 22, 2014. 37 / 59



Propagation of Shocks over Economic Networks Financial Contagion

Financial Contagion

An at-first surprising implication of the analysis so far is the result
that aggregate volatility is the same in complete and ring networks.

Is this a general result?

The answer is no, and underscores that the implications of different
network structures crucially depend on what types of interactions are
taking place over the network.

In particular, the linearity (log-linearity) is responsible for this
result—positive and negative shocks cancel out when all units have
similar “influence”.

But linearity may be a good approximation for input-output that
works, but not for finance—where, in the presence of debt-like
contracts, default (and bankruptcy) creates a major nonlinearity.
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A Simple Model of Counterparty Relations

Based on Acemoglu, Ozdaglar and Tahbaz-Salehi (mimeo, 2014). See
also Allen and Gale (JPE, 2000) and Elliott, Golub and Jackson
(mimeo, 2013) on a non-linear financial model due to cross-firm
shareholdings and bankruptcy.

Consider a network of banks (financial institutions) potentially
borrowing and lending to each other (as well as from outside creditors
and senior creditors).

All borrowing and lending is through short-term, uncollateralized debt
contracts.

Suppose that all contracts are signed at date t = 0.

Banks have long-term assets that will pay out at date t = 2, but are
illiquid, and cannot be liquidated at date t = 1.

Banks are hit by liquidity shocks at date t = 1 and also receive and
make payments on their interbank contracts.
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A Simple Model of Counterparty Relations (continued)

More specifically, banks lend to one another at t = 0 through
standard debt contracts to be repaid at t = 1.

Face values of debt of bank j to bank i : yij .

{yij} defines a financial network.

yij

i

j

Related problem: chains of trade credit—Kiyotaki and Moore
(mimeo, 1997) for theory and Jacobson and von Schedvin (mimeo,
2013) for evidence.
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A Simple Model of Counterparty Relations (continued)

Bank i invests in a project with returns at t = 1, 2.

Random return of zi at t = 1.

Deterministic return of A at t = 2 if the entire project is held to
maturity.

In addition, bank i has senior obligations in the amount v > 0.

If the bank cannot meet its obligations, it will be in bankruptcy and
has to liquidate its project with ζA.

If it still has insufficient funds, the bank will have to default on its
creditors, which will be paid on pro rata basis.

Simplify the discussion here by assuming that ζ ≈ 0, so that
liquidation of long-term assets is never sufficient to stave off default.
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Payment Equilibrium

From the above description, we have that bank j ’s actual payments
are:

xij =


yij if zj + ∑s xjs ≥ v + ∑s ysj

yij
∑s ysj

(zj − v + ∑s xjs) if v ≤ zj + ∑s xjs < v + ∑s ysj

0 if zj + ∑s xjs < v .

The first branch is when the bank is not in default.

The second is when the bank is in default but senior creditors are not
hurt.

The third is when senior creditors are not paid in full (and the rest are
not paid at all).
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Payment Equilibrium (continued)

A payment equilibrium is a fixed point {xij} of the above set of
equations (one for each bank j).

A payment equilibrium exists and is generically unique.

This generalizes Eisenberg and Noe (Management Science, 2001).
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Volatility in the Financial Network

To discuss volatility in this financial network, let us focus on the case
in which:

The financial network is regular, i.e., ∑s ysj = y for all j . (We know
from our analysis of input-output networks that asymmetries in this
quantity create one source of stemic volatility, so we are abstracting
from this).
zj = a or zj = a− ε, so that banks are potentially hit by a negative
liquidity shock at time t = 1.
Suppose also that only one bank in the network is hit by the negative
liquidity shock, −ε.
Throughout, focus on the network of size n (i.e., no asymptotic
results).

Daron Acemoglu (MIT) Networks July 22, 2014. 44 / 59



Propagation of Shocks over Economic Networks Financial Contagion

Volatility in the Financial Network (continued)

How to quantify volatility?

The following observation gives us a simple way:

Social surplus = na− ε− (number of defaults)A.

Thus social surplus clearly related to how systemic the shock that hits
one bank becomes, suggesting a natural measure of volatility and
stability in this financial network.

We say that a network is less stable than another if it has greater
number of expected defaults.
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Small Shock vs. Large Shock Regimes

It will turn out that the size of the negative shock (or more generally
the size and the number of shocks) will matter greatly for what types
of networks are stable.

For this, let us call a regime in which ε < ε∗ the small shock regime,
and the regime in which ε > ε∗ the large shock regime.
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Stability in the Small Shock Regime

Suppose that ε < ε∗ and y > y ∗ (so that the liabilities of banks are
not too small). Then:

The complete financial network is the most stable network.

The ring financial network is the least stable network.
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Stability in the Small Shock Regime (continued)

In addition, it can be shown that if we take a γ convex combination
of the complete and the ring networks (so that

yij = (1− γ)y ring
ij + γy complete

ij ), then as γ increases, the network
becomes more stable.
Intuition: more links out from a bank implies that liabilities of that
bank are held in a more diversified manner, and losses of that bank
can be better absorbed by the financial system.
The ring is the least diversified network structure, leading to the
greatest amount of systemic volatility/instability.
In the linear/log-linear case, positive shocks and negative shocks in
different parts of the regular network canceled out. This no longer
happens because of default.
Rather, default creates domino effects.

If a bank is negatively hit, then it is unable to make payments on its
debt, and this puts its creditors (that are highly exposed to it) in
potential default, and so on.
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Stability in the Large Shock Regime

The picture is sharply different in the large shock regime.

We say that a financial network δ-connected if there exists a subset
M of banks such that the linkages between this subset and its
complement is never greater than δ—i.e., yij ≤ δ for any to banks
from this upset and its complement.

M Mc
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Stability in the Large Shock Regime (continued)

Suppose that ε > ε∗ and y > y ∗. Then:

The complete and the ring financial networks are the least stable
networks.

For δ sufficiently small, a δ-connected network is more stable than the
complete and the ring networks.
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Stability in the Large Shock Regime (continued)

This is a type of phase transition—meaning that the network
properties and comparative statics change sharply at a threshold
value.

Network Intuition: When shocks are large, they cannot be contained
even with full diversification and spread through the network like an
“epidemic”. In that case, insulating parts of the network from others
increases stability.

Economic Intuition: weakly connected networks make better use of
the liquidity of senior creditors.

The complete network uses the excess liquidity of non-distressed banks,
a− v > 0, very effectively, but does not use the resources of senior
creditors at all. Weakly connected networks do not utilize the liquidity
of non-distressed banks much, but do make good use of the resources
of senior creditors when needed.
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Innovation Networks

In addition to input-output and financial pathways, shocks the one
part of the economy propagate to the rest because of the innovation
network.

Ideas in one part of the economy (in one sector, process or technology
class) become the basis of innovation or technological improvement in
some other part of the economy—“building on the shoulders of
giants”.

Suppose, for example, that we represent innovation relations as a
network between n “technology classes” G (again with Gi denoting
the ith row of this matrix).

In the data, G corresponds to the matrix given by citation patterns.
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Innovation Networks (continued)

Then let us posit the following relationship:

xi ,t = αixi ,t−1 + φG′ixt−1 + ε i ,

where xi ,t is the innovation rate in technology class i at time t and xt
denotes the vector of xi ,t ’s.

This implies that successful innovations in sectors that i cites
translate into higher innovations in the future by sector i .

In practice, important to estimate G from past data (to avoid
mechanical biases).

Daron Acemoglu (MIT) Networks July 22, 2014. 53 / 59



Propagation of Shocks over Economic Networks Innovation Networks

The US Innovation Network

Acemoglu, Akcigit and Kerr (mimeo, 2014) perform this task using
US citation data for the baseline period, 1975-1984.

First construct the matrix G as

gjj ′ = ∑
k 6=j

Citations1975−1984
j→j

′

Citations1975−1984j→k

where Citations1975−1984j→k is the citation during this period from
technology class j to k—thus ideas flowing from k to j .

the denominator leaves out “self-cites”—cites from j to j .

gij

i

j
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The US Innovation Network at the Two-Digit Level
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Predicting Innovation

To predict innovation using the innovation network, it is also useful to
take account of the citation lags (thus corresponding to a separate G
matrix for each citation time gap). For this purpose, construct

FlowRate1975−1984j→j ′,a = Flow1975−1984
j→j ′,a /Patent1975−1984j ′ ,

where Flow1975−1984
j→j ′,a is the total number of cites from technology

class j ′ to j that takes place a years after the patent from j is issued,
and Patent1975−1984j ′ is the number of patents in cited field j ′.
Compute expected patents in sector j at the three-digit technology
class level (corresponding to 484 classes):

ExpectPatents1995−2004j ,t = ∑
j ′ 6=j

∑
a=1,10

FlowRate1975−1984j→j ′,a Patents1985−1994j ′,t=t0+a .

This takes into account a 10-year citation window and sums over all
sectors citing j (except j → j), using FlowRate1975−1984j→j ′,a as weights.
Note that the patents on the right-hand side are for 1985-1994,
whereas expected patents are for 1995-2004.
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Predicting Innovation (continued)

The relationship between expected patents and actual patents
(second panel taking out technology class and year fixed effects).
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Interpretation and Current Work

This descriptive exercise provides fairly strong (albeit reduced-form)
evidence that ideas and innovations spread through the
citation/innovation network.

This supports the view that innovation is a cumulative process
building on innovation in other fields.

This evidence would also plausibly suggest that medium-term
propagation of “idea shocks” will be through the innovation network.

One use of this relationship is as a potential source of variation in
technology.

If ExpectPatentsj ,t is high for some sector relative to others, then we
can expect that sector to have a greater number of new innovations
and thus a greater improvement in technology.

Acemoglu, Akcigit and Kerr (2014) use this source of variation to
investigate the relationship between technology and employment at
the city and industry level.
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Conclusion

Networks are also useful vehicle for the study of propagation of shocks
at the micro or the microeconomic level across various different units.

This brief lecture focused on propagation of shocks across sectors,
financial institutions and different types of innovations/technology
classes.

Other important linkages would include geographic areas, labor
markets, firms, and countries.

This is another area open for new theoretical and empirical work.
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